JPH11200029A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH11200029A
JPH11200029A JP507698A JP507698A JPH11200029A JP H11200029 A JPH11200029 A JP H11200029A JP 507698 A JP507698 A JP 507698A JP 507698 A JP507698 A JP 507698A JP H11200029 A JPH11200029 A JP H11200029A
Authority
JP
Japan
Prior art keywords
substrate
film
film formation
thickness
adjusting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP507698A
Other languages
Japanese (ja)
Inventor
Takayuki Izeki
隆之 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP507698A priority Critical patent/JPH11200029A/en
Publication of JPH11200029A publication Critical patent/JPH11200029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering device capable of uniformizing the film thickness of a thin film to be formed on the surface of a substrate and furthermore capable of realizing the miniaturization of the device. SOLUTION: In a sputtering device, the space between a target 16 and a substrate 17 in a vacuum vessel 11 is provided with a film forming amt. regulating board 20. The film forming amt. regulating board 20 almost continuously reduces the passing amt. of film forming particles turned out from the target 16 toward the surface of the substrate 17 from the edge of the substrate 17 toward the center of the substrate 17 and almost uniformly regulates the film forming amt. in the surface of the substrate 17. The film forming amt. regulating board 20 is provided with an opening in which the opening size continuously reduces from the edge toward the center. Moreover, the film forming amt. regulating board is formed in a shape in which it is continuously thickened from the edge toward the center.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜を成膜するス
パッタリング装置に関し、特にターゲットから叩き出さ
れた成膜粒子の通過量を調節し、基板表面の薄膜の成膜
量を均一化できるスパッタリング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering apparatus for forming a thin film, and more particularly, to a sputtering apparatus capable of controlling the amount of film-forming particles struck out of a target and controlling the amount of the thin film formed on a substrate surface. Related to the device.

【0002】[0002]

【従来の技術】絶縁体、半導体、導電体等の薄膜の成膜
方法として、スパッタリング法が広く使用されている。
スパッタリング法はターゲットを物理的に叩きこの叩き
出された成膜粒子により基板表面に薄膜を成膜するの
で、化学的反応により薄膜を成膜する例えばCVD法に対
して成膜材料に制限がない。さらに、スパッタリング法
は半導体ウエーハ、ガラス基板等の平面基板の表面上に
均一な膜厚で薄膜を形成できる特徴がある。
2. Description of the Related Art Sputtering is widely used as a method for forming thin films such as insulators, semiconductors, and conductors.
In the sputtering method, the target is physically hit and a thin film is formed on the substrate surface by the hitting film-forming particles. Therefore, there is no limitation on the material used for forming the thin film by the chemical reaction, for example, the CVD method. . Further, the sputtering method has a feature that a thin film having a uniform thickness can be formed on the surface of a flat substrate such as a semiconductor wafer or a glass substrate.

【0003】スパッタリングを行うためのスパッタリン
グ装置には図17乃至図20に示すような各種の方式が
ある。図17は2極スパッタ方式を採用するスパッタリ
ング装置の概略構成図である。このスパッタリング装置
は、真空容器(チャンバー)1の内部において上側に第
1電極4、下側に第2電極(基板支持台)5のそれぞれ
を配設し、第1電極4に取り付けたターゲット6と第2
電極5に支持された基板7とを向かい合わせてプラズマ
放電を発生させる。第1電極4には高周波電源発生源8
から高周波電源が供給され、第2電極5は接地される。
真空容器1にはプラズマ放電を発生させる不活性ガス
(例えば、Arガス)を供給するガス導入管2が接続され
る。さらに、真空容器1には、図示しない真空源に接続
された真空排気管3A、排気ガスを排出するためのガス
排気管3Bのそれぞれが接続される。
There are various types of sputtering apparatuses for performing sputtering, as shown in FIGS. FIG. 17 is a schematic configuration diagram of a sputtering apparatus employing a two-electrode sputtering method. This sputtering apparatus has a first electrode 4 on the upper side and a second electrode (substrate support base) 5 on the lower side in a vacuum vessel (chamber) 1, and a target 6 attached to the first electrode 4. Second
Plasma discharge is generated by facing the substrate 7 supported by the electrode 5. The first electrode 4 has a high frequency power source 8
, And the second electrode 5 is grounded.
A gas introduction pipe 2 for supplying an inert gas (for example, Ar gas) for generating a plasma discharge is connected to the vacuum vessel 1. Furthermore, a vacuum exhaust pipe 3A connected to a vacuum source (not shown) and a gas exhaust pipe 3B for discharging exhaust gas are connected to the vacuum vessel 1.

【0004】図18はマグネトロンスパッタ方式を採用
するスパッタリング装置の概略構成図である。このスパ
ッタリング装置は、ターゲット6の裏面であって第1電
極4に永久磁石9を配設し、永久磁石9で発生した閉磁
界内にプラズマを閉じ込め、ターゲット6からの成膜粒
子の発生量を増加して高速成膜を行う。
FIG. 18 is a schematic structural view of a sputtering apparatus employing a magnetron sputtering method. In this sputtering apparatus, a permanent magnet 9 is disposed on the first electrode 4 on the back surface of the target 6, plasma is confined in a closed magnetic field generated by the permanent magnet 9, and the amount of film-forming particles generated from the target 6 is reduced. Increase and perform high-speed film formation.

【0005】図19は対向ターゲット型スパッタ方式を
採用するスパッタリング装置の概略構成図である。この
スパッタリング装置は、第1電極4に第3電極4Aを対
向させ、第1電極4、第3電極4Aのそれぞれに取り付
けた一対のターゲット6及び6A間にプラズマ放電を発
生させ、一対のターゲット6、6Aから叩き出された成
膜粒子により基板7の表面に薄膜を成膜する。第1電極
4と第3電極4Aとの間には直流電源8Dが配設され
る。
FIG. 19 is a schematic diagram of a sputtering apparatus employing a facing target type sputtering system. In this sputtering apparatus, a third electrode 4A is opposed to the first electrode 4, and a plasma discharge is generated between a pair of targets 6 and 6A attached to the first electrode 4 and the third electrode 4A, respectively. , 6A, a thin film is formed on the surface of the substrate 7 using the film-forming particles. A DC power supply 8D is provided between the first electrode 4 and the third electrode 4A.

【0006】図20はコリメーションスパッタ方式を採
用したスパッタリング装置の概略構成図である。このス
パッタリング装置は、装置自体の基本的構造は図17に
示すスパッタリング装置と同様であるが、ターゲット6
と基板7との間にコリメータ板10を配設する。コリメ
ータ板10は、図21(コリメータ板の平面図)に示す
ように、ターゲット6、基板7のそれぞれに平行に配設
され一定の板厚を有し、同一開口サイズの丸穴10Aが
規則的に複数配設される。このコリメータ板10は、基
板7の表面に対する入射角度に斜め成分をもつ成膜粒子
を減少する機能を備える。この種のスパッタリング装置
は、特に磁化方向を一定にする必要のある磁性体薄膜堆
積工程や、高アスペクト比を必要とする半導体装置のコ
ンタクトホール中への金属薄膜堆積工程などの薄膜の成
膜に使用される。
FIG. 20 is a schematic configuration diagram of a sputtering apparatus employing a collimation sputtering method. This sputtering apparatus has the same basic structure as the sputtering apparatus shown in FIG.
A collimator plate 10 is disposed between the substrate and the substrate 7. As shown in FIG. 21 (a plan view of the collimator plate), the collimator plate 10 is disposed in parallel with each of the target 6 and the substrate 7 and has a constant plate thickness. Are arranged in a plurality. The collimator plate 10 has a function of reducing film-forming particles having an oblique component at the incident angle with respect to the surface of the substrate 7. This type of sputtering apparatus is particularly suitable for thin film deposition such as a magnetic thin film deposition process that requires a constant magnetization direction or a metal thin film deposition process in a contact hole of a semiconductor device that requires a high aspect ratio. used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
図17乃至図20に示すそれぞれのスパッタリング装置
には、以下の点について配慮がなされていない。
However, the following points are not considered in each of the sputtering apparatuses shown in FIGS. 17 to 20 described above.

【0008】通常、スパッタリング装置で基板7の表面
に成膜された薄膜の膜厚は、基板7の表面中央部で厚
く、基板7の端に向かって徐々に薄くなる。製造プロセ
ス、例えば半導体製造プロセスにおいては、歩留まりを
高めるために、基板7に成膜される膜厚の均一化が重要
な要因である。そこで、膜厚の均一化を目的として、次
の方法が採用されている。
Usually, the thickness of the thin film formed on the surface of the substrate 7 by the sputtering apparatus is large at the center of the surface of the substrate 7 and gradually decreases toward the edge of the substrate 7. In a manufacturing process, for example, a semiconductor manufacturing process, uniformization of the film thickness formed on the substrate 7 is an important factor in order to increase the yield. Therefore, the following method has been adopted for the purpose of making the film thickness uniform.

【0009】(1)ターゲット6を大型化する方法。(1) A method of increasing the size of the target 6.

【0010】(2)ターゲット6と基板7との間の対向
距離を長くする方法。
(2) A method in which the facing distance between the target 6 and the substrate 7 is increased.

【0011】(3)基板7を回転しながら成膜する方
法。
(3) A method of forming a film while rotating the substrate 7.

【0012】ところが、いずれの方法も根本的には膜厚
を完全に均一化することが難しく、特にターゲット6を
大型にする方法、対向距離を長する方法はいずれも真空
容器1自体が大型になり、スパッタリング装置が大型化
してしまうという問題があった。さらに、基板7を回転
しながら成膜する方法は、基板7を回転する機構を備え
るので、スパッタリング装置が大型化し、しかもスパッ
タリング装置の構造が複雑になるという問題があった。
スパッタリング装置の大型化は、例えば真空容器1内を
真空にしたり、プラズマ放電を行ったりするのに大量の
時間と電力を消費するので、製造プロセスのランニング
コストが増大する。
However, it is fundamentally difficult to make the film thickness completely uniform in any of the methods. Particularly, both the method of increasing the size of the target 6 and the method of increasing the facing distance make the vacuum vessel 1 itself large. Therefore, there is a problem that the sputtering apparatus becomes large. Further, the method of forming a film while rotating the substrate 7 has a problem that a mechanism for rotating the substrate 7 is provided, so that the size of the sputtering apparatus is increased and the structure of the sputtering apparatus is complicated.
When the size of the sputtering apparatus is increased, a large amount of time and power is consumed for, for example, evacuating the vacuum chamber 1 or performing plasma discharge, so that the running cost of the manufacturing process increases.

【0013】本発明は上記課題を解決するためになされ
たものである。従って、本発明の目的は、基板表面に成
膜される薄膜の膜厚が均一化でき、しかも装置の小型化
が実現できるスパッタリング装置を提供することであ
る。
The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide a sputtering apparatus capable of making the thickness of a thin film formed on a substrate surface uniform and realizing miniaturization of the apparatus.

【0014】さらに、本発明の目的は、基板表面に成膜
される薄膜が均一化でき、しかも装置の構造を簡易にし
て装置の小型化が実現できるスパッタリング装置を提供
することである。
It is a further object of the present invention to provide a sputtering apparatus which can make a thin film formed on a substrate surface uniform, and which can simplify the structure of the apparatus to realize a compact apparatus.

【0015】さらに、本発明の目的は、製造プロセスの
ランニングコストが減少できるスパッタリング装置を提
供することである。
Still another object of the present invention is to provide a sputtering apparatus capable of reducing the running cost of a manufacturing process.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、スパッタリング装置において、真空容
器内のターゲットと基板との間に配設され、ターゲット
から基板表面に向かって叩き出される成膜粒子の通過量
を調節し、基板端に対応する位置から基板中心に対応す
る位置に向かって開口サイズが連続的に減少する複数の
開口を配設した成膜量調節板を備えたことを特徴とす
る。
In order to solve the above-mentioned problems, the present invention provides a sputtering apparatus which is disposed between a target and a substrate in a vacuum vessel and is knocked out from the target toward the substrate surface. A film formation amount adjustment plate provided with a plurality of openings that adjust the amount of film-forming particles to pass through, and the opening size is continuously reduced from a position corresponding to the substrate edge to a position corresponding to the substrate center; It is characterized by.

【0017】成膜量調節板は、成膜粒子の通過量を基板
中心から基板端に向かってほぼ連続的に増加することが
出来るので、本発明の特徴に係るスパッタリング装置に
おいては、この成膜量調節板を備えた極めて簡易な構成
により、基板表面の成膜量(成膜された薄膜の膜厚)を
基板の全面にわたってほぼ均一化できる。しかも、基板
表面において均一な成膜量を得るための大型ターゲット
の使用、ターゲットと基板との間の対向距離の増加、基
板の回転機構のいずれもがなくなり、スパッタリング装
置が小型化でき、スパッタリング装置の構造が簡易にな
る。
In the sputtering apparatus according to the present invention, the film formation amount adjusting plate can increase the amount of film formation particles passing almost continuously from the center of the substrate toward the end of the substrate. With an extremely simple configuration including the amount adjusting plate, the amount of film formation on the substrate surface (thickness of the formed thin film) can be made substantially uniform over the entire surface of the substrate. Moreover, the use of a large target for obtaining a uniform film formation amount on the substrate surface, an increase in the facing distance between the target and the substrate, and the rotation mechanism of the substrate are eliminated, so that the sputtering apparatus can be downsized and the sputtering apparatus can be downsized. Is simplified.

【0018】さらに、このように構成されるスパッタリ
ング装置においては、基板表面の同一位置でも成膜量調
節板に配設した開口の開口サイズが大きいほど入射角度
に斜め成分をもつ成膜粒子の通過量が増加でき、開口サ
イズが小さいほど入射角度に斜め成分をもつ成膜粒子の
通過量が減少する。この特性と、基板表面の中心から端
に向かって連続的に成膜量が減少する特性とを組み合わ
せ、基板表面の端から中心に向かって連続的に成膜量が
減少する調節を行うことにより、基板表面の全面にわた
って均一な膜厚で薄膜が成膜できる。本発明の特徴に係
るスパッタリング装置の小型化、構造の簡易化は、いず
れも製造プロセスのランニングコストの減少に寄与する
こととなる。
Furthermore, in the sputtering apparatus configured as described above, even at the same position on the substrate surface, the larger the opening size of the opening provided on the film formation amount adjusting plate, the larger the passing of the film forming particles having an oblique component in the incident angle. The amount can be increased, and the smaller the aperture size, the smaller the amount of film-forming particles having an oblique component at the incident angle. By combining this characteristic with the characteristic that the film deposition amount continuously decreases from the center to the edge of the substrate surface, by performing adjustment that the film deposition amount continuously decreases from the edge of the substrate surface toward the center Thus, a thin film having a uniform thickness can be formed over the entire surface of the substrate. The downsizing and simplification of the structure of the sputtering apparatus according to the features of the present invention all contribute to a reduction in the running cost of the manufacturing process.

【0019】本発明においては、成膜量調節板は、簡単
には、ほぼ均一な板厚を有し、開口サイズが徐々に変化
する複数の開口を配設した構造体で構成すればよい。し
かし、成膜量調節板を、基板端に対応する位置から基板
中心に対応する位置に向かって連続的に増加する板厚を
有するようにしても良い。
In the present invention, the film-forming-amount adjusting plate may simply be constituted by a structure having a substantially uniform plate thickness and a plurality of openings whose opening sizes gradually change. However, the film thickness control plate may have a plate thickness that continuously increases from a position corresponding to the substrate edge toward a position corresponding to the substrate center.

【0020】このように成膜量調節板を、基板端に対応
する位置から基板中心に対応する位置に向かって連続的
に増加する板厚を有するように構成したスパッタリング
装置においては、基板表面の同一位置でも成膜量調節板
の厚さ、すなわち成膜量調節板に配設した開口(開口サ
イズは同一)の開口深さが浅いほど入射角度に斜め成分
をもつ成膜粒子の通過量が増加でき、開口深さが深いほ
ど入射角度に斜め成分をもつ成膜粒子の通過量が減少す
る。この特性と、通常のスパッタリング法における基板
表面の中心から端に向かって連続的に成膜量が減少する
特性とを組み合わせ、基板表面の端から中心に向かって
連続的に成膜量が減少する調節を行うことにより、基板
表面の全面にわたって均一な膜厚で薄膜が成膜できる。
この場合、成膜量調節板は、ほぼ均一な開口サイズの複
数の開口を有し、板厚が徐々に変化するような簡易な構
造体で構成すればよく、このような構成により、スパッ
タリング装置が小型化でき、スパッタリング装置の構造
が簡易になる。
As described above, in a sputtering apparatus in which the deposition amount adjusting plate is configured to have a plate thickness that continuously increases from a position corresponding to the substrate edge toward a position corresponding to the substrate center, Even at the same position, the thickness of the film formation amount control plate, that is, the smaller the opening depth of the opening (the same opening size) provided in the film formation amount control plate, the smaller the penetration amount of the film formation particles having an oblique component in the incident angle. As the opening depth increases, the amount of film-forming particles having oblique components at the incident angle decreases. This characteristic is combined with the characteristic that the film deposition amount continuously decreases from the center to the edge of the substrate surface in a normal sputtering method, and the film deposition amount continuously decreases from the edge of the substrate surface toward the center. By performing the adjustment, a thin film can be formed with a uniform thickness over the entire surface of the substrate.
In this case, the film formation amount adjusting plate may have a plurality of openings having a substantially uniform opening size, and may be formed of a simple structure in which the plate thickness changes gradually. Can be reduced in size, and the structure of the sputtering apparatus can be simplified.

【0021】[0021]

【発明の実施の形態】(第1の実施の形態)以下、図面
を参照して本発明の第1の実施の形態について説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0022】図1は本発明の第1の実施の形態に係るス
パッタリング装置の概略構成図である。図1に示すスパ
ッタリング装置には2極スパッタ方式が採用され、この
スパッタリング装置は真空容器11、ガス導入管12、
真空排気管13A、ガス排気管13B、第1電極14、
基板支持台としても使用される第2電極15、電源1
8、成膜量調節板20を備える。
FIG. 1 is a schematic configuration diagram of a sputtering apparatus according to a first embodiment of the present invention. The sputtering apparatus shown in FIG. 1 employs a two-electrode sputtering method. The sputtering apparatus includes a vacuum vessel 11, a gas introduction pipe 12,
Vacuum exhaust pipe 13A, gas exhaust pipe 13B, first electrode 14,
Second electrode 15 also used as substrate support, power supply 1
8. A film formation amount adjusting plate 20 is provided.

【0023】真空容器11内において、図中上側には第
1電極14が配設され、下側には第2電極15が第1電
極14と対向して配設される。第1電極14は電源18
から直流電圧もしくは高周波電圧が供給され、さらに、
この第1電極14には成膜粒子の発生源となるターゲッ
ト16が取り付けられる。第2電極15は接地され、こ
の第2電極15には薄膜を成膜する基板17が取り付け
られる。基板17には、例えば半導体基板(半導体ウエ
ーハ)、ガラス基板、非磁性基板、配線基板等の基板が
使用される。
In the vacuum vessel 11, a first electrode 14 is provided on the upper side in the figure, and a second electrode 15 is provided on the lower side so as to face the first electrode 14. The first electrode 14 is a power source 18
DC voltage or high-frequency voltage is supplied from
A target 16 serving as a source of film-forming particles is attached to the first electrode 14. The second electrode 15 is grounded, and a substrate 17 for forming a thin film is attached to the second electrode 15. As the substrate 17, for example, a substrate such as a semiconductor substrate (semiconductor wafer), a glass substrate, a non-magnetic substrate, and a wiring substrate is used.

【0024】ガス導入管12の一端は真空容器11に接
続され、他端は図示しないガス供給源に接続される。ガ
ス供給源は真空容器11の内部にプラズマ放電を発生す
るための不活性ガス、例えばArガスを供給する。真空排
気管13Aの一端は真空容器11に接続され、他端は図
示しない真空発生源に接続される。真空発生源は真空容
器11内を真空にする。ガス排気管13Bは真空容器1
1内のガスを外部に排気する。
One end of the gas introduction pipe 12 is connected to the vacuum vessel 11, and the other end is connected to a gas supply source (not shown). The gas supply source supplies an inert gas, for example, an Ar gas, for generating a plasma discharge into the inside of the vacuum vessel 11. One end of the vacuum exhaust pipe 13A is connected to the vacuum vessel 11, and the other end is connected to a vacuum source (not shown). The vacuum source evacuates the vacuum chamber 11. The gas exhaust pipe 13B is the vacuum vessel 1
The gas in 1 is exhausted to the outside.

【0025】成膜量調節板20はターゲット16と基板
17との間、すなわち第1電極14と第2電極15との
間に配設される。図2は成膜量調節板20の平面図であ
る。成膜量調節板20は平面形状が円形状で形成されほ
ぼ均一な板厚を有し、成膜量調節板20の表面、裏面が
いずれもターゲット16(又は基板17)の表面とほぼ
平行になる設定がなされている。成膜量調節板20には
その端から中心部に向かって連続的に開口サイズが減少
する複数の開口20Hが配設される。ここで、成膜量調
節板20の中心部とは基板17の中心部に対応する位置
であり、成膜量調節板20の端とは基板15の端に対応
する位置である。本実施の形態において、開口20Hは
板厚方向に貫通し開口形状を丸形で形成する。なお、開
口20Hの開口形状は、この丸形に限定されず、方形、
多角形、楕円形のいずれかで形成してもよい。
The deposition amount adjusting plate 20 is provided between the target 16 and the substrate 17, that is, between the first electrode 14 and the second electrode 15. FIG. 2 is a plan view of the film formation amount adjustment plate 20. The film formation amount adjusting plate 20 is formed in a circular planar shape and has a substantially uniform plate thickness, and both the front and back surfaces of the film formation amount adjusting plate 20 are substantially parallel to the surface of the target 16 (or the substrate 17). Settings have been made. A plurality of openings 20 </ b> H whose opening size continuously decreases from the end toward the center of the film formation amount adjustment plate 20 are provided. Here, the center of the film formation amount adjustment plate 20 is a position corresponding to the center of the substrate 17, and the end of the film formation amount adjustment plate 20 is a position corresponding to the end of the substrate 15. In the present embodiment, the opening 20H penetrates in the plate thickness direction and has a circular opening shape. The shape of the opening 20H is not limited to this round shape, but may be square,
It may be formed of any one of a polygon and an ellipse.

【0026】成膜量調節板20は、開口20Hにより板
厚方向に貫通する成膜粒子の通過量を調節し、開口20
Hの開口サイズを中心から端に向かって連続的に大きく
することにより基板17の表面端から表面中心部に向か
って連続的に薄膜の成膜量が減少する(成膜される薄膜
の膜厚を薄くする)機能を備え、基板17の全面にわた
って成膜量を均一に調節する。
The film forming amount adjusting plate 20 controls the amount of film forming particles passing therethrough in the thickness direction by the opening 20H.
By continuously increasing the opening size of H from the center to the end, the film thickness of the thin film decreases continuously from the surface edge of the substrate 17 toward the center of the surface (thickness of the thin film to be formed) The thickness of the film is uniformly adjusted over the entire surface of the substrate 17.

【0027】図3は成膜量調節板20による成膜量の均
一化を実証するために行った実験を説明するためのスパ
ッタリング装置の概略構成図、図4はこの実験に使用し
たテスト用成膜量調節板の平面図である。図3に示すよ
うに、基本的には前述の図1に示すスパッタリング装置
と同様に、テスト用成膜量調節板20Tはターゲット1
6と基板17との間に配設される。テスト用成膜量調節
板20Tには、図4に示すように、それぞれ平面形状が
丸形で開口サイズ(直径)が異なる4種類の合計4個の
開口20H1−20H4が配設される。開口20H1の
直径は4mm、開口20H2の直径は6mm、開口20H3の
直径は8mm、開口20H4の直径は10mmにそれぞれ設定
される。開口20H1−20H4はそれぞれ開口中心を
テスト用成膜量調節板20Tの中心から同じ距離に設定
し、基板17の中心部から端に向かって連続的に成膜量
が減少する影響が除外される。開口20H1−20H4
はそれぞれ90度毎に配置される。テスト用成膜量調節板
20Tを使用してスパッタリングを行うと、開口20H
1−20H4のそれぞれを通過した成膜粒子により開口
20H1−20H4のそれぞれに対応した薄膜17Fが
基板17の表面上に成膜される。この4種類の開口20
H1−20H4のそれぞれを通して成膜された薄膜17
Fの膜厚を測定することにより、1度のスパッタリング
を使用した成膜で4種類の開口サイズでそれぞれ形成さ
れた4種類の薄膜17Fの膜厚差が測定できる。
FIG. 3 is a schematic configuration diagram of a sputtering apparatus for explaining an experiment performed to verify the uniformity of the film formation amount by the film formation amount adjusting plate 20, and FIG. 4 is a test component used in this experiment. It is a top view of a film amount adjusting plate. As shown in FIG. 3, basically, similarly to the sputtering apparatus shown in FIG.
6 and the substrate 17. As shown in FIG. 4, a total of four openings 20H1 to 20H4 of four types having different round sizes and different opening sizes (diameters) are provided on the test film formation amount adjusting plate 20T. The diameter of the opening 20H1 is set to 4 mm, the diameter of the opening 20H2 is set to 6 mm, the diameter of the opening 20H3 is set to 8 mm, and the diameter of the opening 20H4 is set to 10 mm. The openings 20H1 to 20H4 have their centers set at the same distance from the center of the test film formation amount adjusting plate 20T, and the effect of a continuous decrease in the film formation amount from the center to the edge of the substrate 17 is excluded. . Opening 20H1-20H4
Are arranged every 90 degrees. When sputtering is performed using the test film formation amount adjusting plate 20T, the opening 20H
The thin film 17F corresponding to each of the openings 20H1-20H4 is formed on the surface of the substrate 17 by the film-forming particles passing through each of the 1-20H4. These four types of openings 20
Thin film 17 formed through each of H1-20H4
By measuring the film thickness of F, it is possible to measure the film thickness difference between the four types of thin films 17F formed with four types of opening sizes by one-time sputtering.

【0028】テスト用成膜量調節板20Tの他の諸寸法
は次の通りである。
The other dimensions of the test film formation amount adjusting plate 20T are as follows.

【0029】(1)テスト用成膜量調節板20Tの板
厚:4mm (2)テスト用成膜量調節板20Tの中心から開口20
H1−20H4のそれぞれの中心までの距離:30mm (3)テスト用成膜量調節板20Tと基板17との間の
離間距離:12mm スパッタリングによる成膜条件は次の通りである。
(1) Thickness of test film formation amount adjusting plate 20T: 4 mm (2) Opening 20 from the center of test film formation amount adjustment plate 20T
Distance to the center of each of H1-20H4: 30 mm (3) Separation distance between test film formation amount adjusting plate 20T and substrate 17: 12 mm The film forming conditions by sputtering are as follows.

【0030】(1)スパッタリング方式:2極RFコンベ
ンショナルスパッタリング (2)ターゲット16と基板17との間の対向距離:90
mm (3)ターゲット16の材質:Co (4)ターゲット16のサイズ:直径3inch(76.2mm) (5)スパッタガス圧:10mtorr (6)Arガス流量:50sccm (7)RFパワー:300W (8)基板17の加熱温度:なし(室温) 実験は、最初に、テスト用成膜量調節板20Tを使用し
ない通常のスパッタリングによる成膜を行い、この膜厚
分布を測定した。膜厚部分の測定は、基板17の中心部
において成膜された薄膜17Fの膜厚を100%として計算
した。基板17は3inchのものを使用した。図5は基板
17の表面上の成膜位置と膜厚分布との関係を示す図で
ある。図5に示すように、基板17の中心から端に向か
って遠ざかるに従い、成膜された薄膜17Fの膜厚が薄
くなる。
(1) Sputtering method: two-pole RF conventional sputtering (2) Opposing distance between target 16 and substrate 17: 90
mm (3) Material of target 16: Co (4) Size of target 16: diameter 3 inch (76.2 mm) (5) Sputter gas pressure: 10 mtorr (6) Ar gas flow rate: 50 sccm (7) RF power: 300 W (8) Heating temperature of substrate 17: none (room temperature) In the experiment, first, film formation was performed by ordinary sputtering without using test film formation amount adjusting plate 20T, and the film thickness distribution was measured. In the measurement of the film thickness portion, calculation was performed assuming that the film thickness of the thin film 17F formed at the center of the substrate 17 was 100%. The substrate 17 used was 3 inches. FIG. 5 is a diagram showing the relationship between the film formation position on the surface of the substrate 17 and the film thickness distribution. As shown in FIG. 5, as the distance from the center of the substrate 17 toward the edge increases, the thickness of the formed thin film 17F decreases.

【0031】次に、図3に示すように、ターゲット16
と基板17との間にテスト用成膜量調節板20Tを配置
し、スパッタリングによる成膜を行った。図6はテスト
用成膜量調節板20Tに配設された開口20Hの開口サ
イズ(直径)と成膜レートとの関係を示す図である。図
6に示すように、開口20Hの開口サイズが大きくなる
に従い、成膜レートが速くなり、薄膜17Fの膜厚が厚
くなる。薄膜17Fの膜厚はおおよそ2次関数的に増加
する。さらに、テスト用成膜量調節板20Tの板厚が厚
いと成膜レートが遅くなり、テスト用成膜量調節板20
Tの板厚が薄いと成膜レートが速くなる。
Next, as shown in FIG.
A test film formation amount adjusting plate 20T was disposed between the substrate and the substrate 17, and film formation was performed by sputtering. FIG. 6 is a diagram showing the relationship between the opening size (diameter) of the opening 20H provided on the test film formation amount adjusting plate 20T and the film formation rate. As shown in FIG. 6, as the size of the opening 20H increases, the deposition rate increases, and the thickness of the thin film 17F increases. The thickness of the thin film 17F increases approximately quadratically. Furthermore, if the thickness of the test film formation amount adjusting plate 20T is large, the film formation rate becomes slow, and the test film formation amount adjustment plate 20T
When the thickness of T is small, the film forming rate is increased.

【0032】図7はテスト用成膜量調節板20Tの平面
図、図8は基板17の表面上の成膜位置と膜厚分布との
関係を示す図である。直径4mmの開口20H1、直径6mm
の開口20H2、直径8mmの開口20H3、直径10mmの
開口20H4のそれぞれを中心から端に向かって配設し
たテスト用成膜量調節板20Tを準備し、仮に一定の膜
厚分布においてこのテスト用成膜量調節板20Tを使用
して成膜を行った場合には、図8に示すように基板17
の表面の中心部に成膜された薄膜17Fの膜厚が薄くな
り、端に向かって徐々に薄膜17Fの膜厚が厚くなる。
FIG. 7 is a plan view of the test film formation amount adjusting plate 20T, and FIG. 8 is a diagram showing the relationship between the film formation position on the surface of the substrate 17 and the film thickness distribution. 4mm diameter opening 20H1, 6mm diameter
The test film formation amount adjusting plate 20T having the opening 20H2 of 8 mm, the opening 20H3 of 8 mm in diameter, and the opening 20H4 of 10 mm in diameter arranged from the center to the end is prepared. When film formation is performed using the film amount adjusting plate 20T, as shown in FIG.
The thickness of the thin film 17F formed in the center of the surface of the thin film 17F decreases, and gradually increases toward the end.

【0033】すなわち、前述の図5に示す基板17の中
心部から端に向かって連続的に成膜された薄膜17Fの
膜厚が薄くなる現象と、図6に示すテスト用成膜量調節
板20Tの開口20Hの開口サイズを大きくすると成膜
レートが速くなる現象(逆に開口サイズを小さくすると
成膜レートが遅くなる現象)と、図8に示すテスト用成
膜量調節板20Tの端から中心に向かって開口20Hの
開口サイズを小さくすると成膜された薄膜17Fの膜厚
が薄くなる現象とを適正に調節すれば、基板17の表面
上の全面に成膜される薄膜17Fの膜厚をほぼ一定にす
ることができる。 図9は本実施の形態に係る成膜量調
節板20の平面図、図10は基板17の表面上の成膜位
置と膜厚分布との関係を示す図である。図9に示すよう
に、直径7mmの2個の開口20H1、直径7.2mmの開口2
0H2、直径7.6mmの開口20H3、直径8mmの開口20
H4のそれぞれを中心から端に向かって0.1mmの間隔で
配設した成膜量調節板20を使用し、スパッタリングに
よる成膜を行うことにより、図10に示すように基板1
7の表面上の全面においてほぼ均一な膜厚を有する薄膜
17が成膜できる。
That is, the phenomenon in which the thickness of the thin film 17F continuously formed from the center to the end of the substrate 17 shown in FIG. 5 becomes thinner, and the film thickness adjustment plate for test shown in FIG. When the opening size of the 20T opening 20H is increased, the film formation rate is increased (conversely, when the opening size is reduced, the film formation rate is decreased), and when the test film formation amount adjusting plate 20T shown in FIG. By appropriately adjusting the phenomenon that the film thickness of the formed thin film 17F decreases when the opening size of the opening 20H is reduced toward the center, the film thickness of the thin film 17F formed on the entire surface of the substrate 17 can be adjusted. Can be made substantially constant. FIG. 9 is a plan view of the film formation amount adjusting plate 20 according to the present embodiment, and FIG. 10 is a diagram showing the relationship between the film formation position on the surface of the substrate 17 and the film thickness distribution. As shown in FIG. 9, two openings 20H1 having a diameter of 7 mm and an opening 2 having a diameter of 7.2 mm
0H2, opening 20H3 with a diameter of 7.6 mm, opening 20 with a diameter of 8 mm
By using a film formation amount adjusting plate 20 in which each of the H4s is arranged at a distance of 0.1 mm from the center to the end, and performing film formation by sputtering, as shown in FIG.
A thin film 17 having a substantially uniform thickness can be formed on the entire surface of the surface of the thin film 7.

【0034】このように構成されるスパッタリング装置
においては、成膜量調節板20を備えた極めて簡易な構
成により、基板17の表面の成膜量(成膜された薄膜1
7Fの膜厚)が基板17の全面にわたってほぼ均一化で
きる。しかも、基板17の表面において均一な成膜量を
得るための大型ターゲットの使用、ターゲット16と基
板17との間の対向距離の増加、基板17の回転機構の
いずれもなくなり、スパッタリング装置が小型化でき、
スパッタリング装置の構造が簡易になる。さらに、スパ
ッタリング装置の小型化、構造の簡易化はいずれも製造
プロセスのランニングコストを減少できる。
In the sputtering apparatus configured as described above, the amount of film formed on the surface of the substrate 17 (the thin film
7F) can be made substantially uniform over the entire surface of the substrate 17. In addition, the use of a large-sized target for obtaining a uniform film formation amount on the surface of the substrate 17, an increase in the facing distance between the target 16 and the substrate 17, and the rotation mechanism of the substrate 17 are eliminated, and the sputtering apparatus is downsized. Can,
The structure of the sputtering device is simplified. Further, both the downsizing of the sputtering apparatus and the simplification of the structure can reduce the running cost of the manufacturing process.

【0035】さらに、基板17の表面の同一位置でも成
膜量調節板20に配設した開口Hの開口サイズが大きい
ほど入射角度に斜め成分をもつ成膜粒子の通過量が増加
でき、開口サイズが小さいほど入射角度に斜め成分をも
つ成膜粒子の通過量が減少する。この特性と、基板17
の表面の中心から端に向かって連続的に成膜量が減少す
る特性とを組み合わせ、基板17の表面の端から中心に
向かって連続的に成膜量が減少する調節を行うことによ
り、基板17の表面の全面にわたって均一な膜厚で薄膜
17Fが成膜できる。さらに、成膜量調節板20は、ほ
ぼ均一な膜厚を有し、開口サイズが徐々に変化する複数
の開口20Hを配設した簡易な構造体で構成されるの
で、スパッタリング装置が小型化でき、スパッタリング
装置の構造が簡易になる。
Further, even at the same position on the surface of the substrate 17, the larger the opening size of the opening H provided in the film formation amount adjusting plate 20, the larger the amount of film-forming particles having an oblique component in the incident angle can be increased. Is smaller, the amount of film-forming particles having an oblique component at the incident angle is reduced. This characteristic and the substrate 17
By combining with the characteristic that the film deposition amount continuously decreases from the center to the edge of the surface of the substrate 17, the substrate film 17 is adjusted so that the film deposition amount continuously decreases from the edge to the center of the surface of the substrate 17. The thin film 17F can be formed with a uniform thickness over the entire surface of the surface of the substrate 17. Further, since the film formation amount adjusting plate 20 has a substantially uniform film thickness and is constituted by a simple structure in which a plurality of openings 20H whose opening sizes gradually change are provided, the sputtering apparatus can be downsized. In addition, the structure of the sputtering apparatus is simplified.

【0036】(第2の実施の形態)図11は本発明の第
2の実施の形態に係るスパッタリング装置の概略構成図
である。図11に示すスパッタリング装置には前述の実
施の形態と同様に2極スパッタ方式が採用され、このス
パッタリング装置はターゲット16と基板17との間す
なわち第1電極14と第2電極15との間に成膜量調節
板21を配設する。図12は成膜量調節板21の側面図
である。成膜量調節板21は、平面形状が円形状で形成
され(図15参照)、中心部から端に向かって連続的に
板厚が薄くなる三角錐形状で形成される。成膜量調節板
21の表面(図1中及び図2中、上側表面)はターゲッ
ト16の表面とほぼ平行に設定されている。成膜量調節
板21には同一開口サイズを有する複数の開口21Hが
規則的に配設される。本実施の形態において、開口21
Hは板厚方向に貫通し開口形状を丸形で形成する。
(Second Embodiment) FIG. 11 is a schematic configuration diagram of a sputtering apparatus according to a second embodiment of the present invention. The sputtering apparatus shown in FIG. 11 employs a two-electrode sputtering method as in the above-described embodiment. This sputtering apparatus is provided between the target 16 and the substrate 17, that is, between the first electrode 14 and the second electrode 15. A film formation amount adjusting plate 21 is provided. FIG. 12 is a side view of the film formation amount adjusting plate 21. The film formation amount adjusting plate 21 is formed in a circular shape in plan view (see FIG. 15), and is formed in a triangular pyramid shape in which the plate thickness is continuously reduced from the center to the end. The surface (upper surface in FIGS. 1 and 2) of the film formation amount adjusting plate 21 is set substantially parallel to the surface of the target 16. A plurality of openings 21H having the same opening size are regularly arranged in the film formation amount adjusting plate 21. In the present embodiment, the opening 21
H penetrates in the thickness direction to form a round opening.

【0037】成膜量調節板21は、開口21Hにより板
厚方向に貫通する成膜粒子の通過量を調節し、板厚を中
心から端に向かって連続的に薄くすることにより基板1
7の表面端から表面中心部に向かって連続的に薄膜の成
膜量が減少する(成膜される薄膜の膜厚を薄くする)機
能を備え、基板17の全面にわたって成膜量を均一に調
節する。
The film formation amount adjusting plate 21 adjusts the amount of film forming particles penetrating in the plate thickness direction by the opening 21H, and continuously reduces the plate thickness from the center to the end, thereby reducing the thickness of the substrate 1.
7 has a function of continuously decreasing the thickness of the thin film from the surface end toward the center of the surface (thinning the thickness of the thin film to be formed), so that the deposition amount is uniform over the entire surface of the substrate 17. Adjust.

【0038】成膜量調節板21による成膜量の均一化を
実証するために実験を行った。スパッタリングによる成
膜の際に成膜量調節板21を使用する場合、同一開口サ
イズの開口21Hであっても成膜量調節板21の板厚に
より基板17の表面に成膜される薄膜17Fの膜厚は異
なる。すなわち、成膜量調節板21の板厚が厚くなるほ
ど入射角度に斜め成分をもつ成膜粒子は遮蔽され、開口
21Hを通過する成膜粒子の通過量が減少するので、成
膜される薄膜17Fの膜厚は薄くなる。成膜量調節板2
1の板厚と成膜粒子の通過量の減少との関係を具体的に
知るために、同一開口サイズを有する開口21Hが形成
された板厚の異なるテスト用成膜量調節板(図示しな
い)を使用し、テスト用成膜量調節板の板厚を変えたと
きの成膜レートの変化について測定した。テスト用成膜
量調節板の諸寸法は次の通りである。なお、スパッタリ
ングによる成膜条件は前述の実施の形態と同様である。
An experiment was conducted to verify the uniformity of the film formation amount by the film formation amount adjustment plate 21. When the film formation amount adjusting plate 21 is used for film formation by sputtering, even if the openings 21H have the same opening size, the thickness of the thin film 17F formed on the surface of the substrate 17 depends on the thickness of the film formation amount adjustment plate 21. The film thickness is different. That is, as the thickness of the film formation amount adjusting plate 21 increases, the film formation particles having an oblique component at the incident angle are blocked and the amount of the film formation particles passing through the opening 21H decreases. Becomes thinner. Film formation amount adjustment plate 2
In order to specifically know the relationship between the plate thickness of No. 1 and the decrease in the amount of film-forming particles passing therethrough, test film-forming amount adjusting plates of different plate thicknesses (not shown) in which openings 21H having the same opening size are formed. Was used to measure the change in the film formation rate when the thickness of the test film formation amount adjusting plate was changed. The dimensions of the test film formation amount adjusting plate are as follows. The film forming conditions by sputtering are the same as those in the above-described embodiment.

【0039】(1)テスト用成膜量調節板の板厚:4m
m、8mm、12mm(3種類) (2)テスト用成膜量調節板の中心から開口21Hの中
心までの距離:30mm (3)テスト用成膜量調節板と基板17との間の離間距
離:12mm (4)テスト用成膜量調節板の開口21Hの開口サイズ
(直径):8mm、10mm(2種類) 図13はテスト用成膜量調節板の板厚と成膜レートとの
関係を示す図である。図13に示すように、同一開口サ
イズを有する開口21Hが配設されたテスト用成膜量調
整板においては、テスト用成膜量調整板の板厚が厚くな
るに従い、おおよそ2次関数的に成膜レートは遅くな
る。このテスト用成膜量調整板の板厚の増加とともに成
膜レートが遅くなる傾向は、開口21Hの開口サイズに
よらずほぼ同じである。従って、前述の実施の形態と同
様に、前述の図5に示す基板17の中心部から端に向か
って連続的に成膜された薄膜17Fの膜厚が薄くなる現
象と、図13に示すテスト用成膜量調節板の板厚を厚く
すると成膜レートが遅くなる現象(逆に板厚を薄くする
と成膜レートが遅くなる現象)とを適正に調節すれば、
基板17の表面上の全面に成膜される薄膜17Fの膜厚
をほぼ一定にすることができる。すなわち、成膜量調節
板21は、開口21Hの開口サイズは同じで、端から中
心に向かって連続的に増加する板厚を有し、三角錐形状
で形成することにより、基板17の表面上の全面に成膜
される薄膜17Fの膜厚をほぼ一定にできる。
(1) Thickness of test film formation amount adjusting plate: 4 m
m, 8 mm, 12 mm (3 types) (2) Distance from the center of the test film formation amount adjustment plate to the center of the opening 21H: 30 mm (3) Separation distance between the test film formation amount adjustment plate and the substrate 17 : 12 mm (4) Opening size (diameter) of the opening 21H of the test film formation amount adjusting plate: 8 mm, 10 mm (two types) FIG. 13 shows the relationship between the thickness of the test film formation amount adjusting plate and the film formation rate. FIG. As shown in FIG. 13, in the test film formation amount adjusting plate in which the openings 21H having the same opening size are provided, as the thickness of the test film formation amount adjusting plate increases, the function becomes approximately quadratic. The deposition rate becomes slow. The tendency that the film formation rate becomes slower as the thickness of the test film formation amount adjusting plate increases is almost the same regardless of the opening size of the opening 21H. Therefore, similarly to the above-described embodiment, the phenomenon in which the thickness of the thin film 17F continuously formed from the central portion to the end of the substrate 17 shown in FIG. By properly adjusting the phenomenon that the film formation rate is slowed down by increasing the thickness of the film deposition amount adjusting plate for use (the phenomenon that the film formation rate is slowed by decreasing the plate thickness),
The thickness of the thin film 17F formed on the entire surface of the substrate 17 can be made substantially constant. That is, the film formation amount adjusting plate 21 has the same opening size of the opening 21H, has a plate thickness that continuously increases from the end to the center, and is formed in a triangular pyramid shape, so that the surface of the substrate 17 is formed. The thickness of the thin film 17F formed on the entire surface can be made substantially constant.

【0040】図14は本実施の形態に係る成膜量調節板
21の側面図、図15は成膜量調節板21の平面図、図
16は基板17の表面上の成膜位置と膜厚分布との関係
を示す図である。図14及び図15に示すように、すべ
て直径8mmで形成された開口21H1−21H5を0.1mm
の間隔で配設し、端の板厚が4mmで中心の板厚が4.5mmに
設定された成膜量調節板21を使用し、スパッタリング
による成膜を行うことにより、図16に示すように基板
17の表面上の全面においてほぼ均一な膜厚を有する薄
膜17が成膜できる。
FIG. 14 is a side view of the film formation amount adjusting plate 21 according to the present embodiment, FIG. 15 is a plan view of the film formation amount adjusting plate 21, and FIG. 16 is a film formation position and film thickness on the surface of the substrate 17. It is a figure showing the relation with distribution. As shown in FIGS. 14 and 15, the openings 21H1 to 21H5, each having a diameter of 8 mm, are formed by 0.1 mm.
By using a film-forming amount adjusting plate 21 having a thickness of 4 mm at the end and a thickness of 4.5 mm at the center, the film is formed by sputtering, as shown in FIG. The thin film 17 having a substantially uniform thickness can be formed on the entire surface of the surface of the substrate 17.

【0041】このように構成されるスパッタリング装置
においては、基板17の表面の同一位置でも成膜量調節
板21の厚さ、すなわち成膜量調節板21に配設した開
口(開口サイズは同一)21Hの開口深さが浅いほど入
射角度に斜め成分をもつ成膜粒子の通過量が増加でき、
開口深さが深いほど入射角度に斜め成分をもつ成膜粒子
の通過量が減少する。この特性と、基板17の表面の中
心から端に向かって連続的に成膜量が減少する特性とを
組み合わせ、基板17の表面の端から中心に向かって連
続的に成膜量が減少する調節を行うことにより、基板1
7の表面の全面にわたって均一な膜厚で薄膜17Fが成
膜できる。さらに、成膜量調節板21は、ほぼ均一な開
口サイズの複数の開口21Hを有し、板厚が徐々に変化
する簡易な構造体で構成されるので、スパッタリング装
置が小型化でき、スパッタリング装置の構造が簡易にな
る。
In the sputtering apparatus configured as described above, even at the same position on the surface of the substrate 17, the thickness of the film formation amount adjustment plate 21, that is, the opening provided in the film formation amount adjustment plate 21 (the opening size is the same) As the opening depth of 21H is smaller, the amount of film-forming particles having an oblique component at the incident angle can be increased,
As the opening depth increases, the amount of film-forming particles having oblique components at the incident angle decreases. This characteristic is combined with the characteristic that the film formation amount continuously decreases from the center to the edge of the surface of the substrate 17, and the adjustment is performed such that the film formation amount continuously decreases from the edge of the surface of the substrate 17 toward the center. By performing the above, the substrate 1
The thin film 17F can be formed with a uniform thickness over the entire surface of the surface 7. Further, since the film formation amount adjusting plate 21 has a plurality of openings 21H having a substantially uniform opening size and is constituted by a simple structure in which the plate thickness changes gradually, the sputtering apparatus can be downsized. Is simplified.

【0042】なお、本発明は前述の実施の形態に限定さ
れない。例えば、本発明は、マグネトロンスパッタ方
式、対向ターゲット型スパッタ方式のそれぞれの方式を
採用するスパッタリング装置にも適用できる。
The present invention is not limited to the above embodiment. For example, the present invention can be applied to a sputtering apparatus that employs a magnetron sputtering method and a facing target type sputtering method.

【0043】[0043]

【発明の効果】本発明は、基板表面に成膜される薄膜の
膜厚が均一化でき、しかも装置の小型化が実現できるス
パッタリング装置を提供できる。
According to the present invention, it is possible to provide a sputtering apparatus capable of making the thickness of a thin film formed on a substrate surface uniform and realizing miniaturization of the apparatus.

【0044】さらに、本発明は、基板表面に成膜される
薄膜が均一化でき、しかも装置の構造を簡易にして装置
の小型化が実現できるスパッタリング装置を提供でき
る。
Further, the present invention can provide a sputtering apparatus which can make the thin film formed on the substrate surface uniform, and which can realize the downsizing of the apparatus by simplifying the structure of the apparatus.

【0045】さらに、本発明は、製造プロセスのランニ
ングコストが減少できるスパッタリング装置を提供でき
る。
Further, the present invention can provide a sputtering apparatus capable of reducing the running cost of the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係るスパッタリン
グ装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a sputtering apparatus according to a first embodiment of the present invention.

【図2】スパッタリング装置に備えた成膜量調節板の平
面図である。
FIG. 2 is a plan view of a film formation amount adjusting plate provided in a sputtering apparatus.

【図3】実験を説明するためのスパッタリング装置の概
略構成図である。
FIG. 3 is a schematic configuration diagram of a sputtering apparatus for explaining an experiment.

【図4】実験に使用したテスト用成膜量調節板の平面図
である。
FIG. 4 is a plan view of a test film formation amount adjusting plate used in an experiment.

【図5】基板表面上の成膜位置と膜厚分布との関係を示
す図である。
FIG. 5 is a diagram showing a relationship between a film formation position on a substrate surface and a film thickness distribution.

【図6】テスト用成膜量調節板の開口サイズと成膜レー
トとの関係を示す図である。
FIG. 6 is a diagram showing a relationship between an opening size of a test film formation amount adjusting plate and a film formation rate.

【図7】テスト用成膜量調節板の平面図である。FIG. 7 is a plan view of a test film formation amount adjusting plate.

【図8】基板表面上の成膜位置と膜厚分布との関係を示
す図である。
FIG. 8 is a diagram showing a relationship between a film formation position on a substrate surface and a film thickness distribution.

【図9】本実施の形態に係る成膜量調節板の平面図であ
る。
FIG. 9 is a plan view of a film formation amount adjusting plate according to the present embodiment.

【図10】基板の表面上の成膜位置と膜厚分布との関係
を示す図である。
FIG. 10 is a diagram showing a relationship between a film formation position on a surface of a substrate and a film thickness distribution.

【図11】本発明の第2の実施の形態に係るスパッタリ
ング装置の概略構成図である。
FIG. 11 is a schematic configuration diagram of a sputtering apparatus according to a second embodiment of the present invention.

【図12】成膜量調節板の側面図である。FIG. 12 is a side view of a film formation amount adjusting plate.

【図13】テスト用成膜量調節板の板厚と成膜レートと
の関係を示す図である。
FIG. 13 is a view showing the relationship between the thickness of a test film formation amount adjusting plate and the film formation rate.

【図14】本実施の形態に係る成膜量調節板の側面図で
ある。
FIG. 14 is a side view of a film formation amount adjusting plate according to the present embodiment.

【図15】成膜量調節板の平面図である。FIG. 15 is a plan view of a film formation amount adjusting plate.

【図16】基板表面上の成膜位置と膜厚分布との関係を
示す図である。
FIG. 16 is a diagram showing a relationship between a film formation position on a substrate surface and a film thickness distribution.

【図17】従来技術に係る2極スパッタ方式を採用する
スパッタリング装置の概略構成図である。
FIG. 17 is a schematic configuration diagram of a sputtering apparatus employing a two-electrode sputtering method according to the related art.

【図18】従来技術に係るマグネトロンスパッタ方式を
採用するスパッタリング装置の概略構成図である。
FIG. 18 is a schematic configuration diagram of a sputtering apparatus employing a magnetron sputtering method according to a conventional technique.

【図19】従来技術に係る対向ターゲット型スパッタ方
式を採用するスパッタリング装置の概略構成図である。
FIG. 19 is a schematic configuration diagram of a sputtering apparatus employing a facing target type sputtering method according to the related art.

【図20】従来技術に係るコリメーションスパッタ方式
を採用したスパッタリング装置の概略構成図である。
FIG. 20 is a schematic configuration diagram of a sputtering apparatus employing a collimation sputtering method according to the related art.

【図21】従来技術に係るコリメータ板の平面図であ
る。
FIG. 21 is a plan view of a collimator plate according to the related art.

【符号の説明】[Explanation of symbols]

11 真空容器 14 第1電極 15 第2電極 16 ターゲット 17 基板 17F 薄膜 18 電源 20、21 成膜量調節板 20H、21H 開口 20T テスト用成膜量調節板 DESCRIPTION OF SYMBOLS 11 Vacuum container 14 1st electrode 15 2nd electrode 16 Target 17 Substrate 17F Thin film 18 Power supply 20, 21 Film formation amount adjustment plate 20H, 21H opening 20T Test film formation amount adjustment plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内のターゲットと基板との間に
配設され、前記ターゲットから基板表面に向かって叩き
出される成膜粒子の通過量を調節し、前記基板端に対応
する位置から基板中心に対応する位置に向かって開口サ
イズが連続的に減少する複数の開口を配設した成膜量調
節板を備えたことを特徴とするスパッタリング装置。
1. A substrate disposed between a target and a substrate in a vacuum container, the amount of film-forming particles that is blown from the target toward the substrate surface is adjusted, and the substrate is moved from a position corresponding to the substrate end. A sputtering apparatus, comprising: a film formation amount adjusting plate provided with a plurality of openings whose opening size continuously decreases toward a position corresponding to the center.
【請求項2】 前記成膜量調節板は、 前記基板端に対応する位置から基板中心に対応する位置
に向かって連続的に増加する板厚を有していることを特
徴とする請求項1に記載のスパッタリング装置。
2. The film forming amount adjusting plate has a thickness that continuously increases from a position corresponding to the substrate edge to a position corresponding to the substrate center. 3. The sputtering apparatus according to 1.
JP507698A 1998-01-13 1998-01-13 Sputtering device Pending JPH11200029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP507698A JPH11200029A (en) 1998-01-13 1998-01-13 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP507698A JPH11200029A (en) 1998-01-13 1998-01-13 Sputtering device

Publications (1)

Publication Number Publication Date
JPH11200029A true JPH11200029A (en) 1999-07-27

Family

ID=11601308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP507698A Pending JPH11200029A (en) 1998-01-13 1998-01-13 Sputtering device

Country Status (1)

Country Link
JP (1) JPH11200029A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109729A (en) * 2000-09-27 2002-04-12 Anelva Corp Method and apparatus for producing magnetic film and method for manufacturing magnetic recording disk
US6392883B1 (en) * 2000-06-30 2002-05-21 Intel Corporation Heat exchanger having phase change material for a portable computing device
WO2004047160A1 (en) * 2002-11-20 2004-06-03 Renesas Technology Corp. Method of fabricating semiconductor device
WO2005101472A1 (en) * 2004-03-30 2005-10-27 Renesas Technology Corp. Method for manufacturing semiconductor integrated circuit device
JP2010514940A (en) * 2007-01-02 2010-05-06 オーツェー エルリコン バルツェルス アクチェンゲゼルシャフト Method for forming a directional layer by cathode sputtering and apparatus for carrying out the method
CN105624635A (en) * 2014-11-06 2016-06-01 无锡康力电子有限公司 Automatic adjusting device for anode cap for vacuum coating
JP6122169B1 (en) * 2016-03-15 2017-04-26 株式会社東芝 Processing device and collimator
CN108315702A (en) * 2018-02-05 2018-07-24 中国科学院长春光学精密机械与物理研究所 A kind of planar rectangular magnetic control sputtering cathode plating film uniformity adjusting apparatus and method
KR20190105132A (en) * 2009-04-24 2019-09-11 어플라이드 머티어리얼스, 인코포레이티드 Wafer processing deposition shielding components
CN112159965A (en) * 2020-09-03 2021-01-01 同济大学 Large-size planar substrate coating method and device based on linear magnetron sputtering target gun

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392883B1 (en) * 2000-06-30 2002-05-21 Intel Corporation Heat exchanger having phase change material for a portable computing device
JP2002109729A (en) * 2000-09-27 2002-04-12 Anelva Corp Method and apparatus for producing magnetic film and method for manufacturing magnetic recording disk
WO2004047160A1 (en) * 2002-11-20 2004-06-03 Renesas Technology Corp. Method of fabricating semiconductor device
WO2005101472A1 (en) * 2004-03-30 2005-10-27 Renesas Technology Corp. Method for manufacturing semiconductor integrated circuit device
US9587306B2 (en) 2007-01-02 2017-03-07 Evatec Ag Method for producing a directional layer by cathode sputtering, and device for implementing the method
JP2010514940A (en) * 2007-01-02 2010-05-06 オーツェー エルリコン バルツェルス アクチェンゲゼルシャフト Method for forming a directional layer by cathode sputtering and apparatus for carrying out the method
CN102747330A (en) * 2007-01-02 2012-10-24 Oc欧瑞康巴尔斯公司 Method for the production of a directional layer by means of cathode sputtering, and a device for carrying out the method
KR20200136061A (en) * 2009-04-24 2020-12-04 어플라이드 머티어리얼스, 인코포레이티드 Wafer processing deposition shielding components
KR20190105132A (en) * 2009-04-24 2019-09-11 어플라이드 머티어리얼스, 인코포레이티드 Wafer processing deposition shielding components
KR20210052600A (en) * 2009-04-24 2021-05-10 어플라이드 머티어리얼스, 인코포레이티드 Wafer processing deposition shielding components
CN105624635A (en) * 2014-11-06 2016-06-01 无锡康力电子有限公司 Automatic adjusting device for anode cap for vacuum coating
JP6122169B1 (en) * 2016-03-15 2017-04-26 株式会社東芝 Processing device and collimator
JP2017166014A (en) * 2016-03-15 2017-09-21 株式会社東芝 Processor and collimator
CN108315702A (en) * 2018-02-05 2018-07-24 中国科学院长春光学精密机械与物理研究所 A kind of planar rectangular magnetic control sputtering cathode plating film uniformity adjusting apparatus and method
CN112159965A (en) * 2020-09-03 2021-01-01 同济大学 Large-size planar substrate coating method and device based on linear magnetron sputtering target gun
CN112159965B (en) * 2020-09-03 2021-09-03 同济大学 Large-size planar substrate coating method and device based on linear magnetron sputtering target gun

Similar Documents

Publication Publication Date Title
EP0440377B1 (en) Collimated deposition apparatus and method
KR101332274B1 (en) Sputtering apparatus and sputtering method
WO2010073711A1 (en) Sputtering equipment, sputtering method and method for manufacturing an electronic device
JP5249328B2 (en) Thin film deposition method
JP3868020B2 (en) Long distance sputtering apparatus and long distance sputtering method
KR20010042128A (en) Method and apparatus for deposition of biaxially textured coatings
JP2004107688A (en) Bias sputtering film deposition method and bias sputtering film deposition system
JPH11200029A (en) Sputtering device
JP2012197463A (en) Film deposition method
JPH10147864A (en) Formation of thin film and sputtering device
US6153068A (en) Parallel plate sputtering device with RF powered auxiliary electrodes and applied external magnetic field
JPH0762531A (en) Method of building up films on substrate by sputtering
JP2946402B2 (en) Plasma processing method and plasma processing apparatus
JPH0878333A (en) Plasma apparatus for formation of film
JP2761893B2 (en) Sputtering equipment
JPH0649936B2 (en) Bias spattering device
JP2895506B2 (en) Sputtering equipment
JP2634339B2 (en) Sputtering equipment
JPS6233764A (en) Sputtering device
JPS59229480A (en) Sputtering device
WO2004047160A1 (en) Method of fabricating semiconductor device
JPH06108238A (en) Sputtering device
CN118086851B (en) Method for improving uniformity of rare earth nickelate film deposited by reactive magnetron sputtering
US20240200185A1 (en) Method for manufacturing multilayer structure
JPH07292474A (en) Production of thin film