TW201041167A - High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells - Google Patents

High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells Download PDF

Info

Publication number
TW201041167A
TW201041167A TW099107478A TW99107478A TW201041167A TW 201041167 A TW201041167 A TW 201041167A TW 099107478 A TW099107478 A TW 099107478A TW 99107478 A TW99107478 A TW 99107478A TW 201041167 A TW201041167 A TW 201041167A
Authority
TW
Taiwan
Prior art keywords
layer
type
germanium
tco
sccm
Prior art date
Application number
TW099107478A
Other languages
Chinese (zh)
Inventor
Shuran Sheng
Yong-Kee Chae
Stefan Klein
Amir Al-Bayati
Bhaskar Kumar
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/481,175 external-priority patent/US8895842B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201041167A publication Critical patent/TW201041167A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method and apparatus for forming solar cells is provided. In one embodiment, a photovoltaic device includes a first TCO layer disposed on a substrate, a second TCO layer disposed on the first TCO layer, and a p-type silicon containing layer formed on the second TCO layer. In another embodiment, a method of forming a photovoltaic device includes forming a first TCO layer on a substrate, forming a second TCO layer on the first TCO layer, and forming a first p-i-n junction on the second TCO layer.

Description

201041167 六、發明說明: 【發明所屬之技術領域】 本發明之實施例係大致上關於太陽能電池及其形成方 法。更特別地說’本發明之實施例係關於形成在薄膜與 結晶梦太陽能電池中的界面層。 【先前技術】 〇 結晶矽太陽能電池與薄膜太陽能電池是兩種類型的太 陽能電池。結晶矽太陽能電池典型地使用單個晶態的矽 基材(即單結晶的純矽基材)或多個晶態的矽基材(即多結 晶矽或多晶矽基材八額外的膜層係沉積到矽基材上以改 善來自電路的光擷取特性且保護元件。薄膜太陽能電池 係使用多個沉積在適當基材上的薄材料層以形成一或多 個p-n接面。適當的基材包括有玻璃、金屬及聚合物基 材。 ❹ 為了擴展太陽能電池的經濟上利用,必須改善效能。 太陽能電池效能是和入射輻射被轉換成有用電能的比例 有關。為了能用在更多應用,必須改善太陽能電池效能 使其超過約15%的目前最佳性能。隨著能源成本上升, 亟需改善的薄膜太陽能電池’以及用以在工廠環境中形 成該經改善之薄膜太陽能電池的方法及設備。 【發明内容】 3 201041167 杨明之實施例係提供形成太陽能電池之方法。一些 = 一種形成一界面層在透明導電氧化物(TCO) 曰八IW電池接面之間的方法。在—實施 伏元件包含:一第-叫其設置在-基柯上;一第 二⑽層,其設置在該第_TCO層上;以及—ρ·型含 硬層’其形成在該第二TCO層上。 在另一實施例中,一光伏元件包含:-TCO層,其設 Ο 置在一基材上;一界面層,其設置在該TCO層上,其中 該界面層為-含碳之P —型切層;以及—p_型含石夕層, 其設置在該界面層上。 在又另一實施例中,-形成一光伏元件之方法包含以 下步驟:形成一第一 TCO層於一基材上;形成一第二 TCO層於該第一 TC0層上;以及形成一第_卜“打接面 於該第二TCO層上。 【實施方式】 薄膜太陽能電池通常是由許多類型且以許多不同方式 放置在一起的膜或層來形成。大部分用在這樣元件中的 膜是含有一半導體元素,該半導體元素包含矽、鍺、碳、 硼、磷、氮、氧、氫、及類似物。不同的膜的特性包括 結晶度、摻質類型、摻質濃度、膜折射率、臈消光係數 (extinction coefficient)、膜透光率、膜吸收性和導電率。 這些膜的大部分可以藉由利用化學氣相沉積製程(其可 201041167 已括些私度的離子化或電漿形成)來形成。 在光伏製程期間,電荷產生是大致上藉由一主體半導 體層(諸如一含矽層)來提供。主體層有時也稱為本質 層以和存在於太陽能電池中的各種摻雜層區分。本質 a可x具有任何期望的結晶度,其中該結晶度將影響本 質層的光吸收特性。舉例而言,一非晶本質層(諸如非晶 矽)將大致上吸收不同於具有不同結晶度之本質層(諸如 微或奈米晶石夕)的波長的光。基於此原目,使用兩種類 型的層來產生寬廣之可能的吸收特性有利的。 矽和其他半導體可以被形成為具有各種結晶度的固 體。實質上没有結晶的固體是非晶的,並且具有可忽略 、’·〇 Eia的矽係稱為非晶矽。完全結晶的矽係稱為結晶、多 晶、或單晶矽。多晶矽是包括有許多由顆粒邊界所分離 之結晶顆粒的結晶矽。單晶矽是單一結晶的矽。具有部 伤結as (即結晶比例介於約5%與約95%之間)的固體係稱 〇 為奈米晶或微晶,大致上是指懸浮在非晶相中之結晶顆 粒的尺寸具有較大結晶顆粒的固體係稱為微晶,而具 有較】、’Ό a曰顆粒的固體係稱為奈米晶。應瞭解,詞彙「結 晶矽」可以指任行形式之具有結晶相的矽,包括單晶和 奈米晶梦。 第1圖以向朝I光或太陽能㈣101之多接面太陽 能電池100之—實施例的示意圖。太陽能電;也100包括 一基材1〇2。—第一透明導電氧化物(TCO)層104形成在 基材102上方’ 一第一 p_i n接面122形成在第一 T⑶ 201041167 方。一第二P-i-n接面124形成在第一 p_i_n接 面I22上方,一第二TC〇層118形成在第二p-i-n接面 I24上方,並且一金屬背層12〇形成在第二層【a 上方。基材1〇2可以是破璃基材、聚合物基材、金屬基 材、或其他適當的基材,而具有多個膜形成在其上。 第一 TCO層104和第二TC〇層118可以各包含氧化 錫、氧化辞、氧化銦錫、錫酸鎘、其組合、或其他適當 0 的材料可瞭解的是TC〇材料也可以額外地包括摻質和 成分。例如,氧化辞可以更包括諸如錫、鋁、鎵、硼及 其他適當捧質的摻質。在-實施例中,氧化鋅包含5原 子%或更小的摻質,並且更佳地包含2·5原子%或更小的 鋁。在特定例子中,可以由玻璃製造業者來提供基材 102 ’其中第一 TC0層104已經沉積在基材102上。 為了藉由增加光捕獲來改善光吸收,基材102與/或形 成在其上的一或多個薄膜可以選擇性地藉由濕式、電 Q 漿、離子與7或其他機械製程來紋理化(texture)。舉例而 言’在第1圖的實施例中,第一 TCO層104係被紋理化 到足以使得表面拓樸實質上被轉移到後續沉積在其上的 薄膜。 第一 p-i-η接面122可以包含一 p_型含石夕層1〇6、一形 成在該p_型含矽層106上方的含本質型矽層1〇8、及一 形成在該含本質型石夕層108上方的η·型含破層110。在 特定實施例中’ Ρ-型含矽層106是一厚度介於約60Α與 約300Α之間的ρ_型非晶矽層。在特定實施例中,含本 6 201041167 質尘夕層108是-厚度介於約1,500A與約3,50〇A之間 質型非晶石夕層。在特定實施例中卜型含石夕層^ 疋可以形成為厚度介於約1〇〇A與約4〇〇A之間的n型單 晶梦層。201041167 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention generally relate to a solar cell and a method of forming the same. More particularly, the embodiments of the present invention relate to interfacial layers formed in thin films and crystalline dream solar cells. [Prior Art] 矽 Crystalline solar cells and thin film solar cells are two types of solar cells. Crystalline germanium solar cells typically use a single crystalline germanium substrate (ie, a single crystalline pure germanium substrate) or a plurality of crystalline germanium substrates (ie, polycrystalline germanium or polycrystalline germanium substrates). The substrate is modified to improve the light extraction characteristics from the circuit and to protect the element. The thin film solar cell uses a plurality of thin layers of material deposited on a suitable substrate to form one or more pn junctions. Suitable substrates include Glass, metal and polymer substrates. ❹ In order to expand the economical use of solar cells, efficiency must be improved. Solar cell performance is related to the ratio of incident radiation converted into useful energy. In order to be used in more applications, solar energy must be improved. The battery performance exceeds about 15% of the current best performance. As energy costs rise, there is an urgent need for improved thin film solar cells' and methods and devices for forming such improved thin film solar cells in a factory environment. Contents] 3 201041167 Yang Mingzhi's example provides a method for forming solar cells. Some = one form an interface layer in transparent conductive oxygen Method (TCO) between the eight IW battery junctions. The implementation of the volt-receiving element comprises: a first - called its setting on the - ke; a second (10) layer, which is disposed on the _TCO layer; And a p-type hard-containing layer formed on the second TCO layer. In another embodiment, a photovoltaic element comprises: a -TCO layer disposed on a substrate; an interface layer; And disposed on the TCO layer, wherein the interface layer is a carbon-containing P-type layer; and a -p_ type containing a layer is disposed on the interface layer. In still another embodiment, forming A method of photovoltaic element comprising the steps of: forming a first TCO layer on a substrate; forming a second TCO layer on the first TC0 layer; and forming a first "tapping surface" on the second TCO [Embodiment] Thin film solar cells are usually formed of a film or layer of many types and placed together in many different ways. Most of the films used in such elements contain a semiconductor element containing germanium. , bismuth, carbon, boron, phosphorus, nitrogen, oxygen, hydrogen, and the like. Characteristics of different membranes Including crystallinity, dopant type, dopant concentration, film refractive index, extinction coefficient, film transmittance, film absorbability and conductivity. Most of these films can be processed by chemical vapor deposition. (It may be formed by some proprietary ionization or plasma formation in 201041167.) During the photovoltaic process, charge generation is generally provided by a bulk semiconductor layer, such as a germanium containing layer. Also known as the intrinsic layer is distinguished from the various doped layers present in the solar cell. The essence a can have any desired degree of crystallinity, wherein the degree of crystallinity will affect the light absorption properties of the intrinsic layer. For example, an amorphous An intrinsic layer, such as an amorphous germanium, will substantially absorb light of a different wavelength than an intrinsic layer of different crystallinity, such as micro or nanocrystalline. Based on this, it is advantageous to use two types of layers to produce a wide range of possible absorption characteristics. Tantalum and other semiconductors can be formed into solids having various crystallinities. A solid which is substantially free of crystals is amorphous, and has a negligible, 〇 ia Eia lanthanide called amorphous yttrium. The fully crystalline lanthanide is called crystalline, polycrystalline, or single crystal ruthenium. Polycrystalline germanium is a crystalline germanium comprising a plurality of crystalline particles separated by particle boundaries. Single crystal germanium is a single crystal of germanium. A solid having a partial damage as (ie, a crystal ratio of between about 5% and about 95%) is referred to as a nanocrystal or a crystallite, and generally means that the size of the crystalline particle suspended in the amorphous phase has The solids of larger crystalline particles are called crystallites, while the solids with relatively larger particles are called nanocrystals. It should be understood that the term "crystallization" can refer to a ruthenium having a crystalline phase in any form, including single crystal and nanocrystal dreams. Figure 1 is a schematic illustration of an embodiment of a solar cell 100 facing the I-light or solar (four) 101. Solar power; also 100 includes a substrate 1〇2. - A first transparent conductive oxide (TCO) layer 104 is formed over the substrate 102. A first p_i n junction 122 is formed on the first T(3) 201041167 side. A second P-i-n junction 124 is formed over the first p_i_n junction I22, a second TC layer 118 is formed over the second p-i-n junction I24, and a metal back layer 12 is formed over the second layer [a. The substrate 1〇2 may be a glass substrate, a polymer substrate, a metal substrate, or other suitable substrate, and a plurality of films are formed thereon. The first TCO layer 104 and the second TC layer 118 may each comprise tin oxide, oxidized, indium tin oxide, cadmium stannate, combinations thereof, or other suitable materials. It is understood that the TC〇 material may additionally include Admixture and ingredients. For example, the oxidized word may further include dopants such as tin, aluminum, gallium, boron, and other suitable materials. In the embodiment, the zinc oxide contains a dopant of 5 atom% or less, and more preferably contains aluminum atom of 2.5 atom% or less. In a particular example, the substrate 102' can be provided by a glass manufacturer in which the first TC0 layer 104 has been deposited on the substrate 102. In order to improve light absorption by increasing light trapping, the substrate 102 and/or one or more films formed thereon may be selectively textured by wet, electric Q-pulp, ion and 7 or other mechanical processes. (texture). By way of example, in the embodiment of Figure 1, the first TCO layer 104 is textured to a level sufficient to cause the surface topology to be substantially transferred to a subsequently deposited film. The first pi-n junction 122 may include a p_type inclusion layer 1〇6, an intrinsic type germanium layer 1〇8 formed over the p_type germanium containing layer 106, and a layer formed thereon. The η-type containing layer 110 above the intrinsic layer 108 is provided. In a particular embodiment, the Ρ-type germanium-containing layer 106 is a p-type amorphous germanium layer having a thickness between about 60 Å and about 300 Å. In a particular embodiment, the dust layer 108 is a thickness of between about 1,500 A and about 3,50 Å A. In a particular embodiment, the Si-type layer can be formed as an n-type single crystal layer having a thickness between about 1 A and about 4 A.

Pi η接面124可以包含一 p型含石夕層112、一形 成在該卩型含矽層112上方的含本質型矽層114、及一 形成在該含本質型矽層114上方的η型含㈣u“在 0 特疋實施例中,P_型含矽層U2是一厚度介於約ιοοΑ與 約400A之間# p_型微晶石夕層。在特定實施例中,含本 質1梦層114疋-厚度介於約1G,嶋A與約30,()00入之 間的本質型微晶矽層。在特定實施例中,心型含矽層工Μ 是厚度介於約1 〇〇Α與約5〇οΑ之間的非晶矽層。 金屬背層120可以包括但不限於選自由Α卜Ag、Ti、 Cr·、Au、Cu、Pt、其合金、及其組合所構成群組的材料。 可以執行其他製程來形成太陽能電池1〇〇,諸如雷射刻 〇 ||J製程。可以在金屬背層120上方提供其他膜、材料、 基材與/或封裝,以完成太陽能電池元件。該些所形成的 太陽能電池可以彼此連接以形成多個模組,其接著可以 連接以形成陣列。 太陽能輻射101主要是被p-i-n接面122、124的本質 層108、114吸收,並且被轉換成電子-電洞對。p_型層 106、112與型層110、116之間所建立且延伸橫跨本 質層108、114的電場使得電子朝向n_型層11〇、丨16流 動及電洞朝向p-型層106、112流動,產生了電流。第一 7 201041167 p-i-n 接面 122 可 — _ . 乂包含一本質型非晶矽層108,並且第 二 P-卜η 接面 124 άτ iv a a J以包含一本質型微晶矽層114,以利The Pi η junction 124 may include a p-type smectic layer 112, an intrinsic germanium layer 114 formed over the germanium-containing germanium layer 112, and an n-type formed over the intrinsic germanium layer 114. In the embodiment of the invention, the P_type germanium-containing layer U2 is a thickness between about ιοοΑ and about 400 A. The p-type microcrystalline layer is in the embodiment. In a specific embodiment, the essence 1 is included. Layer 114 疋 - an intrinsic type of microcrystalline germanium having a thickness between about 1 G, 嶋A and about 30, () 00. In a particular embodiment, the core type bismuth layer is about 1 厚度 thick. An amorphous germanium layer between germanium and about 5 Å. The metal back layer 120 may include, but is not limited to, a group selected from the group consisting of Ag, Ti, Cr·, Au, Cu, Pt, alloys thereof, and combinations thereof. Group of materials. Other processes can be performed to form solar cells, such as laser engraving||J processes. Other films, materials, substrates, and/or packages can be provided over the metal back layer 120 to complete the solar cell. The formed solar cells can be connected to each other to form a plurality of modules, which can then be connected to form an array. The shot 101 is primarily absorbed by the intrinsic layers 108, 114 of the pin junctions 122, 124 and is converted into an electron-hole pair. The p_type layers 106, 112 are formed between the layers 110, 116 and extend across The electric fields of the intrinsic layers 108, 114 cause electrons to flow toward the n-type layers 11 〇, 丨 16 and the holes flow toward the p-type layers 106, 112, generating a current. The first 7 201041167 pin junction 122 can be - _ . An intrinsic amorphous germanium layer 108 is included, and the second P-b η junction 124 άτ iv aa J includes an intrinsic microcrystalline germanium layer 114 for

用非晶發和傲S 微阳砂可吸收不同波長之太陽能輻射101的 =。因此,所形成的太陽能電池100是更有效率的, 、疋因為其會擁取大部分的太陽能輻射光譜。非晶石夕的 質曰1 0 8 114和微晶矽的本質層係以太陽能輻射1 01 先心擊本質型非晶$層1G8且接著撞擊本質型微晶石夕層 ❹ 114(延是因為非晶矽具有比微晶矽更大的能隙)的方式 來堆疊。沒有被第一p_i_n接面122吸收的太陽能輻射係 被傳送到第二p-i-n接面124。 在含本質矽層1 〇8為本質非晶矽層的一實施例中,本 質非晶矽層108可以藉由提供氫氣對矽烷氣的氣體混合 物來沉積’其中氫對矽烷的體積流速比為約2〇: 1或更 小。矽烷氣可以被提供於介於約〇.5 sccm/L與約7 sccm/L 之間的流速。虱氣可以被提供於介於約5 sccm/L與約60 〇 sccm/L之間的流速。可以提供介於15 mw/cm2與約250 mW/cm2之間的RF功率到喷頭。腔室的壓力可以被維持 在介於約0.1 Torr與20 Torr之間,諸如介於約〇.5 T〇rr 與約5 Torr之間。本質型非晶矽層1 〇8的沉積速率將為 約100 A/min或更大。在一示範性實施例中,本質型非 晶矽層108是以體積流速比為約12.5:1之氫對矽烷來沉 積。 在含本質矽層114為本質微晶矽層的一實施例中,本 質微晶珍層114可以藉由提供氳氣對妙烧氣的氣體混合 201041167 物來'儿積,其中氫對矽烷的體積流速比為介於約2 〇 ·· 1與 約200:1之間。矽烷氣可以被提供於介於約〇 $ w⑽几 與約5sCcm/L之間的流速。氫氣可以被提供於介於約4〇 sccm/L與約400 Sccm/L之間的流速。在特定實施例中, 於沉積期間,矽烷流速可以從一第一流速被增加到一第 二流速。在特定實施例中,於沉積期間,氫流速可以從 一第一流速被降低到一第二流速。在介於約i τ〇π與約 100 Τ〇ΓΓ之間的腔室壓力下(諸如介於約3 T〇rr與約20 Ton·之間,或介於約4T〇rr與約12T〇rr之間)施加約3〇〇 mW/cm2或更大的RF功率(諸如6〇0 mW/cm2或更大)將以 約200 A/min或更大的速率(諸如約5〇〇 A/min)大致上沉 積一結晶比例為介於約20%與約8〇%之間(諸如介於約 55〇/〇與約75。/。之間)的本質型微晶矽層。在一些實施例 中,於沉積期間,將所施加的RF功率從一第一功率密度 增加到一第二功率密度是有利的。 〇 在另一實施例中,本質型微晶矽層114可以利用多個 步驟來沉積,其中各步驟期間所沉積的層部分具有不同 的氫稀釋比例,其中該不同的氫稀釋比例可提供所沉積 膜的不同結晶比例。舉例而言,在一實施例中,氫對矽 烷的體積流速比可以在四個步驟中從1〇〇:1被降低到 95:1、到90:1、及到85:1。在一實施例中,矽烷氣可以 被提供於介於約0.1 sccm/L與約5 sccm/L之間的流速(諸 如約0.97SCcm/L)e氫氣可以被提供於介於約 與約20〇5(^!!^之間的流速(諸如介於約8〇3(^1111與約 9 201041167 105 SCCm/L之間)。在沉積製程具有多個步驟(例如四個 步驟)的一示範性實施例中,氫氣流在第一步驟期間可以 開始於約97 Sccm/L,並且可以在後續製程步驟中分別漸 漸地被降低到約 92 sccm/L、88 sccm/L、及 83 sccm/L。 在介於約1 T〇rr與約100 τ〇ΓΓ之間的腔室壓力下(例如介 於約3 Torr與約20 Ton·之間,諸如介於約4 T〇rr與約 12 Τ〇ΓΓ之間’諸如約9 Torr)施加約300 mW/cm2或更大 ❹的功率(諸如約490 mW/cm2)將造成以約2〇〇 A/min 或更大的速率(諸如4〇〇 A/min)來沉積本質型微晶矽。 電何收集大致上是由摻雜半導體層(諸如以型或以_ 型摻質來摻雜的矽層)來提供。p_型摻質通常是Ιπ族元 素,例如硼或鋁。η_型摻質通常是ν族元素,例如磷、 砷、或銻。在大部分實施例中,硼被用作為ρ_型摻質, 並且磷被用作為η_型摻質。藉由在反應混合物中包括含 硼或含磷化合物,這些摻質可以被添加到前述型和& 〇 型層106、110、112、116。適當的爛和磷化合物大致上 包含取代的和未取代的低硼烷和膦寡聚物。一些適當的 硼化合物包括三甲基硼烷(B(CH3)3或ΤΜΒ)、二硼烷 (Β2Η6)、三I化硼(BF3)、及三乙基硼烷(B(C2H5)3 或TEB)。膦是最常見的磷化合物。掺質通常是和載氣(諸 如氫、氦、氬、或其他適當的氣體)一起來提供。若氮被 用作為載氣,可增加反應混合物中的總氫。目此,前述 的氫比例將包括貢獻氫部分之用來輸送摻質之載氣。 摻質大致上被提供為惰氣或載氣中的稀釋劑。舉例而 201041167 為約 0.5%的摻The amorphous radiation and the proud S micro-yang sand can absorb the solar radiation 101 of different wavelengths. Therefore, the formed solar cell 100 is more efficient, because it will capture most of the solar radiation spectrum. Amorphous 夕 的 曰 曰 0 0 0 曰 曰 和 和 和 曰 曰 曰 曰 曰 以 以 以 以 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 太阳能 非晶 非晶 非晶 非晶The amorphous germanium has a larger energy gap than the microcrystalline germanium to stack. The solar radiation that is not absorbed by the first p_i_n junction 122 is transferred to the second p-i-n junction 124. In an embodiment in which the intrinsic germanium layer 1 is an intrinsic amorphous germanium layer, the intrinsic amorphous germanium layer 108 can be deposited by providing a gas mixture of hydrogen and germane gas. The volumetric flow ratio of hydrogen to germane is about 2〇: 1 or less. The decane gas can be provided at a flow rate between about sc5 sccm/L and about 7 sccm/L. Helium can be provided at a flow rate between about 5 sccm/L and about 60 〇 sccm/L. RF power between 15 mw/cm2 and about 250 mW/cm2 can be provided to the showerhead. The pressure of the chamber can be maintained between about 0.1 Torr and 20 Torr, such as between about 〇5 〇rr and about 5 Torr. The deposition rate of the intrinsic amorphous germanium layer 1 〇 8 will be about 100 A/min or more. In an exemplary embodiment, the intrinsic amorphous germanium layer 108 is deposited by hydrogen to decane having a volumetric flow rate ratio of about 12.5:1. In an embodiment in which the intrinsic germanium layer 114 is an intrinsic microcrystalline germanium layer, the intrinsic microcrystalline layer 114 can be formed by providing a mixture of helium gas and a gas mixture of 201041167, wherein the volume of hydrogen to germane is The flow rate ratio is between about 2 〇·· 1 and about 200:1. The decane gas can be supplied at a flow rate between about w $ w(10) and about 5 sCcm/L. Hydrogen gas can be provided at a flow rate between about 4 〇 sccm/L and about 400 Sccm/L. In a particular embodiment, the decane flow rate can be increased from a first flow rate to a second flow rate during deposition. In a particular embodiment, the hydrogen flow rate can be reduced from a first flow rate to a second flow rate during deposition. At a chamber pressure between about i τ π and about 100 ( (such as between about 3 T rrrr and about 20 Ton·, or between about 4 T 〇 rr and about 12 T 〇 rr The application of an RF power of about 3 〇〇 mW/cm 2 or more (such as 6 〇 0 mW/cm 2 or more) will be at a rate of about 200 A/min or more (such as about 5 〇〇 A/min). An intrinsic type of microcrystalline germanium layer is deposited substantially between about 20% and about 8%, such as between about 55 Å/Å and about 7.5 %. In some embodiments, it may be advantageous to increase the applied RF power from a first power density to a second power density during deposition. In another embodiment, the intrinsic microcrystalline germanium layer 114 can be deposited using a plurality of steps, wherein the portions of the layer deposited during each step have different hydrogen dilution ratios, wherein the different hydrogen dilution ratios provide deposition Different crystal ratios of the film. For example, in one embodiment, the volumetric flow rate ratio of hydrogen to decane can be reduced from 1 〇〇:1 to 95:1, to 90:1, and to 85:1 in four steps. In one embodiment, the decane gas may be provided at a flow rate between about 0.1 sccm/L and about 5 sccm/L (such as about 0.97 SCcm/L). Hydrogen may be provided at between about 20 Torr and about 20 Torr. Flow rate between 5 (^!!^ (such as between about 8〇3 (^1111 and about 9 201041167 105 SCCm/L). An exemplary process with multiple steps (eg four steps) in the deposition process) In an embodiment, the hydrogen stream may begin at about 97 Sccm/L during the first step and may be gradually reduced to about 92 sccm/L, 88 sccm/L, and 83 sccm/L, respectively, in subsequent processing steps. At a chamber pressure between about 1 T rrrr and about 100 τ ( (eg, between about 3 Torr and about 20 Ton·, such as between about 4 T rrrr and about 12 Τ〇ΓΓ Applying a power of about 300 mW/cm2 or more (such as about 490 mW/cm2) between 'such as about 9 Torr' will result in a rate of about 2 A/min or more (such as 4 A/A). Min) to deposit the intrinsic type of microcrystalline germanium. The electrical collection is generally provided by a doped semiconductor layer, such as a germanium layer doped with a type or dopant, and the p_ type dopant is usually a Ιπ family. Yuan Ordinarily, for example, boron or aluminum. The η-type dopant is usually a ν group element such as phosphorus, arsenic, or antimony. In most embodiments, boron is used as the ρ_ type dopant, and phosphorus is used as η_ Type dopants. By including boron or phosphorus containing compounds in the reaction mixture, these dopants can be added to the above-described type and & 〇 type layers 106, 110, 112, 116. Suitable rotten and phosphorus compounds generally comprise Substituted and unsubstituted lower borane and phosphine oligomers. Some suitable boron compounds include trimethylborane (B(CH3)3 or ruthenium), diborane (Β2Η6), and boron trioxide (BF3). And triethylborane (B(C2H5)3 or TEB). Phosphine is the most common phosphorus compound. The dopant is usually supplied with a carrier gas such as hydrogen, helium, argon, or other suitable gas. If nitrogen is used as the carrier gas, the total hydrogen in the reaction mixture can be increased. Thus, the aforementioned hydrogen ratio will include the carrier gas that contributes to the hydrogen portion to transport the dopant. The dopant is generally provided as inert gas or Diluent in gas. For example, 201041167 is about 0.5% doping.

之間。 在P-型含矽層U2為p_型微晶矽層的—實施例中,p 言,可以在載氣中提供莫爾或體積濃度為 質。若在流速為1.0 Sccm/L之载氣中提供 0.5%的摻質’則形成的摻質流速將為〇〇〇 型微晶矽層112 112可以藉由提供氫氣對矽烷氣的氣體混合 物來/儿積,其中氫對矽烷的體積流速比為約:丨或更 大,例如1000:1或更小,諸如介於約25〇丨與約8〇〇:工 之間,並且在一進一步實例中為約6〇丨:丨或約4〇丨:丨。矽 烷氣可以被提供於介於約〇1 sccm/L與約〇 8 sccm/L之 間的流速,例如介於約〇 2 sccm/L與約〇·38 sccm/L之 間。氫氣可以被提供於介於約6〇 sccm/L與約500 sccm/L Ο 之間的流速,例如約143 sccm/L。TMP可以被提供於介 於約0.0002 sccm/L與約0.0016 sccm/L之間的流速,例 如約0.00115 sccm/L。若在載氣中提供莫爾或體積濃度 為0.5。/。的TMB ’則摻質/載氣混合物可以被提供於介於 約0.04 sccm/L與約0.32 sccm/L之間的流速,例如約〇 23 sccm/L »在介於約! T〇rr與約1〇〇 Torr之間的腔室屬力 下(諸如介於約3 Torr與約20 Torr之間、介於約4 Torr 與約12 Torr之間、或約7 Torr、或約9 Torr)施加介於約 50 mW/cm2與約700 mW/cm2之間的RF功率(諸如介於約 201041167 290 mW/cm2 與約 440 mW/cm2 之間)將以約 i〇 A/min 或 更大的速率(諸如約143 A/min或更大)沉積一結晶比例 為介於約2〇%與約80%之間(諸如介於約5〇%與約7〇%之 間)的p-型微晶矽層。 在P-型含矽層1〇6為p-型非晶矽層的—實施例中,p_ 型非晶石夕層1〇6可以藉由提供氫氣對石夕燒氣的氣體混合 物來沉積,其中氫對矽烷的流速比為約2〇:1或更小。矽 〇 烷氣可以被提供於介於約i sccm/L與約1〇 sccm/L之間 的流速。氫氣可以被提供於介於約。“爪几與6〇sccm/L 之間的流速。三甲基硼烷可以被提供於介於約〇.〇〇5 sccm/L與約0_05 sccm/L之間的流速。若在載氣中提供 莫爾或體積濃度為0.5〇/〇的三甲基硼烷,則摻質/載氣混合 物可以被提供於介於約i sccm/L與約丨〇 sccm/L之間的 流速。在介於約0.1 Torr與20 Torr之間的腔室壓力下(諸 如介於約1 Torr與約4 Torr之間)施加介於約丨5 mW/cm2 〇 與約200 mW/cm2之間的RF功率將以約1〇〇 A/min或更 大的速率沉積一 p-型非晶矽層。甲烷或其他含碳化合物 (諸如CH4、C#8、C4H10、或(:#2)的添加可以用來形成 一含碳之P-型非晶矽層1〇6,其係比其他含矽材料吸收 更少的光。換言之,在形成的p_型非晶矽層1〇6含有合 金元素(諸如碳)的組態中,所形成的層將具有改善的光 穿透性質或窗性質(例如以降低太陽能輻射的吸收)。傳 送通過p-型非晶矽層1〇6之太陽能輻射量的增加可以被 本質層吸收,因而改善了太陽能電池的效能。在三曱基 12 201041167 删烧用來在P-型非晶矽層1〇6中提供硼摻質的實施例 中爛摻質濃度係被維持在介於約1X1 〇18 atoms/cm2與 約lxlO20 atoms/cm2之間。在甲烷氣體被添加且被用來 形成一含碳p-型非晶矽層的實施例中,含碳?_型非晶矽 層中的碳濃度係被控制在介於約1 〇原子❶/〇與約2〇原 子0/。之間。在一實施例中,p_型非晶矽層1 〇6的厚度係介 於約20A與約300A之間’例如介於約8〇a與約2〇〇a 之間。 〇 在η-型含石夕層110為n_型微晶矽層的一實施例中,卜 型微晶矽層110可以藉由提供氫氣對矽烷氣的氣體混合 物來沉積,其中氫對矽烷的體積流速比為約1〇〇:1或更 大’例如約5 0 0:1或更小,諸如介於約1 5 〇:丨與約4 〇 〇: j 之間,諸如約304:1或約2〇3 j。矽烷氣可以被提供於介 於約0.1 sccm/L與約0.8 Sccm/L之間的流速,例如介於 約0.32 sccm/L與約0.45 sccm/L之間,諸如約〇35 ❹ sccm/L。氫氣可以被提供於介於約3〇 sccm/L與約 sccm/L之間的流速,例如介於約68 sccm/L與約143 SCCm/L之間,諸如約71.43 sccm/L。膦可以被提供於介 於約0.0005 Sccm/L與約0.006 Sccm/L之間的流速,例如 介於約0.0025 sccm/L與約〇.〇15 sccm/L之間,諸如約 0_005 SCCm/L。換言之’若在載氣中提供莫爾或體積濃度 為0.5%的膦,則摻質/載氣混合物可以被提供於介於約 0.1 sccm/L與約5 SCCm/L之間的流速,例如介於約〇 5 sccm/L與約3 sccm/L之間,諸如介於約〇 9sccm/L與約 13 201041167 1.08 8 sccm/L之間。在介於約1 T〇rr與約1 〇〇 T〇rr之間 的腔室壓力下(例如介於約3 T〇rr與約2〇 T〇rr之間,更 佳地介於約4T〇rr與約12Torr之間,諸如約6T〇rr或約 9 1'〇〇〇施加介於約1〇〇11^/(;1112與約9〇〇111臂/(^2之間的 RF功率(諸如約37〇 mW/cm2)將以約5〇 A/min或更大的 速率(諸如約150 A/min或更大)沉積一結晶比例介於約 2〇%與約80%之間(諸如介於約50%與約70%)的η-型微晶 矽層。 〇 七 在n-里含矽層1 i 6為η_型非晶矽層的一實施例中,η_ 型非晶矽層1 Ιό可以藉由提供氫氣對矽烷氣的氣體混合 物來沉積’其中氫對矽烷的體積流速比為約2〇: 1或更 小’例如約5.5:1或7.8:1。矽烷氣可以被提供於介於約 0.1 sccm/L與約1〇 sccm/L之間的流速,例如介於約1 Sccm/L 與約 10 secm/L 之間、介於約 〇.1 sccm/L 與 5 sccm/L之間、或介於約〇 5 sCcni/L與約3 sccm/L之間, 〇 諸如約1.42 sccm/L或5.5 sccm/L。氮氣可以被提供於介 於約1 sccm/L與約40 sccm/L之間的流速,例如介於約 4 sccm/L與約40 sccm/L之間或介於約1 sccm/L與約1〇 sccm/L之間’諸如約6.42 sccm/L或27 sccm/L。膦可以 被提供於介於約0.0005 sccm/L與約0.075 sccm/L之間的 流速,例如介於約〇.〇0〇5 sccm/L與約0.0015 sccm/L之 間或介於約0.015 sccm/L與約0.03 sccm/L之間,諸如約 0.0095 sccm/L或0.023 sccm/L »若在載氣中提供莫爾或 體積濃度為〇_5%的膦,則摻質/載氣混合物可以被提供於 14 201041167 介於約0.1 sccm/L與約15 sccm/L之間的流速,例如介 於約0· 1 sccm/L與約3 sccm/L之間、介於約2 sccm/L與 約15 sccm/L之間、或介於約3 sccm/L與約6 sccm/L之 間’諸如約1.9 sccm/L或約4.71 sccm/L。在介於約〇. 1 Torr與約20 Torr之間的腔室壓力下(例如介於約0 5 T〇rrbetween. In the embodiment where the P-type germanium-containing layer U2 is a p-type microcrystalline layer, in other words, it is possible to provide a molar or volume concentration in the carrier gas. If a 0.5% dopant is provided in a carrier gas having a flow rate of 1.0 Sccm/L, the resulting dopant flow rate will be a ruthenium-type microcrystalline ruthenium layer 112 112 by providing a gas mixture of hydrogen and decane gas. a volume, wherein the volumetric flow rate ratio of hydrogen to decane is about: 丨 or greater, such as 1000:1 or less, such as between about 25 〇丨 and about 8 〇〇, and in a further example It is about 6 〇丨: 丨 or about 4 〇丨: 丨. The decane gas may be supplied at a flow rate between about sc1 sccm/L and about sc8 sccm/L, for example, between about sc 2 sccm/L and about 〇·38 sccm/L. Hydrogen gas can be provided at a flow rate between about 6 〇 sccm/L and about 500 sccm/L Torr, for example about 143 sccm/L. The TMP can be provided at a flow rate between about 0.0002 sccm/L and about 0.0016 sccm/L, for example about 0.0015 sccm/L. If a molar or a volume concentration of 0.5 is provided in the carrier gas. /. The TMB's dopant/carrier gas mixture can be provided at a flow rate between about 0.04 sccm/L and about 0.32 sccm/L, for example about 23 sccm/L » at about! The chamber between T rr and about 1 Torr (such as between about 3 Torr and about 20 Torr, between about 4 Torr and about 12 Torr, or about 7 Torr, or about 9 Torr) applying an RF power between about 50 mW/cm 2 and about 700 mW/cm 2 (such as between about 201041167 290 mW/cm 2 and about 440 mW/cm 2 ) will be about i〇A/min or A greater rate (such as about 143 A/min or greater) deposits a crystallization ratio of between about 2% and about 80%, such as between about 5% and about 7%. - Type microcrystalline layer. In the embodiment where the P-type germanium-containing germanium layer 1〇6 is a p-type amorphous germanium layer, the p_type amorphous litho layer 1〇6 can be deposited by providing a gas mixture of hydrogen gas to the gas-fired gas. Wherein the flow ratio of hydrogen to decane is about 2 〇: 1 or less. The 矽 烷 alkane gas can be supplied at a flow rate between about i sccm/L and about 1 〇 sccm/L. Hydrogen gas can be supplied at about. "The flow rate between the claws and 6 〇 sccm / L. Trimethylborane can be provided at a flow rate between about 〇〇.5 sccm / L and about 0_05 sccm / L. If in the carrier gas Providing a molar or trimethylborane having a volume concentration of 0.5 〇/〇, the dopant/carrier gas mixture can be provided at a flow rate between about i sccm/L and about 丨〇sccm/L. Applying an RF power between about m5 mW/cm2 〇 and about 200 mW/cm2 at a chamber pressure between about 0.1 Torr and 20 Torr, such as between about 1 Torr and about 4 Torr A p-type amorphous germanium layer is deposited at a rate of about 1 A/min or more. Addition of methane or other carbon-containing compounds such as CH4, C#8, C4H10, or (:#2) can be used Forming a carbon-containing P-type amorphous germanium layer 1〇6, which absorbs less light than other germanium-containing materials. In other words, the formed p-type amorphous germanium layer 1〇6 contains alloying elements (such as carbon). In the configuration of the ), the layer formed will have improved light transmission properties or window properties (for example to reduce the absorption of solar radiation). The increase in the amount of solar radiation transmitted through the p-type amorphous germanium layer 1〇6 Absorbed by the intrinsic layer, thereby improving the performance of the solar cell. In the example of the tricarbyl group 12 201041167, the rotten dopant concentration is used to provide boron dopant in the P-type amorphous germanium layer 1〇6. Maintained between about 1×1 〇18 atoms/cm 2 and about 1×10 20 atoms/cm 2 . In the embodiment where methane gas is added and used to form a carbon-containing p-type amorphous ruthenium layer, carbon-containing _ type The carbon concentration in the amorphous germanium layer is controlled between about 1 〇 atom ❶ / 〇 and about 2 〇 atom 0. In one embodiment, the thickness of the p_ type amorphous germanium layer 1 〇 6 The system is between about 20 A and about 300 A, for example between about 8 〇 a and about 2 〇〇 a. 〇 In an embodiment where the η-type stellate layer 110 is an n-type microcrystalline layer The Bu-type microcrystalline germanium layer 110 may be deposited by providing a gas mixture of hydrogen and decane gas, wherein the volumetric flow rate ratio of hydrogen to decane is about 1 〇〇:1 or greater', for example, about 50,000:1 or more. Small, such as between about 15 〇: 丨 and about 4 〇〇: j, such as about 304:1 or about 2〇3 j. The decane gas can be provided at between about 0.1 sccm/L and about 0.8 Sccm. Flow between /L , for example, between about 0.32 sccm/L and about 0.45 sccm/L, such as about 35 ❹ sccm/L. Hydrogen can be provided at a flow rate between about 3 〇 sccm/L and about sccm/L, For example between about 68 sccm/L and about 143 SCCm/L, such as about 71.43 sccm/L. The phosphine can be provided at a flow rate between about 0.0005 Sccm/L and about 0.006 Sccm/L, for example between Between about 0.0025 sccm/L and about 〇.〇15 sccm/L, such as about 0_005 SCCm/L. In other words 'If a moir or a phosphine having a volume concentration of 0.5% is provided in the carrier gas, the dopant/carrier gas mixture may be provided at a flow rate between about 0.1 sccm/L and about 5 SCCm/L, such as Between about 5 sccm/L and about 3 sccm/L, such as between about sc9 sccm/L and about 13 201041167 1.08 8 sccm/L. At a chamber pressure between about 1 T rr rr and about 1 〇〇 T 〇 rr (eg, between about 3 T rrrr and about 2 〇 T 〇 rr, more preferably between about 4 Torr) Between rr and about 12 Torr, such as about 6T rr or about 9 1 '〇〇〇, is applied between about 1 〇〇 11 ^ / (; 1112 and about 9 〇〇 111 arms / (^ 2 of RF power ( For example, about 37 〇mW/cm 2 ) will deposit a crystallization ratio of between about 2% and about 80% at a rate of about 5 A/min or greater (such as about 150 A/min or greater) (such as Between about 50% and about 70%) of the η-type microcrystalline germanium layer. In an embodiment in which the n-containing germanium layer 1 i 6 is an n-type amorphous germanium layer, the n-type amorphous germanium layer Layer 1 Ιό can be deposited by providing a gas mixture of hydrogen and decane gas 'where the volumetric flow ratio of hydrogen to decane is about 2 〇: 1 or less', for example about 5.5:1 or 7.8:1. decane gas can be provided a flow rate between about 0.1 sccm/L and about 1 〇 sccm/L, such as between about 1 Sccm/L and about 10 secm/L, between about 0.1 sccm/L and 5 sccm/ Between L, or between about 5 sCcni/L and about 3 sccm/L, such as about 1.42 sccm/L or 5.5 sccm/L. A flow rate between about 1 sccm/L and about 40 sccm/L can be provided, for example between about 4 sccm/L and about 40 sccm/L or between about 1 sccm/L and about 1 〇. Between sccm/L 'such as about 6.42 sccm/L or 27 sccm/L. The phosphine can be provided at a flow rate between about 0.0005 sccm/L and about 0.075 sccm/L, for example between about 〇.〇0〇 5 sccm/L and between about 0.0015 sccm/L or between about 0.015 sccm/L and about 0.03 sccm/L, such as about 0.0095 sccm/L or 0.023 sccm/L » if moir or is provided in the carrier gas If the volume concentration is 〇_5% of the phosphine, the dopant/carrier gas mixture may be provided at 14 201041167 at a flow rate between about 0.1 sccm/L and about 15 sccm/L, for example between about 0·1 sccm/ L is between about 3 sccm/L, between about 2 sccm/L and about 15 sccm/L, or between about 3 sccm/L and about 6 sccm/L, such as about 1.9 sccm/L or Approximately 4.71 sccm/L at a chamber pressure between about 1 Torr and about 20 Torr (eg, between about 0 5 T〇rr

與約4 Torr之間、或約1 ·5 Torr)施加介於約25 mW/cm2 與約250 mW/cm2之間的RF功率(諸如約60 mW/cm2或 約80 mW/cm2)將以約1〇〇 A/min或更大的速率(例如約 200 A/min 或更大’諸如約 300 A/min 或約 6〇〇 A/min) 沉積一 η-型非晶;ε夕層。 在一些實施例中’矽和其他元素(諸如氧、碳、氮、氫 及鍺)的合金是有用的。藉由以各者的來源補充反應物氣 體混合物,這些其他元素可以被添加到矽膜。矽合金可 以用於任何類型的矽層,包括界面層、ρ型、η_型、MB、 波長可選擇反射(wavelength selective renect〇r,WSR) 層、或本質型矽層。舉例而言’藉由將—碳源(諸如甲烷 (CH4))添加到氣體混合物,碳可以被添加到石夕膜。通常, 大部分的。丨-。4碳氫化合物可以被用作為碳源。替代地, 有機石夕化合物(諸如有機魏、有機錢⑨、及類似物) 可作為石夕和碳源。錯化合物(諸如錯貌及有機錯烧)以及 =朴鍺的化合物(諸如石夕鍺烧或錯錢)可以作為豬 源1氣(02)可以作為氧來源。其他的氧來源包括但 三=氮的氧化物(一氧化二氮(N2〇)、—氧化氮(n〇)、 —-氮(N2〇3)、二氧化氮(N〇2)、四氧化二氮(聊)、 15 201041167 氧化二氮(N2〇5)、及三氧化氮(ΝΑ))、過氧化氫 (H2〇2)、一氧化碳或二氧化碳(CO或C02)、臭氧(〇3)、 氧原子、氧基團、及醇類(R〇H,其中R是任何的有機或 雜有機基團)。氮來源可以包括氮氣(Nj、氨(NHJ、聯胺 (N2H2)、胺(RxNR’3x,其中X為〇〜3,並且各個尺和r, 疋獨立之任何的有機或雜有機基團)、醯胺 ((Rco)xnr’3_x,其中x為〇〜3,並且各個R和R,是獨立 〇 之任何的有機或雜有機基團)、醯亞胺(RCONCOR,,其中 各個R和R’是獨立之任何的有機或雜有機基團)、烯胺 (HC = C3NR4R5,其中各個Ri_Rs是獨立之任何的有機 或雜有機基團)、及氮原子和基團。 為了改善轉換效能與降低接觸電阻,一界面層可以形 成在TCO層104與p_型含矽層1〇6的界面處。第2圖係 1不一设置在TCO層104與p-型含矽層1〇6之間的界面 202。界面層202提供了 -良好界面,其可改善形成 ❹ 於其上與TC◦基材之間的附著性。在-些實施例中,界 面層202可以是重摻雜或衰退摻雜(degenerateiy如”幻 之含矽層,其是藉由以高速率(例如以前述程式之上半部 中的速率)供應摻質來形成。吾等認為衰退摻雜可藉由提 供低電阻接觸接面而改善電荷收集。吾等也認為衰退換 雜可改善一些層(例如非晶層)的導電率。 在-些實施财,界面層2〇2是一衰退換雜之卜型非 晶梦層(-重摻雜之ρ·型非晶梦(广)層)。衰退(例如幻 換雜P -型非晶石夕層202 # III族元素摻雜濃度高於 16 201041167 型含矽層106。衰退(例如重)摻雜P++-型非晶矽層202的 摻雜濃度等於一在介於約2 T〇rr與約2 5 τ〇η之間壓力 下使用TMP和石夕院且其混合物體積流速比介於約2 ]與 約 之間所形成的層(其中TMB前驅物包含〇·5〇/0莫爾 或體積濃度的ΤΜΒ)。衰退(例如重)摻雜广型非晶石夕層 2〇2係形成於介於約45w⑽s)與約 91 milliWatts/cm2 (48〇〇 WaUs)之間的電漿功率。在一實 ❹例中,哀退摻雜P'型非晶梦層2G2可以藉由下述條件 來形成提供石夕院於介於約2」sccm/L(諸如6剛咖m) 與Sccm/L(諸如9〇〇〇sccm)之間的流速、氫氣於可 使虱巩對矽烷氣混合物比為約6〇的流速、摻雜前驅物 於可使TMB氣(例如〇 5%莫爾或體積濃度的顶b)對石夕 炫氣混口物體積流速比為6· i #流速,而基材支撐件溫 度被維持在約20(rc、電漿功率被控制在介於約57 milhwatts/cm (3287 WaUs)i腔室壓力被維持在約 © Ton*長達約2_1〇秒’以形成一約膜(諸如一⑽入 膜)在一貫施例中,重摻雜非晶矽層202的III族元素 換質濃度為介於約1〇2°at〇ms/cm3與約,at〇ms/cm3之 間。 ^實施例中,界面層202可以是一衰退摻雜之p_型 一声:化石夕層(―4摻雜之p-型非晶碳化石夕(P++)層)。碳 '、可X藉由在形成重摻雜卜型非晶碳化石夕層2G2時供 應3碳氣體到氣體混合物内來提供。在一實施例中, 甲,或其他3碳化合物(例如CH4、c3H8、或c阳 17 201041167 的添加可以用以形成重摻雜P-型非晶碳化矽層202,其 可係其他含矽材料層吸收更少的光。吾等相信碳原子添 加到界面層202中可在光通過該些膜層時改善界面層 2〇2的透光率’因而較少的光將被吸收或消耗,藉此改 善太陽能電池的轉換效率。在一實施例中,重摻雜p —型 非晶碳化石夕層202中的碳濃度被控制在介於約1原子〇/〇 與約50原子%之間的濃度。在一實施例中,界面严型Applying an RF power between about 25 mW/cm 2 and about 250 mW/cm 2 (about about 60 mW/cm 2 or about 80 mW/cm 2 ) between about 4 Torr or about 1 · 5 Torr will be about A rate of 1 A/min or greater (e.g., about 200 A/min or greater 'such as about 300 A/min or about 6 A/min) deposits an η-type amorphous; Alloys of bismuth and other elements such as oxygen, carbon, nitrogen, hydrogen and helium are useful in some embodiments. These other elements can be added to the ruthenium membrane by supplementing the reactant gas mixture with each source. Niobium alloys can be used in any type of tantalum layer, including interfacial layers, p-type, n-type, MB, wavelength selective renect〇r (WSR) layers, or intrinsic germanium layers. For example, carbon can be added to the stone membrane by adding a carbon source such as methane (CH4) to the gas mixture. Usually, most of them.丨-. 4 hydrocarbons can be used as a carbon source. Alternatively, organic cerium compounds (such as organic Wei, organic money 9, and the like) can be used as a source of carbon and carbon. False compounds (such as morphological and organic malodors) and = Park's compounds (such as Shi Xi Yan or wrong money) can be used as a source of oxygen (02). Other sources of oxygen include but three = nitrogen oxides (nitrous oxide (N2〇), nitrogen oxides (n〇), —nitrogen (N2〇3), nitrogen dioxide (N〇2), tetraoxide Nitrogen (Liao), 15 201041167 Nitrous oxide (N2〇5), and nitrogen trioxide (ΝΑ), hydrogen peroxide (H2〇2), carbon monoxide or carbon dioxide (CO or CO 2 ), ozone (〇3), An oxygen atom, an oxygen group, and an alcohol (R〇H, wherein R is any organic or heteroorganic group). The nitrogen source may include nitrogen (Nj, ammonia (NHJ, hydrazine (N2H2), amine (RxNR'3x, where X is 〇~3, and each of the various squalane and r, 疋 independent of any organic or heteroorganic group), Indoleamine ((Rco)xnr'3_x, where x is 〇~3, and each R and R are independently an organic or heteroorganic group), quinone imine (RCONCOR, where each R and R' Any organic or heteroorganic group that is independent), an enamine (HC = C3NR4R5, in which each Ri_Rs is an independent organic or heteroorganic group), and a nitrogen atom and a group. To improve conversion efficiency and reduce contact A resistor, an interface layer may be formed at the interface between the TCO layer 104 and the p-type germanium-containing layer 1〇6. The second layer 1 is not disposed between the TCO layer 104 and the p-type germanium-containing layer 1〇6. Interface 202. Interface layer 202 provides a good interface that improves adhesion between the TC and the TC substrate. In some embodiments, interface layer 202 can be heavily doped or degraded. (degenerateiy such as "the illusion of the enamel layer, which is at a high rate (for example, at the rate in the upper half of the aforementioned program) It should be formed by doping. We believe that degraded doping can improve charge collection by providing a low-resistance contact junction. We also believe that decay can improve the conductivity of some layers (such as amorphous layers). In the implementation of the financial, the interface layer 2〇2 is a recession-type amorphous amorphous layer (-heavily doped ρ·type amorphous dream (wide) layer). Decay (such as phantom exchange P-type amorphous stone The doping layer 202 #III group element doping concentration is higher than 16 201041167 type germanium containing layer 106. The doping concentration of the degraded (eg heavy) doped P++-type amorphous germanium layer 202 is equal to one at about 2 T〇rr and a layer formed between TMP and Shi Xiyuan at a pressure of about 2 5 τ ηη and a volumetric flow ratio of the mixture between about 2 and about (wherein the TMB precursor comprises 〇·5〇/0 moir or The volume concentration of ruthenium). The decay (e.g., heavy) doped broad amorphous slab layer 2 〇 2 is formed between about 45 w (10) s) and about 91 milliWatts / cm 2 (48 〇〇 WaUs) of plasma power. In a practical example, the dormant doped P'-type amorphous layer 2G2 can be formed by providing the following conditions to be about 2" sccm/L (such as 6). The flow rate between coffee m) and Sccm/L (such as 9 〇〇〇sccm), hydrogen gas at a flow rate of about 6 虱 for the mixture of 虱 矽 矽 、, and doped precursors to make TMB gas (such as 〇 The volumetric flow rate ratio of the top b) of the 5% moir or the volume concentration to the Shi Xixian gas mixture is 6 · i # flow rate, while the substrate support temperature is maintained at about 20 (rc, the plasma power is controlled At about 57 milhwatts/cm (3287 WaUs), the i-chamber pressure is maintained at about © Ton* for about 2_1 〇 seconds to form a film (such as a (10) film) in a consistent application, heavily doped The group III element metamorphism concentration of the germanium layer 202 is between about 1 〇 2 ° at 〇 ms / cm 3 and about between at 〇 ms / cm 3 . In an embodiment, the interface layer 202 may be a decay-doped p_ type of sound: a fossil layer ("4-doped p-type amorphous carbonized carbide (P++) layer). Carbon ', X can be supplied by supplying 3 carbon gas into the gas mixture when forming the heavily doped amorphous carbonized carbide layer 2G2. In one embodiment, the addition of a, or other, 3 carbon compound (eg, CH4, c3H8, or c-yang 17 201041167) may be used to form a heavily doped P-type amorphous tantalum carbide layer 202, which may be other germanium containing materials. The layer absorbs less light. We believe that the addition of carbon atoms to the interface layer 202 improves the light transmission of the interface layer 2〇2 as light passes through the layers. Thus less light will be absorbed or consumed. This improves the conversion efficiency of the solar cell. In one embodiment, the carbon concentration in the heavily doped p-type amorphous carbonized carbide layer 202 is controlled to be between about 1 atom 〇/〇 and about 50 atom%. Concentration. In one embodiment, the interface is strict

非晶碳化石夕層202的厚度係介於約2〇a與約30〇a之間, 例如介於約l〇A與約200A之間,諸如介於約2〇人與約 100人之間。 在第2圖繪示的特定實施例中’當界面層2〇2係為一 重摻雜p-型非晶矽層或一重摻雜p_型非晶碳化矽層時, P-型含矽層106可以是一 p_型非晶矽層或一 p型非晶碳 化矽層(一非晶矽合金層),以滿足不同的製程需求❶在 一實施例中,界面層202為一重摻雜p_型非晶矽層,並 且P-型含矽層106為一 p-型非晶矽層或一 p_型非晶碳化 石夕層。在另一實施例中’界面層鐵為一重摻雜卜型非 晶碳化石夕層,並且p_型含石夕層1〇6為—型非晶碳化石夕 層0 此外 波長可選擇反射(wavelength selective lector,WSR)層206可設置在第一 p_i_n接面2i2與第 二P_i_n接面214之間。WSR層裏係設以在所形成的 太陽能電池H)0中具有可改善光散射和電流產生的膜性 質。又’舰層206也提供—良好的p_n通道接面,該 18 201041167 ”的㈣通道接面具有一高的導電率與一經調控的能 隙耗圍,其可影塑續n n、a、若& j如曰a p-n通道接面的穿透和反射性質, 以改善所形成太陽能電池的光轉換效率。鶴層2〇6係 主動地作為m射件,其具有期望的折射率或折射 率範圍以反射從太陽能電池100的光入射側所接收的 光WSR層206也作為一接合層,其促進在第一 p小η 接面212中短到中波長光(例如28() nm到綱㈣的吸收 Ο Ο 及改善短路電流,因而改善了量子和轉換效能。徽層 2〇6更具有對於中到長波長光(例如5〇〇⑽到u〇〇 _ 的高膜透光率,以促進光到該些形成在第二接面214之 層的傳送。再者,當反射期望的波長的光(例如較短波長) 口到第一 ρ+η接面212中的層且傳送期望的波長的光 (例如較長波長)到第二p_i_n接面214中的層時,大致上 希望WSR層206能盡可能吸收少量的光。此外,wsr 層206可以具有期望的能隙與高膜導電率,藉此有效率 地傳導所產生的電流且容許電子從第一 P-i-n接面212流 動到第二p_i_n接面214,並且避免阻隔所產生的電流。 在實施例中,WSR層206可以是一微晶矽層,其具有 η-型或p_型摻質位在WSR層2〇6内。在一示範性實施例 中,WSR層206為一 n_型結晶矽合金,其具有n_型摻質 位在WSR層206内。位在WSR層206内之不同的摻質 也會衫響WSR層膜光學和電氣性質,諸如能隙、結晶比 例、導電率、穿透率、膜折射率、消光係數、及類似物。 在些例子中’ 一或多種摻質可以被摻雜到WSR層206 19 201041167 的各種區域内’以有效率地控制且調整膜能隙、工作函 數導電率、穿透率等。在一實施例令,WSR層206被 控制在具有介於約1>4與約4之間的折射率、至少約Μ 的能隙、及大於約丨〇-6 s/cm的導電率。The thickness of the amorphous carbonized carbide layer 202 is between about 2 〇a and about 30 〇a, such as between about 1 〇A and about 200 A, such as between about 2 〇 and about 100 Å. . In the specific embodiment illustrated in FIG. 2, when the interface layer 2〇2 is a heavily doped p-type amorphous germanium layer or a heavily doped p_type amorphous tantalum carbide layer, the P-type germanium-containing germanium layer 106 may be a p_type amorphous germanium layer or a p-type amorphous tantalum carbide layer (an amorphous germanium alloy layer) to meet different process requirements. In one embodiment, the interface layer 202 is heavily doped p. The Å-type amorphous germanium layer, and the P-type germanium-containing germanium layer 106 is a p-type amorphous germanium layer or a p_type amorphous carbonized carbide layer. In another embodiment, the interfacial layer iron is a heavily doped amorphous carbonized carbide layer, and the p_ type containing the litmus layer 1〇6 is a type of amorphous carbonized carbide layer 0, and the wavelength is selectively reflective ( A layer selective lector (WSR) layer 206 may be disposed between the first p_i_n junction 2i2 and the second P_i_n junction 214. The WSR layer is provided with a film property in the formed solar cell H)0 which can improve light scattering and current generation. In addition, the 'ship layer 206 also provides a good p_n channel junction. The (4) channel mask of the 18 201041167 ” has a high electrical conductivity and a controlled energy gap, which can be continued for nn, a, Ruo & j such as the penetration and reflection properties of the 曰a pn channel junction to improve the light conversion efficiency of the formed solar cell. The He 2 〇 6 system actively acts as an m-projecting member with a desired refractive index or refractive index range. The light WSR layer 206 received from the light incident side of the solar cell 100 also serves as a bonding layer that promotes short to medium wavelength light (e.g., 28 () nm to (4) in the first p small η junction 212. Absorbs Ο Ο and improves short-circuit current, thus improving quantum and conversion efficiency. The emblem 2〇6 has a high film transmittance for medium to long-wavelength light (for example, 5〇〇(10) to u〇〇_ to promote light The transmission to the layers formed at the second junction 214. Further, when the light of a desired wavelength (e.g., a shorter wavelength) is reflected to the layer in the first ρ+η junction 212 and the desired wavelength is transmitted When light (for example, a longer wavelength) is applied to a layer in the second p_i_n junction 214, it is generally desirable The SR layer 206 can absorb as little light as possible. Furthermore, the wsr layer 206 can have a desired energy gap and high film conductivity, thereby efficiently conducting the generated current and allowing electrons to flow from the first pin junction 212 to The second p_i_n junction 214 and avoids blocking the generated current. In an embodiment, the WSR layer 206 can be a microcrystalline layer having an n-type or p-type dopant site in the WSR layer 2〇6. In an exemplary embodiment, the WSR layer 206 is an n-type crystalline germanium alloy having n-type dopant sites within the WSR layer 206. Different dopants in the WSR layer 206 will also ring. Optical and electrical properties of the WSR film, such as energy gap, crystallization ratio, conductivity, transmittance, film refractive index, extinction coefficient, and the like. In some examples, one or more dopants may be doped into the WSR layer. 206 19 201041167 in various regions 'to effectively control and adjust the film energy gap, work function conductivity, transmittance, etc. In an embodiment, the WSR layer 206 is controlled to have between about 1 > 4 and about a refractive index between 4, an energy gap of at least about Μ, and a conductivity greater than about 丨〇-6 s/cm

在一實施例中,WSR層可以包含一 η型接雜石夕合 金層’例如氧化石夕(Si〇x、Si〇2)、碳化石夕(sic)、氮化石夕 氧(Si〇N)、氮化矽(SiN)、氮化矽碳(sicN)、碳化矽氧 (si〇c)、氮化石夕氧碳(SioCN)、或類似物。在—示範性實 施例中,WSR層206為一 n-型SiON或SiC層。 P-i緩衝型本質非晶矽(PIB)層2〇8可以選擇性 地形成在第二p-i_n接面214中卜型含石夕^ ιΐ2與本質型 含石夕層114之間。吾等相信piB層2〇8可以在該些膜層 之間有效率地提供過渡的膜性質,藉此改善整體的轉: 效能。在-實施例中’ PIB | 2〇8可以藉由提供氫氣對 矽烷氣的氣體混合物來沉積’其中氫對矽烷 比為約別或更小,例如例如小於約30:1,例如 2〇:1與約30:1之間,諸如約25:1。石夕炫氣可以被提供& 介於約0.5sCcm/L與約5sccm/L之間的流速,例如約2 3 sccm/L。氫氣可以被提供於介於約5 sccm/L與約肋 sccm/L之間的流速,例如介於約2〇 “⑽化與約μ secm/L之間,諸如約57 sccm/L。可以提供介於約b mW/cm2與約250 mW/cm2之間的RF功率至喷頭,例如 約30 mW/em2。腔室壓力可以被維持在介於約〇 1 與約20 T〇rr之間,例如介於約〇 5 T〇rr與約$ T〇rr之間, 20 201041167 或約3 Ton·。PIB層206的沉積速率可以為約l〇〇 A/min 或更大。 又,一衰退摻雜η-型非晶矽層210可以主要地被形成 為重摻雜η-型非晶碎層,以提供改善之和第二tc〇層 11 8的歐姆接觸。在一實施例中,重摻雜η_型非晶矽層 210 具有介於約 i〇2〇atoms/cm3 與約 1〇2iat〇ms/cm3 之間 的摻質濃度。 Θ 第3圖係繪示設置在TCO層1〇4與卜型含矽層1〇6之 間的界面層的另一實施例的放大示意圖。除了前述第2 圖的界面層202之外,一第二界面層3〇4可以設置在第 一界面層202與p-型含矽層106之間。第二界面層3〇4 可以具有和第一界面層202不同的膜性質,藉此補償第 一界面層202沒有完全提供的一些電氣性質。舉例而 ^ 具有較咼導電率的膜通常具有相對低的膜透光 率其會不利地吸收或減少通過其間到太陽能電池接面 〇 的光量,反之亦然。藉由使用此雙層組態,將可容許更 大量之具有不同波長的光通過其間到第—接面212且進 一步到第二接面214,同時維持期望的膜導電率,因此 產生了更大的電流量。 在一實施例中,第二界面層304為p_型非晶石夕層,其 具有類似於p_型含矽層106的ΙΠ族元素摻質濃度但 具有不同於ρ-型含矽層1〇6的膜類型(例如摻 素)。舉例而言,當Ρ-型含矽層106為卜型非晶矽層時, 第二界面層304可以是ρ-型非晶碳化石夕層。第一界面層 21 201041167 202可以是重摻雜ρ_型非晶矽層或重摻雜ρ·型非晶碳化 矽層。第二界面層304可以具有小於第—界面層卿列 如重摻雜ρ-型層)但類似於卜型含矽層1〇6的型摻質 濃度。在第3圖搶示之實施例中,第—界面層2〇2為厚 度介於約Π)Α與約2G()A之間的重摻雜非晶碳切層, 並且第二界面層304為厚度介於約50A與約200人之間 的P-型非晶碳化矽層。卜型含矽層1〇6為p_型非晶矽層。 第4圖係繪示界面結構的另一實施例,其申該界面結 構具有多個層形成在TC〇層1〇4與卜型含矽層1〇6之 間。除了第2-3圖繪示之界面層2〇2之外,一額外的tc〇In an embodiment, the WSR layer may comprise an n-type bonded alloy layer, such as oxidized stone (Si〇x, Si〇2), carbonized stone (sic), and nitrided oxygen (Si〇N). Niobium nitride (SiN), tantalum nitride (sicN), niobium carbide (si〇c), niobium oxynitride (SioCN), or the like. In an exemplary embodiment, WSR layer 206 is an n-type SiON or SiC layer. The P-i buffer type intrinsic amorphous germanium (PIB) layer 2〇8 may be selectively formed between the second type p-i_n junction 214 and the intrinsic type containing layer. We believe that the piB layer 2〇8 can efficiently provide transitional film properties between the layers, thereby improving overall turnaround: performance. In an embodiment, 'PIB | 2〇8 can be deposited by providing a gas mixture of hydrogen to decane gas, wherein the hydrogen to decane ratio is about or less, such as, for example, less than about 30:1, such as 2〇:1 Between about 30:1, such as about 25:1. Shi Xi Xuanqi can be supplied with a flow rate between about 0.5 s Ccm/L and about 5 sccm/L, for example about 23 sccm/L. Hydrogen gas may be provided at a flow rate between about 5 sccm/L and about ribs sccm/L, such as between about 2 〇 "(10) and about μ secm/L, such as about 57 sccm/L. RF power between about b mW/cm2 and about 250 mW/cm2 to the showerhead, for example about 30 mW/em2. The chamber pressure can be maintained between about 〇1 and about 20 T〇rr, For example, between about 〇5 T〇rr and about $T〇rr, 20 201041167 or about 3 Ton·. The deposition rate of the PIB layer 206 may be about l〇〇A/min or more. The hetero-n-type amorphous germanium layer 210 may be primarily formed as a heavily doped n-type amorphous clump layer to provide improved ohmic contact with the second tc germanium layer 118. In one embodiment, heavily doped The n-type amorphous germanium layer 210 has a dopant concentration of between about 〇2〇atoms/cm3 and about 1〇2iat〇ms/cm3. Θ Figure 3 is shown in the TCO layer 1〇4 An enlarged schematic view of another embodiment of the interfacial layer between the plutonium-containing layers 1 and 6. In addition to the interfacial layer 202 of the second embodiment, a second interfacial layer 3〇4 may be disposed at the first interfacial layer 202. Between the p-type germanium containing layer 106 The second interfacial layer 3〇4 may have a different film property than the first interfacial layer 202, thereby compensating for some of the electrical properties not provided by the first interfacial layer 202. For example, a film having a higher conductivity generally has a relative Low film transmittance which adversely absorbs or reduces the amount of light passing between the junctions of the solar cells and vice versa. By using this two-layer configuration, a larger amount of light having different wavelengths can be tolerated To the first junction 212 and further to the second junction 214 while maintaining the desired membrane conductivity, a greater amount of current is produced. In one embodiment, the second interface layer 304 is a p-type amorphous stone. a layer having a ternary element dopant concentration similar to the p-type ruthenium-containing layer 106 but having a different film type (for example, a dopant) than the ρ-type ruthenium-containing layer 1 。 6. For example, when Ρ- When the ruthenium-containing layer 106 is a Bu-type amorphous ruthenium layer, the second interface layer 304 may be a ρ-type amorphous carbonized carbide layer. The first interface layer 21 201041167 202 may be a heavily doped ρ_type amorphous ruthenium layer. Or heavily doped ρ·type amorphous tantalum carbide layer. The second interface layer 304 can There is a type dopant concentration which is smaller than the first-interface layer, such as a heavily doped p-type layer, but is similar to the type-containing layer 1〇6. In the embodiment of the third figure, the first interface layer 2 〇2 is a heavily doped amorphous carbon cut layer having a thickness between about G) 约 and about 2G () A, and the second interfacial layer 304 is a P-type having a thickness between about 50 A and about 200 people. An amorphous carbonized germanium layer. The germanium-containing germanium layer 1〇6 is a p_type amorphous germanium layer. FIG. 4 is another embodiment of the interface structure, wherein the interface structure has a plurality of layers formed in the TC〇 Between layer 1 〇 4 and 卜 type 矽 layer 1 〇 6. In addition to the interface layer 2〇2 depicted in Figures 2-3, an additional tc〇

Ο 層302可以被插置在底部TCO層104與界面層2〇2之 間。在一實施例中,當底部TC〇層1〇4為氧化錫層(Sn〇2) 時’該額外的TC0層302可以是氧化辞(Zn〇)層。吾等 相信’該額外的TC0| 3G2對於之後為了在其上形成後 續的層而執行的電漿提供了較佳的化學阻性。在執行電 漿或蝕刻製程時,該額外的ZnO TCO層302之良好化學 阻性係提供了良好的表面紋理控制,藉此提升光捕獲能 力。此外,該額外的TC〇層3〇2也可以提供高膜透光率、 低膜電阻率及高膜導電率’因而能維持之後形成在其上The ruthenium layer 302 can be interposed between the bottom TCO layer 104 and the interface layer 2〇2. In one embodiment, when the bottom TC layer 1 〇 4 is a tin oxide layer (Sn 〇 2), the additional TC0 layer 302 may be a Zn 〇 layer. We believe that the additional TC0|3G2 provides better chemical resistance to the plasma that is subsequently performed to form a subsequent layer thereon. The good chemical resistance of the additional ZnO TCO layer 302 provides good surface texture control during the plasma or etch process, thereby enhancing light trapping capability. In addition, the additional TC layer 3〇2 can also provide high film transmittance, low film resistivity, and high film conductivity, which can be maintained after it is formed thereon.

陽此接面電池的面轉換效能。因此,當在底部TCO 層104上形成該額外的TCO層302時,這些膜性質能夠 以下述的方式來控制:可改善轉換效能、降低接觸電阻 率、提供馬的對電漿之高化學阻性及良好的期望用於捕 獲光之表面蚊理。 22 201041167 在一實施例中,該額外的TC〇層3〇2可以是氧化辞 (ZnO)層’其具有介於約5㈣與約5 w⑼之間的辞摻質 濃度。該額外的TCO層3〇2可以具有介於約5_%與約 5 wt/。之間的銘摻質遭度。該額外的層逝的厚度 可以被控制在介於約5〇A與約5〇〇A之間。Zn〇層地 可以藉由CVD、pVD、或任何其他適當的沉積技術來形 成。 ◎ 在沁成該額外的TC〇層3〇2於底部tc〇層上之 後,界面層302和p_型含石夕層1〇6可以接著被形成於其 上以形成期望的接面。在一示範性實施例中,界面層 2〇2為重摻雜非晶矽層,並且含矽|⑽為卜型碳 化碎層。 第5圖係繪示形成在TC〇層1〇4與p型含矽層1〇6之 間的界面結構的另一實施例。一額外的TC〇層3〇2(類似 於第4圖之額外的TC〇層3〇2)係沉積在底部丁〇〇層ι〇4 © 上。接著,卜型含石夕層1〇6沉積在該額外的Tc〇層搬 上。在此特定實施例中,p_型含矽層1〇6可以是p型微 晶/奈米晶矽或碳化矽層。應瞭解,奈米晶矽層的顆粒尺 寸為約或小於300A,並且微晶矽層的顆粒尺寸為約或大 於3〇〇人。吾等相信P_型微晶矽層或奈米晶矽層可以比 P-型非晶矽層提供更低的接觸電阻。在第5圖繪示之示 範性實施例中,丁(:〇層1〇4為含氧化錫(811〇2)之tc〇 層。額外的TCO層302為含氧化辞(Zn0)2 TC〇層,並 且P-型含矽層106是p_型奈米晶碳化矽層。 23 201041167 第6圖係繪示形成在TC〇層1〇4與卜型含矽層ι〇6之 間的界面結構的又另_實施例。一额外的TC〇層3〇2(類 似於第4_5圖之額外的TCO層302)係沉積在底部TC〇 層1〇4上。接著,一中間界面層602沉積在該額外的TC〇 層3 02上。吾專相信中間界面層6〇2可以有助於在額外 的TCO層3 02與待沉積的p型非晶矽層i 〇6之間建立高 電場’藉此有效率地改善太陽能電池的轉換效能。在一 D 實施例中,中間界面層602為厚度介於約1〇人與約2〇〇人 之間的P-型微晶/奈米晶矽層或p_型微晶/奈米晶碳化矽 層。然後,p-型含矽層106沉積在中間界面層6〇2上。 在第6圖繪示之實施例中,TC〇層1〇4為含氧化錫(Sn〇2) 之tco層。額外的TCO層302為含氧化鋅(Zn〇)之tc〇 層。中間界面層602為p-型微晶/奈米晶碳化矽層,並且 p-型含矽層106為p_型非晶碳化矽層。 第7圖係繪示形成在TCO層1〇4與p-型含石夕層1〇6之 〇 間的界面結構的另一實施例。在此實施例中,三膜結構 形成在TCO層104與p_型含矽層1〇6之間。該三膜結構 包括一額外的TCO層302、一第一中間層7〇2及一第二 中間層704。該額外的TCO層3〇2類似於第4 6圖之額 外的TCO層302。吾等相信一矽系層(例如不含碳摻質) 可以具有相對高的導電率,而一矽合金層(例如含碳或其 他合金摻質)將具有兩的膜透光率而能容許大量的光通 過到接面電池。因此,藉由利用該三臈結構,可以獲得 尚膜導電率、局膜透光率以為了高轉換效能、及低接觸 24 201041167 電阻率。在第7圖繪示之實施例中,第一中間層702可 以是厚度介於約10人與約200A之間的P-型微晶/奈米晶 石夕層。第二中間層704可以是厚度介於約40A與約200A 之間的p-型微晶/奈米晶碳化石夕層。在形成該三膜結構 後’P-型含矽層106可以形成在該三膜結構上。在一實 施例中’形成在該三膜結構上的p型含矽層1 〇6可以是 P-型非晶碳化梦層。 第8圖係繪示形成在TCO層104與P-型含矽層802之 0 間的界面結構的另一實施例。在此實施例中,TCO層104 係經選擇成由一含氧化鋅(ZnO)層來製成。形成在其上的 p-型含矽層802為厚度介於約i〇A與約200A之間的p-型微晶/奈米晶碳化矽層。吾等相信,在電漿處理以為了 沉積後續的膜層時,使用ZnO系TCO層1 04可以提供良 好的化學阻性。替代地,TCO層104也可以是η-型摻雜 之氧化銘辞(ΑΖΟ)層。η-型摻質可以包括蝴、鋁、鎵、及 〇 類似物。在此特定實施例中,含ZnO之TCO層104的厚 度可以介於約100A與約ιοοοοΑ之間。 第9圖係繪示形成在TCO層104與P-型含矽層106之 間的界面結構的另一實施例。在此特定實施例中,TC〇 層104可以經選擇成由一含氧化鋅(Zn0)層來製成,類似 於第8圖之TCO層104。接著,一界面層602(諸如第6 圖繪示之中間界面層602)沉積在TCO層104上。吾等相 信界面層602可以有助於在額外的TCO層104與待沉積 的P型非晶矽層106之間建立高電場,藉此有效率地改 25 201041167 善太陽能電池的轉換效能。在—實施例中,界面層術 為厚度"於約10A與約2〇oA之間的p_型微晶/奈米晶碳 化石夕層。然後,P-型含石夕層1〇6沉積在界面層6〇2上。 在第9圖繪不之示範性實施例中,TCO I 104 S含氧化 鋅(Zn〇)之TC〇層’並且界面層6〇2為p-型微晶/奈米晶 碳化石夕層’並且p~型含矽層106為p-型非晶碳化矽層。 第10圖係繪示形成在TCO層104與p型含矽層1〇6 0 之間的界面結構的又另一實施例。在第10圖繪示之實施 例中,雙膜結構形成在丁(::0層104與p型含矽層ι〇6之 間。在此特定實施例中,TCO層1〇4可以經選擇成由一 含氧化鋅(ZnO)層來製成’類似於第7_9圖之TCO層 HM。該雙膜結構包括一第一中間層7〇2及一第二中間層 704’類似於第7囷之第一中間層7〇2及第二中間層7叫。 第中間層702可以是厚度介於約1 〇A與約2〇〇A之間 的P-型微晶/奈米晶矽層。第二中間層7〇4可以是厚度介 〇 於約4〇A與約20〇A之間的P-型微晶/奈米晶碳化矽層。 在形成該雙膜結構於TCO層1〇4上後,严型含矽層1〇6 可以形成在該雙膜結構上。在一實施例中,形成在該雙 膜結構上的P-型含矽層1〇6可以是p_型非晶碳化矽層。 第11圖為一電漿增強化學氣相沉積(PEC VD)腔室i丨〇〇 之一實施例的剖面圖’其中薄膜太陽能電池(例如第 圖的太陽能電池)的一或多個膜可以在該電漿增強化學 氣相沉積(PECVD)腔室11〇〇進行沉積。一適當的電衆增 強化學氣相沉積腔室係由美國加州聖克拉拉市的應用材 26 201041167 料公司(Applied Material% Inc.)獲得。應瞭解,其他製程 腔室(包括來自其他業者的製程腔室)也可以用來實施本 發明。 大致上,腔室1100包括多的壁11〇2、_底部U糾、 一喷頭1106及一基材支撐件113〇,其界定—製程容積 1106。製程容積11〇6可經由一閥11〇8 <山 從而使 得基材可以被傳送進出該腔室1100。基材支撐件n3〇 〇 包括一基材接收表面1132與-桿"34’基材接收表面 1132用於支揮基材,桿1134麵接到—升降系统η%以 升高且降低基材支撐件113〇β 一遮蔽環1133可以選擇性 地放置在基材102的周邊上方。多個升降銷U38係可移 動地設置穿過基材支撐件113〇,以移動基材至且自基材 接收表面1132。基材支撐件113〇也可以包括加熱與/或 冷卻構件1139,以將基材支撐件113〇維持在期望的溫 度。基材支撐件1130也可以包括多個接地帶1131,以在 〇 基材支撐件1130之周邊處提供RF接地。 喷頭1110在其周邊處藉由一懸件1114耦接至一背板 1112。喷頭mo也可以藉由一或多個中心支撐件^6耦 接至背板,以有助於避免下垂與/或控制噴頭ιη〇的筆 直度/彎曲度。一氣體源1120耦接至背板1U2,以提供 氣體通過背板m2且通過喷頭1110到基材接收表面 1132 真空系Η09麵接至腔室11〇〇,以將製程容積 1106控制於期望的壓力。_ RF功率源丨丨22耦接至背板 1112與/或喷頭111 〇,以提供RF功率到喷頭111 〇,使得 27 201041167 一電場被建立在喷頭與基材支撐件113〇之間,因而一電 漿可以從氣體被產生在喷頭1110與基材支撐件ιΐ3〇之 間。可以使用各種的RF頻率,例如介於約〇 3 ΜΗζ與 約200 MHz之間的頻率。在—實施例中,RF功率源係被 提供於13.56MHz的頻率。The surface conversion performance of the junction battery. Thus, when the additional TCO layer 302 is formed on the bottom TCO layer 104, these film properties can be controlled in such a way as to improve conversion efficiency, reduce contact resistivity, and provide high chemical resistance to the plasma of the horse. And good expectations for capturing mosquitoes on the surface of light. 22 201041167 In an embodiment, the additional TC layer 3〇2 may be a oxidized (ZnO) layer' having a concentration of a dopant between about 5 (four) and about 5 w (9). The additional TCO layer 3〇2 can have between about 5% and about 5 wt/. The degree of impurity between the two is affected. The thickness of the additional layer can be controlled between about 5 〇A and about 5 〇〇A. The Zn layer can be formed by CVD, pVD, or any other suitable deposition technique. ◎ After the additional TC layer 3〇2 is formed on the bottom tc layer, the interface layer 302 and the p_type containing layer 1〇6 can then be formed thereon to form the desired junction. In an exemplary embodiment, the interfacial layer 2〇2 is a heavily doped amorphous germanium layer, and the germanium-containing layer (10) is a pit-type carbonized clump layer. Fig. 5 is a view showing another embodiment of the interface structure formed between the TC layer 1〇4 and the p-type germanium layer 1〇6. An additional TC layer 3〇2 (similar to the additional TC layer 3〇2 in Figure 4) is deposited on the bottom layer of 〇4〇. Next, a type of tarpaulin layer 1〇6 is deposited on the additional Tc layer. In this particular embodiment, the p-type germanium-containing layer 1〇6 may be a p-type microcrystal/nanocrystalline germanium or a tantalum carbide layer. It should be understood that the nanocrystalline layer has a particle size of about or less than 300 A, and the microcrystalline layer has a particle size of about or more than 3 Å. We believe that the P_ type microcrystalline germanium layer or nanocrystalline germanium layer can provide lower contact resistance than the P-type amorphous germanium layer. In the exemplary embodiment illustrated in FIG. 5, the 〇 layer (〇 layer 1 〇 4 is a tc 〇 layer containing tin oxide (811 〇 2). The additional TCO layer 302 is oxidized (Zn0) 2 TC 〇 The layer, and the P-type germanium-containing layer 106 is a p_type nanocrystalline carbonized layer. 23 201041167 Fig. 6 shows the interface formed between the TC layer 1〇4 and the layered layer 〇6 Still another embodiment of the structure. An additional TC layer 3〇2 (similar to the additional TCO layer 302 of Figure 4-5) is deposited on the bottom TC layer 1〇4. Next, an intermediate interface layer 602 is deposited. On this additional TC layer 203, I believe that the intermediate interface layer 6〇2 can contribute to the creation of a high electric field between the additional TCO layer 302 and the p-type amorphous germanium layer i 〇6 to be deposited. Thereby, the conversion performance of the solar cell is efficiently improved. In a D embodiment, the intermediate interface layer 602 is a P-type crystallite/nanocrystal having a thickness of between about 1 〇 and about 2 〇〇. Layer or p_ type microcrystalline/nanocrystalline carbonized germanium layer. Then, p-type germanium containing layer 106 is deposited on intermediate interface layer 6〇2. In the embodiment illustrated in Fig. 6, TC layer 1〇 4 is a tco layer containing tin oxide (Sn〇2) The additional TCO layer 302 is a tc〇 layer containing zinc oxide (Zn〇). The intermediate interface layer 602 is a p-type microcrystalline/nanocrystalline tantalum carbide layer, and the p-type germanium containing layer 106 is p_type non- A crystalline carbonized layer. Fig. 7 illustrates another embodiment of an interfacial structure formed between the TCO layer 1〇4 and the p-type containing layer 1〇6. In this embodiment, the triple film structure Formed between the TCO layer 104 and the p_type germanium containing layer 1〇 6. The triple film structure includes an additional TCO layer 302, a first intermediate layer 7〇2, and a second intermediate layer 704. The additional TCO Layer 3〇2 is similar to the additional TCO layer 302 of Figure 46. We believe that a tantalum layer (e.g., without carbon dopants) can have a relatively high conductivity, while a tantalum alloy layer (e.g., carbon or Other alloy dopants will have two films of light transmittance and allow a large amount of light to pass through to the junction cell. Therefore, by using the triterpene structure, the film conductivity and the local film transmittance can be obtained for high Conversion performance, and low contact 24 201041167 resistivity. In the embodiment illustrated in Figure 7, the first intermediate layer 702 can be a P- between about 10 and about 200 A. Type of microcrystalline/nanocrystalline layer 704. The second intermediate layer 704 may be a p-type microcrystalline/nanocrystalline carbonized carbide layer having a thickness of between about 40 A and about 200 A. After forming the three-film structure A 'P-type germanium containing layer 106 may be formed on the three film structure. In an embodiment, the p-type germanium containing layer 1 formed on the three film structure may be a P-type amorphous carbonized dream layer. FIG. 8 illustrates another embodiment of an interface structure formed between the TCO layer 104 and the P-type germanium containing layer 802. In this embodiment, the TCO layer 104 is selected to be made from a zinc oxide (ZnO) containing layer. The p-type germanium-containing layer 802 formed thereon is a p-type microcrystalline/nanocrystalline tantalum carbide layer having a thickness of between about i〇A and about 200A. We believe that the use of ZnO-based TCO layer 104 provides good chemical resistance when plasma is processed to deposit subsequent layers. Alternatively, the TCO layer 104 may also be an oxidized inscription layer of η-type doping. The η-type dopants may include butterflies, aluminum, gallium, and ytterbium analogs. In this particular embodiment, the ZnO-containing TCO layer 104 may have a thickness between about 100 A and about ιοοοο. Figure 9 illustrates another embodiment of an interface structure formed between the TCO layer 104 and the P-type germanium containing layer 106. In this particular embodiment, the TC layer 104 can be selected to be made of a zinc oxide (ZnO) containing layer, similar to the TCO layer 104 of FIG. Next, an interface layer 602 (such as intermediate interface layer 602 depicted in FIG. 6) is deposited on TCO layer 104. We believe that the interface layer 602 can help establish a high electric field between the additional TCO layer 104 and the P-type amorphous germanium layer 106 to be deposited, thereby efficiently converting the conversion performance of the 201041167 solar cell. In the embodiment, the interfacial layer is a p_ type microcrystalline/nanocrystalline carbonized stone layer having a thickness " between about 10 A and about 2 Å. Then, a P-type inclusion layer 1〇6 is deposited on the interface layer 6〇2. In an exemplary embodiment depicted in FIG. 9, TCO I 104 S contains a TC layer of zinc oxide (Zn〇) and the interface layer 6〇2 is a p-type microcrystalline/nanocrystalline carbonized stone layer. And the p-type germanium-containing layer 106 is a p-type amorphous tantalum carbide layer. Fig. 10 is still another embodiment of the interface structure formed between the TCO layer 104 and the p-type germanium containing layer 100. In the embodiment illustrated in Fig. 10, the double film structure is formed between the D (: 0 layer 104 and the p type germanium containing layer 。 6). In this particular embodiment, the TCO layer 1 〇 4 can be selected. Formed from a zinc oxide (ZnO) layer to form a TCO layer HM similar to that of Figure 7-9. The dual film structure includes a first intermediate layer 7〇2 and a second intermediate layer 704' similar to the seventh layer. The first intermediate layer 7〇2 and the second intermediate layer 7 are called. The intermediate layer 702 may be a P-type microcrystalline/nanocrystalline layer having a thickness of between about 1 〇A and about 2〇〇A. The second intermediate layer 7〇4 may be a P-type microcrystalline/nanocrystalline tantalum carbide layer having a thickness between about 4 A and about 20 A. The double film structure is formed in the TCO layer 1〇4. After the upper layer, the fine tantalum-containing layer 1〇6 may be formed on the double film structure. In one embodiment, the P-type germanium-containing layer 1〇6 formed on the double film structure may be p_type amorphous A layer of tantalum carbide. Figure 11 is a cross-sectional view of one embodiment of a plasma enhanced chemical vapor deposition (PEC VD) chamber, in which one or more thin film solar cells (e.g., solar cells of the Figure) a film can be added in the plasma A chemical vapor deposition (PECVD) chamber 11〇〇 is deposited. A suitable electron-enhanced chemical vapor deposition chamber is obtained from Applied Materials% Inc., Santa Clara, California, USA. It should be understood that other process chambers (including process chambers from other manufacturers) may also be used to practice the invention. Generally, chamber 1100 includes a plurality of walls 11, 2, a bottom U, a nozzle 1106, and A substrate support member 113, which defines a process volume 1106. The process volume 11〇6 can be transported into and out of the chamber 1100 via a valve 11〇8 <mountain. The substrate support n3〇〇 A substrate receiving surface 1132 and a rod-34' substrate receiving surface 1132 are included for supporting the substrate, and the rod 1134 is attached to the lifting system η% to raise and lower the substrate support 113 〇β. A ring 1133 can be selectively placed over the periphery of the substrate 102. A plurality of lift pins U38 are movably disposed through the substrate support 113A to move the substrate to and from the substrate receiving surface 1132. Pieces 113〇 may also include heating and/or cooling Member 1139 to maintain substrate support 113 at a desired temperature. Substrate support 1130 may also include a plurality of ground straps 1131 to provide RF ground at the periphery of crucible substrate support 1130. The periphery is coupled to a backing plate 1112 by a suspension 1114. The nozzle mo can also be coupled to the backing plate by one or more central supports 26 to help avoid sagging and/or control the nozzle The straightness/curvature of the ιη〇. A gas source 1120 is coupled to the backing plate 1U2 to provide gas through the backing plate m2 and through the showerhead 1110 to the substrate receiving surface 1132, the vacuum system 09 is connected to the chamber 11〇〇, The process volume 1106 is controlled to the desired pressure. _ RF power source 丨丨 22 is coupled to backplane 1112 and/or showerhead 111 〇 to provide RF power to showerhead 111 〇 such that an electric field of 27 201041167 is established between the showerhead and substrate support 113〇 Thus, a plasma can be produced from the gas between the showerhead 1110 and the substrate support ιΐ3〇. Various RF frequencies can be used, such as frequencies between about 3 ΜΗζ and about 200 MHz. In an embodiment, the RF power source is provided at a frequency of 13.56 MHz.

〇 一遠端電漿源(例如一感應式耦合遠端電漿源)也可以 被耦接在氣體源與背板之間。在處理多個基材之間,可 以提供一清潔氣體到遠端電漿源1124,因此產生且提供 -遠端電漿以清潔腔室部件。清潔氣體可以進—步藉由 被提供料頭的RF功率源1122來激彳卜適當的清潔氣 體包括有但不限於NF3、F2與SF6。 用在一或多個層(例如第卜10圖的一或多個層)的沉積 方法可X匕括下述在第u圖或其他適當腔室中的沉積 參數表面積為10,000 cm2或更大、40,000 cm2或更大、 或’〇〇0 Cm的基材係被提供到腔室。應瞭解,在處理 基材之後’基材可以被㈣以形成較小的太陽能電池。 在貫施例中,可以設定加熱與/或冷卻構件丨丨3 9以 在積期間提供約4〇(rc或更小的基材支撐件溫度,例 介;約1〇〇 C與約400°C之間,或介於約150°C與約300 C之間,諸如約200eC。 在沉積_ ’設置在基材接收表面1132上之基材的頂 與喷頭1110之間的間隔可以介於約400 mil與約 1 ’200 mil 之間 第圖為製 ’例如介於400 mil與約800 mil之間。 程系統1200之一實施例的俯視圖,其中 28 201041167 Ο Ο 該製程系統1200具有複數個製程腔室1231-1237(例如第 11圖的PECVD腔室或其他可以沉積矽膜的適當腔室)。 製程系統1200包括一傳送腔室1220與多個製程腔室 1231-1237,傳送腔室KM耦接至一負載鎖定腔室 1210。負載鎖定腔室121〇容許基材被傳送於系統外的外 界環境與傳送腔室1220和製程腔室1231-1237内的真空 環境之間。負載鎖定腔室1210包括一或多個可排空區域 (evacuatable regions),該些可排空區域係固持一或多個 基材°該些可排空區域在將基材輸入到系統12〇〇内期間 係被泵抽真空(pumped down),並且在基材從系統12〇〇 輸出期間係被通氣(vented)。傳送腔室122〇具有至少一 個真空機械手臂1222設置在其中,真空機械手臂1222 係適於將基材傳送於負載鎖定腔室121〇與製程腔室 1231 1237之間。儘管第12圖顯示七個腔室,吾等並沒 有意圖要將本發明的範疇限制在此組態,這是因為系統 可以具有任何適當數量的製程腔室。 接 在本發明之特定實施例中,系統12〇〇係配置以沉積多 面太陽能電池的第—Ρ + η接面(例如元件符號122、 212)。在一實施例中,製程腔室1231-1237的其中一製 程腔室係配置以沉籍楚_ . 積第一 ρ-卜η接面的界面層與?_型 層,而其餘的製程腔室1231_1237係各配置以沉積本質 型層和η-型層。第一 ρ]_η接面的本質型層型層可 以在相同腔室中來沉積,而 ^ 叩个恶要在該等沉積步驟之間 含有任何鈍化製程。因此,在 ^組態1ί7,基材係經由負 29 201041167 載鎖定腔室⑵0進入系統’接著 送到用來沉積ρ型層的 ㈣真线械手臂傳 Ρ-型層之後,基材被真空程内。然後,在形成 室的H 械手料相錢的製程腔 質型層二::質型層和η,層。在形成了本 腔 基材被真空機械手臂助傳送回 夾處理h 在特毛實施例中,利用製程腔室 Ο 〇 皙剖呙^ “ 扪予間為在早-腔室中形成本 件η_ '曰的時間約4倍或更多倍(例如6倍或更多 倍)。故,在沉積第…接面之系統的特定實施例中, ρ;腔室…室的比例為1:4或更大,例如1:6或更大。 线的產能(包括提供電漿來清潔製程腔室的時間)可以 疋約10基材/小時或更大,例如2G基材/小時或更大。 在本發明之特定實施例中,系統1200係配置以沉積多 面太陽靶電池的第二p_i_n接面(例如元件符號124、 214)。在—實施例中’製程腔室1231-1237的其中一製 ㈣室係配置以沉積第二P-i — n接面的p_型層’而其餘的 ^程腔室1231-1237係各配置以沉積本質型層和n型 層。第二p_i_n接面的本質型層和n_型層可以在相同腔室 來/几積,而不需要在該等沉積步驟之間含有任何鈍化 氣程。在特定實施例中,利用製程腔室來處理基材以形 成P-型層的時間為在單一腔室中形成本質型層和卜型層 的時間約4倍或更多倍。故,在沉積第二p-i-n接面之系 統的特定實施例中’ P-腔室對"η-腔室的比例為1:4或更 大例如1:6或更大。系統的產能(包括提供電漿來清潔 30 201041167 製程腔室的時間)可以是約3 卷材/小時或更大’例如s 基材/小時或更大。 在特定實施例中,配置以沉積包含本質型非晶石夕層之 第一…接面之系、统1200的產能係為㉟置以沉積包含 本質型微晶矽層之第-D · 4 ^ ^ 弟—P 1-n接面之系統1200的產能兩 倍^•疋由於本質型微晶石夕層和本質型非晶石夕層的厚声 差異所致。所以,適於沉積第—ρ]_η接面(其包含^远端 A remote plasma source (such as an inductively coupled remote plasma source) can also be coupled between the gas source and the backing plate. Between processing a plurality of substrates, a cleaning gas can be supplied to the remote plasma source 1124, thereby producing and providing - a distal plasma to clean the chamber components. The cleaning gas can be further stimulated by the RF power source 1122 provided with the head. Suitable cleaning gases include, but are not limited to, NF3, F2 and SF6. The deposition method using one or more layers (e.g., one or more layers of Figure 10) may include a deposition parameter surface area of 10,000 cm2 or greater in the u-th or other suitable chamber, A substrate of 40,000 cm2 or more, or '〇〇0 Cm, is supplied to the chamber. It will be appreciated that the substrate can be (4) after processing the substrate to form a smaller solar cell. In one embodiment, the heating and/or cooling member 丨丨39 can be set to provide about 4 Torr (rc or less substrate support temperature during the product, for example; about 1 〇〇C and about 400°) Between C, or between about 150 ° C and about 300 C, such as about 200 e C. The spacing between the top of the substrate disposed on the substrate receiving surface 1132 and the showerhead 1110 may be between Between about 400 mil and about 1 '200 mil, the figure is for example between 400 mil and about 800 mil. A top view of one embodiment of the system 1200, wherein 28 201041167 Ο Ο The process system 1200 has a plurality of Process chambers 1231-1237 (eg, a PECVD chamber of Figure 11 or other suitable chamber where a diaphragm can be deposited). Process system 1200 includes a transfer chamber 1220 and a plurality of process chambers 1231-1237, transfer chamber KM It is coupled to a load lock chamber 1210. The load lock chamber 121 allows the substrate to be transferred between the external environment outside the system and the vacuum environment within the transfer chamber 1220 and the process chambers 1231-1237. The load lock chamber 1210 includes one or more evacuatable regions, which can be evacuated The field holds one or more substrates. The evacuatable regions are pumped down during the input of the substrate into the system 12, and are during the output of the substrate from the system 12 The transfer chamber 122 has at least one vacuum robot arm 1222 disposed therein, and the vacuum robot arm 1222 is adapted to transfer the substrate between the load lock chamber 121 and the process chamber 1231 1237. Figure 12 shows seven chambers, and we are not intended to limit the scope of the invention to this configuration, as the system can have any suitable number of processing chambers. In a particular embodiment of the invention, The system 12 is configured to deposit a first Ρ + η junction of the multi-sided solar cell (e.g., component symbols 122, 212). In one embodiment, one of the process chambers of the process chambers 1231-1237 is configured to sink The first ρ- η junction The intrinsic layered layer can be in the same cavity The deposition is in progress, and ^ 叩 恶 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 。 。 。 。 。 。 。 。 。 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 因此 。 。 。 。 。 。 。 。 。 。 。 After depositing the p-type layer (4) after the true-line arm is transferred to the Ρ-type layer, the substrate is subjected to a vacuum process. Then, in the chamber forming the H-handle, the process cavity type layer 2:: smectic layer and η ,Floor. In the embodiment of the present invention, the substrate is formed by the vacuum robot arm, and in the special hair embodiment, the process chamber is used to form the workpiece η 曰 曰 “ 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The time is about 4 times or more (for example, 6 times or more). Therefore, in a particular embodiment of the system for depositing the junction, the ratio of ρ; chamber ... chamber is 1:4 or greater. For example, 1:6 or greater. The throughput of the wire (including the time to provide plasma to clean the process chamber) can be about 10 substrates/hour or more, such as 2G substrate/hour or greater. In a particular embodiment, system 1200 is configured to deposit a second p_i_n junction (e.g., component symbols 124, 214) of a multi-faceted solar target cell. In an embodiment, one of the process chambers 1231-1237 is a system (four) The p_type layer is configured to deposit a second Pi-n junction and the remaining chambers 1231-1237 are each configured to deposit an intrinsic layer and an n-type layer. The intrinsic layer of the second p_i_n junction and n The _-type layer can be in the same chamber / several products without the need to include any passivation gas path between the deposition steps. In the embodiment, the time for processing the substrate to form the P-type layer by using the process chamber is about 4 times or more times the time for forming the intrinsic layer and the p-type layer in a single chamber. Therefore, in the deposition second In a particular embodiment of the system of pin junctions, the ratio of 'P-chamber pair" η-chamber is 1:4 or greater, such as 1:6 or greater. Capacity of the system (including providing plasma for cleaning 30) The time of the process chamber may be about 3 coils per hour or more 'eg s substrate per hour or more. In a particular embodiment, the configuration is to deposit the first layer comprising the intrinsic amorphous layer of stone... The capacity of the junction system and system 1200 is 35 times to deposit the capacity of the system 1200 containing the first -D · 4 ^ ^ -P 1-n junction of the intrinsic microcrystalline layer. Due to the thick sound difference between the microcrystalline lithosphere layer and the intrinsic amorphous alexandrite layer, it is suitable for depositing the first -ρ]_η junction (which contains ^

型非晶石夕層)之單-系、统12⑽可以匹配於適於沉積第二 P-i-n接面(其包含本質型微晶矽層)之兩或更多個系統。 是以,WSR層沉積製程可以被執行在適於沉積第— 接面的系統中,以為了有效率的產能控制。一旦第一 接面已經在一系統中形成後,基材可以被暴露於外界環 境(即破真空)並且被傳送到第二系統,其中第二卜丨^接 面是在第二系統中所形成。沉積第一 p_i_n接面的第一系 統與沉積第二p-i-n接面的第二系統之間的基材的乾式 或濕式清潔可以是必要的。在一實施例中,WSR層沉積 製程可以用來在獨立的系統中執行。 第13圖係續示一生產線13 〇 〇之一部分的組態,其中 該生產線1300具有複數個藉由自動化裝置1302來可傳 送地連接的沉積系統1304、13〇5、13〇6或叢集工具 (cluster tool)。在一組態中,如第13圖所示,生產線1300 包含複數個沉積系統1304、1305、1306,其可用來在基 材102上形成一或多個層、形成p-i-n接面、或形成完整 的太陽能電池元件。系統1304、1305、1306可以類似於 31 201041167 第12圖繪示的系統1200 ’但大致上係配置以在基材1〇2 上沉積不同的層或接面。通常,各個沉積系統1304、 1305、13 06 具有一負載鎖定腔室 1304F、1305F、1306F, 其類似於負載鎖定腔室1210且其各者係和自動化裝置 1302可傳送地連通。自動化裝置1302係配置以移動基 材於該等沉積系統1304、1305及1306之間。 在製程依序進行期間,基材大致上是由系統自動化裝 置13〇2被傳送到系統1304、1305及1306之一者。在一 〇 實施例中’系統1306具有複數個配置以在形成界面層、 第一 P-i-n接面時沉積或處理一或多個層的腔室 13〇6Α-13〇6Η,系統13〇5具有複數個配置以沉積一或多 個WSR層的腔室1305A-1305H,並且系統1304具有複 數個配置以在形成第二p_i_n接面時沉積或處理一或多 個層的腔室1304A-1304H。應瞭解,配置以沉積各個層 之系統的數量及腔室的數量是可以改變的,以滿足不同 ❹ 的製程需求和組態。 自動化裝置13 02可以大致上包含一機械手臂裝置或 輸送器,其適於移動且定位一基材。在一實例中,自動 化裝置1302是一系列的傳統基材輸送器(例如滚輪式輸 送器)與/或機械手臂裝置(例如6-軸機械手臂,SCARA機 械手臂),其適於依需要移動且定位生產線1300内的基 材。在一實施例中,一或多個自動化裝置1302也含有一 或多個基材升降部件,或開合橋輸送器(drawbHdge conveyor) ’其用以容許位在所期望系統上游的基材在生 32 201041167 產線1300内被輸送越過阻擋其移動到另一期望位置處 的基材。依此方式,基材到各種系統的移動將不會受其 他待輸送到其他系統的基材所阻礙。 在生產線1300之一實施例中,一圖案化腔室135〇係 和一或多個輸送器1302連通,並且配置以對所形成的 WSR層中一或多層或任何用來形成接面電池的層執行一 圖案化製程。可以瞭解,圖案化製程也可以用來在太陽 ^ 能電池元件形成製程期間蝕刻一或多個先前形成的層中 的一或多個區域。儘管圖案化腔室135〇的組態大致上係 討論蝕刻類型的圖案化製程,此種組態不會對本文描述 的本發明的範疇構成限制。在一實施例中,圖案化腔室 1350係用於移除一或多個所形成的層中的一或多個區域 與/或’儿積一或多個材料層(例如含摻質的材料,金屬膏) 於基材表面上之一或多個所形成的層上。 雖然刖述說明疋著重在本發明之實施例,可以在不脫 〇 離本發明的基本範疇下設想出本發明之其他和進一步實 施例,並且本發明的範疇是由隨附申請專利範圍來決 二。舉例而§ ’第11圖的製程腔室已經被顯示成位在水 平位置。可瞭解,在本發明的其他實施例中,製程腔室 可以位在任何的非水平位置,例如垂直位置。已經藉由 參照第12和13圖的多製程腔室叢集工具來描述本發明 的實施例’但也可以使用同轴系統與混合的同抽/叢集系 統。已經藉由參照第一系統(其係配置以形成第- p-i-n 接面)、第二系統(其係配置以形成WSR層)及第三系統 33 201041167 (其係配置以形成第二p_i_n接面)來描述本發明的實施 例,但是也可以在單一個系統中形成第一 p小n接面、 WSR層及第一 p + n接面。已經藉由參照適於沉積wsr 層、本質型層及η-型層的製程腔室來描述本發明的實施 例,但個別的腔室也可以適於沉積本質型層及η型層及 WSR層,並且單一個製程腔室可以適於沉積ρ_型層、 WSR層及本質型層。最後,本文描述的實施例為大致上 0 可應用於透明基材(例如玻璃)的P_i_n組態,但是可以設 想出其他實施例’其中n_i_p接面(無論是單一個或多個 堆疊)能夠以反向沉積順序被建構在非透明基材(例如不 錄鋼或聚合物)上。 故’本發明提供了 一種用以形成一界面結構於TCO層 與太陽能電池接面之間的設備及方法。相較於傳統的方 法而言,該界面結構有利地提供低接觸電阻、高膜導電 率及高膜透光率’其可有效率地改善PV太陽能電池的 〇 光電轉換效能及元件性能。 儘管前述說明是著重在本發明之實施例,可以在不脫 離本發明的基本範疇下設想出本發明之其他和進一步實 施例’並且本發明的範疇是由隨附申請專利範圍來決定。 【圖式簡單說明】 可藉由參考本發明之實施例來詳細暸解本發明之說 明’其簡短地在前面概述過,其中該些實施例在附圖中 34 201041167 示出。 第1圖係綠示根據本發明一實施例之一串接(tandem) 接面薄膜太陽能電池的剖視圖。 第2圖係繪示根據本發明一實施例之一串接接面薄膜 太陽此電池的剖視圖,其中該串接接面薄膜太陽能電池 具有一界面層設置在TCO層與電池接面之間。 第3-10圖係繪示根據本發明一實施例之一串接接面薄 & 膜太陽能電池的剖視圖,其中該串接接面薄膜太陽能電 池具有一界面層設置在TC0層與電池接面之間。 第Π圖係繪示根據本發明一實施例之一設備的剖視 圖。 第12圖為根據本發明另一實施例之一設備的平面圖。 第13圖根據本發明一實施例之一生產線之一部分的 平面圖’其中該生產線具有併入其中之第11和12圖的 設備。 〇 為促進了解,在可能時使用相同的元件符號來表示該 等圖式共有的相同元件。應瞭解,一實施例的元件與特 徵結構可有利地併入其他實施例而不需特別詳述。 然而’應瞭解,附圖僅繪示出本發明的示範性實施例, 並且該等附圖因此不會對本發明的範疇構成限制,本發 明容許其他等效的實施例。 【主要元件符號說明】 35 201041167 100多接面太陽能電池 101光或太陽能輻射 102基材 104 第一 TCO 層 106 p -型含砍層 108本質型含矽層 110 η -型含>6夕層 11 2 ρ -型含碎層 11 4本質型含矽層 116 η -型含梦層 118 第二 TCO 層 120金屬背層 122第一 p-i-n接面 12 4第二p - i - η接面 202界面層 206波長可選擇反射(WSR)層 208 p-i緩衝型本質非晶矽(ΡΙΒ)層 210衰退摻雜η-型非晶矽層 2 1 2第一 p-i-n接面 2 1 4第二p-i-n接面 302 TCO 層 304第二界面層 602中間界面層 702第一中間層 36 201041167 704第二中間層 802 p-型含矽層 1100腔室 1102 壁 1104底部 1106製程容積 II 0 8 閥 1109真空泵The mono-system 12 (10) of the amorphous layer can be matched to two or more systems suitable for depositing a second P-i-n junction comprising an intrinsic microcrystalline layer. Therefore, the WSR layer deposition process can be performed in a system suitable for depositing the first junction for efficient throughput control. Once the first junction has been formed in a system, the substrate can be exposed to the external environment (ie, vacuum) and transferred to the second system, where the second interface is formed in the second system . Dry or wet cleaning of the substrate between the first system depositing the first p_i_n junction and the second system depositing the second p-i-n junction may be necessary. In one embodiment, the WSR layer deposition process can be used to perform in a separate system. Figure 13 is a continuation of the configuration of a portion of a production line 1300 having a plurality of deposition systems 1304, 13〇5, 13〇6 or clustering tools communicably coupled by an automated device 1302 ( Cluster tool). In one configuration, as shown in FIG. 13, the production line 1300 includes a plurality of deposition systems 1304, 1305, 1306 that can be used to form one or more layers on the substrate 102, form pin junctions, or form a complete Solar cell components. The system 1304, 1305, 1306 can be similar to the system 1200' illustrated in Fig. 12 of 31 201041167 but is generally configured to deposit different layers or junctions on the substrate 1〇2. Typically, each deposition system 1304, 1305, 610 has a load lock chamber 1304F, 1305F, 1306F that is similar to the load lock chamber 1210 and that is individually communicably coupled to the automation device 1302. The automation device 1302 is configured to move a substrate between the deposition systems 1304, 1305, and 1306. During the sequential execution of the process, the substrate is generally transferred by system automation device 13〇2 to one of systems 1304, 1305, and 1306. In an embodiment, the system 1306 has a plurality of configurations to deposit or process one or more layers of chambers 13〇6Α-13〇6Η when forming the interface layer, the first Pin junction, and the system 13〇5 has a plurality of The chambers 1305A-1305H are configured to deposit one or more WSR layers, and the system 1304 has a plurality of configurations to deposit or process one or more layers of chambers 1304A-1304H when forming the second p_i_n junction. It will be appreciated that the number of systems configured to deposit the various layers and the number of chambers can be varied to meet different process requirements and configurations. The automated device 13 02 can generally include a robotic arm device or conveyor adapted to move and position a substrate. In one example, the automation device 1302 is a series of conventional substrate conveyors (eg, roller conveyors) and/or robotic arm devices (eg, 6-axis robotic arms, SCARA robotic arms) that are adapted to move as needed The substrate within the production line 1300 is positioned. In one embodiment, one or more of the automated devices 1302 also includes one or more substrate lifting members, or a drawbHdge conveyor, which is used to allow substrates located upstream of the desired system to be in a living 32 201041167 The line 1300 is conveyed across the substrate that blocks its movement to another desired location. In this way, movement of the substrate to various systems will not be hindered by other substrates to be delivered to other systems. In one embodiment of the production line 1300, a patterning chamber 135 is in communication with one or more conveyors 1302 and is configured to form one or more layers of the formed WSR layer or any layer used to form the junction cell. Perform a patterning process. It will be appreciated that the patterning process can also be used to etch one or more regions of one or more previously formed layers during the solar cell element formation process. Although the configuration of the patterning chamber 135A is generally discussed as an etching type of patterning process, such a configuration does not limit the scope of the invention described herein. In one embodiment, the patterning chamber 1350 is used to remove one or more regions of one or more of the formed layers and/or to accumulate one or more layers of material (eg, a dopant-containing material, The metal paste is on one or more of the layers formed on the surface of the substrate. While the following description is directed to embodiments of the present invention, other and further embodiments of the present invention can be devised without departing from the scope of the invention, and the scope of the invention is determined by the scope of the accompanying claims. two. For example, the process chamber of Figure 11 has been shown to be in a horizontal position. It will be appreciated that in other embodiments of the invention, the process chamber can be positioned in any non-horizontal position, such as a vertical position. Embodiments of the present invention have been described with reference to the multi-process chamber clustering tools of Figures 12 and 13 but coaxial systems and hybrid flush/cluster systems can also be used. By reference to the first system (which is configured to form the first-pin junction), the second system (which is configured to form the WSR layer), and the third system 33 201041167 (which is configured to form the second p_i_n junction) Embodiments of the invention are described, but a first p-sm junction, a WSR layer, and a first p + n junction may also be formed in a single system. Embodiments of the present invention have been described with reference to process chambers suitable for depositing wsr layers, intrinsic layers, and n-type layers, but individual chambers may also be suitable for depositing intrinsic and n-type layers and WSR layers And a single process chamber may be adapted to deposit a p-type layer, a WSR layer, and an intrinsic layer. Finally, the embodiments described herein are P_i_n configurations that are substantially applicable to transparent substrates such as glass, but other embodiments can be envisaged where n_i_p junctions (whether single or multiple stacks) can The reverse deposition sequence is constructed on a non-transparent substrate (eg, no steel or polymer). Therefore, the present invention provides an apparatus and method for forming an interface structure between a TCO layer and a solar cell junction. The interface structure advantageously provides low contact resistance, high film conductivity, and high film transmittance compared to conventional methods, which can efficiently improve the 光电 photoelectric conversion performance and device performance of PV solar cells. While the foregoing is a description of the embodiments of the present invention, the invention may be construed as the scope of the invention, and the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The description of the present invention can be understood in detail by reference to the embodiments of the present invention, which are briefly described in the foregoing, wherein the embodiments are illustrated in the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a tandem junction thin film solar cell according to an embodiment of the present invention. Figure 2 is a cross-sectional view showing a battery of a tandem junction film solar cell having an interface layer disposed between a TCO layer and a battery junction, in accordance with an embodiment of the present invention. 3-10 are cross-sectional views showing a tandem junction thin film solar cell according to an embodiment of the present invention, wherein the tandem junction thin film solar cell has an interface layer disposed on the TC0 layer and the battery junction between. BRIEF DESCRIPTION OF THE DRAWINGS The Figure is a cross-sectional view of an apparatus in accordance with one embodiment of the present invention. Figure 12 is a plan view of an apparatus in accordance with another embodiment of the present invention. Figure 13 is a plan view of a portion of a production line according to an embodiment of the present invention, wherein the production line has the apparatus of Figures 11 and 12 incorporated therein. 〇 To promote understanding, the same component symbols are used where possible to denote the same components that are common to the schemas. It will be appreciated that the elements and features of an embodiment may be advantageously incorporated in other embodiments without particular detail. It is to be understood, however, that the appended claims [Main component symbol description] 35 201041167 100 multi-junction solar cell 101 light or solar radiation 102 substrate 104 first TCO layer 106 p-type chopped layer 108 essential type germanium-containing layer 110 η - type containing > 11 2 ρ - type containing layer 11 4 essential type cerium layer 116 η - type containing dream layer 118 second TCO layer 120 metal back layer 122 first pin junction 12 4 second p - i - η junction interface 202 Layer 206 wavelength selective reflection (WSR) layer 208 pi buffer type intrinsic amorphous germanium layer 210 recessed doped n-type amorphous germanium layer 2 1 2 first pin junction 2 1 4 second pin junction 302 TCO layer 304 second interface layer 602 intermediate interface layer 702 first intermediate layer 36 201041167 704 second intermediate layer 802 p-type germanium containing layer 1100 chamber 1102 wall 1104 bottom 1106 process volume II 0 8 valve 1109 vacuum pump

III 0喷頭 1112背板 1114懸件 111 6中心支撐件 1120氣體源 1122 RF功率源 1124遠端電漿源 1130基材支稽'件 11 3 1接地帶 1132基材接收表面 11 3 3遮蔽環 1134 桿 1136升降系統 11 3 8升降銷 1139冷卻構件 1200製程系統 201041167 1210負載鎖定腔室 1220傳送腔室 1222真空機械手臂 1231-1237製程腔室 13 00 生產線 13 02自動化裝置 13 04、1305、13 06 沉積系統 1304A-1304H 腔室 〇 1305A-1305H 腔室 1306A-1306H 腔室 1350圖案化腔室 38III 0 nozzle 1112 back plate 1114 suspension 111 6 center support 1120 gas source 1122 RF power source 1124 remote plasma source 1130 substrate support 'piece 11 3 1 grounding belt 1132 substrate receiving surface 11 3 3 shadow ring 1134 Rod 1136 Lifting System 11 3 8 Lifting Pin 1139 Cooling Member 1200 Process System 201041167 1210 Load Locking Chamber 1220 Transfer Chamber 1222 Vacuum Robot Arm 1231-1237 Process Chamber 13 00 Production Line 13 02 Automation 13 04, 1305, 13 06 Deposition System 1304A-1304H Chamber 〇1305A-1305H Chamber 1306A-1306H Chamber 1350 Patterning Chamber 38

Claims (1)

201041167 七、申清專利範圍: 1. 一種光伏元件,包含: 以 及 -第- TCO層,其設置在—基材上; —第二⑽層’其設置在該第-TCO層上 P垔3矽層,其形成在該第二TCO層上 ❹ 2.如申請專利範圍帛i項所述之光伏元件,其中 型含矽層包含碳 該p- 3.如申請專利範圍第丨項所述之光伏元件,更包含: 一 P-型碳化矽層,其設置在該第二TC〇層與該 p-型含矽層之間。 4. 如申請專利範圍第3項所述之光伏元件,其中該p_ 〇 型碳化矽層為下述至少其一:一微晶碳化矽層、一奈 米晶碳化矽層或一非晶碳化矽層。 5. 如申請專利範圍第3項所述之光伏元件,更包含: 一 p -型奈来晶石夕層,其設置在該第二TCO層與 該P-型碳化石夕層之間。 6. 如申請專利範圍第丨項所述之光伏元件’更包含: 39 201041167 一衰退摻雜P-型非晶矽層,其設置在該第二TCO 層與該p-型含矽層之間。 7. 如申請專利範圍第1項所述之光伏元件,其中該第一 TCO層為一含氧化錫層,並且該第二TCO層為一含 氧化辞層。 I 8. 如申請專利範圍第1項所述之光伏元件,更包含: Ο —本質型含矽層,其設置在該P-型含矽層上;以 及 一 η-型含矽層,其設置在該本質型含矽層上。 9. 如申請專利範圍第8項所述之光伏元件,更包含: 一第二ρ-型含矽層,其設置在該η-型含矽層上; 一第二本質型含矽層,其設置在該第二ρ-型含矽 Q 層上;以及 一第二η-型含矽層,其設置在該第二本質型含矽 層上。 10. 如申請專利範圍第1項所述之光伏元件,其中該第二 TC0層的厚度係介於約50Α與約500Α之間。 11. 一種光伏元件,包含: —TC0層,其設置在一基材上; 201041167 '界面層,其設置在該TCO層上,其中該界面 層為一含碳之P-型含矽層;以及 —P-型含矽層’其設置在該界面層上。 I2.如申凊專利範圍第11項所述之光伏元件,其中該界 面層為一衰退摻雜p-型非晶碳化矽層。 Η.如申晴專利範圍第n項所述之光伏元件,其中該界 面層為一 P-型微晶碳化矽層。 14. 如申請專利範圍第u項所述之光伏元件,更包含: P-型奈米晶矽層,其設置在該界面層與該TCO 層之間。 15. 如申明專利乾圍第u項所述之光伏元件,其中該Tc〇 〇 層為一含氧化鋅層’該含氧化鋅層具有選自鋁、硼或 鎵的η-型摻雜元素。 16. 種形&光伏元件之方法,包含以下步驟: 形成一第—Tc〇層於一基材上; 形成一第二TC0層於該第一 TCO層上;以及 形成_說_ 乐一 P-卜n接面於該第二TC0層上,其中 形成該第一p-i-n垃^ . p 1 η接面包含以下步驟: 形成一 Ρ_型含矽層於該第二TCO層上方, 41 201041167 微晶矽系層、一奈米晶矽系 其中該ρ-型含矽層為— 或一非晶矽系層; 形成一本質型含 方;以及 層 矽層於該Ρ-型含矽層上 形成一 型含矽層於該本質型含石夕層 上方 Ο 17.如申請專利範圍第16項所述之方法更包含. .形成-ρ-型碳化石夕層於該第二TC〇層與該第 p-i-n接面之間,其中該 化石夕層 P-型碳化矽層為下述至少其 微晶碳化矽層、—夺 、 不木石厌化矽層或一非晶碳 18.如申請專利範圍第 所述之方法,更包含 艰成I 一 P -型本伞B < TCO層與該ρ· 丁、水日日矽層於該第 型碳化矽層之間。 Ο 19.如申請專利範 於該第二TCO層 圍第16項所述之方法,更包含. :成-衰退捧雜。,非晶” . 興該第—P + n接面之間。 2〇·如申請專利範圍第“項 層為-含氧化錫層,並 方法,其中該第-⑽ 鋅層。 一 Tc〇層為一含氧化 42201041167 VII. Shenqing patent scope: 1. A photovoltaic element comprising: and - a - TCO layer disposed on a substrate; - a second (10) layer 'which is disposed on the first -TCO layer P垔3矽a layer formed on the second TCO layer. 2. The photovoltaic element according to claim 帛i, wherein the ruthenium-containing layer comprises carbon. The p- 3. The photovoltaic according to the scope of claim 2 The component further comprises: a P-type tantalum carbide layer disposed between the second TC layer and the p-type germanium layer. 4. The photovoltaic element according to claim 3, wherein the p_ 〇 type lanthanum carbide layer is at least one of: a microcrystalline niobium carbide layer, a nanocrystalline niobium carbide layer or an amorphous niobium carbide layer. Floor. 5. The photovoltaic device of claim 3, further comprising: a p-type nafite layer disposed between the second TCO layer and the P-type carbonized stone layer. 6. The photovoltaic element according to the invention of claim 2 further comprising: 39 201041167 a recessed doped P-type amorphous germanium layer disposed between the second TCO layer and the p-type germanium containing layer . 7. The photovoltaic device of claim 1, wherein the first TCO layer is a tin oxide containing layer and the second TCO layer is an oxidized layer. I. The photovoltaic element according to claim 1, further comprising: Ο an intrinsic ruthenium-containing layer disposed on the P-type ruthenium-containing layer; and an η-type ruthenium-containing layer, the setting On the essential type of ruthenium containing layer. 9. The photovoltaic device according to claim 8, further comprising: a second p-type germanium-containing layer disposed on the n-type germanium-containing layer; a second intrinsic layer containing germanium; And disposed on the second p-type germanium-containing layer; and a second n-type germanium-containing layer disposed on the second intrinsic germanium-containing layer. 10. The photovoltaic component of claim 1, wherein the second TC0 layer has a thickness between about 50 Å and about 500 Å. 11. A photovoltaic element comprising: - a TC0 layer disposed on a substrate; 201041167 'interfacial layer disposed on the TCO layer, wherein the interfacial layer is a carbonaceous P-type germanium containing layer; A P-type ruthenium-containing layer is disposed on the interface layer. The photovoltaic element according to claim 11, wherein the interface layer is a recessed doped p-type amorphous tantalum carbide layer. The photovoltaic element according to item n of the Shenqing patent scope, wherein the interface layer is a P-type microcrystalline niobium carbide layer. 14. The photovoltaic device of claim 5, further comprising: a P-type nanocrystalline layer disposed between the interface layer and the TCO layer. 15. The photovoltaic element of claim 4, wherein the Tc 〇 层 layer is a zinc oxide-containing layer. The zinc oxide-containing layer has an η-type dopant element selected from the group consisting of aluminum, boron or gallium. 16. A method of seeding & photovoltaic elements, comprising the steps of: forming a first Tc layer on a substrate; forming a second TC0 layer on the first TCO layer; and forming a _ say _ Le Yi P - forming a junction of the first TC0 layer, wherein the first pin 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 a crystalline germanium layer, a nanocrystalline germanium system wherein the ρ-type germanium-containing germanium layer is - or an amorphous germanium layer; forming an intrinsic type; and a layer of germanium is formed on the germanium-type germanium layer A type of ruthenium-containing layer is disposed above the intrinsic stellate layer. 17. The method of claim 16 further comprising: forming a -p-type carbonized stone layer on the second TC layer and the Between the first pin junctions, wherein the fossil layer P-type tantalum carbide layer is at least a microcrystalline niobium carbide layer, a ruthenium, a ruthenium ruthenium layer or an amorphous carbon. The method further comprises a difficult I-P-type umbrella B < TCO layer and the ρ·丁,水日日矽 layer in the first type Between the layer of silicon. Ο 19. If the patent application is in the method described in item 16 of the second TCO, it further includes: the formation-recession. , amorphous". Xing the first - P + n junction between. 2 〇 · as claimed in the scope of the "term layer is - containing tin oxide layer, and the method, where the - (10) zinc layer. a Tc layer is an oxidation 42
TW099107478A 2009-04-06 2010-03-15 High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells TW201041167A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16711309P 2009-04-06 2009-04-06
US12/481,175 US8895842B2 (en) 2008-08-29 2009-06-09 High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells

Publications (1)

Publication Number Publication Date
TW201041167A true TW201041167A (en) 2010-11-16

Family

ID=42936780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099107478A TW201041167A (en) 2009-04-06 2010-03-15 High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells

Country Status (4)

Country Link
CN (1) CN102356474A (en)
DE (1) DE112010001895T5 (en)
TW (1) TW201041167A (en)
WO (1) WO2010117548A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415281B (en) * 2011-05-13 2013-11-11 Univ Nat Cheng Kung Solar cell device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078748B2 (en) 2019-02-05 2021-08-03 Saudi Arabian Oil Company Lost circulation shapes
CN113488555A (en) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 Heterojunction cell, preparation method and solar cell module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571448A (en) * 1981-11-16 1986-02-18 University Of Delaware Thin film photovoltaic solar cell and method of making the same
US4718947A (en) * 1986-04-17 1988-01-12 Solarex Corporation Superlattice doped layers for amorphous silicon photovoltaic cells
JPH0693519B2 (en) * 1987-09-17 1994-11-16 株式会社富士電機総合研究所 Amorphous photoelectric conversion device
AUPM982294A0 (en) * 1994-12-02 1995-01-05 Pacific Solar Pty Limited Method of manufacturing a multilayer solar cell
US6077722A (en) * 1998-07-14 2000-06-20 Bp Solarex Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US6566594B2 (en) * 2000-04-05 2003-05-20 Tdk Corporation Photovoltaic element
US20030044539A1 (en) * 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
JP2003253435A (en) * 2002-02-28 2003-09-10 Mitsubishi Heavy Ind Ltd Method of depositing rugged film and method of manufacturing photoelectric converter
US8203071B2 (en) * 2007-01-18 2012-06-19 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
JP2008181965A (en) * 2007-01-23 2008-08-07 Sharp Corp Laminated optoelectric converter and its fabrication process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415281B (en) * 2011-05-13 2013-11-11 Univ Nat Cheng Kung Solar cell device

Also Published As

Publication number Publication date
WO2010117548A3 (en) 2011-01-13
DE112010001895T5 (en) 2012-06-21
CN102356474A (en) 2012-02-15
WO2010117548A2 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US10002981B2 (en) Multi-junction solar cells
US8895842B2 (en) High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
US20130186464A1 (en) Buffer layer for improving the performance and stability of surface passivation of silicon solar cells
US8252624B2 (en) Method of manufacturing thin film solar cells having a high conversion efficiency
US8912424B2 (en) Multi-junction photovoltaic device and fabrication method
US20130247972A1 (en) Passivation film stack for silicon-based solar cells
TW200849635A (en) Method of forming thin film solar cells
US20100269896A1 (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
US20110027937A1 (en) Methods of forming photovoltaic devices
TW201011934A (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
JP5520496B2 (en) Manufacturing method of solar cell
US20080223440A1 (en) Multi-junction solar cells and methods and apparatuses for forming the same
JP2010517271A (en) Multijunction solar cell and method and apparatus for forming the same
TW200929575A (en) A passivation layer structure of the solar cell and the method of the fabricating
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
TW200913292A (en) Multi-junction solar cells and methods and apparatuses for forming the same
TW201203592A (en) Oxide nitride stack for backside reflector of solar cell
TW201029208A (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
US20090101201A1 (en) Nip-nip thin-film photovoltaic structure
TW200939508A (en) Intrinsic amorphous silicon layer
US20060049478A1 (en) Photoelectric converter, photoelectric conversion device and iron silicide film
TW201041167A (en) High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
JP5548878B2 (en) Multi-junction optical element
CN113451434A (en) Laminated photovoltaic device and production method
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof