TW201042295A - Antiglare processing method, method for manufacturing antiglare films and method for manufacturing molds - Google Patents

Antiglare processing method, method for manufacturing antiglare films and method for manufacturing molds Download PDF

Info

Publication number
TW201042295A
TW201042295A TW099108113A TW99108113A TW201042295A TW 201042295 A TW201042295 A TW 201042295A TW 099108113 A TW099108113 A TW 099108113A TW 99108113 A TW99108113 A TW 99108113A TW 201042295 A TW201042295 A TW 201042295A
Authority
TW
Taiwan
Prior art keywords
pattern
spatial frequency
transparent substrate
glare
mold
Prior art date
Application number
TW099108113A
Other languages
Chinese (zh)
Other versions
TWI480600B (en
Inventor
Tsutomu Furuya
Takashi Fujii
Hiroshi Miyamoto
Toru Jinno
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201042295A publication Critical patent/TW201042295A/en
Application granted granted Critical
Publication of TWI480600B publication Critical patent/TWI480600B/en

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention provides an antiglare processing method for transparent substrates, a method for manufacturing antiglare films and a method for manufacturing molds appropriate for implementing the method. The antiglare processing method includes a step of using a filter to at least remove or reduce low space frequency components from space frequency components contained in a first pattern to generate a second pattern, and a step of producing a convex-concave shape on a transparent substrate based on the pattern. The method may further include a step of generating a third pattern transformed to information which has been discretized by a dithering method, and a step of moving isolated pixels by a Monte Carlo method to generate a fourth pattern.

Description

201042295 六、發明說明: 【發明所屬之技術領域】 本發明係關於防眩處理方法及防眩膜的製造方法、 及該等防眩處理方法及防眩膜的製造方法所使用的金、 具的製造方法。 镇 【先前技術】 在液aa顯示器、電漿顯示器面板、映像管(陰極 管:CRT)顯示器、有機電致發光(EL)顯示器等之影像顯線 裝置,當外光映入到其顯示面時,將會顯著損及辨識性不 因此,向來為了防止該種外光的映入,於重視畫質的電 或個人電腦、使用在強烈外光的室外之攝影機或數位: 機、以及利用反射光進行顯示的行動電話等中,施加有防 止外光映入影像顯示裝置的纟面用之處理。於該種影像顯 不裝置的表面所施加之處理係大致可區分為:利用光學多 層膜的干擾之無反射處理;及在表㈣成微細凹凸藉此使 入射光散射而淡化映人影像之防眩處理。前者之無反 理需要形成均句光學膜厚的多層膜,因此成本會變高。相 對於此,後者的防_可較低價地進行,因此廣泛地使用 在大型個人電腦或監視器等用途。 傳統上’上述影像顯示裝置的防眩處理係藉由將且有 的防眩膜貼合在影像顯示裝置之表面來達成。防眩 膜向來係以下述方絲1造例如將分散有微粒子的樹脂 Μ調整膜厚@塗布在基材薄片i ’以使該微粒子露出於 塗布膜表面,藉此將不制的表㈣ 321900 4 201042295 的方法等。然而,使用分散有上述微粒子樹脂溶液所製造 之防眩膜,由於表面凹凸的配置或形狀會受到樹脂溶液中 的微粒子之分散狀誠塗布狀鮮所左右,因[Technical Field] The present invention relates to an anti-glare treatment method, a method for producing an anti-glare film, and a method for producing an anti-glare treatment method and an anti-glare film. Production method. Town [Prior Art] Image line device in liquid aa display, plasma display panel, image tube (cathode tube: CRT) display, organic electroluminescence (EL) display, etc., when external light is reflected on its display surface It will significantly impair the recognition. Therefore, in order to prevent the reflection of such external light, the image or the computer, the outdoor camera or digital camera that uses strong external light, and the use of reflected light In the mobile phone or the like for display, a process for preventing external light from being reflected on the face of the video display device is applied. The processing applied to the surface of the image display device can be roughly divided into: non-reflective treatment using interference of the optical multilayer film; and fine scattering at the table (4) to scatter the incident light to dilute the image of the image. Dizzle treatment. The former does not require the formation of a multilayer film having a uniform optical film thickness, so the cost becomes high. In contrast, the latter's defense can be performed at a lower price, so it is widely used in applications such as large personal computers or monitors. Conventionally, the anti-glare treatment of the above image display device is achieved by bonding an anti-glare film to the surface of the image display device. The anti-glare film has been formed by, for example, using the following square wire 1 to apply a resin Μ with a fine particle size to adjust the film thickness @ to the substrate sheet i' so that the fine particles are exposed on the surface of the coating film, thereby making the table (4) 321900 4 The method of 201042295, etc. However, the use of the antiglare film produced by dispersing the above fine resin solution causes the arrangement or shape of the surface unevenness to be affected by the dispersion of the fine particles in the resin solution.

Ο 獲得所想要的表面凹凸,且當將防眩膜的霧度設定為較低 時,有無法獲得充份防眩效果之問題。更且,於將上述習 知的防眩膜配置在影像顯示骏置之表面時,有容易產生因 散射光使整體顯示面泛白,顯示色變濁之所謂「白濁」問 題。再者’伴隨最近影像顯示裝置的高精細化,亦有容易 發生影像顯示裝置之像素與防眩膜的表面凹凸形狀之干 擾,結果產生亮度分布而不易看清顯示面之所謂(閃爍」 現象的問題。為了消除_雖有在結合雜脂與分散在該 樹脂的微粒子之狀置折射率差以使光散射的嘗試,但於 將該種防眩膜配置在影像顯示裝置的表面時, 糌粒 子與結合劑樹脂的界面之光的散射,而使對比容易降低之 問題。 另一方面,亦有不使透明樹脂層含有微粒子,而僅藉 形成在透明樹脂層表面的微細凹凸來顯現防眩性之嘗試。 例如在日本特開2002-1891〇6號公報中,揭示有於透明樹 脂膜上積層有電離放射線硬化性樹脂層的硬化物層之防眩 膜,而硬化物層係具有三維10點平均粒度、及三維粗度基 準面上的相鄰凸部彼此的平均距離分別滿足預定值之2細 表面凹凸。該防眩膜係藉在壓紋鑄模與透明樹脂膜之間包 爽有電離放射線硬化性樹脂的狀態下,使該電離放射線硬 化性樹脂硬化而製造。然而,即使藉日本特開2002-189106 321900 5 201042295 號公報中所揭的防眩膜也難以達成充分的防眩效果、抑制 白化、高對比、及抑制閃爍。 另外’例如在日本的特開平6-34961號公報、特開 2004-45471號公報、及特開2004-45472號公報等揭示有 使用在表面形成有微細凹凸的膜來作為配置在液晶顯示穿 置的背面側之光擴散層’而不是配置在顯示裝置的顯示面 的防眩膜之技術。其中在日本的特開2004-45471號公報及 特開2004-45472號公報中,作為在膜之表面形成凹凸的手 法而言’揭示有於具有使凹凸反轉之形狀的壓紋報 (embossing roller)充填電離放射線硬化性樹脂液,再使 與輥凹版的旋轉方向同步行進的透明基材接觸於經充填的 樹脂,在透明基材接觸於輥凹版時,使位於輥凹版與透明 基材之間的樹脂硬化’並於硬化之同時使硬化樹脂與透明 基材密著後,將硬化後的樹脂與透明基材的積層體從輕凹 版剝離之方法。 然而在上述日本的特開2004-45471號公報及特開 2004-45472號公報所揭示的方法中,可供使用的電離放射 線硬化性樹脂液之組成有限,而且無法期待調平(levelii^) 至以溶媒稀釋進行塗布時的水準’因此可想而知於膜厚均 勻性會有問題。而且,在該方法中,因需要直接將樹脂液 填充到壓紋輥凹版,因此為了確保凹凸面的均勻性,存在 有於壓紋輥凹版需具南機械精密度,且難以製作壓紋輥之 問題。 其次,就於表面具有凹凸的膜之製作所使用之親的製 321900 6 201042295 作方法而言,彳 示有使用4超 於上述日本特開平6-34961號公報中揭 刻、噴砂等等製作圓筒體,再於其表面藉電子雕刻、蝕 觀〇號公報=成凹凸之方法。再者,於日本特開讓- 之方法,而、揭7^有藉珠擊(bead shot)法來製作壓紋輥 壓紋雜矣日本特開2〇04—90187號公報中揭示有經由在 行鏡面研磨^金屬織層之步驟、對金屬㈣層表面進 Ο 步驟,而制,驟、以及視需要進行鎚擊(Peening)處理之 复作屋紋輥的方法。 下,存在在如上述於壓紋輥表面施加喷擊處理後的狀態 同時二St子的,分佈而產生的凹凸徑分佈、 得防眩噴擊喊㈣凹部深度、且重現性佳地獲 取*佳的凹凸形狀之問題。 有:发於上述曰本特開2〇02一189106號公報中記載 或珠敏、/'使用於鐵之表®進行過鑛鉻_,並藉喷砂法 擊法形成凹凸模面之技術。而且,於如上述形成有凹 〇凸的模面,么如上迷形成有凹 後再佶為提升使用時的耐用性,較佳為於施加鍍鉻之 面吏用,藉此可謀求硬模化及防止腐蝕之内容。另一方 ,於上述日本特開2004-45471號公報及特開2〇〇4_45472 =公報的各個實施射’記載有在鐵芯表面進行祕,並 • :#25G的液體噴砂處理之後,再度進行祕處理,而於表 面形成微細凹凸狀之技術。 …'、而’在該種壓紋輥製作法中,由於在硬度高㈣絡 =行嘴擊或衝擊’因此難以形成凹凸、且不易精密地控 /成的凹凸形狀。再者,如日本特開2〇〇4_29672號公 321900 7 201042295 報所記載’鍍鉻會因作為其基材的材質及其形狀而表面會 較粗糙,且在藉喷擊所形成的凹凸上形成因鍍鉻所產生的 微細龜裂,因此有難以可做何種凹凸設計的問題。而且, 會因鍍絡而產生微細龜裂’故有最後所得的防眩膜散射特 性往不想要方向變化之問題。更且,因壓紋糙母材表面的 材質和錄種的組合而使最終得到的輥表面產生各式各樣變 化,因此為了精密度佳地獲得所需的表面凹凸形狀,亦有 必須選擇適當的親表面材質和適當的錄種之問題。此外, 即使獲得所希望的表面凹凸形狀,依鍍種而定也會有使用 時耐久性不足之情形。 於曰本特開2000-284106號公報中,雖記載有在基材 施行喷砂加工後’實施餘刻步驟及/或薄膜積層步驟之技 術’但對在噴砂步驟前要設置金屬鍍覆層一事並無記載也 無暗示。再者,於日本特開2〇〇6_53371號公報十記載有在 研磨基材並實施喷砂加工後,實施無電解鍍鎳之技術。又 於日本特開2007-18752號公報中記载有在對基材實施鍍 銅或鑛鎳之後,再實施研磨、喷砂加工後,實施鍵絡而製 作壓紋版的技術。而^,於日本特開·7_237541號公報 t記载有在實施鑛銅或鑛鎮後,進行研磨並實施喷砂,之 後’在實施餘刻步驟或鑛銅步驟後,實施鐘絡以製健纹 版的技術。在使用上述嗔砂加工的製法中,由於難以 密的控制狀態下形成表面凹凸形狀,故亦會製作出表面凹 凸形狀具有50抑以上周期的較大凹凸形狀。結果,有該 專大的凹凸形狀與影像顯示裝置的像素產生干擾,產生意〆 321900 8 201042295 度分佈,而容易產生不易看清楚顯示面的「閃爍」問題。 【發明内容】 • 本發明之目的在於提供一種透明基材之防眩處理方 . 法,該方法運用在影像顯示裝置時,既可顯示良好的防眩 功能,並能防止因白濁所造成的辨識能力降低,且運用在 高精細的影像顯示裝置時,亦可呈現不會產生閃爍之高對 比。 本發明之另一目的係在於提供一種防眩膜的製造方 ❹ 法,在將該膜配置在影像顯示裝置的表面時,既可顯示良 好的防眩功能,並能防止因白濁所造成的辨識能力降低, 且配置在高精細的影像顯示裝置表面時,亦可呈現不會產 . 生閃爍之高對比。 . 本發明之又另一目的在於提供一種影像顯示裝置,其 係具有兼具上述顯示特性的防眩性者。本發明之再另一目 的係在於提供一種金屬模具的製造方法,該方法係適合使 Q 用在上述防眩處理方法及防眩膜的製造方法。 本發明人等為達成上述目的經精心不斷研究的結果發 現以下事實:即製作好由影像與影像資料等所構成的第1 圖案之後,藉由對於該第1圖案運用用以至少去除或減少 ' 空間頻率未達特定值的低空間頻率成分之濾波器以製作第 - 2圖案,再根據該第2圖案而在透明基材上加工凹凸形狀; 藉此方法,即可以良好的加工重現性在透明基材上製作出 凹凸形狀,並呈現充分的防眩效果,且能充分地抑制產生 白濁與閃爍以及對比之下降。再者,以上述濾波器而言, 9 321900 201042295 發現可適宜地使用高通遽波器與帶通遽波器;高通遽波界 係在第1圖案所含的空間頻率成分中,去除或減少由比^ 定的下限值B’為低的空間頻率所構成之低空間頻率成分, 並抽出由該下限值B,以上的空_率所構叙空間頻率成 分(以下,亦有賴下限值B,稱W間解範許限值β, 之情形);又帶通毅器係在第丨_所含的空咖率成分 中,去除或減少由比特定的下限值β為低的空間頻率所構 成之低解成分及由超過特定上限值τ的空間頻率所 構成之高空關率成分,並抽出由該下限值β至該上限值 Τ的特定範圍空間頻率所構成之空間頻率成分(以下,亦有 分別將該特定範®的下限值Β及上限值τ稱為空間頻率範 圍下限值Β、空間頻率範圍上限值τ之情形)。本發明係根 據上述知識及見解,錢—步進行_的檢討而完成者。 本發明提供之透明基材的防眩處理方法係具有:對於 不規則(random)地配置有複數個點、或配置有亮度分布的 第1圖案,應用濾波器從第1圖案所含的空間頻率成分至 少去除或減少空間頻率未達特定值的低空間頻率成分以製 作第2圖案之步驟;以及根據第2圖案在透明基材上力口工 凹凸形狀之步驟。 以上述濾波器而言,可較宜使用從第1圖案所含的空 間頻率成分僅去除或減少空間頻率未達特定值的低空間頻 率成分之咼通濾波器。該高通濾波器較佳為從第1圖案所 3的空間頻率成分僅去除或減少空間頻率未達〇. 〇 1 # nf] 的低空間頻率成分之高通濾波器。 321900 10 201042295 *再者,以上述濾波器而言,較宜使用從第丄圖案所含 的二間=率成分去除或減少空間頻率未達特定值的低空間 步員率^刀,並去除或減少空間頻率超過特定值的高空間頻 .^成”而藉此抽出特定範圍的空間頻率成分之帶通渡波 器。 在本發明之防眩處理方法中,藉由運用帶通濾波器所 抽出的上述特定範圍之空間頻率成分中的空間頻率下限值 0 1係、紅為Ul/zm—1以上,上限值τ較佳為 、 在此,“ m)係於在透明基材上加工凹凸形狀時所 使用的加工裝置之解析力。再者,空間頻率的上限值了及 下限值β較佳係為滿足下述式(1): - °· 20&lt;2x(T-B)/(T + B)&lt;〇&lt; go (1) 以上述第1圖案而言,可較宜使用例如將複數個點予 以不規則地配置而形成的圖案。 本發明之防眩處理方法較佳為復具備^藉由將遞色法 〇運用在上述第2圖案,以製作經轉換成離散化後的資訊之 第3圖案的步驟。在此情形時,將凹凸形狀加工於上述透 明基材上之步驟係根據第3圖案來進行。以遞色法而言, 可較宜使用誤差擴散法。再者,f 3圖案触為轉換成經 -二階段離散化後之資訊H於本發明之㈣處理方法 -中的-種較佳實施形態係為藉由運用使轉換誤差擴散在3 像素以上、6像素以下的範圍之誤差擴散法,以製作第3 圖案。 本發明之防眩處理方法較佳係復具備:對於經轉換成 321900 201042295 二階段離散化後資訊之第3圖案,藉蒙地卡羅法使孤立的 黑或白像素移動以製作第4圖案之步驟。在此情形時,將 凹凸形狀加工於上述透明基材上之步驟係根據第4圖案來 進行。 將凹凸形狀加工於上述透明基材上之步驟較佳係包 含:根據第2圖案、第3圖案或第4圖案來製作具有凹凸 面的模具,且將該模具的凹凸面轉印至透明基材上之步驟。 將凹凸形狀加工於上述透明基材上之步驟,較佳的實 施方式係使用根據第3圖案或第4圖案所具有的離散化後 的資訊來進行加工之加工裝置來進行者。 再者本發明提供的防眩膜之製造方法係具備:對於不 規則地配置有複數個點、或配置有亮度分布的第!圖案, 應用濾波器從第1圖案所含的空間頻率成分至少去除或減 少空間頻率未達特定值的低空間頻率成分以製作第2圖案 之步驟;以及根據第2圖案在透明基材上加工凹凸形狀: 步驟。 以上述濾波器而言,可較宜使用從第丨圖案所含的空 間頻率成分僅去除或減少空間頻率未達特定值的低空間頻 率成分之尚通遽波器。該咼通遽波器較佳為從第1圖案所 含的空間頻率成分僅去除或減少空間頻率未達〇 的低空間頻率成分之高通濾波器。 再者,以上述濾波器而言,較宜使用從第丨圖案所含 的空間頻率成分去除或減少空間頻率未達特定值的低空間 頻率成分’並去㈣減少空間頻率超過特定值的高空間頻 321900 12 201042295 率成分,而藉此抽出特定範圍的空間頻率成分之帶通濾波 器。 在本發明之防眩膜的製造方法中,藉由運用帶通濾波 器所抽出的上述特定範圍之空間頻率成分中的空間頻率下 限值Β係較佳為〇· 01 vnf1以上,上限值較佳為 ^以下。在此,D係與上述具相同意義。再者,空間頻率 的上限值Τ及下限值Β較佳係為滿足下述式(1): Ο ❹ 〇.20&lt;2χ(Τ-Β)/(Τ + Β)&lt;〇.8〇 (1) 以上述第1圖案而言,可較宜使用例如將複數個點予 以不規則地配置而形成的圖案。 本發明之防眩膜的製造方法較佳為復具備:藉由將遞 色法運用在上述第2圖案,以製作經轉換成離散化後的資 訊之第3圖案的步驟。在此情形時,將凹凸形狀加工於上 述透明基材上之步驟係根據第3圖案來進行。以遞色法而 t Τ較±使㈣者’ g 3圖案較佳為經轉 換成二階段離散化後之資訊之圖案。於本發明之防眩處理 方法中的-種較佳實施形_為藉由運用使轉換誤差擴散 在3像素以上、6像素以下的_之誤差擴散法,以製作 第3圖案。 本發明之防眩膜的製造方法較佳係復具備對於經轉換 成二階段離散化後之資訊之第3圖案,較地卡羅法使孤 立的黑或白像素移動以製作第4圖案之步驟。在此情形 時’將凹凸形狀加工於上述透明基材上之步 1S1 丄 ^ 圖案來進行。 321900 13 201042295 將凹凸形妝士 含:根據第2 ϋ荦^上述透明基材上之步驟較佳係包 面的模具,且二、弟3圖案或第4圖案來製作具有 將凹凸形狀加的凹凸面轉印至透明基材上之步驟 施方式係使用根據透明基材上之步驟,較佳的實 的資訊來進行fL圖案或第4圖案所具有的離散化後 丁加工之加工裝置來進行者。 趸 ^本發明係提供適合使用在上述本發 理方法及__造方法的鮮之f造方&amp; ★眩處 τ方法係包含:於模具用基材:表面實施=模 以研磨之研磨步驟;於經研磨之面形成感光性樹脂: 光性樹脂_成㈣;將上述第2贿、帛;的感 圖案曝光在感光性樹賴上的曝光步驟;將曝先有第s ^4 案、第3圖案或第4圖案的感光性樹脂膜予以顯影之暴= 步驟;使用經顯影之感光性樹脂膜作為遮罩進行蝕 理,以在經研磨的鍍覆面形成凹凸之第丨蝕刻步驟;二處 感光性樹脂膜的感光性樹脂膜剝離步驟;以及在所升/、離 凹凸面實施鍍鉻的第2鍍覆步驟。 夕之· 本發明之模具製造方法較佳為於感光性樹脂瞑剝離步 驟與第2鍍覆步驟之間,包含將藉由第i蝕刻步驟所形成 的凹凸面之凹凸形狀藉蝕刻處理以使凹凸和緩的第二 “ 刻 梦驟。 第2鍍覆步驟中所升々成之施加有锻鉻的凹凸面較佳為 轉印到透明基材上的模具凹凸面。亦即,較佳為在第$ ' 321900 14 201042295 凹凸面 表面的步驟,而將施加有鍍路的 直接使用為轉印至透明基材上之模具凹凸面。 為具 有====财的祕㈣狀㈣層較佳 二:::康本發明提供一種影像顯示裝置的 藉上述本發明之防眩處理方法對影像顯4 置所具有的透明基材表面實施防眩處理;以及^不裝 〇 〇 置,該裝置係具有藉上述本發明之防眩膜;示農 的防眩膜。 ㈣縣u法所獲得 依據本發明可提供一種透明基材之防眩處理 眩=該等運用在影像顯示裝置時,可顯示良好的防= 性月匕,、防止因白濁所招致的辨識力降低,且即使運 高精細的影像顯示裝置之情形下’亦不會產生閃燦而可= 現南對比。再者’依據本發明可將帶來上述良好顯示特 的凹凸祕加玉重現性錢形成在透日錄材上,再 藉本發^方輯獲得賴具,可生錄絲實施本發^ 之防眩處理方法及製造防_。依據本發明之透明基 防眩處理方法及防眩膜之製造方法,可提供兼具上 顯示特性之影像顯示裝置。 、好 【實施方式】 〈透明基材的_處財法騎_之製造方法〉 以下’就本發明之較佳實施形㈣行詳細說明絡 明的透明基材之防眩處理方法及卩核膜的製造方法之特微 為:為了於透明基材上形成具有特定空間頻率分布的微= 321900 15 201042295 置例如由不規則地配置有多數個點的 Π度分布的圖案等所構成之第1圖案之後, 運用從第1圖案所含的空間頻率成分至少去除 ;==特定值的低空間頻率成分之高通滤波 波器以製作第2圖案;再根據所得到 之第2圖案在透明基材上加w凸形狀。再者,如後所述 較佳為.根據藉遞色法將所得到之第2圖案轉換為經離散 化後的資訊之第3圖案、或根據蒙地卡羅法對經二值化的 第3圖案巾所含孤立料行處理所得㈣4圖案在透明基 材上加工凹凸形狀。如此,在本發明係根據第2圖案、第 3圖案或第4圖案在透明基材上製作微細凹凸形狀。 以^透明基材賦予防眩性用的手段或製作防眩膜用的 手段而言,使粒子分散到透明基材中的方法早已為人所 知,然而若依據使用藉運用高通濾波器或帶通濾波器等來 去除或減少低空間頻率成分的圖案之本發明的方法,即可 實現賦予獨特的表面形狀之防眩處理,而該獨特的表面形 狀能抑制低空間頻率成分,此係以上述習知方法不可能實 現者。依據本發明之透明基材的防眩處理方法及防眩膜的 製造方法,可加工重現性佳地在透明基材上製作凹凸形 狀’並能獲得呈現充分的防眩效果、且充分抑制白濁與閃 爍的產生以及對比降低之影像顯示裝置。再者,於運用帶 通濾波器時,由於能抑制凹凸加工困難的高空間頻率成 分,因此可使透明基材表面的加工中之凹凸重現性更為提 升。 321900 16 201042295 在此,所謂「第1至第4圖案」中的「圖案」係指影 像、影像資料、經離散化的資訊之二次元排列、或配置在 • 板的開口之排列。 k 上述影像資料可為光柵形式的影像資料(光栅圖像), 亦可為向罝形式的影像資料(向量圖像)。光柵圖像係指將 影像表現成具顏色的點(d〇t)之羅列的資料。在光栅圖像 中係以數值保存各點的顏色資訊。以保存上述的光柵圖像 ❹之格式而言係存在有各種,惟尤其以一般性的格式而言可 列舉例如位元映像。以位元映像而言,尤其廣泛使用分別 以8位元深度表示紅、綠、藍強度之24位元彩色位元映像; 以8位元深度256階表示亮度之8位元灰階位元映像。 就保存光柵圖像的格式而言,除位元映像之外,還可 .列舉運用有壓縮演算法等屬於影像資料的PNG(PortableΟ The desired surface unevenness is obtained, and when the haze of the anti-glare film is set to be low, there is a problem that a sufficient anti-glare effect cannot be obtained. Further, when the above-mentioned conventional anti-glare film is disposed on the surface of the image display device, there is a problem that the entire display surface is whitened by the scattered light, and the display color becomes cloudy, which is called "white turbidity". Furthermore, with the recent refinement of the image display device, there is a possibility that interference occurs between the pixels of the image display device and the surface unevenness of the anti-glare film, and as a result, a brightness distribution is generated, and the so-called (flickering) phenomenon of the display surface is not easily seen. In order to eliminate _ although there is an attempt to scatter light by dispersing a difference in refractive index between the heterolipid and the fine particles dispersed in the resin, when the anti-glare film is disposed on the surface of the image display device, the ruthenium particles On the other hand, the transparent resin layer does not contain fine particles, and the anti-glare property is exhibited only by the fine unevenness formed on the surface of the transparent resin layer. For example, Japanese Laid-Open Patent Publication No. 2002-1891-6 discloses an anti-glare film in which a cured layer of an ionizing radiation curable resin layer is laminated on a transparent resin film, and the cured layer has a three-dimensional 10 point. The average particle size and the average distance between adjacent convex portions on the three-dimensional thickness reference surface respectively satisfy two predetermined fine surface irregularities. The anti-glare film is embossed by embossing The ionizing radiation-curable resin is cured and sealed in a state in which the ionizing radiation-curable resin is coated with the transparent resin film. However, the anti-glare is disclosed in Japanese Laid-Open Patent Publication No. 2002-189106 321900 5 201042295. In addition, it is difficult to achieve a sufficient anti-glare effect, and it is possible to suppress the whitening, the high-precision, and the suppression of the flicker. In the Japanese Patent Laid-Open No. Hei 6-34961, JP-A-2004-45471, and JP-A-2004-45472 The technique of using a film in which fine concavities and convexities are formed on the surface as a light diffusion layer disposed on the back side of the liquid crystal display, rather than an anti-glare film disposed on the display surface of the display device, is disclosed. In the method of forming irregularities on the surface of the film, the embossing roller filled with ionizing radiation hardening having a shape in which the unevenness is reversed is disclosed as disclosed in Japanese Patent Application Publication No. 2004-45472. The resin liquid is then brought into contact with the filled resin in synchronization with the rotation direction of the roll intaglio, and is placed when the transparent substrate contacts the roll intaglio A method in which the resin is hardened between the gravure and the transparent substrate and the cured resin and the transparent substrate are adhered to each other, and then the laminated body of the cured resin and the transparent substrate is peeled off from the light intaglio plate. In the methods disclosed in Japanese Laid-Open Patent Publication No. 2004-45471 and JP-A-2004-45472, the composition of the ionizing radiation-curable resin liquid that can be used is limited, and it cannot be expected to be leveled until diluted with a solvent. Therefore, it is conceivable that there is a problem in the uniformity of the film thickness. Further, in this method, since it is necessary to directly fill the resin liquid into the embossing roll, it is necessary to ensure the uniformity of the uneven surface. It is necessary to have a southern mechanical precision for the embossed roll intaglio, and it is difficult to make an embossing roll. Next, in the case of the method of making the film 321900 6 201042295 which is used for the production of the film having the unevenness on the surface, the use of the method is disclosed in the above-mentioned Japanese Patent Publication No. Hei 6-34961, the blasting, etc. Body, and then by its surface by electronic engraving, eclipsing the nickname of the bullet = the method of bumping. Furthermore, in Japan, the method of special opening, and the method of making a embossing roll embossing by the bead shot method is disclosed in Japanese Patent Laid-Open No. Hei. No. 04-90187. The step of mirror-grinding the metal woven layer, the step of embossing the surface of the metal (four) layer, and the method of making, smashing, and pulsing the roofing roll as needed. Next, there is a state in which the squeezing process is applied to the surface of the embossing roll as described above, and the distribution of the unevenness and the distribution of the unevenness, the anti-glare spray (4) the depth of the concave portion, and the reproducibility are excellently obtained* The problem of good bump shape. There is a technique for forming a concave-convex mold surface by a sandblasting method, which is described in the above-mentioned Japanese Patent Publication No. 2,02,189,106. Further, in the above-described mold surface in which the concavities and convexities are formed as described above, it is preferable to form a recessed surface and to improve the durability in use, and it is preferable to use a chrome-plated surface for the purpose of hardening and The content of corrosion prevention. In addition, in each of the above-mentioned Japanese Patent Publication No. 2004-45471 and Japanese Patent Application Laid-Open No. Hei No. Hei No. Hei. No. Hei. The technique of forming fine irregularities on the surface. In the embossing roll manufacturing method, since the hardness is high (four), the mouth is hit or the impact is made, it is difficult to form unevenness, and it is difficult to precisely control the shape of the unevenness. In addition, as disclosed in Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The fine cracks generated by chrome plating have a problem that it is difficult to make a concave-convex design. Further, fine cracks are generated due to plating, and there is a problem that the scattering characteristics of the anti-glare film finally obtained do not change direction. Moreover, due to the combination of the material of the surface of the embossed rough base material and the combination of the seeding, various changes are made to the surface of the roll which is finally obtained. Therefore, in order to obtain the desired surface unevenness shape with high precision, it is also necessary to select an appropriate one. The pro-surface material and proper seeding issues. Further, even if a desired surface unevenness shape is obtained, depending on the plating type, there is a case where the durability is insufficient at the time of use. In Japanese Patent Publication No. 2000-284106, there is described a technique of performing a residual step and/or a film lamination step after performing a blasting process on a substrate, but a metal plating layer is provided before the blasting step. There are no records or hints. Further, JP-A No. 6-53371 discloses a technique of performing electroless nickel plating after polishing a substrate and performing sandblasting. Japanese Laid-Open Patent Publication No. 2007-18752 discloses a technique in which a base material is subjected to copper plating or mineral nickel, and then subjected to polishing and sandblasting, and then a bond is formed to form an embossed plate. And, in Japanese Unexamined-Japanese-Patent No. 7_237541, it is described that after the implementation of the ore or the town, the grinding is carried out and sandblasting is carried out, and then, after performing the remaining step or the copper ore step, the clock is implemented to make the health Pattern technology. In the production method using the above-described sand blasting process, since the surface uneven shape is formed in a difficult-to-tight control state, a large uneven shape having a surface concave-convex shape having a period of 50 or more is also produced. As a result, the concave-convex shape of the monochromatic image interferes with the pixels of the image display device, and the distribution of the meaning of 321900 8 201042295 degrees is generated, and the "flicker" problem in which the display surface is not easily seen is easily generated. SUMMARY OF THE INVENTION An object of the present invention is to provide an anti-glare treatment method for a transparent substrate, which can be used in an image display device to display a good anti-glare function and prevent identification due to white turbidity. The ability is reduced, and when used in high-definition image display devices, it can also exhibit high contrast without flicker. Another object of the present invention is to provide a method for manufacturing an anti-glare film which can exhibit good anti-glare function and prevent identification due to white turbidity when the film is disposed on the surface of the image display device. When the capability is reduced and it is placed on the surface of a high-definition image display device, it can also exhibit a high contrast without producing a flicker. Still another object of the present invention is to provide an image display device having an anti-glare property having the above display characteristics. Still another object of the present invention is to provide a method for producing a metal mold which is suitable for use in the above-described antiglare treatment method and method for producing an antiglare film. As a result of meticulous research, the inventors of the present invention have found out that the first pattern composed of image and image data is produced, and then used for the first pattern to at least remove or reduce a filter having a low spatial frequency component whose spatial frequency is not up to a specific value to produce a second pattern, and then processing the uneven shape on the transparent substrate according to the second pattern; by this method, good reproducibility can be processed The uneven shape is formed on the transparent substrate, and a sufficient anti-glare effect is exhibited, and white turbidity and flicker and a decrease in contrast can be sufficiently suppressed. Furthermore, with the above filter, 9 321900 201042295 it is found that a high-pass chopper and a band-pass chopper can be suitably used; the high-pass chopping line is removed or reduced by the spatial frequency component contained in the first pattern. ^ The lower limit value B' is a low spatial frequency component composed of a low spatial frequency, and the spatial frequency component is constructed by the lower limit value B and the above space _ rate (hereinafter, also depends on the lower limit value B) , the case where the W-resolved limit value β is referred to); and the pass-through device is removed or reduced by the spatial frequency lower than the specific lower limit value β in the air-rate component contained in the third 丨_ a low-resolution component and a high-altitude-off component composed of a spatial frequency exceeding a specific upper limit τ, and extracting a spatial frequency component composed of a spatial frequency of a specific range from the lower limit value β to the upper limit value ( ( Hereinafter, the lower limit value Β and the upper limit value τ of the specific range are also referred to as a spatial frequency range lower limit value Β and a spatial frequency range upper limit value τ. The present invention has been completed based on the above knowledge and insights and the review of the money. The anti-glare processing method for a transparent substrate provided by the present invention has a spatial frequency of a filter applied from a first pattern to a first pattern in which a plurality of dots are arranged in a random manner or in which a luminance distribution is arranged. The step of removing or reducing at least a low spatial frequency component having a spatial frequency that does not reach a specific value to form a second pattern; and the step of squeezing the concave and convex shape on the transparent substrate according to the second pattern. In the above filter, a down-pass filter that removes or reduces only a low spatial frequency component whose spatial frequency does not reach a specific value from the spatial frequency component included in the first pattern can be preferably used. Preferably, the high-pass filter removes or reduces a low-pass filter having a low spatial frequency component whose spatial frequency is less than 〇 1 # nf] from the spatial frequency component of the first pattern 3 . 321900 10 201042295 * Furthermore, in the case of the above filter, it is preferable to use the two-time ratio components contained in the second pattern to remove or reduce the low-space step rate of the spatial frequency that does not reach a certain value, and remove or A band-passing wave device that reduces a spatial frequency component whose spatial frequency exceeds a specific value and thereby extracts a spatial frequency component of a specific range. In the anti-glare processing method of the present invention, the band-pass filter is used to extract The spatial frequency lower limit value 0 1 in the above-mentioned specific range spatial frequency component is red or U1/zm-1 or more, and the upper limit value τ is preferably, where "m) is used to process irregularities on a transparent substrate. The resolution of the processing device used in the shape. Further, the upper limit value and the lower limit value β of the spatial frequency are preferably such that the following formula (1) is satisfied: - ° · 20 &lt; 2x (TB) / (T + B) &lt; 〇 &lt; go (1 In the first pattern described above, for example, a pattern formed by irregularly arranging a plurality of dots can be preferably used. Preferably, the anti-glare processing method of the present invention comprises the step of applying a dithering method to the second pattern to produce a third pattern converted into discretized information. In this case, the step of processing the uneven shape on the transparent substrate is carried out in accordance with the third pattern. In the case of the dithering method, the error diffusion method can be preferably used. Furthermore, the preferred embodiment in which the f 3 pattern is converted into the second-stage discretized information H in the (four) processing method of the present invention is that the conversion error is spread over 3 pixels by using An error diffusion method in a range of 6 pixels or less to create a third pattern. The anti-glare processing method of the present invention is preferably provided with: for the third pattern converted into 321900 201042295 two-stage discretization information, the Monte Carlo method is used to move the isolated black or white pixels to create the fourth pattern. step. In this case, the step of processing the uneven shape on the transparent substrate is carried out in accordance with the fourth pattern. Preferably, the step of processing the uneven shape on the transparent substrate comprises: forming a mold having a concave-convex surface according to the second pattern, the third pattern, or the fourth pattern, and transferring the uneven surface of the mold to the transparent substrate The steps above. The step of processing the uneven shape on the transparent substrate is preferably carried out using a processing apparatus that performs processing based on the discretized information of the third pattern or the fourth pattern. Further, the method for producing an anti-glare film according to the present invention includes a step of arranging a plurality of dots irregularly or arranging a luminance distribution! a pattern, the application filter removes or reduces at least a low spatial frequency component having a spatial frequency less than a specific value from a spatial frequency component included in the first pattern to form a second pattern; and processing the unevenness on the transparent substrate according to the second pattern Shape: Steps. In the case of the above filter, it is preferable to use a conventional chopper that removes or reduces a low spatial frequency component whose spatial frequency does not reach a specific value from the spatial frequency component contained in the second pattern. Preferably, the pass chopper is a high pass filter that removes or reduces a low spatial frequency component having a spatial frequency less than 从 from the spatial frequency components included in the first pattern. Furthermore, in the case of the above filter, it is preferable to use a spatial frequency component contained in the second pattern to remove or reduce a low spatial frequency component whose spatial frequency does not reach a specific value and to (4) reduce a high space in which the spatial frequency exceeds a specific value. Frequency 321900 12 201042295 Rate component, and thereby extract a bandpass filter of a specific range of spatial frequency components. In the method for producing an anti-glare film of the present invention, the spatial frequency lower limit value in the spatial frequency component of the specific range extracted by using the band pass filter is preferably 〇· 01 vnf1 or more, and the upper limit value. Preferably, it is below. Here, the D system has the same meaning as the above. Furthermore, the upper limit Τ and the lower limit 空间 of the spatial frequency are preferably such that the following formula (1) is satisfied: Ο ❹ 〇 .20 &lt; 2 χ (Τ-Β) / (Τ + Β) &lt;〇.8 〇(1) In the above-described first pattern, for example, a pattern formed by irregularly arranging a plurality of dots can be preferably used. Preferably, the method for producing an anti-glare film of the present invention comprises the step of applying a dithering method to the second pattern to produce a third pattern converted into the discretized information. In this case, the step of processing the uneven shape on the transparent substrate is carried out in accordance with the third pattern. By the dithering method, t Τ is more than ± (4), and the ' g 3 pattern is preferably a pattern of information converted into two-stage discretization. A preferred embodiment of the anti-glare processing method of the present invention is to produce a third pattern by using an error diffusion method in which the conversion error is spread by 3 pixels or more and 6 pixels or less. Preferably, the method for producing an anti-glare film of the present invention further comprises the step of moving the isolated black or white pixel to produce the fourth pattern by the third pattern of the information converted into the two-stage discretization. . In this case, the step 1S1 丄 ^ pattern is formed by processing the uneven shape on the above transparent substrate. 321900 13 201042295 The embossed shape includes: according to the second step, the step on the transparent substrate is preferably a mold surface, and the second, the third pattern or the fourth pattern is used to make the concave and convex shape The step of transferring the surface onto the transparent substrate is carried out by using a processing device based on a step on the transparent substrate, preferably using real information to perform a discretizing process of the fL pattern or the fourth pattern. .趸^ The present invention provides a method suitable for use in the above-described method of the present invention and a method for producing a method of glazing. The method includes: a substrate for a mold: a surface-implemented = mold-grinding step Forming a photosensitive resin on the surface to be polished: a photosensitive resin _ into (4); exposing the sensation pattern of the above second bribe and enamel to a photosensitive tree; and exposing the first s ^4 case, a photosensitive resin film of the third pattern or the fourth pattern is developed; a step of etching using a developed photosensitive resin film as a mask to form irregularities on the polished plated surface; a photosensitive resin film peeling step of the photosensitive resin film; and a second plating step of performing chrome plating on the lifted/outper surface. In the mold manufacturing method of the present invention, it is preferable that the unevenness of the uneven surface formed by the i-th etching step is etched between the photosensitive resin 瞑 peeling step and the second plating step to make the unevenness a gentle second "dream". The concave-convex surface to which the wrought chromium is applied in the second plating step is preferably a concave-convex surface of the mold transferred onto the transparent substrate. That is, preferably in the first $ ' 321900 14 201042295 The step of the surface of the concave and convex surface, and the direct application of the plating is applied to the concave and convex surface of the mold transferred to the transparent substrate. For the secret (four) shape (four) layer with ==== The invention provides an image display device which is provided with an anti-glare treatment on the surface of a transparent substrate provided by the image display device by the above-described anti-glare treatment method of the present invention; The anti-glare film of the present invention; the anti-glare film of the farmer. (4) Obtained by the county u method according to the present invention, the anti-glare treatment dazzle of the transparent substrate can be provided. When the image display device is used, the anti-glare can be displayed. = sex month, to prevent the use of white turbidity The discriminating power is reduced, and even in the case of a high-definition image display device, 'there will be no flashing and can be compared to the south. In addition, according to the present invention, the above-mentioned good display can be brought to the forefront. Jade reproducible money is formed on the through-the-day material, and then the ray is used to obtain the anti-glare treatment method and the anti-glare treatment method of the present invention. The transparent base anti-glare according to the present invention The processing method and the method for producing the anti-glare film can provide a video display device having the same display characteristics. [Embodiment] <Method for manufacturing a transparent substrate _ at the financial riding y> The following is a comparison of the present invention. The preferred embodiment (4) is a detailed description of the anti-glare treatment method for the transparent substrate and the method for manufacturing the ruthenium-nuclear film: in order to form a micro-specific distribution with a specific spatial frequency distribution on the transparent substrate: 321900 15 201042295 After the first pattern composed of a pattern of a plurality of dots of irregularity is irregularly arranged, at least the spatial frequency component included in the first pattern is removed; high-pass filtering of a low spatial frequency component of a specific value === Wave A second pattern is formed; and a convex shape is added to the transparent substrate according to the obtained second pattern. Further, as will be described later, the obtained second pattern is converted into a The third pattern of the discretized information or the (4) 4 pattern obtained by processing the isolated material contained in the binarized third pattern towel according to the Monte Carlo method, the concave and convex shape is processed on the transparent substrate. Thus, in the present invention The fine concavo-convex shape is formed on the transparent substrate according to the second pattern, the third pattern, or the fourth pattern. The means for imparting anti-glare properties to the transparent substrate or the means for producing the anti-glare film disperse the particles The method in the transparent substrate has long been known, however, it is possible to impart a unique surface by using the method of the present invention which uses a high-pass filter or a band-pass filter or the like to remove or reduce the pattern of low spatial frequency components. The anti-glare treatment of the shape, which is capable of suppressing low spatial frequency components, is not possible with the above-described conventional methods. According to the anti-glare treatment method and the method for producing an anti-glare film of the transparent substrate of the present invention, it is possible to produce a concave-convex shape on a transparent substrate with good reproducibility and to obtain a sufficient anti-glare effect, and to sufficiently suppress white turbidity. An image display device with reduced generation of contrast and contrast. Further, when the band pass filter is used, since the high spatial frequency component which is difficult to process the unevenness can be suppressed, the unevenness of the unevenness in the processing of the surface of the transparent substrate can be further improved. 321900 16 201042295 Here, the "pattern" in the "first to fourth patterns" refers to an arrangement in which images, video data, discretized information are arranged in two dimensions, or arranged in an opening of a board. k The above image data may be image data (raster image) in the form of a raster, or image data (vector image) in the form of a squint. A raster image is a list of dots that represent an image as a colored dot (d〇t). The color information of each point is stored as a numerical value in the raster image. There are various types of formats for storing the raster image described above, but in particular, in a general format, for example, a bit map can be cited. In terms of bit maps, 24-bit color bit maps of red, green, and blue intensities are respectively widely used in 8-bit depth; 8-bit gray-scale bit maps in which luminance is represented by 256-order depth of 256 steps . In terms of the format in which the raster image is saved, in addition to the bit map, a PNG (Portable) that belongs to the image data such as a compression algorithm may be used.

Network Graphics) 、 TIFF(Tagged Image File Format)、 JPEG、GIF(Graphics Interchange Format)等各種格式。 〇 在向量圖像中,係以數值保存線的起點終點座標(位 置)、若為曲線則為其彎曲方式、粗度、顏色、由該等線所 包圍的面之顏色等資訊。記錄有該等數值資料的集合、或 圓的半徑、中心座標、多角形的各頂點座標等之資訊亦包 含在向量圖像。 ' 以保存向量圖像的格式而言,尤其以一般性的格式而 言,可列舉 DXF(Drawing Interchange File)、SVG(Scalable Vector Graphics)。惟在本發明中,向量圖像只要是屬於 上述定義者即可,並未被限定在該等例示之形式。再者, 17 321900 201042295Various formats such as Network Graphics), TIFF (Tagged Image File Format), JPEG, and GIF (Graphics Interchange Format). 〇 In the vector image, the value is used to store the starting point coordinates (position) of the line, and if it is a curve, it is the bending mode, the thickness, the color, and the color of the surface surrounded by the lines. Information such as a set of such numerical data, or a radius of a circle, a central coordinate, and a vertex coordinate of a polygon are also included in the vector image. ' In terms of the format of the saved vector image, especially in the general format, DXF (Drawing Interchange File) and SVG (Scalable Vector Graphics) can be cited. However, in the present invention, the vector image is not limited to the exemplified form as long as it belongs to the above definition. Furthermore, 17 321900 201042295

向量圖像並未限定在二次元,亦可為I 又,向量圖像中,具有封閉的圓三次元資訊者。 上述「配置在板的開口之排列 ψ〜2多角形排列者可在 L 各易地窨# 本發明中的圖案並不限定在如上、,、夏換。 料予以處理者,亦可為以經離散化之二作為影像或影像資 式被提供者。以保存經離散化之資訊&gt; 訊的二次元排列方 浮動小數點(例如64位元浮動小數點)、方法而s ’可列舉 32位元整數、無符號16位元整數)”整數(例如附符號 (第1圖案之製作) 各種形式。 以第1圖案而言,可從上述所〜 的圖案,亦可為具有濃淡或數值變^ :圖案中使用任意 而言,可列舉例如:遍及整個影像範圍配更具體 影像資料(於黑底配置有複數個白點 有複數個點之 個黑點的影像資料等);具有濃替=底配置有複數 八令,辰,大變化的圖案等之具有亮度 /刀布的圖案;經離散化的資訊之二次元排列等,再者,於 對第1圖案制高通驗器或帶通濾m等歧器時(針 對此點將隨後敘述),在以光學性手法進行傅利葉轉換的情 形下,亦可為配置有開口之板。而且,使碳粉局部性附著 在形成有圖案的照相底片(底片)或透明基材者,亦可作為 第1圖案使用。影像資料中的點配置、亮度分布及板之開 口的配置專可為規則性或為不規則性(rand〇m),惟在空間 頻域中,從可以得到在廣範圍具有振幅、且規則性低之四 凸形狀加工用圖案之觀點,以作成不規則配置較佳。 於遍及所製作的整個影像範圍不規則性地描繪多數個 18 321900 201042295 點來製作第1圖鸯吐 言,可列舉例=?’以不規則描纷多數個點的手段而 之值的擬似二=寬广二的影像,產生取。至! 為WXxR[2xm-l]、:、而曰此生例如點中心的x座標 ., 丫座標為WYxR[2xro]之多數個點之手法。 11 in皆為自然數。以產生擬似 ; 只要是線性同铪沐v 、上、数仃的方去而吕,The vector image is not limited to the second element, but may also be I. In the vector image, there is a closed circle three-dimensional information. The above-mentioned "arrangement of the openings arranged in the board ψ~2 polygonal arrangement can be performed in each of the L. The pattern in the present invention is not limited to the above, and the summer is changed. Discretization 2 is provided as an image or image resource. The second element of the discretized information is stored in a floating point (for example, a 64-bit floating point), and s ' can be enumerated as 32 bits. Meta-integer, unsigned 16-bit integer) "Integer (for example, with the symbol (production of the first pattern). Various forms. The first pattern can be from the above-mentioned pattern, or it can have a shade or a numerical value. : Any use in the pattern may include, for example, more specific image data throughout the entire image range (image data with a plurality of white dots and a plurality of black dots arranged on a black background); It is equipped with a pattern of brightness/knife with a plurality of patterns, a large change pattern, a second element arrangement of discretized information, and the like, and a high pass or band pass filter for the first pattern. When m is equal to the manifold (for this point will follow In the case of Fourier transform by optical means, it may be a plate provided with an opening. Moreover, the toner is locally attached to the photographic film (backsheet) or the transparent substrate on which the pattern is formed. It can be used as the first pattern. The point arrangement, brightness distribution and the configuration of the opening of the board in the image data can be regular or irregular (rand〇m), but in the spatial frequency domain, it can be obtained from the wide The viewpoint of having a quadrangular shape processing pattern having an amplitude and a low regularity is preferable, and it is preferable to form an irregular pattern. A plurality of 18 321900 201042295 points are irregularly drawn over the entire image range to be created to create the first image.鸯 鸯 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , This life is, for example, the x coordinate of the center of the point. The 丫 is marked by the majority of the points of WYxR[2xro]. 11 in are all natural numbers to produce a pseudo-like; as long as it is linear, the same as the v, the upper, the lower Lu,

Xorshift ^ 、Knuth的減法亂數產生器演算法、 赛旋轉(Mersenne Twister)等1有可f+廒 Ο Ο 亂數產生法c長度者,即可使用任意的擬似 生亂數的硬體來^ 限擬似亂數,而藉熱雜訊等產 ,體來製作不規則地配置有點的第丄圖案。 配营可為圓形、擴圓形等圓狀或多角形等’亦可 --目同形狀的多數個點、或配置多數個2 同形狀的^ H 夕觀彳種以上不 異。因此,j 的大小可為所有的點為相同、或相 徑c點的直押Λ圓㈣,可使其不規則地配置具有1種點 目,丨二多數個點而藉此製作第1圖案,亦可使其 、-己置具有複數種點徑的多數個點。 構成第】 平均值)、、,圖案的點之平均點徑(圖案中所有點的點徑 以在穿透限定,惟在使用帶通纽11時,由於係 册 ο靶圍具有點徑的峰值,且在低於該穿透頻 ra吐、低空間頻域不具有峰值的方式予以設定為佳, 超瑪.時,較佳為16至32,。當平均點徑 八, ,3有較多對閃爍造成影響的低空間頻率成Xorshift ^, Knuth's subtraction random number generator algorithm, race rotation (Mersenne Twister), etc. 1 can be f + 廒Ο Ο random number generation method c length, you can use any pseudo-like random number of hardware to limit It is intended to be a random number, but by means of hot noise and other products, the body is to create a pattern of the second place that is irregularly arranged. The distribution may be round, polygonal, or the like, or may be a plurality of points of the same shape, or a plurality of the same shape of the same type of H. Therefore, the size of j can be a straight line (four) of all the points being the same, or a point c, which can be irregularly arranged with one type of point, and a plurality of points are used to make the first one. The pattern may also be such that it has a plurality of points having a plurality of dot diameters. The average point diameter of the points of the pattern) (the mean value) (the point diameter of all the points in the pattern is limited by the penetration, but when the band-pass 11 is used, the target has a peak of the spot diameter. And it is set to be lower than the penetration frequency and the low spatial frequency domain does not have a peak value, and is preferably 16 to 32 when the ultra-horse. When the average point diameter is eight, 3 has more Low spatial frequency that affects flicker

#於所製作的第2圖案產生濃淡不均。另一方面, 在構成第1 I 水的點之平均點徑太小’在運用帶通濾波器 321900 19 201042295 =::出的空間頻率成分之振幅小的情形下 第1圖案所具有的不規則性,而無法獲得較佳第2圖牵 平均點徑較佳為,使用供給給帶㈣ ·錢G.5ΧΠ/(2ΧΤ))*。藉此在點填充率位 *門頻率^域圍時,充分地含有由帶_波器所抽出的 頻率成力,而容易製作不易產生濃淡不均的第2圖案。 點21=通觀器時,㈣樣以在穿透縣的範圍具有 …的峰值’且在低於該穿透頻帶的範圍之低空間頻域不 具有峰值的方式予以設定為佳,因此構成 平均點徑係通常為4至5_,較佳為一以上:: 以上,又較佳為32Am以下,更佳為3〇_以下,特 佳為12_町。當平均點徑超過心m時,含有較多對 閃燦造成影響的低”鮮齡,*容易於所製作的第2 圖案產生濃淡不均。 藉配置多數個點而製作第i圖案時之點的填充率(與 像全面積中點所占有面積)係以20至_為佳,2〇至^ 更佳,30至70%又更佳,3〇至6〇%又更佳,4〇至_例如0 亦可在50%左右)為特佳。於點數極少且第丨圖案中的點填 充率未達2G%時,會有於所產生的第2圖案出現由同心圓 狀的特徵性㈣所構成之不均勻’而無法獲得較佳的不規 則性圖案。再者,點填充率超過m時亦同樣具有容易出 現由封閉的圓形圖案所構成之不均勻的傾向,而會損及 規則性。 、 第1圖案可以向量形式的影像資料方式來製作,亦可 321900 20 201042295 r==r等::::。,場合可用 Γ,一的;:=之^ :時二佳為以可斷細圖案之方式以高解= 第1圖係顯示可使用在本發明之透明基材之防 0 =域膜的製造方法之不規則地配置多數個點而製作 出的第1圖案之較佳-例之放大圖。第i圖所示之第i圖 案係8位元灰階的灰階影像,且黑色圓狀的區域為點卜 在本發明中,將點的直徑稱為「點徑」,並將圖案中所有點 -的點徑平均值稱為「平均點徑」。第i圖所示第i圖案之平 、均點徑為丨6从m。再者,影像解析度為12800dpi。亦即1 像素的尺寸相當於縱橫2# m。在第1圖所示之第丨圖案中, 影像的尺寸為WX=0. 512mm、WY=〇· 512mm、點的填充率約 〇 為50%。又,決定點中心座標的擬似亂數係對由日本廣島 大學的小組所安裝之SIMD oriented Fast Mersenne Twister程式之SFMT verl. 3. 3主要供給數值607而產生 成。 再者,以第1圖案而言,較佳為使用配置有亮度分布 的圖案,例如使用由亂數決定濃淡的光柵圖像。以亂數或 藉電腦所產生的擬似亂數來決定光柵圖像之各像素(pixel) 的濃度,藉此可獲得規則性小的圖案。 關於像素濃度之決定方法以使用輸出0至1的範圍之 21 321900 201042295 實數的擬似亂數之情形為例來說明。像素的灰階數雖可為 任意’但容易處理的灰階深度係有1位元、8位元、16位 元、24位元等’而較佳為8位元(256灰階:index 0至255)。 例如8位元灰階時,對於具有8位元深度之piXCEL[x,y], 藉由代入 PIXCEL[x,y] == r[x + yXimagewidth]x255 可產生 影像。其中’ x、y係影像中之像素座標;ImageWi dth係χ 座標的影像寬度。在此例中,雖可產生平均指標為127至 128的圖像,但藉附加偏移(0ffset)亦可產生不同平均值 圖像。 第2圖係顯示由藉由亂數來決定濃淡的光柵圖像所構 成的第1圖案之一例的圖。第3圖係顯示將第2圖所示之 第1圖案的一部分予以放大之圖。第2圖所示之光栅圖像 係藉擬似亂數決定1像素1像素的亮度而製作成之8位元 灰階影像,具體而言為,對於具有8位元深度之2次元排 列 PIXCEL[x,y],藉由代入 PIXCEL[X,y] = R[x + yx# The second pattern produced by the image produced unevenness in shading. On the other hand, the average dot diameter of the point constituting the first water is too small 'the irregularity of the first pattern when the amplitude of the spatial frequency component of the band pass filter 321900 19 201042295 =:: is small. Sexuality, but it is not possible to obtain a better map. The average dot diameter is preferably used, and the supply is given to the belt (4). The money G.5ΧΠ/(2ΧΤ))*. Thereby, when the dot filling rate bit * gate frequency range is satisfied, the frequency of the force extracted by the band wave device is sufficiently contained, and the second pattern which is less likely to cause unevenness in the shading is easily produced. When point 21 = the through-the-view device, (4) is set to have a peak value of ... in the range of the penetrating county and is not preferable in the low-frequency frequency domain of the range below the penetration band, and thus constitutes an average point. The diameter system is usually 4 to 5 mm, preferably one or more:: or more, preferably 32 Am or less, more preferably 3 Å or less, and particularly preferably 12 Å. When the average spot diameter exceeds the center m, it contains a lot of low ages that affect the flashing, and * is easy to produce unevenness in the second pattern produced. By arranging a plurality of dots to make the i-th pattern The filling rate (with the area occupied by the full-area midpoint) is preferably 20 to _, 2 to ^ is better, 30 to 70% is better, and 3 to 6 is better, 4 to _, for example, 0 may be around 50%.) When the number of dots is extremely small and the dot filling rate in the second pattern is less than 2G%, the second pattern generated may be characterized by concentric circles. (4) The unevenness formed is not able to obtain a better irregularity pattern. Further, when the dot filling ratio exceeds m, the unevenness of the closed circular pattern tends to occur, which may be impaired. Regularity. The first pattern can be produced in the form of image data in vector form. It can also be 321900 20 201042295 r==r etc::::., occasions can be used, one;;=^^: The method of breaking the fine pattern is high solution = Fig. 1 shows the manufacturing method of the anti-zero film which can be used in the transparent substrate of the present invention. An enlarged view of a preferred example of the first pattern produced by arranging a plurality of dots. The i-th pattern shown in the i-th image is a grayscale image of an 8-bit gray scale, and the black circular region is a dot. In the present invention, the diameter of the dot is referred to as "dot diameter", and the average of the dot diameters of all points in the pattern is referred to as "average spot diameter". The i-th pattern shown in Fig. i has a flat and mean point diameter of 丨6 from m. Furthermore, the image resolution is 12800 dpi. That is, the size of 1 pixel is equivalent to 2# m. In the second pattern shown in Fig. 1, the size of the image is WX = 0.512 mm, WY = 〇 · 512 mm, and the filling rate of the dot is about 50%. Further, the pseudo-number of the coordinates of the center point of the decision point is generated by supplying the value 607 to the SFMT verl. 3. 3 of the SIMD oriented Fast Mersenne Twister program installed by the group of Hiroshima University of Japan. Further, in the first pattern, it is preferable to use a pattern in which a luminance distribution is arranged, and for example, a raster image in which shading is determined by a random number is used. The concentration of each pixel (pixel) of the raster image is determined by a random number or a pseudo-disorder generated by the computer, whereby a pattern having a small regularity can be obtained. The method of determining the pixel density is exemplified by the case of using the pseudo-random number of the real number of 21 321900 201042295 in the range of 0 to 1. Although the gray scale of the pixel can be any 'but easy to handle, the gray scale depth has 1 bit, 8 bit, 16 bit, 24 bit, etc.' and preferably 8 bit (256 gray scale: index 0) To 255). For example, in 8-bit grayscale, for piXCEL[x,y] with 8-bit depth, an image can be generated by substituting PIXCEL[x,y] == r[x + yXimagewidth]x255. The pixel coordinates in the 'x, y image; the image width of the ImageWi dth system. In this example, although an image with an average index of 127 to 128 can be produced, an additional average image can be produced by an additional offset (0ffset). Fig. 2 is a view showing an example of a first pattern formed by a raster image in which shading is determined by random numbers. Fig. 3 is a view showing a part of the first pattern shown in Fig. 2 enlarged. The raster image shown in Fig. 2 is an 8-bit grayscale image which is determined by a pseudo-number to determine the brightness of 1 pixel and 1 pixel. Specifically, for a 2-dimensional array having an 8-bit depth PIXCEL[x , y], by substituting PIXCEL[X,y] = R[x + yx

ImageWidth]x255而製作成。其中,χ、y係影像中之像素 座標;ImageWidth係X座標的像素寬度。以排列R[]而言, 係使用依據Knuth的減法亂數產生器演算法所得的擬似礼 數行’而該擬似亂數行係取由Microsoft c〇rp〇rati〇n所 開發出的「.Net FrameW〇rk2.0 Class Ubrary」中所包含 的Random級NextDouble法產生之〇 〇與1〇之間的值。 又’第1圖案亦可為以和上述光柵圖像同樣方式產生 之經離散化的資訊之二次元排列。於此情形時,為了決定 排列的各要素值係使用擬似亂婁之。 ^ 321900 22 201042295 、,波哭之之:態係可依據例如適用高通濾波器或帶通 ==用來將凹凸形狀加工在透明基材上之加 裝置所要权輸人形料來料 廣之空間頻率範®且古担r田於在寬 光栅〜Η 故&quot;&quot;採用由亂數決定瀵淡之 哭戈:”rr::iffiage)為佳。這是由於不論由高通濾波 =通遽波峨波器所抽出之空間頻率範圍為何,皆 令易維持第1圖案之不規則性之故。 Ο Ο 第4圖係比較將藉不規則地配置多數個㈣製作的第 =案(不簡點_)所獲得之二次元㈣藉高速傅利葉 、FFT)轉換為空間頻帶所獲得之空間頻率分佈的一 與藉由IL數而蚊濃淡的光柵影像(亂數光柵影像)所 =之第1圖案而得到之二次元排列藉傅利葉轉換為空間 頻帶所獲得之空間頻率分佈的一例之圖,且顯示空間頻率 至0.30/zm—1之區域中的振幅強度。如第4圖所示,不規 則點圖案係與亂數光栅影像相比較,制是在空間頻率〇 • l〇#m之區域中具有局的振幅強度。此外,針對第* 圖’在之後詳細說明。 (第2圖案之製作) 在本發明之透明基材之防眩處理方法及防眩膜的製造 方法中,第2圖案係相對於該第1圖案,藉由應用從第i 圖案所含的空間頻率成分至少去除或減少空間頻率未達特 定值的低空間頻率成分之濾波器而製作者。在本發明中, 較佳為採用高通濾波器作為該濾波器,該高通濾波器係從 第1圖案所含的空間頻率成分僅去除或減少空間頻率未達 321900 23 201042295 特定值的低空間頻率成分之高通渡波器 通編乍為該據波器,該帶通渡波器係藉由從第為= 所S的空間頻率成分去除或減少空間頻率未達特定值的低 空間頻率成分,並且去除或減少空間頻率超過特定值的高 ^間頻率成分’⑽㈣定範圍之空間頻率成分。一= σ ’圖案係包含對應該變化之空間頻率成分。變化条遽或 圖案係包含空間頻率高之成分,變化較;或配 置較稀疏之圖案中之空間頻率高的成分較少。藉由運⑽ 通遽波錢帶通據波器,即可從第i圖案所含的空間頻率 成f去除或減少特定範圍之空間頻率成分、亦即屬於使閃 週期成分的低空間頻率成分。藉由運用高通 滤波器或帶通遽波器,即可減少用以在透明基材上賊予凹 =狀之第、2圖案、第3圖案或第4圖案中之低空間頻率 成分。藉由運用高通遽波器或帶通滤波器相對於 製作第2圖案’具體而言係可藉由以下 = 操作來實施。 周運串 (1)轉換為空間頻域 —首先,為了可從第!圖案所含的空間頻率成分抽 =之^解成分(亦即去除或減少特定的低空間頻率成 為結影像時,依需要將第1圖案轉換為 素之竞度之值的浮動小數點型之二次元排列 /、中X y係顯示光柵影像内之垂直座標上的 位置。藉由將用以獲得第!圖案中之各種空間頻率成2 大小的手段運用在如上方式所得之二次元排=成;]之 321900 24 201042295 ==圖案所含的空間頻率成分與各空間頻率 =間頻率分佈。就獲得空間頻率成分之大小 &amp;而吕’有光學之手法、數學之手法等,—般而言 數學方式求出之方法係廣泛地被採用。一 m:間頻率成分之大小的數學方法稱為傅 換。傅利葉轉換係可藉由刺用科瞀拖&gt; 下盤讚w 機之離散傅利葉轉換(以 下稱㈣來進行。因此,對空間頻域之轉換係可藉由例如 ❹ 利用計异機將二次元之DFT運用在由第i圖案所得之 元排列而進行。 —就DFTi寅算法(algorithm)而言,雖可使用一般所知之 演算法,但特別以使用c〇〇ley_Tukey型演算法為佳,因其 . 計算速度佳。以Cooley-Tukey型演算法進行之DFT亦稱為 &gt; 高速傅利葉轉換(以下稱FFT)。 以光栅形式製作第1圖案時,該光栅形式之影像資料 係藉由採用上述DFT演算法,可容易地在計算機上轉換為 0 空間頻域。以向量形式製作第1圖案,且利用上述DFT演 算法轉換為空間頻域時,將向量形式之影像資料轉換為光 柵形式,並將轉換為光柵形式之影像資料在計算機上轉換 為一次元排列g[X,y ]。其中,X、y係顯示光柵影像内之 垂直座標上的位置。在將第1圖案製作為一般之例如具有 ' 8位元灰階之灰階影像時,係將255分配給白色區域,將〇 分配給黑色區域。藉由DFT方式並利用該等之值,將影像 資料在計算機上轉換為空間頻域之二次元排列G[ fx, f y ]。其中’ f x,f y係分別顯示X方向之空間頻率數、y方 321900 25 201042295 向之空間頻率數。此外,在將第1圖案作為經離散化之資 訊的二次元排列時,當然,可藉由將DEF運用在該二次元 排列,而在計算機上轉換為空間頻域之二次元排列G[fx, fy] ° 在使用FFT時,亦可進行從屬於經離散化之資訊之二 次元排列的第1圖案、或轉換為二次元排列之第1圖案的 各排列要素減去二次元排列之全要素平均值PA的處理。例 如,在將製作成例如具有0至255之值之8位元灰階的灰 階影像之第1圖案轉換為二次元排列之後,可進行從各排 列要素減去二次元排列之全要素平均值PA之處理。在將具 有0至255之值之8位元灰階的灰階圖像轉換為二次元排 列時,會有獲得在空間頻率〇具有振幅之空間頻率向量之 情形。這是由於構成二次元排列之所有要素偏正之故。在 對透明基材施行之防眩處理方法及防眩膜的製造方法中, 重要的是可掌握透明基材所賦予之表面凹凸形狀的特性, 上述空間頻率0之振幅在暸解最後形成之凹凸形狀的特性 上並非有意義之資訊。為了使振幅在空間頻率0時為0, 藉由進行從各排列要素減去二次元排列之全要素平均值PA 的處理,即可容易地掌握最終形成之凹凸形狀的特性。 第5圖係顯示將由第1圖所示的第1圖案所獲得的二 次元排列藉FFT轉換為空間頻帶所得之二次元性空間頻率 分佈圖。在第5圖中,橫軸及縱轴皆係顯示空間頻率。兩 軸交叉之點係為空間頻率0之點,隨著遠離該交叉點(0 點),空間頻率會變大。此外,以顏色之濃度顯示各空間頻 26 321900 201042295 率之振Ί»田強度,意味著顏色濃度越濃振幅越大。 .者係===影像_轉換為空間頻帶所得 料為第5圖之二次元資訊。然而,由於:次元 .==:’因此以下在顯示空間頻率分佈時,ς 值:::作?橫率之振幅強度的平均 率八:Γ 間頻率分佈。以-次元之空間頻 ο 述:第t第5圖所示之二次元之空間頻率分佈者係為上 將由第!圖所示的第T显線曲線圖係 一 A 釋所传(藉FFT分解成空_率之結果所得)之 頻間頻率分佈圖。在第4圖中,橫軸係顯示空間 均插# H各空間頻率所屬之要素的振幅強度之平 =W振㈣㈣指二次元制之各要素的絕對值 [x’fy]l。此外,平均值係在將由FFT所得之 〇 := 广時’藉由將空間頻率〇至_之範圍: 將分別分割之空間頻率_所屬之二次元 圍=ί予以平均化而求得者。要素所屬之空間頻率範 由」…fy計算出之值ia來判定。將屬η腹 及fa之计鼻式的式(Α)及式(Β)如下表示。 fmax= (fxinax2 , fyD]ax2)i/2......(a) fa=(fx2+fy2)1/2……⑻ 顧係指fx之最大值,fymax係指{之最大值。 之擬似之虛線所示的曲線圖,即使藉由充分不規則 擬似亂數製作第1圖案時,第1圖案係有在特定之空間 321900 27 201042295 頻率具振巾帛峰值崎形。當存在有雜幅峰㈣,可能因 t之南通較||指定之空間頻率下限值或者帶通渡波器 “疋之空_率上限值或下限值,無法獲得具有所希望之 二間頻率特性的第2圖案’因此較佳為修正各要素之振 中田’以使各空間頻率之振幅在特定之空間頻率範圍内相等 或大致相等。 …第6圖係顯不對於第4圖的虛線所示的空間頻率分佈 進行過振中田修正的結果之一例圖。以虛線顯示振幅修正前 之空間頻率分佈(與第4圖之虛線者相同),以實線顯示振 幅修f後之空間頻率分佈。在第6圖所示之空間頻率分佈 中/藉由修正’各要素之振幅會在空間頻率G至約〇. 30# 、s 域巾大致—疋。如此,由於在可由高通濾波器或帶 ^纽器抽出之&quot;頻域t將振幅設定為—定,因此藉由 運=两通遽波器或帶通遽波器而製作之第2圖案係具有具 二之特^範圍的空間頻率成分。其係在控制藉由運 了 波H或帶通濾波器而產生之圖案特性上較為有 之itm H ’上述㈣之修正係藉*利用修正後 之;= 卿值c’以由式:㈣丨‘丨所得之實數 ^ j振^g而進行。但是,不能是〇值。 ⑵m修正係只能在1 ‘ 1為非G值之範圍進行。 (2 )同通濾波器或帶通濾波器之適用 接著,對由DFT所得之空間頻域中 - 對應高通濾、波H或帶㈣波器之操 |施行 ⑽所含之低空間頻率成分去除二二_作’使第 321900 28 201042295 高通遽波器亦稱為高頻通過遽波器、Low-Cut Filter,在信號處理之領域中,具有去除或減少未達所指 • 定之頻率之成分的作用。對應於高通濾波器之操作係指去 . 除或減少第1圖案所含之空間頻率成分中之由比空間頻率 範圍下限值B’更低之空間頻率所構成之低空間頻率成分, 且抽出由該下限值B’以上之空間頻率所構成之空間頻率成 分的操作。在利用DFT之情形時,更具體而言,係指相對 於轉換為空間頻域之排列,將0代入(將振幅設為0)比由 〇 空間頻率範圍下限值B’所指定之範圍更低的空間頻率成分 的排列要素(共軛振幅之實部、虛部之各者),或乘以絕對 值遠比1小之值的操作。就絕對值遠比1小之值而言,若 一般由稱為高通濾波器之濾波器性能來例示,可列舉例如 絕對值比0. 5更接近0之數值、絕對值比0. 3更接近0之 數值、絕對值比0. 1更接近0之數值、或絕對值比0. 01更 接近0之數值等。一般而言,所乘之值的絕對值越接近0(包 (Q 含〇 ),越會成為理想之高通遽波器。 若對應高通濾波器之穿透比例的對於空間頻率之依存 性如第7圖所示以某空間頻率為境界急遽上昇時,空間頻 率範圍下限值B’之值係可視為其上昇之起始點。另一方 面,當穿透頻帶緩缓地上昇時,空間頻率範圍下限值B’之 - 值係設為顯示穿透頻帶之峰值強度的1/2強度之空間頻 率。關於帶通濾波器之空間頻率範圍上限值T及空間頻率 範圍下限值B亦同。第7圖及後述之第8至14圖所示之穿 透比例係顯示對前述各要素所乘之值的絕對值。此外,在 29 321900 201042295 中’皆係乘以實數以進行對應帶通濾波器、 及咼通濾波器之操作。 a ^ 中,:二皮器而抽出之空間頻帶(穿透頻帶) 物㈣編後之振幅 第^圖所X同通濾波益前之振幅強度的比例)係可如 第7圖所不之例,遍及穿透頻帶整 8圖所示之例,其值有變化疋打為如第 例,^頻域具有複=峰值卜’亦可如第9圖所示之 中,稱為頻帶遽波器,在信號處理之領域 麥μΓ 圍的頻率通過且使除此以外之頻率 的作用。對應於帶、波器之操作係指在由上 逑方式所得之第!圖案㈣間頻率分佈中,去㈣減 圖案所含之空間頻率成分中之由比空間頻钱圍下 間頻率所構成之低空間頻率成分及由输間 而之空間頻率所構成之高空間頻率成分, *門頻車成义、i該上限值了之特定範圍的空間頻率抽出 :間頻率成》的操作。在利用DFT之情形時 (將_設為G)未包含㈣所通過之空咖 排:要素限及空間頻率範圍下限㈣斤指定之範圍的 拼列要素,或乘以絕對值意 值遠比i小之值,係如上所述。小之值的操作。有關絕對 中,:二由二用:通濾波器而抽出之空間頻帶(穿透頻帶) 強度相對;^運透比例(運用高通遽波器後之振幅 、 同、濾波态前之振幅強度的比例)係可如 321900 30 201042295 第ίο圖戶:之例(穿透頻帶峰值之形 頻帶整體為〜定,亦可為 科)遍及穿透 值之形狀為高斯型),其值有第變圖所不之例(穿透頻帶峰 形狀亦棉對於空間_率軸左外’穿透頻域之峰值 之例(穿透頻帶峰值-形狀為在峰:之::= =ImageWidth]x255 is made. Among them, the pixel coordinates in the χ and y images; the image width is the pixel width of the X coordinate. In the case of permutation R[], the pseudo-like number obtained from the subtraction random number generator algorithm of Knuth is used, and the pseudo-random row is taken by Microsoft c〇rp〇rati〇n. The RandomDom NextDouble method included in Net FrameW〇rk2.0 Class Ubrary generates a value between 〇〇 and 1〇. Further, the first pattern may be a second element arrangement of discretized information generated in the same manner as the above raster image. In this case, in order to determine the value of each element of the arrangement, it is intended to be used. ^ 321900 22 201042295 ,, the wave of crying: the state can be based on, for example, the application of high-pass filter or bandpass == the device used to process the concave-convex shape on the transparent substrate Fan® and Gudan R Tian are in the wide-grating ~Η故&quot;&quot; It is better to use the random number to decide the bleak cry: "rr::iffiage". This is due to high-pass filtering = pass-through The range of the spatial frequency extracted by the wave device makes it easy to maintain the irregularity of the first pattern. Ο Ο The fourth picture is a comparison of the majority (4) produced by the irregular case (not a simple point _ The obtained second element (4) obtained by converting the spatial frequency distribution obtained by the high-speed Fourier, FFT) into the spatial frequency band and the first pattern of the raster image (random raster image) by the number of ILs The quadratic element is an example of a spatial frequency distribution obtained by converting the Fourier transform into a spatial frequency band, and displays the amplitude intensity in a region of a spatial frequency of 0.30/zm-1. As shown in Fig. 4, the irregular dot pattern is Compared with the random number raster image, the system is The spatial frequency 〇•l〇#m has a local amplitude intensity in the region. Further, it will be described later in detail. (Production of the second pattern) Anti-glare treatment method and prevention of the transparent substrate of the present invention In the method for producing a glare film, the second pattern is applied to a filter having a low spatial frequency component having a spatial frequency that does not reach a specific value by applying at least a spatial frequency component included in the ith pattern to the first pattern. In the present invention, it is preferable to use a high-pass filter as the filter, the high-pass filter only removes or reduces the spatial frequency from the spatial frequency component contained in the first pattern to a low value of 321900 23 201042295. The high-pass waver of the spatial frequency component is compiled into the data waver by removing or reducing a low spatial frequency component whose spatial frequency does not reach a specific value by the spatial frequency component of the first = S, and The spatial frequency component of the range of the high frequency component '(10)(4) whose spatial frequency exceeds a certain value is removed or reduced. A = σ 'pattern contains the spatial frequency component corresponding to the change.遽 or pattern contains components with high spatial frequency, and the variation is relatively small; or there are fewer components with higher spatial frequency in the more sparse pattern. By transporting (10) through the wave band, the ith pattern can be obtained from the ith pattern. The spatial frequency is f to remove or reduce the spatial frequency component of a specific range, that is, the low spatial frequency component of the flash period component. By using a high-pass filter or a bandpass chopper, the transparency can be reduced. a low spatial frequency component in the first, second, third, or fourth pattern of the thief on the substrate. By using a high-pass chopper or band-pass filter with respect to the second pattern' It can be implemented by the following = operation. Weekly string (1) is converted to spatial frequency domain - first, in order to be available from the first! The spatial frequency component of the pattern is extracted as a component of the floating point type (that is, when the specific low spatial frequency is removed or reduced to become a junction image, the first pattern is converted into the value of the prime value of the prime according to the need. The sub-arrangement /, the middle X y system displays the position on the vertical coordinate in the raster image, and the second element row obtained in the above manner is used by means of obtaining the various spatial frequencies in the first! ] 321900 24 201042295 == The spatial frequency component and the spatial frequency = the frequency distribution between the patterns. The size of the spatial frequency component is obtained &amp; and Lu's optical technique, mathematical technique, etc., generally speaking, mathematics The method of obtaining the method is widely used. The mathematical method of one m: the size of the frequency component is called Fu-Feng. The Fourier transform system can be used to make the discrete Fourier transform of the machine by using the knives. The following is referred to as (4). Therefore, the conversion to the spatial frequency domain can be performed by, for example, using the DFT of the second element in the arrangement of the elements obtained by the ith pattern by using a differentiator. - The DFTi寅 algorithm (algori) In the case of thm), although a generally known algorithm can be used, it is preferable to use the c〇〇ley_Tukey type algorithm because of its good calculation speed. The DFT by the Cooley-Tukey type algorithm is also called &gt; High-speed Fourier transform (hereinafter referred to as FFT). When the first pattern is produced in raster form, the image data of the raster form can be easily converted to a spatial frequency domain on the computer by using the above DFT algorithm. When the first pattern is created and converted into the spatial frequency domain by using the DFT algorithm, the image data in the vector form is converted into a raster form, and the image data converted into the raster form is converted into a primary element g[X, on the computer. y ], where X and y are the positions on the vertical coordinates in the raster image. When the first pattern is made into a general gray-scale image with an '8-bit gray scale, for example, 255 is assigned to the white area. The 〇 is assigned to the black area. By means of the DFT method and using the values, the image data is converted on the computer into a spatial frequency domain quadratic arrangement G[ fx, fy ], where 'fx, fy are separately displayed The number of spatial frequencies in the X direction, the number of spatial frequencies to the y square 321900 25 201042295. In addition, when the first pattern is arranged as a second element of the discretized information, of course, the DEF can be applied to the second element arrangement. The second element arrangement G[fx, fy] ° converted to the spatial frequency domain on the computer can also be used to perform the first pattern of the second element arrangement belonging to the discretized information, or to be converted into a quadratic element. The processing of subtracting the total element average value PA of the second element array from each of the array elements of the first pattern, for example, a first pattern of a gray scale image which is formed, for example, by an 8-bit gray scale having a value of 0 to 255. After conversion to the quadratic element arrangement, the process of subtracting the total element average value PA of the second element arrangement from each of the arrangement elements can be performed. When a gray scale image having an 8-bit gray scale having a value of 0 to 255 is converted into a quadratic array, a spatial frequency vector having an amplitude at a spatial frequency 获得 is obtained. This is due to the fact that all the elements constituting the second element arrangement are biased. In the antiglare treatment method and the method for producing an antiglare film which are applied to a transparent substrate, it is important to grasp the characteristics of the surface unevenness shape imparted by the transparent substrate, and the amplitude of the spatial frequency 0 is understood to be the final concave and convex shape. The characteristics are not meaningful information. In order to make the amplitude zero at the spatial frequency 0, by performing the process of subtracting the total element average value PA of the second element arrangement from each of the array elements, the characteristics of the finally formed uneven shape can be easily grasped. Fig. 5 is a view showing a binary spatial frequency distribution map obtained by converting a binary arrangement obtained by the first pattern shown in Fig. 1 into a spatial frequency band by FFT. In Fig. 5, the horizontal axis and the vertical axis show the spatial frequency. The point at which the two axes intersect is the point at which the spatial frequency is 0. As it moves away from the intersection (0 point), the spatial frequency becomes larger. In addition, the intensity of each spatial frequency is displayed in the concentration of the color. The intensity of the vibration is increased. The system ===image_converted to the spatial band is the second element information of Fig. 5. However, since: dimension .==:', therefore, when displaying the spatial frequency distribution, the value of ς::: is the average of the amplitude intensity of the transverse ratio: the inter-frequency distribution. The spatial frequency of the -dimensional dimension ο: The spatial frequency distribution of the second element shown in the tth fifth figure is the upper one! The T-th line graph shown in the figure is an inter-frequency frequency distribution diagram of the A-transmission (obtained by the FFT decomposition into the null_rate). In Fig. 4, the horizontal axis shows the flatness of the amplitude of the elements to which each spatial frequency of the spatial interpolation #H belongs. =W (4) (4) refers to the absolute value [x'fy]l of each element of the second element. Further, the average value is obtained by averaging the spatial frequency _ to the range of _ : = = = = = : : : : : : 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The value of the spatial frequency to which the element belongs is determined by the value ia calculated by ...fy. The formula (Α) and the formula (Β) which are η belly and fa are expressed as follows. Fmax= (fxinax2 , fyD]ax2)i/2 (a) fa=(fx2+fy2)1/2 (8) refers to the maximum value of fx, and fymax refers to the maximum value of {. In the graph shown by the dotted line, even if the first pattern is created by a random irregularity, the first pattern has a peak shape in the specific space 321900 27 201042295. When there is a mixed peak (4), it may be impossible to obtain the desired two rooms because the south frequency of t is lower than the lower limit of the spatial frequency specified by || or the upper limit or lower limit of the band-passing wave The second pattern of frequency characteristics is therefore preferably corrected for the vibration of each element ' such that the amplitude of each spatial frequency is equal or substantially equal within a particular spatial frequency range. ... Figure 6 is not shown for the dashed line of Figure 4. An example of the result of the over-vibration correction in the spatial frequency distribution shown in the figure. The spatial frequency distribution before amplitude correction is shown by a broken line (same as the broken line in Fig. 4), and the spatial frequency distribution after amplitude correction is shown by a solid line. In the spatial frequency distribution shown in Fig. 6 / by correcting 'the amplitude of each element will be at the spatial frequency G to about 〇. 30#, s domain towel roughly - 疋. So, because of the high-pass filter or band The frequency band t of the button is set to a certain value, so the second pattern produced by the two-pass chopper or the band-pass chopper has a spatial frequency having a range of two Ingredients. The system is controlled by the wave H The pattern characteristic produced by the band-pass filter is more than itm H 'The above (4) correction is made by using the corrected; = the value c' is obtained by the formula: (4) 丨 '丨 real number ^ j vibration ^ g However, it cannot be depreciated. (2) The m correction system can only be performed in the range where 1 '1 is a non-G value. (2) Application of the same pass filter or band pass filter Next, the spatial frequency domain obtained by DFT Medium - Corresponding to the high-pass filter, wave H or band (four) wave machine operation | implementation of (10) the low spatial frequency components removed by the second _ 'for the 321900 28 201042295 high-pass chopper also known as high-frequency chopper, Low-Cut Filter, in the field of signal processing, has the effect of removing or reducing the components that do not reach the specified frequency. The operation corresponding to the high-pass filter refers to removing or reducing the spatial frequency of the first pattern. An operation of extracting a spatial frequency component composed of a spatial frequency equal to or greater than the lower limit value B' by a low spatial frequency component composed of a spatial frequency lower than the lower limit value B' of the spatial frequency range, and using DFT In the case of, more specifically, the phase In the conversion to the spatial frequency domain, the 0 is substituted (the amplitude is set to 0). The alignment element of the spatial frequency component (the real part of the conjugate amplitude) is lower than the range specified by the lower limit B' of the spatial frequency range. , each of the imaginary parts, or multiplied by an operation whose absolute value is much smaller than 1. The absolute value is much smaller than the value of 1 and is generally exemplified by the performance of the filter called a high-pass filter. The value is closer to 0, the absolute value is greater than 0. The value is closer to 0, the absolute value is closer to 0, or the absolute value is closer to 0. In general, the closer the absolute value of the multiplied value is to 0 (package (Q contains 〇), the more it becomes the ideal high-pass chopper. If the dependence on the spatial frequency of the penetration ratio of the high-pass filter corresponds to a certain spatial frequency as shown in Fig. 7, the value of the lower limit B' of the spatial frequency range can be regarded as the starting of the rise. point. On the other hand, when the penetration band rises slowly, the value of the lower limit value B' of the spatial frequency range is set to a spatial frequency showing the intensity of the peak intensity of the penetration band of 1/2. The spatial frequency range upper limit value T and the spatial frequency range lower limit value B of the band pass filter are also the same. The penetration ratio shown in Fig. 7 and Figs. 8 to 14 to be described later shows the absolute value of the value multiplied by each of the above elements. In addition, in '29 321900 201042295', the real number is multiplied to perform the operation of the corresponding band pass filter and the pass filter. a ^ , : the spatial frequency band (penetrating frequency band) extracted by the second skin device (4) The amplitude of the coded image (the ratio of the amplitude intensity before the X-pass filter) can be as shown in Figure 7 In the example shown in the figure 8 of the penetration band, the value is changed as in the example, and the frequency domain has a complex peak value. As shown in Fig. 9, it is called a band chopper. In the field of signal processing, the frequency of the microphone passes and the frequency other than this acts. The operation corresponding to the belt and the wave means the one obtained by the above method! In the frequency distribution between the patterns (4), the spatial frequency components contained in the (four) subtraction pattern are low spatial frequency components composed of frequencies below the spatial frequency and the high spatial frequency components composed of the spatial frequencies of the transmissions. * The door frequency is the meaning of the frequency, and the space frequency of the specific range of the upper limit is extracted: the operation of the frequency is "". In the case of using DFT (set _ to G) does not include (4) the empty coffee row that is passed: the limit of the element limit and the space frequency range lower limit (four) kg specified range of elements, or multiplied by the absolute value of the value far than i The small value is as described above. Small value operation. In the absolute, two: two by: pass the filter to extract the spatial frequency band (penetration band) intensity relative; ^ transport ratio (using the high-pass chopper after the amplitude, the same, the amplitude of the filter before the amplitude of the ratio The system can be as shown in Fig. 321900 30 201042295. The example of the figure (the shape of the peak of the penetration band is determined by the whole band, and can also be a branch). The value of the penetration value is Gaussian. Example of the case where the peak shape of the transmission band is also the peak of the transmission frequency domain of the space _ rate axis left outer (the penetration band peak - the shape is at the peak: it::= =

G 、牙還頻贡為由2個峰佶所播出、介 可由複數個峰值所構^ 辦值所構成),亦 1圖ΐ運::二:於具有第5圖所示空間頻率分佈的第 圖ft 後之二次元性空間頻_ 圖相Ml 、縱軸及顏色之濃度係表示與第5 圖相同之忍義。如第]ς園 一 ^ 圖所不,藉由對應前述帶通濾波器 刼作去除由工間__1_ 所指定之特定範圍的空間頻率成分,或』= 強度。 Ο ,接2說月對▼通據波器賦予之空間頻率範圍下限值 =對帶通遽波器職予之空間頻率範圍上限值T及空間頻 Π:限值B的理想範圍。由高通濾波器或帶通濾波器 去除或減少之低空間頻率成分較佳為對應於下述週期的空 間頻率以下之低空間頻率成分:相對於運用由本發明所得 之經防眩處理之透明基材(防眩膜等)的影像顯示裳置之平 句邊4象素尺寸(例如,當娜&lt; 3色橫向並列時,脇之 各者之平均-邊之像素尺寸係為長邊與短邊之平均值),約 10分之-以下之週期。藉此’可有效地抑制影像顯示裝置 321900 201042295 之閃爍。 於例ΓίΓΓ影像顯示裝置具體地說明’當運用在相當 ^丨角、力1G3时之全高畫質(解析度水平刪χ垂直 刖點等)之影像顯示裝 波器去W, 〖罝于㈣间通濾波器或帶通濾 之低空間頻率成分的空間頻率之最大值、 :::間頻率範圍下限值Β,或空間頻率範圍下限值雇 :佥曾=以上。此外’當運用在相當於對角約5〇对之 3Γ二?:广χ平1366χ垂直768點等)之影像顯示裝置 夺^間頻率範圍下限值6’或空間頻率範圍下限值β較佳 2以上。由同樣之考察,當運用在相當於對角約 、之冋f質之影像顯示裝置時’空間頻率範圍下限值^, 或空間頻率範圍下限值8較佳為〇·〇3# ΠΓ1以上。當運用在 相當於對角約37时之高畫質之影像顯示裝置時,空間頻率 範圍下限值B,或空間頻率範圍下限值B較佳為〇〇4〆 當運用在相當於對角約2(W之高畫質之影像顯示裝 時,空間頻率範圍下限值B,或空間頻率範圍下限值Μ 佳為0.05# m1以上。當運用在相當於對角約&amp;吋之高晝 質之影像顯示裝置時,空間頻率範圍下限值B’或空間頻^ I巳圍下限值B較佳為〇 〇7//m-i以上。如此’藉由對應所運 用之影像顯示農置的解析度及尺寸,適當地調整賦予高通 渡波器或帶通遽波器之空間頻率範圍下限值,即可製作經 去除或減V相對於景’像顯示I置為適當範圍之低空間頻率 成分的第2、第3或第4之圖案,依據該等圖案加工凹凸 形狀,藉此可實現抑制閃爍之理想防眩處理。 321900 32 201042295G, the tooth is also tribute to the two peaks, which can be composed of a plurality of peaks, and is also composed of a number of peaks, and also has a spatial frequency distribution as shown in Fig. 5. The quadratic spatial frequency after the ft graph _ The phase M1, the vertical axis, and the color density represent the same persuasion as in Fig. 5. For example, the corresponding band-pass filter is used to remove the spatial frequency component of a specific range specified by the __1_, or 』= intensity. Ο , 2 is the lower limit of the spatial frequency range given by the moon to the channel. The upper limit of the spatial frequency range T and the spatial frequency of the bandpass chopper: the ideal range of the limit B. The low spatial frequency component removed or reduced by the high pass filter or the band pass filter is preferably a low spatial frequency component corresponding to a spatial frequency below a period relative to the use of the antiglare treated transparent substrate obtained by the present invention. The image of the (anti-glare film, etc.) shows the 4-pixel size of the flat edge of the skirt (for example, when Na Na &lt; 3 colors are laterally juxtaposed, the average-edge pixel size of each of the threats is long and short The average value), a period of about 10 minutes or less. Thereby, the flicker of the image display device 321900 201042295 can be effectively suppressed. For example, the image display device specifically shows that when using a full-height image (resolution level, vertical 刖 point, etc. The maximum value of the spatial frequency of the low spatial frequency component of the pass filter or band pass filter, the lower limit of the frequency range of ::::, or the lower limit of the spatial frequency range: 佥曾=above. In addition, when used in an image display device equivalent to a diagonal of about 5 〇 to 3Γ2: 广χ平1366χ, vertical 768 points, etc.), the lower limit of the frequency range 6' or the lower limit of the spatial frequency range β Good 2 or above. From the same point of view, when the image display device corresponding to the diagonal angle is used, the spatial frequency range lower limit value ^ or the spatial frequency range lower limit value 8 is preferably 〇·〇3# ΠΓ1 or more. . When using a high-quality image display device equivalent to a diagonal angle of about 37, the spatial frequency range lower limit value B, or the spatial frequency range lower limit value B is preferably 〇〇4〆 when applied to the equivalent diagonal Approx. 2 (W high-definition image display, space frequency range lower limit B, or spatial frequency range lower limit Μ preferably 0.05# m1 or more. When applied to the equivalent of diagonally &amp; In the case of the enamel image display device, the lower limit value B' of the spatial frequency range or the lower limit value B of the spatial frequency range is preferably 〇〇7//mi or more. Thus, the display of the image by the corresponding image is displayed. The resolution and size, and appropriately adjust the lower limit of the spatial frequency range of the high-pass or band-pass chopper, so as to produce a low spatial frequency with or without the V relative to the scene display I. The pattern of the second, third or fourth component of the component is processed according to the pattern, whereby an anti-glare treatment for suppressing flicker can be achieved. 321900 32 201042295

此外,在尚通濾波器中,由加工適當性之觀點來看, 空間頻率範圍上限值τ較佳為1/(Dx2)〆以下。其中,D ❹ Ο (/zm)係為在透明基材上加工凹凸形狀時所用之加工裝置 的解析度。當空間頻率範圍上限值τ超過時, 會有難以加工再現性佳地在透明基材上賦予凹凸形狀之情 形。由於空間頻率範圍上限值T越小加工再現性越佳,空 間頻率範圍上限值T較佳為1/(Dx4) # ^以下,更佳為 xe)//!!!1以下。當空間頻率範圍上限值τ為^伽6)#mi 以下時,由於可利用生產性高之雷射掃描裝置以良好之加 工再現性在透明基材上形成凹凸形狀,因此特別理相。另 -方面’空職率範圍上限值τ越大,越會形成具二週期 之更精細之構造的第2圖案,因此加工再現性易變得困難。 在透明基材上加工凹凸形狀時所用之加工裝置係可 以往公知之裝置,例如可使用雷射掃描裝置、精密車床°二 使用雷射掃描裝置使阻劑曝光而形成凹凸形狀時,-。 點直徑係相當於解析度J)( # m)。此外,在利用4 ,子之 半球狀之球磨機的精密車床形成凹凸形狀時,亦g别端呈 端半徑為r(am)之球磨機加工凹凸形狀,而使加用前 凸面的平坦面與各位置之面所成之角度為〇度(後之凹 10度)以内時,2xrKsin(0+18Ox;r ))相當於解才為例如 πι)。此外,依據第2圖案製作具有凹凸面之模具斤度D(以 具之凹凸面轉印在透明基材上,藉此在加工凹么y並將模 在透明基材上加工凹凸形狀時所用之加工裝置係7狀時, 具有凹凸面之模具時所用之加工裝置。 糸‘在製作 33 ^^19〇〇 201042295 再者,在高通渡波器中,為了對透明基材賦予適當之 f細凹凸表面形狀’屬於空_率範圍下限值B之倒數的 ^長週期長度1/B制於空_率_上限值τ之倒數的 最短週期長度1/Τ之中間之中間週期長度 (1:Β+1/Τ)/2較佳為6“m以上33&quot;以下之範圍内。 Ma 1 ηPer 1 〇d係相當於對應於高通遽波器所賦予之空間頻率 範圍上限值了的_長度⑽)&quot;與對應空_率範圍下 限值B之週期長度⑽)_的平均值。當似池⑽超 過33/zm時’在對透明基材上進行凹凸形狀之加工中,難 以形成空間頻率低於(U0W之微細凹凸表面形狀,而益 法有效地顯現防眩性。當MainPeriQd低於一時,在對 透明基材上進行凹凸形狀之加工中,有可能形成空間頻率 ,於0. 01 1之微細凹凸表面形狀,結果有可能在運用於 间精細的影像顯示裝置時(例如將所得之防眩膜配置在高 精細之影像顯示裝置的表面時)產生閃爍。 如上所述,運用高通濾波器或帶通濾波器等濾波器之 主要目的在於,在最後用來加工凹凸形狀之圖案(例如後述 之第2第3或第4圖案)中,去除或減少由比空間頻率範 圍下限值B,或B低之空間頻率所構成的低空間頻率成分。 (3)第2圖案之製作 接著,將藉由施行對應高通濾波器或帶通濾波器之操 作所彳于之空間頻率的資訊藉由反離散傅利葉轉換(IDft) 轉換為二次元排列,依據該二次元排列產生第2圖案。就 IDFT演算法而言,與前述DFT同樣地,可使用一般所知之 321900 34 201042295 演算法。第2圖案係可具有8位元、16位元、32位元、64 位元等各種位元深度。 第16圖係顯示於第1圖所示之第1圖案運用帶通濾波 器而製作出的第2圖案之一例的放大圖。第16圖亦與第1 圖同樣地為12800dpi之影像資料。對帶通濾波器賦予之空 間頻率範圍下限值B及空間頻率範圍上限值T係分別為 0.043^1^, 〇.059/zm-i。而且,2χ(τ_Β)/(τ+Β)係為 〇.3〇。 此外,產生第2圖案時,亦可進行換算代入,以使由 IDFT所得之二次元排列之最大值與最小值分別對應由產生 之第2圖案的位元深度所規定之最大值/最小值。亦即,將 由耐所計算之二次元排列要素的最大值設為j,將 最小值設為Imin時,將要素之值Ιχ轉換為8位元(〇_255) 之圖案時,代入圖案之各像素的值係以+ (Imax-Imm)而計算出。前述第16圖之影像資料係進行上 述換算而得者。 〇 以上’雖說明藉由使用DFT之高通濾波器或帶通濾; 器的運用製作第2圖案之方法例,但亦可藉由上述以^ 方法製作第2圖案。例如,亦可使用配置有開π之板作^ ^ 1圖案,以光學手法對該板進行傅利葉轉換,藉此獲4 ,案。具體而言’準備由使焦點—致之2片透鏡所才 月透二間頻錢波光學系統,並且將第1 ®案配置在第 ^的焦㈣。此時’在2片透鏡之焦點—致的面(彻 ’可獲得影像之空間頻率分布。在該傅利葉面中,肩 、之穿透率空間性變化,即可使所希望之範圍的空g 321900 35 201042295 頻率穿透。 經濾波之輸出影像,係在第2片透鏡之傅利葉面相反 側之焦點面獲得。例如,以僅使開口中心部穿透至傅利葉 面之方式配置板時,則僅獲得上述影像之低空間頻率成分 作為輸出影像。反之,將開口中心部遮光時,則僅獲得高 空間頻率成分作為輸出影像。因此,藉由在傅利葉面將中 心部分及其周邊部分遮光,即可在第2片透鏡之焦點面, 獲得具有屬於目的之空間頻率分布之第2圖案。 (轉換為經離散化之資訊及第3圖案之製作) 本發明較佳為從以上述方式所得之第2圖案製作轉換 為經離散化之資訊的圖案。藉由製作轉換為經離散化之資 訊的圖案,即可製作適用於用以加工凹凸形狀之加工裝置 的圖案。例如,在對後述之透明基材上加工凹凸形狀之步 驟包含使用雷射掃描裝置等之阻劑工程或NC加工 (numerical control machining,數值控制加工)時,使用 在該等步驟之圖案較佳為經二值化等多值化之處理。特別 是,在對後述之透明基材上加工凹凸形狀之步驟包含使用 雷射掃描裝置等之阻劑工程時,第2圖案較佳為轉換為以 2階段離散化之資訊,亦即較佳為轉換為經二值化之圖案。 這是由於依據是否照射有雷射之二值而產生阻劑圖案之 故。藉由對第2圖案進行2值化,即可產生可運用在雷射 掃描裝置等之影像。 一般而言,「經離散化之資訊」係被稱為數位資料,在 電腦上處理之資訊幾乎都是經離散化之資訊。就經離散化 36 321900 201042295 之^ Λ的例而5,可列舉可在位元映像(bi f map)資料等電 腦上處理之影像資料、及具有128位元、64位元、32位元、 16位兀等各種位减度的浮削、數誠或有符號或符號乃 至整數等。 「轉換為經離散化之資訊」係指將連續函數轉換為離 散表現、將類比資料轉換為數位資料、或將以更多階段數 表現之經離散化之資訊轉換_更少階段數魏之經離散 化之資訊’且包含將數位信號轉換為以更少之位元深度表 現之數位錢。就轉換為_散化之資訊之例*言,可列 舉例如離散性表現屬於連續函數之餘弦函數、及將以更多 階段數之32位元料小數點表狀資訊轉 數之8位元整數。 用所得之高通濾波器或帶通濾、波器之運 〇 續性高,因此在獲得經多值化之圖 案、,別疋經二值化之圖案時,較佳為以特定之條件運用 或帶通遽波器’將所得之第2圖案多值化,或 以特疋之方法將第2圖案多值化。 本發明中之多航料。 心朗適用於 (1)以閾值法進行之二值化 就將藉由帶通濾波器之運用所得之第2圖案予以二值 化的方法而言,較佳為採用閾值法。 〃 階指標(亮度值)設定特定之驗 仙藉由對灰 幻賦予白色(或黑色),對間二;==值之像素(畫 色)’以進行二值化的手法。 ” -予黑色(或白 322900 37 201042295 關於藉由帶通濾波n之制所得之第2 _之以間值 法進行的二值化,對帶通滤波器賦予之空間頻率範圍下限 值β及空間頻率範圍上限值τ較佳為滿足下述式♦· 0. 20&lt;2χ(Τ-Β)/(Τ+β)&lt;〇.8〇 ...〇) 更佳為滿足下述式(2): 〇· 30^2χ(Τ-β)/(Τ+Β)^〇. 70 &quot;·(2)。 在上述式(1)及(2)令之2χ(Τ-Β)/(Τ+Β)係為由上述帶 通濾波器所抽出之第2圖案所具有之空間頻率之範圍指標 的數值。亦即,2χ(Τ-Β)/(Τ+Β)越大,第2圖案所具有之空 間頻率之範圍越廣,2χ(τ_Β)/(τ+β)越小,第2圖案所具有 之空間頻率之範圍越窄。 第17圖係顯示2χ(Τ-β)/(Τ + β)的值、與藉閾值法將 運用帶通較H所得狀第2圖案予以二值化而獲得的自 相關係數最大值之關係圖。自相關係數最大值係指自相關 係數之最大值。自相關係數係依據維納—辛欽定理 (Wiener-Khinchin theorem),藉由二次元傅利葉轉換將第 2圖案轉換為空間頻域之二次元排列後,將各要素之係數 予以平方,並對該係數施以倒傅利葉轉換而獲得者。自相 關係數最大值係為顯示關於本身之平行移動之自相關係強 度之作為指標的數值。因此,自相關係數最大值越高,在 在透明基材上加工之凹凸形狀中,類似之凹凸形狀愈容易 連續,儘管凹凸形狀之週期長度短,亦容易在目視時感覺 到特異的週期性。第17圖所示之自相關係數最大值係為移 動距離20/z m以上之範圍的自相關係數最大值。 321900 38 201042295 _ 如第17圖所示,可知自相關係數最大值在2χ(Τ-Β)/ (Τ+Β)為0. 20以下時係極端地增加,另一方面,2χ(τ_Β)/ ' ⑽)為UG以上時’維持比較低之值。因此,為了在透 .明基材上形成不會感覺到特異之週期性的凹凸形狀,2Χ (Τ-Β)/(Τ+Β)之錄佳為大於G 2(),更佳為G.3()以上。 〇 〇 另一方面,由研究之結果得知會有以下傾向:第2圖 案所具有之空間頻率之範圍越廣,因追加週期長度不同之 多數成分,在對第2圖案以閾值法進行二值化處理時,容 易產生孤立之小點。第18圖係顯示2x(t-b)/(丁 + b)的值、 與藉閾值法將運用帶通濾波器所得到之第2圖案予以二值 化而獲得的圖案之孤立小點產生個數之關係圖。在第Μ圖 中,「產生個數」係指在對第2圖案以閾值法進行二值化處 理所得之影像中,將中心空間頻率設為0.05;απΓΐ,將在透 明基材上加工凹凸形狀時所使用之加工裝置(雷射掃描裝 置等)的解析度D設為2Am時,連續之曝光範圍之—邊長 度成為解析度2xD//m以下的孤立小點之產生個數。該等連 續之要素數少的孤立小點之存在會妨礙充分之加工再現 性。此外,中間空間頻率係指上述MainPeriod之倒數。 如第18圖所示’可得知在2x(T-B)/(T+B)4 〇 8〇、 上之範圍時,2x(T-B)/(T+B)之值越大,孤立小點之產生個 數會有急遽增加之傾向,另一方面’ 2x(T-B)/(t+b)4 〇 ^ 以下時,孤立小點之產生個數維持比較低之值。因&amp; 、 了使凹凸形狀之加工再現性成為良好者,2x(T〜B;)/(t+b) 之值較佳為未達0. 80,更佳為0. 70以下。 321900 39 201042295 由以上得知,為了形成加工再現性良好且不會威覺到 特異之週期性的凹凸形狀,空間頻率範圍下限值B及★門 頻率範圍上限值T較佳為滿足上述式(1),更佳為滿足上述 式(2)。藉由運用滿足上述式(1)、更佳為滿足上述式(2) 之帶通濾波器,則不一定要進行利用後述之蒙地卡羅法 (Monte Carlo Method)之孤立小點的減少處理,藉由以鬧 值法進行之·一值化’即可獲得加工再現性良好的圖案。 此外,對運用帶通濾波器後之從空間頻率範圍下限值 B至空間頻率範圍上限值T之範圍的空間頻率分佈,與第j 圖案之空間頻率分佈之情形同樣地,亦可施行使 增減之處理,以使振幅強度成為一定。藉由使空間頻率^ 分之振幅強度平滑地變化,即可獲得更平滑之凹凸形狀。 在此,在阻劑工程中,曝光區域之比率在30%至7〇 %之範圍時,對於钱刻或顯影之適性良好。較佳為侧至 _之範圍。為了使藉由閾值法將第2圖案予以二值化後 之圖案滿足上述條件’必須適#地設定閾值。其可藉由對 所付之弟2圖案之各像素解㈣率分佈,將累積度數成為 目標比率之值作為閾值並Μ二值化而達成。具體而言, 例如以下所述。 第19圖係顯示斜於笛·| c 對於第16圖所示影像資料藉由解析灰 階指標的頻率圖而得到之;(ρ β ^ β +七 犬1¾才日;f示的累積率之分佈圖。由 第19圖所示之累積率分蚀pi 1 , 買午刀佈侍知,灰階指標125以下之像素 數為40%。第20圖俦老磨 ’、号慮該累積率分佈之解析結果,將 灰階指標125作為閾值,计脸蚀 阉值並將第16圖所示之影像資料經閾 321900 40 201042295 值法二值化後所得的圖案之放大圖。在第20圖所示之經二 值化的第2圖案中,以黑色顯示之部分(相當於曝光區域) • 的填充率係藉由將灰階指標125設為閾值而成為40%。第 . 21圖係顯示將第20圖所示經二值化的第2圖案所得之二 次元排列藉高速傅利葉轉換(FFT)轉換為空間頻帶而得到 之空間頻率分佈。如第21圖所示,第20圖所示之經二值 化的第2圖案係具有減少有關閃爍產生之低空間頻率成 分,而且亦減少使加工再現性降低之高空間頻率成分的空 ^ 間頻率分佈,因此依據第20圖所示之經二值化的第2圖案 在透明基材上加工凹凸形狀時,可期待優異之防眩性能、 閃爍減低及加工適當性。 (2)以遞色法(dithering)進行之多值化 就將藉由運用高通濾波器或帶通濾波器所得之第2圖 案予以二值化等多值化之方法而言,較佳為可採用遞色 法。此時,依據對第2圖案運用遞色法所得之第3圖案在 Q 透明基材上加工凹凸形狀。遞色法係用以將類比資料轉換 為數位資料,或轉換數位資料之位元率或位元深度之手法 之一,可定位為數位信號處理之一手法。已知有藉由賦予 方形機率密度函數或三角形機率密度函數等之不規則信號 ' 而減少將信號離散化時之誤差的偏差之手法、或遞色法、 • 誤差擴散法等各種手法。 其中,在本發明中,不容易產生因波紋或干擾所致之 成為著色之原因的重覆圖樣,且可期待抑制局部之平均亮 度之變動的效果,此外,藉由矩陣之最適化,即有可能抑 41 321900 201042295 之產生,因此較佳為使_擴散 之】=周散法之特徵為使在離散化時所產生 列舉將8位元125龙ρ比今一 2灰階之黑白位元映像階位^像轉換為1位元 算法的概要。Μ 為例,說賴算擴散法之演 产 ’將轉換對象之像素(晝素)所具有之亮 j叹為Μ。將該像素轉換為1位元2灰階之黑白位元映 、’必須轉換為在8位元時顯現為亮度值255之白色, 或顯現為亮度值〇之黑色。料係轉換為較接近之值。因 起255冗度值為64之像素較接近〇,而予以轉換 為:應0之值(即黑色)。此時,因為轉換,與8位元灰階 之影像相比較時’在經轉換後之影像中會產生,之亮度 值誤差 散法中 這是意指像素之亮度的總合減少達64。在誤算擴 係依據事前決定之權重來變更周圍之像素的亮度 值,以抵消所產生之-64之亮度值誤差。藉由對所有之像 素反覆進行上述操作,以進行二值化。 就權重方法而言,已知有在影像處理領域上較佳之幾 個矩陣。例如,Floyd &amp; Steinberg; Jarvis,Judis and Nink; Stucki; Burks; Stevenson &amp; Arche; Sierra 3 Line; Sierra 2 Line; Sierra Filter Lite 等較佳之具權重之 矩陣。 第22圖係用以說明上述例示矩陣中的轉換誤差之擴 散權重圖。就矩陣之一例而言,列舉Floyd &amp; Steinberg 之例說明之,像素A係為轉換對象之像素。如上述之例, 42 321900 201042295 因為像素A之轉換(從亮度值64轉換為0),在經轉換後之 影像會產生-64之亮度值誤差時’以7 : 1 : 5 : 3之權重變 更隣接之4個像素之亮度值,以抵消該亮度值誤差。亦即, - 使隣接之4個像素之亮度值分別增加達(7/16)χ64、(1/16) x64、(5/16)x64、(3/16)x64。此外,附加斜線之陰影線的 像素B係顯示完成二值化處理之像素。此外,記載為「〇」 之像素係不會使誤差擴散之權重為0的像素。 第23圖至第30圖係顯示對於應用帶通濾波器所得之 第2圖案’運用依據第22圖所示的矩陣所進行之誤差擴散 法而得到的第3圖案之例。第23圖至第30圖所示之第3 圖案皆係由設為8位元灰階之灰階映像所得之第31圖所示 的第2圖案所製作者,且由1位元之黑白影像資料所構成。 更具體而言,第23圖至第30圖所示之第3圖案係相對於 利用具有由Knuth之亂數產生器減算演算法所產生之〇至 1之值的擬似亂數行以12800dpi之解析度製作1. 〇24匪四 Q 方之8位元之位元映像的第1圖案,空間頻率範圍下限值 B及空間頻率範圍上限值T係為: B= l/MainPeriod*(l+BandWidth/l〇〇) ..·(〇 T=l/MainPeriod*(l-BandWidth/l〇〇)…(II) ' 藉由利用各種矩陣之誤差擴散法將運用穿透頻域峰值 之形狀為矩形型之帶通濾波器所得之第31圖所示的第2圖 案予以二值化者。設定為MainPeriod = 12(以m)、BandWidth = 20(%)。此外’為了易於掌握影像之特徵,第23圖至第 30圖係由所產生之第3圖案放大一部分而顯示者。 321900 43 201042295 第32圖係比較經依據第23至3()圖所示的各種矩 誤差擴散法而二值化後的第3圖案之空間頻率分佈、心里 閾值法-值化後的圖案之空間頻率分佈的圖。如第Μ圖所 不,以閣值法進行二值化時,所得之圖案係顯示在低空間 Γ= 高的振幅強度。另一方面,在運用誤差擴散法 分更減少。因此’藉由誤差擴散法之運用,可實J = 地抑制閃爍之防眩處理及防眩膜。此外,第32圖中之利用 ==值化之圖案係對於第31圖所示之第2圖案, 1 字中間值127作為閑值,將比該中間值m大之值設為白 二將該中間值127以下之值設為黑色,藉 作者。 J衣 如此’藉由依據第22圖所示之—般所知的誤差擴散矩 陣的誤算擴散法之;置田 __ _ ' - 運用,可獲得具有良好之空間頻率特性 的第3圖案。然而’製作依據該誤差擴散矩陣而二值化之 第3圖案的方法係會有產生同色之像素並未以一定數以上 之集團存在的多數孤立像素(以下稱為「孤立點」,該孤立 =雖係與前述之「孤立之小點」概念上類似,但如後所述 =義並不相同)的傾向。其令,「孤立點」係指存在於經 槿赤之由16個以下之連續同色之像素(畫素)所 構成之塊(島)。在第3圖案具有多數孤立點時會有以下情 形.可能存在1邊為4像素以下之塊(島),對包含例如Up 法或濕關之工程或是車床加工等依據該圖案進行之凹凸 加工’係要求極高之精密度,而妨礙到加卫再現性。 321900 201042295 第33圖係將藉運用依據一般為人所知的誤差擴散矩 陣之誤差擴散法製作第3圖案時所產生的孤立點之產生個 • 數、與藉閾值法製作之情形進行比較之圖。圖示之數值係 . 顯示與製作利用閾值法經二值化之圖案時產生之孤立點的 產生個數之比。如第33圖所示,即使是孤立點之產生頻率 最少之Stevenson &amp; Arche之矩陣’產生個數亦為閨值法 之27倍,使用Floyd &amp; Steinberg之矩陣時,亦達155户: 本發明人等在精心研究之結果後發現:為了抑制孤^立 ® 點之產生個數,較佳為採用未包含短距離之誤差擴散的矩 陣作為誤差擴散矩陣。 第34圖至第42圖係顯示擴散距離分別為卜2、3、4、 5、6、3+4、4+5及3+4+5的誤差擴散矩陣之一例圖。該等 圖係與第22圖同樣地,顯示轉換誤差之擴散的權重者。擴 散距離係指為了抵消因轉換對象之像素(像素A)之白或零 之轉換而產生之梵度值誤差’變更亮度值之像素與轉換對 Q 象之像素的距離’「擴散距離1」係指變更亮度值之像素與 轉換對象之像素相隣接(參照第34圖)。「擴散距離2」係 指將從轉換對象之像素算起第2個像素作為變更亮度值之 像素(在變更亮度值之像素與轉換對象之像素之間介置有j ' 個像素)(參照第35圖)。關於3以上之擴散距離亦同。此 - 外’第40圖之「擴散距離3+4之矩陣」係指第36圖之「擴 散距離3之矩陣」及第37圖之「擴散距離4之矩陣」的合 成。關於第41圖及第42圖亦同。 第43圖至第51係分別顯示將運用依據第34圖至第 45 3219〇〇 201042295 42圖所示的矩陣之誤差擴散法而得到的第3圖案之一例。 所使用之第2圖案係第31圖所示之圖案。此外,為了易於 掌握影像之特徵,第43圖至第51圖係由所產生之第3圖 案放大一部分而顯示者。再者,第52圖係將藉運用依據第 34至42圖所示的誤差擴散矩陣之誤差擴散法製作第3圖 案時所產生的孤立點之產生個數、與藉閾值法製作之情形 進行比較之圖。圖示之數值係顯示與製作利用閾值法經二 值化之圖案時產生之孤立點的產生個數之比。 如第52圖所示得知,誤差擴散距離為1時,與閾值法 相比較,雖會產生到達247倍之個數的孤立點,但隨著將 誤差擴散距離設定為較大,產生個數會減少。特別是,誤 差擴散距離超過1時,孤立點之個數會急遽減少。由第52 圖所示之結果得知,為了更有效地抑制孤立點之產生,誤 差擴散距離較佳為超過K亦即在超過1像素之範圍使轉換 誤差擴散,以下亦同),更佳為2以上,更理想為3以上。 此外,誤差擴散距離之上限雖無特定限制,但例如為6以 下。其中,利用具有3以上之誤差擴散距離的矩陣製作之 圖案的加工範圍廣,可期待良好之加工適性。 第53圖係將藉依據第34至42圖所示的誤差擴散矩陣 之誤差擴散法所二值化過的第43至51圖之第3圖案的空 間頻率分佈、與藉閾值法所二值化過的圖案之空間頻率分 佈進行比較之圖。藉閾值法所二值化過的圖案係與第32圖 者相同。由第53圖得知,無論在使用任一個誤差擴散矩陣 之情形,與閾值法相比較,皆可減少低空間頻率成分的振 46 321900 201042295 幅。 (第4圖案之製作)Further, in the Shangtong filter, the spatial frequency range upper limit value τ is preferably 1/(Dx2) 〆 or less from the viewpoint of processing suitability. Among them, D ❹ Ο (/zm) is a resolution of a processing apparatus used for processing a concave-convex shape on a transparent substrate. When the upper limit value τ of the spatial frequency range is exceeded, it is difficult to provide a concave-convex shape on the transparent substrate because the processing reproducibility is difficult. The smaller the spatial frequency range upper limit value T is, the better the process reproducibility is, and the space frequency range upper limit value T is preferably 1/(Dx4) # ^ or less, more preferably xe) / /!!! 1 or less. When the spatial frequency range upper limit value τ is equal to or lower than 伽6)#mi, it is possible to use a highly productive laser scanning device to form a concavo-convex shape on a transparent substrate with good process reproducibility. On the other hand, the larger the upper limit value τ of the empty duty ratio range, the more the second pattern having a finer structure with two cycles is formed, and thus the process reproducibility is easily made difficult. The processing apparatus used for processing the uneven shape on the transparent substrate can be a conventionally known device, for example, a laser scanning device or a precision lathe can be used to expose the resist to a concave-convex shape using a laser scanning device. The point diameter corresponds to the resolution J) ( # m). In addition, when a precision lathe using a 4, sub-spherical ball mill is formed into a concave-convex shape, a ball mill having an end radius of r (am) is formed into a concave-convex shape, and the flat surface of each convex front surface and each position are added. When the angle formed by the face is within the radius (10 degrees behind the concave), 2xrKsin(0+18Ox;r)) corresponds to the solution being, for example, πι). Further, according to the second pattern, the mold weight D having the uneven surface is formed (the concave-convex surface is transferred onto the transparent substrate, whereby the concave and convex surfaces are processed and the mold is used to process the concave-convex shape on the transparent substrate. When the processing device is 7-shaped, the processing device used for the mold having the uneven surface. 糸' is produced 33 ^^19〇〇201042295 Furthermore, in the high-pass waver, in order to impart a suitable fine concave surface to the transparent substrate The length 'long period length 1/B of the shape 'belonging to the reciprocal of the lower limit value B of the empty_rate range B is the intermediate period length in the middle of the shortest period length 1/Τ of the reciprocal of the null_rate_upper limit value τ (1:Β +1/Τ)/2 is preferably in the range of 6"m or more 33&quot;. Ma 1 ηPer 1 〇d is equivalent to the _ length corresponding to the upper limit of the spatial frequency range given by the high-pass chopper (10) ) &quot; and the average value of the period length (10)) of the corresponding empty _ rate range lower limit B. When the pool (10) exceeds 33/zm, it is difficult to form a spatial frequency in the processing of the concave-convex shape on the transparent substrate. Lower than (U0W's fine concave and convex surface shape, and the beneficial method effectively shows anti-glare. When MainPe When the riQd is less than one time, in the processing of the uneven shape on the transparent substrate, it is possible to form a spatial frequency, and the fine uneven surface shape of 0.011, as a result, may be applied to a fine image display device (for example) When the obtained anti-glare film is disposed on the surface of the high-definition image display device, flicker is generated. As described above, the main purpose of using a filter such as a high-pass filter or a band-pass filter is to finally process the concave-convex shape. In the pattern (for example, the second, third, or fourth pattern to be described later), the low spatial frequency component composed of the spatial frequency lower than the lower limit B of the spatial frequency range or B is removed or reduced. (3) Production of the second pattern Next, the information of the spatial frequency by which the operation corresponding to the high-pass filter or the band-pass filter is performed is converted into a quadratic array by inverse discrete Fourier transform (IDft), and the second pattern is generated according to the second element arrangement. As for the IDFT algorithm, as in the case of the aforementioned DFT, the commonly known 321900 34 201042295 algorithm can be used. The second pattern can have 8-bit, 16-bit, 32-bit, Various bit depths such as 64-bit elements. Fig. 16 is an enlarged view showing an example of a second pattern created by applying a band pass filter to the first pattern shown in Fig. 1. Fig. 16 and Fig. 1 Similarly, the image data of 12800 dpi. The lower limit value B of the spatial frequency range and the upper limit value T of the spatial frequency range given by the band pass filter are 0.043^1^, 〇.059/zm-i, respectively, and 2χ( τ_Β)/(τ+Β) is 〇.3〇. When the second pattern is generated, conversion substitution may be performed so that the maximum value and the minimum value of the second element arrangement obtained by IDFT are respectively corresponding to the generation 2 The maximum/minimum value specified by the bit depth of the pattern. In other words, when the minimum value of the quadratic array element calculated by the resistance is set to j, and the minimum value is set to Imin, when the value of the element is converted into a pattern of 8 bits (〇_255), each of the patterns is substituted. The value of the pixel is calculated as + (Imax - Imm). The image data of the above-mentioned Fig. 16 is obtained by the above conversion. 〇 The above describes an example of a method of producing a second pattern by using a high-pass filter or a band pass filter of DFT, but the second pattern may be produced by the above method. For example, it is also possible to use a plate with a π-opening as a ^^1 pattern to perform Fourier transform on the plate by optical means, thereby obtaining 4 cases. Specifically, it is prepared to make the two-lens optical lens system through the two lenses, and the first ® case is placed in the first focus (four). At this time, the spatial frequency distribution of the image can be obtained from the focus of the two lenses (in the 'well' plane. In the Fourier plane, the penetration rate of the shoulder is spatially changed, so that the desired range of empty space can be obtained. 321900 35 201042295 Frequency penetration. The filtered output image is obtained from the focal plane on the opposite side of the Fourier plane of the second lens. For example, when the plate is configured such that only the center of the opening penetrates the Fourier face, only Obtaining a low spatial frequency component of the image as an output image. Conversely, when the center of the opening is shielded from light, only a high spatial frequency component is obtained as an output image. Therefore, by shielding the central portion and its peripheral portion from the Fourier surface, At the focal plane of the second lens, a second pattern having a desired spatial frequency distribution is obtained. (Conversion to Discretized Information and Creation of Third Pattern) The present invention is preferably the second obtained in the above manner. The pattern is converted into a pattern of discretized information. By making a pattern that is converted into discretized information, it is possible to create an additive suitable for processing the concave and convex shape. The pattern of the apparatus. For example, when the step of processing the uneven shape on a transparent substrate to be described later includes using a resist engineering such as a laser scanning device or NC machining (numerical control machining), the steps are used. The pattern is preferably a process of multi-valued by binarization, etc. In particular, when the step of processing the uneven shape on a transparent substrate to be described later includes using a resist process such as a laser scanning device, the second pattern is preferably Converted to information that is discretized in two stages, that is, preferably converted to a binarized pattern. This is due to the fact that the resist pattern is generated depending on whether or not the binary value of the laser is irradiated. By binarizing, images that can be used in laser scanning devices, etc. can be generated. In general, "discrete information" is called digital data, and the information processed on the computer is almost discretized. Information. In the case of discretization 36 321900 201042295, 5, the image data that can be processed on a computer such as a bi f map data, and 128-bit, 64-bit, 32-bit yuan , 16-bit 兀 各种 各种 各种 、 、 、 、 、 、 、 、 、 、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Or, the discretized information conversion with more stages will be used to convert the digital signal to the digital money expressed in less bit depth. For example, the information of the information of the scatter is exemplified by a cosine function in which the discrete function is a continuous function, and an 8-bit integer in which the number of decimal points of the 32-bit material is converted into a number of stages. The obtained high-pass filter or band pass filter and the filter have high continuity, so when a multi-valued pattern is obtained, and the binarized pattern is not used, it is preferably applied or banded under specific conditions. The second pattern is multiplied by the pass filter or the second pattern is multi-valued by a special method. The plurality of materials in the present invention. The heart is suitable for (1) binarization by the threshold method. For the method of binarizing the second pattern obtained by the operation of the band pass filter, the threshold method is preferably used. The 指标 order indicator (brightness value) sets a specific method by which white (or black) is applied to the gray illusion, and the pixel (color) of the value === is binarized. - - Black (or white 322900 37 201042295) The binarization by the second value obtained by the bandpass filter n is the binarization of the spatial frequency range and the lower limit of the spatial frequency range given by the bandpass filter. The upper limit value τ of the spatial frequency range preferably satisfies the following formula: ♦·0. 20&lt;2χ(Τ-Β)/(Τ+β)&lt;〇.8〇...〇) More preferably, the following formula is satisfied (2): 〇· 30^2χ(Τ-β)/(Τ+Β)^〇. 70 &quot;·(2). In the above formula (1) and (2) order 2χ(Τ-Β)/ (Τ+Β) is a numerical value of a range index of the spatial frequency of the second pattern extracted by the band-pass filter, that is, 2χ(Τ-Β)/(Τ+Β) is larger, the second The wider the range of spatial frequencies of the pattern, the smaller the range of the spatial frequency of the second pattern is smaller as 2 χ(τ_Β)/(τ+β). Figure 17 shows 2χ(Τ-β)/( The value of Τ + β) and the threshold value method are used to calculate the relationship between the maximum value of the autocorrelation coefficient obtained by binarizing the second pattern of the band-passing H. The maximum value of the autocorrelation coefficient is the maximum of the autocorrelation coefficient. The value of the autocorrelation coefficient is based on Wiener-Khinchin theorem. After the second pattern is converted into a quadratic element arrangement in the spatial frequency domain by quadratic Fourier transform, the coefficients of each element are squared, and the coefficient is obtained by inverse Fourier transform. The maximum value of the autocorrelation coefficient is displayed. The value of the self-phase relationship strength of the parallel movement itself is an index. Therefore, the higher the maximum value of the autocorrelation coefficient, the more easily the similar concave-convex shape is continuous in the uneven shape processed on the transparent substrate, although the concave-convex shape The period length is short, and it is easy to feel a specific periodicity when visually observed. The maximum value of the autocorrelation coefficient shown in Fig. 17 is the maximum value of the autocorrelation coefficient in the range of the moving distance of 20/zm or more. 321900 38 201042295 _ As shown in Fig. 17, it can be seen that the maximum value of the autocorrelation coefficient is extremely increased when 2χ(Τ-Β)/(Τ+Β) is 0.20 or less, and 2χ(τ_Β)/ '(10)) is above UG. At the time of 'maintaining a relatively low value. Therefore, in order to form a concave-convex shape that does not feel a specific periodicity on the transparent substrate, the recording of 2Χ(Τ-Β)/(Τ+Β) is preferably greater than G 2 ( ), more preferably G.3 () or more. 〇 On the other hand, as a result of the research, it is known that the second pattern has a wider range of spatial frequencies, and the second pattern is binarized by a threshold method by adding a plurality of components having different cycle lengths. It is easy to generate isolated small dots. Figure 18 shows the value of 2x(tb)/(丁+b), which is obtained by binarizing the second pattern obtained by the bandpass filter by the threshold method. The isolated small dots of the pattern produce a graph of the number. In the figure, "generating number" means that the center space frequency is set to 0.05 in the image obtained by binarizing the second pattern by the threshold method; απΓΐ, the uneven shape is processed on the transparent substrate. When the resolution D of the processing device (laser scanning device or the like) used at the time is 2 Am, the length of the continuous exposure range becomes the number of generated small dots having a resolution of 2×D//m or less. The existence of such isolated dots with a small number of consecutive elements hinders sufficient process reproducibility. In addition, the intermediate space frequency refers to the reciprocal of the above MainPeriod. As shown in Fig. 18, it can be seen that the larger the value of 2x(TB)/(T+B) is in the range of 2x(TB)/(T+B)4 〇8〇, the isolated small point There is a tendency for the number to be increased rapidly. On the other hand, when '2x(TB)/(t+b)4 〇^ or less, the number of isolated small dots is maintained at a relatively low value. The value of 2x(T~B;)/(t+b) is preferably not less than 0.80, more preferably 0.70 or less, because the processing reproducibility of the uneven shape is good. 321900 39 201042295 It is known that the spatial frequency range lower limit value B and the ★ gate frequency range upper limit value T preferably satisfy the above formula in order to form a concave-convex shape in which the process reproducibility is good and the specific periodicity is not perceived. (1), more preferably, the above formula (2) is satisfied. By using the band pass filter that satisfies the above formula (1) and more preferably satisfies the above formula (2), it is not necessary to perform the reduction processing of the isolated small dots by the Monte Carlo method described later. By performing the value-by-value method, the pattern with good process reproducibility can be obtained. Further, the spatial frequency distribution from the spatial frequency range lower limit value B to the spatial frequency range upper limit value T after the band pass filter is applied may be applied in the same manner as the spatial frequency distribution of the j-th pattern. Increase or decrease the processing so that the amplitude intensity becomes constant. By smoothly varying the amplitude intensity of the spatial frequency, a smoother concave-convex shape can be obtained. Here, in the resist engineering, when the ratio of the exposed regions is in the range of 30% to 7%, the suitability for money etching or development is good. It is preferably in the range of side to _. In order to make the pattern in which the second pattern is binarized by the threshold method satisfy the above condition, the threshold value must be set. This can be achieved by solving the (four) rate distribution for each pixel of the pattern of the younger brother 2, and using the value of the cumulative degree as the target ratio as a threshold value and binarizing. Specifically, it is as follows, for example. Figure 19 shows the slanting flute·| c. The image data shown in Fig. 16 is obtained by analyzing the frequency map of the gray scale index; (ρ β ^ β + seven dogs 13⁄4 days; f shows the cumulative rate Distribution map. From the accumulation rate shown in Figure 19, the eclipse is pi 1 , and the number of pixels below the gray scale index of 125 is 40%. Figure 20: The old mill', the cumulative rate distribution As a result of the analysis, the gray scale index 125 is used as the threshold value, and the face erosion value is calculated and the image data shown in Fig. 16 is binarized by the threshold 321900 40 201042295 value method. In the second pattern shown in the binarization, the filling ratio in the black portion (corresponding to the exposure region) is 40% by setting the gray scale index 125 to the threshold value. The 21st image display will be The 20th figure shows the spatial frequency distribution obtained by converting the binary element obtained by the binarized second pattern into a spatial frequency band by fast Fourier transform (FFT). As shown in Fig. 21, the The binarized second pattern has a low spatial frequency component that reduces the occurrence of flicker, and also reduces Since the spatial frequency distribution of the high spatial frequency component with reduced reproducibility is obtained, when the uneven shape is processed on the transparent substrate in accordance with the second pattern of the binarization shown in Fig. 20, excellent anti-glare performance can be expected. (2) Multi-valued method by binarization using a second pattern obtained by using a high-pass filter or a band-pass filter by multi-valued dithering Preferably, a dithering method is employed. In this case, the concave and convex shape is processed on the Q transparent substrate according to the third pattern obtained by the dithering method for the second pattern. The dithering method is used to convert the analog data into Digital data, or one of the methods of converting the bit rate or bit depth of digital data, can be positioned as one of the digital signal processing methods. Irregular signals are known by imparting a square probability density function or a triangular probability density function. 'There are various methods such as a method of reducing the deviation of the error when the signal is discretized, or a dithering method, an error diffusion method, etc. Among them, in the present invention, it is not easy to cause coloring due to ripple or interference. The repeated pattern of the cause, and the effect of suppressing the variation of the local average brightness can be expected, and further, by the optimization of the matrix, it is possible to suppress the occurrence of 41 321900 201042295, so it is preferable to make the _ diffusion] = the method of the dispersion method The feature is to make the enumeration generated in the discretization to convert the 8-bit 125 dragon ρ to the black-and-white bitmap image of the current gray scale to a 1-bit algorithm. For example, the Lai diffusion method The performance of the 'production pixel' (pixel) has a bright sigh. The pixel is converted to a 1-bit 2 gray-scale black and white bit map, 'must be converted to appear as an 8-bit The brightness value is 255 white, or appears as the black value of the brightness value 〇. The material system is converted to a closer value. Since the pixel with a 255 redundancy value of 64 is closer to 〇, it is converted to: a value of 0 (ie, black). At this time, since the conversion is compared with the image of the 8-bit gray scale, 'in the converted image, the luminance value error dispersion method means that the sum of the luminances of the pixels is reduced by 64. The miscalculation is based on the weight of the pre-determined decision to change the brightness value of the surrounding pixels to offset the resulting -64 luminance value error. The binarization is performed by repeating the above operations for all the pixels. As far as the weighting method is concerned, several matrices which are preferable in the field of image processing are known. For example, Floyd &amp;Steinberg; Jarvis, Judis and Nink; Stucki; Burks; Stevenson &amp;Arche; Sierra 3 Line; Sierra 2 Line; Sierra Filter Lite and other preferred weighted matrices. Fig. 22 is a diagram showing a diffusion weight map of the conversion error in the above exemplary matrix. As an example of a matrix, as illustrated by the example of Floyd &amp; Steinberg, pixel A is the pixel of the conversion object. As in the above example, 42 321900 201042295 because the conversion of pixel A (converted from brightness value 64 to 0), when the converted image will produce -64 brightness value error 'change by 7: 1 : 5 : 3 The brightness value of the adjacent 4 pixels is used to offset the brightness value error. That is, - the luminance values of the adjacent four pixels are increased by (7/16) χ 64, (1/16) x 64, (5/16) x 64, (3/16) x 64, respectively. Further, the pixel B of the hatched line of the hatched line indicates the pixel on which the binarization processing is completed. Further, the pixel described as "〇" is a pixel in which the weight of the error diffusion is not zero. Figs. 23 to 30 show an example of a third pattern obtained by applying the error diffusion method based on the matrix shown in Fig. 22 to the second pattern obtained by applying the band pass filter. The third pattern shown in Figs. 23 to 30 is created by the second pattern shown in Fig. 31 obtained by setting the gray scale image of the 8-bit gray scale, and is composed of a black and white image of 1 bit. The composition of the information. More specifically, the third pattern shown in FIGS. 23 to 30 is expressed at 12800 dpi with respect to a pseudo-random number line having a value of 〇 to 1 generated by the random number generator subtraction algorithm of Knuth. The first pattern of the octet image of the octet of the Q24匪4Q square, the lower limit value B of the spatial frequency range and the upper limit value T of the spatial frequency range are: B= l/MainPeriod*(l+ BandWidth/l〇〇) ..·(〇T=l/MainPeriod*(l-BandWidth/l〇〇)...(II) ' By using the error diffusion method of various matrices, the shape of the peak in the frequency domain is used. The second pattern shown in Fig. 31 obtained by the rectangular band pass filter is binarized, and is set to MainPeriod = 12 (in m) and BandWidth = 20 (%). In addition, in order to easily grasp the characteristics of the image, Figures 23 to 30 show the enlargement of a portion of the generated third pattern. 321900 43 201042295 Figure 32 compares binarization by various moment error diffusion methods shown in Figs. 23 to 3() A plot of the spatial frequency distribution of the third pattern after the third pattern and the spatial frequency distribution of the pattern after the centroid threshold method. If not shown in the figure, When the value method is binarized, the resulting pattern shows the amplitude intensity in the low space Γ = high. On the other hand, the error diffusion method is used to reduce the number. Therefore, the use of the error diffusion method can be used. = anti-glare treatment and anti-glare film for suppressing flickering. In addition, the pattern of == valued in Fig. 32 is the second pattern shown in Fig. 31, and the intermediate value of 1 word is used as the idle value. The value of the intermediate value m is set to white, and the value below the intermediate value of 127 is set to black, by the author. J clothes are so 'by the miscalculation of the error diffusion matrix known in the general drawing shown in FIG. Method; Uchida __ _ ' - Use, to obtain a third pattern with good spatial frequency characteristics. However, the method of making a third pattern that is binarized according to the error diffusion matrix will produce pixels of the same color and Most isolated pixels that do not exist in a certain number of groups (hereinafter referred to as "isolated points", the isolation = although similar to the above-mentioned "isolated small dots" conceptually, but as described later = meaning is not the same) The tendency to "isolated point" means existence A block (island) consisting of 16 or less consecutive pixels of the same color (pixels) in the 槿 赤. When the third pattern has many isolated points, there may be the following cases. There may be a block with one side of 4 pixels or less. (Island) requires extremely high precision for the embossing process based on the pattern such as the Up method or the wet process or the lathe processing, which hinders the reproducibility. 321900 201042295 The 33rd picture will be A graph comparing the number of generated isolated points generated by the third diffusion pattern by the error diffusion method known as the error diffusion matrix, and the comparison with the case where the threshold method is used. The numerical value shown in the figure shows the ratio of the number of isolated points generated when the pattern is binarized by the threshold method. As shown in Figure 33, even the Stonyson &amp; Arche matrix of the least generated point is produced 27 times more than the devaluation method, and when using Floyd & Steinberg's matrix, it also reaches 155: The inventors discovered after careful study that it is preferable to use a matrix that does not contain a short-distance error diffusion as an error diffusion matrix in order to suppress the number of generated points. Figures 34 to 42 show an example of an error diffusion matrix with diffusion distances of 2, 3, 4, 5, 6, 3+4, 4+5, and 3+4+5, respectively. These figures show the weights of the spread of the conversion error as in Fig. 22. The diffusion distance refers to the Sanskrit value error generated by the conversion of the white or zero of the pixel (pixel A) of the conversion target. The distance between the pixel that changes the luminance value and the pixel of the conversion pair Q image is 'diffusion distance 1'. The pixel whose brightness value is changed is adjacent to the pixel of the conversion target (refer to Fig. 34). "Diffusion distance 2" refers to a pixel whose pixel is changed from the pixel to be converted as a pixel whose luminance value is changed (j' pixels are interposed between the pixel whose luminance value is changed and the pixel of the conversion target) (refer to 35)). The diffusion distance of 3 or more is also the same. The "matrix of diffusion distance 3 + 4" in Fig. 40 refers to the combination of "matrix of diffusion distance 3" in Fig. 36 and "matrix of diffusion distance 4" in Fig. 37. The same applies to Figures 41 and 42. Figs. 43 to 51 respectively show an example of a third pattern obtained by the error diffusion method using the matrix shown in Figs. 34 to 45 3219 〇〇 201042295 42 . The second pattern used is the pattern shown in Fig. 31. Further, in order to easily grasp the characteristics of the image, Figs. 43 to 51 are shown enlarged by a part of the generated third pattern. Furthermore, in the 52nd figure, the number of isolated points generated when the third pattern is created by the error diffusion method according to the error diffusion matrix shown in FIGS. 34 to 42 is compared with the case where the threshold method is used. Picture. The numerical values shown show the ratio of the number of isolated points generated when a pattern that is binarized using the threshold method is produced. As shown in Fig. 52, when the error diffusion distance is 1, compared with the threshold method, an isolated point that reaches 247 times is generated, but as the error diffusion distance is set to be large, the number is generated. cut back. In particular, when the error spread distance exceeds 1, the number of isolated points will decrease sharply. As can be seen from the results shown in FIG. 52, in order to more effectively suppress the generation of isolated points, the error diffusion distance is preferably more than K, that is, the conversion error is spread over a range of more than 1 pixel, and the following is the same, more preferably 2 or more, more preferably 3 or more. Further, although the upper limit of the error diffusion distance is not particularly limited, it is, for example, 6 or less. Among them, a pattern produced by using a matrix having an error diffusion distance of 3 or more has a wide processing range, and good processing suitability can be expected. Fig. 53 is a binarization of the spatial frequency distribution of the third pattern of the 43th to 51st graphs binarized by the error diffusion method of the error diffusion matrix shown in Figs. 34 to 42 and the threshold value method. A comparison of the spatial frequency distribution of the pattern. The pattern that has been binarized by the threshold method is the same as that of Fig. 32. It can be seen from Fig. 53 that the vibration of the low spatial frequency component can be reduced compared to the threshold method, regardless of the use of any of the error diffusion matrices. (production of the fourth pattern)

藉閾值法或遞色法轉換為離散化成2階段之資訊(二 值化過)的圖案係有包含多數孤立點之情形。此時,亦可對 第3圖案等之經二值化的圖案,復施行使孤立點減少之操 作,以製作第4圓案。此時,依據所得之第4圖案在透明 基材上加凹凸形狀。藉由施行使孤立點減少之操作,即 可加工再躲更佳地在透㈣材上形成㈣雜。用於第 4圖案之製作之經二值化的圖案亦可為藉閾值法所二值化 過的圖案’亦可騎誤差雜法等遞色法所二值化過的圖 案。然而,如上所述,藉由運用滿足上述式(1)、更佳為滿 足上述式(2)之帶通濾波器而製作第2圖案時,則不一定要 進行上述孤立點的減少處理。 就使上述孤立點減少之操作而言,較佳為利用以下手 法:藉由蒙地卡羅法使存在於第3圖案等經二值化之圖案 之屬純立點之黑或白之像素移動至同色之塊(島)的手 法。蒙地卡羅法係依據亂數進行模擬之手法的總稱。就孤 立點之處理方法而言,單純地削除孤立之點的方法最為單 純。然而,在影像處理中利用該單純之方法時,會有平均 免度=局部地變化之情形,這會造成空間頻率成分之增 大。豕地卡料係在不會局部地對平均亮度減影響之情 开y下處理孤立點之有效手法。以下,參照第Μ圖說明利 用蒙地卡羅法進行之孤立點的處理方法之具體例。 首先,判定對象像素(畫素)是否為「孤立點」。在此說 321900 47 201042295 明之具體例中的「孤立點」係與上述之定義不同,而係〜 義為周圍之最接近之8像素中之位於與對象像素相同之^ 段(同色)的像素之個數為2個以下者。例如,對象像素陪 黑色時,若最接近之8像素巾之黑色像素的個數為2個為 下則判定為孤立點。有關白色像素亦同。接著,、 像素移動至空著的最接近之8像素中之心 接近5二圖(a)中,若對象像素為黑色時,因最 象像素係移動1像素為黑色’故判定為孤立點,_ 像素。在第54 迎之^像素中之以亂數選擇t 之8像素中之2 :去若對象像素為黑色時,因最接近 係移動至空著的最捲,黑色,故判定為孤立點,對象像素 在第54圖⑷中,接+近之6像素中之以亂數選擇之像素。 素中之3像素為里:對,素為黑色時,因最接近之8像 移動。 “、、邑,故不判定為孤立點,不使對象像素 藉由反覆造、 有效地減少孤立仃上述之以蒙地卡羅法施行之操作,則可 次左右操作時,點。,以蒙地卡羅法反覆進行例如Μ至60 間頻率成分=可獲得以下圖案’即穿透帶通濾波器之空 素之間時幾+門頻率值換算為週期長度在3像素至6像 圖案。 不會檢測出孤立,可期待良好之加工適性的 55 第4圖案的t)至⑴係顯示蒙地卡羅法運用次數所導致 之圖。第55圖(a)至(f)所示之圖案係對第 321900 48 201042295 0、Π:,〇第J圖案(擴散距離5),分別運用蒙地卡羅法 56 1 〇及6〇次而處理孤立點所得者。此外,第 Γ=卡羅法運用次數與孤立點產生個數的關係 二示之孤立點產生個數比係與第33圖及第52 值化Β 由第31圖所示之第2圖案製作藉閾值法二 匕之圖案時產生之孤立點的產生個數之比。如此,藉The pattern that is converted into two-stage information (binarized) by the threshold method or the dither method has a situation in which many isolated points are included. At this time, the operation of reducing the isolated point can be repeated for the binarized pattern of the third pattern or the like to create the fourth round. At this time, a concave-convex shape was added to the transparent substrate in accordance with the obtained fourth pattern. By exercising the operation of reducing the isolated point, it is possible to process and then hide to form (four) impurities on the (four) material. The binarized pattern used for the production of the fourth pattern may also be a pattern that has been binarized by the threshold method, or may be binarized by a dithering method such as an error hybrid method. However, as described above, when the second pattern is created by using the band pass filter satisfying the above formula (1) and more preferably the above formula (2), the above-described isolated point reduction processing is not necessarily performed. In order to reduce the above-mentioned isolated point, it is preferable to use a method of moving a black or white pixel existing in a purely raised point of a binarized pattern such as a third pattern by Monte Carlo method. The method of the block of the same color (island). The Monte Carlo method is a general term for the simulation method based on random numbers. As far as the treatment of isolated points is concerned, the method of simply removing the isolated points is the most pure. However, when this simple method is used in image processing, there is a case where the average degree of exemption = local change, which causes an increase in the spatial frequency component. The squatting card is an effective way to deal with isolated points without locally affecting the average brightness. Hereinafter, a specific example of a method of processing an isolated point using the Monte Carlo method will be described with reference to the drawings. First, it is determined whether or not the target pixel (pixel) is an "isolated point". Here, the "isolated point" in the specific example of 321900 47 201042295 is different from the above definition, and is defined as the pixel of the same segment (the same color) as the target pixel among the nearest 8 pixels. The number is two or less. For example, when the target pixel is black, if the number of black pixels of the closest 8-pixel towel is two, it is determined to be an isolated point. The same is true for white pixels. Then, the pixel moves to the left of the nearest 8 pixels, and the heart is close to 5 (a). If the target pixel is black, it is determined to be an isolated point because the pixel is shifted by 1 pixel. _ pixels. In the 54th welcoming pixel, 2 of the 8 pixels of t is selected by random number: When the target pixel is black, the closest is moved to the empty most volume, black, so it is determined to be an isolated point, the object The pixel is connected to the pixel selected by the random number in the nearest 6 pixels in Fig. 54 (4). The 3 pixels in the prime are: in the right, when the prime is black, the closest image moves. ",, 邑, so it is not judged to be an isolated point, and the target pixel is not created by the reverse, and the operation of the Monte Carlo method is effectively reduced. The geo-carlo method repeatedly performs, for example, Μ to 60 frequency components = the following pattern can be obtained 'that is, when the gap between the vacancies of the band-pass filter is passed, the + gate frequency value is converted into a period of 3 pixels to 6 images. It is detected that the isolation is good, and the processing suitability can be expected. 55) The fourth pattern t) to (1) shows the graph caused by the number of applications of the Monte Carlo method. The pattern shown in Fig. 55 (a) to (f) For the 321900s, 2010, 2010, 2,295, 0, Π:, 〇 J pattern (diffusion distance 5), the Monte Carlo method is used to treat the isolated points by using 56 1 〇 and 6 分别 respectively. In addition, the third 卡罗 = Carlo method The relationship between the number of times and the number of isolated points is shown by the number of isolated points. The number of points is compared with the 33rd and 52nd values. The second pattern shown in Fig. 31 is used to create the pattern of the threshold method. The ratio of the number of isolated points. So, borrow

Ο =反覆運用蒙地卡羅法,即可製作可使孤立點減少且可期 待更佳之加工適性的第4圖案。 别述第4圏案之製作_係採用將帶通濾、波器運用在 弟m案而製作者作為第2圖案,但即使採用運用高通遽 通器而i作之第2圖案時,亦與帶通遽波器之情形同樣 、藉由一值化及孤立點的減少處理,減少低空間頻率成 分,而可獲得加工適性佳之第4圖案。 ,以上所示之在透明基材上加工凹凸形狀所用之圖案的 製作方法巾’將遞色法(其巾為誤錢散法)運用在第2圖 案而製作第3圖案,將蒙地卡羅法運用在第3圖案而製作 第4圖案的方法,係在製作第2圖案時,即使不運用滿足 上述式(1)之帶通濾波器,亦可獲得減少低空間頻率成分及 孤立點之圖案,因此該方法係為較佳實施形態之一。 (依據圖案進行之凹凸形狀的加工) 在本步驟中,依據如上述方式所得之圖案的任一者(第 2圖案或將該第2圖案藉閾值法轉換為離散化成2階段之 資訊(二值化過)的圖案、第3圖案或第4圖案)在透明基材 上加工凹凸形狀,並對透明基材賦予防眩性。具體而古, 321900 49 201042295 藉由例如以下之方法,依據圖案加工凹凸形狀。在透明基 材上加工凹凸形狀時所用之加工裝置亦可為以往公知之裝 置,可使用例如雷射掃描裝置、雷射加工裝置、精密車床 等。就雷射加工裝置而言,可使用例如雷射標記器、雷射 雕刻機、雷射加工機等市售的各種加工裝置。 在透明基材上進行之凹凸形狀的加工較佳為利用依據 上述圖案所具有之離散化的資訊進行加工之加工裝置來進 行。就依據離散化的資訊進行加工之加工裝置而言’具體 來說可列舉精密車床、自動雕刻裝置、雷射加工裝置、雷 射掃描裝置等各種NC加工裝置。就加工裝置而言,在使用 例如雷射掃描裝置等時,離散化之資訊較佳為離散化成2 階段之資訊。藉由上述裝置利用離散化成2階段之二次元 排列加工凹凸形狀時,只要如下方式進行即可。首先,依 據亮度資訊將圖案轉換為二次元排列g[x, y]。其中,X, y係表示二次元排列之各要素所示之位置座標。接著,確 認儲存在離散化成2階段之二次元排列g[x,y]的所有要 素之值。在此,藉由離散化成2階段之操作,假設在二次 元排列儲存有0或1。在凹凸形狀之加工中,例如儲存於 對應特定位置x = al、y = bl之二次元排列之要素g[al ’ bl]的值為1時,在加工裝置中將雷射照射在對應al、bl 之座標,以形成凹部。當儲存之值為〇時,則不對對應之 座標照射雷射。藉由對所有要素反覆進行該作業,即可從 圖案獲得凹凸形狀。當雷射具有可在加工對象形成凹部之 強度時,藉由雷射之照射形成有凹部。當雷射強度較弱時, 50 321900 201042295 亦可藉由雷射掃描使阻劑感光,在將_顯影後,利用韻 刻形成凹部,藉此加工凹凸形狀。 此外,虽用於凹凸加工之圖案由離散化之資訊的二次 元排列所構成時,在依雜存於該二:欠元制之值進行之 凹凸加工中’可依據加工裝置之特性轉換該等值,而用於 加工β例如’在雷射加1機或雷射雕刻機時,亦可視為雷 射照射次數。在精密車床之_控制刀具深度的加工裝置 時,亦可轉換賴應於;7具推人量之f。以下,以使用離 散化成8位7L灰階之二次元排列的情形為例具體說明值之 轉換。此時’假設二次元排列g[x,y]為0至255之值。 防眩性之強度係可依據凹凸形狀之高低差進行控制。轉換 成對應刀具推人量之量的公式係由所需之高低差、儲存在 二次το排列g[x’ y]之值的最大值及最小值所決定。欲將 高低差設為1,時,若將從座標χ、y之平坦的加工對象 之表面异起的刀具推入量設為z, 則藉由 Z=^g([x’ y]-最小值)/(最大值_最小值)χ高低差 计异出’以決定刀具推入量ζ。在此說明之具體例中, 藉由 Z = g([x, y]-〇)/(255-〇)xi^m 計算出刀具推入量z。亦即,當g[x,y]之值為255 時’將刀具推入量Z設為1_,當g[x,y]之值為0時, 將刀具推人量2設$ 〇_。藉由對儲存在二次元排列g[x, y]之所有要素進彳述步驟,而形成凹凸形狀。依據雷射 51 321900 201042295 照射次數控制深度時,只要事前確認照射次數與加工深度 之關係,以成為對應前述z之值的方式決定照射次數即可= 如上所述,使圖案所具有之資訊轉換為透明基材之刻 入深度的-貝訊而反映成凹凸形狀,或依據圖案所具有之資 訊形成凹。P,或決定是否形成凹部,藉此加工凹凸形狀。 此外,由加工裝置之解析度的限制而使高低差變得過大 時,亦可藉由對整面進行蝕刻而在加工後減小高低差。此 外,就在透明基材形成凹凸形狀之方法而言,可為直接對 透明基材施行前述加工之方法,但較佳為可採用以下方 法·在以前述方法將依據圖案之凹凸形狀形成在模具後, 藉由將模具之凹凸形狀轉印在透明基材上,而將 之凹凸形狀形成在透明基材上。 據圖案 之構件’ βρ 4主ϊι丨ΚΗ _也丨•…Ο = Repeat the Monte Carlo method to create a fourth pattern that reduces the number of isolated points and can expect better processing. In addition, the production of the fourth case is based on the use of the bandpass filter and the wave device in the case of the younger m, and the producer uses the second pattern. However, even if the second pattern is used by using the high-pass passer, In the case of the band pass chopper, the fourth pattern is obtained with good processing suitability by reducing the low spatial frequency components by the binarization and the reduction of the isolated points. The method for producing a pattern for processing a concave-convex shape on a transparent substrate as described above is applied to a second pattern by a dithering method (the towel is a mistaken method), and a Monte Carlo is produced. In the method of producing the fourth pattern by using the third pattern, when the second pattern is produced, the pattern of the low spatial frequency component and the isolated point can be obtained without using the band pass filter that satisfies the above formula (1). Therefore, the method is one of the preferred embodiments. (Processing of the concavo-convex shape according to the pattern) In this step, according to any of the patterns obtained as described above (the second pattern or the second pattern is converted into a two-stage information by the threshold method (two values) The patterned pattern, the third pattern, or the fourth pattern) is formed into a concave-convex shape on a transparent substrate, and imparts anti-glare properties to the transparent substrate. Concretely, 321900 49 201042295 The uneven shape is processed in accordance with the pattern by, for example, the following method. The processing device used for processing the uneven shape on the transparent substrate may be a conventionally known device, and for example, a laser scanning device, a laser processing device, a precision lathe, or the like can be used. As the laser processing apparatus, various processing apparatuses such as a laser marker, a laser engraving machine, and a laser processing machine can be used. The processing of the concavo-convex shape on the transparent substrate is preferably carried out by a processing apparatus that performs processing in accordance with the discretized information of the pattern. The processing apparatus for processing based on the discretized information is specifically a variety of NC processing apparatuses such as a precision lathe, an automatic engraving apparatus, a laser processing apparatus, and a laser scanning apparatus. In the case of a processing device, when using, for example, a laser scanning device, the discretization information is preferably discretized into two stages of information. When the concave-convex shape is processed by the above-described apparatus by discretizing into two-stage quadratic elements, it may be carried out as follows. First, the pattern is converted into a quadratic arrangement g[x, y] according to the brightness information. Here, X and y represent position coordinates indicated by each element of the second element array. Next, it is confirmed that the values of all the elements stored in the two-dimensional arrangement g[x, y] discretized into two stages are confirmed. Here, by discretizing into a two-stage operation, it is assumed that 0 or 1 is stored in the secondary element arrangement. In the processing of the concavo-convex shape, for example, when the value of the element g[al ' bl] stored in the second element corresponding to the specific position x = al, y = bl is 1, the laser is irradiated to the corresponding al in the processing apparatus. The coordinates of bl to form a recess. When the stored value is 〇, the corresponding coordinates are not irradiated to the laser. By repeating this operation for all the elements, the concave and convex shape can be obtained from the pattern. When the laser has an intensity capable of forming a concave portion in the object to be processed, a concave portion is formed by irradiation of the laser. When the laser intensity is weak, 50 321900 201042295 can also be used to sensitize the resist by laser scanning, and after the development, the concave portion is formed by rhyme, thereby processing the concave and convex shape. Further, when the pattern for the concavo-convex processing is composed of the second-element arrangement of the discretized information, the concavo-convex processing which is performed in accordance with the value of the two-dimensional system can be converted according to the characteristics of the processing device. The value, which is used to process β, for example, 'on a laser plus 1 machine or a laser engraving machine, can also be regarded as the number of laser shots. In the precision lathe _ control tool depth processing device, it can also be converted to; 7 pushes the amount of f. Hereinafter, the conversion of the values will be specifically described by taking the case of using the two-dimensional arrangement of the 8-bit 7L gray scales. At this time, it is assumed that the secondary element arrangement g[x, y] is a value of 0 to 255. The strength of the anti-glare property can be controlled according to the height difference of the uneven shape. The formula converted to the amount corresponding to the tool pushing amount is determined by the required height difference and the maximum and minimum values stored in the second το arrangement g[x' y]. When the height difference is set to 1, the tool pushing amount from the surface of the flat object of the coordinate χ and y is set to z, and Z = ^g ([x' y] - minimum Value) / (maximum_minimum) χ high and low difference meter 'to determine the tool push amount ζ. In the specific example described here, the tool pushing amount z is calculated by Z = g([x, y] - 〇) / (255 - 〇) xi^m. That is, when the value of g[x, y] is 255, the tool pushing amount Z is set to 1_, and when the value of g[x, y] is 0, the tool pushing amount 2 is set to $ 〇 _. The concave-convex shape is formed by repeating the steps of all the elements stored in the second element arrangement g[x, y]. When the depth is controlled according to the number of irradiations of the laser 51 321900 201042295, as long as the relationship between the number of times of irradiation and the depth of processing is confirmed in advance, the number of times of irradiation can be determined so as to correspond to the value of z. = The information of the pattern is converted into The transparent substrate is engraved into the depth of the -bein and reflected into the concave-convex shape, or formed into a concave according to the information of the pattern. P, or whether to form a concave portion, thereby processing the concave-convex shape. Further, when the height difference is excessively large due to the limitation of the resolution of the processing apparatus, the height difference can be reduced after the processing by etching the entire surface. Further, in the method of forming the concavo-convex shape of the transparent substrate, the method of directly performing the above-described processing on the transparent substrate may be employed, but it is preferable to adopt the following method: forming the concavo-convex shape according to the pattern in the mold by the aforementioned method Thereafter, the uneven shape of the mold is transferred onto the transparent substrate, and the uneven shape is formed on the transparent substrate. According to the pattern of the component 'βρ 4 main ϊι丨ΚΗ _ also 丨...

一 ^ , Myt -pg 35^ Λγν -t. -w HH Ή- _L I 一〜狀π必双寸逐听基材之表面直接 、又 就透明基材而言,只要是由光學性透明之材料 之橋俾,gp fer枝β丨丨ΪΓΗ 4*、丨... 谓:成 工讨月旨 構件以 等硬 外, 示裴置 » —A ^ , Myt -pg 35^ Λγν -t. -w HH Ή- _L I A ~ π must be double-inch to listen to the surface of the substrate directly, and as far as the transparent substrate, as long as it is made of optically transparent material Bridge 俾, gp fer branch β丨丨ΪΓΗ 4*, 丨 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成

裝置的表面,即可獲得表現有 白濁及閃爍之影像顯示裝置。 于之防眩膜配置在影像 異之防眩性能且有致地抑: 321900 52 201042295 在本發明之透明基材之防眩處理方法及防眩膜之製造 方法中,可精密度更佳且加工再現性更佳地在透明基材上 製造微細凹凸表面形狀,且生產性亦佳,因此較佳為包含 . 以下步驟:依據上述圖案的任一圖案(第2圖案或將該第2 圖案藉閾值法轉換為離散化成2階段之資訊(二值化過)的 圖案、第3圖案或第4圖案)製作具有凹凸面(微細凹凸表 面形狀)之模具,並將所製造之模具的凹凸面轉印在透明基 ❹材上。藉由從模具剝離轉印有凹凸面之透明基材,即可獲 得形成有微細凹凸表面形狀之透明基材(包含防眩膜)。 將模具形狀轉印在透明基材之步驟較佳為利用壓紋法 進行。就麗紋法而言’係例示使用光硬化性樹脂之uv壓紋 法、使用熱可塑性樹脂之熱壓紋法,其中,由生產性之觀 • 點來看,以UV壓紋法為佳。 UV壓紋法係在透明基材之表面形成光硬化性樹脂層, 教將該光硬化性樹脂層推壓在模具之凹凸面同時使之硬 ^化’藉此將模具之凹凸面轉印在光硬化性樹脂層的方法。 具體而言’在透明基材上塗布紫外線硬化性樹脂,並且在 將塗布之紫外線硬化性樹脂密接在模具之凹凸面的狀態 下,從透明基材側照射紫外線並使紫外線硬化性樹脂硬 化,然後從模具將形成有硬化後之紫外線硬化性樹脂層的 遷明基材予以剝離,藉此將模具之形狀轉印在紫外線硬化 性樹脂。 使用UV壓紋法時,就透明基材而言,只要是實質上光 學性透明之薄膜即可,例如可列舉三乙酸纖維素薄膜、聚 53 321900 201042295 輯酸乙二醋薄膜、聚甲基㈣酸甲s|_ 膜、以降冰片烯系化合物作為單體之非晶性環狀S酉旨缚 熱可塑性樹脂之溶劑_薄膜或Μ薄臈料㈣:經等 此外’使用υν壓紋法時之紫外線硬化性樹月旨的種 無特別限定,可使用市售之適宜者。再者,亦可組= 外線硬化性樹脂所適當選擇之光起始劑,而使用亦处、紫 長比紫外線更長之可見光進行硬化的樹脂,具體而:以, 分別單獨使用三羥甲基丙烷三丙烯酸醋、季戊四醇:二 酸醋等多官能丙稀酸醋,或混合使用該等化合物之 上,以及適當地使用混合有職⑽E g〇7(ciba = τ(瑞士)製)、IRGAC腦18价加化學公司(瑞士)製;&quot; Lucnnn TPQ(BASF公司製)等光聚合起始劑者。幻 所構成之透明基材推壓在模 丨树月曰 轉印在透明支持體的方法。就使用凸形狀 而言,只要是實質上透明者,則==透明基材 聚甲基丙稀酸甲醋、聚碳酸酉旨、聚對如可使用 纖維素、以陰」 取對酞酸乙一酯、三乙酸 烴等敎可勉/水片稀系化合物作為單體之非晶性環狀聚烯 二…w生樹脂之溶劑澆鑄薄膜或壓出薄膜等。 ,脂薄膜亦可適當地使用作為用《塗布上述說:之, 堅紋法中之紫外線硬化性樹脂的透明基材。δ (板具之製造方法) 以下,說明可適用於本發明之 + 的製造方法的模呈之“方法。m ^處理方法、防眩膜 之^方▲ $57圖係示意性顯示本發 321900 54 201042295 月之模具製m方法的前半部之較佳—例圖。第57圖係示意 性顯示各步#巾之模具㈣面。本發狀模具製造方法基 本上係包含[1]第1鑛覆步驟、⑵研磨步驟、⑶感光性樹 月曰膜形成步雜、[4]曝光步驟、[5]顯影步驟、[6]第1侧 步驟、[7]感光性樹脂膜剝離步驟、[8]第2鍵覆步驟。以 下’參照第57 ® ’詳細說明本發明之模具製造方法的各步 [i]第1鍍覆步驟 在本發明之模具製造方法中,首先對使用在模具之基 材的表面施以軸或鍍鎳。如此,藉由對模具用基材之表 〇On the surface of the device, an image display device that exhibits turbidity and flicker is obtained. The anti-glare film is disposed in the anti-glare property of the image and is highly effective: 321900 52 201042295 In the anti-glare treatment method and the anti-glare film manufacturing method of the transparent substrate of the present invention, the precision can be better and the processing can be reproduced. More preferably, the fine uneven surface shape is formed on the transparent substrate, and the productivity is also good. Therefore, it is preferably included. The following steps: according to any pattern of the above pattern (the second pattern or the second pattern is thresholded) Converting the pattern into a two-stage information (binarized), the third pattern, or the fourth pattern) to form a mold having a concave-convex surface (fine uneven surface shape), and transferring the uneven surface of the manufactured mold to Transparent base coffin. By peeling off the transparent substrate on which the uneven surface is transferred from the mold, a transparent substrate (including an anti-glare film) having a fine uneven surface shape can be obtained. The step of transferring the shape of the mold to the transparent substrate is preferably carried out by an embossing method. In the case of the ray method, the uv embossing method using a photocurable resin and the thermal embossing method using a thermoplastic resin are exemplified, and from the viewpoint of productivity, a UV embossing method is preferred. The UV embossing method forms a photocurable resin layer on the surface of a transparent substrate, and teaches the photocurable resin layer to be pressed against the uneven surface of the mold while hardening it, thereby transferring the uneven surface of the mold to A method of photocurable resin layer. Specifically, the ultraviolet curable resin is applied to the transparent substrate, and the ultraviolet curable resin to be applied is adhered to the uneven surface of the mold, and ultraviolet rays are irradiated from the transparent substrate side to cure the ultraviolet curable resin, and then The cured substrate on which the cured ultraviolet curable resin layer was formed was peeled off from the mold, whereby the shape of the mold was transferred to the ultraviolet curable resin. When the UV embossing method is used, the transparent substrate may be a film which is substantially optically transparent, and examples thereof include a cellulose triacetate film, a poly 53 321900 201042295 acid vinegar film, and a polymethyl group (four). Acid s|| Membrane, a normous ring-shaped compound having a norbornene-based compound as a monomer, a solvent for a thermoplastic resin, a film or a thin film (4): after the use of the υν embossing method The species of the ultraviolet curability tree is not particularly limited, and those suitable for commercial use can be used. Further, it is also possible to use a photoinitiator which is appropriately selected as an external curable resin, and to use a resin which is also hardened by visible light having a longer violet length than ultraviolet light, specifically: trimethylol alone a polyfunctional acrylic acid vinegar such as propane triacrylate acrylate, pentaerythritol or diacid vinegar, or a mixture of these compounds, and a suitable mixed use (10) E g〇7 (Ciba = τ (Swiss)), IRGAC brain 18 Price plus chemical company (Switzerland); &quot; Lucnnn TPQ (manufactured by BASF) photopolymerization initiator. The transparent substrate formed by the illusion is pressed against the mold. In the case of using a convex shape, as long as it is substantially transparent, == transparent substrate polymethyl methacrylate methyl vinegar, polycarbonate hydrazine, poly-pair such as cellulose can be used, and yin A solvent-cast film, an extruded film, or the like, which is a monomeric amorphous cyclic polyene, such as an ester or a triacetic acid hydrocarbon. The fat film can also be suitably used as a transparent substrate which is coated with the ultraviolet curable resin in the above-mentioned embossing method. δ (Manufacturing method of the board) Hereinafter, the method of the mold which can be applied to the manufacturing method of the present invention is described. The method of m ^ processing, the method of the anti-glare film ▲ $57 is a schematic display of the present invention 321900 54 The preferred part of the first half of the method of mold making in 201042295 is shown in Fig. 57. Fig. 57 is a schematic view showing the mold (4) of each step. The manufacturing method of the hair mold basically includes [1] the first ore cover. Step, (2) polishing step, (3) photosensitive dendritic film formation step, [4] exposure step, [5] development step, [6] first side step, [7] photosensitive resin film peeling step, [8] The second bonding step. The following describes the steps of the mold manufacturing method of the present invention in detail with reference to the 57th ® [i] first plating step. In the mold manufacturing method of the present invention, first, the substrate used in the mold is used. The surface is coated with a shaft or nickel plated. Thus, by the surface of the substrate for the mold

面施以賴或賴,則可使之後的第2鍍覆步財之鑛絡 的密著性或光雜㈣。“卩,如上述之先前技術,在對 鐵等之表面h以鍍絡時,或以噴砂法或珠擊法等在鑛絡表 面形成凹凸後再度施以祕時,表面容㈣粗缝,會產生 細叙龜裂’而難他制模具之表面的凹凸形狀。對此, 首先藉由對基材表面預先施以賴或麟,即可排除上述 月开y這疋由於鍍鋼或鐘鎳之被覆性高且平滑化作 而I:成= 具用基材之微小凹凸或空穴(cavity)等 一&quot;光,睪之表面之故。因該等鍍銅或鍍鎳之特 性’即使在後述之第止 /、、 存在於基材之心、 步驟中施以鍍鉻’亦可排除因 粗严„ 、凹凸或空穴(cavity)所致之鍍鉻表面的 之銅或_之被覆性高,因而減少細微龜裂 就在第1鑛覆步驟中所用之銅或錄而言,除了可為各 321900 55 201042295 個純金屬以外, 合金,因此,太亦可為以銅為主體之合金或 — 思,且Γ鎳,說明書中之「鋼」係包含銅及銅合金之意 分別利用電解=含錦及錄合金之意思。鍵銅或錄錦亦可 通常係採用心::進打,亦可利用無電解鍍覆來進行, 底層表面鍍鎳時’錢覆層過薄,不能完全排除 厚度之上限雖i/因此其厚度較佳為5(um以上。錢覆層 …、極限,但鑑於成太笼老晋 左右為: 形成具製造方法中’就適用於模具用基材之 等。由處理之=二|由成本之觀點來看,可列舉銘、鐵 紹或鐵可分別使用輕量之18為更佳。其中, 體之合金。’、'、、、金屬’除此以夕卜’亦可為以紹或鐵為主 之適告模具用基材之形狀可為在該領域中以往所採用 二平板狀,或圓柱狀或圓筒狀之輥。 行防眩二:製作模具,則有以下優點·_可連續地進 处理,且能以連續之捲筒狀製造防眩膜。 [2 ]研磨步驟 、 鍾’在研磨步驟中,對在上述第1鐵覆步驟中施有 二二^之基板表輯行研磨。經過該步驟,基材表面 =為研磨成接近鏡面之狀態m㈣下仙:為了 ,希望之精密度’大多對作為基材之金屬板或金屬輥 _切削或研削等機械加玉,藉此在基材表面會殘留加工 321900 56 201042295 痕跡’即使在施以鍍銅或鍍鎳之狀態下,亦有殘留該等加 工痕跡之情形,且在經鍍覆之狀態下,表面不一定會完全 成為平滑。亦即,即使對殘留有此種深加工痕跡等的表面 施行後述之步驟,亦會有加工痕跡等之凹凸比在施行各步 驟後形成之凹凸還深之情形,會有殘存加工痕跡等之影響 的可能性’在利用該模具施行防眩處理或製造防眩膜時, 會有對光學特性造成無法預期之影響的情形。第57圖(a) 係示意性顯示對平板狀之模具用基材7的表面在第1鍍覆 步驟中施以鍍銅或鍍鎳(在該步驟中形成之鍍銅或鍍鎳之 層則未圖示)’並進一步經研磨步驟進行鏡面研磨,而具有 表面8的狀態^ ❹ 關於對施有鍍銅或鍍鎳之基材表面進行研磨的方法而 § ’並無特別限制’可使用機械研磨法、電解研磨法、化 學研磨法之任一方法。就機械研磨法而言,例示有超精加 工法、拋光(laPPing)法、流體研磨法、擦光(buffing)研 磨法等°研磨後之表面粗糙度之依據JIS B 0601之規定的 中“線平均粗糙度Ra較佳為0. 以下,更佳為〇.〇5# 磨後之中心線平均粗趟度比g. ^大時, 粗縫度:二後:T具表面的凹凸形狀殘存研磨後之表面 並無特別限制,由加工時間或力之下限, ^其極限,因此並無蚊衫之必t的觀點來看,自然 []感光性樹脂臈形成步驟 接者,在感光性樹脂骐形成步驟中,在藉由上述研磨 321900 57 201042295 步驟施以鏡面研磨後之模具用基材7之經研磨過的表面 8,塗布將感光性樹脂溶解於溶劑的溶液,並進行加熱/乾 燥,藉此形成感光性樹脂膜。第57圖(b)係示意性顯示在 模具用基材7之經研磨過的表面8形成有感光性樹脂膜9 的狀態。 就感光性樹脂而言,可使用習知之感光性樹赌。就威 光部分具硬化之性質的負型感光性樹脂而言,可使用在分 子中具有丙烯酿基或曱基丙稀醢基之丙埽酸醋的單體或預 聚合物、雙疊氮化合物(bisazide)與二烯橡膠之混合物、 聚桂皮酸乙烯酯系化合物等。此外,就具有感光部分因顯 影而溶出而僅未感光部分殘留之性質的正型感光性樹脂而 石,可使用例如笨酚(phen〇1)樹脂系或酚醛(n〇v〇lac)樹脂 系等。此外,感光性樹脂亦可依需要調配增感劑、顯影促 進劑、密接性改質劑、塗布性改良劑等各種添加劑。 在將該等感光性樹脂塗布在模具用基材7之經研磨過 的衣曲8 Bf 溶劑而進行塗布。就溶劑而言,可使用2—乙氧乙醇系滚劑 丙烯乙二醇系溶劑、酯系溶劑、醇系溶劑、酮系滲劑、^ 極性溶劑等。 就塗布感光性樹脂溶液的方法而言,可使用彎月^ Oneniscus)塗覆、喷泉(f_tain)塗覆、浸潰爹覆、旋孝 塗,輕塗布、金屬線棒塗布、氣刀塗布、刀重寧及幕容 圍之方法。塗布膜之厚度較佳為在乾燥後為^ 58 3219〇0 201042295 [4]曝光步驟 ^著,在曝光步驟中,將於上述之第1圖案運用高通 .濾波器或帶通濾波器而製作之第2圖案或將該第2圖案轉 .換為利用閾值法離散化成2階段(經二值化)之資訊的圖 案第3圖案或第4圖案曝光在感光性樹脂膜形成步驟中 形成之感光性樹脂膜9上。曝光步驟所使用之光源係可依 所塗布之感光性樹脂的感光波長或感度等適當地選擇,例 〇如可使用高壓水銀燈之g線(波長:436nm)、高壓水銀燈之 h線(波長:405nm)、高壓水銀燈之i線(波長:365nm)、 半導體雷射(波長:830nm、532 nm、488 nm、405 nm 等)、 YAG雷射(波長:1〇64nm)、KrF準分子雷射(波長:248nm)、If the surface is applied to Lai or Lai, the adhesion or the light of the second coating of the second plating step can be made (4). "卩, as in the above-mentioned prior art, when the surface of the iron or the like is plated, or after the surface of the ore is formed by the sandblasting method or the beading method, the surface is made to have a secret time, and the surface is filled with (4) thick seams. It is difficult to make the surface of the mold concave and convex. For this, firstly, by applying Lai or Lin to the surface of the substrate, the above-mentioned monthly opening y can be excluded. The coating is high and smooth, and I: = the surface of the substrate, such as tiny irregularities or cavities, etc., because of the characteristics of the copper or nickel plating. The cerium plating which is described later in the center of the substrate and in the step of chrome plating can also eliminate the copper or yt coating of the chrome-plated surface due to coarseness, irregularities or cavities. Therefore, the reduction of fine cracks is the copper or the recording used in the first ore-covering step, except that it can be an alloy of 321900 55 201042295 pure metals, so it can be too much copper-based alloy or And nickel, the "steel" in the specification contains copper and copper alloys, respectively, using electrolysis = The meaning of containing brocade and recording alloy. The key copper or record can also be usually used in the heart:: into the playing, can also be carried out by electroless plating. When the bottom surface is nickel-plated, the 'money coating is too thin, and the upper limit of the thickness cannot be completely excluded. It is preferably 5 (um or more. Money coating..., limit, but in view of the fact that it is formed in the manufacturing method, it is suitable for the substrate for the mold, etc. by the treatment = two | by cost From the point of view, it can be exemplified that Ming, Tie Shao or iron can use light weight 18 respectively. Among them, the alloy of the body. ', ', ,, metal 'in addition to this 夕 卜 ' can also be used or The shape of the base material for the mold is mainly a two-plate type, or a cylindrical or cylindrical roll which has been conventionally used in the field. Anti-glare 2: The mold has the following advantages: The anti-glare film can be manufactured in a continuous roll shape. [2] Grinding step, clock 'In the grinding step, the substrate table is subjected to the rubbing in the first iron covering step After this step, the surface of the substrate = is ground to a state close to the mirror surface m (four) under the immortal: in order to, the essence of hope The degree is mostly applied to a metal plate or a metal roll as a substrate, such as cutting or grinding, so that the surface of the substrate remains processed 321900 56 201042295 traces even in the case of copper plating or nickel plating. There is a case where such processing marks remain, and in the plated state, the surface does not necessarily become completely smooth. That is, even if the surface described later is left with such a deep processing mark or the like, there is a processing mark. When the unevenness is deeper than the unevenness formed after the execution of each step, there is a possibility that the processing marks and the like remain, and when the anti-glare treatment is performed by the mold or the anti-glare film is produced, the optical characteristics are caused. Fig. 57(a) is a schematic view showing the surface of the flat-shaped mold substrate 7 subjected to copper plating or nickel plating in the first plating step (plating formed in this step). The copper or nickel-plated layer is not shown)' and is further mirror-polished by the grinding step, and has the surface 8 state. ❹ Regarding the method of grinding the surface of the substrate to which copper plating or nickel plating is applied, § ' There is no particular limitation. 'A mechanical polishing method, an electrolytic polishing method, or a chemical polishing method can be used. For the mechanical polishing method, a super finishing method, a polishing method (laPPing) method, a fluid polishing method, and a polishing method are exemplified ( Buffing) Grinding method, etc. Surface roughness after grinding according to JIS B 0601, "Line average roughness Ra is preferably 0. Below, more preferably 〇.〇5# The center line average roughness after grinding When the degree is larger than g. ^, the degree of rough seam: two after: T has the surface of the concave and convex shape, the surface after grinding is not particularly limited, by the processing time or the lower limit of force, ^ its limit, so there is no mosquito net From the viewpoint of t, the natural [] photosensitive resin ruthenium forming step is carried out, and in the photosensitive resin yttrium forming step, the substrate 7 for the mold after the mirror polishing is applied by the above-described polishing 321900 57 201042295 step is ground. The surface 8 that has passed through is coated with a solution in which a photosensitive resin is dissolved in a solvent, and heated/dried to form a photosensitive resin film. Fig. 57(b) is a view schematically showing a state in which the photosensitive resin film 9 is formed on the polished surface 8 of the substrate 7 for a mold. For the photosensitive resin, a conventional photosensitive tree bet can be used. In the case of a negative photosensitive resin having a hardening property, a monomer or a prepolymer or a diazide compound having a propylene acrylate or a mercapto fluorenyl sulfonate in a molecule may be used. Mixture of bisazide with diene rubber, polyvinyl cinnamate compound, and the like. Further, in the case of a positive photosensitive resin having a property in which a photosensitive portion is eluted by development and only a photosensitive portion is not left, a resin such as a phenoline resin or a phenolic resin can be used. Wait. Further, various additives such as a sensitizer, a development accelerator, an adhesion modifier, and a coatability improver may be blended as needed in the photosensitive resin. The photosensitive resin is applied to the ground coating 8 Bf solvent of the substrate 7 for a mold and applied. As the solvent, a 2-ethoxyethanol-based roller, a propylene glycol-based solvent, an ester-based solvent, an alcohol-based solvent, a ketone-based osmotic agent, a polar solvent, or the like can be used. For the method of coating the photosensitive resin solution, it is possible to use a meniscus coating, a fountain (f_tain) coating, a dipping coating, a spin coating, a light coating, a metal bar coating, an air knife coating, a knife. The method of strengthening Ning and the curtain. Preferably, the thickness of the coating film is after the drying is ^ 58 3219 〇 0 201042295 [4] exposure step, in the exposure step, the first pattern is made by using a high-pass filter or a band pass filter. The second pattern or the second pattern is converted to a pattern which is discretized into a two-stage (binarized) information by a threshold method. The third pattern or the fourth pattern is exposed to light in the photosensitive resin film forming step. On the resin film 9. The light source used in the exposure step can be appropriately selected depending on the photosensitive wavelength or sensitivity of the photosensitive resin to be applied, and the like, for example, a g line of a high pressure mercury lamp (wavelength: 436 nm) and a h line of a high pressure mercury lamp (wavelength: 405 nm) can be used. ), i-line of high-pressure mercury lamp (wavelength: 365nm), semiconductor laser (wavelength: 830nm, 532 nm, 488 nm, 405 nm, etc.), YAG laser (wavelength: 1〇64nm), KrF excimer laser (wavelength) :248nm),

ArF準分子雷射(波長u93nm)、F2準分子雷射(波長j57nm) 等。 為了在本發明之模具的製造方法中精密度佳地形成表 面凹凸形狀,較佳為在曝光步驟中,以精密地控制之狀態 ❹將上述圖案曝光在感光性樹脂膜上。在本發明之模具的製 造方法中,為了精密度佳地將上述圖案曝光在感光性樹脂 膜上,較佳為依據屬於在電腦上製作之圖案的影像資料或 經離散化之資訊的二次元排列,利用從電腦控制之雷射頭 發出之雷射光,將圖案掃描在感光性樹脂膜上。在進行該 '雷射掃描時,可使用印刷版製作用之雷射掃描裝置。就該 雷射掃描裝置而言,可列舉例如laserFX(TMnk Laboratory(股)製)等。 第57圖(c)係示意性顯示將圖案曝光在感光性樹脂膜 321900 59 201042295 9之狀態。以負型感光性樹脂形成感光性樹脂膜時,經曝 光之區域10係藉由曝光而使樹脂之交聯反應進行,而降低 對於後述之顯影液的溶解性。因此,在顯影步驟中未經曝 光之區域11會藉由顯影液而溶解,僅經曝光之區域10殘 留在基材表面上而成為遮罩。另一方面,以正型感光性樹 脂形成感光性樹脂膜時,經曝光之區域10係藉由曝光而使 樹脂之結合切斷,而增加對於後述之顯影液的溶解性。因 此,在顯影步驟中經曝光之區域11會藉由顯影液而溶解, 僅未經曝光之區域10殘留在基材表面上而成為遮罩。 [5]顯影步驟 接著,在顯影步驟中,當感光性樹脂膜9使用負型感 光性樹脂時,未經曝光之區域11會藉由顯影液而溶解,僅 經曝光之區域10殘留在基材表面上,接著在第1蝕刻步驟 中發揮作為遮罩之作用。另一方面,感光性樹脂膜9使用 正型之感光性樹脂時,僅經曝光之區域1 〇會藉由顯影液而 溶解,未經曝光之區域11殘留在基材表面上,接著在第1 蝕刻步驟中發揮作為遮罩之作用。 有關顯影步驟中使用之顯影液係可使用習知者。可列 舉例如:氫氧化鈉、氫氧化鉀、碳酸鈉、矽酸鈉、偏矽酸 鈉、氨水等無機鹼類、乙基胺'正丙基胺等一級胺類、二 乙基胺、二正丁基胺等二級胺類、三乙基胺、甲基二乙基 胺等三級胺類、二甲基乙醇胺、三乙醇胺等醇胺類、氫氧 化四曱基銨、氫氧化四乙基銨、氫氧化三曱基羥基乙基銨 等四級銨鹽、吼°各、略咬等環狀胺類等驗性水溶液;及二 60 321900 201042295 甲苯、甲苯等有機溶劑等。 關於顯影步驟中之顯影方法並無特別限定,可採用浸 • 潰顯影、喷霧顯影、刷顯影、超音波顯影等方法。 . 第57圖(d)係示意性顯示使用負型感光性樹脂於感光 性樹脂膜9而進行顯影處理之狀態。第57圖(c)中未經曝 光之區域11會藉由顯影液而溶解,僅經曝光之區域10殘 留在基材表面上而成為遮罩12。第57圖(e)係示意性顯示 使用正型之感光性樹脂於感光性樹脂膜9而進行顯影處理 〇 之狀態。第57圖(c)中經曝光之區域10會藉由顯影液而溶 解,僅未經曝光之區域11殘留在基材表面上而成為遮罩 12 ° [6]第1蝕刻步驟 接著,在第1蝕刻步驟中,使用在前述顯像步驟後殘 留在模具用基材表面上之感光性樹脂膜作為遮罩,主要對 無遮罩之部位的模具用基材進行蝕刻,而在經研磨之鍍覆 ❹面形成凹凸。第58圖係示意性顯示本發明之模具製造方法 的後半部之較佳一例圖。第58圖(a)係示意性顯示藉由第 1蝕刻步驟主要對無遮罩之部位13的模具用基材7進行蝕 刻的狀態。遮罩12之下部的模具用基材7雖未從模具用基 ' 材表面被蝕刻,但隨著蝕刻之進行,會從無遮罩之部位13 • 進行钮刻。因此,在遮罩12與無遮罩之部位13的交界附 近,遮罩12之下部的模具用基材7亦被蝕刻。在該遮罩 12與無遮罩之部位13的交界附近,將遮罩12之下部的模 具用基材7亦被蝕刻之情形稱為側蝕。第59圖係示意性顯 61 321900 201042295 示側触之進行。第59圖之虛線14係階段性顯示隨著餘刻 之進行而變化之模具用基材的表面。 第1蝕刻步驟中之蝕刻處理通常係使用氣化鐵(FeCh) 液、氣化銅(CuCl2)液、鹼蝕刻液(Cu(NH3)4Cl2)等,藉由使 金屬表面腐蝕而進行,但亦可使用塩酸或硫酸等強酸,亦 可採用藉由施加與電解鍍覆時相反之電位而進行之逆電解 蝕刻。施加蝕刻處理時之形成在模具用基材的凹形狀係因 底層金屬之種類、感光性樹脂膜之種類及蝕刻手法等而不 同,因此不能一概而論,而在蝕刻量為1〇#m以下時,從 接觸於钕刻液之金屬表面大致等向性地被餘刻。在此所謂 之独刻量係指藉由餘刻而被切削之基材的厚度。 第1敍刻步驟中之蝕刻量較佳為1至50Am。當蝕刻 量未達時,在金屬表面幾乎不會形成凹凸形狀,而成 為大致平坦之模具,因此不會顯現防眩性。此外,在蝕刻 量超過50#m時會有以下疑虞:形成在金屬表面之凹凸形 狀的高低差會變大’且運用使用所得之模具所製作之防眩 模異的影像顯示裝置會產生白濁現象。第i蝕刻步驟中之 蝕刻處理亦可藉由1次之蝕刻處理進行,亦可分為2次以 上進行蝕刻處理。將蝕刻處理分為2次以上進行時,2次 以上之蝕刻處理的蝕刻量之合計係以丨至5〇#m為佳。 [7]感光性樹脂膜剝離步驟 接著,在感光性樹脂膜剝離步驟中,將在第丨蝕刻步 驟中作為遮罩使用之殘留的感光性樹脂膜予以完全地溶解 姐女除。在感光性樹脂膜剥離步驟中,使用剝離液來溶解 62 321900 201042295 感光性樹脂膜。就剝離液而言,可使用與上述顯影液相同 者’藉由使pH、溫度、濃度及浸潰時間等變化,在使用負 型感光性_旨料完全地將曝光部之感綠樹脂膜予以溶 解f去除j在使用正型感光性樹脂膜時完全地將非曝光部 感料以溶解並去除。感光性樹脂膜剝離步驟 離方法亦無特別限定,可採用浸潰顯影、嘴霧顯影、 刷顯影、超以顯影等方法。ArF excimer laser (wavelength u93nm), F2 excimer laser (wavelength j57nm), and the like. In order to form the surface uneven shape with high precision in the method for producing a mold of the present invention, it is preferred to expose the pattern on the photosensitive resin film in a state of being precisely controlled in the exposure step. In the method for producing a mold of the present invention, in order to accurately expose the pattern on the photosensitive resin film, it is preferable to arrange the image according to a pattern formed on a computer or a binary element of discretized information. The pattern is scanned on the photosensitive resin film by using laser light from a laser controlled by a computer. In performing this 'laser scanning, a laser scanning device for printing plate production can be used. The laser scanning device may, for example, be a laserFX (manufactured by TMnk Laboratory). Fig. 57(c) is a view schematically showing a state in which the pattern is exposed to the photosensitive resin film 321900 59 201042295 9. When the photosensitive resin film is formed of a negative photosensitive resin, the exposed region 10 is subjected to a crosslinking reaction of the resin by exposure to lower the solubility in a developing solution to be described later. Therefore, the unexposed area 11 in the developing step is dissolved by the developer, and only the exposed region 10 remains on the surface of the substrate to become a mask. On the other hand, when the photosensitive resin film is formed of a positive photosensitive resin, the exposed region 10 is subjected to exposure to cut the resin, and the solubility in a developing solution to be described later is increased. Therefore, the exposed region 11 in the developing step is dissolved by the developer, and only the unexposed region 10 remains on the surface of the substrate to form a mask. [5] Developing Step Next, in the developing step, when the photosensitive resin film 9 is made of a negative photosensitive resin, the unexposed region 11 is dissolved by the developing solution, and only the exposed region 10 remains on the substrate. On the surface, it acts as a mask in the first etching step. On the other hand, when the photosensitive resin film 9 uses a positive photosensitive resin, only the exposed region 1 溶解 is dissolved by the developer, and the unexposed region 11 remains on the surface of the substrate, followed by the first It functions as a mask in the etching step. The developer used in the developing step can be used by a known person. Examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium metasilicate, and aqueous ammonia; primary amines such as ethylamine 'n-propylamine; diethylamine and di-n-butyl Secondary amines such as butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcoholamines such as dimethylethanolamine and triethanolamine, tetradecyl ammonium hydroxide, tetraethyl hydroxide An aqueous solution of a quaternary ammonium salt such as ammonium or trimethyl hydroxyethylammonium hydroxide; a cyclic aqueous amine such as 吼° and a slight bite; and an organic solvent such as toluene or toluene. The developing method in the developing step is not particularly limited, and methods such as dip development, spray development, brush development, and ultrasonic development may be employed. Fig. 57(d) is a view schematically showing a state in which development processing is performed on the photosensitive resin film 9 using a negative photosensitive resin. The unexposed area 11 in Fig. 57(c) is dissolved by the developer, and only the exposed region 10 remains on the surface of the substrate to become the mask 12. Fig. 57(e) is a view schematically showing a state in which development processing is performed on the photosensitive resin film 9 using a positive photosensitive resin. The exposed region 10 in Fig. 57(c) is dissolved by the developer, and only the unexposed region 11 remains on the surface of the substrate to become a mask 12 ° [6] first etching step, then In the etching step, the photosensitive resin film remaining on the surface of the substrate for a mold after the development step is used as a mask, and the substrate for the mold which is not covered is mainly etched, and the plated after the polishing is applied. The covering surface is formed with irregularities. Fig. 58 is a view schematically showing a preferred example of the latter half of the mold manufacturing method of the present invention. Fig. 58(a) is a view schematically showing a state in which the substrate 7 for a mold which is not covered by the mask portion 13 is mainly etched by the first etching step. Although the base material 7 for the mold at the lower portion of the mask 12 is not etched from the surface of the base material for the mold, it is engraved from the uncovered portion 13 as the etching progresses. Therefore, near the boundary between the mask 12 and the unmasked portion 13, the substrate 7 for the mold at the lower portion of the mask 12 is also etched. In the vicinity of the boundary between the mask 12 and the unmasked portion 13, the case where the mold substrate 7 under the mask 12 is also etched is referred to as side etching. Figure 59 is a schematic representation of 61 321900 201042295 showing the side touch. The broken line 14 of Fig. 59 shows the surface of the substrate for a mold which changes as the remainder progresses. The etching treatment in the first etching step is usually carried out by using a vaporized iron (FeCh) liquid, a vaporized copper (CuCl 2 ) liquid, an alkali etching solution (Cu(NH 3 ) 4 Cl 2 ), or the like, by causing corrosion of the metal surface, but also A strong acid such as citric acid or sulfuric acid may be used, or reverse electrolytic etching may be employed by applying a potential opposite to that at the time of electrolytic plating. The concave shape formed in the substrate for a mold when the etching treatment is applied differs depending on the type of the underlying metal, the type of the photosensitive resin film, the etching method, and the like, and therefore cannot be generalized, and when the etching amount is 1 〇 #m or less, The surface of the metal that is in contact with the engraving liquid is substantially equiaxed. The term "instant" as used herein refers to the thickness of a substrate that is cut by the remainder. The etching amount in the first scribe step is preferably from 1 to 50 Am. When the etching amount is not reached, the uneven shape is hardly formed on the metal surface, and the mold is formed into a substantially flat mold, so that the anti-glare property is not exhibited. In addition, when the etching amount exceeds 50 #m, there is a concern that the height difference of the uneven shape formed on the metal surface becomes large, and the image display device using the obtained mold to prevent glare is white turbid. phenomenon. The etching treatment in the i-th etching step may be performed by one etching treatment, or may be performed by etching twice or more. When the etching treatment is carried out in two or more steps, the total etching amount of the etching treatment of two or more times is preferably 丨 to 5 〇 #m. [7] Photosensitive resin film peeling step Next, in the photosensitive resin film peeling step, the remaining photosensitive resin film used as a mask in the second etching step is completely dissolved. In the photosensitive resin film peeling step, a peeling liquid is used to dissolve the photosensitive resin film of 62 321900 201042295. In the case of the peeling liquid, the same as the above-mentioned developing solution can be used. By changing the pH, the temperature, the concentration, the impregnation time, and the like, the green photosensitive resin film of the exposed portion is completely used by using the negative photosensitive property. The dissolution f removal j completely dissolves and removes the non-exposed portion when the positive photosensitive resin film is used. The method of removing the photosensitive resin film is not particularly limited, and methods such as dipping development, nozzle fog development, brush development, and super development may be employed.

〇 w#Y. ^ 圖(b)係示忍性顯示藉由感光性樹脂膜剝離步驟 b入地、步驟中作為遮罩12使用之感光性樹脂膜予以 成之逆罢1並去除的狀恶。藉由利用由感光性樹脂膜所構 i=12⑽刻’在模具用基材表面形成有第!表面凹 [8 ]第2錢覆步驟 施以梦:,ft對所形成之凹凸面(第1表面凹凸形狀15) 性頻^在 ®之凹凸形狀和緩化。第58圖(c)係示意 第㈣處理所形成之 表面凹凸形狀r5更和=:16,藉此形成凹凸比第1 在太路e日Λ k表(鍍鉻之表面17)的狀態。 澤、硬卜絲係、^用可對平板或鮮之表面賦予具光 更度间、摩擦係數小、且 種類並無特別限定,較^_触賴鉻。鍵鉻之 鉻等之顯現良好之光澤的;^所謂光澤祕或裝飾用鑛 行,該鍍覆槽係可使用包=。鍍鉻通常藉由電解來進 水溶液。萨由ft 3 “,'水鉻酸(Cr〇3)與少量硫酸的 猎由调即電流密度與電解時間,即可控制鑛鉻之 321900 63 201042295 厚度。 在上述日本特開2〇〇2_1891〇6號公報、日本 45472號公報、日本特開2004-90187號公報等中雖揭 用鑛鉻,但依模具之«前之底層與鍍鉻之軸,大 鑛覆後表面會變得粗糙,或產生因鍍鉻賴之微小, 結果’利用該模具所得之具有表面凹凸形狀之透明' 含防眩膜)㈣學触會料狀方向錢。料表面^ =態的模具並不適合於透明基材之_處理及防眩膜之 製造。其理由在於,-般為了消除粗縫係在鑛鉻後對鍍覆 表面進行研磨,但如後所述在本發明中在鍍覆後進行=面 研磨並不理想。在本發明中,藉由對底層金屬施以鍛銅或 鍍鎳,而解決因鍍鉻而容易產生之缺失。 此外,在第2鍍覆步驟中,施以鑛絡以外之鍛覆並不 理想。其理由在於’在鉻以外之鑛覆中,由於硬度或耐磨 耗性會變低,因此作為模具之耐久性會降低,且在使用中 凹凸會磨損’模具會損傷。在使用該模具之防眩處理及由 該模具所得之防賴巾,難以獲得充分之防眩功能的可能 性π,且在透明樹脂獏等之透明基材上產生缺陷的可能性 亦高。 再者,在上述日本特開2〇〇4_9〇187號公報等令揭示之 在鍍覆後進行的表面研磨亦在本發明中並不理想。亦即, 較佳為未設有在第2鑛覆步職研絲面之步驟,而直接 使用施有鍍鉻之凹凸面作為轉印在透明基材上之模具的凹 凸面。其理由在於’由於會因進行喃而在最表面產生平 321900 64 201042295 坦之部分,因此村料致絲特性之惡化 之控制因子增加,因此難以進行再現性佳之形狀控Γ 讀 .=,在本發明之模具的製造方法中=成 -微細表面凹凸形狀的表面施以鑛絡 1成有 係依據底層金屬之種類、由第1 3 紅度 ,度、及嫂覆之種類或厚度等而;同,因:二二 ο 二=緩:=,是_度。若 ==果並:充分,且將該凹凸形狀轉印二 、 i上所得之施有_處的透明基材㈤眩膜)之 光學特性並不佳。另一万眩瞑)之 .變差,且會產生被=度過厚,生產性會 陷,因此计再為…粒(nodule)之突起狀的鍍覆缺 之範圍内:=:,祕之厚度較佳為1至1〇-又住馬ό至β之範圍内。 0度在=成之鏡絡層較佳為形成維氏硬 降低魏可tit耐久__’μ锻絡中硬度 .等發生異常,對歸鍍覆處理時鍍覆槽組成、電解條件 •高。、;缺陷之產生狀況造成不良影響的可能性 者在本發明之模制製造^*法+,魅$在上述 ⑺感光性樹脂膜剝離步佳為在上达 藉由餘刻處理使由第ΓΓ 步驟之間,包含 蝕刻步驟所形成之凹凸面變和緩的 321900 65 201042295 第2蝕刻步驟。在第2蝕刻步驟中,藉由蝕刻處理,使由 利用感光性樹脂膜作為遮罩之第1蝕刻步驟所形成之第1 表面凹凸形狀15變和緩。藉由該第2蝕刻處理,由第1蝕 刻處理所形成之第1表面凹凸形狀15中的表面傾斜較陡之 部分會消失,利用所得之模製造之防眩膜等施有防眩處理 之透明基材的光學特性會往好之方向變化。第60圖係示意 性顯示藉由2蝕刻步驟使模具用基材7之第1表面凹凸形 狀15變和緩且使表面傾斜較陡之部分變和缓,而形成具有 平缓之表面傾斜之第2表面凹凸形狀18的狀態。 第2蝕刻步驟中之蝕刻處理亦與第1蝕刻步驟同樣 地,通常係使用氯化鐵(FeCl3)液、氣化銅(CuCh)液、驗钱 刻液(Cu(NH3)4Cl2)等,藉由使金屬表面腐钕而進行,但亦 可使用塩酸或硫酸等強酸,亦可採用藉由施加與電解鍍覆 時相反之電位而進行之逆電解蝕刻。在施加蝕刻處理後之 凹凸的和缓程度係因底層金屬之種類、钮刻手及由第1餘 刻步驟所得之凹凸尺寸與深度等而不同,因此不能一概而 論,而在控制和緩程度上最大之因子係為姓刻量。在此所 謂之蝕刻量亦與第1鍍覆步驟同樣地,係指藉由蝕刻而被 切削之基材的厚度。若蝕刻量小,則使由第1鍍覆步驟所 得之凹凸的表面形狀變和緩之效果並不充分,且將該凹凸 形狀轉印在透明薄膜等透明基材上所得之施有防眩處的透 明基材(防眩膜)之光學特性並不佳。另一方面,若蝕刻量 過大,凹凸形狀幾乎會消失,而成為大致平坦之模具,因 此不會顯現防眩性。因此,触刻量較佳為1至5 0 /z m之範 66 321900 201042295 圍内’更佳為4至2G/zm之範圍内。帛2餘刻步 刻處理亦與第1蝕刻步驟同樣地,亦可藉由丄&amp; 可分為2次以上進行姓刻處理。將:= 為2 -人以上進行時,2次以上之餘刻處理的 係以1至50#m為佳。 ° 〇Τ 由本發明之防眩處理方法及防眩膜的製造方法所得之 防眩膜等施有防眩處理的透明基材之微細凹凸 、 Ο 〇 精密度佳地控制而形成,因此顯現充分之防眩性 ν .糸 發生白濁現象,在配置於影像顯示裝置 且不會 生閃燦,㈣現高對比。 裝置之細時亦不會產 (例) 但本發明並非 以下列舉實施例,更詳細說明本發明, 限定於上述實施例者。 &lt;實施例1至3及比較例1至2&gt; 準備在直徑200mm之銘輥(依據JIS之Α5〇5 施有銅Ε拉特㈣(ballad plating)者。銅μ特^面 由鍍銅層/薄的鍍銀層/表面鍍銅層所構成者。鍍覆^整糸 之厚度係設定為大約200 /zm。對該鍍銅表面進行^面體 磨’將負型感光性樹脂塗布在經研磨之鑛銅表面並使之= 燥’以形成感光性樹月旨膜。 乙 接著,藉由雷射光將以下所示之5種類的圖案丨至v 同時於上述感光性樹脂膜上進行曝光、顯影。以雷射光進 行之曝光及顯影係利用laser stream FX(Think〇w#Y. ^ Figure (b) shows the sinister display of the photosensitive resin film used as the mask 12 by the photosensitive resin film peeling step b, and the photosensitive resin film used as the mask 12 in the step. . By using the photosensitive resin film to form i=12 (10) engraved, the surface of the substrate for the mold is formed! The surface is concave [8] The second step of the cover is applied to the dream: the concave and convex surface (the first surface uneven shape 15) formed by the ft pair is in the shape of the concave and convex shape and the relaxation. Fig. 58(c) is a view showing a state in which the surface unevenness shape r5 formed by the fourth (4) process is more than = 16: thereby forming a state in which the unevenness ratio is the first in the outer path e-day k (the chrome-plated surface 17). Ze, hard silk, and ^ can be used to impart light to the flat or fresh surface. The friction coefficient is small, and the type is not particularly limited. The chrome of the key chrome or the like exhibits a good luster; the so-called gloss or decorative ore, which can be used for the plating tank. Chrome plating is usually carried out by electrolysis into an aqueous solution. Sa ft 3 ", 'Water chromic acid (Cr 〇 3) and a small amount of sulphur, the current density and electrolysis time can control the thickness of the ore chrome 321900 63 201042295. In the above-mentioned Japanese special opening 2〇〇2_1891〇 In the sixth publication, Japanese Patent No. 45472, and Japanese Laid-Open Patent Publication No. 2004-90187, the mineral chromium is used, but depending on the front layer of the mold and the chrome-plated shaft, the surface of the large ore is roughened or produced. As a result of the chrome plating, the result is 'transparent with a surface irregular shape obtained by the mold' containing an anti-glare film.) (4) Learning the direction of the material. The surface of the material is not suitable for the transparent substrate. The reason for the production of the anti-glare film is that the surface of the plating is polished after the chrome is removed, but it is not preferable to perform the surface polishing after the plating in the present invention. In the present invention, the underlying metal is subjected to wrought copper or nickel plating to solve the problem that is easily caused by chrome plating. Further, in the second plating step, it is not preferable to apply a forging other than the mineral. The reason is that 'in the mine cover other than chromium, due to hard Or the abrasion resistance is low, so the durability as a mold is lowered, and the unevenness is worn during use. The mold is damaged. It is difficult to obtain the anti-glare treatment using the mold and the anti-slip towel obtained from the mold. The possibility of sufficient anti-glare function is π, and the possibility of causing defects on a transparent substrate such as a transparent resin crucible is also high. Further, in the above-mentioned Japanese Patent Publication No. 2〇〇4_9〇187, The surface grinding after plating is also not preferable in the present invention. That is, it is preferably not provided in the step of the second ore cover step, and the chrome-plated surface is directly used as the transfer. The uneven surface of the mold on the transparent substrate. The reason is that 'there is a portion of the flat surface of the flat surface of the flat surface of the flat surface of the flat surface. Good shape control Γ read. =, in the manufacturing method of the mold of the present invention = the surface of the surface of the fine-grain surface is applied with a mineral layer of 10% depending on the type of the underlying metal, by the first 3 redness, degree, And coverage Type, thickness, etc.; the same, because: two two o 2 = slow: =, is _ degrees. If = = fruit and: full, and the concave and convex shape transfer two, i obtained on the transparent The optical properties of the substrate (5) glare film are not good. The other one is worse, and it will be too thick, and the productivity will be trapped. Therefore, it is a protrusion of nodule. Within the range of plating defects: =:, the thickness of the secret is preferably 1 to 1 〇 - and live in the range of the horse to the β. 0 degree in the mirror layer of = is better to form the Vickers hard reduction Wei Tit durable __'μ hardness in forging, etc., abnormality, plating bath composition during plating treatment, high electrolysis conditions, high; In the above-mentioned (7) photosensitive resin film peeling step, it is preferable that the uneven surface formed by the etching step between the steps of the second step by the retort processing becomes gentle and gentle 321900 65 201042295 The second etching step. In the second etching step, the first surface uneven shape 15 formed by the first etching step using the photosensitive resin film as a mask is made gentle by etching. By the second etching treatment, the portion of the first surface uneven shape 15 formed by the first etching treatment is steeply inclined, and the anti-glare film or the like produced by the obtained mold is transparently provided with anti-glare treatment. The optical properties of the substrate will change in a good direction. Fig. 60 is a view schematically showing a second surface unevenness having a gentle surface inclination by making the first surface uneven shape 15 of the mold substrate 7 gentle and gentle, and making the surface inclined steeply gentle by the two etching steps. The state of shape 18. In the etching process in the second etching step, similarly to the first etching step, a ferric chloride (FeCl3) solution, a vaporized copper (CuCh) solution, a test engraving solution (Cu(NH3)4Cl2), or the like is usually used. The metal surface is rotted, but a strong acid such as citric acid or sulfuric acid may be used, or reverse electrolytic etching may be employed by applying a potential opposite to that at the time of electrolytic plating. The degree of relief of the concavities and convexities after the application of the etching treatment differs depending on the type of the underlying metal, the button indentation, and the size and depth of the concavities obtained by the first remaining step, and therefore cannot be generalized, and the maximum factor in controlling the degree of relaxation It is the name of the surname. The amount of etching referred to herein is also the thickness of the substrate which is cut by etching, similarly to the first plating step. When the amount of etching is small, the effect of reducing the surface shape of the unevenness obtained by the first plating step is not sufficient, and the uneven shape is transferred to a transparent substrate such as a transparent film to obtain an anti-glare portion. The optical properties of the transparent substrate (anti-glare film) are not good. On the other hand, if the etching amount is too large, the uneven shape is almost eliminated, and the mold is substantially flat, so that the anti-glare property does not appear. Therefore, the amount of the etch is preferably in the range of 1 to 5 0 /z m 66 321900 201042295 in the range of -4 to 2 G/zm. In the same manner as the first etching step, the 余2 retrace processing may be performed by 丄&amp; When := is 2 or more, more than 2 times or more is preferably 1 to 50 #m. 〇Τ 〇Τ The anti-glare film obtained by the anti-glare treatment method of the present invention and the anti-glare film obtained by the method for producing an anti-glare film are formed by controlling the fine unevenness of the transparent substrate and the precision of the anti-glare treatment. Anti-glare ν. The phenomenon of white turbidity occurs in the image display device and does not produce flashing, (4) high contrast. The present invention is not limited to the following examples, but the present invention is not limited to the following examples, and the present invention will be described in more detail, and is limited to the above embodiments. &lt;Examples 1 to 3 and Comparative Examples 1 to 2&gt; An inch roll having a diameter of 200 mm was prepared (a ballad plating was applied according to JIS Α5〇5. The copper μ special surface was made of a copper plating layer) / Thin silver plating layer / surface copper plating layer. The thickness of the plating layer is set to about 200 / zm. The surface of the copper plating surface is subjected to a "surface grinding" coating a negative photosensitive resin Polishing the surface of the copper ore and drying it to form a photosensitive resin film. B. Next, the five types of patterns shown below are rubbed by the laser light to expose v on the photosensitive resin film. Development. Exposure and development with laser light utilizes laser stream FX (Think

Laboratory(股)製)來進行。 67 3219〇〇 201042295 y)圖案I(實施例1):反覆排列於帛61圖中顯示一部 分之單位®案的圖案。該單位圖案係為以12綱dpi之解析 度所產生之32.768mm四方的圖案。第61圖係切出其中之 1·=4ιηιη四方者。第61圖所示之單位圖案係以2_個心2 之密度使平均難為16/zm之點不_分佈者,對於在第 62圖中顯示-部分之第!圖案’運用i次之空間頻率範圍 下限值B為G.〇4(^m-i、空間頻率範圍上限值τ為〇謂 因此’2χ(τ_Β)/⑽)=G. 55)、且穿透賴峰值具有 ,空間頻率側之傾斜較陡之非對稱形狀的帶通㈣器,接 著將所得之第2 ®案藉閾值法予以二值化所得者。所得之 單位圖案之空間頻率範圍下限值B為,空間頻 率範圍上限值T為0.067/ζπΓ1。 立(2)圖案Π(實施例2):反覆排列在第63圖中顯示一 邛刀之單位圖案的圖案。該單位圖案係為以128⑽dpi之解 析度所產生之32.768mm四方的圖案。帛63圖係切出其中 之1.024咖四方者。第63圖所示之單位圖案係對於^第 62圖中顯示一部分之第i圖案,運用i次與上述圖案卜斤 使用者相_帶通舰器,接著將所得之第 法予以二值化後,再反覆運用9次相同之帶通== 者。所得之單位圖案之空間頻率範圍下限值B為〇.〇〇# m 1 ’空間頻率範圍上限值τ為〇.。 ^ (3)圖案Ιπ(實施例3):反覆排列在第64圖中顯示一 部分之單位圖案的圖案。該單位圖案係為以128〇〇dPi之解 析度所產生之32 768mm四方的圖案。第64圖係切出其中 321900 68 201042295 &lt; 之1. 024mm四方者。第64圖所示之單位圖案係對於在第 62圖中顯示一部分之第1圖案,運用1次與上述圖案I所 - 使用者相同的帶通濾波器,接著將所得之第2圖案藉閾值 法予以二值化後,再反覆運用19次相同之帶通濾波器所得 者。所得之單位圖案之空間頻率範圍下限值B為0. 047/i m_1,空間頻率範圍上限值T為0. 067/ζπΓ1。 (4) 圖案IV(比較例1):反覆排列在第65圖中顯示一 部分之單位圖案的圖案。該單位圖案係為以12800dpi之解 t) 析度所產生之20.944mm四方的圖案。第65圖係切出其中 之1.024mm四方者。第65圖所示之單位圖案係藉由以1419 個/mm2之密度使平均點徑為16//m之點不規則分佈而製作 者。 (5) 圖案V(比較例2):反覆排列在第66圖中顯示一部 分之單位圖案的圖案。該單位圖案係為以12800dpi之解析 度所產生之20.944mm四方的圖案。第66圖係切出其中之 Q 1. 024mm四方者。第66圖所示之單位圖案係藉由以1419 個/mm2之密度使平均點徑為16//m之點不規則分佈而製作 者。 藉由雷射光將以上所述之5種圖案I至V同時曝光/ 顯影在上述感光性樹脂膜上後,以氯化銅液進行第1钱刻 • 處理。此時之蝕刻量係設定為3#m。由第1蝕刻處理後之 輥去除感光性樹脂膜,再度以氯化銅液進行第2蝕刻處 理。此時之蝕刻量係設定為10//m。然後,進行鍍鉻加工, 以製作模具。此時,鍍鉻之厚度係設定為4/z m。 69 321900 201042295Laboratory (stock) system to carry out. 67 3219〇〇 201042295 y) Pattern I (Embodiment 1): A pattern of a part of the unit® shown in Fig. 61 is displayed in reverse. The unit pattern is a 32.768 mm square pattern produced by a resolution of 12 dpi. Figure 61 shows the square of 1·=4ιηιη. The unit pattern shown in Fig. 61 is such that the average difficulty is 16/zm at the density of 2_hearts 2, and is not distributed as shown in Fig. 62. The pattern 'Using the spatial frequency range lower limit B of i times is G.〇4 (^mi, the upper limit of the spatial frequency range τ is 〇, so '2χ(τ_Β)/(10))=G. 55), and penetrates The peak value has a band-pass (four) device with a steeply inclined asymmetric shape on the spatial frequency side, and then the obtained second instance is binarized by the threshold method. The lower limit value B of the spatial frequency range of the obtained unit pattern is, and the upper limit value T of the spatial frequency range is 0.067 / ζ π Γ 1. (2) Pattern Π (Embodiment 2): A pattern in which a unit pattern of a trowel is displayed in Fig. 63 is repeatedly arranged. The unit pattern is a 32.768 mm square pattern produced by a resolution of 128 (10) dpi. The 帛63 image is cut out of the 1.024 coffee square. The unit pattern shown in Fig. 63 is used for the i-th pattern shown in Fig. 62, and is used for i-times with the above-mentioned pattern, and then the second method is binarized. Then, use the same bandpass == 9 times. The lower limit value B of the spatial frequency range of the obtained unit pattern is 〇.〇〇# m 1 ' The upper limit value τ of the spatial frequency range is 〇. ^ (3) Pattern Ι π (Embodiment 3): A pattern of a unit pattern showing a portion in Fig. 64 is repeatedly arranged. The unit pattern is a 32 768 mm square pattern produced by a resolution of 128 〇〇 dPi. Figure 64 is a cut out of the 1900 mm square of 321900 68 201042295 &lt;. The unit pattern shown in Fig. 64 is the same as the first pattern shown in Fig. 62, and the same bandpass filter as that of the user of the pattern I is applied once, and then the obtained second pattern is subjected to the threshold method. After binarization, the same passband filter is used 19 times. The upper limit value B of the spatial frequency range of the obtained unit pattern is 0. 047/i m_1, and the upper limit value T of the spatial frequency range is 0. 067/ζπΓ1. (4) Pattern IV (Comparative Example 1): A pattern in which a part of the unit pattern is displayed in Fig. 65 is repeatedly arranged. The unit pattern is a pattern of 20.944 mm squares produced by resolution of 12800 dpi. Fig. 65 shows the 1.024 mm square cut out. The unit pattern shown in Fig. 65 was produced by irregularly distributing dots having an average spot diameter of 16//m at a density of 1419/mm2. (5) Pattern V (Comparative Example 2): A pattern in which a part of the unit pattern is displayed in Fig. 66 is repeatedly arranged. The unit pattern is a pattern of 20.944 mm squares produced at a resolution of 12,800 dpi. Figure 66 shows the Q 1. 024mm square. The unit pattern shown in Fig. 66 was produced by irregularly distributing dots having an average spot diameter of 16//m at a density of 1419 / mm 2 . The five patterns I to V described above are simultaneously exposed/developed on the photosensitive resin film by laser light, and then the first etching treatment is performed with a copper chloride solution. The etching amount at this time was set to 3 #m. The photosensitive resin film was removed from the roll after the first etching treatment, and the second etching treatment was again performed with a copper chloride solution. The etching amount at this time was set to 10 / / m. Then, chrome processing is performed to make a mold. At this time, the thickness of the chrome plating was set to 4/z m. 69 321900 201042295

以醋酸乙i心解光硬化性樹脂組成物⑶娜IC 8〇6T (大曰本墨水化學工業(股)製),作成為50重量%濃度之溶 液’再將屬於光聚合絲劑之Lucirin tpq(basf公司製, 化學名.2’4,6 —甲基fgi基二笨基氧化膦)於每⑽重量 份之硬化性樹脂成分添加5重量份,以調製塗布液。將該 塗布液塗布在厚度8Mm之三乙酸纖維素⑽)薄膜上,以 使乾燥後之塗布厚度成為1G//m,在設定為赃之乾燥機 t使之錢3分鐘。輯膠輥將絲後之薄膜減至之前 所得之模具的凹凸面並使之密接,並使光硬化性樹脂組成 物層成為模具側。在此狀態下,從TAC薄膜側照射來自強 度漏/⑽2之高壓水銀㈣光,而成為以h線換算光量為 20〇mJ/Cm2,而使光硬化性樹脂組成物層硬化。然後,將tac 薄膜連同硬化樹脂從模具剝離,以製作由在表面具有凹凸 之硬化樹脂與™薄膜之積層體所構成、且具有對應圖案 I至V之5種凹凸表面形狀的透明防眩膜。 &lt;實施例4&gt; 除了藉由雷射光將反覆排列第67圖所示一部分之單 位圖案遍及輥1周地曝光/顯影在上述感光性樹脂膜上以 外’與實施例1同樣地製作;j:莫具,且與實施例j同樣地製 作防眩膜。進行2次相同之操作,以獲得合計2個防眩膜。 第67圖所示之單位圖案係為以l2_dpi之解析度所產生 之32.768mm四方的圖案,第67圖係切出其中之1〇24_ 四方者。 第67圖所不之單位圖案係對於第丨圖案,運用帶通濾 321900 70 201042295 Ο 波器製作第2圖案後’猎由運用誤差擴散法二值化以作成 第3圖案,再反覆運用60次蒙地卡羅法所製作之第4圖 案。所用之第1圖案係為以12800dpi之解析度所產生之 32· 768mm四方的8位元之位元映像,且對於具有8位元深 度的二次元排列 PIXCEL[x,y],代入 PlXCEL[x,y] = R|&gt; + y]xlmage Width]x255而製作者。x、y係為影像中之像 素的座標,Image Width係為X座標之像素寬度。排列R[] 係採用選取由包含在「. NET Framework2· 〇級程式庫 (library)」之 Random 級 Next Double 法所產生之 〇. 〇 與 1.0之間的值之由Knuth之亂數產生器減算演算法所產生 的擬似亂數列。就帶通遽通器而言,係採用空間頻率範圍 下限值B為0. 045 /inf1、空間頻率範圍上限值τ為〇. 080 β 因此,2x(T-B)/(T+B) = 0. 56)、且穿透頻域峰值具有 低空間頻率側之傾斜更陡之非對稱形狀的帶通濾波器。而 且,就誤差擴散矩陣而言,係採用以0. 4 : 0. 6之比例將第 〇 36圖所示之擴散距離為3之誤差擴散矩陣與第37圖所示 之擴散距離為4之誤差擴散矩陣予以合成者(第36圖x0. 4+ 第37圖χ〇· 6)。第67圖所示之單位圖案的空間頻率範圍下 限值Β為0.045 /ζπΓ1’空間頻率範圍上限值Τ為0.086//nf1。 第68圖係顯示在實施例1至3所使用的單位圖案之空 間頻率分佈圖。第69圖係顯示在比較例1至2所使用的單 位圖案之空間頻率分佈圖。第70圖係顯示在實施例4所使 用的單位圖案之空間頻率分佈圖。 &lt;實施例5 &gt; 71 321900 201042295 準備在直徑200nm之鋁輥(依據JIS之A5056)之表面 施有銅包拉特鍍覆(ballad plating)者。銅芭拉特鍍覆係 由鍍銅層/薄的鍍銀層/表面鍍銅層所構成者,鍍覆層整體 之厚度係設定為大約200//m。對該鍍銅表面進行鏡面研 磨’將正型感光性樹脂塗布在經研磨之鍍銅表面並使之乾 燥’以形成感光性樹脂膜。 接著’藉由雷射光將反覆排列第71圖所示一部分之單 位圖案曝光/顯影在上述感光性樹脂膜上。以雷射光進行之 曝光及顯影係利用 laser Stream FX(Think Laboratory(股) 製)來進行。第71圖所示之單位圖案係為以12800dpi之解 析度所產生之32.768mm四方的圖案。第71圖係切出其中 之1. 024mm四方者。 第71圖所示之單位圖案係對於第1圖案,運用帶通淚 波器製作第2圖案後,製作運用誤差擴散法予以二值化之 第3圖案,再反覆運用蒙地卡羅法60次所製作之第4圖 案。所用之第1圖案係為以12800dpi之解析度所產生之 32. 768mm四方的8位元之位元映像,且對於具有8位元深 度的二次元排列 PIXCEL[x,y],代入 piXCEL[x,y] = R[x + yxlmage Width]x255而製作者。其中,x、y係為影像 中之像素的座標,Image Width係為χ座標之像素寬度。 排列R[]係採用選取由包含在「.NET Framework2.〇級程 式庫」之Random級Next Double法所產生之〇. 〇與1 〇之 間的值之由Knuth之乱數產生器減算演算法所產生的擬似 亂數列。就帶通濾通器而言,係採用空間頻率範圍下限值 321900 72 201042295 Β為0. 055/^-1、空間頻率 此,2χ(Τ-Β)/(Τ+Β) = 〇. 58广 ^ Τ 為 〇· 100/ζπΓ1(因 斯函數型的帶通滤波器 ^透頻域峰值之形狀為高 採用以0.9 : 0.1之比例將第且3;=差擴散矩陣而言’係 誤差擴散矩陣與第38圖所- 不之擴散距離為4之 陣予以合成者(第37 _ ;^擴散距離為5之誤差擴散矩 之單位圖案的空間頻率範固‘广第71圖所示 Ο Ο 間頻率範圍上限值Τ為約〇 1為約〇· 〇55/zm 1 ’空 圖所示的單位圖案之空^ 1GG/am °第72圖係顯示第71 、 间_率分佈圖。 然後,以氯化銅液進行 係設定為5#m。由第丨叙 广处理。此時之蝕刻量 膜,再度以氯化銅液進行第;之輥去除感光性樹脂 設定為8,然後,進==處理。此時之钱刻量係 鑛絡之厚度係設定為4/r鉻加f具。此時, 、醋酸乙g〜解光硬化性樹脂組成物grandIc娜了 ^大日本墨水化學工業(股)製),作成為5G重量%濃度之溶 、文與再將屬於光聚合起始劑之Lueirin刑(廳F公司製, =子名.2, 4, 6-二甲基苄醯基二苯基氧化膦)在每ι〇〇重量 2硬化性樹脂成分添加5重量份,以調製塗布液。將該 ’、液塗布在厚度80_之三乙酸纖維素(TAC)薄膜上,以 ,乾燥後,塗布厚度成為1〇_,在設定為啊之乾燥機 =之乾燥3刀冑。以橡膠輥將乾燥後之薄膜推壓至先前 Z之模具的凹凸面並使之密接,且使光硬化性樹脂組成 θ成為模具側。在此狀態下,以成為以h線換算光量為 321900 73 201042295 200mJ/cm之方式’從tac薄膜側照射來自強度20mW/cm2 之高壓水銀燈的光,而使光硬化性樹脂組成物層硬化。然 後’將TAC薄膜連同硬化樹脂從模具剝離’以製作由在表 面具有凹凸之硬化樹脂與TAC薄膜之積層體所構成的透明 防眩膜。 針對由實施例1至5及比較例1-2所得之防眩膜,進 行以下所述之評價試驗。 (1)閃爍評價 閃蝶係利用以下方法進行評價b首先,準備使第73圖 (a)之平面圖所示之單位單元60之圖案在約40ππηχ約25咖 之範圍規則地排列的光罩。在單位單元60中,於透明之基 板上’以線寬10形成有鑰匙形之鉻遮光圖案61,未形 成有該鉻遮光圖案61之部分係為開口部62。依據該單位 單元之尺寸對該光罩賦予「解析度標稱尺寸(nominal S1Ze)」[單位:PPKpixel per inch)]。例如,解析度標 稱尺寸90 ppi之光罩的單位單元長乂單位單元寬係為2犯 #mx94#m、開口部長X開口部寬係為272ymx84ym。依據 表1之數值製作上述單位單元,在解析度標稱尺寸至 180 ppi之範圍’準備合計圖案之光罩。 321900 74 201042295 表1 解析度 標稱尺寸 (ppi) 單位單元 開口部 長尺寸 (// m) 寬尺寸 (/W m) 長尺寸 (// m) 寬尺寸 (# Π1) 50 508 169 498 159 60 423 141 413 131 70 362 120 352 110 80 317 105 307 95 90 282 94 272 84 100 254 84 244 74 120 211 70 201 60 140 181 60 171 50 160 158 52 148 42 180 141 47 131 37 . 接著,如第73圖(b)所示,使光罩63之鉻遮光圖案 61朝上且放置在光箱65(在光箱内設置有光源66),將在 1. 1顏厚之玻璃板67以20//m厚之粘著劑貼合有防眩膜70 ϋ 之樣本放置在光罩63上,並從距離樣本約30cm之場所(目 視觀察場所69)進行目視觀察,藉此對閃爍之有無進行官 能評價。此評價係針對所準備之具有不同解析度標稱尺寸 之光罩各者進行。 在上述評價中,依存於防眩膜之特性,在某解析度標 ' 稱尺寸以上之光罩中觀察閃爍。由此時之解析度標稱尺寸 來評價閃燦。具體而言舉例說明評價數值之判別方法。 首先,在進行官能評價時,在解析度標稱尺寸90 ppi 之光罩中觀察到強之閃爍,而在解析度標稱尺寸80 ppi之 75 321900 201042295 光罩中^觀察到閃爍時,賦予8〇卯 而,依存於防眩膜之特性而在解析度標稱尺寸 罩中僅觀察到弱閃爍之狀態亦存在。為了區别該狀離= ==產_爍之情形時―= =解析度標稱尺寸8G_㈣PPi之中間值的85ρρι 作為閃爍评價,以區別上述2種狀態。 (2)穿透特性之評價 利用依據JIS Π136之霧度計(Haze meter,村上色彩 技術研九所(股)製冊5〇),測量防眩膜之霧度。 將上述評價試驗之結果與單位圖案之製作方法及模具 之製作條件表示在表2。此外,在實施例4中,分別表示2 個防眩膜之評價結果。 表2 實施例 1 資施例 2 實施例 3 比較例 1 比較例 2 實施例 4 實施例 5 單位圓案 製作方法 運用帶y 1濾波器 有 有 有 無 無 有 有 二值化 方法 閩值法 〇 〇 〇 — — —— 一 誤差 擴散法 一 一 一 — — 〇 〇 運用蒙地卡羅法 無 無 無 無 無 有 有 模具 製作條件 第1蝕刻量 (β m) 3 3 3 3 3 3 5 第2蝕刻量 (β m) 10 10 10 10 10 10 8 鍍鉻厚度 (β m) 4 4 4 4 4 4 4 眩光評價(ppi) 80 80 85 50以下 65 110 130 95 霧度(9〇 0.6 0. 7 0. 7 1.5 1. 1 0.7 0.8 0. 4 76 321900 201042295 藉由光罩之閃爍評價試驗,依據運用帶通 低空間頻率成分減少之圖案所製作之實施例i二=而使 膜,與依據使點不規則分佈之第i圖案所製防眩 至2的防_相比較,均確認出前者不會產生 度的上限成為更高之水準’且顯好之 性、 運用誤差擴料作為二魏料而域第4料製作再^ Ο =的2個防眩膜及實施例5的防眩臈,與利用閾值法 之實施例1至3的防眩膜相比較,前者即使在更高 之先罩中亦觀察不到閃燥,且顯現更良好之光學特又 〈實施例θ&gt; 準備在直徑200⑽之鋁輥(依據JIS之Α5〇56)之表面 •施有銅芭拉特鍍覆(ballad plating)者。銅芭拉特鍍覆係 由鍍銅層/薄的鍍銀層/表面鍍銅層所構成者,鍍覆層整體 之厚度係設定為大約200 #m。對該鍍銅表面進行鏡面研 磨,將正型感光性樹脂塗布在經研磨之鐘銅表面並使之乾 ❹燥’以形成感光性樹脂膜。 接著,藉由雷射光將反覆排列第74圖所示一部分之單 位圖案曝光/顯影在上述感光性樹脂膜上。以雷射光進行之 曝光及顯影係利用 laser Stream FX(Think Laboratory (股) 製)來進行。第74圖所示之單位圖案係為以12800dpi之解 析度所產生之32. 768mm四方的圖案。第74圖係切出其中 之1. 024mm四方者。 第74圖所示之單位圖案係相對於第1圖案,運用帶通 滤波器製作第2圖案後,製作運用誤差擴散法予以二值化 77 321900 201042295 之第3圖案,再反覆運用蒙地卡羅法60次所製作之第4圖 案。所用之第1圖案係為以1000〇個/mm2之密度使平均點 徑為8/im之點不規則分佈而製作者。此時’由於儘可能作 成為點均勻分佈者,因此設定對應於所設定之點密度的三 角格子’使點之中心座標X及γ之各者從該格子點相對於 所設定之三角格子之格子位移,藉此產生圖案。此外,位 移後之座標的決定係採用以下述所示之C#()所產生之程 式碼(由微軟公司所開發之程式語言,語言規格係由「JISX 3015程式語言c#」等所規定)。藉由對該函數之作為 Average位移之格子點的座標值(X或γ)及Devia1;i〇ri賦予 〇. 3x15//in ’而使點位置不規則地位移。此時,擬似亂數 #程式碼中之「RandomFunction()」)係藉由對由廣島大學 團隊所安裝之 SIMD oriented Fast Mersenne Twister 程 式' SFMT verl· 3. 3賦予數值607作為種子所得者。 (實施例6所使用之以C#產生之程式碼) //cx,cy :顯示新描繪之點中心之X座標· γ座標。 &quot;Px ’ py :顯示所設定之三角格子點之X座標· γ座標。 //pD : 0. 3 //CoreSize :點之直徑 cX = NormalRandom(px, pD * CoreSize); cY = NormalRandom(py, pD * CoreSize); //亂數之正規化函數 // RandomFunction():使亂數回復之函數0 &quot;RandomFunctionValueMaxO :使亂數所取之值 321900 78 201042295 之最大值回復的函數。 // Math : .NET Framework Math 程式庫 * public double Norma1Random(doub1e Average, double Deviation) { double buff = 0 ; buff = Deviation*Math. SqrtC-2 * Math.Log (((double)RandomFunction()/(do uble) 〇Acetate ethyl iodide photohardenable resin composition (3) Na IC 8〇6T (manufactured by Otsuka Ink Chemical Industry Co., Ltd.) as a solution of 50% by weight concentration and then Lucirin tpq belonging to photopolymerizing silk agent (The basf company, chemical name: 2'4,6-methylfgi-based diphenylphosphine oxide) was added in an amount of 5 parts by weight per 10 parts by weight of the curable resin component to prepare a coating liquid. This coating liquid was applied onto a film of cellulose triacetate (10) having a thickness of 8 Mm so as to have a coating thickness after drying of 1 G/m, and was allowed to make a money for 3 minutes in a dryer set to 赃. The rubber roller reduces the film behind the yarn to the uneven surface of the previously obtained mold and makes it adhere to each other, and the photocurable resin composition layer becomes the mold side. In this state, the high-pressure mercury (4) light from the strong leak/(10) 2 is irradiated from the TAC film side, and the amount of light converted into the h-line is 20 〇 mJ/cm 2 to cure the photocurable resin composition layer. Then, the tac film and the cured resin are peeled off from the mold to form a transparent antiglare film comprising a laminate of a cured resin having a concavity and convexity on the surface and a TM film, and having five uneven surface shapes corresponding to the patterns I to V. &lt;Example 4&gt; In the same manner as in Example 1 except that the unit pattern of a part shown in Fig. 67 was repeatedly exposed and developed on the photosensitive resin film by one roll by laser light; An anti-glare film was produced in the same manner as in Example j except that it was obtained. The same operation was performed twice to obtain a total of 2 anti-glare films. The unit pattern shown in Fig. 67 is a pattern of 32.768 mm square generated by the resolution of l2_dpi, and Fig. 67 is a figure of one square 24_ square. The unit pattern in Fig. 67 is the second pattern after the bandpass filter 321900 70 201042295 chopper is used to create the second pattern. The hunting is binarized by the error diffusion method to create the third pattern, and then repeated 60 times. The fourth pattern made by Monte Carlo. The first pattern used is a bit map of 32 bits of 32.768 mm square generated by a resolution of 12800 dpi, and PIXCEL[x,y] is substituted for a quadratic element having an 8-bit depth, and substituted into PlXCEL[x , y] = R|&gt; + y]xlmage Width]x255 and the producer. x and y are the coordinates of the pixels in the image, and Image Width is the pixel width of the X coordinate. The arrangement of R[] is based on the selection of the Random Double method of the Random Level method contained in the ".NET Framework2. Library". The value between 〇 and 1.0 is subtracted by the Knuth random number generator. The quasi-random sequence generated by the algorithm. For the band pass-through device, the lower limit value B of the spatial frequency range is 0. 045 /inf1, and the upper limit value τ of the spatial frequency range is 〇. 080 β Therefore, 2x(TB)/(T+B) = 0. 56), and the through-frequency domain peak has a band-pass filter of asymmetrical shape with a steeper slope on the low spatial frequency side. Moreover, in the case of the error diffusion matrix, the error diffusion matrix having the diffusion distance of 3 shown in FIG. 36 and the diffusion distance shown in FIG. 37 are 4 in the ratio of 0.4:0.6. The diffusion matrix is combined (Fig. 36 x0. 4+ Fig. 37 χ〇 6). The spatial frequency range lower limit value Β of the unit pattern shown in Fig. 67 is 0.045 / ζ π Γ 1 '. The spatial frequency range upper limit value Τ is 0.086 / / nf1. Fig. 68 is a view showing the spatial frequency distribution of the unit pattern used in the first to third embodiments. Fig. 69 is a view showing the spatial frequency distribution of the unit patterns used in Comparative Examples 1 to 2. Fig. 70 is a view showing the spatial frequency distribution of the unit pattern used in the fourth embodiment. &lt;Example 5&gt; 71 321900 201042295 A person who applied a ballad plating to a surface of an aluminum roll having a diameter of 200 nm (according to JIS A5056) was prepared. The copper Barrat plating is composed of a copper plating layer/thin silver plating layer/surface copper plating layer, and the thickness of the entire plating layer is set to be about 200//m. The copper-plated surface was mirror-finished by applying a positive photosensitive resin to the polished copper-plated surface and drying it to form a photosensitive resin film. Then, the unit pattern of a portion shown in Fig. 71 is repeatedly exposed/developed on the photosensitive resin film by laser light. The exposure and development by laser light were carried out by using Laser Stream FX (Think Laboratory). The unit pattern shown in Fig. 71 is a 32.768 mm square pattern produced by a resolution of 12,800 dpi. Figure 71 is a cut out of 1. 024mm square. In the unit pattern shown in Fig. 71, the second pattern is created by using a band pass tear wave for the first pattern, and then the third pattern is binarized by the error diffusion method, and the Monte Carlo method is applied 60 times. The fourth pattern produced. The first pattern used is a bitmap of 32. 768mm square octet generated by a resolution of 12800 dpi, and for a quadratic arrangement PIXCEL[x, y] having an 8-bit depth, substituting piXCEL[x , y] = R[x + yxlmage Width]x255 and the producer. Where x and y are the coordinates of the pixels in the image, and Image Width is the pixel width of the χ coordinate. Arrangement R[] is a subtraction algorithm from Knuth's chaotic generator generated by selecting the value of 〇. 〇 and 1 由 generated by the Random Level Next Double method contained in the ".NET Framework 2. 〇 Level Library". The resulting pseudo-random sequence. For the bandpass filter, the lower limit of the spatial frequency range is 321900 72 201042295 Β is 0. 055/^-1, the spatial frequency is this, 2χ(Τ-Β)/(Τ+Β) = 〇. 58广^ Τ is 〇·100/ζπΓ1 (Inss function-type band-pass filter ^The shape of the peak of the transmission frequency domain is high, and the ratio of 0.9:0.1 is used for the third and the difference diffusion matrix is the error diffusion. The matrix and the 38th figure - the diffusion distance of 4 arrays are combined (the 37th _ ; ^ diffusion distance is 5, the spatial diffusion of the unit pattern of the error diffusion moment is shown in Figure 71. The upper limit of the frequency range Τ is about 〇1 is about 〇· 〇55/zm 1 'The space of the unit pattern shown in the empty figure ^ 1GG/am ° Figure 72 shows the 71st, _ rate distribution map. Then, The system was set to 5#m with a copper chloride solution. The etched amount of the film was again treated with a copper chloride solution; the roller removal photosensitive resin was set to 8, and then, = Processing. At this time, the thickness of the mineral deposit is set to 4/r chrome plus f. At this time, the acetic acid g~ lysis hardenable resin composition grandIc Na ^ Japan Water Chemical Industry Co., Ltd., as a solution of 5G wt% concentration, and will be a photopolymerization initiator Lueirin (manufactured by Hall F, = subname. 2, 4, 6-dimethyl The benzhydryldiphenylphosphine oxide was added in an amount of 5 parts by weight per 2 m of the curable resin component to prepare a coating liquid. The liquid was applied to a cellulose acetate (TAC) film having a thickness of 80 Å. After drying, the coating thickness is 1 〇 _, and the drying machine is set to dry 3 胄. The dried film is pressed by the rubber roller to the concave and convex surface of the previous Z mold, and is closely adhered. In addition, the photocurable resin composition θ is set to the mold side. In this state, the light from the high-pressure mercury lamp having a strength of 20 mW/cm 2 is irradiated from the tac film side so that the amount of light converted into h lines is 321900 73 201042295 200 mJ/cm. The photocurable resin composition layer is cured, and then the TAC film is peeled off from the mold together with the cured resin to form a transparent antiglare film composed of a laminate of a cured resin having a concavity and convexity on the surface and a TAC film. Examples 1 to 5 and Comparative Examples 1-2 The glare film was subjected to the evaluation test described below. (1) Scintillation Evaluation The butterfly system was evaluated by the following method. b First, the pattern of the unit cell 60 shown in the plan view of Fig. 73 (a) was prepared to be about 40 π π χ χ 25 A reticle in which the range of the coffee is regularly arranged. In the unit cell 60, a key-shaped chrome-shielding pattern 61 is formed on the transparent substrate by a line width 10, and a portion where the chrome-shielding pattern 61 is not formed is an opening. 62. The mask is given "nominal S1Ze" (unit: PPKpixel per inch) according to the size of the unit cell. For example, the unit cell length unit unit width of the mask having a resolution of 90 ppi is 2, #mx94#m, and the opening length of the opening X is 272ymx84ym. The unit cell was fabricated according to the numerical values of Table 1, and a mask of the total pattern was prepared in the range of the resolution nominal size to 180 ppi. 321900 74 201042295 Table 1 Resolution nominal size (ppi) Unit cell opening size (// m) Wide size (/W m) Long size (// m) Wide size (# Π1) 50 508 169 498 159 60 423 141 413 131 70 362 120 352 110 80 317 105 307 95 90 282 94 272 84 100 254 84 244 74 120 211 70 201 60 140 181 60 171 50 160 158 52 148 42 180 141 47 131 37 . Next, as in Figure 73 (b), the chrome-shielding pattern 61 of the reticle 63 is placed upwards and placed in the light box 65 (the light source 66 is disposed in the light box), and the glass plate 67 of the thickness of 1.1 is 20/m thick. The sample in which the anti-glare film 70 贴 was adhered to the adhesive was placed on the reticle 63, and visually observed from a position (visual observation place 69) of about 30 cm from the sample, whereby the presence or absence of scintillation was evaluated. This evaluation was performed for each of the prepared masks having nominal sizes of different resolutions. In the above evaluation, depending on the characteristics of the anti-glare film, flicker was observed in a reticle having a resolution higher than the nominal size. At this time, the nominal size of the resolution is used to evaluate the flash. Specifically, a method of discriminating the evaluation value will be exemplified. First, when performing the functional evaluation, strong flicker was observed in the mask with a resolution of 90 ppi, and in the 75 321900 201042295 mask with a resolution of 80 ppi, when the flicker was observed, 8 was given. However, depending on the characteristics of the anti-glare film, only a weak flicker state is observed in the resolution nominal size cover. In order to distinguish the situation from ===production_scissing -==resolution nominal size 8G_(4) 85pρι of the intermediate value of PPi is used as the scintillation evaluation to distinguish the above two states. (2) Evaluation of the penetration characteristics The haze of the anti-glare film was measured using a haze meter (Haze meter, Murakami Color Technology Research Institute 9). The results of the above evaluation test, the production method of the unit pattern, and the production conditions of the mold are shown in Table 2. Further, in Example 4, the evaluation results of the two anti-glare films are respectively shown. Table 2 Example 1 Capital Example 2 Example 3 Comparative Example 1 Comparative Example 2 Example 4 Example 5 Method for making a unit round case Using a y 1 filter, whether or not there is a binarization method 〇——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— Amount (β m) 10 10 10 10 10 10 8 Chrome plating thickness (β m) 4 4 4 4 4 4 4 Glare evaluation (ppi) 80 80 85 50 below 65 110 130 95 Haze (9〇0.6 0. 7 0. 7 1.5 1. 1 0.7 0.8 0. 4 76 321900 201042295 By the scintillation evaluation test of the reticle, according to the example of the use of the band-pass low spatial frequency component reduction pattern, the film i, and the basis Compared with the anti-glare to the anti-glare of the ith pattern of the regular distribution, it is confirmed that the upper limit of the former does not produce a higher level and the performance is better, and the error expansion is used as the second-order material. The fourth material is produced by the two anti-glare films of ^ = and the anti-glare of Example 5, and the threshold method is used. Compared with the anti-glare films of Examples 1 to 3, the former did not observe flashing even in a higher first cover, and exhibited a better optical property. <Example θ> Prepared for an aluminum roll having a diameter of 200 (10) (according to Surface of JIS Α5〇56) • Bronze ballad plating. Copper Barat plating is made of copper plating/thin silver plating/surface copper plating. The thickness of the entire coating layer was set to about 200 #m. The copper plating surface was mirror-polished, and a positive photosensitive resin was applied onto the surface of the polished copper and dried and dried to form a photosensitive resin film. Then, the unit pattern of a portion shown in Fig. 74 is repeatedly exposed/developed on the photosensitive resin film by laser light. The exposure and development by laser light is performed by laser stream FX (Think Laboratory) The unit pattern shown in Fig. 74 is a 32. 768mm square pattern produced by a resolution of 12800 dpi. The 74th figure is a cut out of 1. 024 mm square. The unit pattern shown in Fig. 74 Apply bandpass filtering relative to the first pattern After the second pattern was created, the third pattern of the binarization 77 321900 201042295 was created by the error diffusion method, and the fourth pattern produced by the Monte Carlo method was used repeatedly. The first pattern used was 1000 〇. The density of /mm2 makes the average point diameter of 8/im points irregularly distributed to the producer. At this time, 'because the point is evenly distributed, the triangular lattice corresponding to the set point density is set' so that each of the center coordinates X and γ of the point is from the lattice point to the lattice of the set triangular lattice. Displacement, thereby creating a pattern. Further, the decision of the coordinates after the displacement is a program code generated by C#() shown below (a programming language developed by Microsoft Corporation, and the language specification is defined by "JISX 3015 programming language c#"). The point position is irregularly displaced by giving the coordinate value (X or γ) of the function as the grid point of the Average displacement and Devia1; i〇ri to 〇.3x15//in'. At this time, the "RandomFunction()" in the pseudo-number #code is given as a seed by giving the value 607 to the SIMD oriented Fast Mersenne Twister program 'SFMT verl· 3. 3 installed by the Hiroshima University team. (The code generated by C# used in Embodiment 6) //cx,cy : Displays the X coordinate and γ coordinate of the center of the newly drawn point. &quot;Px ’ py : Displays the X coordinate and γ coordinate of the set triangle lattice point. //pD : 0. 3 //CoreSize : the diameter of the point cX = NormalRandom(px, pD * CoreSize); cY = NormalRandom(py, pD * CoreSize); // The normalization function of random numbers // RandomFunction(): The function that returns the random number 0 &quot;RandomFunctionValueMaxO: A function that returns the maximum value of the random number 321900 78 201042295. // Math : .NET Framework Math Library * public double Norma1Random(doub1e Average, double Deviation) { double buff = 0 ; buff = Deviation*Math. SqrtC-2 * Math.Log (((double)RandomFunction()/( Do uble) 〇

RandomFunctionValueMaxO))) * Math. Sin(2 * Math. PI * ((double)Rando mFunction() / (double)RandomFunctionValueMaxO))) * Math. Sin(2 * Math. PI * ((double)Rando mFunction() / (double)

RandomFunct i onVa1ueMax()))+Average ; if(buff&lt;0){buff=0 ; }; return buff ; } 就高通濾通器而言,係採用空間頻率範圍下限值B為 〇 〇. 1的高通濾波器。而且,就誤差擴散矩陣而言,係 採用以0. 9 . 0. 1之比例將第37圖所示之擴散距離為4之 誤差擴散矩陣與第38圖所示之擴散距離為5之誤差擴散矩 陣予以合成者(第37圖X0.9+第38圖χ〇.丨)。第74圖所示 之單位圖案的空間頻率範圍下限值Β,為約。 . 然後,以氯化銅液進行第1蝕刻處理。此時之蝕刻量 係'設定為。由第1 #刻處理後之輕去除感光性樹脂 膜’再度以氯化銅液進行第2餘刻處理。此時之餘刻量係 設定為18# 然後’進行鑛絡加工,以製作模具。此時, 321900 79 201042295 鍍鉻之厚度係設定為4。 乂醋酸乙ga/合解光硬化性樹脂組成物GRA刪c 8附 (大日本墨水化學卫業(股)製),作成為50重量%濃度之溶 液再將屬於光聚合起始劑之⑽仰公司製, 化學名:2, 4, 6-三甲基节醯基二苯基氧化膦)在每1〇〇重量 份之硬化性難成分添加5重量份,以調製塗布液。將該 塗布液塗布在厚度8G/a m之三乙酸纖維素(tac)薄膜上,以 使乾燥後之塗布厚度成為1Q//m,在設定為阶之乾燥機 中使之乾燥3分鐘。以橡雜將乾燥後之薄膜推壓至先前 所得之模具的凹凸面並使之密接,並使光硬化性樹脂組成 物層成為模具侧。在此狀態下,以成為以h線換算光量為 200mJ/Cm2之方式,從TAC薄膜側照射來自強度2〇mW/cm2 之咼壓水銀燈的光,而使光硬化性樹脂組成物層硬化。然 後’將TAC薄膜連同硬化樹脂從模具剝離,以製作由在表 面具有凹凸之硬化樹脂與TAC薄膜之積層體所構成的透^ 防眩膜。 除了利用閾值法予以二值化以外’與實施例6同樣地 製作反覆排列第75圖中所示一部分之單位圖案的圖案:接 耆,除了使用該圖案以外,與實施例6同樣地製作模具, 以獲得防眩膜。 第76圖係比較第74圖所示圖案的空間頻率分佈、與 第75圖所示圖案的空間頻率分佈之圖。由第76圖得知, 在運用誤差擴散法之第74圖的圖案中,低空間頻率成分會 更減少。 321900 80 201042295 &lt;實施例8&gt; ^ 了反覆排列第77圖中所示—部分之單位圖案的圖 案以外,與實施例6同樣地製作模具,以獲得防眩膜。 第77圖所示之第4圖案係為以12800dpi之解析度所 產生之32· 768mm四方的圖案,第77圖係切出其中之1〇24 mm四方者。該第4圖案係對於第1圖案,運用依據誤差擴 散距離為4之第37圖所示之誤差擴散矩陣的誤差擴散法將 〇第2圖案予以二值化而製作第3圖案,再反覆運用蒙地卡 羅法60而製作者’該第2圖案係運用空間頻率範圍下限值 B及空間頻率範圍上限值τ分別以上述式(I)及(u) [MainPeriod=12(/zm)、BandWidth=20(%)]所示、且穿 - 透頻域峰值之形狀為高斯型的帶通濾通器所得者。前述第 1圖案係為以12800dpi之解析度所產生之32. 768mm四方 的8位元之位元映像’且對於具有8位元深度的二次元排 列 PIXCEL[x,y],代入 PlxcEL[x, y] = R[x+yxImageWidth] ❹x255而製作者。其中,x、y係為影像中之像素的座標, Image Width係為X座標之像素寬度。排列R[]係採用選 取由包含在「.NET Framework2.0級程式庫」之Random 級Next Double法所產生之〇. 〇與i.o之間的值之由Knuth 之籥L數產生器減算演算法所產生的擬似亂數列。 &lt;實施例9&gt; 除了利用閾值法予以二值化以外,與實施例8同樣地 製作反覆排列第78圖中所示一部分之單位圖案的圖案。接 著,除了使用該圖案以外,與實施例8同樣地製作模具, 81 321900 201042295 以獲得防眩膜。 第79圖係比較第77圖所示圖案的空間頻率分佈、與 第78圖所示圖案的空間頻率分佈之圖。由第⑺圖得知, 在運用誤差擴散法之第77圖的圖案中,低空 更m 丁又刀曰 、由本發明之方法所製作之防眩膜等之施有防眩處理之 ^明基材係具有反映低空間頻率成分少之圖案的微細凹凸 表面形狀’因此不會產生閃爍,且顯現充分之防眩性,亦 =產生白濁現象。此外,由於霧度亦低,因此在配置於 衫像顯示裝置時亦不會造成對比之降低。此外,由於難以 =阻私料料現之孤立財,因此亦適合進雜刻 〈參1例:運用帶通;慮波器進行之圖案製作及評價〉 错由以下所示之方法製作圖案1至15。 24^Γ 1 :對於以1111個/咖2之密度使平均點徑為 /點残恥料製作之在第80 ®巾顯示_部分之 通、二用空間頻率範圍下限值Β,為0. °7心1之高 通遽波器裝作第2圖案後,藉由以m為間值之間值法予 以一值化而獲得圖案1。第 _ 之圖。另外,在上述第1圖“製作:將圖案1局部放大 ㈣之第1圖案相同二=時:^ ⑵圖案2··對於用於圖索/、t點刀佈之均勻化。 用採用以u…之比例將第3=:的第2圖案’係運 之誤差擴散矩陣與第38圖所示之擴散距 == 321900 82 201042295RandomFunct i onVa1ueMax()))+Average ; if(buff&lt;0){buff=0 ; }; return buff ; } For the Qualcomm filter, the lower limit B of the spatial frequency range is 〇〇. High pass filter. Moreover, in the case of the error diffusion matrix, the error diffusion matrix having a diffusion distance of 4 as shown in FIG. 37 and the error diffusion of the diffusion distance of 5 shown in FIG. 38 are used in a ratio of 0.9.0.1. The matrix is combined (Fig. 37, X0.9+38, Fig. 丨). The lower limit of the spatial frequency range 单位 of the unit pattern shown in Fig. 74 is approximately. Then, the first etching treatment is performed with a copper chloride solution. The etching amount at this time is set to . The photosensitive resin film was lightly removed by the first # etching treatment, and the second remaining treatment was performed again with the copper chloride solution. At this time, the amount of the balance is set to 18# and then the mineral processing is performed to make a mold. At this time, 321900 79 201042295 chrome thickness is set to 4.乂 乂 ga ga / / / 乂 GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大The company name, chemical name: 2, 4, 6-trimethylsulfonyldiphenylphosphine oxide, was added in an amount of 5 parts by weight per 1 part by weight of the hardenable component to prepare a coating liquid. This coating liquid was applied onto a cellulose triacetate (tac) film having a thickness of 8 G/a m so that the coating thickness after drying was 1 Q/m, and it was dried in a dryer set to a step for 3 minutes. The dried film was pressed against the uneven surface of the previously obtained mold with a rubber and adhered thereto, and the photocurable resin composition layer was formed on the mold side. In this state, the light from the TAC film side is irradiated with light from a TAC film side to a compacted mercury lamp having a strength of 2 〇 mW/cm 2 so that the light curable resin composition layer is cured, so that the amount of light converted by the h line is 200 mJ/cm 2 . Then, the TAC film and the cured resin were peeled off from the mold to form a transparent glare film composed of a laminate of a cured resin having a concavity and convexity on the surface and a TAC film. A pattern in which a unit pattern of a part shown in FIG. 75 was repeatedly arranged in the same manner as in Example 6 was produced except that the threshold method was used for the same, and a mold was produced in the same manner as in Example 6 except that the pattern was used. Obtain an anti-glare film. Fig. 76 is a graph comparing the spatial frequency distribution of the pattern shown in Fig. 74 with the spatial frequency distribution of the pattern shown in Fig. 75. As seen from Fig. 76, in the pattern of Fig. 74 using the error diffusion method, the low spatial frequency component is further reduced. 321900 80 201042295 &lt;Example 8&gt; ^ A mold was produced in the same manner as in Example 6 except that the pattern of the unit pattern shown in Fig. 77 was repeatedly arranged to obtain an anti-glare film. The fourth pattern shown in Fig. 77 is a 32.768 mm square pattern produced by a resolution of 12800 dpi, and the 77th figure is one of 24 square squares cut out. In the fourth pattern, the second pattern is binarized by the error diffusion method of the error diffusion matrix shown in FIG. 37 according to the error diffusion distance of 4 for the first pattern, and the third pattern is created, and the second pattern is created. The maker of the second Carlo system 60 uses the spatial frequency range lower limit value B and the spatial frequency range upper limit value τ by the above equations (I) and (u) [MainPeriod=12 (/zm), Bandwidth=20(%)], and the pass-through frequency domain peak shape is a Gaussian bandpass filter. The first pattern is a 32. 768mm square 8-bit bitmap image generated by a resolution of 12800 dpi and for a quadratic arrangement PIXCEL[x, y] having an 8-bit depth, substituting PlxcEL[x, y] = R[x+yxImageWidth] ❹x255 and the producer. Where x and y are the coordinates of the pixels in the image, and Image Width is the pixel width of the X coordinate. Arrangement R[] is based on the value of the nu. io and io generated by the Random Level Next Double method contained in the ".NET Framework 2.0 level library". The Knuth 籥L number generator subtraction algorithm is used. The resulting pseudo-random sequence. &lt;Example 9&gt; A pattern of a unit pattern of a part shown in Fig. 78 was repeatedly arranged in the same manner as in Example 8 except that the threshold method was used for binarization. Then, a mold was produced in the same manner as in Example 8 except that this pattern was used, and 81 321900 201042295 was obtained to obtain an anti-glare film. Fig. 79 is a view comparing the spatial frequency distribution of the pattern shown in Fig. 77 with the spatial frequency distribution of the pattern shown in Fig. 78. As is apparent from the figure (7), in the pattern of the 77th drawing of the error diffusion method, the anti-glare treatment such as the anti-glare film produced by the method of the present invention is used for the anti-glare treatment. The shape of the fine uneven surface reflecting the pattern having a small low spatial frequency component is such that no flicker is generated, and sufficient anti-glare property is exhibited, and a white turbidity phenomenon is generated. In addition, since the haze is also low, there is no reduction in contrast when disposed on the shirt image display device. In addition, since it is difficult to prevent the material from being isolated, it is also suitable for the engraving. <Example: Using the band pass; patterning and evaluation by the wave filter> The pattern 1 is created by the method shown below. 15. 24^Γ 1 : For the density of 1111 / coffee 2 to make the average point diameter / point shame made in the 80th towel shows the _ part of the pass, the second use of the spatial frequency range lower limit Β, is 0. After the high-pass chopper of the heart is mounted as the second pattern, the pattern 1 is obtained by binarizing m by the value between the values. Figure _. In addition, in the above-mentioned first drawing "production: the first pattern of the pattern 1 is partially enlarged (four) is the same as two = ^ (2) pattern 2 · · for the homogenization of the knife cloth for the map /, t point. The ratio of ... will be the third pattern of the 3rd:: error diffusion matrix and the diffusion distance shown in Fig. 38 == 321900 82 201042295

矩陣予以合成之誤差擴散矩陣(第371χ〇. 9+第38圖\〇. D 的誤差擴散法,獲得屬於第3圖案之圖案第82圖係顯 示將圖案2局部放大之圖。 (3) 圖案3 :將蒙地卡羅法反覆6〇次運用在圖案2,以 獲得屬於第4圖案之圖案3。第83圖係顯示將圖案3局部 放大之圖。 (4) 圖案4·除了使用藉由以16〇〇個/mm2之密度使平均 〇 點控為之點不規則分佈而製作之在第84圖中顯示一 部分之第1圖案B以外,與圖案1同樣地獲得圖案4。第 85圖係顯示將圖案4局部放大之圖。 (5) 圖案5:對於用於圖案4之製作的第2圖案,係運 用採用以〇. 9 . 0. 1之比例將第37圖所示之擴散距離為4 之誤差擴散矩陣與第38圖所示之擴散距離為5之誤差擴散 矩陣予以合成之誤差擴散矩陣(第37圖x0. 9+第38圖χ〇. 1) 的誤差擴散法,獲得屬於第3圖案之圖案5。第86圖係顯 Q 示將圖案5局部放大之圖。 (6) 圖案6 :將蒙地卡羅法反覆60次運用在圖案5,以 獲得屬於第4圖案之圖案6。第87圖係顯示將圖案6局部 放大之圖。 (7) 圖案7:除了使用藉由以2500個/賴2之密度使平均 ' 點徑為16# m之點不規則分佈而製作之在第88圖中顯示一 部分之第1圖案C以外,與圖案1同樣地獲得圖案7。第 89圖係顯示將圖案7局部放大之圖。 (8) 圖案8 :對於用於圖案7之製作的第2圖案,係運 83 321900 201042295 用採用以0· 9 : 0. 1之比例將第37圖所示之擴散距離為4 之誤差擴散矩陣與第38圖所示之擴散距離為5之誤差擴散 矩陣予以合成之誤差擴散矩陣(第37圖xO. 9+第38圖x〇. 1) 的誤差擴散法,獲得屬於第3圖案之圖案8。第90圖係顯 示將圖案8局部放大之圖。 (9) 圖案9:將蒙地卡羅法反覆60次運用在圖案8,以 獲得屬於第4圖案之圖案9。第91圖係顯示將圖案9局部 放大之圖。 (10) 圖案10·除了使用藉由以4444個/mm2之密度使平 均點徑為12//m之點不規則分佈而製作之在第92圖中顯示 一部分之第1圖案D以外,與圖案!同樣地獲得圖案1Q。 第93圖係顯示將圖案1〇局部放大之圖。 (Π)圖案11 :對於用於圖案10之製作的第2圖案, 係運用採用以0.9 : 〇· 1之比例將第37圖所示之擴散距離 為4之誤差擴散矩陣與第38圖所示之擴散距離為5之誤差 擴散矩陣予以合成之誤差擴散矩陣(第”圖⑼料第38圖父 〇. 1)的誤差擴散法,獲得屬於第3圖案之圖案丨丨。第94 圖係顯示將圖案11局部放大之圖。 (12)圖案12:將蒙地卡羅法反覆6〇次運用在圖案u, 以獲得屬於第4圖案之圖案12。第95圖係顯示將圖案12 局部放大之圖。 、,(13)圖案13 :除了使用藉由以ι0000個/mm2之密度使 平均點徑為8/ζιη之點不規則分佈而製作之在第96圖中顯 示一部分之第1圖案E以外,與圖案i同樣地獲得圖案13。 321900 84 201042295 第97圖係顯示將圖案13局部放大之圖。 孫,重(田14)圖案14 :對於用於圖案13之製作的第2圖幸 係運用採用以〇 9 . η , 弟Ζ圖案, .,0·1之比例將第37圖所示之擴耑坧齄 為之誤差擴散矩陣食第% jfj $ _ &gt; n 、 擴散矩陣予以入成之::第38圖所不散距離為5之誤差 η ^ 口成之誤差擴散矩陣(第37圖χ〇 胃 ο·1)的誤差擴敎法,獲得屬於第3圖案之❹9fHx 圖係顯示將圖案14局部放大之圓。圖案…第98 Ο ΟThe error diffusion matrix synthesized by the matrix (the error diffusion method of 371. 9+ 38th diagram 〇. D, obtaining the pattern belonging to the third pattern, Fig. 82 shows a partial enlargement of the pattern 2. (3) Pattern 3: Apply Monte Carlo method to pattern 2 repeatedly to obtain pattern 3 belonging to the fourth pattern. Fig. 83 shows a partial enlargement of pattern 3. (4) Pattern 4·except for use The pattern 4 was obtained in the same manner as the pattern 1 except that the first pattern B was partially formed by an irregular distribution of the average 〇 point control at a density of 16 //mm 2 . A partial enlargement of the pattern 4 is displayed. (5) Pattern 5: For the second pattern used for the pattern 4, the diffusion distance shown in Fig. 37 is used in a ratio of 〇.9.0.1. The error diffusion method of the error diffusion matrix of 4 and the error diffusion matrix of the diffusion distance of 5 shown in Fig. 38 is synthesized by the error diffusion method (Fig. 37 x 0. 9 + Fig. 38 χ〇. 1). 3 pattern of pattern 5. Figure 86 shows the pattern of partial enlargement of pattern 5. (6) Pattern 6: Monte Carlo method 60 times is applied to the pattern 5 to obtain the pattern 6 belonging to the fourth pattern. Fig. 87 shows a partial enlargement of the pattern 6. (7) Pattern 7: except for using a density of 2,500 / Å 2 The pattern 7 is obtained in the same manner as the pattern 1 except that the dot pattern is an irregular distribution of dots of 16 #m, and a part of the first pattern C is displayed in Fig. 88. Fig. 89 shows that the pattern 7 is partially enlarged. Fig. 8 (8) Pattern 8: For the second pattern used for the pattern 7 production, the system 83 831900 201042295 uses the error of the diffusion distance shown in Fig. 37 to be 4 in the ratio of 0·9:0.1. The error diffusion method of the diffusion diffusion matrix (Fig. 37 x. 9+ 38th figure x 〇. 1) synthesized by the diffusion matrix and the error diffusion matrix of the diffusion distance of 5 shown in Fig. 38 is obtained by the third pattern. Pattern 8. Fig. 90 shows a partial enlargement of the pattern 8. (9) Pattern 9: The Monte Carlo method is applied 60 times over the pattern 8 to obtain a pattern 9 belonging to the fourth pattern. A partial enlargement of the pattern 9 is shown. (10) The pattern 10 is used except that the average dot diameter is 1 by a density of 4444/mm2. A pattern 1Q is obtained in the same manner as the pattern!, except that the second pattern D is partially distributed and displayed in Fig. 92. Fig. 93 shows a partial enlargement of the pattern 1〇. Π) Pattern 11: For the second pattern used for the pattern 10, an error diffusion matrix having a diffusion distance of 4 shown in Fig. 37 and a ratio shown in Fig. 38 are used at a ratio of 0.9: 〇·1. The error diffusion method synthesized by the error diffusion matrix with a diffusion distance of 5 (the first figure (9) is the error diffusion method of Fig. 38), and the pattern 属于 belonging to the third pattern is obtained. Fig. 94 shows a partial enlargement of the pattern 11. (12) Pattern 12: The Monte Carlo method is applied over the pattern u for 6 times to obtain the pattern 12 belonging to the fourth pattern. Fig. 95 is a view showing a partial enlargement of the pattern 12. (13) Pattern 13: A part of the first pattern E is displayed in Fig. 96, except that the first pattern E is displayed in the 96th figure by using an irregular distribution of dots having an average dot diameter of 8/ζιη at a density of ι0000/mm2. The pattern i similarly obtains the pattern 13. 321900 84 201042295 Figure 97 shows a partial enlargement of the pattern 13. Sun, heavy (Tian 14) pattern 14: For the second figure used for the production of pattern 13, it is for the use of 〇9. η, Ζ Ζ pattern, ., 0·1 ratio to expand the picture shown in Figure 37 The error diffusion matrix is the first jfj $ _ &gt; n , and the diffusion matrix is integrated into:: Figure 38 is the distance of 5 error η ^ The error diffusion matrix (Figure 37) The error expansion method of the stomach ο1) obtains the f9fHx pattern belonging to the third pattern and displays a circle in which the pattern 14 is partially enlarged. Pattern...第98Ο Ο

(15)圖案15:將蒙地卡羅法反 以獲得屬於第4圖宰之圖宏ις “n人建用在圖案14, 局部放大之圖。 圖係顯示將圖案U 第100圖係顯示筮】 _至第,二二 =間頻率分佈。第 ^ 1Λ 糸顯不圖案1至15的空間頻率分佈。此 ’弟106圖係囊整因圖案的製作 :罐分減少程度之圖,1〇6_=: :均驗不同之任-個第1圖案時,藉由高職器之運 用、及誤差擴散法、蒙地卡羅法m 之運 低*門储m 卡羅法之制,亦可有效率減少 復二特別是在運用誤差擴散法之第3圖案及 果顯著。 之第4圖案,低空間頻率成分之減少效 出之= 器時,與帶通遽波器不同,由於未在抽 产二:―5又疋上限值’因此亦會有孤立點之產生的疑 至15如示,若所用之第1圖案為將點 了時’則如第1〇7圖所示,並沒有多數個 孤立點產生之情形。 321900 85 201042295 另一方面’在使用將第108圖所示夕宜由(15) Pattern 15: The Monte Carlo method is used to obtain the map macro ις belonging to the 4th figure. “N people are used in the pattern 14, and the partial magnification is shown. The figure display shows the pattern U. 】 _ to the second, the second two = the frequency distribution. The first ^ 1 Λ 糸 shows the spatial frequency distribution of the pattern 1 to 15. This 'dire 106 picture of the sac sac plaque pattern: the degree of reduction of the tank, 1 〇 6 _ =: : When the different first-first pattern is used, it can be used by the application of the high-level device, the error diffusion method, the Monte Carlo method, and the operation of the m-caro method. The efficiency reduction complex II is particularly effective in the third pattern using the error diffusion method. The fourth pattern, when the low spatial frequency component is reduced, is different from the bandpass chopper, because it is not in production. 2: ―5 疋 疋 upper limit 'Therefore there will be doubts about the occurrence of isolated points to 15 as shown, if the first pattern used is to be clicked, then as shown in Figure 1〇7, there is no majority The situation in which isolated points are generated. 321900 85 201042295 On the other hand 'in use, it will be shown on the 108th

第1圖案以與上 器及藉閾值法進 第110圖係顯示 电2的製作相同 第109圖係顯示對於第1〇8圖所示的第 述圖案1的製作相同方法將運用高通濾波器 行二值化所得之圖案予以局部放大的圖。The first pattern is the same as the creation of the display device 2 by the upper device and the threshold value method. The 109th display shows the same method for the production of the first pattern 1 shown in the first FIG. 8 and the high-pass filter line is applied. The pattern obtained by binarization is partially enlarged.

+丄 ^的眾作相同 方法將運用高通驗ϋ及藉誤差法崎二值化所得之 圖案予以局部放大的圖。第111圖係顯示對於第108圖所 不的第1圖案以與上述圖案3的製作相同方法將運用高通 濾'波器、藉誤差擴散法進行二值化及運时地卡羅法所得 之圖案予以局部放大的圖。第112圖係顯示第⑽至⑴ 圖所示的圖案之孤立職生錄圖。第113圖係比較第⑽ 至⑴圖所示圖⑽空間頻率分佈之圖。由第112圖及第 ⑴圖得知,即使在第&quot;案包含許多高空賴率成分時, 藉由高通纽ϋ及蒙地卡羅法之運用,即可獲得充分減少 低上間頻率成分且孤立點之產生較少之良好的圖案。 第1圖係顯示可❹在本發明之透明基材之防眩處理 方法及防眩義製造方法之錢祕配置多數個點而製作 出的第1圖案之較佳一例之放大圖。 321900 86 201042295 第2圖係顯示可使用在本發明之透明基材之防眩處理 方法及防眩膜的製造方法之由藉亂數來決定濃淡的光柵圖 像所構成的第1圖案之較佳一例圖。 • 帛3圖係顯示將第2圖所示第1圖案的-部分予以放 大之圖。 第4圖係比較將藉不規則地配置多數個點而製作的第 2案(不規則點圖案)所獲得之二次元排列藉高速傅利葉 〇轉換(FFO轉換為㈣頻域所獲得之㈣頻率分布的一 亂數而決定濃淡的光栅圖像(亂數光柵圖像)所 頻域所^ ^㈣得狀二次元排職胸_換為空間 頻域所獲得之空間頻率分布的一例之圖。 第5圖係顯示將由第i圖所 次元排列藉m轉換為空間 弟=所獲件的二 布圖。 貝竦所侍一次兀性空間頻率分 〇 第6圖係顯示對於第4圖 進行振幅修正後結果之-例圖。业、▽、工間頻率分布 第7圖係顯示藉由運用高通 (穿透,中之穿透帶形狀的一例圖皮-而抽出的空間頻域 第8圖係顯示藉由運 (穿透帶)中之穿透帶峰值形抽㈣空間頻域 第9圖係顯示藉由用古 (穿之穿透帶峰值^的的空間頻蜮 域(穿透帶)㈣物值空間 km、山一 逆用帶通濾波器 頻 3219〇〇 87 201042295 第11圖係顯示藉由運用帶通 域(穿透帶)中之穿透帶峰值形狀的另一例圖。出的工間頻 第12 ®係顯示藉由運料㈣波器而 域(穿透帶Η之穿透帶峰值形狀的另一例圖。的工間頻 域(穿透帶Η之穿透帶峰值形狀的另—例圖。 1頻 第14圖係顯示藉由運用帶通·器 域(穿透帶)中之穿透帶峰值形狀的另一例圖。的工門頻 第15圖係顯示對於具有第5圖所示空間頻率分布的第 圖案運用帶職波轉之二:欠元財關率分布的 圖0 第16圖係顯示於第丨圖所示第丨圖案運用帶通濾波器 而衣作出的第2圖案之一例的放大圖。 、第17圖係顯示2χ(τ_Β)/(τ + Β)的值、與藉閣值法將 運用π通濾波器所得到之第2圓案予以二值化而獲得的自 相關係數最大值之關係圖。 第18圖係顯示2χ(τ_Β)/(τ + Β)的值、與藉閾值法將 運用帶通濾波器所得到之第2圖案予以二值化而獲得的圖 案之孤立小點產生個數之關係圖。 第19圖係顯示對於第16圖所示影像資料藉由解析灰 階指標的頻率圖而得到之灰階指標的累積卑之分布圖。 第20圖係顯示經閾值法二值化過的第2圖案之一例放 大圖。 第21圖係顯示將第2〇圖所示經二值化的第2圖案所 88 321900 201042295 得二次元排列藉高速傅利葉轉換(FFT)轉換為空間頻域而 得到之空間頻率分布的圖。 - 第22圖係用以說明一般為人所知的誤差擴散矩陣中 的轉換誤差之擴散權重圖。 第23圖係顯示將運用依據Floyd &amp; Steinberg的矩陣 之誤差擴散法而得到的第3圖案之一例予以局部放大圖。 第24圖係顯示將運用依據Jarvis, Judis and Nink 的矩陣之誤差擴散法而得到的第3圖案之一例予以局部放 〇 ^大圖。 第25圖係顯示將運用依據Stucki的矩陣之誤差擴散 法而得到的第3圖案之一例予以局部放大圖。 第26圖係顯示將運用依據Sierra 3 Line的矩陣之誤 差擴散法而得到的第3圖案之一例予以局部放大圖。 第27圖係顯示將運用依據Sierra 2 Line的矩陣之誤 差擴散法而得到的第3圖案之一例予以局部放大圖。 q 第28圖係顯示將運用依據Sierra Filter Lite的矩 陣之誤差擴散法而得到的第3圖案之一例予以局部放大 圖。 第29圖係顯示將運用依據Burks的矩陣之誤差擴散法 而得到的第3圖案之一例予以局部放大圖。 第30圖係顯示將運用依據Stevenson &amp; Archeg的矩 陣之誤差擴散法而得到的第3圖案之一例予以局部放大 圖。 第31圖係顯示將使用於第23至30圖所示的第3圖案 89 321900 201042295 之製作的第2圖案予以局部放大之圖。 第32圖係比較經依據第23至30圖所示的各種矩陣之 誤差擴散法而二值化後的第3圖案之空間頻率分布、與經 閾值法二值化後的圖案之空間頻率分布的圖。 第33圖係將藉運用依據一般為人所知的誤差擴散矩 陣之誤差擴散法製作第3圖案時所產生的孤立點之產生個 數、與藉閾值法製作所得時進行比較之圖。 第34圖係顯示擴散距離為1的誤差擴散矩陣之一例 圖。 第35圖係顯示擴散距離為2的誤差擴散矩陣之一例 圖。 第36圖係顯示擴散距離為3的誤差擴散矩陣之一例 圖。 第37圖係顯示擴散距離為4的誤差擴散矩陣之一例 圖。 第38圖係顧示擴散距離為5的誤差擴散矩陣之一例 圖。 第39圖係顯示擴散距離為6的誤差擴散矩陣之一例 圖。 第40圖係顯示擴散距離為3 + 4的誤差擴散矩陣之一 例圖。 第41圖係顯示擴散距離為4+5的誤差擴散矩陣之一 例圖。 第42圖係顯示擴散距離為3 + 4 + 5的誤差擴散矩陣之 90 321900 201042295 一例圖。 第43圖係顯示將運用依據第34圖所示的矩陣之誤差 • 擴散法而得到的第3圖案之一例予以局部放大圖。 . 第44圖係顯示將運用依據第35圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 第45圖係顯示將運用依據第36圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 第46圖係顯示將運用依據第37圖所示的矩陣之誤差 ^ 擴散法而得到的第3圖案之一例予以局部放大圖。 第47圖係顯示將運用依據第38圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 . 第48圖係顯示將運用依據第39圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 第49圖係顯示將運用依據第40圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 q 第50圖係顯示將運用依據第41圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 第51圖係顯示將運用依據第42圖所示的矩陣之誤差 擴散法而得到的第3圖案之一例予以局部放大圖。 第52圖係將藉運用依據第34至42圖所示的誤差擴散 矩陣之誤差擴散法製作第3圖案時所產生的孤立點之產生 個數、與藉閾值法製作所得時進行比較之圖。 第53圖係將藉依據第34至42圖所示的誤差擴散矩陣 之誤差擴散法所二值化過的第43至51圖之第3圖案的空 91 321900 201042295 間頻率分布、與藉閾值法所二值化過的圖案之空間頻率分 布進行比較之圖。 第54圖⑷至(c)係顯示依據蒙地卡羅法所進行的孤 立點之處理方法例之圖。 第55圖⑷至⑴係顯示蒙地卡羅法運用次數所導致 第4圖案的變化之圖。 第56圖係顯示蒙地卡羅法運用次數與孤立點產生個 數的關係圖。 、第57圖⑷至(e)係示意性顯示本發明之模具製造方 法的前半部之較佳一例圖。 、第58圖⑷至(c)係示意性顯示本發明之模具製造 法的後半部之較佳一例圖。 、 第意賴#第丨似彳步财雜遍的狀 怒圖。 第60圖(a)及⑻係示意性顯示由第i則步驟所形成 的凹凸面藉第2韻刻步驟予以和緩狀態之圖。 第61圖係顯示將在實施例i所使用的單位 部放大圖。 未卞以局 之第系顯示將製作實施例1至3的單位圖案所使用 &lt;弟I圖案予以局部放大之圖。 第63圖係顯示將在實施例2所使用 部放大圖。 固系卞以局 第6 4圖係顯示將在實施例3所使用位以 部放大圖。 口未丁以局 321900 92 201042295 第65圖係顯示將在比較例1所使用的單位圖案予以局 部放大圖。 • 第66圖係顯示將在比較例2所使用的單位圖案予以局 . 部放大圖。 第67圖係顯示將在實施例4所使用的單位圖案予以局 部放大圖。 第68圖係顯示在實施例1至3所使用的單位圖案之空 間頻率分布圖。 ® 第69圖係顯示在比較例1至2所使用的單位圖案之空 間頻率分布圖。 第70圖係顯示在實施例4所使用的單位圖案之空間頻 率分布圖。 第71圖係顯示將在實施例5所使用的單位圖案予以局 部放大圖。 第72圖係顯示在實施例5所使用的單位圖案之空間頻 ❹率分布圖。 第73圖(a)及(b)係示意性顯示閃爍的評價方法之圖。 第74圖係顯示將在實施例6所使用的單位圖案予以局 部放大圖。 第75圖係顯示將在實施例7所使用的單位圖案予以局 - 部放大圖。 第76圖係比較第74圖所示圖案的空間頻率分布、與 第75圖所示圖案的空間頻率分布之圖。 第77圖係顯示將在實施例8所使用的單位圖案予以局 93 321900 201042295 部放大圖。 第78圖係顯示將在實施例9所使用的單位 部放大圖。 局 空間頻率分布、與 第79圖係比較第77圖所示圖案的 第78圖所示圖案的空間頻率分布之圖。 以局示將圖案1的製作所使用之第1圖案- 第81圖係顯示將圖案1局部放大之圖。 第82圖係顯示將圖案2局部放大之圖。 第83圖係顯示將圖案3局部放大之圖。 第84圖係顯示將圖案4的製作所使用之第 以局部放大之圖。 國系β予 第85圖係顯示將圖案4局部放大之圖。 第86圖係顯示將圖案5局部放大之圖。 第87圖係顯示將圖案6局部放大之圖。 第88圖係顯示將圖案7的製作所使用之第1 以局部放大之圖。 茱°予The method of +丄^ is the same. The method is to use a high-pass test and a partial enlargement of the pattern obtained by the error method. Fig. 111 is a view showing a pattern obtained by using a high-pass filter, a binarization by error diffusion method, and a clock method by the same method as the above-described pattern 3 in the same manner as the above-described pattern 3. A partially enlarged view. Fig. 112 is a diagram showing the isolated occupational records of the patterns shown in Figs. (10) to (1). Figure 113 is a comparison of the spatial frequency distribution of the graph (10) shown in Figures (10) to (1). From Fig. 112 and (1), even if the case contains many high-altitude components, by using the Qualcomm and Monte Carlo methods, the low-frequency components can be sufficiently reduced. The isolated point produces fewer good patterns. Fig. 1 is an enlarged view showing a preferred example of a first pattern which can be produced by a plurality of points in the anti-glare treatment method and the anti-glare manufacturing method of the transparent substrate of the present invention. 321900 86 201042295 Fig. 2 is a view showing a preferred aspect of the first pattern which can be used for the antiglare treatment method and the method for producing an antiglare film of the transparent substrate of the present invention, wherein the raster image is determined by a random number. An example of a picture. • The 帛3 image shows a diagram in which the - part of the first pattern shown in Fig. 2 is enlarged. Fig. 4 is a comparison of the quadratic array obtained by the second case (irregular dot pattern) which is produced by irregularly arranging a plurality of points, by the high-speed Fourier transform (FFO converted to the (four) frequency domain (four) frequency distribution A random number determines the image of the spatial frequency distribution obtained by the frequency domain in the frequency domain of the raster image (random raster image). The figure 5 shows the second layout of the sub-element of the i-th image, which is converted into the space brother = the obtained piece. The first picture of the 空间 空间 空间 空间 空间 空间 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 The result-example diagram. The industry, ▽, and inter-work frequency distribution diagram 7 shows the spatial frequency domain extracted by using Qualcomm (penetration, the shape of the penetration belt in the middle). The peak shape of the penetrating zone in the transport (penetration zone) is based on the spatial frequency domain (penetration zone) (four) Space km, mountain-one inverse bandpass filter frequency 3219〇〇87 201042295 Figure 11 shows Another example of the shape of the penetrating band peak in the band-passing zone (penetration zone) is used. The inter-work frequency 12® system shows the peak of the penetration band through the transport (four) wave Another example of the shape of the inter-work frequency domain (an example of the peak shape of the penetration band of the enthalpy). The 1st picture of the 1st frequency is shown by using the band-passing field (penetration band) Another example of the penetration of the peak shape is shown in Fig. 15. The first pattern of the spatial frequency distribution shown in Fig. 5 is shown in Fig. 2 with the shift of the occupational wave rate: Fig. 16 is an enlarged view showing an example of a second pattern made by applying a band pass filter to the second pattern shown in Fig. 1. Fig. 17 shows the value of 2χ(τ_Β)/(τ + Β), A graph showing the relationship between the maximum value of the autocorrelation coefficient obtained by binarizing the second round obtained by using the π-pass filter by the value method. Fig. 18 shows the relationship of 2χ(τ_Β)/(τ + Β) The value and the threshold value method are used to calculate the number of isolated small dots of the pattern obtained by binarizing the second pattern obtained by the band pass filter. Figure 19 shows the distribution of the gray scale indicators obtained by analyzing the frequency map of the gray scale index for the image data shown in Fig. 16. Fig. 20 shows the second pattern binarized by the threshold method. An enlarged view of one example. Fig. 21 shows the spatial frequency obtained by converting the second pattern of the binarized second pattern 88 321900 201042295 shown in Fig. 2 by the fast Fourier transform (FFT) into the spatial frequency domain. The map of the distribution - Figure 22 is used to illustrate the diffusion weight map of the conversion error in the generally known error diffusion matrix. Figure 23 shows the error diffusion method based on the matrix of Floyd &amp; Steinberg. A case of an example of the third pattern is partially enlarged. Fig. 24 is a view showing a case where a third pattern obtained by using the error diffusion method of the matrix of Jarvis, Judis and Nink is partially released. Fig. 25 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix of Stucki. Fig. 26 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix of Sierra 3 Line. Fig. 27 is a partially enlarged view showing an example of a third pattern obtained by the error diffusion method based on the matrix of the Sierra 2 Line. q Fig. 28 is a partial enlarged view showing an example of a third pattern obtained by the error diffusion method based on the matrix of the Sierra Filter Lite. Fig. 29 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the Burks matrix. Fig. 30 is a partial enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix of Stevenson & Archeg. Fig. 31 is a partially enlarged view showing a second pattern produced by using the third pattern 89 321900 201042295 shown in Figs. 23 to 30. Figure 32 is a comparison of the spatial frequency distribution of the third pattern binarized by the error diffusion method of the various matrices shown in Figs. 23 to 30, and the spatial frequency distribution of the pattern binarized by the threshold method. Figure. Fig. 33 is a diagram comparing the number of generated isolated points when the third pattern is created by the error diffusion method based on the generally known error diffusion matrix, as compared with the case where the threshold value method is used. Figure 34 is an example of an error diffusion matrix showing a diffusion distance of one. Figure 35 is an example of an error diffusion matrix showing a diffusion distance of two. Figure 36 shows an example of an error diffusion matrix with a diffusion distance of three. Figure 37 is a diagram showing an example of an error diffusion matrix with a diffusion distance of four. Figure 38 is an example of an error diffusion matrix with a diffusion distance of 5. Figure 39 is a diagram showing an example of an error diffusion matrix with a diffusion distance of 6. Figure 40 shows an example of an error diffusion matrix with a diffusion distance of 3 + 4. Figure 41 shows an example of an error diffusion matrix with a diffusion distance of 4+5. Figure 42 shows an error diffusion matrix with a diffusion distance of 3 + 4 + 5. 90 321900 201042295 An example of a graph. Fig. 43 is a partially enlarged view showing an example of a third pattern obtained by using the error/diffusion method of the matrix shown in Fig. 34. Fig. 44 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix shown in Fig. 35. Fig. 45 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix shown in Fig. 36. Fig. 46 is a partially enlarged view showing an example of a third pattern obtained by using the error ^ diffusion method of the matrix shown in Fig. 37. Fig. 47 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix shown in Fig. 38. Fig. 48 is a partially enlarged view showing an example of a third pattern obtained by applying the error diffusion method according to the matrix shown in Fig. 39. Fig. 49 is a partially enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix shown in Fig. 40. q Fig. 50 is a partial enlarged view showing an example of a third pattern obtained by using the error diffusion method of the matrix shown in Fig. 41. Fig. 51 is a partially enlarged view showing an example of a third pattern obtained by applying the error diffusion method according to the matrix shown in Fig. 42. Fig. 52 is a view showing the number of generated isolated points when the third pattern is created by the error diffusion method based on the error diffusion matrix shown in Figs. 34 to 42 and compared with the case where the threshold value method is used. Figure 53 is a diagram showing the frequency distribution and the threshold value method of the third pattern of the third pattern of the 43th to 51st graphs binarized by the error diffusion method of the error diffusion matrix shown in Figs. 34 to 42. A comparison of the spatial frequency distributions of the binarized patterns. Fig. 54 (4) to (c) are diagrams showing an example of a method of processing an isolated point in accordance with the Monte Carlo method. Fig. 55 (4) to (1) show a graph showing changes in the fourth pattern caused by the number of applications of the Monte Carlo method. Figure 56 shows the relationship between the number of applications of Monte Carlo and the number of isolated points. Fig. 57 (4) to (e) are diagrams schematically showing a preferred example of the first half of the mold manufacturing method of the present invention. Fig. 58 (4) to (c) are diagrams schematically showing a preferred example of the latter half of the mold manufacturing method of the present invention. The first 赖 赖 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨. Fig. 60 (a) and (8) are diagrams schematically showing the state in which the uneven surface formed by the i-th step is subjected to the second rhyme step. Fig. 61 is an enlarged view showing a unit portion to be used in the embodiment i. The image of the unit pattern of the first to third embodiments used in the first embodiment is shown in a partial enlargement. Fig. 63 is an enlarged view showing a portion to be used in the second embodiment. The solid state is shown in the figure. The figure used in the third embodiment is enlarged. The singularity of the singularity of the singularity of the first embodiment is shown in Fig. 65. • Fig. 66 shows an enlarged view of the unit pattern to be used in Comparative Example 2. Fig. 67 is a partially enlarged view showing the unit pattern to be used in the fourth embodiment. Fig. 68 is a view showing the spatial frequency distribution of the unit pattern used in the first to third embodiments. ® Figure 69 shows the spatial frequency distribution of the unit pattern used in Comparative Examples 1 to 2. Fig. 70 is a view showing the spatial frequency distribution of the unit pattern used in the fourth embodiment. Fig. 71 is a partially enlarged view showing the unit pattern to be used in the fifth embodiment. Fig. 72 is a view showing the spatial frequency distribution of the unit pattern used in the fifth embodiment. Fig. 73 (a) and (b) are diagrams schematically showing the evaluation method of flicker. Fig. 74 is a partially enlarged view showing the unit pattern to be used in the sixth embodiment. Fig. 75 is a view showing an enlarged view of the unit pattern to be used in the seventh embodiment. Fig. 76 is a graph comparing the spatial frequency distribution of the pattern shown in Fig. 74 with the spatial frequency distribution of the pattern shown in Fig. 75. Fig. 77 is an enlarged view showing the unit pattern to be used in the embodiment 8 in the section 93 321900 201042295. Fig. 78 is an enlarged view showing a unit portion to be used in the ninth embodiment. The spatial frequency distribution and the spatial frequency distribution of the pattern shown in Fig. 78 of the pattern shown in Fig. 77 are compared with Fig. 79. The first pattern used in the production of the pattern 1 - Fig. 81 is a partial enlarged view of the pattern 1. Fig. 82 is a view showing a partial enlargement of the pattern 2. Fig. 83 is a view showing a partial enlargement of the pattern 3. Fig. 84 is a partially enlarged view showing the first use of the pattern 4. The Fig. 85 of the national system shows a partial enlargement of the pattern 4. Fig. 86 is a view showing a partial enlargement of the pattern 5. Fig. 87 is a view showing a partial enlargement of the pattern 6. Fig. 88 is a partial enlarged view showing the first use of the pattern 7.茱°予

之第1圖案D 第89圖係顯示將圖案7局部放大之圖。 第90圖係顯示將圖案8局部放大之圖。 第91圖係顯示將圖案9局部放大之圖。 第92圖係顯示將圖案10的製作所使用 予^局部放大之圖。 第93圖係顯示將圖案10局部放大之圖。 第94圖係顯示將圖案11局部放大之圖。 321900 94 201042295 第95圖係顯示將圖案12局部放大之圖。 第96圖係顯示將圖案13的製作所使用之第i圖案E 予以局部放大之圖。 第97圖係顯示將圖案丨3局部放大之圖。 第98圖係顯示將圖案14局部放大之圖。 第99圖係顯示將圖案15局部放大之圖。 〇 〇 第100圖係顯示第1圖案A至E的空間頻率分布圖。 第101圖係顯示圖案1至3的空間頻率分布之圖。 第102圖係顯示圖案4至6的空間頻率分布之圖。 第103圖係顯示圖案7至9的空間頻率分布之圖。 第104圖係顯示圖案1〇至12的空間頻率分布之圖。 第105圖係顯示圖案13幻5的空間頻率分布之圖。 第106圖係彙整因圖案的製作方法不同 間頻率成分減少程度之圖。 第1〇7圖係顯示圖案的製作方法與孤立點產生個數之 關係圖。 第108圖係顯示將不頻目丨丨士丄 案予以局部放大之圖。 置有聽分布的第1圖 第10 9圖係顯示對於第丨⑽ _ 及藉法進行二值化所 第110圖係顯示對於笫】 — # $ 108圖所示的S 1圖案將運用 大的圖。 值化所侍之圖案予以放 321900 95 201042295 第111圖係顯示對於 高通濾波器、藉誤差擴I 不、1圖案將運用 所侍之圖案予以放大的圖。 碟用豕地卡羅法 第112圖係顯示第1〇9至 產生個數圖。 不、圖案之孤立點 分布之圖。 第113圖係比較第⑽至⑴圖所示圖案的空間頻 【主要元件符號說明】 1 點 8 表面 10、 11區域 13 無遮罩之部位 15 第1表面凹凸形狀 17 鍵絡之表面 60 單位單元 62 開口部 65 光箱 67 玻璃板 模具用基材 9 感光性樹脂膜 12 遮罩 14 虛線 16 鑛^銘&quot;層 18 第2表面凹凸形狀 61 鉻遮光圖案 63 光罩 66 光源 70 防眩膜 32!9〇〇 96The first pattern D is shown in Fig. 89 as a partial enlargement of the pattern 7. Fig. 90 is a view showing a partial enlargement of the pattern 8. Fig. 91 is a view showing a partial enlargement of the pattern 9. Fig. 92 is a view showing a partial enlargement of the production of the pattern 10. Fig. 93 is a view showing a partial enlargement of the pattern 10. Fig. 94 is a view showing a partial enlargement of the pattern 11. 321900 94 201042295 Figure 95 shows a partial enlargement of the pattern 12. Fig. 96 is a view showing a partial enlargement of the i-th pattern E used for the production of the pattern 13. Fig. 97 is a view showing a partial enlargement of the pattern 丨3. Fig. 98 is a view showing a partial enlargement of the pattern 14. Fig. 99 is a view showing a partial enlargement of the pattern 15. 〇 〇 Fig. 100 shows the spatial frequency distribution of the first patterns A to E. Fig. 101 is a view showing the spatial frequency distribution of the patterns 1 to 3. Figure 102 shows a plot of the spatial frequency distribution of patterns 4 through 6. Fig. 103 is a view showing the spatial frequency distribution of the patterns 7 to 9. Fig. 104 is a diagram showing the spatial frequency distribution of the patterns 1 〇 to 12. Figure 105 is a diagram showing the spatial frequency distribution of the pattern 13 Magic 5. Fig. 106 is a diagram showing the degree of reduction in frequency components due to the patterning method. Figure 1〇7 shows the relationship between the method of creating a pattern and the number of isolated points. Figure 108 shows a partial enlargement of the non-frequency gentleman's case. Figure 1 of Figure 10 shows the distribution of the 丨(10) _ and the borrowing method. Figure 110 shows that the S 1 pattern shown in Figure # will be large. Figure. The pattern of the value is placed 321900 95 201042295 The 111th picture shows the picture of the high-pass filter, the error expansion I, and the pattern will be enlarged. Disc 豕 卡罗 卡罗 第 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图No, the isolated point of the pattern is a distribution map. Figure 113 compares the spatial frequency of the pattern shown in (10) to (1). [Key element symbol description] 1 point 8 Surface 10, 11 area 13 Unmasked part 15 First surface uneven shape 17 Key surface 60 Unit 62 Opening portion 65 Light box 67 Glass plate mold base material 9 Photosensitive resin film 12 Mask 14 Dotted line 16 Mine ^ Ming &quot; Layer 18 Second surface uneven shape 61 Chrome light-shielding pattern 63 Photomask 66 Light source 70 Anti-glare film 32 !9〇〇96

Claims (1)

201042295 七 1. 申凊專利範圍: -種透明基材之防眩處理方法,係具有: 的第地配置有複數個點、或配置有亮度分布 =囷案,應職波器從第&quot;案所含的空間頻率成 :八,除或減少空間頻率未達特定值的低空間頻率 成刀Μ製作第2圖案之步驟;以及 Ο Ο 步驟根據前述第2圖案在透明基材上加工凹凸形狀之 2.如申請專利範圍第i項之防眩處理方法, =係為從前述第1圖案所含的空間解成分= ㈣率未達特定值的低空_率成分之高通 3·圍第2項之防眩處理方法,其中,前述滅 ^係為從前述第1圖案所含的空間頻率成分僅去; 通:::間頻率未達。.一'的低空間頻率成心 4’ 法,其中,前錢 勺伙别迷第1圖案所含的空間頻率成 減:f間頻率未達特定值的低空間頻率成分,並去:或 出超過特輕的高空間頻率成分,而藉此抽 5如1寺爛的空間頻率成分之帶通據波器。 ·=請專利範圍第4項之防眩處理方法運 ::::=所抽出的前述特定範圍二St 的工間頻率下限值β係為〇〇ΐβ以上,上限 321900 97 201042295 值T為l/(Dx2)/zm 1以下[D(#m)係於在前述透明基材 上加工凹凸形狀時所使用的加工裝置之解析力]。 6·如申請專利範圍第5項之防眩處理方法,其中,前述空 間頻率的上限值T及下限值B係為滿足下述式(1): 〇.20&lt;2x(T-B)/(T + B)&lt;0.80 (!)。 7.如申請專利範圍第丨項之防眩處理方法,其中,復具 有:藉由將遞色法運用在上述第2圖案,以製作經轉換 成離散化後的資訊之第3圖案的步驟, 並進行根據第3圖案在前述透明基材上加工凹凸 形狀之步驟。 .如申請專利範圍第7項之防眩處理方法,其中,前述遞 色法係誤差擴散法。 .如申π專利範圍第8項之防眩處理方法,其中,係藉由 運用使轉換誤差擴散在3像細上、6像相下的^圍 之誤差擴散法,以製作第3圖案。 1〇·如申請專利範圍第7項之防眩處理方法,其中,前述第 3圖案係經轉換成二階段地離散化後之資訊的圖案。 ^如申請專利範圍第10項之防眩處理方法,其中,係復 具備:對於經轉換成二階段地離散化後之資訊的第3 圖案藉豕地卡羅法使孤立的黑或白像素移動以 4圖案之步驟, 透丄進上行:步據:述第4圖案將凹凸形狀加工於前述 將凹凸 12.如申請專利_第1項之防眩處理方法,其t, 321900 98 201042295 形狀加工於前述透明基材 ?圖老㈣…-杯上之步驟係包含:根據前述第 圖案來襄作具有凹凸面的模具 _ . ^ 六八丑將該模具的凹凸面 轉印至别述透明基材上之步騾。 13.如申請專利範圍第7項之防眩處理方法,盆中,將凹凸 形狀加工於前述剌基材上之步_包含:根據前述第 3圖案來製作具有凹凸面的模具,且將該模具的凹凸面 轉印至前述透明基材上之步驟。201042295 VII 1. Application scope of Shenyi: - Anti-glare treatment method for transparent substrate, which has: a plurality of points arranged in the ground, or a brightness distribution = 囷 case, the application of the wave from the first case The spatial frequency included is: eight, a step of forming a second pattern by dividing the blade with a low spatial frequency whose spatial frequency is not up to a specific value; and Ο Ο processing the uneven shape on the transparent substrate according to the second pattern 2. For the anti-glare treatment method according to item i of the patent application, = is the solution from the space contained in the first pattern = (4) the low-rate _ rate component of which the rate does not reach a specific value, and the second item In the anti-glare processing method, the above-mentioned killing system is only from the spatial frequency component included in the first pattern; the frequency of::: is not reached. A 'low spatial frequency into the heart 4' method, in which the space of the first pattern of the first money is reduced: the low-frequency component of the frequency between f and the specific value is not: Exceeding the extraordinarily high spatial frequency components, and thus extracting the band-passing data of the spatial frequency components of the ruin of the temple. ·=Please take the anti-glare treatment method of item 4 of the patent scope::::= The lower limit of the inter-work frequency β of the above-mentioned specific range of two extracted is 〇〇ΐβ or more, and the upper limit is 321900 97 201042295 The value T is l /(Dx2)/zm 1 or less [D(#m) is the resolution of the processing apparatus used when processing the uneven shape on the transparent substrate]. 6. The anti-glare treatment method according to Item 5 of the patent application, wherein the upper limit value T and the lower limit value B of the spatial frequency satisfy the following formula (1): 〇.20 &lt; 2x(TB)/( T + B) &lt; 0.80 (!). 7. The anti-glare processing method according to claim 2, wherein the method further comprises: applying a dithering method to the second pattern to produce a third pattern converted into discretized information, And performing the step of processing the uneven shape on the transparent substrate according to the third pattern. The anti-glare treatment method of claim 7, wherein the aforementioned dithering method is an error diffusion method. The anti-glare processing method according to the eighth aspect of the patent application of the present invention, wherein the third pattern is produced by using an error diffusion method in which a conversion error is spread on a three-image thin surface and a six-image phase. The anti-glare treatment method of claim 7, wherein the third pattern is converted into a pattern of information that is discretized in two stages. ^ The anti-glare processing method of claim 10, wherein the method further comprises: moving the isolated black or white pixel by using the third pattern by the geo-calculus method converted into the two-stage discretized information In the step of 4 patterns, through the upward direction: step: the fourth pattern is processed to form the concave and convex shape on the aforementioned concave and convex portion 12. The anti-glare treatment method as in the application of the first item, t, 321900 98 201042295 The transparent substrate? The old (four)...-cup step comprises: forming a mold having a concave-convex surface according to the first pattern _. ^ VIII ugly transferring the concave and convex surface of the mold to a transparent substrate Step by step. 13. The anti-glare treatment method according to claim 7, wherein the step of processing the uneven shape on the ruthenium substrate comprises: forming a mold having a concave-convex surface according to the third pattern, and the mold is The step of transferring the uneven surface onto the transparent substrate. 14. 如申請專利範圍第u項之防眩處理方法,其中,將凹 凸形狀加工於前述透明基材上之步驟係包含:根據前述 第4圖案來製作具有凹凸面的模具,謂該模具的凹凸 面轉印至前述透明基材上之步驟。 15. 如申請專利範圍第7項之防眩處理方法,其中,將凹凸 形狀加工於前述透明基材上之步驟係使用根據前述第 3圖案所具有的離散化後的資訊來進行加工之加工裝 置而進行者。 ◎ I6·如申睛專利範圍第11項之防眩處理方法,其中,將凹 凸形狀加工於前述透明基材上之步驟係使用根據前述 第4圖案所具有的離散化後的資訊來進行加工之加工 裝置而進行者。 ^一種防眩膜之製造方法’係具有: 對於不規則地配置有複數個點、或配置有亮度分布 的第1圖案’應用濾波器從第1圖案所含的空間頻率成 分至少去除或減少空間頻率未達特定值的低空間頻率 成分以製作第2圖案之步驟;以及 321900 99 201042295 根據前述第2圖案在透明基材上加工凹凸形狀 步驟。 18.如申請專利範圍第17項之㈣膜之製造方法,其中, 前述遽波器係為從前述第1圖案所含的空間頻率成分 僅去除或減少空間頻率未達特定值的低空間頻率成分 之高通濾波器。 19.1 申請專利第18項之防賴之製造方法,其中, 前述遽波器係為從前述第1圖案所含的空間頻率成八 僅去除或減少空間頻率未達G.G1^的低空間頻率: 分之高通濾波器。 如.2請專利範圍第17項之防眩膜之製造方法,其中, 前述濾波器係為從前述第1圖案所含的空間頻;成八 1頻率未達特定值的低空間頻率成分,: 夢空間頻率超過特定值的高空間頻率成分,而 二b抽出特定範_空_率成分之帶簡波器。 .申凊專利範圍第20項之防眩膜之製造方法 用前述帶通遽波器所抽出的前述特定範圍之办 _率成分中的空間頻率下限值β係為 ’上限值τ為i/(Dx2)〆以下[D 透明基材上加工凹晴時所使用 力]。 工裝置之解析 22.如申請專利範圍第21項之防眩膜之製造 :;)迷空間頻率的上限值τ及下限值B係為滿足;:式 321900 100 201042295 0. 20&lt;2χ(Τ-Β)/(Τ + Β)&lt;0. 80 (1)。 23. 如申請專利範圍第17項之防眩膜之製造方法,其中, 復具有:藉由將遞色法運用在上述第2圖案,以製作經 轉換成離散化後的資訊之第3圖案的步驟, 並進行根據第3圖案在前述透明基材上加工凹凸 形狀之步驟。 24. 如申請專利範圍第23項之防眩膜的製造方法,其中, 前述遞色法係誤差擴散法。 25. 如申請專利範圍第24項之防眩膜的製造方法,其中, 係藉由運用使轉換誤差擴散在3像素以上、6像素以下 的範圍之誤差擴散法,以製作第3圖案。 26. 如申請專利範圍第23項之防眩膜的製造方法,其中, 前述第3圖案係轉換成經二階段地離散化後之資訊的 圖案。 27. 如申請專利範圍第26項之防眩膜的製造方法,其中, 係復具備:對於經轉換成二階段地離散化後之資訊的第 3圖案,藉蒙地卡羅法使孤立的黑或白像素移動以製作 第4圖案之步驟, 並進行根據前述第4圖案將凹凸形狀加工於前述 透明基材上之步驟。 28. 如申請專利範圍第17項之防眩膜的製造方法,其中, 將凹凸形狀加工於前述透明基材上之步驟係包含:根據 前述第2圖案來製作具有凹凸面的模具,且將該模具的 凹凸面轉印至前述透明基材上之步驟。 101 321900 201042295 29. 如申請專利範圍第23項之防眩膜的製造方法,其中, 將凹凸形狀加工於前述透明基材上之步驟係包含:根據 前述第3圖案來製作具有凹凸面的模具,且將該模具的 凹凸面轉印至前述透明基材上之步驟。 30. 如申請專利範圍第27項之防眩膜的製造方法,其中, 將凹凸形狀加工於前述透明基材上之步驟係包含:根據 前述第4圖案來製作具有凹凸面的模具,且將該模具的 凹凸面轉印至前述透明基材上之步驟。 31. 如申請專利範圍第23項之防眩膜的製造方法,其中, 將凹凸形狀加工於前述透明基材上之步驟係使用根據 前述第3圖案所具有的離散化後的資訊來進行加工之 加工裝置而進行者。 32. 如申請專利範圍第27項之防眩膜的製造方法,其中, 將凹凸形狀加工於前述透明基材上之步驟係使用根據 前述第4圖案所具有的離散化後的資訊來進行加工之 加工裝置而進行者。 33. —種模具的製造方法,係用於製造在申請專利範圍第 12、13、14、28、29或30項中所記載之模具,該製造 方法係包含: 於模具用基材之表面實施鍍銅或鍍鎳的第1鍍覆 步驟; 將藉第1鍍覆步驟施加有鍍覆的表面予以研磨之 研磨步驟; 於經研磨之面形成感光性樹脂膜的感光性樹脂膜 102 321900 201042295 形成步驟; 將前述第2圖案、前述第3圖案或前述第4圖案曝 光在感光性樹脂膜上的曝光步驟; . 將曝光有前述第2圖案、前述第3圖案或前述第4 圖案的感光性樹脂膜予以顯影之顯影步驟; 使用經顯影之感光性樹脂膜作為遮罩進行蝕刻處 理,以在經研磨的鍍覆面形成凹凸之第1蝕刻步驟; 剝離感光性樹脂膜的感光性樹脂膜剝離步驟;以及 〇 在所形成之凹凸面實施鍍鉻的第2鍍覆步驟。 34. 如申請專利範圍第33項之模具的製造方法,其中,係 於前述感光性掛脂膜剝離步驟與前述第2鍍覆步驟之 間,包含藉蝕刻處理以使所形成的凹凸面之凹凸形狀和 缓的第2蝕刻步驟。 35. 如申請專利範圍第33項之模具的製造方法,其中,前 述第2鍍覆步驟中所形成之施加有鍍鉻的凹凸面係為 Q 轉印到前述透明基材上的模具凹凸面。 36. 如申請專利範圍第33項之模具的製造方法,其中,前 述藉由第2鍍覆步驟中的鍍鉻所形成之鍍鉻層係具有1 至10 // m之厚度。 37. —種影像顯示裝置的防眩處理方法,該方法係藉申請專 利範圍第1項記载之防眩處理方法對影像顯示裝置所 具有的透明基材表面實施防眩處理者。 38. —種影像顯示裝置,該裝置係具有藉申請專利範圍第 17項記載之防眩膜之製造方法所獲得的防眩膜。 103 32190014. The anti-glare treatment method according to claim 5, wherein the step of processing the uneven shape on the transparent substrate comprises: forming a mold having a concave-convex surface according to the fourth pattern, that is, the unevenness of the mold The step of transferring the surface onto the aforementioned transparent substrate. 15. The anti-glare treatment method according to claim 7, wherein the step of processing the uneven shape on the transparent substrate is a processing device that performs processing based on the discretized information of the third pattern. And proceed. In the anti-glare treatment method of claim 11, wherein the step of processing the uneven shape on the transparent substrate is performed by using the discretized information according to the fourth pattern. The device is processed. A method for producing an anti-glare film includes: applying a filter to a first pattern of irregularly arranged or having a luminance distribution, at least removing or reducing a space from a spatial frequency component included in the first pattern a step of producing a second pattern with a frequency of a low spatial frequency component having a specific value; and 321900 99 201042295 a step of processing the uneven shape on the transparent substrate according to the second pattern. The method for producing a film according to the fourth aspect of the invention, wherein the chopper device removes or reduces a low spatial frequency component having a spatial frequency that does not reach a specific value from a spatial frequency component included in the first pattern. High pass filter. 19.1. The method of claim 18, wherein the chopper is to remove or reduce a low spatial frequency of a spatial frequency less than G.G1 from the spatial frequency contained in the first pattern: High-pass filter. The method for producing an anti-glare film according to the invention of claim 17, wherein the filter is a spatial frequency component included in the first pattern; and a low spatial frequency component having a frequency of eight or less is not a specific value: The dream space frequency exceeds a high spatial frequency component of a specific value, and the second b extracts a band filter of a specific fan_empty_rate component. The manufacturing method of the anti-glare film of claim 20, wherein the spatial frequency lower limit value β of the specific range of the above-mentioned specific range extracted by the band pass chopper is 'the upper limit value τ is i /(Dx2)〆The following [D force used when processing concave and white on a transparent substrate]. Analysis of the apparatus 22. The manufacture of the anti-glare film of claim 21;;) the upper limit τ and the lower limit B of the spatial frequency are satisfied;: 321900 100 201042295 0. 20&lt;2χ( Τ-Β)/(Τ + Β)&lt;0. 80 (1). 23. The method for producing an anti-glare film according to claim 17, wherein the method further comprises: applying a dithering method to the second pattern to produce a third pattern converted into discretized information; And performing the step of processing the uneven shape on the transparent substrate according to the third pattern. 24. The method for producing an anti-glare film according to claim 23, wherein the dithering method is an error diffusion method. 25. The method for producing an anti-glare film according to claim 24, wherein the third pattern is produced by applying an error diffusion method in which a conversion error is spread in a range of 3 pixels or more and 6 pixels or less. 26. The method of producing an anti-glare film according to claim 23, wherein the third pattern is converted into a pattern of information that has been discretized in two stages. 27. The method for producing an anti-glare film according to claim 26, wherein the method further comprises: for the third pattern converted into two-stage discretized information, the isolated black is made by Monte Carlo method Or a step of moving the white pixel to form the fourth pattern, and performing the step of processing the uneven shape on the transparent substrate according to the fourth pattern. 28. The method for producing an anti-glare film according to claim 17, wherein the step of processing the uneven shape on the transparent substrate comprises: forming a mold having a concave-convex surface according to the second pattern, and The step of transferring the uneven surface of the mold onto the transparent substrate. The method for producing an anti-glare film according to claim 23, wherein the step of processing the uneven shape on the transparent substrate comprises: forming a mold having a concave-convex surface according to the third pattern; And the step of transferring the uneven surface of the mold onto the transparent substrate. The method for producing an anti-glare film according to claim 27, wherein the step of processing the uneven shape on the transparent substrate comprises: forming a mold having a concave-convex surface according to the fourth pattern, and The step of transferring the uneven surface of the mold onto the transparent substrate. The method for producing an anti-glare film according to claim 23, wherein the step of processing the uneven shape on the transparent substrate is performed by using the discretized information according to the third pattern. The device is processed. The method for producing an anti-glare film according to claim 27, wherein the step of processing the uneven shape on the transparent substrate is performed by using the discretized information according to the fourth pattern. The device is processed. 33. A method of manufacturing a mold for manufacturing a mold described in claim 12, 13, 14, 28, 29 or 30, the method comprising: performing on a surface of a substrate for a mold a first plating step of copper plating or nickel plating; a polishing step of grinding a surface coated with a plating step by the first plating step; and a photosensitive resin film 102 321900 201042295 formed by forming a photosensitive resin film on the polished surface a step of exposing the second pattern, the third pattern, or the fourth pattern to a photosensitive resin film; and exposing the photosensitive resin to the second pattern, the third pattern, or the fourth pattern a developing step of developing the film; a first etching step of forming an unevenness on the polished plated surface by using a developed photosensitive resin film as a mask; and a photosensitive resin film peeling step of peeling off the photosensitive resin film; And a second plating step of chrome plating on the formed uneven surface. The method for producing a mold according to claim 33, wherein the photosensitive smear film peeling step and the second plating step include etching treatment to form irregularities of the uneven surface The shape is gentle and the second etching step. The method of producing a mold according to claim 33, wherein the embossed surface formed by chrome plating formed in the second plating step is a mold uneven surface on which the Q is transferred onto the transparent substrate. The method of manufacturing a mold according to claim 33, wherein the chrome plating layer formed by the chrome plating in the second plating step has a thickness of 1 to 10 // m. An anti-glare treatment method for an image display device, which is characterized in that the anti-glare treatment is performed on the surface of a transparent substrate provided in the image display device by the anti-glare treatment method described in the first paragraph of the patent application. 38. An image display device comprising an anti-glare film obtained by the method for producing an anti-glare film according to claim 17 of the patent application. 103 321900
TW099108113A 2009-03-25 2010-03-19 Antiglare processing method, method for manufacturing antiglare films and method for manufacturing molds TWI480600B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009074121 2009-03-25
JP2009140320 2009-06-11
JP2009252041 2009-11-02

Publications (2)

Publication Number Publication Date
TW201042295A true TW201042295A (en) 2010-12-01
TWI480600B TWI480600B (en) 2015-04-11

Family

ID=42771436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099108113A TWI480600B (en) 2009-03-25 2010-03-19 Antiglare processing method, method for manufacturing antiglare films and method for manufacturing molds

Country Status (4)

Country Link
JP (1) JP5510865B2 (en)
KR (1) KR101622793B1 (en)
CN (1) CN101846758B (en)
TW (1) TWI480600B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714575B (en) * 2015-04-21 2021-01-01 美商克萊譚克公司 Metrology target design for tilted device designs
TWI765413B (en) * 2019-11-28 2022-05-21 法商阿萊夫公司 A method of manufacturing a blown film with a profile of a characteristic property of the film being determined
US12030805B2 (en) 2020-09-09 2024-07-09 Corning Incorporated Textured, antiglare glass articles and methods of making the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148247A (en) * 2010-01-25 2011-08-04 Sumitomo Chemical Co Ltd Cleaning method of roll mold for manufacturing optical film
CN103649883B (en) * 2011-07-11 2017-09-08 富士胶片株式会社 Conducting strip and its manufacture method, touch-screen and display device
US9851579B2 (en) 2012-08-01 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Optical sheet, light-emitting device, method for manufacturing optical sheet, and method for manufacturing light-emitting device
US10295710B2 (en) * 2012-11-21 2019-05-21 3M Innovative Properties Company Optical diffusing films and methods of making same
CN104714263A (en) 2013-12-16 2015-06-17 松下知识产权经营株式会社 Optical sheet and light emitting apparatus
JP6765893B2 (en) 2016-08-02 2020-10-07 キヤノン株式会社 Optical elements, optics, and methods for forming random irregularities
CN106383421A (en) * 2016-11-07 2017-02-08 深圳市华星光电技术有限公司 Manufacturing method of alignment film, display panel and display device
KR20200130860A (en) * 2018-03-30 2020-11-20 다이니폰 인사츠 가부시키가이샤 Cosmetics, method of manufacturing cosmetics
CN111169056B (en) * 2018-11-12 2022-08-05 苏州维业达触控科技有限公司 Method for manufacturing anti-dazzle diffusion film
CN115216040A (en) * 2022-07-18 2022-10-21 深圳市华星光电半导体显示技术有限公司 Preparation method of anti-glare film layer, anti-glare film layer and display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3831503A1 (en) * 1988-09-16 1990-03-22 Ver Glaswerke Gmbh Transparent reflection-reducing covering layer for transparent glass or plastic substrates
JPH06139352A (en) * 1992-10-28 1994-05-20 Dainippon Printing Co Ltd Image processing method for thermosensitive mimeograph printer
JP2000266914A (en) * 1999-03-12 2000-09-29 Toppan Printing Co Ltd Light diffuser and display device using it
US6570710B1 (en) * 1999-11-12 2003-05-27 Reflexite Corporation Subwavelength optical microstructure light collimating films
JP3921953B2 (en) * 2001-03-27 2007-05-30 セイコーエプソン株式会社 Mask, mask manufacturing method, microstructure manufacturing method, and liquid crystal display manufacturing method
JP2003090902A (en) * 2001-09-19 2003-03-28 Dainippon Printing Co Ltd Antireflection imparting film and antireflection processing method using the same
JP2005040506A (en) * 2003-07-25 2005-02-17 Morita Mfg Co Ltd Method and apparatus for processing x-ray image
DE10343630B4 (en) * 2003-09-20 2007-11-15 Schott Ag diffuser
JP3925733B2 (en) * 2004-03-31 2007-06-06 富士フイルム株式会社 Image processing method and apparatus, and program
JP2007187952A (en) * 2006-01-16 2007-07-26 Sumitomo Chemical Co Ltd Anti-glare film, method of manufacturing same, method of manufacturing die for same, and display device
JP5076334B2 (en) * 2006-03-08 2012-11-21 住友化学株式会社 Mold having fine irregularities on its surface, method for producing the die, and method for producing an antiglare film using the die
US20100033652A1 (en) * 2006-12-08 2010-02-11 Tomoyoshi Yamashita Antiglare film and display device employing the same, and light diffusing film and surface light source system employing the same
JP4155336B1 (en) * 2007-02-14 2008-09-24 ソニー株式会社 Anti-glare film, method for producing the same, and display device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714575B (en) * 2015-04-21 2021-01-01 美商克萊譚克公司 Metrology target design for tilted device designs
TWI765413B (en) * 2019-11-28 2022-05-21 法商阿萊夫公司 A method of manufacturing a blown film with a profile of a characteristic property of the film being determined
US12030805B2 (en) 2020-09-09 2024-07-09 Corning Incorporated Textured, antiglare glass articles and methods of making the same

Also Published As

Publication number Publication date
CN101846758B (en) 2014-09-17
TWI480600B (en) 2015-04-11
KR20100107417A (en) 2010-10-05
JP2011118327A (en) 2011-06-16
JP5510865B2 (en) 2014-06-04
KR101622793B1 (en) 2016-05-19
CN101846758A (en) 2010-09-29

Similar Documents

Publication Publication Date Title
TW201042295A (en) Antiglare processing method, method for manufacturing antiglare films and method for manufacturing molds
TWI476456B (en) Antiglare film and method of manufacturing the same
KR101598637B1 (en) Anti-glare film
TWI461746B (en) Method for producing anti-glare film and method for producing mold for anti-glare film
US8857028B2 (en) Processes for producing optical elements showing virtual images
JP6181383B2 (en) Anti-glare film
JP2011047982A (en) Antiglare film, method for manufacturing the same and method for manufacturing die
TW200809265A (en) Anti-glare film and image display device
WO2010005729A2 (en) Optical elements for showing virtual images
TWI498603B (en) Antiglare film and antiglare polarizing sheet
KR101629020B1 (en) Process for producing anti-glare film and mold used for the production of the same
KR101625229B1 (en) Manufacturing method of antiglare film, antiglare film and manufacturing method of mold
JP5403422B2 (en) Method for producing mold for antiglare film and method for producing antiglare film
TW201639687A (en) Mold
TWI459040B (en) Method for making a mold and method for making an anti-glare film
JP5354668B2 (en) Method for producing antiglare film, method for producing antiglare film and mold
JP6049980B2 (en) Anti-glare film
JP6801723B2 (en) Anti-glare film
TWI354120B (en) Antiglare film and image display device
TW201636178A (en) Mold
JP6039397B2 (en) Method for producing mold for producing antiglare film and method for producing antiglare film
CN2812182Y (en) Electroformed inscription plate with false-proof effect