TW201039954A - Laser processing device and laser processing method - Google Patents

Laser processing device and laser processing method Download PDF

Info

Publication number
TW201039954A
TW201039954A TW099108637A TW99108637A TW201039954A TW 201039954 A TW201039954 A TW 201039954A TW 099108637 A TW099108637 A TW 099108637A TW 99108637 A TW99108637 A TW 99108637A TW 201039954 A TW201039954 A TW 201039954A
Authority
TW
Taiwan
Prior art keywords
height
unit
laser
control unit
workpiece
Prior art date
Application number
TW099108637A
Other languages
Chinese (zh)
Other versions
TWI392551B (en
Inventor
Atsuhiro Kaneda
Masahiro Takeuchi
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201039954A publication Critical patent/TW201039954A/en
Application granted granted Critical
Publication of TWI392551B publication Critical patent/TWI392551B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)

Abstract

This invention provides a laser processing device which enables an eary performing of a laser processing of a work placed on an XY table. The laser processing device of this invention performs a laser processing of a work placed on an XY table by irradiating the work with laser beam, the laser processing device comprising a laser beam irradiating unit which moves to a given height above the work to irradiate the work with laser beam, a Z-axis correction position computing unit 23 which computes a correction value of the height of the laser irradiating unit for each processing position above the work by using an approximation formula of modeling the height of the surface of the XY table, correcting the height of processing as instructed when the work is to be processed with a correction value; and computing the height of processing after correction; and a Z-axis driving unit 34 which moves the laser irradiating unit to the height of processing after correction.

Description

201039954 六、發明說明: 【發明所屬之技術領域】 本發明係關於將載置於XY工作台(table)的加工物 (work)進行雷射加工的雷射加工裝置及雷射加工方法。 【先前技術】 於為被加工物的加工物照射雷射光而進行對於加工 物之雷射加工的雷射加工裝置係構成為具有載置加工物的 XY工作台(加工台)。當於該XY工作台表面例如存有10至 Ο 30 # m左右的凹凸時,照射至XY工作台上之加工物的雷射 光之焦點位置會因XY工作台上的位置而有10至30//m左 右的差異。此情形時,若從聚光鏡片所射出的雷射光之焦 點裕度為30/zm以下,則會有焦點位置不合而加工品質劣 化的問題。 於專利文獻1記載的雷射加工機係預先格子狀地測定 載置加工物的XY工作台表面之高度,且利用包圍加工物上 0 面之任意點的4點之高度求出該點之高度而進行運算。 且,將雷射之成像位置決定於對應所運算出之高度的位置。 (先前技術文獻) (專利文獻) (專利文獻1):日本特開2008-73806號公報 【發明内容】 (發明所欲解決的課題) 然而,於上述習知技術中,當於工作台表面存有複雜 的凹凸時必須增加測定點數。另外,對於1點之測定部位 321887 201039954 *_ 必須保存(Χ,γ,ζ)3點分的資料(位置座標)作為工作台資 料。因此’存有保存資料量龐大的問題。 , 本發明係有鑑於上述問題而研發者,目的為獲得可容 易地進行對於載置於ΧΥ工作台之加工物的雷射加工的雷 射加工裝置及雷射加工方法。 (解決課題的手段) 為了解決上述課題並達成目的’本發明之雷射加工裝 〇置係將雷射光照射於載置在ΧΥ工作台上的加工物而進行 對於前述加工物的雷射加工,其中係具有:雷射光照射部, 在前述加工物上移動至預定高度而向前述加工物照射雷射 光;算出部,使用將前述χγ工作台之表面高度模型化後的 近似式於前述加工物上的每個加工位置算出前述雷射光照 射部之高度的補正值,並且於進行前述加工物之加工之際 將所指示的加工高度以前述補正值補正而算出補正後之加 工高度’·以及驅動部,使前述雷射光照射部移動至前述補 〇 正後之加工高度。 (發明效果) 依據本發明,由於係使用將χγ工作台之表面高度模 型化後的近似式於加工物上的每個加工位置算出雷射光照 射部之高度補正值,故可達到易於進行對應於ΧΥ工作台之 表面T§J度的對於加工物之雷射加工的效果。 【實施方式】 以下,根據圖式而詳細說明本發明實施形態之雷射加 工裝置及雷射加工方法。又,本發明並不被該實施形態所 5 321887 201039954 限定。 實施形態 第1圖為示有本發明實施形態之雷射加工裝置的圖。 雷射加工裝置1為以使雷射光之焦點位置一致於XY工作台 35之凹凸的方式在加工時一邊補正焦點位置之高度一邊 進行雷射加工的裝置。本實施形態之雷射加工裝置1係使 用在Π工作台35之各位置測定的高度將XY工作台35之 高度(表面高度)算出為模型化後的近似式(模型式),使用 〇 該模型式調整雷射光照射位置的高度。雷射加工裝置1係 構成為具有:f 0鏡片(lens)31、高度計測感測器32、攝 影機(camera)33、Z轴驅動部34、以及XY工作台35。 ίθ鏡片(雷射光照射部)31係將從雷射振盪器(未圖 示)射出而導向至加工頭(head)側的雷射光30聚光而照射 至XY工作台35上的加工物W。經由f0鏡片31而照射的 雷射光30係視f0鏡片31之Z軸方向(光軸方向)之高度 q 而決定成像位置。因此,f (9鏡片31係被移動至對應Π 工作台35之凹凸的高度。 高度計測感測器(sensor)32為計測XY工作台35和工 作物W之高度的感測器。高度計測感測器32係例如藉由接 觸XY工作台3 5之上表面或加工物W之上表面而計測XY 工作台35或加工物W之高度。201039954 VI. Description of the Invention: [Technical Field] The present invention relates to a laser processing apparatus and a laser processing method for performing laser processing on a workpiece placed on an XY table. [Prior Art] A laser processing apparatus that performs laser processing on a workpiece by irradiating laser light to a workpiece of a workpiece is configured as an XY table (processing table) on which a workpiece is placed. When there are, for example, irregularities of about 10 to 30 #m on the surface of the XY table, the focus position of the laser light irradiated onto the workpiece on the XY table may be 10 to 30/ depending on the position on the XY table. The difference around /m. In this case, if the focal point margin of the laser beam emitted from the condensing lens is 30/zm or less, there is a problem that the focus position is not matched and the processing quality is deteriorated. In the laser processing machine disclosed in Patent Document 1, the height of the surface of the XY table on which the workpiece is placed is measured in a lattice shape, and the height of the point is obtained by the height of four points surrounding any point on the zero surface of the workpiece. And perform the operation. Moreover, the imaging position of the laser is determined by the position corresponding to the calculated height. (Prior Art Document) (Patent Document 1): JP-A-2008-73806 SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) However, in the above-described prior art, when stored on a surface of a workbench When there are complicated bumps, the number of measurement points must be increased. In addition, for the measurement site of 1 point 321887 201039954 *_ The data (position coordinates) of 3 points (Χ, γ, ζ) must be saved as the workbench material. Therefore, there is a huge problem of storing a large amount of information. The present invention has been made in view of the above problems, and an object of the invention is to provide a laser processing apparatus and a laser processing method which can easily perform laser processing on a workpiece placed on a boring table. (Means for Solving the Problem) In order to solve the above problems and achieve the object, the laser processing apparatus of the present invention irradiates laser light onto a workpiece placed on a cymbal table to perform laser processing on the workpiece. In the above, the laser beam irradiation unit moves the workpiece to a predetermined height to irradiate the workpiece with laser light, and the calculation unit uses an approximate expression model obtained by modeling the surface height of the χγ table on the workpiece. The corrected value of the height of the laser beam irradiation unit is calculated for each of the processing positions, and the processed height is corrected by the correction value when the workpiece is processed, and the corrected machining height is calculated. And moving the aforementioned laser light irradiation unit to the processing height after the correction. (Effect of the Invention) According to the present invention, since the height correction value of the laser light irradiation unit is calculated for each processing position on the workpiece using the approximate expression modeled by the surface height of the χγ table, it is easy to perform the corresponding The effect of the surface of the workbench T§J degree on the laser processing of the workpiece. [Embodiment] Hereinafter, a laser processing apparatus and a laser processing method according to embodiments of the present invention will be described in detail based on the drawings. Further, the present invention is not limited to the embodiment 5 321 887 201039954. Embodiment Fig. 1 is a view showing a laser processing apparatus according to an embodiment of the present invention. The laser processing apparatus 1 is a device that performs laser processing while correcting the height of the focus position during processing so that the focus position of the laser light is aligned with the unevenness of the XY table 35. In the laser processing apparatus 1 of the present embodiment, the height (surface height) of the XY table 35 is calculated as a model (model type) after the height measured at each position of the boring table 35, and the model is used. Adjust the height of the laser light irradiation position. The laser processing apparatus 1 is configured to include a f 0 lens 31, a height measuring sensor 32, a camera 33, a Z-axis driving unit 34, and an XY table 35. The ίθ lens (laser light irradiation unit) 31 is a processed object W that is emitted from a laser oscillator (not shown) and guided to the laser beam 30 on the processing head (head) side to be irradiated onto the XY table 35. The laser light 30 irradiated via the f0 lens 31 determines the imaging position depending on the height q of the f0 lens 31 in the Z-axis direction (optical axis direction). Therefore, f (9 lens 31 is moved to the height corresponding to the unevenness of the Π table 35. The height measuring sensor 32 is a sensor for measuring the heights of the XY table 35 and the workpiece W. The detector 32 measures the height of the XY table 35 or the workpiece W, for example, by contacting the upper surface of the XY table 35 or the upper surface of the workpiece W.

攝影機33係攝像加工物W之上表面。攝影機33係於 例如決定加工物W之XY方向之加工位置時攝像形成於加工 物W的定位標記。另外,攝影機33係攝像形成於加工物W 6 321887 201039954 的加工孔。 Z軸驅動部34係與鏡片31、高度計測感測器32、 以及攝影機33連接。z軸驅動部34係藉由於z軸方向移 動而使f0鏡片31、高度計測感測器32、以及攝影機33 於Z軸方向移動。 XY工作台35係載置加工物w,並且於χγ平面内移動。 XY工作台35係具有平行於χγ平面的主面,並將加工物載 置於該主面上。χγ工作台35具有的在χγ平面内的凹凸係 由高度計測感測器32進行計測。 第2圖為表示雷射加工裝置之構成的功能方塊圖。雷 射加工裝置1係構成為含有:加工控制部丨丨、以及高度控 制裝置2。另外,雷射加工裝置丨係具有:計測感測器控 制部12、高度計測感測器32、高度資料計測部16、工作 台位置計測部13、ΧΥ工作台35、工作台位置計測部17、 鏡片尚度控制部14、攝影機高度控制部15、Ζ軸驅動部34。 〇在此,高度計測感測器32、高度資料計測部16係對應於 在申睛專利範圍中所記載的高度計測部。又,於第2圖中 係省略鏡片31和攝影機33之圖示。 加工控制部11係控制計測感測器控制部12、工作台 位置控制部13、鏡片高度控制部14、以及攝影機高度控制 部15 °加工控制部u係將計測π工作台35和加工物界 之南度的指令(高度計測指令)送至計測感測器控制部 12。加工控制部11係例如於後述的算出Ζ軸補正係數時和 後述的基準位置之補正資料Zbase時,將高度計測指令送 321887 7 201039954 至計測感測器控制部12。 加工控制部11係將使XY工作台35於XY平面内移動 的指令(工作台移動指令)送至工作台位置控制部13。加工 控制部11係於使加工物之加工位置移動時和測定XY工作 台35之高度時將工作台移動指令送至工作台位置控制部 13 ° 加工控制部11係將使f<9鏡片31於高度方向(Z軸方 向)移動的指令(鏡片移動指令)送至鏡片高度控制部14。 〇 加工控制部11係於將加工物W雷射加工時將鏡片移動指令 送至鏡片高度控制部14。 加工控制部11係將使攝影機33於高度方向移動的指 令(攝影機移動指令)送至攝影機高度控制部15。加工控制 部11係於進行加工物W之至XY工作台3 5上的定位時,將 攝影機移動指令送至攝影機高度控制部15。 加工控制部11係構成為可與鏡片高度控制部14和攝 ❹影機高度控制部15之任一方連接。換言之,加工控制部 11係進行對於鏡片高度控制部14之控制和對於攝影機高 度控制部15之控制之間的切換。藉此,加工控制部11係 進行以ίθ鏡片31為基準的高度控制(送出鏡片移動指令 的處理)或以攝影機33為基準的高度控制(送出攝影機移 動指令的處理)中的任一者。 當計測感測器控制部12從加工控制部11收到高度計 測指令時,則使高度計測感測器32計測ΧΥ工作台35和加 工物W之高度。高度計測感測器32係計測ΧΥ工作台35 8 321887 201039954 與加工物¥之高度的感測器。高度計測感測器32係將計測 • 結果(計測訊號)送至高度資料計測部16。 .局度資料計測部16係根據從高度計測感測器32送來 的計測結果計測χγ工作台35和加工物w之高度作為高度 貝料。馬度資料計測部16係將計測得的高度資料送至高度 控制裝置2。 當工作台位置控制部13從加工控制部n收到工作台 〇移動指令時,則對於灯工作台35送出使XY工作台35移 動至XY平面内之預定位置用的工作台移動指示。另外,工 作台位置控制部13係將工作台移動指示送至高度控制裝 置2。工作台位置計測部Π係計測χγ工作台35之在χγ 平面内的位置(賴)作為工作台位置。卫作台位置計測部 17係將計測得的工作台位置送至高度控制裝置2。 當鏡片高度控制部Η從加工控制部U接收鏡片移動 ^時’則將使ίθ鏡片31移動至預定高度的指示(鏡片 〇回度才日令)送至而度控制裝置2。當攝影機高度控制部b 從加工控制部1丨接收攝影機移動指令時,則向高度控制裝 置2送出將攝影機33移動至預定高度的指示(攝影機高度 控制指不W軸驅動部34係連接於高度 來自高度控制裝置2的指示而於Z軸方向移動。 ' 、、高度控職置2係具有:z軸補正f料記憶部2i、z 轴補正係數算出部2 2、Z轴補正位置算出部2 3、以及高度 控制部24。在此,Z軸補正係數算出部2 位置算出部23係對應於申請專利範圍^^^正 321887 9 201039954 Z軸補正資料記憶部21為連接於高度資料計測部 16、以及工作台位置計測部17的記憶體等。z軸補正資料 記憶部21係記憶從高度資料計測部ig所送來的高度資 料,並記憶從工作台位置計測部17送來的工作台位置。在 進订加工物W之雷射加工前係預先於z軸補正資料記憶部 21儲存有令商度資料與工作台位置建立對應關係的資訊 (後述的XY-Z對應資訊1〇1)。χγ_ζ對應資訊1〇1為表示 ΧΥ工作台35之高度ζ與工作台位置(χ,γ)間之對應關係的 ^資訊。 Ζ軸補正係數鼻出部22係於進行加工物w之雷射加工 月’J使用Ζ軸補正資料記憶部21所記憶的χ γ _ ζ對應資訊i ^ 算出XY工作台35之凹凸。具體而言,2軸補正係數算出 部22係對於ΧΥ_Ζ對應資訊i 〇1進行多項式近似而算出表 不XY工作台35之凹凸的模型式(補正式本實施形態係 〇 對於Z軸補正係數算出部22以4次多項式近似χγ工作台 35之凹凸的情形進行說明。ζ軸補正係數算出部22係將: 不ΧΥ工作台35之凹凸的4次多項式之係數作為ζ轴補正 係數而保持。 ζ袖補正餘算料22細可與2姉正 23或高度控制部24之任一者連接的方式構成。all; 數异出部22係以於使用算出的模型式進行加工物说 力口工時連接至Ζ轴補正位置算出部烈,而於算出模型 連接至高度控制部24的方式進行連接目的地的娜。巧 轴補正係數算出部22連接至ζ轴補正位置算出部^時田, 321887 10 201039954 則將Z軸補正係數送至Z軸補正位置算出部23。 Z軸補正位置算出部23係與攝影機高度控制部15、 鏡片高度控制部14、以及Z軸補正係數算出部22連接。Z 軸補正位置算出部23係使用從鏡片高度控制部14送來的 鏡片高度指令、從工作台位置控制部13送來的工作台移動 指示、從Z轴補正係數算出部22送來的Z軸補正係數而算 出對於Z轴驅動部34的補正後高度指令(將鏡片高度指令 之高度補正後的指令)。 〇 具體而言,Z軸補正位置算出部23係算出對應於工作 台移動指示的XY工作台35之位置(工作台位置),並且根 據該XY工作台35之位置而算出XY工作台35上的雷射光 之照射位置。且,使用4次多項式之補正係數而算出在雷 射光之照射位置(X,Y)的高度。更且,將算出的高度與現在 位置之高度間的差作為補正量△ Ζ(Ζ轴補正位置)(補正值) 而算出。Ζ軸補正位置算出部23係使用算出的補正量ΔΖ、 ❹在基準位置的高度補正量Zbase、以及鏡片高度指令而算 出在下一個加工位置的補正後高度指令。Z軸補正位置算 出部23係將算出的補正後高度指令送至高度控制部24。 高度控制部24係連接於Z軸驅動部34而控制Z軸驅 動部34。高度控制部24係使用從Z軸補正位置算出部23 送來的補正後高度指令而控制Z軸驅動部34之高度。 接著,對於雷射加工裝置1之動作程序進行說明。在 此,說明作為雷射加工裝置1之動作程序的Z轴補正係數 之算出處理程序後,接著說明進行雷射加工時之雷射光照 11 321887 201039954 射位置(高度)之補正處理程序。 圖。;ϋ圖τ!表示z軸正缝之算出處雜序的流程 22連接至1補正係數時,預先#Z_正健算出部 =連接=度控制部24,而使由2軸補正位置算出部Μ 效。科加U 1輕高料測感測 益一動工作台35上之任意位置(第1點之測定點) 而測定XY工作台35之高度(步驟sl〇)。具體而言,加工 Ο ㈣部11係送出工作台移動指令至I作台位置控制部 13。當工作台位置控制部13從加工控制部^接收到工作 台移動指令時’則將使高度計測感測器32移動至XY平面 内第1點測定點用的工作台移動指示送至χγ工作台祁與 高度控制裝置2 °工作台位置計測部i 7係將由高度計測感 測器32所測定的χγ工作台35之位置計測為工作台位置。 工作台位置計測部17係將所計測得的工作台位置送至高 度控制裝置2。 〇 將尚度計測感測器32移動至χγ平面内第1點測定點 後’加工控制部11係將計測加工物W高度的高度計測指令 送至計測感測器控制部12。當計測感測器控制部12從加 工控制部11接收到高度計測指令時,則使高度計測感測器 32計測XY工作台35之高度。藉此,高度計測感測器32 係計測XY工作台35的高度,且將計測結果送至高度資料 計測部16。高度資料計測部16係根據從高度計測感測器 32送來的計測結果而將XY工作台35之高度作為高度資料 而計測(步驟S20)。高度資料計測部16係將所記測的高度 12 321887 201039954 資料送至高度控制裝置2。藉此,使高度資料與第工點之 工作台位置建立對應關係,且z轴補正資料記憶部21係將 其記憶為XY-Z對應資訊(步驟S3〇)。 在此,對於在XY工作台35上測定XY工作台35之高 度的測定點進行說明。第4圖為用以說明設定在χγ工作台 3 5上的高5測定點的圖。於Π工作台3 5上係預先配置: 數個成為高度測定之對象的測定點ρ。測定點?係例如於X 方向和Υ方向以預定間隔排列的方式配置。於第4圖係示 有測定點Ρ於X方向排列9點、於γ方向排列8點的方式 而於X方向和γ方向等間隔排列的情形。 加工控制部11係判斷是否已在預先設定的所有測定 點:計測了高度(步驟s 4 〇)。若尚未在全部的測定點ρ計 測南度(步驟S40, No),加工控制部u係將高度計測感測 器32移動至XY工作台35上之任意位置(下一個測定點 P) ’计測XY工作台35之高度(步驟sl〇)。之後,在下一 〇個測定點P測定高度資料,並且使該測定點p的工作台位 置與高度資料建立對應關係的資訊儲存在以由補正資料記 憶部21内的χγ-ζ對應資訊101(步驟S3〇)。 加工控制部11係重複步驟S10至S40之處理至在預 先設定的全部測定點?計測完高度為止。在此,對於χγ_ζ 對應資訊101進行說明。第5圖係表示χγ_ζ對應資訊之一 例的圖。ΧΥ-Ζ對應資訊1〇1係將測定點ρ的座標與在該座 標位置的ΧΥ工作台35之高度賦予對應㈣訊卫作表。於 第5圖係示有將測定點?於作台%上的χ方向以χ 321887 13 201039954 =0, 90, 180, 270的方式以90mm為間隔配置,且於XY工作 台35上之Υ方向以Υ== 0, 80, 160, 240的方式以80mm為間 隔配置時的情形。XY-Z對應資訊101中,於以預定間隔格 子狀排列的測定點P之座標賦予對應XY工作台35之高 度。於第5圖中,(Χ,Υ) =(0,0)係賦予對應的高度a,(X,Y) =(90, 0)係賦予對應的高度b之情形。 當於所有的測定點P計測高度後(步驟S40,Yes),Z 軸補正係數算出部22係將XY工作台35上的區域4分割。 〇藉此,將記憶於Z轴補正資料記憶部21的XY-Z對應資訊 101之資料4分割。換言之,Z軸補正係數算出部22係將 測定高度的測定點P分配至對應於XY工作台35上之區域 的4個群組(步驟S50 )。 第6圖為說明XY工作台之區域分割用的圖。如第6 圖所示,藉由將XY工作台35上之區域如區域A1至D1地 分割而於XY工作台35上設定4個區域。第6圖係表示將 Q XY工作台35上之區域於X方向2分割且於Y方向2分割 的情形。換言之,係藉由平行於X軸的線及平行於Y轴的 線而將XY工作台35上之區域4分割。當以將XY工作台 3 5上之區域分割的平行於X軸的線與平行於Y軸的線間的 交點作為原點時,對應於第1象限的區域為區域B1,對應 於第2象限的區域為區域A1。此外,對應於第3象限的區 域為區域C1,對應第4象限的區域為區域D1。 又,對於XY工作台35上的區域設定並不侷限於Π 工作台35之區域分割。例如,亦可以區域設定後的區域有 14 321887 201039954 一部分與其他區域重複的方式設定各區域。第7圖為用以 說明區域彼此之間有一部分重複時的區域設定的圖。第7 圖係表示當將區域A1至D1分別以與其他區域重疊的方式 擴展預定領域後的區域A2至D2設定於XY工作台35的情 形。 區域A2係使區域A1於X軸方向及Y軸方向擴大後的 區域,區域B2係使區域B1於X軸方向及Y軸方向擴大後 的區域。另外,區域C2係使區域C1於X軸方向及Y軸方 〇 向擴大後的區域,區域D2係使區域D1於X軸方向及Y軸 方向擴大後的區域。藉此,區域A2至D2係分別與其他區 域僅重疊一部分。 Z軸補正係數算出部22係於每個分割區域算出Z軸補 正係數。Z軸補正係數算出部22係藉由以最小平方法等所 進行的多項式近似將XY工作台35之凹凸(高度)模型化。 例如,Z軸補正係數算出部22係藉由第(1)式而將XY工作 Q 台35之高度Z近似。 Z=a+bY+cY2+dY3+eY4+fX+gXY+hXY2+iXY3+jX2+kX2Y+lX2Y2 +mX3+nX3Y+oX4 -(1) Z軸補正係數算出部22係藉由算出第(1)式的係數而 算出每個區域的Z軸補正係數(步驟S60)°Z軸補正係數算 出部22係將算出的Z軸補正係數與各區域賦予對應而記 憶。 又,當於XY工作台35設定有區域A2至D2時,被設 定了複數個區域的領域(例如區域A 2與區域B 2重複的領域) 15 321887 201039954 係選擇被設定的區域之任一者而應用所選擇的區域之z軸 補正係數。另外,於被設定了複數個區域的領域亦可從被 設定的區域中選擇複數個區域且將所選擇的各區域之z軸 補正係數全部應用。此時,使用各區域的各Z軸補正係數 而算出的高度平均值等將成為XY工作台35的高度。 接著,對於進行雷射加工時的雷射光照射位置(高度) 之補正處理程序進行說明。第8圖為表示照射雷射光的高 度之補正處理程序的流程圖。在開始雷射加工前,於XY ^ 工作台35上載置加工物W。之後,雷射加工裝置1係使高 度計測感測器32移動至在XY工作台35上設定於高度基準 位置的XY平面内之座標,計測XY工作台35上之加工物W 之高度(成為基準的高度)。成為高度基準位置的XY平面内 的座標可為加工物W上之任何位置,例如可為加工孔以外 的位置。 計測加工物W之高度時,係預先將Z軸補正係數算出 ❹部22連接至高度控制部24,使由Z軸補正位置算出部23 而來的高度補正無效。之後,加工控制部11係將工作台移 動指令送至工作台位置控制部13。當工作台位置控制部13 從加工控制部11接收工作台移動指令時,則將用以使高度 計測感測器32移動至高度基準位置測定點用的工作台移 動指示送至XY工作台35。工作台位置計測部17係將由高 度計測感測器32所測定的XY工作台35之位置作為工作台 位置而計測。工作台位置計測部17係將所計測的工作台位 置送至高度控制裝置2。 16 321887 201039954 使高度計測感測器32在χγ平面内移動至基準位置測 定點後’加工控制部11係送出計測加工物W之高度的高度 計測指令至計測感測器控制部12。當計測感測器控制部12 從加工控制部11接收兩度計測指令時,則使高度計測感測 器32計測ΧΥ工作台35之高度。藉此,高度計測感測器 3 2係計測對應於加工物W之高度的高度訊號且將計測結果 送至高度資料計測部16。高度資料計測部16係根據從高 度计測感測裔3 2送來的s十測結果而計測加工物$在基準位 〇置的高度。高度資料計測部16係將所計測的高度作為高度 資料而送至高度控制裝置2。 高度資料計測部16所計測的高度資料與工作台位置 計測部17所計測的工作台位置係儲存於2軸補正資料記憶 部214軸補正係數算出部22係算出使用ζ軸補正係數(模The camera 33 captures the upper surface of the workpiece W. The camera 33 captures a positioning mark formed on the workpiece W when, for example, the machining position in the XY direction of the workpiece W is determined. Further, the camera 33 captures a machined hole formed in the workpiece W 6 321887 201039954. The Z-axis drive unit 34 is connected to the lens 31, the height measuring sensor 32, and the camera 33. The z-axis drive unit 34 moves the f0 lens 31, the height measuring sensor 32, and the camera 33 in the Z-axis direction by the z-axis direction movement. The XY table 35 mounts the workpiece w and moves in the χγ plane. The XY table 35 has a main surface parallel to the χγ plane, and the workpiece is placed on the main surface. The unevenness in the χγ plane of the χγ table 35 is measured by the height measuring sensor 32. Fig. 2 is a functional block diagram showing the configuration of a laser processing apparatus. The laser processing apparatus 1 is configured to include a processing control unit 丨丨 and a height control device 2. Further, the laser processing apparatus includes a measurement sensor control unit 12, a height measurement sensor 32, a height data measurement unit 16, a table position measurement unit 13, a boring table 35, and a table position measurement unit 17, The lens shank control unit 14, the camera height control unit 15, and the cymbal drive unit 34. Here, the height measuring sensor 32 and the height data measuring unit 16 correspond to the height measuring unit described in the scope of the patent application. Further, in Fig. 2, the illustration of the lens 31 and the camera 33 is omitted. The machining control unit 11 controls the measurement sensor control unit 12, the table position control unit 13, the lens height control unit 14, and the camera height control unit. The machining control unit u measures the π table 35 and the workpiece boundary. The south degree command (height measurement command) is sent to the measurement sensor control unit 12. The machining control unit 11 sends a height measurement command to the measurement sensor control unit 12, for example, when calculating the Ζ axis correction coefficient to be described later and the correction data Zbase of the reference position to be described later. The machining control unit 11 sends a command (table movement command) for moving the XY table 35 in the XY plane to the table position control unit 13. The machining control unit 11 sends the table movement command to the table position control unit 13 when the machining position of the workpiece is moved and when the height of the XY table 35 is measured. The machining control unit 11 causes the f<9 lens 31 to The command for moving in the height direction (Z-axis direction) (lens movement command) is sent to the lens height control unit 14. The machining control unit 11 sends a lens movement command to the lens height control unit 14 when the workpiece W is laser processed. The machining control unit 11 sends an instruction (camera movement command) for moving the camera 33 in the height direction to the camera height control unit 15. The machining control unit 11 sends a camera movement command to the camera height control unit 15 when positioning the workpiece W onto the XY table 35. The machining control unit 11 is configured to be connectable to either one of the lens height control unit 14 and the camera height control unit 15. In other words, the machining control unit 11 performs switching between the control of the lens height control unit 14 and the control of the camera height control unit 15. Thereby, the machining control unit 11 performs one of height control (processing for sending a lens movement command) based on the ίθ lens 31 or height control (processing for sending a camera movement command) based on the camera 33. When the measurement sensor control unit 12 receives the altitude measurement command from the machining control unit 11, the height measurement sensor 32 measures the heights of the boring table 35 and the workpiece W. The height measuring sensor 32 measures the height of the ΧΥ table 35 8 321887 201039954 with the workpiece. The height measuring sensor 32 sends the measurement result (measurement signal) to the height data measuring unit 16. The locality data measuring unit 16 measures the heights of the χγ table 35 and the workpiece w as the height of the material based on the measurement result sent from the height measuring sensor 32. The horse degree data measuring unit 16 sends the measured height data to the height control device 2. When the table position control unit 13 receives the table 〇 movement command from the machining control unit n, it sends a table movement instruction for moving the XY table 35 to a predetermined position in the XY plane to the lamp stage 35. Further, the table position control unit 13 sends a table movement instruction to the height control device 2. The table position measuring unit measures the position of the χ γ table 35 in the χ γ plane as the table position. The table position measuring unit 17 sends the measured table position to the height control device 2. When the lens height control unit 接收 receives the lens movement from the processing control unit U, an instruction to move the ίθ lens 31 to a predetermined height (the lens return degree) is sent to the degree control device 2. When the camera height control unit b receives the camera movement command from the machining control unit 1 , the camera height control device 2 sends an instruction to move the camera 33 to a predetermined height (the camera height control means that the W-axis drive unit 34 is connected to the height from the height). The height control device 2 is moved in the Z-axis direction. The height control position 2 system includes a z-axis correction material storage unit 2i, a z-axis correction coefficient calculation unit 2, and a Z-axis correction position calculation unit 2 3 . And the height control unit 24. Here, the Z-axis correction coefficient calculation unit 2 corresponds to the patent application range. The 321887 9 201039954 Z-axis correction data storage unit 21 is connected to the height data measurement unit 16, The memory of the table position measuring unit 17 and the like. The z-axis correction data storage unit 21 stores the height data sent from the height data measuring unit ig, and stores the table position sent from the table position measuring unit 17. In the z-axis correction data storage unit 21, information relating the relationship between the quotient data and the table position is stored in advance (the XY-Z correspondence information 1 〇 1 described later) before the laser processing of the workpiece W is performed. The χγ_ζ correspondence information 1〇1 is information indicating the correspondence between the height ζ of the table 35 and the table position (χ, γ). The 补 axis correction coefficient nose portion 22 is a laser for processing the workpiece w The processing month 'J calculates the unevenness of the XY table 35 using the χ γ _ ζ corresponding information i ^ stored in the Ζ axis correction data storage unit 21. Specifically, the two-axis correction coefficient calculation unit 22 is for the ΧΥ_Ζ correspondence information i 〇1 The polynomial approximation is used to calculate the irregularity of the XY table 35. The Z-axis correction coefficient calculation unit 22 approximates the unevenness of the χγ table 35 by the fourth-order polynomial. The correction coefficient calculation unit 22 holds the coefficient of the fourth-order polynomial of the unevenness of the table 35 as the 补 axis correction coefficient. The 补 sleeve correction remainder material 22 can be used in conjunction with the 2姊正23 or the height control unit 24. The method of connecting one is configured. The number of the different parts 22 is connected to the 补 axis correction position calculating unit when the workpiece is said to be used in the calculated model formula, and is connected to the height control unit 24 in the calculation model. Way to connect The target axis correction coefficient calculation unit 22 is connected to the ζ axis correction position calculation unit ○田, 321887 10 201039954, and sends the Z axis correction coefficient to the Z axis correction position calculation unit 23. The Z axis correction position calculation unit 23 The camera height control unit 15, the lens height control unit 14, and the Z-axis correction coefficient calculation unit 22 are connected. The Z-axis correction position calculation unit 23 uses the lens height command sent from the lens height control unit 14 to control the position from the table. The table movement instruction sent from the unit 13 and the Z-axis correction coefficient sent from the Z-axis correction coefficient calculation unit 22 are used to calculate the corrected height command for the Z-axis drive unit 34 (the command for correcting the height of the lens height command). . Specifically, the Z-axis correction position calculating unit 23 calculates the position (table position) of the XY table 35 corresponding to the table movement instruction, and calculates the position on the XY table 35 based on the position of the XY table 35. The location of the laser light. Further, the height of the irradiation position (X, Y) of the laser light is calculated using the correction coefficient of the fourth-order polynomial. Further, the difference between the calculated height and the height of the current position is calculated as the correction amount Δ Ζ (Ζ axis correction position) (correction value). The Ζ axis correction position calculating unit 23 calculates the corrected height command at the next machining position using the calculated correction amount ΔΖ, the height correction amount Zbase at the reference position, and the lens height command. The Z-axis correction position calculating unit 23 sends the calculated corrected height command to the height control unit 24. The height control unit 24 is connected to the Z-axis drive unit 34 to control the Z-axis drive unit 34. The height control unit 24 controls the height of the Z-axis driving unit 34 using the corrected height command sent from the Z-axis correction position calculating unit 23. Next, an operation program of the laser processing apparatus 1 will be described. Here, the processing procedure for calculating the Z-axis correction coefficient as the operation program of the laser processing apparatus 1 will be described, and then the correction processing procedure for the laser irradiation 11 321887 201039954 shooting position (height) at the time of laser processing will be described. Figure. When the flow 22 indicating the calculation of the z-axis positive slit is connected to the 1 correction coefficient, the #Z_ positive calculation unit = the connection degree control unit 24, and the 2-axis correction position calculation unit is provided. Μ Effective. The height of the XY table 35 is measured at any position on the work table 35 (measurement point of the first point) (step sl1). Specifically, the machining unit (four) unit 11 sends a table movement command to the I stage position control unit 13. When the table position control unit 13 receives the table movement command from the machining control unit 2, the height measurement sensor 32 is moved to the XY plane. The table movement instruction for the first point measurement point is sent to the χγ table.祁 and height control device 2° table position measuring unit i 7 measures the position of the χγ table 35 measured by the height measuring sensor 32 as the table position. The table position measuring unit 17 sends the measured table position to the height control device 2.移动 After the measurement sensor 32 is moved to the first measurement point in the χγ plane, the processing control unit 11 sends a height measurement command for measuring the height of the workpiece W to the measurement sensor control unit 12. When the measurement sensor control unit 12 receives the altitude measurement command from the processing control unit 11, the height measurement sensor 32 measures the height of the XY table 35. Thereby, the height measuring sensor 32 measures the height of the XY table 35, and sends the measurement result to the height data measuring unit 16. The height data measuring unit 16 measures the height of the XY table 35 as height data based on the measurement result sent from the height measuring sensor 32 (step S20). The height data measuring unit 16 sends the recorded height 12 321887 201039954 data to the height control device 2. Thereby, the height data is associated with the table position of the work point, and the z-axis correction data storage unit 21 memorizes it as XY-Z correspondence information (step S3). Here, a measurement point for measuring the height of the XY table 35 on the XY table 35 will be described. Fig. 4 is a view for explaining the height 5 measurement points set on the χγ table 35. The Π table 3 is pre-configured: several measurement points ρ that are targets for height measurement. Measuring point? For example, the X direction and the X direction are arranged at predetermined intervals. Fig. 4 shows a case where the measurement points are arranged at 9 o'clock in the X direction and 8 o'clock in the γ direction, and are arranged at equal intervals in the X direction and the γ direction. The machining control unit 11 determines whether or not the measurement points have been measured: the height is measured (step s 4 〇). If the south degree has not been measured at all the measurement points ρ (step S40, No), the machining control unit u moves the height measurement sensor 32 to an arbitrary position on the XY table 35 (next measurement point P) 'measurement The height of the XY table 35 (step sl1). Then, the height data is measured at the next measurement point P, and information on which the table position of the measurement point p is associated with the height data is stored in the χγ-ζ correspondence information 101 in the correction data storage unit 21 (step S3〇). The machining control unit 11 repeats the processing of steps S10 to S40 to all the measurement points set in advance. The height is measured. Here, the χγ_ζ correspondence information 101 will be described. Fig. 5 is a view showing an example of information corresponding to χγ_ζ. The ΧΥ-Ζ correspondence information 1〇1 assigns the coordinates of the measurement point ρ to the height of the ΧΥ table 35 at the coordinate position (4). Is there a measurement point in Figure 5? The χ direction on the table % is arranged at intervals of 90 mm in the manner of 321 321887 13 201039954 =0, 90, 180, 270, and Υ == 0, 80, 160, 240 in the direction of the XY table 35 The case when the mode is arranged at intervals of 80 mm. In the XY-Z correspondence information 101, the coordinates of the measurement point P arranged in a lattice at predetermined intervals are given to the height of the corresponding XY table 35. In Fig. 5, (Χ, Υ) = (0, 0) gives the corresponding height a, and (X, Y) = (90, 0) gives the corresponding height b. When the height is measured at all the measurement points P (Yes in step S40), the Z-axis correction coefficient calculation unit 22 divides the area 4 on the XY table 35. Thereby, the data 4 of the XY-Z correspondence information 101 memorized in the Z-axis correction data storage unit 21 is divided. In other words, the Z-axis correction coefficient calculation unit 22 assigns the measurement points P of the measured height to the four groups corresponding to the area on the XY table 35 (step S50). Fig. 6 is a view for explaining area division of the XY table. As shown in Fig. 6, four regions are set on the XY table 35 by dividing the region on the XY table 35 as the regions A1 to D1. Fig. 6 shows a case where the region on the Q XY table 35 is divided into two in the X direction and divided in the Y direction. In other words, the region 4 on the XY table 35 is divided by a line parallel to the X axis and a line parallel to the Y axis. When the intersection between the line parallel to the X-axis and the line parallel to the Y-axis, which divides the area on the XY table 35, is taken as the origin, the area corresponding to the first quadrant is the area B1, corresponding to the second quadrant. The area is area A1. Further, the area corresponding to the third quadrant is the area C1, and the area corresponding to the fourth quadrant is the area D1. Further, the area setting on the XY table 35 is not limited to the area division of the table 35. For example, you can also set the area by setting the area after the area is set to 14 321887 201039954. Fig. 7 is a view for explaining an area setting when a part of the areas overlap with each other. Fig. 7 is a view showing a case where the areas A2 to D2 after the areas A1 to D1 are overlapped with the other areas so as to overlap the other areas are set on the XY table 35, respectively. The region A2 is a region in which the region A1 is enlarged in the X-axis direction and the Y-axis direction, and the region B2 is a region in which the region B1 is enlarged in the X-axis direction and the Y-axis direction. Further, the region C2 is a region in which the region C1 is enlarged in the X-axis direction and the Y-axis direction, and the region D2 is a region in which the region D1 is enlarged in the X-axis direction and the Y-axis direction. Thereby, the areas A2 to D2 overlap only a part of the other areas, respectively. The Z-axis correction coefficient calculation unit 22 calculates a Z-axis correction coefficient for each divided region. The Z-axis correction coefficient calculation unit 22 models the unevenness (height) of the XY table 35 by polynomial approximation by the least square method or the like. For example, the Z-axis correction coefficient calculation unit 22 approximates the height Z of the XY operation Q stage 35 by the above formula (1). Z=a+bY+cY2+dY3+eY4+fX+gXY+hXY2+iXY3+jX2+kX2Y+lX2Y2+mX3+nX3Y+oX4 - (1) The Z-axis correction coefficient calculation unit 22 calculates the first (1) The Z-axis correction coefficient for each region is calculated by the coefficient of the equation (step S60). The Z-axis correction coefficient calculation unit 22 stores the calculated Z-axis correction coefficient in association with each region. Further, when the areas A2 to D2 are set in the XY table 35, the fields in which the plurality of areas are set (for example, the area in which the area A 2 and the area B 2 overlap) 15 321887 201039954 select any one of the set areas. The z-axis correction factor of the selected region is applied. Further, in the field in which a plurality of regions are set, a plurality of regions can be selected from the set regions, and the z-axis correction coefficients of the selected regions can be applied to all. At this time, the height average value or the like calculated using the respective Z-axis correction coefficients of the respective regions will be the height of the XY table 35. Next, a correction processing procedure for the laser light irradiation position (height) at the time of laser processing will be described. Fig. 8 is a flow chart showing a procedure for correcting the height of the irradiated laser light. The workpiece W is placed on the XY ^ table 35 before the laser processing is started. Thereafter, the laser processing apparatus 1 moves the altimeter sensor 32 to the coordinates in the XY plane set on the XY table 35 at the height reference position, and measures the height of the workpiece W on the XY table 35 (becomes the reference). the height of). The coordinates in the XY plane which becomes the height reference position may be any position on the workpiece W, and may be, for example, a position other than the machined hole. When the height of the workpiece W is measured, the Z-axis correction coefficient calculation ❹ 22 is connected to the height control unit 24 in advance, and the height correction by the Z-axis correction position calculation unit 23 is invalidated. Thereafter, the machining control unit 11 sends a table movement command to the table position control unit 13. When the table position control unit 13 receives the table movement command from the machining control unit 11, the table movement instruction for moving the height measuring sensor 32 to the height reference position measuring point is sent to the XY table 35. The table position measuring unit 17 measures the position of the XY table 35 measured by the height measuring sensor 32 as the table position. The table position measuring unit 17 sends the measured table position to the height control device 2. 16 321887 201039954 After the height measurement sensor 32 is moved to the reference position measurement point in the χγ plane, the machining control unit 11 sends a height measurement command for measuring the height of the workpiece W to the measurement sensor control unit 12. When the measurement sensor control unit 12 receives the two-degree measurement command from the machining control unit 11, the height measurement sensor 32 measures the height of the boring table 35. Thereby, the height measuring sensor 32 measures the height signal corresponding to the height of the workpiece W and sends the measurement result to the height data measuring unit 16. The height data measuring unit 16 measures the height of the workpiece $ at the reference position based on the s ten measurement result sent from the height measurement sensed person. The height data measuring unit 16 sends the measured height to the height control device 2 as height data. The height data measured by the height data measuring unit 16 and the table position measured by the measuring unit 17 are stored in the two-axis correction data storage unit 214. The axis correction coefficient calculating unit 22 calculates the use of the 补 axis correction coefficient (modulo).

型式)所算出的高度之偏移(offset)值。該偏移值為對應於 加工物W之厚度的高度,而使位移(shift)以模型式算出的 高度達該偏移值的量。具體而言,z_正係數算㈣^ 係使f在基準位置的卫作台位置和模型式而算出在基準位 置的高度,並且使用在所算出的基準位置的高度和汽 料計測部16所計測的高度算出為高度之偏移值的補^ 料Zbase(步驟Sli〇)。 拥貝 〜之後,將z軸補正魏算㈣22連接至z轴補正位 置鼻出部23,使由z軸補正位置算出部2 正有效。更且,脸k 于们内度補 有效更且將加工控制部η連接至鏡片高度控制部 321887 17 201039954 之後,雷射加工裝置1開始第1點之雷射加工。加工 控制部11係將對應於第1點之加工位置的移動指令 (XI, ΥΙ,ΖΙ)輸入至鏡片高度控制部14與工作台位置控制 部13(步驟S120)。具體而言,加工控制部11係將鏡片移 動指令送至鏡片高度控制部14,將工作台移動指令送至工 作台位置控制部13。 當鏡片高度控制部14從加工控制部11接收鏡片移動 指令時,則將使鏡片31之高度移動至雷射光照射位置 〇 的鏡片高度指令Z1送至Z軸補正位置算出部23。在此的 鏡片高度指令Z1係指示當XY工作台35為平坦且未載置加 工物W時指定可以最佳焦點將雷射光照射於XY工作台35 上的鏡片31之向度的指不育訊。 當工作台位置控制部13從加工控制部11接收工作台 移動指令時,則送出用以使鏡片31移動至第1點加工 位置的工作台移動指示至XY工作台35。藉此,XY工作台 ❹ 35係移動至第1點加工位置。具體而言,係以使f0鏡片 31邁向加工物W上之第1點加工位置上的方式移動XY工 作台35。 另外,工作台位置控制部13係將對應於第1點加工 位置的工作台移動指示送至Z軸補正位置算出部23。Z軸 補正位置算出部23係使用Z軸補正係數算出部22所算出 的模型式而算出第1點加工位置的高度與在基準位置的高 度間的差作為移動目的地的補正量ΔΖ1(步驟S130)。在此 所指的補正量ΔΖ1係當將在第1點加工位置的高度設為 18 321887 201039954Type) The calculated offset value of the height. The offset value is a height corresponding to the thickness of the workpiece W, and the shift is calculated by the model to a height up to the offset value. Specifically, the z_positive coefficient calculation (four)^ calculates the height at the reference position by the position of the guard table at the reference position and the model, and uses the height at the calculated reference position and the temperature measurement unit 16 The measured height is calculated as the patch Zbase of the height offset value (step Sli〇). After the suffix 〜, the z-axis correction Wei (4) 22 is connected to the z-axis correction position nose portion 23, so that the z-axis correction position calculation unit 2 is valid. Further, after the face k is internally compensated and the machining control unit η is connected to the lens height control unit 321887 17 201039954, the laser processing apparatus 1 starts the laser processing at the first point. The machining control unit 11 inputs a movement command (XI, ΥΙ, ΖΙ) corresponding to the machining position of the first point to the lens height control unit 14 and the table position control unit 13 (step S120). Specifically, the machining control unit 11 sends a lens movement command to the lens height control unit 14, and sends a table movement command to the table position control unit 13. When the lens height control unit 14 receives the lens movement command from the processing control unit 11, the lens height command Z1 for moving the height of the lens 31 to the laser light irradiation position 〇 is sent to the Z-axis correction position calculating unit 23. Here, the lens height command Z1 indicates that the sterility of the lens 31 that can illuminate the laser light on the XY table 35 with the best focus when the XY table 35 is flat and the workpiece W is not placed is indicated. . When the table position control unit 13 receives the table movement command from the machining control unit 11, the table position control unit 13 sends a table movement instruction for moving the lens 31 to the first point machining position to the XY table 35. Thereby, the XY table ❹ 35 is moved to the first point machining position. Specifically, the XY table 35 is moved such that the f0 lens 31 is moved toward the first processing position on the workpiece W. Further, the table position control unit 13 sends a table movement instruction corresponding to the first point machining position to the Z-axis correction position calculating unit 23. The Z-axis correction position calculation unit 23 calculates the difference between the height of the first point machining position and the height of the reference position as the correction amount ΔΖ1 of the movement destination using the model formula calculated by the Z-axis correction coefficient calculation unit 22 (step S130). ). The correction amount ΔΖ1 referred to here is when the height at the processing position of the first point is set to 18 321887 201039954

Zl,在基準位置的高度設為Z0時,ΔΖ1 = Ζ1-Ζ0。 之後,Ζ軸補正位置算出部23係使用模型式而算出進 行第1點加工時之補正後高度指令。具體而言,將補正後 高度指令設為Zzl時,係藉由第(2)式而算出補正後高度指 令 Zzl(步驟 S140)。 Ζζ1 = Ζ1 + ΔΖ卜Zbase …(2) Z軸補正位置算出部23係將所算出的補正後高度指令 Zzl送至高度控制部24,高度控制部24係使用補正後高度 〇 指令Zzl而控制Z轴驅動部34。藉此,f <9鏡片31係移動 至將來自加工控制部11之移動指令(XI,Y1,Z1)補正後的 位置(Xl,Yl,Zzl)(步驟S150)。並且,雷射加工裝置1係 進行第1點之雷射加工(步驟S160)。 加工控制部11係判斷是否已將所有的加工點加工(步 驟S170)。若未將所有的加工點加工(步驟S170,N〇),雷射 加工裝置1則開始第2點之加工處理(步驟S180)。 q 加工控制部11係將對應於第2點之加工位置的移動 指令(X2,Y2,Z2)輸入鏡片高度控制部14和工作台位置控 制部13(步驟S120)。具體而言,加工控制部11係將鏡片 移動指令送至鏡片高度控制部14,將工作台移動指令送至 工作台位置控制部13。 當鏡片高度控制部14從加工控制部11接收鏡片移動 指令時,則將使ίθ鏡片31之高度移動至雷射光照射位置 的鏡片高度指令Ζ2送至Ζ軸補正位置算出部23。在此, 鏡片高度指令Ζ2係與進行第1點加工時之鏡片高度指令 19 321887 201039954 ζι為相同高度。 當工作台位置控制部13從加工控制部11接收工作台 移動指令時,則向XY工作台35送出將ίθ鏡片31移動至 第2點之加工位置的工作台移動指示。藉此,ΧΥ工作台35 係移動至第2點之加工位置。具體而言,係以使f0鏡片 31到達加工物W上之第2點加工位置上的方式移動XY工 作台35。 另外,工作台位置控制部13係將對應於第2點加工 ❹位置的工作台移動指示送至Z轴補正位置算出部23。Z軸 補正位置算出部23係使用Z轴補正係數算出部22所算出 的模型式而算出在第2點加工位置的高度與在第1點加工 位置的高度間的差作為移動目的地的補正量ΔΖ2(步驟 S130)。在此所指之補正量ΔΖ2係當將第2點加工位置的 局度設為Ζ1時為ΔΖ2=Ζ2_Ζ1。 之後,Ζ軸補正位置算出部23係利用模型式而算出進 0行第2點加工時之補正後高度指令。具體而言,將補正後 高度指令設為Ζζ2時,係藉由第(3)式而算出補正後高度指 令 Ζζ2(步驟 S140)。 Ζζ2=Ζ2 +ΔΖ2-ΖΒ3·36 …(3) 第(3)式之Ζ2係進行第1點之加工時的補正後高度指 令Zzl。從而,第2點之補正後高度指令Ζζ2係藉由第(4) 式而算出。 Ζζ2二Zzl + AZ2-Zbase …(4) Z軸補正位置算出部23係將所算出的補正後高度指令 20 321887 201039954Zl, when the height of the reference position is set to Z0, ΔΖ1 = Ζ1-Ζ0. After that, the 补 axis correction position calculating unit 23 calculates the corrected height command at the time of the first point machining using the model formula. Specifically, when the corrected height command is Zzl, the corrected height command Zz1 is calculated by the equation (2) (step S140). Ζζ1 = Ζ1 + ΔΖ卜Zbase (2) The Z-axis correction position calculation unit 23 sends the calculated corrected height command Zz1 to the height control unit 24, and the height control unit 24 controls the Z using the corrected height 〇 command Zzl. Shaft drive unit 34. Thereby, the f <9 lens 31 is moved to the position (X1, Y1, Zzl) obtained by correcting the movement command (XI, Y1, Z1) from the machining control unit 11 (step S150). Further, the laser processing apparatus 1 performs laser processing at the first point (step S160). The machining control unit 11 determines whether or not all the machining points have been processed (step S170). If all the machining points have not been processed (step S170, N〇), the laser processing apparatus 1 starts the processing of the second point (step S180). The machining control unit 11 inputs the movement command (X2, Y2, Z2) corresponding to the machining position of the second point to the lens height control unit 14 and the table position control unit 13 (step S120). Specifically, the machining control unit 11 sends a lens movement command to the lens height control unit 14, and sends a table movement command to the table position control unit 13. When the lens height control unit 14 receives the lens movement command from the processing control unit 11, the lens height command Ζ2 for moving the height of the ίθ lens 31 to the laser light irradiation position is sent to the Ζ axis correction position calculating unit 23. Here, the lens height command Ζ2 is the same height as the lens height command 19 321887 201039954 ζι when the first point processing is performed. When the table position control unit 13 receives the table movement command from the machining control unit 11, the table position control unit 13 sends a table movement instruction to move the ίθ lens 31 to the processing position of the second point to the XY table 35. Thereby, the boring table 35 is moved to the processing position of the second point. Specifically, the XY stage 35 is moved such that the f0 lens 31 reaches the second processing position on the workpiece W. Further, the table position control unit 13 sends a table movement instruction corresponding to the second spot machining position to the Z-axis correction position calculating unit 23. The Z-axis correction position calculation unit 23 calculates the difference between the height at the second machining position and the height at the first machining position as the correction amount of the movement destination using the model formula calculated by the Z-axis correction coefficient calculation unit 22 . ΔΖ2 (step S130). The correction amount ΔΖ2 referred to here is ΔΖ2=Ζ2_Ζ1 when the degree of the second point machining position is Ζ1. After that, the Ζ axis correction position calculating unit 23 calculates the corrected height command at the time of the second line machining by the model formula. Specifically, when the corrected height command is Ζζ2, the corrected height command Ζζ2 is calculated by the equation (3) (step S140). Ζζ2=Ζ2 +ΔΖ2-ΖΒ3·36 (3) Equation 2 (3) is the post-correction height command Zzl when the first point is processed. Therefore, the corrected height command Ζζ2 at the second point is calculated by the equation (4). Ζζ2 2 Zzl + AZ2-Zbase (4) The Z-axis correction position calculation unit 23 sets the calculated corrected height command 20 321887 201039954

Zz2送至高度控制部24,高度控制部24係使用補正後高度 ,指令Zz2而控制驅動部34。藉此,Μ鏡片31係移動 ‘至將來自加工控制部11之移動指令«2, Υ2,Ζ2)補正後的 位置(Χ2,Υ2,Ζζ2)(步驟sl5〇)。並且,雷射加工裝置i係 進行第2點之雷射加工(步驟si6〇)。 第9圖為用以說明在移動目的地的補正量和補正資料 的圖。如第9圖所示,在基準位置的高度ZQ與在第^點加 〇工位置的高度Z1間的差為Μ卜在第1點加工位置的高 度Z1與在第2點加工位置的高度Z2間的差為δζ2。如上 所述’在各加工點的高度可藉由與在前一加工點之高度間 的差而表示。於本實施形態中,係藉由模型式算出該^度 差ΔΖ卜ΔΖ2等’使用ΔΖ^ ΔΖ2等而算出補正後高度 指^。料’於算出補正後高度指令時,係將藉由模型式 而算出的高度位移補正資料Zbase量。 加工控制部11係判斷是否已將所有的加工點加工(步 〇驟S170)。雷射加工裝置i係重複步驟湖至$⑽的處 理至將所有的加工點加工為止。 冨進行第n(n為自然數)點之加工時,%軸補正位置算 f部23係使用Z軸補正係數算出部22所算出的模型式而 f出在第η點加工位置的高度與在第㈤)點加工位置的 同度間的差作為移動目的地的補正量△ Ζη。此時之補正量 △ Ζη係當以在第η點加卫位置的高度為Ζη,以在第(^) 點加工位置的高度為Z(n-l)時為ΑΖη=Ζη-Ζ(η-1)。 更且,Ζ軸補正位置算出部23係使用模型式算出進行 321887 21 201039954 第η點之加工時之補正後高度指令。具體而言,當將補正 後高度指令設為Ζζη時,藉由第(5)式而算出補正後高度指 令 Ζζη。 Ζζη=Ζζ(η-1) + ΔΖη-Zbase …(5) 當將所有的加工點加工後(步驟S170, Yes),雷射加工 裝置1係結束對於加工物W之雷射加工。之後,當將下一 加工物W進行加工時則重複步驟S110至S180的處理。 如上所述,本實施形態係使用模型式算出XY工作台 〇 35表面之凹凸量。之後,當產生工作台位置之下一移動指 令時,根據模型式而算出移動目的地的凹凸量並且算出與 移動前之高度間的差分。之後,於工作台移動時即將雷射 光之照射位置往高度方向移動所算出的差分量。藉此,可 沿著XY工作台35之凹凸模型而補正加工物W之加工位置 的高度。 又,於本實施形態中,雖以藉由4次多項式將XY工 0作台35之凹凸近似的情形為例進行說明,但亦可藉由未滿 4次式的多項式或5次式以上的多項式而近似XY工作台35 之凹凸。 又,本實施形態中雖以由雷射加工裝置1算出模型式 之情形為例進行說明,但亦可用其他裝置算出模型式。此 時,雷射加工裝置1係使用其他裝置所算出的模型式而算 出補正後高度指令Ζζη。 又,於本實施形態中雖以將ΧΥ工作台35上之區域4 分割且於每個區域算出Ζ轴補正係數的情形為例進行說 22 321887 201039954 明,但區域分割並不限為4分割。例如亦可將XY工作台 35上之區域2分割、3分割,或5分割以上亦可。另外, 亦可不分割ΧΥ工作台35上之區域地算出Ζ軸補正係數。 依據上述實施形態,由於係使用多項式進行近似,故 只需少數用於ΧΥ工作台35之凹凸算出的資料(補正係數) 即可。從而,需儲存的資料量較少。 另外,由於係將ΧΥ工作台35上的區域分割而於每個 區域個別算出Ζ軸補正係數,故可正確地近似ΧΥ工作台 〇 35之凹凸。另外,由於傣以區域Α2至D2分別與其他區域 之一部分重疊的方式而於}(Υ工作台35上進行區域設定, 故即使在邊界附近也可正確地進行近似。 (產業上的可利用性) 如以上所述,本發明之雷射加工裝置及雷射加工方法 係適用於載置於ΧΥ工作台的加工物之雷射加工。 【圖式簡單說明】 q 第1圖為示有實施形態之雷射加工裝置的圖。 第2圖為示有雷射加工裝置之構成的功能方塊圖。 第3圖為示有Ζ軸補正係數之算出處理程序的流程 圖。 第4圖為用以說明設定於ΧΥ工作台上的高度測定點 的圖。 第5圖為示有ΧΥ-Ζ對應資訊之一例圖。 第6圖為用以說明ΧΥ工作台之區域分割的圖。 第7圖為用以說明當區域彼此有一部分重複時之區域 23 321887 201039954 設定的圖。 第8圖 程圖。 為示有照射雷射光之高度的補正處理程序的流 第9圖為用 的圖。 以說明在移動目的地之補正量和補正資料Zz2 is sent to the height control unit 24, and the height control unit 24 controls the drive unit 34 using the corrected height and the command Zz2. Thereby, the Μ lens 31 is moved to the position (Χ2, Υ2, Ζζ2) corrected by the movement command «2, Υ2, Ζ2 from the machining control unit 11 (step s15). Further, the laser processing apparatus i performs laser processing at the second point (step si6〇). Fig. 9 is a view for explaining the correction amount and correction data at the movement destination. As shown in Fig. 9, the difference between the height ZQ at the reference position and the height Z1 at the first point plus the workpiece position is the height Z1 at the processing position at the first point and the height Z2 at the processing position at the second point. The difference between them is δζ2. The height at each processing point as described above can be expressed by the difference from the height of the previous processing point. In the present embodiment, the correction difference height ΔΖ ΔΖ2 or the like is calculated by the model formula to calculate the corrected height height by using ΔΖ^ ΔΖ2 or the like. When the height command is calculated, the height displacement correction data Zbase amount calculated by the model formula is used. The machining control unit 11 determines whether or not all the machining points have been processed (step S170). The laser processing apparatus i repeats the processing of the steps from the lake to $(10) until all the processing points are processed. When the nth (n is a natural number) point is processed, the % axis correction position calculation f portion 23 uses the model equation calculated by the Z-axis correction coefficient calculation unit 22, and the height at the n-th processing position is f The difference between the degrees of the processing position of the (5)th point is used as the correction amount Δ Ζη of the moving destination. The correction amount Δ Ζ η at this time is Ζη with the height at the η point, and ΑΖη=Ζη-Ζ(η-1) when the height of the machining position at the (^) point is Z(nl) . Further, the Ζ axis correction position calculating unit 23 calculates the corrected height command when performing the processing of the η point of 321887 21 201039954 using the model formula. Specifically, when the corrected height command is set to Ζζη, the corrected height command Ζζη is calculated by the equation (5). Ζζη=Ζζ(η-1) + ΔΖη-Zbase (5) When all the machining points are processed (step S170, Yes), the laser processing apparatus 1 ends the laser processing for the workpiece W. Thereafter, the processing of steps S110 to S180 is repeated when the next workpiece W is processed. As described above, in the present embodiment, the amount of irregularities on the surface of the XY table 〇 35 is calculated using a model formula. Thereafter, when a movement command below the table position is generated, the amount of unevenness of the movement destination is calculated based on the model formula and the difference from the height before the movement is calculated. Thereafter, when the table is moved, the calculated irradiation amount of the laser light is moved in the height direction. Thereby, the height of the processing position of the workpiece W can be corrected along the concave-convex model of the XY table 35. Further, in the present embodiment, the case where the XY 0 is approximated by the fourth-order polynomial is described as an example. However, the polynomial of less than four times or the fifth-order or more may be used. Polynomial approximates the bump of the XY table 35. Further, in the present embodiment, the case where the model is calculated by the laser processing apparatus 1 will be described as an example, but the model may be calculated by another means. At this time, the laser processing apparatus 1 calculates the corrected height command Ζζη using the model equation calculated by another device. Further, in the present embodiment, the case where the region 4 on the boring table 35 is divided and the 补-axis correction coefficient is calculated for each region is described as an example of 22 321 887 201039954, but the region division is not limited to four divisions. For example, the area on the XY table 35 may be divided into two, three, or five or more. Further, the 补 axis correction coefficient may be calculated without dividing the area on the boring table 35. According to the above embodiment, since the approximation is performed using a polynomial, only a small amount of data (correction coefficient) for calculating the unevenness of the table 35 is required. Thus, the amount of data to be stored is small. Further, since the area on the boring table 35 is divided and the 补 axis correction coefficient is calculated for each area, the unevenness of the ΧΥ table 〇 35 can be accurately approximated. Further, since the regions Α2 to D2 are partially overlapped with one of the other regions, the region is set on the Υ table 35, so that the approximation can be accurately performed even in the vicinity of the boundary. (Industrial Applicability) As described above, the laser processing apparatus and the laser processing method of the present invention are suitable for laser processing of a workpiece placed on a boring table. [Schematic description] q Fig. 1 shows an embodiment Fig. 2 is a functional block diagram showing the configuration of a laser processing apparatus. Fig. 3 is a flow chart showing a calculation procedure for calculating the 补 axis correction coefficient. Fig. 4 is a view for explaining A diagram of the height measurement point set on the ΧΥ table. Fig. 5 is a diagram showing an example of ΧΥ-Ζ correspondence information. Fig. 6 is a diagram for explaining the area division of the ΧΥ table. A diagram showing the area when the areas overlap with each other. 23 321887 201039954 The figure is shown in Fig. 8. The flow of the correction processing program showing the height of the laser beam is shown in Fig. 9. The figure is used for the purpose of movement. Land supplement And the amount of correction data

【主要元件符號說明】 1 雷射加工裝置 2 11 加工控制部 12 13 工作台位置控制部 14 鏡片高度控制部15 16 高度資料計測部 π 21 Z軸補正資料記憶部 22 Z軸補正係數算出部 23 Z軸補正位置算出部 24 高度控制部 30 31 f 鏡片 32 33 攝影機 34 35 XY工作台 1 〇 1 A1至Dl,Α2至D2區域W 高度控制裴置 計測感測器控制部 攝影機高度控制部 工作台位置計測部 雷射光 向度計測感測器 Z轴驅動部 XY~Z對應資訊 加工物 321887[Description of main component symbols] 1 Laser processing apparatus 2 11 Machining control unit 12 13 Table position control unit 14 Lens height control unit 15 16 Height data measurement unit π 21 Z-axis correction data storage unit 22 Z-axis correction coefficient calculation unit 23 Z-axis correction position calculation unit 24 Height control unit 30 31 f Lens 32 33 Camera 34 35 XY table 1 〇1 A1 to D1, Α2 to D2 area W Height control measurement sensor control unit Camera height control unit table Position measuring section laser light direction measuring sensor Z-axis driving part XY~Z corresponding information processing object 321887

Claims (1)

201039954 七、申請專利範圍. 1. 一種雷射加工裝置,係將雷射光照射於載置在XY工作 台上的加工物而進行對於前述加工物的雷射加工,其中 係具有: 雷射光照射部,在前述加工物上移動至預定高度而 向前述加工物照射雷射光; 算出部,使用將前述XY工作台之表面高度模型化 後的近似式於前述加工物上的每個加工位置算出前述 〇 雷射光照射部之高度的補正值,並且於進行前述加工物 之加工之際將所指示的加工高度以前述補正值補正'而 算出補正後之加工高度;以及 驅動部,使前述雷射光照射部移動至前述補正後之 加工高度。 2. 如申請專利範圍第1項之雷射加工裝置,係復具有:測 定前述XY工作台之高度的高度計測部; 前述算出部係根據在前述高度計測部所測定的複 〇 數點之前述χγ工作台之表面高度而算出前述近似式。 3. 如申請專利範圍第2項之雷射加工裝置,其中,前述算 出部係於前述XY工作台上設定複數個區域,且於每個 區域算出前述近似式。 4. 如申請專利範圍第3項之雷射加工裝置,其中,前述算 出部係以使鄰接的前述區域彼此有一部分區域重疊的 方式設定前述區域。 5. —種雷射加工方法,係將雷射光照射於載置在XY工作 25 321887 201039954 台上的加工物而進行對於前述加工物的雷射加工,其中 係具有: 補正值算出步驟,將在前述加工物上移動至預定高 度而向前述加工物照射雷射光的雷射光照射部之高度 補正值使用將前述XY工作台之表面高度模型化後的近 似式於前述加工物上的每個加工位置算出; 加工高度算出部,於進行前述加工物之加工之際將 所指示的加工高度以前述補正值補正而算出補正後之 ◎ 加工高度;以及 加工步驟,使前述雷射光照射部移動至前述補正後 之加工高度進行雷射加工。 26 321887201039954 VII. Patent application scope 1. A laser processing apparatus for performing laser processing on the processed object by irradiating laser light onto a workpiece placed on an XY table, wherein the laser light irradiation unit The workpiece is moved to a predetermined height to irradiate the workpiece with laser light, and the calculation unit calculates the 〇 by using an approximate expression modeled on the surface height of the XY table on each of the processed objects. a correction value of the height of the laser beam irradiation unit, and the corrected machining height is corrected by the correction value when the workpiece is processed, and the corrected machining height is calculated; and the driving unit causes the laser beam irradiation unit Move to the processing height after the above correction. 2. The laser processing apparatus according to claim 1, further comprising: a height measuring unit that measures a height of the XY table; wherein the calculating unit is based on the number of retracements measured by the height measuring unit The approximate expression is calculated by the surface height of the χγ table. 3. The laser processing apparatus according to claim 2, wherein the calculation unit sets a plurality of regions on the XY table, and calculates the approximate expression for each region. 4. The laser processing apparatus according to claim 3, wherein the calculation unit sets the area so that a portion of the adjacent regions overlap with each other. 5. A laser processing method for irradiating laser light onto a workpiece placed on an XY machine 25 321887 201039954 to perform laser processing on the workpiece, wherein the method includes: a correction value calculation step, which will be performed The height correction value of the laser beam irradiation unit that irradiates the predetermined object to the predetermined height and irradiates the laser beam to the workpiece is an approximation formula obtained by modeling the surface height of the XY table on each of the processing objects. The processing height calculation unit calculates the corrected machining height by correcting the instructed machining height with the correction value, and the machining step, and moves the laser beam irradiation unit to the correction. The post processing height is laser processed. 26 321887
TW099108637A 2009-03-31 2010-03-24 Laser processing device and laser processing method TWI392551B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086219A JP5213783B2 (en) 2009-03-31 2009-03-31 Laser processing apparatus and laser processing method

Publications (2)

Publication Number Publication Date
TW201039954A true TW201039954A (en) 2010-11-16
TWI392551B TWI392551B (en) 2013-04-11

Family

ID=42802237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099108637A TWI392551B (en) 2009-03-31 2010-03-24 Laser processing device and laser processing method

Country Status (4)

Country Link
JP (1) JP5213783B2 (en)
KR (1) KR101181204B1 (en)
CN (1) CN101850471A (en)
TW (1) TWI392551B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134703A (en) * 2012-05-31 2013-12-10 참엔지니어링(주) Laser processing system and method
JP2016132032A (en) * 2015-01-22 2016-07-25 株式会社デンソー Hole opening processing device
WO2016147273A1 (en) * 2015-03-13 2016-09-22 三菱電機株式会社 Laser processing device, calibration data generation method, and program
JP2017056489A (en) * 2015-08-31 2017-03-23 株式会社リコー Optical processing device and method for producing optical workpiece
KR102566170B1 (en) 2016-09-12 2023-08-10 삼성전자주식회사 Wafer perforating device
KR102070726B1 (en) * 2017-04-04 2020-01-29 주식회사 이오테크닉스 Laser processing system and laser processing method
JP6795060B1 (en) * 2019-07-11 2020-12-02 オムロン株式会社 Control device and laser machining system equipped with it, laser machining method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150474B2 (en) * 1999-07-28 2008-09-17 株式会社ミツトヨ Method and apparatus for correcting table deflection of image measuring machine
JP2001276986A (en) * 2000-03-29 2001-10-09 Nec Corp Laser processing apparatus and method
JP2002316276A (en) * 2001-04-18 2002-10-29 Nec Corp Device for correcting marking deformation and method for correcting marking in laser marking apparatus
JP2002361462A (en) * 2001-05-31 2002-12-18 Toppan Printing Co Ltd Laser drilling device with automatic measurement correction function for manufacturing wiring board and method for manufacturing printed wiring board by using the device
JP2004243383A (en) * 2003-02-14 2004-09-02 Sumitomo Heavy Ind Ltd Laser beam machine, and laser beam machining method
JP2004358550A (en) 2003-06-09 2004-12-24 Sumitomo Heavy Ind Ltd Laser beam machining method and laser beam machining apparatus
JP2005028423A (en) * 2003-07-09 2005-02-03 Disco Abrasive Syst Ltd Laser beam machining method and device
KR100584839B1 (en) 2004-08-13 2006-05-30 주식회사 이오테크닉스 Laser electrode cutting apparatus and its control method
JP4603838B2 (en) * 2004-09-13 2010-12-22 発紘電機株式会社 Laser printer and its program
US7363180B2 (en) * 2005-02-15 2008-04-22 Electro Scientific Industries, Inc. Method for correcting systematic errors in a laser processing system
JP4272667B2 (en) * 2006-09-21 2009-06-03 日立ビアメカニクス株式会社 Drilling method and laser processing machine
CN101253018B (en) * 2006-09-28 2010-05-19 三菱电机株式会社 Laser machining apparatus

Also Published As

Publication number Publication date
KR20100109396A (en) 2010-10-08
JP2010234420A (en) 2010-10-21
JP5213783B2 (en) 2013-06-19
TWI392551B (en) 2013-04-11
KR101181204B1 (en) 2012-09-18
CN101850471A (en) 2010-10-06

Similar Documents

Publication Publication Date Title
TW201039954A (en) Laser processing device and laser processing method
JP6591068B2 (en) Method for calibrating at least one scanning system of an SLS facility or SLM facility
CN105320399B (en) Laser patterning skew correction
TWI510317B (en) Laser processing method and laser processing device
JP6189984B2 (en) 3D measuring device
KR102385607B1 (en) Focus calibration of the output radiation source of an additive manufacturing device
US9978172B2 (en) Method for recording individual three-dimensional optical images to form a global image of a tooth situation
TW201024012A (en) Laser processing apparatus
JP6091153B2 (en) Welding robot system and placement method of placement object on surface plate in welding robot
JP2018083966A (en) Lamination molding apparatus
KR20130142928A (en) A laser apparatus and a method of directing laser to a workpiece surface
JP6632781B1 (en) Laser processing apparatus, laser processing method, and error adjustment method
JP2011054841A (en) Processing method
JP5277505B2 (en) End material management method and management system
TW200815132A (en) Laser processing apparatus
JP2002103459A (en) Stereo lithographic device and method for producing stereo lithographic product
KR20110019990A (en) Method for aligning a substrate
CN113853261B (en) Method and device
CN214684758U (en) Laser marking system capable of correcting marking offset of vibrating mirror
TWI783672B (en) Lamination molding apparatus and calibration method thereof
JP2010214413A (en) Laser processing apparatus with alignment correction function
WO2021220949A1 (en) Robot system
JP2000117466A (en) Teaching method of yag laser beam machine, and its device
JP2016161825A (en) Exposure apparatus, substrate, and exposure method
JPWO2019150480A1 (en) Processing system and processing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees