TW201029208A - Microcrystalline silicon alloys for thin film and wafer based solar applications - Google Patents

Microcrystalline silicon alloys for thin film and wafer based solar applications Download PDF

Info

Publication number
TW201029208A
TW201029208A TW098143729A TW98143729A TW201029208A TW 201029208 A TW201029208 A TW 201029208A TW 098143729 A TW098143729 A TW 098143729A TW 98143729 A TW98143729 A TW 98143729A TW 201029208 A TW201029208 A TW 201029208A
Authority
TW
Taiwan
Prior art keywords
layer
type
germanium
substrate
forming
Prior art date
Application number
TW098143729A
Other languages
Chinese (zh)
Inventor
Shuran Sheng
Yong-Kee Chae
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201029208A publication Critical patent/TW201029208A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method and apparatus for forming solar cells is provided. Doped crystalline semiconductor alloys including carbon, oxygen, and nitrogen are used as light-trapping enhancement layers and charge collection layers for thin-film solar cells. The semiconductor alloy layers are formed by providing semiconductor source compound and a co-component source compound to a processing chamber and ionizing the gases to deposit a layer on a substrate. The alloy layers provide improved control of refractive index, wide optical bandgap and high conductivity.

Description

201029208 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大體上係關於太陽能電池及其形成方 法。特別地,本發明之實施例係關於形成於薄膜與結晶 太陽能電池的波長選擇反射層。 【先前技術】 結晶矽太陽能電池和薄膜太陽能電池為兩種太陽能電 池。結晶矽太陽能電池一般採用單晶基板(即純矽單晶基 板)或多晶石夕基板(即多晶或聚石夕)。附加膜層沉積在妙基 板上,以增進光獲量、形成電路並保護裝置。薄膜太陽 能電池使用材料薄層’其沉積在適合之基板上而構成一 或多個p-n接合區。適合之基板包括玻璃、金屬和聚合 物基板。 為擴展太陽能電池的經濟用途,必須改善效率。太陽 能電池效率與入射光轉換成有用電力的比率有關。為了 能用於更多應用,太陽能電池效率必須高於目前最好性 能約15。隨著能量成本提高’需有改良之薄膜太陽能 電池和在工廠環境中形成其之方法與設備。 【發明内容】 本發明之實施例提供形成太陽能電池的方法。一些實 施例提供一種製造太陽能電池的方法,包含形成導電層 201029208 至基板上、以及形成p型結晶半導體合金層至導電層 上。本發明-些實施例尚包括非晶形或本質型半導體 層、η型摻雜之非晶形或結晶層、緩衝層、變性摻雜層 和導電層。第二導電層可形成在η型結晶層上。 替代實施例提供一種形成太陽能電池的方法,包含形 成導電層至基板上、形成第一摻雜結晶半導體合金層至 導電層上、以及形成第二摻雜結晶半導體合金層至第一 摻雜結晶半導體合金層上。一些實施例尚包括未摻雜之 非Ba形或結晶半導趙層、緩衝層、變性捧雜層和導電層。 一些實施例還包括第三和第四摻雜結晶半導體合金層於 串疊接合面結構中。 另些實施例提供一種形成太陽能電池的方法,包含形 成反射層至半導體基板上、以及形成結晶接合面至反射 層上’其中反射層包含一或多個結晶半導體合金層。201029208 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention generally relate to solar cells and methods of forming the same. In particular, embodiments of the invention relate to wavelength selective reflective layers formed on thin films and crystalline solar cells. [Prior Art] Crystalline germanium solar cells and thin film solar cells are two types of solar cells. Crystalline germanium solar cells generally employ a single crystal substrate (i.e., a pure germanium single crystal substrate) or a polycrystalline substrate (i.e., polycrystalline or polycrystalline). Additional layers are deposited on the substrate to enhance light yield, form circuits and protect the device. Thin film solar cells use a thin layer of material that is deposited on a suitable substrate to form one or more p-n junction regions. Suitable substrates include glass, metal and polymer substrates. In order to expand the economic use of solar cells, efficiency must be improved. Solar cell efficiency is related to the ratio of incident light converted to useful power. In order to be used in more applications, solar cell efficiency must be higher than the current best performance of about 15. As energy costs increase, there is a need for improved thin film solar cells and methods and apparatus for forming them in a factory environment. SUMMARY OF THE INVENTION Embodiments of the present invention provide methods of forming solar cells. Some embodiments provide a method of fabricating a solar cell comprising forming a conductive layer 201029208 onto a substrate and forming a p-type crystalline semiconductor alloy layer onto the conductive layer. Some embodiments of the invention also include amorphous or intrinsic semiconductor layers, n-type doped amorphous or crystalline layers, buffer layers, denatured doped layers, and conductive layers. The second conductive layer may be formed on the n-type crystalline layer. An alternative embodiment provides a method of forming a solar cell comprising forming a conductive layer onto a substrate, forming a first doped crystalline semiconductor alloy layer onto the conductive layer, and forming a second doped crystalline semiconductor alloy layer to the first doped crystalline semiconductor On the alloy layer. Some embodiments also include undoped non-Ba or crystalline semiconducting layers, buffer layers, denatured layers, and conductive layers. Some embodiments further include the third and fourth doped crystalline semiconductor alloy layers in a tandem joint structure. Still other embodiments provide a method of forming a solar cell comprising forming a reflective layer onto a semiconductor substrate and forming a crystalline bonding surface onto the reflective layer wherein the reflective layer comprises one or more crystalline semiconductor alloy layers.

本發明之實施例更提供光電裝置,包含反射層,其置 於第一 P_i_n接合區與第二p-i-n接合區間且内含複數個 穿孔,其中該複數個穿孔之每一穿孔是藉由在第二p-i-n 接合區形成於反射層前,移除反射層的部分材料而形成。 本發明之實施例更提供形成太陽能電池裝置的方法, 包含形成第一 p-i-n接合區於基板的表面,形成第一反射 層至第一 p-i-n接合區上,其中第一反射層選擇性將波長 約550奈米(nm)至約800nm的光反射回第一 p-i-n接合 區,以及形成第二p-i-n接合區至第一反射層上。 本發明之實施例更提供一種用以形成太陽能電池的自 4 201029208 動化與整合系統’包含適於沉積p型含發層至基板表面 的第一沉積腔室、適於沉積本質型含矽層和n型含矽層 至基板表面的第二沉積腔室、適於沉積η型反射層至基 板表面的第二沉積腔室、適於在η型反射層中形成複數 個穿孔的圓案化腔室、以及適於在第一沉積腔室、第二 沉積腔室、第三沉積腔室與圖案化腔室間傳送基板的自 動化輸送裝置。 本發明之實施例更提供一種用以形成太陽能電池的自 動化與整合系統,其包含第一叢集工具及第二叢集工 具,該第一叢集工具包含至少一適於沉積ρ型含矽層至 基板表面的處理腔室、至少一適於沉積本質型含矽層至 基板表面的處理腔室及至少一適於沉積η型含矽層至基 板表面的處理腔室,該第二叢集工具包含至少一適於沉 積η型反射層至基板表面的處理腔室及適於在第一與第 一叢集工具間傳送基板的自動化輸送裝置。 【實施方式】 薄膜太陽能電池一般是以許多不同方式將多種膜或層 放置在一起而組成。大部分用於此裝置的膜含有半導體 元素,其包含矽、鍺、碳、硼、磷、氮、氧、氫等。不 同的膜特徵包括結晶度、摻質種類、摻質濃度、膜折射 率、膜消光係數 '膜透明度、膜吸收率和導電率。一般 來說,這些膜大多是利用化學氣相沉積製程形成,其包 5 201029208 括若干離子化程度或電漿形成。 用於太陽能電池的膜 光電製程期間一般是由塊體半導體層(如含矽層)產生 電荷。塊體層有時也稱為本質層,以區別其與太陽能電 池中的各種播雜層。本質層可有任何預定結晶度此將 影響其光吸收特徵。例如,非晶形本質層(如非晶形矽) 通常會吸收來自不同結晶度之本質層(如微晶矽)的不同 波長光。基於此原因,大部分的太陽能電池使用兩種層, 以產生最寬的可吸收特徵。在一些例子中,本質層做為 二不同層型間的緩衝層,使二層間的光學性質或電性平 緩轉變。Embodiments of the present invention further provide an optoelectronic device including a reflective layer disposed in a first P_i_n junction region and a second pin junction region and having a plurality of perforations, wherein each of the plurality of perforations is by a second The pin bonding region is formed in front of the reflective layer and is formed by removing a portion of the material of the reflective layer. Embodiments of the present invention further provide a method of forming a solar cell device, comprising forming a first pin bond region on a surface of a substrate to form a first reflective layer onto a first pin bond region, wherein the first reflective layer selectively has a wavelength of about 550 Light from nanometers (nm) to about 800 nm is reflected back to the first pin bond region, and a second pin bond region is formed onto the first reflective layer. Embodiments of the present invention further provide a kinetic and integrated system for forming a solar cell from 4 201029208 comprising a first deposition chamber suitable for depositing a p-type smectic layer to a surface of the substrate, suitable for depositing an intrinsic yttrium-containing layer And a second deposition chamber containing an n-type germanium layer to the surface of the substrate, a second deposition chamber adapted to deposit the n-type reflective layer to the surface of the substrate, and a round chamber adapted to form a plurality of perforations in the n-type reflective layer a chamber, and an automated delivery device adapted to transport the substrate between the first deposition chamber, the second deposition chamber, the third deposition chamber, and the patterning chamber. An embodiment of the present invention further provides an automation and integration system for forming a solar cell, comprising a first cluster tool and a second cluster tool, the first cluster tool comprising at least one suitable for depositing a p-type germanium-containing layer to a substrate surface a processing chamber, at least one processing chamber adapted to deposit an intrinsic germanium containing layer to the surface of the substrate, and at least one processing chamber adapted to deposit an n-type germanium containing layer to the surface of the substrate, the second cluster tool comprising at least one suitable And a processing chamber for depositing the n-type reflective layer to the surface of the substrate and an automated transport device adapted to transfer the substrate between the first and first cluster tools. [Embodiment] Thin film solar cells are generally composed of a plurality of films or layers placed together in many different ways. Most of the membranes used in this apparatus contain a semiconductor element containing ruthenium, rhodium, carbon, boron, phosphorus, nitrogen, oxygen, hydrogen, and the like. Different film characteristics include crystallinity, dopant type, dopant concentration, film refractive index, film extinction coefficient, film transparency, film absorption rate, and electrical conductivity. In general, most of these films are formed using a chemical vapor deposition process, and package 5 201029208 includes several degrees of ionization or plasma formation. Films for solar cells During the optoelectronic process, charges are generally generated by a bulk semiconductor layer such as a germanium containing layer. The bulk layer is sometimes referred to as the intrinsic layer to distinguish it from the various miscellaneous layers in the solar cell. The intrinsic layer can have any predetermined degree of crystallinity which will affect its light absorption characteristics. For example, amorphous intrinsic layers (e.g., amorphous germanium) typically absorb light of different wavelengths from intrinsic layers of different crystallinity, such as microcrystalline germanium. For this reason, most solar cells use two layers to produce the widest absorbable characteristics. In some instances, the intrinsic layer acts as a buffer between two different layers, causing a linear transition between the optical properties or electrical properties of the two layers.

矽和其他半導體可形成不同結晶度的固體。本質無結 晶度的固體為非晶形,具微量結晶度的矽稱為非晶形 矽。完全結晶矽稱為結晶、多晶或單晶矽。多晶矽為形 成許多由晶界隔開之晶粒的結晶矽。單晶矽為矽之單一 結晶。具部分結晶度的固體,結晶分率約5%至约%%, 被稱為奈米晶或微晶,其一般是指懸浮於非晶相的晶粒 尺寸。具大晶粒的固體稱為微晶,具小晶粒的固體則稱 為奈米晶。應注意,,結晶矽”一詞可指具任何晶相類型的 發’包括早晶和奈来晶碎。 第1圓為多重接合面太陽能電池1〇〇之一實施例的示 意圖’其定位朝向光源或太陽輻射1 〇丨。太陽能電池1 〇〇 包含基板102,例如玻璃基板、聚合物基板、金屬基板 或其他適合之基板,且具薄膜形成其上。太陽能電池ι〇〇 201029208 更包含一形成於基板102上之第一透明導電氧化物(TCO) 層104、一形成於第一 TCO層1〇4上之第一 p_i_n接合 區126。在一配置中,一波長選擇反射(WSR)層112形成 於第一 p-i-n接合區126上。一第二p-i-n接合區128形 成於第一 p-i-n接合區126上’ 一第二TCO層122形成 • 於第二p-i-n接合區128上’且一金屬背層124形成於第 二TC0層122上。在一實施例中,WSR層112置於第一 φ P-i_n接合區I26與第二p-i-n接合區US之間,且經配 置以具有改善光散射的膜性質並於所形成之太陽能電池 1〇〇中產生電流。此外,WSR層112亦提供一良好的p_n 穿随接合面’其具高導電率和影響其穿透與反射性質之 適當能帶隙範圍’藉以增進形成太陽能電池的光轉換效 率。WSR層112將進一步詳述於後。 為了經由加強光捕捉而改善光吸收,可利用渔式、電 漿、離子及/或機械處理來選擇性織構基板及/或形成於其 ® 上之一或多層薄膜。例如,在第j圖所示之實施例中, 第一 TC0層104經織構,且後續沉積其上之薄膜大致依 循底下表面的形貌。 第一 TC0層104和第三TC〇層122各自包含氧化踢、 氧化鋅、氧化銦錫、錫酸鎘、其組合物或其他適合材料。 應理解TCO材料尚可包括附加捧質和成分。例如,氧化 鋅更包括摻質,例如!g、鎵1和其他適合摻質。氧化 辞較佳包含5原子%或以下的摻質,更佳包含2.5原子% 或以下的銘在一些例子中,基板1〇2由玻璃製造商提 201029208 供且已形成第一 TCO層104。 第一 p-i-n接合區126包含p型非晶形矽層1〇6、形成 於P型非晶形矽層106上之本質型非晶形矽層1〇8、和 . %成於本質型非晶形矽層124上之η型微晶矽層11〇。 • 在一些實施例中,ρ型非晶形矽層1〇6的形成厚度為約 60埃(Α)至約300Α。在某些實施例中,本質型非晶形矽 層108的形成厚度為約15〇〇α至約35〇〇α。在某些實施 • 例中,η型微晶矽層uo的形成厚度為約100Α至約40〇Α。 叙配置WSR層112於第一 ρ·ί_η接合區126與第二 p-i-n接合區128間,以具有一些預定膜性質。在此配置 下WSR層112主動做為具預定折射率或折射率範圍的 中間反射體,以反射來自太陽能電池1〇〇光入射邊所接 收的光。WSR層112還當作接面層,其增加第一 p小n 接合區126對短波長至中間波長光(如28〇nm至8〇〇nm) • 的吸收及改善短路電流,進而提高量子與轉換效率。wsr 層Π2更具有對於中間波長至長波長光(如5〇〇nm至 U〇〇nm)的高膜透射率,以協助光穿透到形成於接合區 128之層。另外,通常期WSR層112盡量不吸收光,而 將預疋波長之光(如短波長)反射回第一 p_i_n接合區I% 的各層,並讓預定波長之光(如長波長)穿透到第二pi_n 接合區128的各層。此外,WSR層112可具預定能帶隙 和高膜導電率’以有效傳導所產生之電流及容許電子從 第一 p-i-n接合區126流向第二p-i_n接合區128,並避 免阻斷所產生之電流。WSR層112期將短波長光反射回 8 201029208 第一 P_i_n接合區126,同時容許實質上所有的長波長之 光通過第一 pM-n接合區128。藉由形成對預定波長有高 膜透射率、低膜光吸收率、預定能帶隙性質(如寬能帶隙 範圍)和高導電率的|8尺層112,可改善整體太陽能電池 轉換效率》 在一實施例中,WSR層112為一種具有n型或p型摻 質配置於WSR層112内之微晶石夕層。在一例示實施例 中’ WSR層112為一種具有η型摻質配置於界8尺層η2 内之η型微晶矽合金。配置於WSR層U2内之不同摻質 也會影響WSR層的膜光學性質和電性,例如能帶隙、結 晶分率、導電率、透明度、膜折射率、消光係數等。在 一些例子中’一或多種摻質可摻雜到WSR層112的不同 區域,以有效控制及調整膜能帶隙、功函數、導電率、 透明度等。在一實施例中,控制WSR層112以具有約 1.4至約4之折射率、至少約2電子伏特(eV)之能帶隙和 南於約0.3S/cm之導電率。 在一實施例中,WSR層112包含η型摻雜之矽合金層, 例如氧化矽(SiOx、Si02)、碳化矽(SiC)、氮氧化矽 (SiON)、氮化矽(SiN)、氮化碳矽(SicN)、碳氧化矽 (SiOC)、氮化碳氧矽…(^…等。在一示例實施例中’ WSR層112為n型siON或SiC層。 第二P-i-n接合區128包含p型微晶矽層114,且在一 些情況下包含選擇性p_i緩衝型本質非晶形矽(piB)層 116’其形成於p型微晶矽層114上。接著,一本質型微 9 201029208 晶石夕層11 8形成於p型微晶矽層丨14上,且一 n型非晶 形矽層120形成於本質型微晶矽層118上。在某些實施 例中’ p型微晶矽層Π4的形成厚度為約i〇〇a至約 400A ^在某些實施例中,p_i緩衝型本質非晶形矽(piB) 層116的形成厚度為約5〇a至約500A。在某些實施例 中’本質型微晶矽層118的形成厚度為約1 〇〇〇〇A至約 30000A。在某些實施例中,n型非晶形矽層12〇的形成 厚度為約ιοοΑ至約5〇oA。 金屬背層124包括選自由銘(A1)、銀(Ag)、欽(Ti)、鉻 (Cr)、金(Au)、銅(Cu)、始(Pt)、其合金和其組合物所組 成群組之材料’但不以此為限。可進行其他製程來形成 太陽能電池100,例如雷射切割製程。其他膜、材料、 基板及/或封裝可設於金屬背層124上,以完成太陽能電 池裝置。形成之太陽能電池可内接成模組,其進而連接 成陣列。 太陽輻射101主要由p-i-n接合區126、128的本質層 108、118吸收並轉換成電子電洞對。p型層ι〇6、114與 π型層110、120間產生延伸越過本質層108、118的電場, 促使電子流向η型層110、120’而電洞流向p型層1〇6、 114,因而產生電流。由於非晶形矽和微晶矽吸收不同波 長的太陽輻射101,故第一 p-i-n接合區126包含本質型 非晶形矽層108 ’且第二p-i-n接合區128包含本質型微 晶梦層11 8 »如此,形成之太陽能電池1 〇〇將捕捉更多 部分的太陽輻射光譜而更有效率。因非晶形石夕的能帶隙 201029208 比微晶碎大’故依先讓太陽轄射101照射本質型非晶形 矽層108並穿過WSR層112,然後照射本質型微晶矽層 118的方式堆疊非晶形矽和本質微晶層的本質層ι〇8、 118。未被第一 p_i_n接合區126吸收的太陽輻射持續穿 過WSR層112’並繼續行進至第二p_j_n接合區128。Tantalum and other semiconductors can form solids of different crystallinity. The essence of the knotless crystal solid is amorphous, and the nickname with a slight degree of crystallinity is called amorphous 矽. The complete crystal nickname is crystalline, polycrystalline or single crystal germanium. Polycrystalline germanium is a crystalline germanium that forms a plurality of grains separated by grain boundaries. Single crystal ruthenium is a single crystal of ruthenium. A solid having a partial crystallinity having a crystallization fraction of about 5% to about % by weight, which is called nanocrystal or crystallite, generally refers to a crystallite size suspended in an amorphous phase. Solids with large grains are called crystallites, and solids with small grains are called nanocrystals. It should be noted that the term "crystalline 矽" may refer to a hair having any crystal phase type including both early crystals and nanocrystalline crystals. The first circle is a schematic view of one embodiment of a multi-joint surface solar cell 1' The light source or the solar radiation is 1. The solar cell 1 includes a substrate 102, such as a glass substrate, a polymer substrate, a metal substrate or other suitable substrate, and has a thin film formed thereon. The solar cell ι〇〇201029208 further comprises a formation A first transparent conductive oxide (TCO) layer 104 on the substrate 102, a first p_i_n junction region 126 formed on the first TCO layer 1〇4. In one configuration, a wavelength selective reflection (WSR) layer 112 Formed on the first pin bond region 126. A second pin bond region 128 is formed on the first pin bond region 126 'a second TCO layer 122 is formed on the second pin bond region 128' and a metal back layer 124 Formed on the second TC0 layer 122. In one embodiment, the WSR layer 112 is disposed between the first φ P-i_n junction region I26 and the second pin junction region US and is configured to have film properties that improve light scattering. And the solar power formed The current is generated in 1 。. In addition, the WSR layer 112 also provides a good p_n wear-through interface 'having a high electrical conductivity and a suitable band gap range that affects its penetration and reflection properties' to enhance the formation of solar cells. Conversion efficiency. The WSR layer 112 will be described in further detail. To improve light absorption by enhancing light trapping, fish, plasma, ion and/or mechanical treatment can be used to selectively texture the substrate and/or form it. One or more layers of film. For example, in the embodiment shown in Figure j, the first TC0 layer 104 is textured, and the subsequently deposited film substantially follows the topography of the underlying surface. The first TC0 layer 104 and The third TC layer 122 each comprises an oxidized kick, zinc oxide, indium tin oxide, cadmium stannate, combinations thereof, or other suitable materials. It should be understood that the TCO material may also include additional handles and ingredients. For example, zinc oxide also includes blends. Qualities, such as !g, gallium 1 and other suitable dopants. Oxidation preferably comprises 5 atomic % or less of dopant, more preferably 2.5 atomic % or less. In some examples, substrate 1 〇 2 is made of glass. Business introduction 201029208 The first TCO layer 104 is formed and formed. The first pin bonding region 126 includes a p-type amorphous germanium layer 1〇6, an intrinsic amorphous germanium layer 1〇8 formed on the P-type amorphous germanium layer 106, and . % of the n-type microcrystalline germanium layer 11 on the intrinsic amorphous germanium layer 124. • In some embodiments, the p-type amorphous germanium layer 1〇6 is formed to a thickness of about 60 angstroms (Å) to about 300 Å. In some embodiments, the intrinsic amorphous germanium layer 108 is formed to a thickness of from about 15 Å to about 35 Å. In some embodiments, the η-type microcrystalline layer uo is formed to a thickness of About 100 Α to about 40 〇Α. The WSR layer 112 is disposed between the first ρ·ί_η junction region 126 and the second p-i-n junction region 128 to have some predetermined film properties. In this configuration, the WSR layer 112 actively acts as an intermediate reflector having a predetermined index of refraction or refractive index to reflect light received from the incident side of the solar cell 1. The WSR layer 112 also acts as a junction layer that increases the absorption of the short-wavelength to intermediate-wavelength light (eg, 28 〇 nm to 8 〇〇 nm) by the first p-sm junction region 126 and improves the short-circuit current, thereby improving quantum and Conversion efficiency. The wsr layer 2 further has a high film transmittance for intermediate wavelengths to long wavelength light (e.g., 5 Å to U 〇〇 nm) to assist light penetration into the layer formed in the land 128. In addition, the normal-stage WSR layer 112 does not absorb light as much as possible, but reflects the light of the pre-twist wavelength (such as a short wavelength) back to the layers of the first p_i_n junction region I%, and allows the predetermined wavelength of light (such as long wavelength) to penetrate. The second pi_n is the layers of the land 128. In addition, the WSR layer 112 can have a predetermined energy band gap and high film conductivity 'to effectively conduct the generated current and allow electrons to flow from the first pin junction region 126 to the second p-i_n junction region 128, and avoid blocking. The current. The WSR layer 112 reflects the short wavelength light back to the 8 201029208 first P_i_n junction region 126 while allowing substantially all of the long wavelength light to pass through the first pM-n junction region 128. The overall solar cell conversion efficiency can be improved by forming a |8-foot layer 112 having a high film transmittance, a low film light absorptivity, a predetermined band gap property (such as a wide band gap range), and a high conductivity for a predetermined wavelength. In one embodiment, the WSR layer 112 is a microcrystalline layer having an n-type or p-type dopant disposed in the WSR layer 112. In an exemplary embodiment, the 'WSR layer 112 is an n-type microcrystalline germanium alloy having an n-type dopant disposed in the boundary 8' layer η2. The different dopants disposed in the WSR layer U2 also affect the film optical properties and electrical properties of the WSR layer, such as band gap, crystallization fraction, conductivity, transparency, film refractive index, extinction coefficient, and the like. In some examples, one or more dopants may be doped into different regions of the WSR layer 112 to effectively control and adjust the film bandgap, work function, conductivity, transparency, and the like. In one embodiment, the WSR layer 112 is controlled to have a refractive index of from about 1.4 to about 4, an energy band gap of at least about 2 electron volts (eV), and a conductivity of about 0.3 S/cm. In one embodiment, the WSR layer 112 comprises an n-type doped bismuth alloy layer, such as yttrium oxide (SiOx, SiO 2 ), tantalum carbide (SiC), hafnium oxynitride (SiON), tantalum nitride (SiN), nitrided. Carbonium (SicN), cerium oxide (SiOC), carbon oxynitride (..., etc. In an exemplary embodiment, 'WSR layer 112 is an n-type siON or SiC layer. The second Pin junction 128 contains p The microcrystalline germanium layer 114, and in some cases comprises a selective p_i buffered intrinsic amorphous germanium (piB) layer 116' formed on the p-type microcrystalline germanium layer 114. Next, an intrinsic micro 9 201029208 spar A layer 11 8 is formed on the p-type microcrystalline germanium layer 14 and an n-type amorphous germanium layer 120 is formed on the intrinsic microcrystalline germanium layer 118. In some embodiments, the p-type microcrystalline germanium layer 4 The formed thickness is from about i〇〇a to about 400 A. In certain embodiments, the p_i buffered intrinsic amorphous germanium (piB) layer 116 is formed to a thickness of from about 5 Å to about 500 Å. In some embodiments The intrinsic microcrystalline germanium layer 118 is formed to a thickness of from about 1 〇〇〇〇A to about 30,000 A. In some embodiments, the n-type amorphous germanium layer 12 is formed to a thickness of about ιοοΑ 5〇oA. The metal back layer 124 comprises a material selected from the group consisting of Ming (A1), silver (Ag), zi (Ti), chromium (Cr), gold (Au), copper (Cu), and (Pt), alloys thereof and The materials of the group of compositions are 'but are not limited thereto. Other processes may be performed to form the solar cell 100, such as a laser cutting process. Other films, materials, substrates, and/or packages may be disposed on the metal back layer 124. The solar cell device is completed. The formed solar cells can be interconnected into modules that are in turn connected in an array. Solar radiation 101 is primarily absorbed by the intrinsic layers 108, 118 of the pin junction regions 126, 128 and converted into pairs of electron holes. An electric field extending across the intrinsic layers 108, 118 between the p-type layers 、6, 114 and the π-type layers 110, 120 causes electrons to flow toward the n-type layers 110, 120' and the holes flow toward the p-type layers 1 〇 6, 114, The current is thus generated. Since the amorphous germanium and the microcrystalline germanium absorb solar radiation 101 of different wavelengths, the first pin bonding region 126 includes the intrinsic amorphous germanium layer 108' and the second pin bonding region 128 includes the intrinsic microcrystalline dream layer. 11 8 » So, the formation of the solar cell 1 will capture more Part of the solar radiation spectrum is more efficient. Since the amorphous bandgap 201029208 is larger than the microcrystals, the solar radiation 101 is irradiated onto the intrinsic amorphous layer 108 and passes through the WSR layer 112. The intrinsic layers ι〇8, 118 of the amorphous germanium and the intrinsic microcrystalline layer are stacked in such a manner as to illuminate the intrinsic microcrystalline germanium layer 118. The solar radiation not absorbed by the first p_i_n junction region 126 continues through the WSR layer 112' and continues to travel. To the second p_j_n junction area 128.

本質型非晶形矽層108可藉由提供氫氣與矽烧氣體比 約20: 1或以下之混合氣體沉積而得。矽烷氣體的供應 流速為約〇.5每分鐘標準毫升/公升(sccm/L)至約 7sccm/L。氳氣的供應流速為約5sccm/L至約6〇sccm/L。 約15毫瓦/平方公分(mW/cm2)至約25〇mW/cm2之射頻 (RF)功率供給喷淋頭。腔室壓力維持在約0.1托耳至約 20托耳之間,例如約〇 5托耳至約5托耳。本質型非晶 形矽層108的沉積速度為約1〇〇埃/分鐘(A/min)或以上。 在一示例實施例中,本質型非晶形矽層1〇8以約12 5 : ! 之氫氣與發燒比沉積。 P-1緩衝型本質非晶形矽(PIB)層116可藉由提供氫氣 與矽烷氣體比約50 ·· 1或以下之混合氣體沉積而得,例 如小於約30:卜例如約2〇:1至約3〇:1,如約乃 石夕烧氣體的供應流速為約G 5seem/L至約5seem/L,例如 約2.3sCCm/L。氫氣的供應流速為約5sccm/L至約 8〇SCCm/L,例如約 2〇SCCm/L 至約 65sccm/L,如 57sCCm/L。約l5mW/cm2至約⑽讀/一之功率 約Μ—2)供給噴淋頭。腔室虔力維持在約(M托耳 至約2。托耳之間,較佳約。·5托耳至約5托耳,例如: 201029208 3托耳《 PIB層的沉積速度為約i〇〇A/min或以上。 本質型微晶石夕層118可藉由提供氫氣與矽烷氣體比約 2〇 . 1至約200 : i之混合氣體沉積而得。矽烷氣體的供 應流速為約〇.5sccm/L至約5sccm/L。氫氣的供應流速為 約4〇sccm/L至約4〇〇sccm/L。在某些實施例中,矽烷流 速於沉積期間從第一流速上升到第二流速。在某些實施 例中,氫氣流速於沉積期間從第一流速下降成第二流 速。在約1托耳至約1〇〇托耳之腔室壓力下較佳約3 托耳至約20托耳,更佳約4托耳至約12托耳,施加約 300mW/cm2或以上之RF功率(較佳6〇〇mW/cm2或以上) 通常會以約20〇A/min或以上之速度(較佳約5〇〇A/min) 沉積具有結晶分率約20%至約80%(較佳約55%至約75%) 的本質型微晶石夕層。在一些實施例中,沉積期間將施加 RF功率之功率密度從第一功率密度提高到第二功率密 度是有利的》 / 在另-實施例中,本質型微晶石夕層118可以多個步驟 沉積,其各具不同結晶分率。在一實施例中例如,氫 氣與矽烷比按四個步驟從1〇〇 : i減少成95 : t、9〇 : i 和85: i。在-實施例中’錢氣雜的供應流速為約 O.lsccm/L至約5sccm/L,例如約〇 97似眺。氫氣的供 應流速為約i〇sccm/L至約200sccm/L,例如約8(^咖几 至約U)5SCCm/L。在具有多個步驟之沉積(如四個步驟) 的例示實施例中,第一步驟的氫氣流速可先為約 97SCCm/L ’然後在後續處理步驟中逐漸減少成約 12 201029208 92sccm/L、88sccm/L 和 83sccm/L。在約 1 托耳至約 1〇〇 托耳之腔室壓力下(如約3托耳至約2〇托耳,例如約4 托耳至約12托耳’例如約9托耳),施加約3〇〇niW/cm2 或以上之RF功率(如約49〇mW/cm2)將以約2〇〇A/min或 以上之速度(如約40〇A/min)沉積本質型微晶矽層。 電荷收集一般是由摻雜半導體層提供,例如摻雜p型 或η型摻質之矽層型摻質通常為第ΠΙ族元素,例如 蝴或鋁。η型摻質通常為第ν族元素,例如磷、砷或錄。 在多數實施例中’硼做為ρ型摻質,磷做為η型摻質。 藉著把含爛或含填化合物納入反應混合物中,可將摻質 添加到上述ρ型和η型層1〇6、110、114、120。適合的 硼和磷化合物一般包含飽和與不飽和低級硼烷和膦寡聚 物。一些適合的硼化合物包括三甲基硼(B(CH3)3或 TMB)、二硼烷(B2H6)、三氟化硼(BF3)和三乙基硼 (B(C2H5)3或TEB)。膦是最常見的麟化合物。摻質通常 伴隨載氣供應,例如氫氣、氦氣、氬氣和其他適合氣體。 若以氫氣做為載氣,則其增加反應混合物的總氫氣量, 故氫氣比率包括用於摻質之載氣的氫氣。 摻質通常當作鈍氣的稀釋氣體混合,例如,載氣中提 供約0.5°/。莫耳或體積濃度的摻質。若欲於1.0sccm/L之 載氣中供應0.5%體積濃度的摻質,則產生之摻質流速為 0.005sccm/L。摻質供給於反應腔室的流速為約 0.0002sccm/L至約〇.lsccm/L,此視預定掺雜程度而定。 一般來說,摻質濃度維持在約1〇18個原子/立方公分至約 13 201029208 ι〇2ΰ個原子/立方公分之間。 在一實施例中,D刑鄉曰 P i微日日矽層114可藉由提 石夕烧氣體比約咖:1或以上之漏合氣體沉積 = 1隊1或以下,例如約250:1至約800:1,另= 為約601:1或約am., 、401 . 1。矽烷氣體的供應流速為The intrinsic amorphous tantalum layer 108 can be deposited by providing a mixed gas of hydrogen gas and a xenon gas ratio of about 20:1 or less. The supply of decane gas has a flow rate of about 〇.5 per minute from standard milliliters per liter (sccm/L) to about 7 sccm/L. The supply flow rate of helium is from about 5 sccm/L to about 6 〇 sccm/L. A radio frequency (RF) power of about 15 mW/cm 2 (mW/cm 2 ) to about 25 〇 mW/cm 2 is supplied to the shower head. The chamber pressure is maintained between about 0.1 Torr and about 20 Torr, such as from about 5 Torr to about 5 Torr. The deposition rate of the intrinsic amorphous germanium layer 108 is about 1 Å/min (A/min) or more. In an exemplary embodiment, the intrinsic amorphous tantalum layer 1〇8 is deposited at a hydrogen to burn ratio of about 12 5:!. The P-1 buffered intrinsic amorphous germanium (PIB) layer 116 can be deposited by providing a mixed gas of hydrogen and decane gas at a ratio of about 50··1 or less, for example, less than about 30: for example, about 2〇:1 to Approximately 3:1, such as a supply flow rate of the gas is about G 5seem/L to about 5 seem/L, for example about 2.3 sCCm/L. The hydrogen supply flow rate is from about 5 sccm/L to about 8 〇 SCCm/L, for example from about 2 〇 SCCm/L to about 65 sccm/L, such as 57 sCCm/L. About l5mW/cm2 to about (10) read / one power about Μ - 2) supply sprinkler. The chamber force is maintained at about (MTorr to about 2. between the ears, preferably about 5 Torr to about 5 Torr, for example: 201029208 3 Torr "The deposition rate of the PIB layer is about i〇 〇A / min or above. The intrinsic microcrystalline layer 118 can be obtained by providing a mixed gas of hydrogen to decane gas ratio of about 2 〇 1 to about 200 : i. The supply flow rate of the decane gas is about 〇. 5 sccm / L to about 5 sccm / L. The supply flow rate of hydrogen is from about 4 〇 sccm / L to about 4 〇〇 sccm / L. In some embodiments, the decane flow rate rises from the first flow rate to the second flow rate during deposition In certain embodiments, the hydrogen flow rate decreases from the first flow rate to the second flow rate during deposition. Preferably, from about 1 Torr to about 20 Torr at a chamber pressure of from about 1 Torr to about 1 Torr. Preferably, the ear, more preferably from about 4 to about 12 Torr, applies an RF power of about 300 mW/cm2 or more (preferably 6 〇〇mW/cm2 or more), typically at a speed of about 20 〇A/min or more ( Preferably, about 5 A/min) is deposited with an intrinsic type of microcrystalline layer having a crystallization fraction of from about 20% to about 80%, preferably from about 55% to about 75%. In some embodiments, during deposition Will It is advantageous to increase the power density of the RF power from the first power density to the second power density. / In another embodiment, the intrinsic microcrystalline layer 118 can be deposited in multiple steps, each having a different crystallization fraction. In one embodiment, for example, the ratio of hydrogen to decane is reduced from 1 〇〇: i to 95: t, 9 〇: i and 85: i in four steps. In the embodiment, the supply flow rate of the money is From about 0.1 cmcm/L to about 5 sccm/L, for example about 97. The supply flow rate of hydrogen is from about i〇sccm/L to about 200 sccm/L, for example about 8 (^ coffee to about U) 5 SCCm/L. In an exemplary embodiment having multiple steps of deposition (e.g., four steps), the hydrogen flow rate of the first step may be about 97 SCCm/L first and then gradually reduced to about 12 201029208 92 sccm/L, 88 sccm in subsequent processing steps. /L and 83 sccm/L. Under a chamber pressure of from about 1 Torr to about 1 Torr (e.g., from about 3 Torr to about 2 Torr, for example from about 4 Torr to about 12 Torr), for example 9 Torr), applying an RF power of about 3 〇〇 niW/cm 2 or more (eg, about 49 〇mW/cm 2 ) will be about 2 〇〇 A/min or more (eg, about 40 〇 A/min). An intrinsic type of microcrystalline germanium layer. Charge collection is generally provided by a doped semiconductor layer, for example, a doped layered dopant of a p-type or n-type dopant is usually a steroidal element such as a butterfly or aluminum. The mass is usually a group ν element such as phosphorus, arsenic or. In most embodiments, 'boron is a p-type dopant and phosphorus is a n-type dopant. By incorporating a rotten or contained compound into the reaction mixture. The dopants may be added to the above-described p-type and n-type layers 1〇6, 110, 114, 120. Suitable boron and phosphorus compounds generally comprise saturated and unsaturated lower borane and phosphine oligomers. Some suitable boron compounds include trimethylboron (B(CH3)3 or TMB), diborane (B2H6), boron trifluoride (BF3), and triethylboron (B(C2H5)3 or TEB). Phosphines are the most common lining compounds. The dopant is typically accompanied by a supply of carrier gas such as hydrogen, helium, argon and other suitable gases. If hydrogen is used as the carrier gas, it increases the total amount of hydrogen in the reaction mixture, so the hydrogen ratio includes hydrogen for the carrier gas of the dopant. The dopant is typically mixed as a dilute diluent gas, for example, providing about 0.5 °/ in the carrier gas. Molar or volume concentration of dopant. If a 0.5% by volume dopant is to be supplied in a 1.0 sccm/L carrier gas, the resulting dopant flow rate is 0.005 sccm/L. The flow rate of the dopant supplied to the reaction chamber is from about 0.0002 sccm/L to about 0.1 sccm/L, depending on the predetermined degree of doping. Generally, the dopant concentration is maintained between about 1 〇 18 atoms/cm 3 to about 13 201029208 ι〇 2 ΰ atoms/cm 3 . In one embodiment, the D 刑 i i i i 可 可 可 可 可 可 可 可 可 可 可 可 可 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 : : : : : To about 800:1, another = about 601:1 or about am., 401.1. The supply flow rate of decane gas is

Ok池至約〇.8sccm/L,例如約〇2sccm/L至約Ok pool to about 8.8sccm/L, for example about 2sccm/L to about

〇.38SCCm/L。氫氣的供應流速為約6〇SCCm/L至約 500sccm/L,例如幼,/τ 如約143SCCm/L。ΤΜΒ的供應流速為約 〇._2SCCm/L 至約 0.0016sccm/L ,例如約 0.0(m5sccm/L。若於載氣中供應〇 5%莫耳或體積濃度的 TMB ’則摻質/載氣混合物的供應流速為約q』4seem/L至 約〇.32SCCm/L,例如約〇.23sCCm/L。在約1托耳至約1〇〇 托耳之腔至壓力下,較佳約3托耳至約2〇托耳,更佳約 4托耳至、約12托耳,例如約7托耳或約9托耳施加約 50mW/cm2 至約 700mW/cm2 之 RF 功率,如約 29〇mW/cm2 至約44〇〇mW/cm2將以約lOA/min或以上之速度(如約 /min戈以上)>儿積具有微晶層結晶分率約20%至約 80%(較佳約5〇%至約7〇%)的p型微晶矽層。 在一實施例中’ P型非晶形矽層106可藉由提供氫氣 與矽烷氣體比約20 : 1或以下之混合氣體沉積而得。矽 烧氣體的供應流速為約lsccm/L至約l〇sccm/L。氫氣的 供應流速為約5sccm/L至約60sccm/L。三曱基蝴的供應 流速為約〇.〇〇5sccm/L至約〇.〇5sccm/L。若欲於載氣中 供應0.5%莫耳或體積濃度的三甲基硼,則摻質/載氣混合 201029208 物的供應流速為約lsccm/L至約1〇sccm/L。在約〇【托 耳至約20托耳之腔室麼力下’較佳約】柁耳至約4托 耳,施加約15mW/cm2至約2〇〇mW/cm2之rf功率將以 約1 OOA/min或以上之速度沉積p型非晶形石夕層。 在-實施例中,η型微晶矽層11〇可藉由提供氫氣與 秒烧氣體比約100:丨或以上之混合氣體沉積而得例如 約500: i或以下,例如約15〇: i至約4〇〇:丨,如約3〇4: 1或約2〇3 : 1。矽烷氣體的供應流速為約〇 is_/L至 約〇.8Sccm/L,例如約0 32sccm/L至約〇 45咖城,如 約〇.35Sccm/L。氫氣的供應流速為約3〇sccm/L至約 25〇SCCm/L,例如約 68sccm/L 至約 143sccm/L,如約 71-43sCCm/L。膦的供應流速為約〇 〇〇〇5sccm/L至約〇.38SCCm/L. The hydrogen supply flow rate is from about 6 〇 SCCm/L to about 500 sccm/L, for example, young, /τ such as about 143 SCCm/L. The supply flow rate of ruthenium is from about _2.2 SCCm/L to about 0.0016 sccm/L, for example about 0.0 (m5 sccm/L. If 〇5% or volume of TMB is supplied in the carrier gas, the dopant/carrier gas mixture is The supply flow rate is from about q"4seem/L to about 3232 SCCm/L, for example about 23.23 sCCm/L. Between about 1 Torr to about 1 Torr of the cavity to pressure, preferably about 3 Torr. Up to about 2 Torr, more preferably about 4 Torr to about 12 Torr, for example about 7 Torr or about 9 Torr, applying an RF power of about 50 mW/cm2 to about 700 mW/cm2, such as about 29 〇mW/ From cm2 to about 44〇〇mW/cm2, which will have a rate of about 10 OA/min or more (e.g., about /min or more)> has a crystallite fraction of about 20% to about 80% (preferably about 5). 〇% to about 7〇%) of the p-type microcrystalline germanium layer. In an embodiment, the 'P-type amorphous germanium layer 106 can be deposited by providing a mixed gas of hydrogen gas and decane gas ratio of about 20:1 or less. The supply flow rate of the argon gas is from about lsccm/L to about l〇sccm/L. The supply flow rate of hydrogen is from about 5 sccm/L to about 60 sccm/L. The supply flow rate of the triterpene butterfly is about 〇.〇〇5 sccm/ L to about 〇.〇5sccm/L. If you want to use it in the carrier gas At a concentration of 0.5% molar or volumetric trimethylboron, the supply flow rate of the dopant/carrier gas mixture 201029208 is from about 1 sccm/L to about 1 〇 sccm/L. In about 托 [Torr to about 20 Torr The cavity is preferably 'about 柁' to about 4 Torr, and an rf power of about 15 mW/cm 2 to about 2 〇〇 mW/cm 2 is applied to deposit a p-type non at a rate of about 1 OOA/min or more. In the embodiment, the n-type microcrystalline germanium layer 11 can be deposited by, for example, about 500: i or less by providing a mixed gas of hydrogen gas and a second firing gas ratio of about 100: Torr or more, for example, for example, Approximately 15 〇: i to about 4 〇〇: 丨, such as about 3 〇 4: 1 or about 2 〇 3 : 1. The supply flow rate of the decane gas is about 〇is_/L to about 〇.8 Sccm/L, for example about 0. 32 sccm / L to about 咖 45 coffee city, such as about 35.35Sccm / L. The hydrogen supply flow rate is about 3 〇 sccm / L to about 25 〇 SCCm / L, such as about 68sccm / L to about 143sccm / L, such as 71-43sCCm/L. The supply flow rate of phosphine is about sc5sccm/L to about

〇.〇〇6SCCm/L,例如約 〇.〇〇25sccm/L 至約 〇 〇i5sccm/L, 如約0.005SCCm/L。換言之,若欲於載氣中供應〇5%莫 耳或體積濃度的膦,則摻質/載氣的供應流速為約 〇.lsccm/L 至約 5sccm/L,例如約 〇.5sccm/L 至約 〇.3sccm/L,如約 〇.9sccm/L 至約 l_〇〇8sccm/L。在約 1 托 耳至約100托耳之腔室壓力下’較佳約3托耳至約2〇托 耳,更佳約4托耳至約12托耳,例如約6托耳或約9托 耳’施加約10〇mW/cm2至約900mW/cm2之rf功率(如 約370mW/cm2)將以約5〇A/min或以上之速度(如約 15〇A/min或以上)沉積具有結晶分率約2〇。/〇至約8〇%(較 佳約50%至約70%)的n型微晶矽層。 在一實施例中,η型非晶形矽層120可藉由提供氫氣 15 201029208 與矽烷氣體比約20 : 1或以下之混合氣體沉積而得,例 如約5.5.1或7.8:1«>矽烷氣體的供應流速為約〇13(;(;111/]^ 至約 10sccm/L ’ 例如約 iscem/L 至約 i〇sccm/L、約 〇.lsccm/L 至約 5sccm/L、或約 〇.5sccm/L 至約 3sccm/L, 如約1.42sccm/L或5.5sccm/L。氫氣的供應流速為約 lsccm/L 至約 40sccm/L,例如約 4sccm/L 至約 40sccm/L、 或約 lsccm/L 至約 10sccm/L,如約 6.42sccm/L 或 27sccm/L。膦的供應流速為約〇 〇〇〇5sccm/L至約〇.〇〇6SCCm/L, for example, about 〇〇.〇〇25 sccm/L to about 〇 〇i5 sccm/L, such as about 0.005 SCCm/L. In other words, if a 5% molar or volume concentration of phosphine is to be supplied to the carrier gas, the feed rate of the dopant/carrier gas is from about 0.1 sccm/L to about 5 sccm/L, for example, about 55 sccm/L. About 3 sccm / L, such as about 9.9sccm / L to about l_ 〇〇 8sccm / L. At a chamber pressure of from about 1 Torr to about 100 Torr, preferably from about 3 Torr to about 2 Torr, more preferably from about 4 Torr to about 12 Torr, such as about 6 Torr or about 9 Torr. The ear's application of an rf power of about 10 〇 mW/cm 2 to about 900 mW/cm 2 (eg, about 370 mW/cm 2 ) will have a crystallization at a rate of about 5 A/min or more (eg, about 15 A/min or more). The rate is about 2〇. /〇 to about 8〇% (preferably about 50% to about 70%) of the n-type microcrystalline germanium layer. In one embodiment, the n-type amorphous germanium layer 120 can be deposited by providing a mixed gas of hydrogen gas 15 201029208 with a decane gas ratio of about 20:1 or less, for example, about 5.5.1 or 7.8:1 «> The gas supply flow rate is about (13 (; (; 111 /] ^ to about 10 sccm / L ' for example about iscem / L to about i 〇 sccm / L, about l.lsccm / L to about 5sccm / L, or about 〇 From 5 sccm / L to about 3 sccm / L, such as about 1.42 sccm / L or 5.5 sccm / L. The supply flow rate of hydrogen is from about 1 sccm / L to about 40 sccm / L, for example from about 4 sccm / L to about 40 sccm / L, or about Lsccm/L to about 10 sccm/L, such as about 6.42 sccm/L or 27 sccm/L. The supply flow rate of phosphine is about sc5 sccm/L to about

0.075sccm/L,例如約 〇.〇〇〇5sccm/L 至約 〇.〇〇i5sccm/L、 或約 0.015sccm/L 至約 〇.〇3sccm/L,如約 〇.〇〇95sccm/L 或0.023sccm/L)。若於載氣中供應〇.5%莫耳或體積濃度 的膦’則摻質/載氣混合物的供應流速為約〇 lsccm/L至 約 15sccm/L,例如約 〇.lsccm/L 至約 3sccm/L、約 2sccm/L 至約15sccm/L、或約3sccm/L至約6sccm/L,如約 1.9sccm/L至或約4.71sccm/L。在約0.1托耳至約2〇托 耳之腔室壓力下,較佳約0.5托耳至約4托耳,例如約 1.5托耳’施加約25mW/cm2至約250mW/cm2之RF功率 (如約60mW/cm2或約80mW/cm2)將以約ιοοΑ/min或以 上之速度’如約200A/min或以上,例如約30〇A/min或 約600A/min之速度沉積η型非晶形石夕層》 在一些實施例中’可經由高速供應摻質化合物,以重 捧雜或變性換雜各層,例如以上述配方的上限速度。變 性摻雜被認為可提供低電阻接觸接合面而改善電荷收 集,變性摻雜亦被認為可提高某些層(如非晶形層)的導 16 201029208 電率0.075 sccm/L, for example about 〇〇〇.〇〇〇5 sccm/L to about 〇〇.〇〇i5 sccm/L, or about 0.015 sccm/L to about 〇.〇3 sccm/L, such as about 〇.〇〇95 sccm/L or 0.023 sccm/L). If a 5% molar or volume concentration of phosphine is supplied in the carrier gas, the supply flow rate of the dopant/carrier gas mixture is from about sc1 sccm/L to about 15 sccm/L, for example from about l.1 sccm/L to about 3 sccm. /L, from about 2 sccm/L to about 15 sccm/L, or from about 3 sccm/L to about 6 sccm/L, such as from about 1.9 sccm/L to about 4.71 sccm/L. RF power of from about 25 mW/cm2 to about 250 mW/cm2 is applied at a chamber pressure of from about 0.1 Torr to about 2 Torr, preferably from about 0.5 Torr to about 4 Torr, such as about 1.5 Torr. About 60 mW/cm 2 or about 80 mW/cm 2 ) will deposit an n-type amorphous rock eve at a speed of about ιοοΑ/min or more, such as about 200 A/min or more, for example, about 30 A/min or about 600 A/min. Layers In some embodiments, the dopant compound can be supplied via a high speed to reinforce the hetero or denatured layers, for example at the upper limit of the above formulation. Variable doping is believed to provide a low resistance contact interface to improve charge collection, and denaturing doping is also believed to improve the conductance of certain layers (such as amorphous layers).

些實施例中,可採用石夕與其他元素(如氧、碳、氮、 風和錯)的。金。經由反應混合氣體補增各來源這些其 他X素可加入矽膜中。矽合金可用於任何類型的矽層, 匕括P里η型、pIB、WSR層或本質型秒層。例如,藉 著把碳源(如甲烧陶)加到混合氣體,可將碳加入梦 膜。般來說’ CVC4碳氫化合物大多可做為碳源。或者, 此技藝熟知的有機矽化合物可做為矽源與碳源例如有 機石夕烷、有機發氧炫、有機石夕醇等。錄化合物(如錯烧和 有機鍺烷)和含矽與鍺之化合物(如矽基鍺烷或鍺基矽烷) 可做為鍺源。氧氣(02)可做為氧源。其他氧源包括氮氧 化物(一氧化二氮(N2〇)、一氧化氮(N0)、三氧化二氮 (N2〇3)、二氧化氮(N〇2)、四氧化二氮(ν2〇4)、五氧化二 氮(Νζ〇5)和三氧化氮(Ν〇3))、過氧化氫(Η2〇2)、一氧化碳 (CO)或二氧化碳(C〇2)、臭氧(〇3)、氧原子、氧自由基、 和醇類(ROH ’其中R為任何有機或異有機自由基),但 不以此為限。氮源包括氮氣(N2)、氨(NH3)、聯氨(N2H2)、 胺類(RXNR’3_X,其中X為0-3,R和R’個別為任何有機 或異有機自由基)、醯胺((RCO)xNR’3-x,其中X為0-3, R和R’個別為任何有機或異有機自由基)、亞醯胺 (RCONCOR,,其中R和R’個別為任何有機或異有機自由 基)、烯胺,其中RrRs個別為任何有機 或異有機自由基)、和氦·原子與自由基。 應注意在許多實施例中,預洗製程可用來製備基板及/ 17 201029208 或反應腔室供上層沉積。可施行氫氣或氬氣電漿預處理 製程’經由供應約l〇sccm/L至約45sccm/L的氫氣或氯 氣至處理腔室,例如約15sccm/L至約40sccm/L,如約 20scem/L至約36sccm/L,以移除基板及/或室壁上的污 • 染物。在一實例中’氫氣的供應量為約21SCcm/L,或者 氬氣的供應量為約36sccm/L。藉由施加約1〇Inw/cm2至 約250mW/Cm2之RF功率(如約25mW/cm2至約 • 25〇mW/cm2)可完成處理,例如用於氫氣處理為約 60mW/Cm2或約80mW/cm2 ’而用於氬氣處理為約 25mW/cm2。在許多實施例中’沉積p型非晶形矽層之前 進行氬氣電漿預處理製程、及沉積其他類型層之前進行 氫氣電漿預處理製程是有利的。In some embodiments, Shi Xi and other elements (such as oxygen, carbon, nitrogen, wind and wrong) can be used. gold. These additional X elements can be added to the ruthenium membrane by replenishing each source via the reaction mixture. Niobium alloys can be used in any type of tantalum layer, including P-n, pIB, WSR or intrinsic seconds. For example, carbon can be added to a dream film by adding a carbon source such as a terracotta to a mixed gas. In general, CVC4 hydrocarbons are mostly used as carbon sources. Alternatively, an organic ruthenium compound well known in the art can be used as a source of ruthenium and a carbon source such as organic alkane, organic oxane, organic oxalate, and the like. Compounds such as mis-fired and organic decane and compounds containing ruthenium and osmium (such as decyl decane or decyl decane) can be used as a source of ruthenium. Oxygen (02) can be used as an oxygen source. Other sources of oxygen include nitrogen oxides (nitrogen monoxide (N2〇), nitric oxide (N0), dinitrogen trioxide (N2〇3), nitrogen dioxide (N〇2), and dinitrogen tetroxide (ν2〇). 4), nitrous oxide (Νζ〇5) and nitrogen trioxide (Ν〇3)), hydrogen peroxide (Η2〇2), carbon monoxide (CO) or carbon dioxide (C〇2), ozone (〇3), Oxygen atoms, oxygen radicals, and alcohols (ROH 'where R is any organic or hetero-organic radical), but not limited thereto. Nitrogen sources include nitrogen (N2), ammonia (NH3), hydrazine (N2H2), amines (RXNR'3_X, where X is 0-3, R and R' are each organic or isomeric organic radicals), guanamine ((RCO)xNR'3-x, where X is 0-3, R and R' are each of any organic or isomeric organic radical), decylene (RCONCOR, where R and R' are individually any organic or different Organic radicals), enamines, in which RrRs are individually any organic or hetero-organic radicals, and ruthenium atoms and free radicals. It should be noted that in many embodiments, a pre-wash process can be used to prepare the substrate and / 17 201029208 or the reaction chamber for upper layer deposition. A hydrogen or argon plasma pretreatment process can be performed 'by supplying about 1 〇 sccm / L to about 45 sccm / L of hydrogen or chlorine to the processing chamber, for example, about 15 sccm / L to about 40 sccm / L, such as about 20 scem / L Up to about 36 sccm/L to remove contaminants from the substrate and/or chamber walls. In one example, the supply of hydrogen is about 21 SCcm/L, or the supply of argon is about 36 sccm/L. The treatment can be accomplished by applying an RF power of from about 1 〇Inw/cm 2 to about 250 mW/cm 2 (e.g., from about 25 mW/cm 2 to about 25 〇mW/cm 2 ), for example, for a hydrogen treatment of about 60 mW/cm 2 or about 80 mW/ Cm 2 ' is used for argon treatment to be about 25 mW/cm 2 . It is advantageous in many embodiments to perform a hydrogen plasma pretreatment process prior to depositing a p-type amorphous germanium layer prior to performing an argon plasma pretreatment process and depositing other types of layers.

在一實施例中,WSR層112為一 n型結晶矽合金層, 其形成在η型微晶矽層110上。霤8尺層112的n型結晶 矽合金層可為微晶、奈米晶或多晶。η型結晶矽合金WSR • I U2含有合金元素,例如碳、氧、氮或其任何組合物。 其可沉積成單-同質層、具一或多種漸變特徵的單層, 或層堆叠結構。漸變特徵包括結晶度、摻質濃度(如磷)、 合金材料(如碳、氧、氮)漠度、或諸如介電常數、折射 率、導電率或能帶隙等其他特徵。,型結晶石夕合金職 層U2包含n型碳化梦層、n型氧化石夕層、n型氮化梦層、 η型氮氧化矽層、η型碳氧化矽層及,或η型氮氧碳化矽 層。 η型結晶梦合金讀層112的次要成分量可偏離化學 18 201029208 計量比若干程度。例如,n型碳化矽層可含約1原子%至 約5〇原子%的碳。同樣地,n型氮化矽層可含約^原子 %至約50原子%的氮。n型氧化矽層可含約!原子%至約 5〇原子%的氧。纟包含一種以上次要成分的合金中次 要成分含量可為約i原子%至約5〇原子%,矽含量可為 約50原子%至約99原子%β藉由調整處理腔室内的前驅 物比例’可調整次要成分量。比例可—步步調整而形成 分層結構、或連續調整而形成漸變單層。In one embodiment, the WSR layer 112 is an n-type crystalline germanium alloy layer formed on the n-type microcrystalline germanium layer 110. The n-type crystalline bismuth alloy layer of the 8-foot layer 112 may be microcrystalline, nanocrystalline or polycrystalline. Η-type crystalline niobium alloy WSR • I U2 contains alloying elements such as carbon, oxygen, nitrogen or any combination thereof. It can be deposited as a single-homogeneous layer, a single layer with one or more graded features, or a layer stack structure. Gradient characteristics include crystallinity, dopant concentration (e.g., phosphorus), alloy material (e.g., carbon, oxygen, nitrogen), or other characteristics such as dielectric constant, refractive index, electrical conductivity, or band gap. The type U2 alloy layer U2 includes an n-type carbonized dream layer, an n-type oxidized stone layer, an n-type nitride layer, an n-type yttria layer, an n-type yttria layer, or an n-type oxynitride layer. Carbide layer. The minor component of the n-type crystalline dream alloy read layer 112 may deviate somewhat from the chemical 18 201029208 ratio. For example, the n-type tantalum carbide layer may contain from about 1 atom% to about 5 atom% of carbon. Similarly, the n-type tantalum nitride layer may contain from about 5% to about 50% by atom of nitrogen. The n-type yttrium oxide layer can contain about! From about one atom to about five atomic percent oxygen. The content of the minor component in the alloy containing more than one secondary component may be from about i atom% to about 5 atom%, and the cerium content may be from about 50 atom% to about 99 atom% β by adjusting the precursor in the processing chamber. The ratio 'adjusts the amount of minor components. The ratio can be adjusted step by step to form a layered structure, or continuously adjusted to form a graded single layer.

含碳氣體(如甲烷(CH4))可加入η型微晶矽層的反應混 合物中,以形成η型微晶碳化矽WSR層U2。在一實施 例中,含碳氣體流速與矽烷流速的比率為約〇至約〇5, 例如約0.20至約〇.35,如約〇25。改變進料中的含碳氣 體與矽烷比率,可調整沉積膜的碳含量。WSR層ιΐ2可 沉積成多層,其各具不同碳含量,或可連續調整沉積WSR 層112各處的碳含量。再者,可同時調整及逐漸改變wsr 層U2的碳和摻質含量。將WSR層112沉積成多個堆疊 層的好處在於,所形成之多層中,各層可有不同的折射 率而容許多層堆疊結構當作布拉格(Bragg)反射器操 作,有效提高WSR層112於預定波長範圍的反射率,例 如短波長到中間波長。 如上所述,η型結晶矽合金WSR層112具備數個優點。 例如’ η塑結晶矽合金wsr層112可設在太陽能電池的 至少三處,例如做為半反射中間反射層、第二WSR反射 趙(如第6B圈元件符號512)或當作接面層。η型結晶矽 19 201029208 合金wSR層112做為接面層可促進第—…接合區… 對短波長光的吸收並改善短路電流,進而提高量子 換效率。另外,η型結晶砍合金慨層u2具有預 學和電性膜性質’例如高導電率、能帶隙和折射率,以 得預定反射率與透射率。例如,微晶碳化Μ長成牡曰 分率大於㈣、能帶隙寬度大於2電子伏特(ev)且導= 率高於0.CH西門子/公分(s/cm)。再者,其沉積速度可為 約15〇_2〇〇A/min或以上、厚度差異小於⑽。藉由改變 反應混合物的含碳氣體與錢比率,可調整能帶隙和折 射率。調整折射率能形成具高導電率和寬能帶隙的反射 層’因而改善所產生之電流。 第2圖為根據本發明另一實施例之單一接合面薄膜太 陽能電池200的側視圖。第2圖實施例與第ι圓實施例 不同之處在於包括P型結晶發合金層206設於第i圖p 型非晶形矽層106與第一 TC〇層1〇4間。或者p型結 晶石夕合金層206為變性換雜層,其具有重換雜合金層2〇6 的P型摻質。故第2圖實施例包含基板2〇1,其上形成 導電廣2〇4,例如類似第1圖第一TCO層104的TC0層。 如上所述’卩型結晶矽合金層206形成在導電層204上。 P里…SB $ σ金層2G6因較少摻雜而有改善的能帶隙、 大致比變性摻雜層小的可調折射率、高導電率,又因包 括合金成分而能抵抗氧攻擊。藉著形成Ρ型非晶形矽層 208、ΡΙΒ層210、本質型非晶形矽層212和^型非晶形 梦層214 ’於ρ型結晶石夕合金層2〇6上形成口小打接合區 20 201029208 220。此即完 战弟2圖太陽能電池200 ’類似前述實施例, 、 類似第1圖WSR層Π2的η型結晶矽合金層216, 和類似第1固i办A carbon-containing gas such as methane (CH4) may be added to the reaction mixture of the n-type microcrystalline germanium layer to form an n-type microcrystalline niobium carbide WSR layer U2. In one embodiment, the ratio of the carbonaceous gas flow rate to the decane flow rate is from about 〇 to about ,5, such as from about 0.20 to about 35.35, such as about 〇25. The carbon content of the deposited film can be adjusted by varying the ratio of carbonaceous gas to decane in the feed. The WSR layer ι 2 can be deposited in multiple layers each having a different carbon content, or the carbon content throughout the deposited WSR layer 112 can be continuously adjusted. Furthermore, the carbon and dopant content of the wsr layer U2 can be simultaneously adjusted and gradually changed. The advantage of depositing the WSR layer 112 into a plurality of stacked layers is that in the formed plurality of layers, the layers can have different refractive indices while allowing the multilayer stacked structure to operate as a Bragg reflector, effectively increasing the WSR layer 112 at a predetermined wavelength. The reflectance of the range, such as short wavelength to intermediate wavelength. As described above, the n-type crystalline niobium alloy WSR layer 112 has several advantages. For example, the η plastic crystalline germanium alloy wsr layer 112 may be provided at at least three locations of the solar cell, for example as a semi-reflective intermediate reflective layer, a second WSR reflection (e.g., 6B circle element symbol 512) or as a junction layer. Η-type crystal 矽 19 201029208 The alloy wSR layer 112 acts as a junction layer to promote the first-...bonding zone... absorption of short-wavelength light and improvement of short-circuit current, thereby improving quantum switching efficiency. In addition, the n-type crystal cut alloy layer u2 has predictive and electrical film properties such as high electrical conductivity, energy band gap and refractive index to obtain a predetermined reflectance and transmittance. For example, the microcrystalline carbonized niobium has an oyster fraction greater than (4), the band gap width is greater than 2 electron volts (ev), and the conduction = rate is higher than 0.CH Siemens/cm (s/cm). Further, the deposition speed may be about 15 〇 2 〇〇 A/min or more, and the thickness difference may be less than (10). The bandgap and refractive index can be adjusted by varying the ratio of carbonaceous gas to money in the reaction mixture. Adjusting the refractive index can form a reflective layer having a high electrical conductivity and a wide band gap' thus improving the current produced. Figure 2 is a side elevational view of a single bonded face film solar cell 200 in accordance with another embodiment of the present invention. The second embodiment differs from the first embodiment in that a P-type crystallized alloy layer 206 is provided between the p-type amorphous germanium layer 106 and the first TC layer 1〇4. Alternatively, the p-type crystallization alloy layer 206 is a denatured exchange layer having a P-type dopant of the heavily alloyed layer 2〇6. Thus, the embodiment of Fig. 2 includes a substrate 2〇1 on which a conductive layer 2, for example, a TC0 layer similar to the first TCO layer 104 of Fig. 1 is formed. The 卩-type crystalline bismuth alloy layer 206 is formed on the conductive layer 204 as described above. P... SB $ σ gold layer 2G6 has an improved band gap due to less doping, a smaller index of refraction than a denatured doped layer, a high electrical conductivity, and is resistant to oxygen attack by including an alloy composition. By forming a Ρ-type amorphous ruthenium layer 208, a ruthenium layer 210, an intrinsic amorphous ruthenium layer 212, and a ^-type amorphous dream layer 214', a smear junction region 20 is formed on the p-type crystallization alloy layer 2〇6. 201029208 220. That is, the second generation solar cell 200' is similar to the foregoing embodiment, the n-type crystalline germanium alloy layer 216 similar to the WSR layer 2 of FIG. 1, and the like

固导電層122、124之可為金屬或金屬/TCO 堆疊結構的笛-播 傅的第一導電層218。 第圓為根據本發明又一實施例之串叠接合面薄膜太 陽能電池、 的側視圖。第3圖實施例與第1圖實施例 不同之處在於句把哲The solid conductive layers 122, 124 may be a flute-embedded first conductive layer 218 of a metal or metal/TCO stack structure. The first circle is a side view of a tandem junction surface solar cell according to still another embodiment of the present invention. The difference between the embodiment of Fig. 3 and the embodiment of Fig. 1 lies in the sentence

匕枯第一 p型結晶矽合金層3 06設於第一 導電層3〇4愈· nfliljuThe first p-type crystalline bismuth alloy layer 3 06 is set on the first conductive layer 3〇4~nflilju

丹p型非晶形矽合金層308間。或者,第一 P型結晶梦合IDan p-type amorphous niobium alloy layer 308. Or, the first P-type crystal dream I

σ f增306也可為變性摻雜之ρ型非晶形矽 、中形成之非晶形碎層内含p型摻質。在一實施例 t如第3圖所示’類似前述實施例之基板,基板301 。含導電層304、帛-P型結晶矽合金層306、p型非晶 形夕口金層3 08和第一 piB層31〇形成於上第一 piB 層3 10為選擇性形成。在_實例中,藉著形成本質非晶 形石夕層312、n型非晶形碎層314於導電| 304上、第-P型結明矽合金層306和P型非晶形矽合金層308,以完 成串疊接合面薄臈太陽能電、池則的第-p_in接合區 328 WSR層316形成在第—p i n接合區328與第二ρ+η 接口區330之間。第:p小n接合區33〇接著形成在wsr 層316上且包括第二p型結晶矽合金層Mg、第二pm 層320本質結晶矽層322和第^ n型結晶矽合金層 324。第二p-i'n接合區類似第1圖太陽能電池100的第 p-1-ri接合區128。類似第 叫 ^ X X ^ * VV oiv yy 316為η型結晶梦合金,立j 八也成在第一 ρ-ι-η接合區328 21 201029208 上。藉由第二n型結晶矽合金層324上增設第二接觸層 326,以完成太陽能電池30(^如上所述,第二接觸層326 可為金屬層或金屬/TCO堆疊層。 第4圖為根據本發明再一實施例之結晶太陽能電池 400的側視圖。第4圖實施例包含半導體基板402,其上 形成結晶矽合金層404。結晶矽合金層404可依所述任 何實施例和配方形成,且可為單一合金層或多層合金層 堆疊結構。如上所述,結晶矽合金層404具可調整的低 折射率’並可建構來提南反射率’而容許結晶梦合金層 404當作形成於其上之結晶太陽能電池4〇6的背部反射 層。在第4圖實施例中,結晶矽合金層4〇4可形成任何 厚度’此視層結構而定。單層實施例的厚度為約5〇〇入 至約5〇ooA,例如約ιοοοΑ至約200〇a,如約15〇〇A。 多層結構的特色在於厚度約1 〇〇A至約1 的多層β 第5Α圖為根據本發明另一實施例之串疊接合面薄膜 太陽能電池500的側視圖。第5Α圖實施例類似第t圖結 構’包括置於基板102上的第—TCO層1〇4和二所形成 之p-i-n接合區508、510。WSR層112置於第一 p_i n 接合區508與第二p-i-n接合區之間。在一實施例 中,WSR層112為η型摻雜之矽合金層,例如二氧化矽 (si〇2)、碳化矽(sic)、氮氧化矽(si0N)、氮化矽(SiN)、 氮化碳矽(SiCN)、碳氧化矽(Si〇c)、氮化碳氧矽 等。在-示例實施例中,WSR層112為1 s咖層或 SiC 層。 22 201029208 此外,第二WSR層5 12(例如,或者稱為背部反射層) 亦置於第二p-i-n接合區510與第二TCO層122或金屬 背層124之間。第二WSR層512的膜性質類似上述第— WSR層112。正如第一 WSR層112期將短波長光反射回 第一 p-i-n接合區508’並讓長波長光通過第二p_i_n接 合區510,配置第二WSR層512以將長波長光反射回第 二p-i-n接合區5 10,且具低電阻以促進電流流通到第二 WSR層512。在一實施例中’第二WSR層512具高膜導 電率和低折射率以得高膜反射率,且與第二TCO層122 間有低接觸電阻。因此,期形成與相鄰層間有低接觸電 阻並具低折射率和高反射率之第二WSR層512。在此實 施例中,第二WSR層512包含碳摻雜之η型矽合金層 (SiC) ’因SiC層的導電率通常比η型氮氧化矽(Si〇N)層 高。在一些情況下,第一 WSR層112或第二WSR層512 由η型SiON層組成’因n型Si〇N層的折射率通常比n 型SiC層低。 在一實施例中,第一賈811層U2的折射率期為約14 至約4,例如約2’·第二WSR層512的折射率期為約! 4 至約4,例如約^第一 WSR層112的導電率期為約高 於10-9S/cm,第二WSR層5丨2的導電率期為約高於 HT4S/cm。 類似第1圓第一 p-i-n接合區126,第一 p小n接合區 508包括p型非晶形矽層106、本質型非晶形矽層1〇8和 η型微晶矽層110 ^類似第2及3圖結構,變性摻雜之p 23 201029208 型非晶形矽層502(重摻雜之P型非晶形矽層)形成在導電 層104上。另外’ η型非晶形矽緩衝層5〇4形成於本質 型非晶形矽層1〇8與η型微晶矽層丨丨〇之間。η型非晶 形矽緩衝層504的形成厚度為約1〇入至約2〇〇人。咸信η 型非晶形石夕緩衝層504有助於彌合存在於本質型非晶形 矽層108與11型微晶矽層11〇間的能帶隙偏差。因此咸 信因增設η型非晶形發緩衝層504而加強電流收集,故 能提高電池效率。 類似第1圖第二p-i-n接合區128,第二p-i-n接合區 510包含p型微晶矽層114及形成於p型微晶矽層ι14 上之選擇性p-i緩衝型本質非晶形矽0岱)層116。一般 來說,本質型微晶矽層11 8形成於選擇性p_i緩衝型本質 非晶形矽(PIB)層11 6上,η型非晶形矽層120形成於本 質型微晶石夕層118上。另外,變性摻雜之η型非晶形發 層406可形成主要當作重摻雜之η型非晶形矽層,以改 善與第二TCO層122間的歐姆接觸。在一實施例中,重 摻雜之η型非晶形矽層406的摻質濃度為約1〇2〇個原子/ 立方公分至約1〇21個原子/立方公分。 第5Β圖係根據本發明另一實施例,繪製形成於串疊接 合面薄膜太陽能電池500之第一 WSR層112和第二WSR 層512的截面視圖。在一實施例中,第一 wsr層112和 第二WSR層512各自由複數個沉積層組成,例如層 112a、112b和層512a、512b,以調整不同波長之光反射 及/或穿透至所形成之太陽能電池500的不同部分。例 24 201029208The σ f increase 306 may also be a p-type dopant in the amorphous-type fractured layer formed by the denatured doped p-type amorphous 矽. In an embodiment t, as shown in Fig. 3, a substrate similar to the previous embodiment, substrate 301. The conductive layer 304, the 帛-P type crystalline yttrium alloy layer 306, the p-type amorphous gold layer 308 and the first piB layer 31 are formed on the upper first piB layer 3 10 to be selectively formed. In the example, by forming an intrinsic amorphous layer 312, an n-type amorphous layer 314 on the conductive | 304, the -P-type alum alloy layer 306 and the P-type amorphous tantalum layer 308, The p-in junction region 328 is completed between the first pin junction region 328 and the second p+n interface region 330. The p-n small n-bonding region 33 is then formed on the wsr layer 316 and includes a second p-type crystalline germanium alloy layer Mg, a second pm layer 320, an intrinsic crystalline germanium layer 322, and an n-type crystalline germanium alloy layer 324. The second p-i'n junction region is similar to the p-1 -th junction region 128 of the solar cell 100 of Fig. 1. Similarly, the first ^ X X ^ * VV oiv yy 316 is an n-type crystal dream alloy, and the vertical j is also formed in the first ρ-ι-η junction area 328 21 201029208. The second contact layer 326 is added to the second n-type crystalline germanium alloy layer 324 to complete the solar cell 30. As described above, the second contact layer 326 may be a metal layer or a metal/TCO stacked layer. A side view of a crystalline solar cell 400 in accordance with yet another embodiment of the present invention. The fourth embodiment includes a semiconductor substrate 402 on which a crystalline germanium alloy layer 404 is formed. The crystalline germanium alloy layer 404 can be formed in accordance with any of the embodiments and formulations described. And may be a single alloy layer or a multilayer alloy layer stack structure. As described above, the crystalline germanium alloy layer 404 has an adjustable low refractive index 'and can be constructed to extract south reflectance' while allowing the crystalline dream alloy layer 404 to be formed. The back reflective layer of the crystalline solar cell 4〇6 thereon. In the embodiment of Fig. 4, the crystalline germanium alloy layer 4〇4 can be formed to any thickness of this view layer structure. The thickness of the single layer embodiment is about 5 intrusion to about 5 oo A, for example about ιοοο Α to about 200 〇 a, such as about 15 〇〇 A. The multilayer structure is characterized by a multilayer β having a thickness of about 1 〇〇A to about 1, the fifth diagram is according to the invention Tandem joint film of another embodiment A side view of the solar cell 500. The fifth embodiment is similar to the t-th structure 'including the pin-bonding regions 508, 510 formed by the first-TCO layers 1 and 4 disposed on the substrate 102. The WSR layer 112 is placed A p_i n junction region 508 is interposed between the second pin junction region. In one embodiment, the WSR layer 112 is an n-type doped germanium alloy layer, such as germanium dioxide (si〇2), tantalum carbide (sic), Niobium oxynitride (si0N), tantalum nitride (SiN), niobium carbonitride (SiCN), niobium carbon oxide (Si〇c), carbonitride, etc. In the exemplary embodiment, the WSR layer 112 is 1 In addition, a second WSR layer 5 12 (eg, or referred to as a back reflective layer) is also disposed between the second pin bond region 510 and the second TCO layer 122 or metal back layer 124. The film properties of the second WSR layer 512 are similar to those of the first WSR layer 112. Just as the first WSR layer 112 reflects short-wavelength light back to the first pin bond region 508' and allows long-wavelength light to pass through the second p_i_n junction region 510, The second WSR layer 512 reflects the long wavelength light back to the second pin bond region 5 10 and has a low resistance to facilitate current flow to the second WSR layer 512. In one embodiment, the second WSR layer 512 has a high film conductivity and a low refractive index for high film reflectivity and a low contact resistance with the second TCO layer 122. Therefore, the formation has low contact with adjacent layers. a second WSR layer 512 having a low refractive index and a high reflectivity. In this embodiment, the second WSR layer 512 comprises a carbon-doped n-type germanium alloy layer (SiC). The η-type yttrium oxynitride (Si〇N) layer is high. In some cases, the first WSR layer 112 or the second WSR layer 512 is composed of an n-type SiON layer. 'The refractive index of the n-type Si〇N layer is generally lower than that of the n-type SiC layer. In one embodiment, the first JI layer U2 has a refractive index period of from about 14 to about 4, such as about 2'. The second WSR layer 512 has a refractive index period of about! From 4 to about 4, for example, the conductivity period of the first WSR layer 112 is about 10-9 S/cm, and the conductivity period of the second WSR layer 5丨2 is about HT4 S/cm. Similar to the first round first pin junction region 126, the first p small n junction region 508 includes a p-type amorphous germanium layer 106, an intrinsic amorphous germanium layer 1〇8, and an n-type microcrystalline germanium layer 110. 3, a degenerately doped p 23 201029208 type amorphous germanium layer 502 (a heavily doped P-type amorphous germanium layer) is formed on the conductive layer 104. Further, an n-type amorphous germanium buffer layer 5?4 is formed between the intrinsic amorphous germanium layer 1?8 and the ?-type microcrystalline germanium layer. The n-type amorphous crucible buffer layer 504 is formed to a thickness of about 1 to about 2 Å. The η-type amorphous shih buffer layer 504 helps to bridge the band gap deviation between the intrinsic amorphous ruthenium layer 108 and the 11-type microcrystalline ruthenium layer 11. Therefore, the addition of the n-type amorphous hair buffer layer 504 enhances current collection, so that the battery efficiency can be improved. Similar to the second pin bonding region 128 of FIG. 1, the second pin bonding region 510 includes a p-type microcrystalline germanium layer 114 and a selective pi buffer type intrinsic amorphous germanium layer formed on the p-type microcrystalline germanium layer ι14. 116. In general, the intrinsic microcrystalline germanium layer 11 is formed on a selective p_i buffer type intrinsic amorphous germanium (PIB) layer 116, and the n-type amorphous germanium layer 120 is formed on the intrinsic type microcrystalline layer 118. Alternatively, the denatured doped n-type amorphous hair layer 406 can be formed primarily as a heavily doped n-type amorphous germanium layer to improve ohmic contact with the second TCO layer 122. In one embodiment, the heavily doped n-type amorphous germanium layer 406 has a dopant concentration of from about 1 〇 2 〇 atoms/cm 3 to about 1 〇 21 atoms/cm 3 . Figure 5 is a cross-sectional view showing a first WSR layer 112 and a second WSR layer 512 formed on a tandem junction thin film solar cell 500, in accordance with another embodiment of the present invention. In one embodiment, the first wsr layer 112 and the second WSR layer 512 are each composed of a plurality of deposited layers, such as layers 112a, 112b and layers 512a, 512b, to adjust light reflection and/or penetration to different wavelengths. Different portions of the solar cell 500 are formed. Example 24 201029208

如’第一 WSR層112的各層112a-b可具不同折射率, 以有效反射一或多個預定波長之光(如短波長到中間波 長)及讓其他波長穿透(如中間波長到長波長)。穿透各層 112a-b的波長隨後可由第二WSR層512反射回第二p_i_n 接合區510。藉由選擇性調整來分別調整wsr層112、 512的各層折射率,可選擇性反射或穿透不同波長的光, 使太陽能電池預定區域的入射光吸收達最大值,以改善 電流產生和太陽能電池效率。雖然第5B圖緣示WSR層 112、512各自包含二層的構造,但此構造並不限定本文 所述之發明範圍,其僅用於泛指WSR層包含二或多個堆 疊層的構造。第6A圖繪示二或多個堆疊層的構造,其將 進一步說明於後。 在一實施例中,層112a-b、 5 12a_b的相鄰層經配置具 高折射率對比和不同厚度。包含於層U2a b、“仏吨各 層之高折射率對比和不同厚度有助於調整所形成之層 U2a-b、512a_b的光學性質。在一實施例中配置層 U2a-b、512a_b以便與相鄰層(各如n型層ιι〇、p型層 114和第二丁〇〇層122)亦具有高折射率對比。一般來 說’折射率㈣圖描述相鄰層的折㈣相差程 度’其通常表示成折射率比率。故低折射率對比意指相 鄰層間的折射率差異小,高折射率對比代表相鄰材料的 折射率差異大。在-實例中’配置層112“、5⑽的 光學性質以反射及穿透不同波長光。在—實施例中配 置層ma-b、512a_b以反射波長約55Gnm至約謂㈣ 25 201029208 的光。在一實施例中,配置第一 WSR層112以反射波長 約550nm至約800nm的光,同時配置第二WSR層512For example, the layers 112a-b of the first WSR layer 112 may have different refractive indices to effectively reflect one or more predetermined wavelengths of light (eg, short wavelength to intermediate wavelength) and allow other wavelengths to penetrate (eg, intermediate wavelength to long wavelength). ). The wavelength that penetrates each of the layers 112a-b can then be reflected back to the second p_i_n junction region 510 by the second WSR layer 512. By selectively adjusting the refractive indices of the layers of the wsr layers 112 and 512, respectively, the light of different wavelengths can be selectively reflected or penetrated, so that the incident light of the predetermined area of the solar cell is absorbed to a maximum value to improve current generation and solar cells. effectiveness. Although the 5B diagram shows that the WSR layers 112, 512 each comprise a two-layer configuration, this configuration is not intended to limit the scope of the invention described herein, and is merely used to generally refer to a configuration in which the WSR layer comprises two or more stacks. Figure 6A depicts the construction of two or more stacked layers, which will be further described below. In one embodiment, adjacent layers of layers 112a-b, 5 12a-b are configured with high refractive index contrast and different thicknesses. Included in layer U2a b, "high refractive index contrast and different thicknesses of the various layers of xanthene help to adjust the optical properties of the formed layers U2a-b, 512a_b. In one embodiment, layers U2a-b, 512a_b are arranged for phase The adjacent layers (such as the n-type layer ιι, the p-type layer 114, and the second butyl layer 122) also have a high refractive index contrast. In general, the 'refractive index (four) map describes the degree of the difference between the adjacent layers (four) Usually expressed as a refractive index ratio, the low refractive index contrast means that the difference in refractive index between adjacent layers is small, and the high refractive index contrast represents a large difference in refractive index of adjacent materials. In the example - the optical arrangement of 'configuration layer 112', 5 (10) Nature to reflect and penetrate different wavelengths of light. The layers ma-b, 512a_b are arranged in an embodiment to reflect light having a wavelength of from about 55 Gnm to about (iv) 25 201029208. In one embodiment, the first WSR layer 112 is configured to reflect light having a wavelength of from about 550 nm to about 800 nm while the second WSR layer 512 is configured.

以反射波長約700nm至約ΐι〇〇ηιη的光。在一實施例中, 第一層112a經配置具低折射率,而第二層U2b經配置 具高折射率。例如’選擇第一層112a的材料(如SiC、 Si〇x、Six〇yNz)使折射率比第二層U2b所選用的材料(如 si)低。第一層ma的厚度乃配置比第二層1121)厚。在 一實施例中,第二層112b與第一層112a的折射率比率 (第二層折射率/第一層折射率)控制在大於約12,例如大 於約1.5。在一實施例中’第一層112a的折射率為約1 4 至約2.5,第二層i12b的折射率為約3至約4。第一層 112a與第二層112b的厚度比率(第一層厚度/第二層厚度) 控制在大於約1 · 2 ’例如大於約1.5。 在一實施例中,第一層112a為厚度約75A至約75〇a 之η型微晶矽合金層,第二層U2b為厚度約5〇a至約 500A之η型微晶石夕層。然也可利用其他技術改變 層的光學性質(即除了將交替的第一層112&和第二層 112b厚度分別改變成λ/4η(Μ)和X/4n(Si合金)外),因藉 由形成第-層112a和第二層112b,或一連串重複界面處 折射率不連續的第一層和第二層,可改變整體層結 構的光學性質,進而形成具高反射率與可接受吸收損失 的週期性結構。在-實施例中H ma為厚度約 450A之n型微晶矽合金層(如Sic或層),第二層 112b為厚度約300A之〇型微晶梦層。同樣地,第二wsr 26 201029208 層512可類似地配置成第一層512&和第二層51沘間具 南折射率對比和不同厚度。當可理解,第二wsr層512 同樣可配置成類似第一 WSR層112,故在此不再贅述第 二WSR層5 1 2 ’以簡化說明。 第5B圖僅繪示一對雙層,例如第一層112&和第二層 112b。注意此對第一層U2a和第二層可重複形成 多次而形成第一多層堆疊結構,其構成WSR層112,如 第6A圖所示。在一實施例中,第一 WSR層ιΐ2包含多 對第一層 112al、l12a2、112a3 和第二層 112bl、U2b2、 112b3。在一實施例中,第6A圖顯示三對第一層和第二 層各對第層112al-3和第二層112b 1-3可具不同折射 率和不同厚度。例如,第一對層112al、112bl中第二層 112bl與第一層112al的折射率比率大於約i 2,例如大 於約1.5。相較之下,第一對層U2al、112Μ可具有第 一層112al與第二層ii2bl的厚度比率大於約丨2,例如 大於約1.5。第二對層112a2、U2b2的折射率比率可比 第一對層112al、112bl高或低,以協助第一 WSR層112 反射光。另外’第三對層112a3、112b3的折射率對比可 比第一對層112al、112bl和第二對層U2a2、U2b2更 局或更低。 在一實施例中,第一 WSR層112可具有三對層U2a、 112b形成其内。在另一實施例中,第一 WSR層丨η具 有多達五對層112a、112b。在又一實施例中,第一 WSR 層112依需求具有多於五對層U2a、112b。或者,第一 27 201029208 對層112al、112bl、第二對層U2a2、U2b2和第三對層 112a3、112b3可包含各對具有相似折射率對比和厚度變 化的重複對層。藉由調整週期和折射率比率,可最佳化 特定波長的反射,進而產生預定波長選擇反射器。 在一實施例中,第一對層的第一層112al的折射率為 ^ 約2.5且厚度約15〇A,第二層的折射率為約3.8 且厚度約100A。第二對層的第一層112a2的折射率為約 ❹ 2.5且厚度約i5〇A,第二對層的第二層U2b2的折射率 為約3.8且厚度約ΐοοΑ。第三對層的第一層U2a3的折 射率為約2.5且厚度約150A ’第三對層的第二層mb3 的折射率為约3.8且厚度約100A〇在一實例中,第一 WSR層112的總厚度控制為約75〇A。 第6B圖繪示WSR層112的另一構造,其可用來改善 光反射、電流收集和光透射。在此特殊實施例中,wsr 層112包含一或多個絕緣層,例如第6B圖所示具低折射 ^ 率之多層,例如Si、Si〇2、SiON、SiN等。咸信用於形 成WSR層112的摻質或合金元素可改善膜導電率,但會 不备增加吸收損失,因而降低形成太陽能電池之不同接 合面間的光反射率和透射率。故在一實施例中,期於WSR 層112中形成穿孔6〇2或特徵結構、溝槽或圖案化區域 的陣列’以容許後續導電率較高的沉積層(如元件符號 114)形成一連串的分流路徑6〇2八通過|811層112,其 承載大部分的產生電流。WSR層112和一連串形成之分 流路徑602A —併用來權衡WSR層112的預定光學性 28 201029208 質’同時亦利用形成之分流路徑6〇2A降低越過WSR層 (如橫越層厚度)的串聯電阻。此構造有益於當U2 包含一或多個高電阻層或介電材料的情況,其主要為光 學性質所需(如反射及/或透射性)。 ❿ 在一實例中,WSR層包含具低折射率的絕緣層,例如 小於2。接著,絕緣買8尺層112經圖案化而於絕緣wsr 層112中形成孔洞、溝槽、狹縫或其他形狀開口的陣列。 一般來說,穿孔602的陣列有足夠的密度和尺寸(如直 徑)’使越過WSR層112的平均電阻降低成預定值,同 時讀保WSR層保持其預定光學性質。圖案化製程和適合 用於進行圖案化製程的圖案化腔室將配合第9圖詳述於 後。在一實例中’穿孔602填入P型微晶矽層114,其 沉積在絕緣職層112上而構成分流路徑6〇2八。在此 構造中,藉由選擇具低折射率的職層ιΐ2,可獲得 職層112内一或多層的光學性質。同時藉由以p型微 晶石夕層114填充所形成之穿孔,可降低越過職層112 的平均電阻’進而改善平均圖案化職層112的光學性 :與平均電性和太陽能電池裝置的效率。在一 中’絕緣WSR層112為内含 層。 P里微日日矽層114的氧化矽 ^ _實施例中,串叠及/或三接合面實施 =類型的合金材料。例如,在-實施例中,一二 接合區的各層可採用碳做為合金材料,;1Π 合區的各層則包括含鍺材 ’ -p,接 斯在第1、5A-B圖實 29 201029208 施例中’結晶合金WSR層112包含石夕與碳之合金,第一 和第二p-i-n接合區126、128、5〇8、51〇的各層包含矽 與錄之合金,反之亦然。最後,第1及5 A-B圖實施例尚 包含本質層非合金層的變化例。例如,在第1、5 A_B圖 的替代實施例中’層1〇8、118為本質微晶矽層、而非合 金層。此變化例擴大了電池的吸收特徵並增進其電荷分 離能力。 實施例 建構280A之η型微晶碳化矽層的單一接合面太陽能電 池展現13.6毫安培/平方公分(mA/cm2)的短路電流 (Jsc)(如量子效率(QE)測量為13.4mA/cm2)、填充因子(ff) 為73.9%、轉換效率(CE)為9.4%。相較下,使用微晶石夕 的相仿電池展現13.2mA/cm2的Jsc(如QE測量為 13.0mA/cm2)、FF 為 73.6%、CE 為 9.0%。進一步比較下, 使用280A之η型非晶形矽層(其中80A經變性摻雜)的相 仿電池展現13.1 mA/cm2的Jsc(如 QE測量為 12.7mA/cm2)、FF 為 74.7%、CE 為 9.0%。 串疊接合面太陽能電池建構具有包含270A之微晶碳 化矽的η型底部電池層,和包含ιοοΑ之η型非晶形破與 250Α之η型微晶碳化矽的η型頂部電池層。底部電池在 700nm波長下展現9.69mA/cm2的Jsc和58%的qe。頂部 電池在500nm波長下展現10.82mA/cm2的Jsc和78%的 QE。另一串疊太陽能電池建構具有包含270A之n型微 晶碳化梦的η型底部電池層,和包含5〇Α之η型非晶形 30 201029208 梦與250A之η型微晶碳化矽的n型頂部電池層。底部電 池在700nm波長下展現9.62mA/cm2的Jsc和58%的QE。 頂部電池在50〇nm波長下展現i〇.86niA/Cm2的Jsc和78% 的QE。相較下,串疊接合面太陽能電池建構有包含27〇a » 之η型微晶碳化矽的η型底部電池層,和包含2〇〇A之η 型非晶形矽與90Α之變性摻雜(η型)非晶形矽的η型頂部 電池層。底部電池在700nm波長下展現9.00mA/cm2的 φ Jse和53%的QE。頂部電池在5〇Onm波長下展現 10.69mA/cm2的Jsc和5 6%的QE。使用碳化矽可改善二 電池的吸收’尤其是底部電池。 系統和設備構造 第7圖為電漿增強化學氣相沈積(PECVD)腔室700之 一實施例的截面圖’用以沉積薄膜太陽能電池(如第1_4 圖太陽能電池)的一或多層膜。適合的電漿增強化學氣相 沈積腔室可取自位於美國加州聖克拉拉之應用材料公 ❹ 司。應理解其他包括其他製造商提供的沈積腔室也可用 來實施本發明。 腔室700 —般包括壁面702、底部7〇4、噴淋頭710和 基板支揮件73 0’其界定製程容積706。製程容積可經由 閥708進入’以傳送基板進出腔室7〇〇。基板支撐件73〇 包括用以支撐基板的基板接收面732和耦接升降系統 736以抬咼及降低基板支撲件73〇的把柄遮蔽環 733選擇性放在基板1〇2的周圍上方。舉升銷8可移 動穿過基板支撐件730,進而移動基板進出基板接收面 31 201029208 732。基板支撐件73〇尚包括加熱及/或冷卻元件以 維持基板支撐件730呈預定溫度。基板支撐件73〇還包 括接地片731’以於基板支撐件73〇的周圍提供rf接地。 喷淋頭710利用懸吊裝置714耦接背板712的周圍。 喷淋頭710亦利用一或多個中央支撐件716耦接背板, . 以防止下彎及/或控制喷淋頭710的真直度/曲率。氣源 720耦接背板712’以提供氣體通過背板712及穿過喷淋 ❿ 頭710而達基板接收面732。真空幫浦709耦接腔室 700,以控制製程容積7〇6呈預定壓力。RF功率源722 耦接背板712及/或喷淋頭71〇,以提供喷淋頭71〇rf功 率,而於喷淋頭與基板支撐件73〇間產生電場,如此氣 體將在喷淋頭71〇與基板支撐件730間產生電漿❶可採 用各種RF頻率,例如約〇 3兆赫(MHz)至約2〇〇MHz。 在一實施例中’ RF功率源使用頻率為13 56MHz。 諸如誘導耦合遠端電漿源之遠端電漿源724亦可耦接 瘳氣源和背板·》在處理各基板之間,提供清潔氣體至遠端 電衆源724 ’藉以產生遠端電漿並用來清潔腔室組件。 供給喷淋頭之RF功率源722進一步激發清潔氣體。適合 的清潔氣體包括三氟化氮(Νί?3)、氟氣(1?2)和六氟化硫 (SF0) ’但不以此為限。 沉積一或多層(如第丨_4圖之一或多層)的方法包括以 下第6圖處理腔室或其他適合腔室的沉積參數。表面積 為10000cm2或以上(較佳為4〇〇〇〇cm2或以上,更佳為 55〇〇〇Cm2或以上)之基板提供至腔室。當理解處理後,基 32 201029208 板可切割成較小的太陽能電池。 在一實施例中,沉積時,加熱及/或冷卻元件739設定 提供的基板支撐件溫度為約400〇c或以下,較佳約1〇〇 °C至約400°C,更佳約150。(:至約3〇〇〇c,例如约2〇〇t:。 沉積期間,置於基板接收面732上之基板頂表面與喷 淋頭710間的間距為約4〇〇密爾至約12〇〇密爾較佳約 400密爾至約800密爾。 Φ 第8圖為處理系統8〇〇之一實施例的俯視圖,具有複 數個處理腔室83 1-837,例如第7圖PECVD腔室7〇〇或 其他適合沉積矽膜的腔室β處理系統8〇〇包括移送室 820’其輕接負載鎖定室和處理腔室負載 鎖疋至810容許基板於系統外之周遭環境與移送室82〇 和處理腔室831-83 7内之真空環境間傳送。負載鎖定室 810包括一或多個抽真空區域來支托一或多個基板。將 基板輸入系統80〇時,排空抽真空區域;從系統800輸 出基板時’進行通氣。移送室82〇内設至少一真空機器 人822’其適於在負載鎖定室810與處理腔室831-837 間傳送基板。儘管第8圖顯示7個處理腔室,然此構造 並不限定本發明之範圍’系統當可設置任何適當數量的 處理腔室。 在本發明之一些實施例中,系統8〇〇配置以沉積多重 接合面太陽能電池的第一 p-i-n接合區(如元件符號 126、328、508)。在一實施例中,配置處理腔室831-837 之一者以沉積第一 p_i-n接合區的p型層,同時各自配置 33 201029208 其餘處理腔室831·837 μ積本f型層和n型層。第— p-i-η接合區的本質型層和n型層可在同—腔室沉積如 此沉積步驟之間不需進行任何鈍化製程。故在-配置 下,基板經由負載鎖定宝81Λ * ^ 軌領疋至810進入系統,然後真空機器 人將基板傳㈣㈣置心㈣Ρ㈣的W處理腔 室。形成ρ型層後,真空機器人接著將基板傳送到其餘 經配置用以沉積本質型層和η型層的處理腔室之一。、形 成本質型層和η型層後,貧办德扭, 玉僧便真空機器人822將基板傳送回 負載鎖定至81G。在某些實施例中,處理腔室處理基板 以形成Ρ型層的時間大約比單一腔室形成本質型層和η 型層的時間快4倍或以上,較佳快6倍或以上。因此, 在一些沉積第一 Ρ-“η接合區的系統實施例中,Ρ腔室與 i/n腔室的比為1:4或以上,較佳為1:6或以上。包括 提供電漿清潔處理腔室時間的系統產量為約ι〇個基板/ 小時或以上,較佳為20個基板/小時。 在本發明之一些實施例中’配置系統800以沉積多重 接合面太陽能電池的第.—接合區(如元件符號 128 330、51〇)。在-實施例中,配置處理腔室831-837 之一者以沉積第二^接合區的P型層,同時各自配置 其餘處理腔室831_837以沉積本f型層和n型層。第二 …接合區的本質型層和n型層可在同一腔室沉積如 儿積步驟之間不需進行任何鈍化製程。在某些實施例 處理腔至處理基板以形成?型層的時間大概比單一 腔室形成本質型層和n型層的時間快4倍或以上。因此, 34 201029208 在某些沉積篦- . 禾一 p-i-n接合區的系統實施例中,p腔室與 i/n腔室的比盔 句1:4或以上,較佳為1:6或以上。包括 提供電激清:繫者 累處理腔室時間的系統產量為約3個基板/小To reflect light having a wavelength of about 700 nm to about ΐι〇〇ηη. In one embodiment, the first layer 112a is configured with a low index of refraction and the second layer U2b is configured with a high index of refraction. For example, the material selected for the first layer 112a (e.g., SiC, Si〇x, Six〇yNz) has a lower refractive index than the material selected for the second layer U2b (e.g., si). The thickness of the first layer ma is configured to be thicker than the second layer 1121). In one embodiment, the refractive index ratio (second layer index / first layer index of refraction) of the second layer 112b to the first layer 112a is controlled to be greater than about 12, such as greater than about 1.5. In one embodiment, the refractive index of the first layer 112a is from about 1 4 to about 2.5, and the refractive index of the second layer i12b is from about 3 to about 4. The thickness ratio (first layer thickness / second layer thickness) of the first layer 112a to the second layer 112b is controlled to be greater than about 1 · 2 ', for example, greater than about 1.5. In one embodiment, the first layer 112a is an n-type microcrystalline bismuth alloy layer having a thickness of from about 75 A to about 75 Å, and the second layer U2b is an n-type microcrystalline layer having a thickness of from about 5 Å to about 500 Å. However, other techniques can be used to change the optical properties of the layer (ie, except that the thicknesses of the alternating first layer 112 & and second layer 112b are changed to λ/4η (Μ) and X/4n (Si alloy), respectively). By forming the first layer 112a and the second layer 112b, or a series of repeating interfaces at which the refractive index is discontinuous, the first layer and the second layer can change the optical properties of the overall layer structure, thereby forming a high reflectance and an acceptable absorption loss. Periodic structure. In the embodiment, H ma is an n-type microcrystalline germanium alloy layer (e.g., Sic or layer) having a thickness of about 450 A, and the second layer 112b is a germanium-type microcrystalline dream layer having a thickness of about 300 Å. Likewise, the second wsr 26 201029208 layer 512 can be similarly configured such that the first layer 512 & and the second layer 51 have a refractive index contrast and a different thickness. As can be understood, the second wsr layer 512 can also be configured similar to the first WSR layer 112, so the second WSR layer 5 1 2 ' will not be described herein to simplify the description. Figure 5B shows only a pair of bilayers, such as a first layer 112& and a second layer 112b. Note that the first layer U2a and the second layer are repeatedly formed a plurality of times to form a first multilayer stacked structure which constitutes the WSR layer 112 as shown in Fig. 6A. In one embodiment, the first WSR layer ι2 includes a plurality of pairs of first layers 112al, 12a2, 112a3 and second layers 112b1, U2b2, 112b3. In one embodiment, Figure 6A shows that the three pairs of first and second layers, each of the first layer 112al-3 and the second layer 112b 1-3, may have different refractive indices and different thicknesses. For example, the refractive index ratio of the second layer 112b1 of the first pair of layers 112al, 112b1 to the first layer 112al is greater than about i2, such as greater than about 1.5. In contrast, the first pair of layers U2al, 112A may have a thickness ratio of the first layer 112al to the second layer ii2b1 greater than about 丨2, such as greater than about 1.5. The refractive index ratio of the second pair of layers 112a2, U2b2 may be higher or lower than the first pair of layers 112al, 112bl to assist the first WSR layer 112 in reflecting light. Further, the refractive index comparison of the third pair of layers 112a3, 112b3 may be lower or lower than the first pair of layers 112al, 112b1 and the second pair of layers U2a2, U2b2. In an embodiment, the first WSR layer 112 can have three pairs of layers U2a, 112b formed therein. In another embodiment, the first WSR layer 具η has up to five pairs of layers 112a, 112b. In yet another embodiment, the first WSR layer 112 has more than five pairs of layers U2a, 112b as desired. Alternatively, the first 27 201029208 pair of layers 112al, 112bl, the second pair of layers U2a2, U2b2, and the third pair of layers 112a3, 112b3 may comprise pairs of repeating pairs having similar refractive index contrast and thickness variations. By adjusting the period and refractive index ratios, the reflection of a particular wavelength can be optimized to produce a predetermined wavelength selective reflector. In one embodiment, the first layer 112al of the first pair of layers has a refractive index of about 2.5 and a thickness of about 15 Å, and the second layer has a refractive index of about 3.8 and a thickness of about 100 Å. The first layer 112a2 of the second pair of layers has a refractive index of about ❹2.5 and a thickness of about i5〇A, and the second layer of the second pair of layers U2b2 has a refractive index of about 3.8 and a thickness of about ΐοοΑ. The first layer U2a3 of the third pair of layers has a refractive index of about 2.5 and a thickness of about 150 A. The second layer mb3 of the third pair of layers has a refractive index of about 3.8 and a thickness of about 100 A. In one example, the first WSR layer 112 The total thickness is controlled to be about 75 〇A. Figure 6B illustrates another configuration of the WSR layer 112 that can be used to improve light reflection, current collection, and light transmission. In this particular embodiment, the wsr layer 112 comprises one or more insulating layers, such as layers having a low refractive index as shown in Figure 6B, such as Si, Si 〇 2, SiON, SiN, and the like. The dopant or alloying elements used to form the WSR layer 112 improve the film conductivity, but do not increase the absorption loss, thereby reducing the light reflectivity and transmittance between the different bonding faces forming the solar cell. Therefore, in an embodiment, the vias 6〇2 or the array of features, trenches or patterned regions are formed in the WSR layer 112 to allow a subsequent layer of higher conductivity (such as the component symbol 114) to form a series of The shunt path 6〇28 passes through the |811 layer 112, which carries most of the generated current. The WSR layer 112 and a series of formed shunt paths 602A - and used to weigh the predetermined optical properties of the WSR layer 112 - also reduce the series resistance across the WSR layer (e.g., traverse layer thickness) using the formed shunt path 6 〇 2A. This configuration is beneficial in the case where U2 contains one or more high resistance layers or dielectric materials, which are primarily required for optical properties (e.g., reflection and/or transmission). ❿ In one example, the WSR layer comprises an insulating layer having a low refractive index, such as less than two. Next, the insulating buy 8-foot layer 112 is patterned to form an array of holes, trenches, slits or other shaped openings in the insulating wsr layer 112. In general, the array of perforations 602 has sufficient density and size (e.g., diameter) to reduce the average resistance across the WSR layer 112 to a predetermined value while the read WSR layer maintains its predetermined optical properties. The patterning process and the patterning chamber suitable for the patterning process will be detailed later in conjunction with Figure 9. In one example, the vias 602 are filled with a P-type microcrystalline germanium layer 114 deposited on the insulating layer 112 to form a shunt path 6〇8. In this configuration, one or more layers of optical properties within the job layer 112 can be obtained by selecting the job layer ι2 having a low refractive index. At the same time, by filling the formed vias with the p-type microcrystalline layer 114, the average resistance across the layer 112 can be reduced, thereby improving the optical properties of the average patterned layer 112: and the average electrical and efficiency of the solar cell device. . In the 'insulated WSR layer 112 is an in-layer. In the embodiment, the tandem and/or triple joint faces are of the type of alloy material. For example, in the embodiment, each layer of the one or two junction regions may use carbon as an alloy material; and each layer of the 1 junction region includes a coffin containing '-p, and the junction is in the first, 5A-B diagram 29 201029208 In the example, the crystalline alloy WSR layer 112 comprises an alloy of stone and carbon, and the layers of the first and second pin junctions 126, 128, 5, 8, 51 are comprised of tantalum and recorded alloys, and vice versa. Finally, the first and fifth A-B embodiment examples also include variations of the intrinsic layer non-alloy layer. For example, in an alternative embodiment of Figures 1, 5 A_B, 'layers 1, 8 and 118 are intrinsic microcrystalline layers, rather than alloy layers. This variation expands the absorption characteristics of the battery and enhances its charge separation capability. EXAMPLES A single junction solar cell constructing a 280-type n-type microcrystalline niobium carbide layer exhibits a short circuit current (Jsc) of 13.6 mA/cm 2 (eg, a quantum efficiency (QE) measurement of 13.4 mA/cm 2 ) The fill factor (ff) was 73.9% and the conversion efficiency (CE) was 9.4%. In comparison, a similar battery using microcrystalline stone was used to exhibit Jsc of 13.2 mA/cm2 (e.g., QE measurement was 13.0 mA/cm2), FF was 73.6%, and CE was 9.0%. In a further comparison, a similar cell using a 280A n-type amorphous tantalum layer (80A of which is denatured) exhibits a Jsc of 13.1 mA/cm2 (as measured by QE of 12.7 mA/cm2), an FF of 74.7%, and a CE of 9.0. %. The tandem junction solar cell was constructed to have an n-type bottom cell layer comprising 270A of microcrystalline niobium carbide and an n-type top cell layer comprising n-type amorphous fractures of ιοοΑ and n-type microcrystalline niobium carbide of 250 Å. The bottom cell exhibited a Jsc of 9.69 mA/cm2 and a qe of 58% at a wavelength of 700 nm. The top cell exhibited a Jsc of 10.82 mA/cm2 and a QE of 78% at a wavelength of 500 nm. Another tandem solar cell is constructed with an n-type bottom cell layer comprising a 270A n-type microcrystalline carbonization dream, and an n-type top comprising a 5 η n-type amorphous 30 201029208 dream and 250A n-type microcrystalline niobium carbide Battery layer. The bottom cell exhibited a Jsc of 9.62 mA/cm2 and a QE of 58% at a wavelength of 700 nm. The top cell exhibited a Jsc of i〇.86niA/Cm2 and a QE of 78% at a wavelength of 50 〇 nm. In contrast, the tandem junction solar cell is constructed with an n-type bottom cell layer containing 27 Åa » of n-type microcrystalline niobium carbide, and a denaturing doping of η-type amorphous yttrium containing 90 〇〇A and 90 ( ( N-type) amorphous n-type top cell layer. The bottom cell exhibited a φ Jse of 9.00 mA/cm 2 and a QE of 53% at a wavelength of 700 nm. The top cell exhibited a Jsc of 10.69 mA/cm2 and a QE of 6% at 5 〇 Onm wavelength. The use of tantalum carbide improves the absorption of the secondary battery, especially the bottom battery. System and Apparatus Construction Figure 7 is a cross-sectional view of one embodiment of a plasma enhanced chemical vapor deposition (PECVD) chamber 700. One or more layers of films used to deposit thin film solar cells (e.g., solar cells of Figures 1 - 4). Suitable plasma enhanced chemical vapor deposition chambers are available from Applied Materials, Inc., located in Santa Clara, California. It should be understood that other deposition chambers, including those provided by other manufacturers, may also be used to practice the invention. The chamber 700 generally includes a wall 702, a bottom 7〇4, a showerhead 710, and a substrate support 73 0' defining a custom path volume 706. The process volume can be accessed via valve 708 to transfer substrate into and out of chamber 7〇〇. The substrate support member 73 includes a substrate receiving surface 732 for supporting the substrate and a handle shielding ring 733 coupled to the lifting and lowering system 736 for lifting and lowering the substrate member 73 选择性 selectively placed over the periphery of the substrate 1〇2. The lift pins 8 are movable through the substrate support 730, thereby moving the substrate into and out of the substrate receiving surface 31 201029208 732. The substrate support 73 further includes heating and/or cooling elements to maintain the substrate support 730 at a predetermined temperature. The substrate support 73A also includes a grounding strip 731' to provide rf grounding around the substrate support 73A. The showerhead 710 is coupled to the periphery of the backing plate 712 by a suspension device 714. The showerhead 710 also couples the backing plate with one or more central supports 716 to prevent cornering and/or control the trueness/curvature of the showerhead 710. The gas source 720 is coupled to the backing plate 712' to provide gas through the backing plate 712 and through the showerhead 710 to the substrate receiving surface 732. The vacuum pump 709 is coupled to the chamber 700 to control the process volume 7 〇 6 to a predetermined pressure. The RF power source 722 is coupled to the backplane 712 and/or the showerhead 71A to provide the power of the showerhead 71〇rf, and an electric field is generated between the showerhead and the substrate support 73, such that the gas will be in the showerhead. A plasma is generated between the 71 turns and the substrate support 730. Various RF frequencies can be used, for example, about 3 megahertz (MHz) to about 2 〇〇 MHz. In one embodiment, the RF power source is used at a frequency of 13 56 MHz. A remote plasma source 724, such as an inductively coupled remote plasma source, can also be coupled to the helium source and the backplate to provide a clean gas to the remote source 724' to generate remote power. The slurry is used to clean the chamber components. The RF power source 722 supplied to the showerhead further energizes the cleaning gas. Suitable cleaning gases include, but are not limited to, nitrogen trifluoride (Νί?3), fluorine (1?2), and sulfur hexafluoride (SF0). The method of depositing one or more layers (e.g., one or more layers of Figure 4) includes the deposition parameters of the chamber or other suitable chamber as described in Figure 6 below. A substrate having a surface area of 10000 cm 2 or more (preferably 4 〇〇〇〇 cm 2 or more, more preferably 55 〇〇〇 Cm 2 or more) is supplied to the chamber. When understood, the base 32 201029208 plate can be cut into smaller solar cells. In one embodiment, the heating and/or cooling element 739 is configured to provide a substrate support temperature of about 400 〇 c or less, preferably from about 1 ° C to about 400 ° C, more preferably about 150. (: to about 3 〇〇〇 c, for example about 2 〇〇 t: During deposition, the distance between the top surface of the substrate placed on the substrate receiving surface 732 and the shower head 710 is about 4 mils to about 12 Preferably, the mil is from about 400 mils to about 800 mils. Φ Figure 8 is a top plan view of one embodiment of a processing system 8 having a plurality of processing chambers 83 1-837, such as the PECVD chamber of Figure 7. The chamber 7 or other chamber beta processing system 8 that is suitable for depositing the diaphragm includes a transfer chamber 820' which is lightly coupled to the load lock chamber and handles the chamber load lock to 810 to allow the substrate to be external to the system and to the transfer chamber 82〇 is transferred between the vacuum chambers within the processing chambers 831-83. The load lock chamber 810 includes one or more evacuation regions to support one or more substrates. When the substrate is introduced into the system 80, evacuation is performed. The area is vented when the substrate is output from the system 800. The transfer chamber 82 is provided with at least one vacuum robot 822' adapted to transfer the substrate between the load lock chamber 810 and the processing chambers 831-837. Although Figure 8 shows seven Processing chamber, however, this configuration does not limit the scope of the invention 'system can be set Any suitable number of processing chambers. In some embodiments of the invention, system 8 is configured to deposit a first pin bond region (e.g., component symbols 126, 328, 508) of a plurality of bonded surface solar cells. Wherein one of the processing chambers 831-837 is configured to deposit a p-type layer of the first p_i-n junction region while the respective configuration 33 201029208 remaining processing chamber 831·837 μ is integrated with the f-type layer and the n-type layer. — The intrinsic layer and the n-type layer of the pi-n junction region do not require any passivation process between the deposition steps of the same-chamber deposition. Therefore, in the configuration, the substrate is locked by the load 81Λ * ^ rail collar The system enters the system by 810, and then the vacuum robot transmits (4) (4) the core (4) Ρ (4) W processing chamber. After forming the p-type layer, the vacuum robot then transfers the substrate to the remaining processing chambers configured to deposit the intrinsic layer and the n-type layer. One of the chambers. After forming the intrinsic layer and the n-type layer, the jade vacuum robot 822 transfers the substrate back to the load lock to 81 G. In some embodiments, the processing chamber processes the substrate to form a crucible. Type of layer The time between forming the intrinsic layer and the n-type layer is about 4 times or more, preferably 6 times or more faster than a single chamber. Therefore, in some system examples in which the first Ρ-"η junction region is deposited, Ρ The ratio of the chamber to the i/n chamber is 1:4 or above, preferably 1:6 or above. The system yield including the plasma cleaning processing chamber time is about ι 基板 substrate / hour or more. Preferably, 20 substrates per hour. In some embodiments of the invention, the system 800 is configured to deposit a plurality of junction regions of the plurality of junction solar cells (e.g., component symbols 128 330, 51A). In an embodiment, One of the processing chambers 831-837 is configured to deposit a P-type layer of the second bonding region while the remaining processing chambers 831-837 are each configured to deposit the present f-type layer and the n-type layer. The intrinsic layer and the n-type layer of the second ... junction region may be subjected to no passivation process between the deposition steps of the same chamber. In some embodiments the processing chamber is processed to the substrate to form? The time of the layer is approximately four times or more faster than the time at which the single chamber forms the intrinsic layer and the n-type layer. Thus, 34 201029208 In certain embodiments of the system for depositing the p-i-n junction, the ratio of the p-chamber to the i/n chamber is 1:4 or more, preferably 1:6 or more. Including the provision of electric excitation: the system yield of the process chamber is about 3 substrates / small

時或以上,勒;I A 較佳為5個基板/小時。 在本發明> . < —些實施例中,配置系統8〇〇以沉積第1、 B圖之WSR層U2、5i2,其可置於第一與第二p小n 接合區或篦- . ,Hour or above, I A is preferably 5 substrates/hour. In the present invention, in some embodiments, the system 8 is configured to deposit the WSR layers U2, 5i2 of Figures 1 and B, which may be placed in the first and second p-sm junction regions or 篦- . ,

人币一P-卜η接合區與第二TCO層之間。在一實 包例中配置處理腔室83 1-837之一者以沉積一或多個 WSR層,配置另一處理腔室83 1-837以沉積第二p-i-n 接0區的P型層,同時各自配置其餘處理腔室831-837 以’儿積本質型層和n型層。配置以沉積WSR層的腔室數 量類似配置以沉積Ρ型層的腔室數量。此外,WSR層可 在配置以沉積本質型層和η型層的同一腔室沉積。 在某些實施例中,配置以沉積包含本質型非晶形矽層 之第一 p-i-n接合區的系統8〇〇的產量為用以沉積包含本 質型微晶矽層之第二P-i-n接合區的系統800的產量的兩 倍,此乃因本質型微晶矽層與本質型非晶形矽層的厚度 差所致。故適於沉積包含本質型非晶形矽層之第一 p i n 接合區的單一系統800可匹配二或多個適於沉積包含本 質型微晶矽層之第二p-i_n接合區的系統8〇〇。如此,WSR 層沉積製程可在適於沉積第一 ρ·1·η接合區的系統中進 行,以有效控制產量。一旦在一系統令形成第一 ρ·ί_η接 合區,則基板可暴露於周遭環境(即破真空),並傳送到 第一系統來形成第二p-i-n接合區。第一系統沉積第— 35 201029208 p-i-n接合區與第二p-i-n接合區之間需溼式或乾式清潔 基板。在一實施例中,WSR層沉積製程是在個別系統中 沉積。 第9圖繪示具有複數個沉積系統904、905、906或叢 集工具之部分生產線900的配置,其由自動化裝置902 轉接。在一配置下,如第9圖所示,生產線900包含複 數個沉積系統904、905、906,用以形成一或多層、形 成p-i-n接合區或形成完整太陽能電池裝置至基板102 上。系統904、905、906類似第8圖系統800,但通常 配置以沉積不同層或接合區至基板102上。一般來說, 系統904、905、906各自設有負載鎖定904F、905F、906F, 其類似負載鎖定室810且各自轉接自動化裝置902。 處理程序期間,基板通常從系統自動化裝置902傳送 到系統904、905、906之一。在一實施例中,系統906 設有複數個腔室906A-906H,其各自經配置以沉積或處 理構成第一 p-i-n接合區的一或多層,設有複數個腔室 905A-905H的系統905經配置以沉積一或多個WSR層, 設有複數個腔室904A-904H的系統904經配置以沉積或 處理構成第二p-i-n接合區的一或多層。注意系統數量和 各系統中經配置以沉積各層的腔室數量可改變成符合不 同製程需求和構造。在一實施例中,期分開或隔離WSR 層沉積處理腔室和p型、本質型或η型層沉積腔室,以 免太陽能電池裝置或後續形成之太陽能電池裝置的一或 多層交叉污染。在WSR層包括含碳或氧層的構造中,避 36 201029208 免構成接合區的纟質層交又污染及/或防止形成在屏蔽 或處理腔室之其他腔室部件上的含氧或4沉積材料層的 應力造成微粒產生問題大致上是很重要的。 自動化裝置902 一般包含機器裝置或輸送器,其適於 • 移動及定位基板。在一實例中,自動化裝置902為一系 ♦ 列的傳統基板輸送器(如輥型輸送器)及/或機器裝置(如6 抽機器人、水平多關節機器人(SCARA)),其經配置以依 Φ 需求移動及定位生產線90〇上的基板。在一實施例中, 一或多個自動化裝置9〇2還包含一或多個基板升降部件 或吊橋輸送器,其用於讓預定系統上游的基板經過阻擋 其移動的基板而抵生產線900的另一預定位置。如此, 不同系統的基板移動將不會遭遇其他待傳送到另一系統 的基板阻礙。 在生產線900之一實施例中,圖案化腔室95〇連接一 或多個自動化裝置902,並經配置以進行圖案化製程處 ® 理組成WSR層的一或多層。在一實例中,圖案化腔室 950有益地設置利用傳統手段進行圖案化製程處理wsr 層的一或多層。圖案化製程用來形成WSR層的圖案化區 域,例如第6B圖形成於絕緣WSR層112的穿孔6〇2。 亦當理解圖案化製程也可用來在太陽能電池裝置形成製 程期間,蝕刻一或多個先前形成層的一或多個區域。用 以形成穿孔602的典型製程包括微影圖案化與乾蝕刻技 術、雷射剝離技術、圖案化與溼蝕刻技術、或其他用來 於WSR層112中形成預定圖案的類似製程,但不以此為 37 201029208 限。形成於WSR層112的穿孔6〇2陣列通常提供區域來 電氣連接WSR層112上所形成之層與|§尺層ιΐ2底下 所形成之層。 儘管圖案化腔室950的配置一般是描述用於姓刻型製 . 程,但此配置並不限定本發明所述範圍❶在一實施例中, • @案化腔冑950用來移除—或多個所形成之層的一或多 個區域,及/或沉積一或多個材料層(如含摻質材料金 _ 屬膠)至基板表面的一或多個所形成之層上。 在一實施例中,利用沉積圖案蝕刻製程,將穿孔6〇2 蝕入WSR層112。沉積圖案蝕刻製程一般是先沉積預定 圖案之银刻材料至基板102的表面,以匹配形成於WSR 層112之穿孔602的預定構造。在一實施例中在圖案 化腔室950中,利用傳統喷墨印刷裝置、膠印裝置網 印裝置或其他類似製程,選擇性沉積蝕刻材料至wsr層 π 2上。在一實施例中,蝕刻材料包含氟化銨(NH4F)、 ® 與氟化銨形成均質混合物的溶劑、pH調節劑(如氧化物 蝕刻緩衝液(BOE)、氫氟酸(HF))和界面活性劑/濕潤劑。 在一實例中,蝕刻材料包含20克的氟化銨(其與5毫升 (m〗)的二甲胺混合)和25克的丙三醇,其接著加熱達1〇〇 °C,直到混合物的PH達約7並形成均質混合物。咸信使 用鹼性化學劑的好處為在後續加熱而開始驅出氨 前,不會產生揮發性HF蒸氣,故在進行加熱製程前, 不需昂貴又複雜的通風與處理系統。 沉積預定圓案之蝕刻材料後,接著在圖案化腔室95〇 38 201029208 中’利用傳統紅外線(IR)加熱元件或Ir燈加熱基板達約 200 C -3 00°C ’促使餘刻材料中的化學品姓刻WSR層112 而形成穿孔602。如第6B圖所示,穿孔602做為WSR 層112的開口,藉此形成於WSR層112底下之層與沉積 於WSR層112上之層之間可接觸。在一實施例中,基板 表面的穿孔6〇2的直徑為約5微米(μηι)至約2〇〇〇μιη。以 預定溫度處理一段時間後(如約2分鐘),將移除揮發性 φ 蝕刻產物而於穿孔602内留下乾淨的表面,如此可在這 些區域形成可靠的電觸點。在一態樣中,期所述處理程 序和蝕刻劑配方能於WSR層112中形成穿孔602,且不 需進行任何後清潔製程,此乃因揮發移除蝕刻產物和殘 餘蝕刻材料,可留下乾淨的表面供第二pin接合區 510、128形成於上。在一些情況下,期避免進行溼式處 理步驟’以免增加潤洗及乾燥基板所需的時間、增加進 行座式處理步驟相關的擁有成本、及提高氧化或污染穿 瘳 孔602的機會。然在一實施例中,圖案化腔室950或其 他附接處理腔室適於進行選擇性清潔製程處理基板,以 移除任何不當殘餘物,及/或在第二p_i_n接合區51〇、128 形成於上前,形成鈍化表面》在一實施例中,清潔製程 是以清潔液濕潤基板進行。可利用喷灑、淹沒、浸潰或 其他適合技術達成濕潤目的。用於形成一或多個穿孔602 的沉積圖案蝕刻材料製程一例更詳述於共同讓渡且同在 申請中之美國專利申請案序號12/274,023(代理人文件編 號APPM 12974.02)之申請案,西元2〇〇8年u月19曰 39 201029208 申請,其一併附上供作參考β 雖然本發明已以實施例揭露如上,然其他和進一步之 實施例亦不脫離其基礎範圍’本發明之保護範圍當視後 附之申請專利範圍所界定者為準。例如,第7圖處理腔 至顯示呈水平位置。應理解在本發明之其他實施例中, * 處理織可呈任何非水平位置,例如垂直。本發明之實 施例已參照第8及9圖之多重處理腔室叢集工具說明, ❹ 但也可採用線内(in-line)系統和混成之線内/叢集系統。 本發明之實施例已參照經配置以形成第一 pin接合區 的第一系統、經配置以形成W S R層的第二系統和經配置 以形成第二p-i_n接合區的第三系統說明但第一 p小n 接合區、WSR層和第二p-i-n接合區亦可於單一系統中 形成。本發明之實施例已參照適於沉積WSR層本質型 層和η型層的處理腔室說明,然個別腔室也適於沉積本 質型層、η型層和WSR層,且單一處理腔室亦適於沉積 ® P型層、WSR層和本質型層。最後,所述實施例為普遍 應用到透明基板(如玻璃)的p_i_n構造,但此當涵蓋其他 實施例,其中n-i-p接合區、單一或多重堆疊結構按相反 沉積順序建構在不透明基板(如不鏽鋼或聚合物)上β 因此’提出形成太陽能電池裝置之WSR層的設備和方 法。方法有利於製造置於接合面間的WSR層,其具備高 透明度和低折射率而加強電池的光捕捉。此外,WSR層 尚提供可調能帶隙,相較於傳統方法,其有效反射或吸 收不同波長的光’因而提高PV太陽能電池的光電轉換 201029208 效率和裴置性能。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之 ’ 保護範圍當視後附之申請專利範圍所界定者為準。 ψ. 【圖式簡單說明】 Φ 為讓本發明之上述特徵更明顯易懂,可配合參考實施 例說明’其部分乃繪示如附圖式。 第1圖為根據本發明一實施例之串養接合面薄膜太陽 能電池的側視圖,具有波長選擇反射層置於接合面間; 第2圖為根據本發明一實施例之單一接合面薄膜太陽 能電池的側視圖; 第3圖為根據本發明一實施例之串疊接合面薄膜太陽 能電池的側視圖’具有波長選擇反射層置於接合面間; φ 第4圖為根據本發明另一實施例之串疊接合面薄膜太 陽能電池的側視圖; 第5 Α-5Β圖為根據本發明一實施例之串疊接合面薄膜 太陽能電池的侧視圖,具有波長選擇反射層置於接合面 間, 第6 Α-6Β圖為根據本發明一實施例’置於接合面間之 波長選擇反射層的放大圖; 第7圖為根據本發明一實施例之設備的截面圓; 201029208 第8圖為根據本發明另一實施例之設備的平面圖;以 及 第9圖為根據本發明一實施例之部分生產線的平面 圖’内設第7及8圖設備。 .為助於理解,各圖中相同的元件符號盡可能代表相似 的元件。應理解某一實施例的元件和特徵結構當可併入 其他實施例’在此不另外詳述。 Φ 須注意的是,雖然所附圖式揭露本發明特定實施例, 但其並非用以限定本發明之精神與範圍,任何熟習此技 藝者,當可作各種之更動與潤飾而得等效實施例。 【主要元件符號說明】 100 太陽能電池 101 太陽輕射 102 基板 104、 122 TCO 層 106、 108 、 110 、 114 、 118 、120 ' 124 梦層 112 WSR層 112a-b 、 112al-3 、 112bl-3 層 116 PIB層 124 背層 126、 128 接合區 201 基板 204、 218 導電層 206 合金層 208 ' 212 ' 214 矽層 210 PIB層 220 接合區 300 太陽能電池 301 基板 304 導電層 42 201029208Between the coin-P-n junction and the second TCO layer. In one embodiment, one of the processing chambers 83 1-837 is configured to deposit one or more WSR layers, and another processing chamber 83 1-837 is configured to deposit a P-type layer of the second pin-to-zero region, while The remaining processing chambers 831-837 are each configured to 'integrate the intrinsic layer and the n-type layer. The number of chambers configured to deposit the WSR layer is similarly configured to deposit the number of chambers of the ruthenium layer. Additionally, the WSR layer can be deposited in the same chamber configured to deposit the intrinsic layer and the n-type layer. In certain embodiments, the throughput of the system 8〇〇 configured to deposit a first pin junction region comprising an intrinsic amorphous germanium layer is a system 800 for depositing a second pin junction region comprising an intrinsic microcrystalline germanium layer This is twice the yield due to the difference in thickness between the intrinsic microcrystalline layer and the intrinsic amorphous layer. Thus, a single system 800 suitable for depositing a first pin junction region comprising an intrinsic amorphous germanium layer can be matched to two or more systems suitable for depositing a second p-i_n junction region comprising an intrinsic microcrystalline germanium layer. . Thus, the WSR layer deposition process can be performed in a system suitable for depositing the first ρ·1·η junction region to effectively control throughput. Once the first ρ·ί_η junction region is formed in a system, the substrate can be exposed to the surrounding environment (i.e., vacuum) and transferred to the first system to form a second p-i-n junction. First System Deposition - 35 201029208 A wet or dry cleaning substrate is required between the p-i-n junction and the second p-i-n junction. In one embodiment, the WSR layer deposition process is deposited in individual systems. Figure 9 illustrates a configuration of a portion of a production line 900 having a plurality of deposition systems 904, 905, 906 or cluster tools that are transferred by an automation device 902. In one configuration, as shown in Figure 9, line 900 includes a plurality of deposition systems 904, 905, 906 for forming one or more layers, forming a p-i-n junction or forming a complete solar cell device onto substrate 102. The systems 904, 905, 906 are similar to the system 800 of Figure 8, but are generally configured to deposit different layers or landings onto the substrate 102. In general, systems 904, 905, 906 are each provided with load locks 904F, 905F, 906F that are similar to load lock chamber 810 and are each coupled to automation device 902. During processing, the substrate is typically transferred from system automation device 902 to one of systems 904, 905, 906. In one embodiment, system 906 is provided with a plurality of chambers 906A-906H each configured to deposit or process one or more layers that form a first pin junction, and system 905 having a plurality of chambers 905A-905H Configuring to deposit one or more WSR layers, system 904 having a plurality of chambers 904A-904H configured to deposit or process one or more layers that make up the second pin junction. Note that the number of systems and the number of chambers in each system configured to deposit layers can be varied to meet different process requirements and configurations. In one embodiment, the WSR layer deposition processing chamber and the p-type, intrinsic or n-type layer deposition chamber are separated or isolated to avoid one or more layers of cross-contamination of the solar cell device or subsequently formed solar cell device. In configurations where the WSR layer comprises a carbon or oxygen containing layer, avoiding the contamination of the enamel layer that constitutes the junction zone and/or preventing the formation of oxygen or 4 deposits on other chamber components of the shielding or processing chamber. The stress of the material layer causes the problem of particle generation to be substantially important. The automation device 902 typically includes a machine or conveyor adapted to: • move and position the substrate. In one example, the automation device 902 is a series of conventional substrate conveyors (eg, roller conveyors) and/or machine devices (eg, 6 pumping robots, horizontal articulated robots (SCARA)) configured to Φ Requires moving and positioning the substrate on the 90-inch production line. In one embodiment, the one or more automation devices 9〇2 further comprise one or more substrate lifting members or suspension bridges for allowing the substrate upstream of the predetermined system to pass through the substrate that blocks its movement against the other of the production line 900. a predetermined location. As such, substrate movement of different systems will not be hindered by other substrates to be transferred to another system. In one embodiment of the production line 900, the patterning chamber 95 is coupled to one or more automated devices 902 and configured to perform a patterning process to form one or more layers of the WSR layer. In one example, the patterning chamber 950 advantageously provides one or more layers of the patterned process wsr layer by conventional means. The patterning process is used to form a patterned region of the WSR layer, such as hole 6 〇 2 formed in insulating WSR layer 112 in Figure 6B. It is also understood that the patterning process can also be used to etch one or more regions of a previously formed layer during the solar cell device formation process. Typical processes for forming the vias 602 include lithographic patterning and dry etching techniques, laser lift-off techniques, patterning and wet etching techniques, or other similar processes used to form predetermined patterns in the WSR layer 112, but not Limited to 37 201029208. The array of perforations 6〇2 formed in the WSR layer 112 typically provides regions to electrically connect the layers formed on the WSR layer 112 to the layers formed under the layers. Although the configuration of the patterning chamber 950 is generally described for the surname process, this configuration does not limit the scope of the present invention. In one embodiment, the @案化 cavity 950 is used to remove - Or one or more regions of the plurality of formed layers, and/or one or more layers of material (e.g., containing a dopant material) to one or more of the layers formed on the surface of the substrate. In one embodiment, the vias 6〇2 are etched into the WSR layer 112 using a deposition pattern etch process. The deposition pattern etch process generally deposits a predetermined pattern of silver etched material onto the surface of the substrate 102 to match the predetermined configuration of the vias 602 formed in the WSR layer 112. In an embodiment, in the patterning chamber 950, the etching material is selectively deposited onto the wsr layer π 2 using conventional ink jet printing apparatus, offset printing apparatus, or the like. In one embodiment, the etch material comprises ammonium fluoride (NH4F), a solvent that forms a homogeneous mixture with ammonium fluoride, a pH adjuster (such as oxide etch buffer (BOE), hydrofluoric acid (HF)), and an interface. Active agent / humectant. In one example, the etch material comprises 20 grams of ammonium fluoride (mixed with 5 milliliters (m) of dimethylamine) and 25 grams of glycerol, which is then heated to 1 ° C until the mixture The pH reaches about 7 and forms a homogeneous mixture. The advantage of using an alkaline chemical is that it does not generate volatile HF vapor before it begins to drive out ammonia after subsequent heating, so there is no need for expensive and complicated ventilation and treatment systems before the heating process. After depositing the etching material of the predetermined round, then in the patterning chamber 95〇38 201029208, 'using a conventional infrared (IR) heating element or an Ir lamp to heat the substrate up to about 200 C -3 00 ° C 'in the residual material The chemical is surnamed WSR layer 112 to form perforations 602. As shown in Fig. 6B, the via 602 serves as an opening of the WSR layer 112, whereby the layer formed under the WSR layer 112 is in contact with the layer deposited on the WSR layer 112. In one embodiment, the perforations 6〇2 of the surface of the substrate have a diameter of from about 5 microns (μηι) to about 2 μm. After a period of treatment at a predetermined temperature (e.g., about 2 minutes), the volatile φ etch product will be removed leaving a clean surface in the via 602, thus forming a reliable electrical contact in these regions. In one aspect, the process and etchant formulation can form vias 602 in the WSR layer 112 without any post-cleaning process, which removes the etch products and residual etch materials by volatilization, leaving A clean surface is provided for the second pin land 510, 128 to be formed thereon. In some cases, the wet processing step is avoided to avoid increasing the time required to rinse and dry the substrate, increasing the cost of ownership associated with performing the seating process, and increasing the chance of oxidizing or contaminating the through hole 602. In an embodiment, the patterning chamber 950 or other attachment processing chamber is adapted to perform a selective cleaning process to remove any improper residue, and/or in the second p_i_n junction 51, 128 Formed on the front to form a passivated surface. In one embodiment, the cleaning process is performed by wetting the substrate with a cleaning solution. Wetting can be achieved by spraying, submerging, dipping or other suitable technique. An example of a process for forming a pattern of etched material for forming one or more perforations 602 is described in more detail in the application for co-transfer and U.S. Patent Application Serial No. 12/274,023 (Attorney Docket No. APPM 12974.02), PCT 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The scope is subject to the definition of the scope of the patent application attached. For example, Figure 7 handles the cavity until the display is horizontal. It should be understood that in other embodiments of the invention, the processing weave may be in any non-horizontal position, such as vertical. Embodiments of the present invention have been described with reference to the multiple processing chamber clustering tools of Figures 8 and 9, but an in-line system and a hybrid in-line/cluster system may also be employed. Embodiments of the present invention have referenced a first system configured to form a first pin bond zone, a second system configured to form a WSR layer, and a third system configured to form a second p-i_n junction zone, but A p-n junction region, a WSR layer, and a second pin junction region can also be formed in a single system. Embodiments of the present invention have been described with reference to a processing chamber suitable for depositing a WSR layer intrinsic layer and an n-type layer, although individual chambers are also suitable for depositing an intrinsic layer, an n-type layer, and a WSR layer, and a single processing chamber is also Suitable for deposition of ® P-type layers, WSR layers and intrinsic layers. Finally, the embodiments are p_i_n configurations that are commonly applied to transparent substrates such as glass, but this is encompassed by other embodiments in which the nip junction, single or multiple stacked structures are constructed in an opposite deposition sequence on an opaque substrate (such as stainless steel or [beta] on the polymer thus proposes an apparatus and method for forming a WSR layer of a solar cell device. The method facilitates the fabrication of a WSR layer placed between the joint faces, which has high transparency and low refractive index to enhance light capture of the battery. In addition, the WSR layer provides an adjustable bandgap that effectively reflects or absorbs light of different wavelengths compared to conventional methods, thereby increasing the photoelectric conversion of PV solar cells. 201029208 Efficiency and performance. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Φ In order to make the above-described features of the present invention more obvious and understandable, it can be explained in conjunction with the reference embodiment. 1 is a side view of a tandem junction surface thin film solar cell having a wavelength selective reflective layer interposed between bonding surfaces according to an embodiment of the present invention; and FIG. 2 is a single bonding surface thin film solar cell according to an embodiment of the present invention. FIG. 3 is a side view of a tandem junction surface thin film solar cell having a wavelength selective reflective layer interposed between bonding faces; FIG. 4 is a view of another embodiment of the present invention. Side view of a tandem junction surface thin film solar cell; FIG. 5-5 is a side view of a tandem junction surface thin film solar cell having a wavelength selective reflective layer interposed between bonding faces, according to an embodiment of the present invention, 6 is an enlarged view of a wavelength selective reflection layer disposed between joint surfaces according to an embodiment of the present invention; FIG. 7 is a cross-sectional circle of the apparatus according to an embodiment of the present invention; 201029208 FIG. 8 is another diagram according to the present invention A plan view of an apparatus of an embodiment; and a ninth drawing of a plan view of a portion of a production line according to an embodiment of the present invention. To facilitate understanding, the same component symbols in the various figures represent similar components as much as possible. It is to be understood that the elements and features of a particular embodiment can be incorporated in other embodiments and are not described in detail herein. Φ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 example. [Main component symbol description] 100 solar cell 101 solar light 102 substrate 104, 122 TCO layer 106, 108, 110, 114, 118, 120' 124 Dream layer 112 WSR layer 112a-b, 112al-3, 112bl-3 layer 116 PIB layer 124 Back layer 126, 128 Bonding area 201 Substrate 204, 218 Conductive layer 206 Alloy layer 208 '212 ' 214 矽 layer 210 PIB layer 220 Bonding area 300 Solar cell 301 Substrate 304 Conductive layer 42 201029208

306 ' 308 、 318 、 324 合金層 310、 320 PIB 層 312 、314 、 322 316 WSR層 326 接觸層 328 ' 330 接合區 400 太陽能電 402 基板 404 合金層 406 矽層 500 太陽能電池 502 矽層 504 缓衝層 508 ' 510 接合區 512 WSR層 512a-b 層 602 穿孔 602A 路徑 700 腔室 702 壁面 704 底部 706 製程容積 708 閥 709 幫浦 710 噴淋頭 712 背板 714 懸吊裝置 716 ' 730 支撐件 720 氣源 722 功率源 724 電漿源 731 接地片 732 基板接收面 733 遮蔽環 734 把柄 736 升降系統 738 舉升銷 739 加熱/冷卻元件 800 系統 810 負載鎖定室 820 移送室 822 機器人 831 -837 處理腔 900 生產線 902 自動化裝置 904-906 沉積系統 43 201029208 腔室 904A-H、905A-H、906A-H、950 904F、905F、906F 負載鎖定306 '308, 318, 324 alloy layer 310, 320 PIB layer 312, 314, 322 316 WSR layer 326 contact layer 328 '330 junction area 400 solar power 402 substrate 404 alloy layer 406 layer 500 solar cell 502 layer 504 buffer Layer 508 ' 510 Junction Area 512 WSR Layer 512a-b Layer 602 Perforation 602A Path 700 Chamber 702 Wall 704 Bottom 706 Process Volume 708 Valve 709 Pump 710 Sprinkler 712 Back Plate 714 Suspension Device 716 ' 730 Support 720 Gas Source 722 Power Source 724 Plasma Source 731 Grounding Strip 732 Substrate Receiving Surface 733 Shadowing Ring 734 Handle 736 Lifting System 738 Lifting Pin 739 Heating/Cooling Element 800 System 810 Load Locking Chamber 820 Transfer Chamber 822 Robot 831 -837 Processing Chamber 900 Production Line 902 Automation 904-906 Deposition System 43 201029208 Chambers 904A-H, 905A-H, 906A-H, 950 904F, 905F, 906F Load Lock

4444

Claims (1)

201029208 七、申請專利範圍: κ 一種光電裝置,包含: 反射層’置於一第一 p-i-n接合區與一第二p-i-n接合 區之間,其中該反射層包含: 一第一層;以及 一第二層’置於該第一層上’其中該第二層與該第 一層的一折射率比率大於約12。 2. 如申請專利範圍第1項所述之光電裝置,其中: 該第一 P-i-n接合區包含: 一 P型非晶形石夕層; 一本質型非晶形矽層;以及 一 η型微晶矽層;且 該第二P-i-n接合區包含: P型摻雜之微晶石夕層’置於該第二層上; 一本質型微晶矽層;以及 η型摻雜之非晶形矽層,鄰接該本質型微晶矽層。 3. 如申請專利範圍第i項所述之光電裝置,其中該第一 層與該第二層的一厚度比率大於約1.2。 ' 4. 如申請專利範圍第丨項所述之光電襄置,更包含: 一第二對層,包含: . 45 201029208201029208 VII. Patent application scope: κ An optoelectronic device comprising: a reflective layer disposed between a first pin junction region and a second pin junction region, wherein the reflective layer comprises: a first layer; and a second A layer 'on the first layer' wherein a ratio of a refractive index of the second layer to the first layer is greater than about 12. 2. The photovoltaic device according to claim 1, wherein: the first pin junction region comprises: a P-type amorphous stellite layer; an intrinsic amorphous ruthenium layer; and an n-type microcrystalline layer And the second pin bonding region comprises: a P-type doped microlithic layer disposed on the second layer; an intrinsic microcrystalline germanium layer; and an n-type doped amorphous germanium layer adjacent to the Intrinsic microcrystalline layer. 3. The photovoltaic device of claim 4, wherein a thickness ratio of the first layer to the second layer is greater than about 1.2. 4. The photoelectric device as described in the scope of the patent application, further comprising: a second pair of layers, comprising: . 45 201029208 四層與該第 層’置於該第二層上,其中該第 二層的-折射率比率大於約12;以及 一 層置於該第三層上,其中該第 層的折射率比率大於,約I.2;以及 一第二對層,包含: 第五層’置於該第四層上,其中該第 五層的·折射率比率大於約⑴以及 層與該第Four layers and the first layer are disposed on the second layer, wherein the second layer has a refractive index ratio greater than about 12; and a layer is disposed on the third layer, wherein the refractive index ratio of the first layer is greater than, I.2; and a second pair of layers comprising: a fifth layer 'on the fourth layer, wherein the fifth layer has a refractive index ratio greater than about (1) and the layer L、層’置於該第五層上,其中該第六層與該第 層的一折射率比率大於約1.2。 5’如申請專利範圍第1項所述之光電裝置,其中該第二 層的一折射率大於該第—層的一折射率。 6,如申請專利範圍第1項所述之光電裝置,其中該反射 φ 層選擇性反射一波長約500奈米(nm)至約800nm的光。 7·如申請專利範圍第1項所述之光電裝置,其中該第一 層為一n型微晶矽合金層。 8.如申請專利範圍第1項所述之光電裝置,其中該第二 層為一η型微晶矽層。 9·如申請專利範圍第1項所述之光電裝置,其中該第— 層包含矽、氧、以及選自由氮和碳組成群組之一元素。 46 201029208 1〇’如申睛專利範圍第1項所述之光電裝置其中該第 層的折射率為約1.4至約2.5,該第二層的一折射率 為約3至約4。 U· 一種光電裝置,包含: „射層置於—第一 P-i-n接合區與一第二p-i-n接合 區之間且内含複數個穿孔,其中該複數個穿孔之每一穿 A疋藉由在該第二p_i_n接合區形成於該反射層上之 移除該反射層的一部分材料而形成。 .如申請專利範圍第U項所述之光電裝置,其中至少 分的該第二p-i_n接合區填充各該些穿孔的至少一 部分》 e •如申請專利範圍第11項所述之光電裝置,其中 該第一 p-i_n接合區包含: P型非晶形矽層; —本質型非晶形矽層;以及 一 η型微晶矽層;且 該第二P-i-n接合區包含: P型摻雜之微晶梦層,置於該反射層上; 一本質型微晶矽層;以及 — η型摻雜之非晶形矽層,鄰接該本質型微晶矽層。 47 201029208 14. 如申請專利範圍f 所述之光電裝置,其中該反 射層包含矽、氧、以及選自由氮和碳組成群組之一元素。 15. 如申請專利範圍第u項所述之光電裴置其中該反 . 射層包含一第一層、以及置於該第一層上的一第二層, 其中該第二層與該第一層的一折射率比率大於約12。 16. —種形成太陽能電池裝置的方法,該方法包含以下 步驟: 形成一第一 p-i-n接合區至一基板的一表面上; 形成一第一反射層至該第一 p-Un接合區上,其中該第一 反射層選擇性將一波長約550奈米(nm)至約8〇〇nm的光 反射回該第一 p-i-n接合區;以及 形成一第二p-i-n接合區至該第一反射層上。 參 17. 如申請專利範圍第16項所述之方法,更包含以下步 驟: 形成一第一反射層至該第二p-i-n接合區上;以及 形成一透明導電層至該第二反射層上。 .18·如申請專利範圍第17項所述之方法,其中該第二反 射層將一波長約700奈米(nm)至約丨丨〇〇nm的光反射回該 第二p-i-n接合區。 48 201029208 19.如申請專利範圍第16項 射層包含—n型微晶發合金 所述之方法,其中該第一反 參L, layer ' is placed on the fifth layer, wherein a ratio of the refractive index of the sixth layer to the first layer is greater than about 1.2. 5' The photovoltaic device of claim 1, wherein a refractive index of the second layer is greater than a refractive index of the first layer. 6. The photovoltaic device of claim 1, wherein the reflective φ layer selectively reflects light having a wavelength of from about 500 nanometers (nm) to about 800 nm. 7. The photovoltaic device of claim 1, wherein the first layer is an n-type microcrystalline germanium alloy layer. 8. The photovoltaic device of claim 1, wherein the second layer is an n-type microcrystalline germanium layer. 9. The photovoltaic device of claim 1, wherein the first layer comprises germanium, oxygen, and an element selected from the group consisting of nitrogen and carbon. The photovoltaic device of claim 1, wherein the first layer has a refractive index of from about 1.4 to about 2.5 and the second layer has a refractive index of from about 3 to about 4. U· An optoelectronic device comprising: „the shot layer is disposed between the first pin junction region and a second pin junction region and includes a plurality of perforations, wherein each of the plurality of perforations passes through the The second p_i_n junction region is formed on the reflective layer to remove a portion of the material of the reflective layer. The photovoltaic device of claim U, wherein at least the second p-i_n junction region is filled The photovoltaic device of claim 11, wherein the first p-i_n junction region comprises: a P-type amorphous germanium layer; an intrinsic amorphous germanium layer; An n-type microcrystalline germanium layer; and the second pin bonding region comprises: a P-type doped microcrystalline dream layer disposed on the reflective layer; an intrinsic microcrystalline germanium layer; and - an n-type doping layer A crystalline germanium layer adjacent to the intrinsic microcrystalline germanium layer. The solar photovoltaic device of claim f, wherein the reflective layer comprises germanium, oxygen, and an element selected from the group consisting of nitrogen and carbon. 15. If the patent application scope is item u The photo-electric layer includes a first layer and a second layer disposed on the first layer, wherein a refractive index ratio of the second layer to the first layer is greater than about 12 16. A method of forming a solar cell device, the method comprising the steps of: forming a first pin bond region onto a surface of a substrate; forming a first reflective layer onto the first p-Un junction region, Wherein the first reflective layer selectively reflects light having a wavelength of about 550 nanometers (nm) to about 8 〇〇 nm back to the first pin bonding region; and forming a second pin bonding region to the first reflective layer The method of claim 16, further comprising the steps of: forming a first reflective layer onto the second pin bonding region; and forming a transparent conductive layer onto the second reflective layer. 18. The method of claim 17, wherein the second reflective layer reflects light having a wavelength of from about 700 nanometers (nm) to about 丨丨〇〇nm back to the second pin junction. 201029208 19. If the application of the patent scope of the 16th layer contains - n-type microcrystalline alloy, wherein the first anti-parameter 如申凊專利範圍第16項所述之方 射層的折射率為約14至約4。 法,其中該第一反 21.如申請專利範圍第 c ^ Η 乐1&項所迷之方法,其中形成該 一反射層之步驟更包哪文匕3以下步驟.形成一第一層和— 二層至該篦_Λ· _ Α 第ρ,接合區上,其中該第二層與該第— 的一折射率比率大於約12 22.如申請專利範圍第21項所述之方法 為一 η型微晶矽合金層,該第二層包含— 第第層 其中該第一層 η型微晶梦層。 23.如申請專利範圍第21項所述之方法更包含以驟: 形成一第二對之該第一層與該第二層至該第一對上 及 形成一第三對之該第一層與該第二層至該第二對上 24·如申請專利範圍第16項所述之方法,其中 形成該第一 P-i-n接合區之步驟包含以下步驟: 形成一 p型非晶形矽層; 49 201029208 形成"一本質型非晶形石々® ZS 4 办夕層至該P型非晶形矽層上, 其中該本質型非晶形石夕層句β . 增匕括一 ρ-1緩衝本質型非晶形 矽層和一塊體本質型非晶形矽層;以及 $ & η型微晶矽層至該本質型非晶形矽層上,且 形成該第二P-i-n接合區包含: r 形成一 P型微晶矽層至該反射層上; 形成一本質型微晶矽層至該P型微晶矽層上;以及 . 形成一η型非晶形矽層至該本質型微晶矽層上。 25.如申請專利範圍第16項所述之方法,更包含以下步 驟:在該反射層中形成複數個穿孔,其中該些穿孔是在 該第二p-i-η接合區形成於該反射層上之前形成,且每一 穿孔是藉由移除一部分的該反射層而形成。 鲁 26. 一種用以形成太陽能電池的自動化與整合系統,包 含: 一第一沉積腔室,適於沉積一 p型含矽層至一基板的一 表面上; 一第二沉積腔室,適於沉積一本質型含矽層和一 η型含 矽層至該基板的該表面上; 一第三沉積腔室,適於沉積一 η型反射層至該基板的該 表面上; 一圖案化腔室,適於在該基板之該表面上的該η型反射 層中形成複數個穿孔;以及 50 201029208 一自動化輪送裝置,適於在該第一沉積腔室該第二沉 積腔至、該第三沉積腔室與該圖案化腔室間傳送該基板。 能電池的自動化與整合系統,包 27. —種用以形成太陽 含: 一第一叢集工具,包含: 至少一處理腔室,適於沉積一p型含矽層至一基板 的一表面上; 至少一處理腔室,適於沉積一本質型含矽層至該基 板的該表面上;以及 至少一處理腔室,適於沉積一本質型含矽層至該基 板的該表面上;以及 一第一叢集工具,包含: 至少一處理腔室,適於沉積一n型反射層至該基板 的一表面上;以及 一自動化輸送裝置,適於在該第一叢集工具與該第 一叢集工具間傳送一基板。 28.如申請專利範圍帛27項所述之自動化與整合系統, 更包含: 一第三叢集工具,包含: 至少一處理腔室,適於沉積一 p型含矽層至該基板 的該表面上; 至少一處理腔室,適於沉積一本質型含矽層至該基 51 201029208 板的該表面上;以及 至少一處理腔室,適於沉積一本質型含矽層至該基 板的該表面上。 29.如申請專利範圍第28項所述之自動化與整合系統, '更包含: 一圖案化腔室,可轉接該第一叢集工具、該第二叢集工 φ 具或該第三叢集工具和該自動化輸送裝置,其中該圖案 化腔室適於移除一部分的該n型反射層,以於該η型反 射層中形成複數個穿孔。 像 52The refractive index of the radiation layer described in claim 16 of the patent application is from about 14 to about 4. The method, wherein the first anti-21. The method of the patent application scope c ^ 乐 Le 1 & item, wherein the step of forming the reflective layer further comprises the following steps: forming a first layer and - The second layer to the 篦_Λ· _ Α ρ, the junction region, wherein the ratio of the second layer to the first refractive index is greater than about 12. 22. The method described in claim 21 is a a type of microcrystalline bismuth alloy layer, the second layer comprising - a first layer of the first layer of n-type microcrystalline dream layer. 23. The method of claim 21, further comprising: forming a second pair of the first layer and the second layer to the first pair and forming a third pair of the first layer The method of claim 14, wherein the step of forming the first pin bonding region comprises the steps of: forming a p-type amorphous germanium layer; 49 201029208 Forming " an intrinsic amorphous sarcophagus® ZS 4 layer to the P-type amorphous yttrium layer, wherein the intrinsic amorphous stellite layer β 一 一 ρ-1 buffering essential amorphous a germanium layer and a bulk intrinsic amorphous germanium layer; and a < η type microcrystalline germanium layer to the intrinsic amorphous germanium layer, and forming the second pin junction region comprises: r forming a p-type microcrystalline germanium And forming an intrinsic microcrystalline germanium layer onto the p-type microcrystalline germanium layer; and forming an n-type amorphous germanium layer onto the intrinsic microcrystalline germanium layer. 25. The method of claim 16, further comprising the step of: forming a plurality of perforations in the reflective layer, wherein the perforations are formed on the reflective layer before the second pi-n junction region is formed Formed, and each perforation is formed by removing a portion of the reflective layer. Lu 26. An automated and integrated system for forming a solar cell, comprising: a first deposition chamber adapted to deposit a p-type germanium-containing layer onto a surface of a substrate; a second deposition chamber adapted to Depositing an intrinsic germanium-containing layer and an n-type germanium-containing layer onto the surface of the substrate; a third deposition chamber adapted to deposit an n-type reflective layer onto the surface of the substrate; a patterned chamber Suitable for forming a plurality of perforations in the n-type reflective layer on the surface of the substrate; and 50 201029208 an automated transfer device adapted to be in the first deposition chamber, the second deposition chamber to the third The substrate is transferred between the deposition chamber and the patterned chamber. A battery-powered automation and integration system, package 27. for forming a solar-containing: a first cluster tool comprising: at least one processing chamber adapted to deposit a p-type germanium-containing layer onto a surface of a substrate; At least one processing chamber adapted to deposit an intrinsic germanium containing layer onto the surface of the substrate; and at least one processing chamber adapted to deposit an intrinsic germanium containing layer onto the surface of the substrate; A cluster tool comprising: at least one processing chamber adapted to deposit an n-type reflective layer onto a surface of the substrate; and an automated transport device adapted to transfer between the first cluster tool and the first cluster tool A substrate. 28. The automation and integration system of claim 27, further comprising: a third cluster tool comprising: at least one processing chamber adapted to deposit a p-type germanium-containing layer onto the surface of the substrate At least one processing chamber adapted to deposit an intrinsic niobium containing layer onto the surface of the substrate 51 201029208; and at least one processing chamber adapted to deposit an intrinsic niobium containing layer onto the surface of the substrate . 29. The automation and integration system of claim 28, further comprising: a patterned chamber to transfer the first cluster tool, the second cluster tool or the third cluster tool and The automated transport device, wherein the patterning chamber is adapted to remove a portion of the n-type reflective layer to form a plurality of perforations in the n-type reflective layer. Like 52
TW098143729A 2008-12-19 2009-12-18 Microcrystalline silicon alloys for thin film and wafer based solar applications TW201029208A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13939008P 2008-12-19 2008-12-19

Publications (1)

Publication Number Publication Date
TW201029208A true TW201029208A (en) 2010-08-01

Family

ID=42317062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098143729A TW201029208A (en) 2008-12-19 2009-12-18 Microcrystalline silicon alloys for thin film and wafer based solar applications

Country Status (6)

Country Link
EP (1) EP2359411A4 (en)
JP (1) JP2012513125A (en)
KR (1) KR20110106889A (en)
CN (1) CN102272950A (en)
TW (1) TW201029208A (en)
WO (1) WO2010080446A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769066A (en) * 2011-05-06 2012-11-07 宇通光能股份有限公司 Solar cell module and method for manufacturing same
TWI473281B (en) * 2011-04-01 2015-02-11 Nexpower Technology Corp Thin film solar cell structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426737A1 (en) * 2010-09-03 2012-03-07 Applied Materials, Inc. Thin-film solar fabrication process, deposition method for solar cell precursor layer stack, and solar cell precursor layer stack
EP2439792A1 (en) * 2010-10-05 2012-04-11 Applied Materials, Inc. Thin-film solar cell fabrication process, deposition method for solar cell precursor layer stack, and solar cell precursor layer stack
JP2012114296A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp Thin-film solar cell and method of manufacturing the same
US8088990B1 (en) * 2011-05-27 2012-01-03 Auria Solar Co., Ltd. Color building-integrated photovoltaic (BIPV) panel
EP2533318A1 (en) * 2011-06-08 2012-12-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Thin film solar cell module and greenhouse provided with the same
DE102011081655A1 (en) * 2011-08-26 2013-02-28 Robert Bosch Gmbh Thin film solar cell
WO2013106439A1 (en) * 2012-01-13 2013-07-18 Applied Materials, Inc. High work-function buffer layers for silicon-based photovoltaic devices
TW201403852A (en) * 2012-05-10 2014-01-16 Tel Solar Ag Silicon-based solar cells with improved resistance to light-induced degradation
TWI484076B (en) * 2012-07-20 2015-05-11 Sino American Silicon Prod Inc Improved process for solar wafer and solar wafer
KR20150078549A (en) * 2013-12-31 2015-07-08 한국과학기술원 Apparatus for manufacturing integrated thin film solar cell
US10192717B2 (en) * 2014-07-21 2019-01-29 Applied Materials, Inc. Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates
JP2017143103A (en) * 2016-02-08 2017-08-17 本田技研工業株式会社 Power generation battery
CN112018207B (en) * 2020-08-14 2023-02-03 隆基绿能科技股份有限公司 Laminated solar cell and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189917B2 (en) * 2003-03-26 2007-03-13 Canon Kabushiki Kaisha Stacked photovoltaic device
JP4063735B2 (en) * 2003-07-24 2008-03-19 株式会社カネカ Thin film photoelectric conversion module including stacked photoelectric conversion device
JP2008181965A (en) * 2007-01-23 2008-08-07 Sharp Corp Laminated optoelectric converter and its fabrication process
JP2008060605A (en) * 2007-11-06 2008-03-13 Kaneka Corp Stacked photoelectric converter
JP2009231505A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473281B (en) * 2011-04-01 2015-02-11 Nexpower Technology Corp Thin film solar cell structure
CN102769066A (en) * 2011-05-06 2012-11-07 宇通光能股份有限公司 Solar cell module and method for manufacturing same

Also Published As

Publication number Publication date
WO2010080446A3 (en) 2010-10-28
CN102272950A (en) 2011-12-07
EP2359411A2 (en) 2011-08-24
EP2359411A4 (en) 2013-07-10
WO2010080446A2 (en) 2010-07-15
JP2012513125A (en) 2012-06-07
KR20110106889A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
TW201029208A (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
US8252624B2 (en) Method of manufacturing thin film solar cells having a high conversion efficiency
US20100269896A1 (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
US20130247972A1 (en) Passivation film stack for silicon-based solar cells
US8895842B2 (en) High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
TW201011934A (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
EP2887404A1 (en) Nanostructure and photovoltaic cell implementing same
US20140000686A1 (en) Film stack and process design for back passivated solar cells and laser opening of contact
TW201203592A (en) Oxide nitride stack for backside reflector of solar cell
TW201228010A (en) Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells
TW200849635A (en) Method of forming thin film solar cells
TW200913292A (en) Multi-junction solar cells and methods and apparatuses for forming the same
TWI455338B (en) New structure solar cell with superlattices
TW200840071A (en) Multi-junction solar cells and methods and apparatuses for forming the same
WO2008062685A1 (en) Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
TW201037852A (en) Pulsed plasma deposition for forming microcrystalline silicon layer for solar applications
US20110120536A1 (en) Roughness control of a wavelength selective reflector layer for thin film solar applications
TW200939508A (en) Intrinsic amorphous silicon layer
WO2004064166A1 (en) Photoelectric converter, photoelectric conversion device and iron silicide film
CN101312219A (en) Solar battery
TW201041167A (en) High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
TW201145539A (en) Methods of forming a thin-film solar energy device
Sonntag et al. Properties of liquid phase crystallized interdigitated back-contact solar cells on glass
JP2012009598A (en) Crystal silicon based solar cell
CN221352770U (en) Battery interlayer structure and battery piece