TWI415281B - Solar cell device - Google Patents

Solar cell device Download PDF

Info

Publication number
TWI415281B
TWI415281B TW100116900A TW100116900A TWI415281B TW I415281 B TWI415281 B TW I415281B TW 100116900 A TW100116900 A TW 100116900A TW 100116900 A TW100116900 A TW 100116900A TW I415281 B TWI415281 B TW I415281B
Authority
TW
Taiwan
Prior art keywords
type
silicon layer
germanium layer
layer
single crystal
Prior art date
Application number
TW100116900A
Other languages
Chinese (zh)
Other versions
TW201246570A (en
Inventor
Chie Gau
Pei Ling Li
Shiuan Hua Shiau
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW100116900A priority Critical patent/TWI415281B/en
Publication of TW201246570A publication Critical patent/TW201246570A/en
Application granted granted Critical
Publication of TWI415281B publication Critical patent/TWI415281B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar cell device includes a P-type amorphous silicon layer, an N-type micro-crystalline silicon layer, an N-type single crystal silicon layer, an intrinsic amorphous silicon layer, and an intrinsic micro-crystalline silicon layer. The N-type single crystal silicon layer is disposed between the P-type amorphous silicon layer and the N-type micro-crystalline silicon layer. The intrinsic amorphous silicon layer is disposed between the N-type single crystal silicon layer and the P-type amorphous silicon layer. The intrinsic micro-crystalline silicon layer is disposed between the N-type single crystal silicon layer and the N-type micro-crystalline silicon layer. In comparison with the amorphous silicon layer and the micro-crystalline silicon layer, the N-type single crystal silicon layer can generate much more photo current. The addition of the amorphous silicon layer outside of the N-type single crystal silicon layer can increase the open circuit current, the addition of the micro-crystalline silicon layer can reduce the band offset possibly occurred between the amorphous and single crystal silicon layers so that the conversion efficiency of the device can be enhanced by compensating the weakness of the single N-type crystal silicon. Furthermore, the micro-crystalline silicon layer has the better ability to resist light-induced degradation than the amorphous silicon layer, so as to enhance the device performance.

Description

太陽能電池元件Solar cell component

本發明係關於一種太陽能電池元件。The present invention relates to a solar cell element.

近幾年由於單晶矽、多晶矽等市場物料缺乏,造成價格飛漲,使得許多矽晶型太陽能電池廠商產能無法上升,而矽薄膜太陽能電池(Silicon Thin-Film Solar Cell)使用玻璃基板,而鍍矽膜使用矽烷(SiH4 )與氫氣(H2 ),整體元件薄膜厚度不過數微米,因此沒有缺料之問題。除此之外,矽薄膜太陽能電池溫度係數較低,溫度上升時元件開路電壓降低較緩,其元件效率損失較矽晶型太陽能電池少。另一方面,照度小於10W/m2 之低照度情況下,矽薄膜太陽能電池仍能維持在AM1.5照度下之90%,而傳統矽晶型太陽能電池在此情形下僅能維持20%。In recent years, due to the lack of market materials such as single crystal germanium and polycrystalline germanium, the price has soared, making the production capacity of many twin solar cell manufacturers unable to rise, while the thin film solar cell (Silicon Thin-Film Solar Cell) uses a glass substrate and is rhodium-plated. The membrane uses decane (SiH 4 ) and hydrogen (H 2 ), and the overall element film thickness is only a few micrometers, so there is no problem of lack of material. In addition, the temperature coefficient of the thin film solar cell is low, the component open circuit voltage is lowered slowly when the temperature rises, and the component efficiency loss is less than that of the twinned solar cell. On the other hand, in the case of low illumination with an illuminance of less than 10 W/m 2 , the tantalum thin film solar cell can still maintain 90% of the AM 1.5 illumination, whereas the conventional twin solar cell can only maintain 20% in this case.

相較於一般市佔超過八成之結晶矽太陽能電池,矽薄膜太陽能電池擁有價格低廉、溫度效應低等優點,經評估若以整年的發電量而言,矽薄膜太陽能電池之總體發電量在不同地點會高於矽晶型太陽能電池5~25%左右,因此成為現階段發展太陽能電池之主要重點。Compared with the general market share of more than 80% of crystalline solar cells, tantalum thin film solar cells have the advantages of low price and low temperature effect. It is estimated that the total power generation of tantalum thin film solar cells is different in terms of power generation throughout the year. The location will be higher than that of the twin crystal solar cells by about 5 to 25%, which is the main focus of the development of solar cells at this stage.

但由於典型矽薄膜太陽能電池主體是非晶矽層(Amorphous Si,a-Si),其優點是開路電壓很高,但其缺陷是短路電流低,且在太陽光照射下其薄膜導電率會下降,因而使元件產生光照衰退現象。另一方面,單晶矽的太陽能電池有較高的短路電流,但其開路電壓較小,若將非晶矽層鍍在單晶矽的兩面形成HIT結構,雖會增加開路電壓,但因非晶矽與單晶矽接觸會產生能障,因而增加電子電洞之復合機率而發電效率增加有限。However, since the main body of the thin-film solar cell is an amorphous layer (A-Si), the advantage is that the open circuit voltage is high, but the defect is that the short-circuit current is low, and the conductivity of the film is lowered under the irradiation of sunlight. This causes the component to produce a light decay phenomenon. On the other hand, a single crystal germanium solar cell has a high short-circuit current, but its open circuit voltage is small. If an amorphous germanium layer is plated on both sides of a single crystal germanium to form an HIT structure, the open circuit voltage is increased, but The contact of the wafer with the single crystal germanium creates an energy barrier, thereby increasing the composite probability of the electron hole and the power generation efficiency is limited.

因此,如何提供一種太陽能電池元件,能夠有效增加開路電壓和短路電流並減少電子和電洞復合機率而提升光電轉換效率,已成為重要課題之一。Therefore, how to provide a solar cell element, which can effectively increase the open circuit voltage and the short circuit current and reduce the electron and hole combination probability and improve the photoelectric conversion efficiency, has become one of the important topics.

有鑑於上述課題,本發明之目的為提供一種能夠有效增加開路電壓和短路電流並減少電子和電洞復合機率而提升光電轉換效率之太陽能電池元件。In view of the above problems, an object of the present invention is to provide a solar cell element capable of effectively increasing an open circuit voltage and a short-circuit current and reducing the electron and hole combination probability to improve photoelectric conversion efficiency.

為達上述目的,本發明提出一種太陽能電池元件,其包含一P型非晶矽層、一N型微晶矽層、一N型單晶矽層、一本質非晶矽層以及一本質微晶矽層。N型單晶矽層設置於P型非晶矽層與N型微晶矽層之間。本質非晶矽層設置於N型單晶矽層與P型非晶矽層之間。本質微晶矽層設置於N型單晶矽層與N型微晶矽層之間。To achieve the above object, the present invention provides a solar cell element comprising a P-type amorphous germanium layer, an N-type microcrystalline germanium layer, an N-type single crystal germanium layer, an intrinsic amorphous germanium layer, and an intrinsic crystallite.矽 layer. The N-type single crystal germanium layer is disposed between the P-type amorphous germanium layer and the N-type microcrystalline germanium layer. The intrinsic amorphous germanium layer is disposed between the N-type single crystal germanium layer and the P-type amorphous germanium layer. The intrinsic microcrystalline germanium layer is disposed between the N-type single crystal germanium layer and the N-type microcrystalline germanium layer.

為達上述目的,本發明更提出一種太陽能電池元件,其包含一N型非晶矽層、一P型微晶矽層、一N型單晶矽層、一本質非晶矽層以及一本質微晶矽層。N型單晶矽層設置於N型非晶矽層與P型微晶矽層之間。本質非晶矽層設置於N型單晶矽層與N型非晶矽層之間。本質微晶矽層設置於N型單晶矽層與P型微晶矽層之間。In order to achieve the above object, the present invention further provides a solar cell element comprising an N-type amorphous germanium layer, a P-type microcrystalline germanium layer, an N-type single crystal germanium layer, an intrinsic amorphous germanium layer, and an essential micro Crystalline layer. The N-type single crystal germanium layer is disposed between the N-type amorphous germanium layer and the P-type microcrystalline germanium layer. The intrinsic amorphous germanium layer is disposed between the N-type single crystal germanium layer and the N-type amorphous germanium layer. The intrinsic microcrystalline germanium layer is disposed between the N-type single crystal germanium layer and the P-type microcrystalline germanium layer.

承上所述,本發明在創新概念中所設計之太陽能電池係包含非晶矽層、單晶矽層以及微晶矽層。相較於非矽晶層和微晶矽層,N型單晶矽層可以產生較大的光電流,在其外部加上非晶矽層可以提升開路電壓,微晶矽的使用可以減少非晶矽和單晶矽間的能障,進而減少電子電洞之復合機率並提升電池轉換效率。此外,相較於非晶矽層,微晶矽層具有較佳之光照衰退抵抗能力,而提升元件效能。另外,單晶矽層可大幅提升太陽能電池之光電轉換效能。As described above, the solar cell designed by the present invention in an innovative concept includes an amorphous germanium layer, a single crystal germanium layer, and a microcrystalline germanium layer. Compared with the non-twisted layer and the microcrystalline layer, the N-type single crystal germanium layer can generate a large photocurrent, and the addition of an amorphous germanium layer on the outside can increase the open circuit voltage, and the use of the microcrystalline germanium can reduce the amorphous The energy barrier between the crucible and the single crystal crucible reduces the composite probability of the electron hole and improves the battery conversion efficiency. In addition, the microcrystalline germanium layer has better light recession resistance than the amorphous germanium layer, and improves the device performance. In addition, the single crystal germanium layer can greatly enhance the photoelectric conversion efficiency of the solar cell.

此外,在本發明中,太陽能電池更包含本質非晶矽層,其可作為電子電洞復合(recombination)的阻擋層,進而提升光電轉換效率。In addition, in the present invention, the solar cell further includes an intrinsic amorphous germanium layer, which can serve as a barrier layer for electron hole recombination, thereby improving photoelectric conversion efficiency.

以下將參照相關圖式,說明依本發明較佳實施例之一種太陽能電池元件,其中相同的元件將以相同的參照符號加以說明。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a solar cell element according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals.

請參照圖1所示,圖1為本發明較佳實施例之一種太陽能電池元件1之示意圖。在本實施例中,太陽能電池元件1包含一P型非晶矽層(P-type a-Si:H)11、一N型微晶矽層(N-type μc-Si:H)12、一N型單晶矽層(N-type c-Si)13、一本質非晶矽層(i-layer a-Si:H)14以及一本質微晶矽層(i-layer μc-Si:H)15。N型單晶矽層13設置於P型非晶矽層11與N型微晶矽層12之間。本質非晶矽層14設置於N型單晶矽層13與P型非晶矽層11之間。本質微晶矽層15設置於N型單晶矽層13與N型微晶矽層12之間。其中,N型單晶矽層13為一單晶基板。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a solar cell element 1 according to a preferred embodiment of the present invention. In the present embodiment, the solar cell element 1 comprises a P-type amorphous germanium layer (P-type a-Si:H) 11, an N-type microcrystalline germanium layer (N-type μc-Si:H) 12, a N-type c-Si layer, an intrinsic amorphous layer (i-layer a-Si:H) 14 and an intrinsic microcrystalline layer (i-layer μc-Si:H) 15. The N-type single crystal germanium layer 13 is provided between the P-type amorphous germanium layer 11 and the N-type microcrystalline germanium layer 12. The intrinsic amorphous germanium layer 14 is disposed between the N-type single crystal germanium layer 13 and the P-type amorphous germanium layer 11. The intrinsic microcrystalline germanium layer 15 is disposed between the N-type single crystal germanium layer 13 and the N-type microcrystalline germanium layer 12. The N-type single crystal germanium layer 13 is a single crystal substrate.

P型非晶矽層11例如可以射頻式電漿輔助化學氣相沈積方法(Radio Frequency Plasma Enhancement Chemical Vapor Deposition,RF-PECVD)而形成,並通入矽烷(SiH4 )與氫氣(H2 )以及作為摻雜(doping)氣體的B2 H6 ,沈積P-type之氫化非晶矽(Hydrogenated Amorphous Silicon,a-Si:H)薄膜。製程上例如,設定基板溫度約為150~300℃,腔體壓力為0.1~1torr,沈積速率約為0.1~0.3nm/s,薄膜厚度約為10nm,能階約為1.7~1.8eV。若增加通入甲烷後,P型非晶矽層11之能階可到2eV。The P-type amorphous germanium layer 11 can be formed, for example, by a Radio Frequency Plasma Enhancement Chemical Vapor Deposition (RF-PECVD), and is provided with decane (SiH 4 ) and hydrogen (H 2 ). As a doping gas B 2 H 6 , a P-type hydrogenated amorphous amorphous silicon (a-Si:H) film is deposited. For example, the substrate temperature is set to about 150 to 300 ° C, the chamber pressure is 0.1 to 1 torr, the deposition rate is about 0.1 to 0.3 nm/s, the film thickness is about 10 nm, and the energy level is about 1.7 to 1.8 eV. If the methane is introduced, the energy level of the P-type amorphous germanium layer 11 can reach 2 eV.

N型微晶矽層12例如可以高密度電漿鍍膜方式(VHF-PECVD,其產生電漿頻率為26~133MHz)而形成,並通入SiH4 與H2 以及作為摻雜氣體的PH3 ,沈積N-type之氫化微晶矽(Hydrogenated Micro-crystalline Silicon,μ-Si:H)薄膜。製程上例如,設定基板溫度約為150~300℃,腔體壓力為0.1~1torr,沈積速率約為0.1nm/s,薄膜厚度約為20~40 nm,能階約為1.1eV。The N-type microcrystalline germanium layer 12 can be formed, for example, by a high-density plasma coating method (VHF-PECVD, which produces a plasma frequency of 26 to 133 MHz), and is supplied with SiH 4 and H 2 and PH 3 as a doping gas. A N-type hydrogenated micro-crystalline silicon (μ-Si:H) film was deposited. For example, the substrate temperature is set to be about 150 to 300 ° C, the chamber pressure is 0.1 to 1 torr, the deposition rate is about 0.1 nm/s, the film thickness is about 20 to 40 nm, and the energy level is about 1.1 eV.

本質非晶矽層14例如可以射頻式電漿輔助化學氣相沈積方法而形成,並通入矽烷(SiH4 )與氫氣(H2 )沈積氫化本質矽(intrinsic silicon)薄膜。製程上例如,設定基板溫度約為150~300℃,腔體壓力為0.1~1torr,沈積速率約為0.1~0.3nm/s,薄膜厚度約為10nm,能階約為1.7~1.8eV。The intrinsic amorphous germanium layer 14 can be formed, for example, by a radio frequency plasma-assisted chemical vapor deposition method, and a hydrogenated intrinsic silicon film is deposited by passing silane (SiH 4 ) and hydrogen (H 2 ). For example, the substrate temperature is set to about 150 to 300 ° C, the chamber pressure is 0.1 to 1 torr, the deposition rate is about 0.1 to 0.3 nm/s, the film thickness is about 10 nm, and the energy level is about 1.7 to 1.8 eV.

本質微晶矽層15例如可以高密度電漿鍍膜方式(VHF-PECVD,其產生電漿頻率為26~133MHz)而形成,並通入SiH4 與H2 ,沈積速率約為0.1~0.3nm/s,薄膜厚度約為10nm,能階約為1.1eV。The intrinsic microcrystalline germanium layer 15 can be formed, for example, by a high-density plasma coating method (VHF-PECVD, which produces a plasma frequency of 26 to 133 MHz), and is passed through SiH 4 and H 2 at a deposition rate of about 0.1 to 0.3 nm/ s, the film thickness is about 10 nm, and the energy level is about 1.1 eV.

另外,太陽能電池元件1可更包含二透明電極層16、17,其設置位置使得P型非晶矽層11位於透明電極層16與本質非晶矽層14之間,以及使得N型微晶矽層12位於透明電極層17與本質微晶矽層15之間。透明電極層16、17例如可以濺鍍(Sputter)方式沈積透明導電氧化薄膜材料(Transparent Conducting Oxide)作為電極,透明導電氧化薄膜材料可例如為氧化銦錫(ITO)或氧化鋅(ZnO),於此為舉例說明,而非限制。在本實施例中,透明電極層16、17薄膜厚度約為80~100nm,穿透率為85%以上,電阻率約為0.01~0.03Ω-cm。In addition, the solar cell element 1 may further include two transparent electrode layers 16, 17 disposed such that the P-type amorphous germanium layer 11 is located between the transparent electrode layer 16 and the intrinsic amorphous germanium layer 14, and the N-type microcrystalline germanium Layer 12 is between transparent electrode layer 17 and intrinsic microcrystalline layer 15. The transparent electrode layers 16 and 17 may be, for example, a transparent conductive oxide film material (Transparent Conducting Oxide) deposited as a sputtering electrode, and the transparent conductive oxide film material may be, for example, indium tin oxide (ITO) or zinc oxide (ZnO). This is illustrative and not limiting. In the present embodiment, the transparent electrode layers 16, 17 have a film thickness of about 80 to 100 nm, a transmittance of 85% or more, and a specific resistance of about 0.01 to 0.03 Ω-cm.

另外,太陽能電池元件1更包含二金屬電極層18、19,其設置位置使得透明電極層16位於金屬電極層18與P型非晶矽層11之間,以及使得透明電極層17位於金屬電極層19與N型微晶矽層12之間。金屬電極層18、19之材質可例如為鋁、銀、銅或其他可導電之金屬,於此,本實施例以鋁為例。金屬電極層18、19之厚度約為150~200nm。金屬電極層18、19具有圖案化。In addition, the solar cell element 1 further includes two metal electrode layers 18, 19 disposed such that the transparent electrode layer 16 is located between the metal electrode layer 18 and the P-type amorphous germanium layer 11, and the transparent electrode layer 17 is located at the metal electrode layer. 19 is between the N-type microcrystalline germanium layer 12. The material of the metal electrode layers 18, 19 may be, for example, aluminum, silver, copper or other electrically conductive metal. Here, the embodiment is exemplified by aluminum. The metal electrode layers 18, 19 have a thickness of about 150 to 200 nm. The metal electrode layers 18, 19 have a pattern.

請參照圖2所示,圖2為本發明較佳實施例之另一種太陽能電池元件2之示意圖。在本實施例中,太陽能電池元件2包含一N型非晶矽層(N-type a-Si:H)21、一P型微晶矽層(P-type μc-Si:H)22、一N型單晶矽層(N-type c-Si)23、一本質非晶矽層(i-layer a-Si:H)24以及一本質微晶矽層(i-layer μc-Si:H)25。N型單晶矽層23設置於N型非晶矽層21與P型微晶矽層22之間。本質非晶矽層24設置於N型單晶矽層23與N型非晶矽層21之間。本質微晶矽層25設置於P型單晶矽層23與P型微晶矽層22之間。其中,P型單晶矽層為一單晶基板。Please refer to FIG. 2. FIG. 2 is a schematic diagram of another solar cell element 2 according to a preferred embodiment of the present invention. In the present embodiment, the solar cell element 2 comprises an N-type amorphous germanium layer (N-type a-Si:H) 21 and a P-type microcrystalline germanium layer (P-type μc-Si:H) 22, one. N-type c-Si layer, an intrinsic amorphous layer (i-layer a-Si:H) 24, and an intrinsic microcrystalline layer (i-layer μc-Si:H) 25. The N-type single crystal germanium layer 23 is provided between the N-type amorphous germanium layer 21 and the P-type microcrystalline germanium layer 22. The intrinsic amorphous germanium layer 24 is disposed between the N-type single crystal germanium layer 23 and the N-type amorphous germanium layer 21. The intrinsic microcrystalline germanium layer 25 is disposed between the P-type single crystal germanium layer 23 and the p-type microcrystalline germanium layer 22. The P-type single crystal germanium layer is a single crystal substrate.

在本實施例中,與前述實施例之主要不同處為P型非晶矽層11變更為N型非晶矽層21、N型微晶矽層12變更為P型微晶矽層22,其他例如本質非晶矽層24、本質微晶矽層25、透明電極層26、27及金屬電極層28、29與前述實施例相同,其所有製程亦與前述實施例相同,於上已有詳述,於此不再贅述。In the present embodiment, the main difference from the foregoing embodiment is that the P-type amorphous germanium layer 11 is changed to the N-type amorphous germanium layer 21, the N-type microcrystalline germanium layer 12 is changed to the P-type microcrystalline germanium layer 22, and the like. For example, the intrinsic amorphous germanium layer 24, the intrinsic microcrystalline germanium layer 25, the transparent electrode layers 26, 27, and the metal electrode layers 28, 29 are the same as the previous embodiments, and all processes are the same as those of the previous embodiment, as described above. This will not be repeated here.

其中,N型非晶矽層21例如可以射頻式電漿輔助化學氣相沈積方法(Radio Frequency Plasma Enhancement Chemical Vapor Deposition,RF-PECVD)而形成,並通入矽烷(SiH4 )與氫氣(H2 )以及作為摻雜(doping)氣體的PH3 ,沈積N-type之氫化非晶矽(Hydrogenated Amorphous Silicon,a-Si:H)薄膜。製程上例如,設定基板溫度約為150~300℃,腔體壓力為0.1~1torr,沈積速率約為0.1~0.3nm/s,薄膜厚度約為10nm,能階約為1.7~1.8eV。The N-type amorphous germanium layer 21 can be formed, for example, by a Radio Frequency Plasma Enhancement Chemical Vapor Deposition (RF-PECVD), and is provided with decane (SiH 4 ) and hydrogen (H 2 ). And as a pH 3 of a doping gas, an N-type hydrogenated amorphous amorphous silicon (a-Si:H) film is deposited. For example, the substrate temperature is set to about 150 to 300 ° C, the chamber pressure is 0.1 to 1 torr, the deposition rate is about 0.1 to 0.3 nm/s, the film thickness is about 10 nm, and the energy level is about 1.7 to 1.8 eV.

P型微晶矽層22例如可以高密度電漿鍍膜方式(VHF-PECVD,其產生電漿頻率為26~133MHz)而形成,並通入SiH4 與H2 以及作為摻雜氣體的B2 H6 ,沈積P-type之氫化微晶矽(Hydrogenated Micro-crystalline Silicon,μ-Si:H)薄膜。製程上例如,設定基板溫度約為150~300℃,腔體壓力為0.1~1torr,沈積速率約為0.1nm/s,薄膜厚度約為20~40 nm,能階約為1.1eV。The P-type microcrystalline germanium layer 22 can be formed, for example, by a high-density plasma coating method (VHF-PECVD, which produces a plasma frequency of 26 to 133 MHz), and is supplied with SiH 4 and H 2 and B 2 H as a doping gas. 6. Depositing a P-type hydrogenated micro-crystalline silicon (μ-Si:H) film. For example, the substrate temperature is set to be about 150 to 300 ° C, the chamber pressure is 0.1 to 1 torr, the deposition rate is about 0.1 nm/s, the film thickness is about 20 to 40 nm, and the energy level is about 1.1 eV.

另外,上述之非晶矽層、或微晶矽層可摻雜元素表中ⅢA至ⅤA族之其中至少一元素。例如,非晶矽層可以做成非晶鍺化矽(a-SiGe:H)層,其中可以調整鍺的含量以改變非晶鍺化矽(a-SiGe:H)層的能階,使其與埋入之微晶矽層能有更好之能階匹配以進一步增加光電轉換效率。In addition, the amorphous germanium layer or the microcrystalline germanium layer may be doped with at least one of the group IIIA to VA of the element table. For example, the amorphous germanium layer can be formed as an amorphous germanium telluride (a-SiGe:H) layer in which the germanium content can be adjusted to change the energy level of the amorphous germanium telluride (a-SiGe:H) layer. It has better energy level matching with the buried microcrystalline germanium layer to further increase the photoelectric conversion efficiency.

綜上所述,本發明在創新概念中所設計之太陽能電池係包含非晶矽層、單晶矽層以及微晶矽層。相較於非矽晶層和微晶矽層,N型單晶矽層可以產生較大的光電流,在其外部加上非晶矽層可以提升開路電壓,微晶矽的使用可以減少非晶矽和單晶矽間的能障,進而減少電子電洞之復合機率並提升電池轉換效率。此外,相較於非晶矽層,微晶矽層具有較佳之光照衰退抵抗能力,而提升元件效能。另外,單晶矽層可大幅提升太陽能電池之光電轉換效能。In summary, the solar cell designed by the present invention in an innovative concept includes an amorphous germanium layer, a single crystal germanium layer, and a microcrystalline germanium layer. Compared with the non-twisted layer and the microcrystalline layer, the N-type single crystal germanium layer can generate a large photocurrent, and the addition of an amorphous germanium layer on the outside can increase the open circuit voltage, and the use of the microcrystalline germanium can reduce the amorphous The energy barrier between the crucible and the single crystal crucible reduces the composite probability of the electron hole and improves the battery conversion efficiency. In addition, the microcrystalline germanium layer has better light recession resistance than the amorphous germanium layer, and improves the device performance. In addition, the single crystal germanium layer can greatly enhance the photoelectric conversion efficiency of the solar cell.

此外,在本發明中,太陽能電池更包含本質非晶矽層,其可作為電子電洞復合(recombination)的阻擋層,進而提升光電轉換效率。In addition, in the present invention, the solar cell further includes an intrinsic amorphous germanium layer, which can serve as a barrier layer for electron hole recombination, thereby improving photoelectric conversion efficiency.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

1、2...太陽能電池元件1, 2. . . Solar cell component

11...P型非晶矽層11. . . P-type amorphous germanium layer

12...N型微晶矽層12. . . N-type microcrystalline layer

13、23...N型單晶矽層13,23. . . N-type single crystal layer

14、24...本質非晶矽層14, 24. . . Intrinsic amorphous layer

15、25...本質微晶矽層15,25. . . Intrinsic microcrystalline layer

16、17、26、27...透明電極層16, 17, 26, 27. . . Transparent electrode layer

18、19、28、29...金屬電極層18, 19, 28, 29. . . Metal electrode layer

21...N型非晶矽層twenty one. . . N-type amorphous germanium layer

22...P型微晶矽層twenty two. . . P-type microcrystalline layer

圖1為本發明較佳實施例之一種太陽能電池元件之示意圖;以及1 is a schematic view of a solar cell component in accordance with a preferred embodiment of the present invention;

圖2為本發明較佳實施例之另一種太陽能電池元件之示意圖。2 is a schematic view of another solar cell element in accordance with a preferred embodiment of the present invention.

1...太陽能電池元件1. . . Solar cell component

11...P型非晶矽層11. . . P-type amorphous germanium layer

12...N型微晶矽層12. . . N-type microcrystalline layer

13...N型單晶矽層13. . . N-type single crystal layer

14...本質非晶矽層14. . . Intrinsic amorphous layer

15...本質微晶矽層15. . . Intrinsic microcrystalline layer

16、17...透明電極層16, 17. . . Transparent electrode layer

18、19...金屬電極層18, 19. . . Metal electrode layer

Claims (10)

一種太陽能電池元件,包含:一P型非晶矽層;一N型微晶矽層;一N型單晶矽層,設置於該P型非晶矽層與該N型微晶矽層之間;一本質非晶矽層,設置於該N型單晶矽層與該P型非晶矽層之間;以及一本質微晶矽層,設置於該N型單晶矽層與該N型微晶矽層之間。A solar cell component comprising: a P-type amorphous germanium layer; an N-type microcrystalline germanium layer; and an N-type single crystal germanium layer disposed between the P-type amorphous germanium layer and the N-type microcrystalline germanium layer An intrinsic amorphous germanium layer disposed between the N-type single crystal germanium layer and the P-type amorphous germanium layer; and an intrinsic microcrystalline germanium layer disposed on the N-type single crystal germanium layer and the N-type micro Between the layers of the wafer. 如申請專利範圍第1項所述之太陽能電池元件,更包含:一透明電極層,其設置位置使得該P型非晶矽層位於該透明電極層與該本質非晶矽層之間。The solar cell component of claim 1, further comprising: a transparent electrode layer disposed such that the P-type amorphous germanium layer is between the transparent electrode layer and the intrinsic amorphous germanium layer. 如申請專利範圍第2項所述之太陽能電池元件,更包含:一金屬電極層,其設置位置使得該透明電極層位於該金屬電極層與該P型非晶矽層之間。The solar cell component of claim 2, further comprising: a metal electrode layer disposed such that the transparent electrode layer is between the metal electrode layer and the P-type amorphous germanium layer. 如申請專利範圍第1項所述之太陽能電池元件,更包含:一透明電極層,其設置位置使得該N型微晶矽層位於該透明電極層與該本質微晶矽層之間。The solar cell component of claim 1, further comprising: a transparent electrode layer disposed such that the N-type microcrystalline germanium layer is between the transparent electrode layer and the essential microcrystalline germanium layer. 如申請專利範圍第4項所述之太陽能電池元件,更包含:一金屬電極層,其設置位置使得該透明電極層位於該金屬電極層與該N型微晶矽層之間。The solar cell component of claim 4, further comprising: a metal electrode layer disposed such that the transparent electrode layer is between the metal electrode layer and the N-type microcrystalline layer. 一種太陽能電池元件,包含:一N型非晶矽層;一P型微晶矽層;一N型單晶矽層,設置於該N型非晶矽層與該P型微晶矽層之間;一本質非晶矽層,設置於該N型單晶矽層與該N型非晶矽層之間;以及一本質微晶矽層,設置於該N型單晶矽層與該P型微晶矽層之間。A solar cell component comprising: an N-type amorphous germanium layer; a P-type microcrystalline germanium layer; and an N-type single crystal germanium layer disposed between the N-type amorphous germanium layer and the P-type microcrystalline germanium layer An intrinsic amorphous germanium layer disposed between the N-type single crystal germanium layer and the N-type amorphous germanium layer; and an intrinsic microcrystalline germanium layer disposed on the N-type single crystal germanium layer and the P-type micro Between the layers of the wafer. 如申請專利範圍第6項所述之太陽能電池元件,更包含:一透明電極層,其設置位置使得該P型微晶矽層位於該透明電極層與該本質微晶矽層之間。The solar cell component of claim 6, further comprising: a transparent electrode layer disposed such that the P-type microcrystalline germanium layer is between the transparent electrode layer and the essential microcrystalline germanium layer. 如申請專利範圍第7項所述之太陽能電池元件,更包含:一金屬電極層,其設置位置使得該透明電極層位於該金屬電極層與該P型微晶矽層之間。The solar cell component of claim 7, further comprising: a metal electrode layer disposed such that the transparent electrode layer is located between the metal electrode layer and the P-type microcrystalline layer. 如申請專利範圍第6項所述之太陽能電池元件,更包含:一透明電極層,其設置位置使得該N型非晶矽層位於該透明電極層與該本質非晶矽層之間。The solar cell component of claim 6, further comprising: a transparent electrode layer disposed such that the N-type amorphous germanium layer is between the transparent electrode layer and the intrinsic amorphous germanium layer. 如申請專利範圍第9項所述之太陽能電池元件,更包含:一金屬電極層,其設置位置使得該透明電極層位於該金屬電極層與該N型非晶矽層之間。The solar cell component of claim 9, further comprising: a metal electrode layer disposed such that the transparent electrode layer is between the metal electrode layer and the N-type amorphous germanium layer.
TW100116900A 2011-05-13 2011-05-13 Solar cell device TWI415281B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116900A TWI415281B (en) 2011-05-13 2011-05-13 Solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116900A TWI415281B (en) 2011-05-13 2011-05-13 Solar cell device

Publications (2)

Publication Number Publication Date
TW201246570A TW201246570A (en) 2012-11-16
TWI415281B true TWI415281B (en) 2013-11-11

Family

ID=48094578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116900A TWI415281B (en) 2011-05-13 2011-05-13 Solar cell device

Country Status (1)

Country Link
TW (1) TWI415281B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201041167A (en) * 2009-04-06 2010-11-16 Applied Materials Inc High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201041167A (en) * 2009-04-06 2010-11-16 Applied Materials Inc High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells

Also Published As

Publication number Publication date
TW201246570A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
CN111653644A (en) Silicon-based heterojunction solar cell and preparation method thereof
Madani Ghahfarokhi et al. DC‐sputtered ZnO: Al as transparent conductive oxide for silicon heterojunction solar cells with µc‐Si: H emitter
US8679892B2 (en) Method for manufacturing silicon thin-film solar cells
US8735210B2 (en) High efficiency solar cells fabricated by inexpensive PECVD
JP2009038064A (en) Photoelectric conversion device, and its manufacturing method
US8652871B2 (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN108735828A (en) A kind of hetero-junctions back contact solar cell and preparation method thereof
US20130224899A1 (en) Enhancing efficiency in solar cells by adjusting deposition power
US20130221464A1 (en) Reduced light degradation due to low power deposition of buffer layer
Richter et al. Light management in planar silicon heterojunction solar cells via nanocrystalline silicon oxide films and nano‐imprint textures
US20140102522A1 (en) A-si:h absorber layer for a-si single- and multijunction thin film silicon solar cell
US8502065B2 (en) Photovoltaic device including flexible or inflexibel substrate and method for manufacturing the same
TWI415281B (en) Solar cell device
CN208521944U (en) A kind of hetero-junctions back contact solar cell
TWI483405B (en) Photovoltaic cell and method of manufacturing a photovoltaic cell
TWI436491B (en) Thin-film solar cell device
US20130174899A1 (en) A-si:h absorber layer for a-si single- and multijunction thin film silicon solar cells
TW201822369A (en) Silicon-based heterojunction solar cell and fabricating method thereof
US20110180142A1 (en) Electrical and optical properties of silicon solar cells
CN117253926A (en) Crystalline silicon heterojunction double-sided solar cell with synergistic effect of chemical passivation and field effect passivation and preparation method thereof
TWI555222B (en) Method for manufacturing photovoltaic cell with super - shallow surfacing layer
CN117238979A (en) Heterojunction solar cell, manufacturing method thereof, photovoltaic module and photovoltaic system
CN116364791A (en) Solar cell and preparation method thereof
CN114864705A (en) Heterojunction solar cell with composite electrode layer and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees