TW201033570A - Methods and apparatus for recovering heat from processing systems - Google Patents

Methods and apparatus for recovering heat from processing systems Download PDF

Info

Publication number
TW201033570A
TW201033570A TW098135139A TW98135139A TW201033570A TW 201033570 A TW201033570 A TW 201033570A TW 098135139 A TW098135139 A TW 098135139A TW 98135139 A TW98135139 A TW 98135139A TW 201033570 A TW201033570 A TW 201033570A
Authority
TW
Taiwan
Prior art keywords
heat
reagent
processing chamber
effluent
heat exchanger
Prior art date
Application number
TW098135139A
Other languages
Chinese (zh)
Inventor
Andreas Neuber
Daniel O Clark
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201033570A publication Critical patent/TW201033570A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Weting (AREA)

Abstract

Methods and apparatus for recovering heat from disposed effluents are disclosed herein. In some embodiments, an apparatus may include a first process chamber configured for gaseous or liquid processes; a second process chamber configured for liquid processes; and a heat pump having a compressor and a first heat exchanger, wherein the compressor is configured to use a first effluent exhausted from the first process chamber and wherein the first heat exchanger having first and second sides configured to transfer heat therebetween, wherein the first side is configured to flow a liquid reagent therethrough and into the second process chamber, and wherein the second side is configured to flow the pressurized first effluent from the first process chamber therethrough. In some embodiments, a heater may be disposed between the heat pump and the second process chamber to further heat the liquid reagent prior to entering the second process chamber.

Description

201033570 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大體上是關於半導體、平面面板、光 電或其他矽與薄膜處理腔室和設備,且特別是有關用於 回收來自此處理系統之熱的方法和設備。 【先前技術】 • 在半導體、平面面板、光電和其他矽或薄膜處理系統 中,用於處理系統前,許多製程需預熱液態或氣態試劑。 試劑在緊接著使用之前,常以加熱器加熱,例如使用點 加熱器或類似的加熱設備。處理後,來自處理系統的流 出物(如使用過的或是「髒的」水或化學品、氣態排放物 等)一般導向廢物處理系統來處理及/或處置流出物。通 常,使用較冷的介質處置或稀釋流出物之前,需先冷卻 流出物,或是將熱散至周遭空氣,,而接著亦需移除之。 預熱試劑需要大量能量’此會增加製造成本,故本發 明是有關用於回收來自處置流出物(disp〇sed effiuent)之 熱的方法和設備’以助於減少製造成本。 【發明内容】 在此揭露用於回收來自處置流出物之熱的方法和設 備。在一些實施例中,設備包括:基板處理系統,包含 配置用於液態製程的處理腔室;具第一與第二側邊的第 4 201033570 一熱交換器’且該熱交換器配置用以於第一與第二側邊 之間傳遞熱’其中第一側邊配置以使液態試劑流經其中 並流至處理腔室’且第二側邊配置以使來自處理腔室的 流出物流經其中;以及加熱器,係設置而與第一熱交換 器的第一側邊對準(in line with),以於液態試劑進入處理 腔室前,加熱該液態試劑。201033570 VI. OBJECTS OF THE INVENTION: TECHNICAL FIELD [0001] Embodiments of the present invention generally relate to semiconductor, planar panel, optoelectronic or other germanium and thin film processing chambers and apparatus, and more particularly to recycling from such processing systems The method and equipment of the heat. [Prior Art] • In semiconductors, flat panel, optoelectronics, and other germanium or thin film processing systems, many processes require preheating of liquid or gaseous reagents prior to processing the system. The reagents are often heated by a heater just prior to use, for example using a point heater or similar heating device. After treatment, effluent from the processing system (e.g., used or "dirty" water or chemicals, gaseous emissions, etc.) is typically directed to a waste treatment system to treat and/or treat the effluent. Typically, the effluent must be cooled prior to disposal or dilution of the effluent using a cooler medium, or the heat must be dissipated to ambient air, which is then removed. The preheating reagent requires a large amount of energy' which increases the manufacturing cost, so the present invention relates to a method and apparatus for recovering heat from a ef〇sed effiuent' to help reduce manufacturing costs. SUMMARY OF THE INVENTION Methods and apparatus for recovering heat from a treatment effluent are disclosed herein. In some embodiments, an apparatus includes: a substrate processing system including a processing chamber configured for a liquid process; a fourth 201033570 heat exchanger having first and second sides and the heat exchanger configured to Transferring heat between the first and second sides 'where the first side is configured to flow liquid reagent therethrough and to the processing chamber' and the second side is configured to allow effluent from the processing chamber to pass therethrough; And a heater disposed in line with the first side of the first heat exchanger to heat the liquid reagent before it enters the processing chamber.

籲 在一些實施例中,基板處理系統包括:廢熱源,用以 提供内儲存有廢熱的第一廢流體;第一處理腔室,具有 一試劑源’該試劑源與其耦接且配置以提供試劑至第一 處理腔室的内部容積;以及熱泵,耦接於廢熱源和送入 試劑管線之間,該送入試劑管線係使試劑流入處理腔室 的内部容積,熱泵係配置以傳遞來自廢熱源之熱到送入 試劑管線中的試劑。在__些實施例中,熱系包括壓縮機 和第一熱交換器,其中壓縮機係耦接而與廢熱源和熱交 換器的第一側邊對準,並在第一廢流體流過熱交換器的 第一側邊前,加壓第一廢流體,且其中第一熱交換器的 第二側邊配置以使試劑流經其中。 在一些實施例中,系統更包括加熱器,其係設置而與 第一熱交換器的第二側邊對準,以於試劑進入第一處理 腔室前,加熱該試劑。在-些實施例中,廢熱源包含= 列一或多者:來自配置用於液態或氣態製程之處理腔室 的-流出物、壓縮空氣系統、空氣分離屋縮機、來自: 弱裝置的氣態排放物或液態冷卻劑、來自電子 設備的熱空氣或液態冷卻劑等。 # 5 201033570 在一些實施例中,篦—占 弟處理腔室係配置用於能锢 程,其Φ斑抽、U夏用於液態製 ^ 廢熱源包含配置用认名能*丨 — 夏用於氣態製程的第二虚理腔 至,且提供第一廢熱當作出 物》 自第一處理腔室的氣態排放In some embodiments, the substrate processing system includes: a waste heat source for providing a first waste fluid in which waste heat is stored; a first processing chamber having a reagent source coupled to the reagent source and configured to provide a reagent An internal volume to the first processing chamber; and a heat pump coupled between the waste heat source and the feed reagent line for flowing the reagent into the internal volume of the processing chamber, the heat pump configured to transfer the waste heat source Heat to the reagents sent to the reagent line. In some embodiments, the thermal system includes a compressor and a first heat exchanger, wherein the compressor is coupled to align with the waste heat source and the first side of the heat exchanger and overheat the first waste fluid stream The first waste fluid is pressurized before the first side of the exchanger, and wherein the second side of the first heat exchanger is configured to allow reagent to flow therethrough. In some embodiments, the system further includes a heater disposed to align with the second side of the first heat exchanger to heat the reagent prior to entering the first processing chamber. In some embodiments, the waste heat source comprises = one or more of the columns: from the effluent configured for the processing chamber for the liquid or gaseous process, the compressed air system, the air separation houser, the gaseous state from: the weak device Emissions or liquid coolant, hot air or liquid coolant from electronic equipment, etc. # 5 201033570 In some embodiments, the 篦 占 占 处理 处理 处理 处理 处理 处理 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占 占The second imaginary cavity of the gaseous process is up to, and the first waste heat is provided as a matter of gaseous emissions from the first processing chamber

在一些實施例中 二熱交換器,該第 側邊之間傳熱,其 使試劑流經其中並 換器的第二側邊係 廢流體流經其中。 ’系統更包括具第 二熱交換器係配置 中第二熱交換器的 流至第一處理腔室 配置以使從第一處 一與第二側邊的第 用以於第一與第二 第一側邊係配置以 ’且其中第二熱交 理腔室排出的第二In some embodiments, the two heat exchangers transfer heat between the first sides, which causes reagents to flow therethrough through which the second side of the converter is vented. The system further includes a flow of the second heat exchanger in the second heat exchanger configuration to the first processing chamber configuration such that the first and second sides are used for the first and second One side is configured with 'and the second of the second heat transfer chamber is discharged

=本發明之-態樣中’揭露用於回收來自處置流出物 之熱的方法。在一些實施例中,處理基板的方法包括指 供配置用於液態製程絲接熱交換器的處理腔室,熱交 換器具有將液態試劑流入處理系統的第一側邊和供來自 處理腔室之流出物(直接或抽自中間貯槽)流動的第二侧 邊;藉由把熱從流經熱交換器第二側邊的流出物傳遞到 流經熱交換器第-側邊的試劑,而預㈣液態試劑;以 及利用設在熱交換器與處理腔室間的加熱器以加熱該 經預熱之液態試劑達期望溫度。 在一些實施例中,處理基板的方法包括:使液態試劑 流過熱交換器的第一側邊’以預熱液態試劑;利用加熱 器’以加熱該經預熱之液態試劑達期望溫度;使該經加 熱之液態試劑流至配置用於液態製程的處理腔室;以及 使來自腔室的製程流出物(直接或抽自中間貯槽)流經熱 6 201033570 交換器的第二側邊,以預熱流經熱交換器第—側邊的液 態試劑。 ' 在-些實施例中’處理基板的方法包括:使試劑流經 柄接至廢熱源的熱泵,以將來自廢熱源的熱傳遞到試劑 而加熱試劑;以及使經加熱之試劑流至處理腔室,以處 理基板。在-些實施例中’處理基板的方法包括使試劑 流經第一熱交換器的第一側邊,以傳遞來自加壓廢熱流 艘且流經熱交換器第二側邊的熱而加熱試劑;以及使經 瘳 加熱之試劑流至處理腔室,以處理基板。在一些實施例 中’廢熱源或廢熱流體包含下列一或多者:來自配置用 於氣態製程之處理腔室的液態廢流體、排出物或液態冷 卻劑、壓縮空氣系統、空氣分離壓縮機、來自減弱裝置 的氣態排放物或液態冷卻銷、來自電子及/或機械設備的 熱空氣或液態冷卻劑等。 其他和進一步之實施例將詳述於後。= In the aspect of the invention - a method for recovering heat from the treatment of the effluent is disclosed. In some embodiments, a method of processing a substrate includes a processing chamber configured for a liquid process wire-bonded heat exchanger having a first side of a liquid reagent flowing into a processing system and for providing a processing chamber a second side of the effluent (directly or drawn from the intermediate sump); preheated by passing heat from the effluent flowing through the second side of the heat exchanger to the reagent flowing through the first side of the heat exchanger (d) a liquid reagent; and heating the preheated liquid reagent to a desired temperature using a heater disposed between the heat exchanger and the processing chamber. In some embodiments, a method of processing a substrate includes: flowing a liquid reagent through a first side of the heat exchanger to preheat the liquid reagent; using a heater to heat the preheated liquid reagent to a desired temperature; The heated liquid reagent flows to a processing chamber configured for liquid processing; and the process effluent from the chamber (either directly or pumped from the intermediate sump) flows through the second side of the heat 6 201033570 exchanger for preheating A liquid reagent that flows through the first side of the heat exchanger. 'Processing a substrate in some embodiments includes flowing a reagent through a heat pump stalked to a waste heat source to transfer heat from the waste heat source to the reagent to heat the reagent; and flowing the heated reagent to the processing chamber Room to process the substrate. The method of processing a substrate in some embodiments includes flowing a reagent through a first side of the first heat exchanger to transfer heat from the pressurized waste heat flow vessel and flowing through a second side of the heat exchanger to heat the reagent And flowing the heated reagent to the processing chamber to process the substrate. In some embodiments, the 'waste heat source or waste heat fluid comprises one or more of the following: liquid waste fluid from a process chamber configured for a gaseous process, effluent or liquid coolant, a compressed air system, an air separation compressor, from Attenuate the gaseous emissions or liquid cooling pins of the device, hot air or liquid coolant from electronic and/or mechanical equipment, and the like. Other and further embodiments will be described in detail later.

【實施方式】 在此揭露用於回收及利用來自處理系統中處置流出物 (disposed effluent)之熱的方法和設備。本發明之方法和 設備藉由在相同及/或其他處理系統中使用之前,利用來 自處理系統之廢熱(如來自處理腔室之處置流出物和由 其他處理系統部件產生之廢熱)來預熱流體,而助於減少 基板處理系統(如半導體、平面面板、光電或其他梦和薄 7 201033570 膜處理系統)的能量消耗。減少處置流出物的熱更有益於 處置流出物的後續處理,例如利用減弱或其他處置手段。 第1圖纷示根據本發明一些實施例之處理系統。處理 系統1可操作一需要加熱輸入(氣體或液體)的製程。在 第1圖實例中,輸入2(如冷的超純水(UPW))供給處理腔 室3»處理系統更包括複數個廢熱源4、5、6。廢熱源可 為處理設備、減弱設備、空氣調節設備等,其將詳述於 下。在一些實施例中,廢熱源(如廢熱源4)為處理腔室3 本身處置的流出物(如連接處理腔室3與廢熱源4的虛線 所不)。處理系統1包括一或多個熱泵7,用以傳遞廢熱 源5、6之熱,進而於流出物系統1〇中進行處置前,加 熱處理腔室3之輸入。若為相容,則可聚集廢熱源5、6, 並使用相同熱泵(如所示)。或者,不相容的廢熱可使用 獨立熱果系統(未繪示)。視情況而定,預熱器(如熱交換 器8)可用來在流出物系統11中進行處置前,傳遞來自廢 φ 氣/流出物且不與熱泵7相容之熱到處理腔室3之輸入 2°在一些實施例中,流出物系統10、11為相同的流出 物系統。又視情況而定,加熱器9設置以依需求進一步 加熱輸入2達期望製程溫度。許多系統之變化形式將描 述於後。 第2圖綠示根據本發明一些實施例之基板處理系統 1 〇〇 °半導體處理系統100包括處理腔室102,其係配置 以進行溼式製程(如溼檯製程 ;wet bench process)。處理 腔室1 可為任何適合液態製程的處理腔室,而液態製 8 201033570 程具有需加熱之送入液態試劑和可回收熱之處置流出 物。適合的處理腔室包括任何單一基板或批式清潔系 統’例如用於溼式化學蝕刻或清潔(如預熱或剝除後溼式 清潔)的腔室等。示例處理腔室包括OASIS STRIPtm或 OASIS CLEANTM,其可購自美國加州聖克拉拉之應用材 料公司(Applied Materials, Inc.)。 又如第1圖所示’處理腔室1〇2包括基板支撐件112, 用以支托基板114。基板114可為任何適合處理的材料, 鲁 例如結晶矽(如Si<l〇〇>4 Si<lll>)、氧化矽、應變矽、 石夕鍺、摻雜或未摻雜之多晶矽、摻雜或未摻雜之矽晶圓、 圖案化或未圖案化之晶圓、絕緣層上覆矽(silic〇n 〇n insulator; SOI)、碳摻雜之氧化矽、氮化矽、摻雜矽、鍺、 珅化鎵、玻璃、藍寶石、顯示器基板(如液晶顯示器 (LCD)、電漿顯示器、電激發光(EL)燈顯示器等)、太陽 能電池陣列基板、發光二極體(LED)基板等。基板114可 φ 具各種尺寸,例如直徑200毫米(mm)或30〇mm的晶圓、 和矩形或方形面板。基板114的正面可為親水性、疏水 性或其組合。正面經圖案化或具有一或多個圏案化層(例 如光罩)置於其上。 基板114放在基板支撐件112表面上的凹部116中。 凹部116例如用來讓基板114浸沒於試劑浴中。試劑由 設在支撐件112上方的喷嘴118供應。凹部116不限於 形成在基板支撐件表面的凹陷。因此,凹部116例如可 由基板周圍用來支撺基板114的邊環或把架(未緣示)構 201033570 成’其中基板114構成凹部基底。基板支撐件更包括設 在基板114的背側下方約3毫米(mm)處的板(未繪示)。 板包括換能器(transducer)(未鳍示),其可發射超音波頻 率範圍或約800-2000千赫(kHz)的聲音。 流體進料口(未繪示)設於基板支撐件112中並穿過板 來供應流體,進而於處理時供應液體以填充板與基板u4 背側間約3mm的間隙(未繪示)^液體可當作將超音波能 ❹ 量傳遞到基板114的載體’例如做為清潔製程期間的提 供搜動的手段或做為加熱晶圓的方式。基板支樓件 更包括升降/旋轉構件(未緣示)’其例如用來可控制地將 試劑均勻地散佈在整個基板114的正面。處理腔室1〇2 的頂部包括過濾器(未繪示),用以清淨流入處理腔室而 至基板114前側的空氣。 喷嘴118可在處理腔室1〇2的壁面耦接至送入流體管 線(incoming fluid line)l〇4。噴嘴設置以引導氣流、蒸氣 # 或液艘至基板114的正面。在一些實施例中,喷嘴118 分配試劑來填充凹部116,藉以使基板114的正面浸沒於 試劑中。在-些實施例中,噴嘴118分配且均勻散佈試 劑在整個基板114的正面1如,喷嘴以足夠讓試劑覆 蓋基板114正面的流速來分配試劑,同時維持足以讓試 劑覆蓋基板114正面的轉速,而將正面上覆蓋有試劑。 試劑源108經由送入流髏管線1〇4耦接至處理腔室 1〇2’以例如透過嘴嘴118提供液態試劑給處理腔室 1〇2。加熱器120沿著流體管線⑽置,以在液態試劑 201033570 於處理腔室102中使用前,加熱流經流體管線104的液 態試劑。加熱器12〇可設在沿著流體管線1〇4上的任何 適當點’例如盡量靠近處理腔室1〇2以使熱損失最小 化加熱器12〇例如為使用點加熱器(p〇int 〇f use heater) 或其他用於加熱試劑達期望溫度的適合加熱設備。例 如,在一些實施例中,試劑源108供應的液態試劑呈約 I5 C至約180°C。在一些實施例中,加熱器丨2〇加熱液 態试劑達約3 5 °C至約18 〇 。[Embodiment] Methods and apparatus for recovering and utilizing heat from a disposed effluent in a processing system are disclosed herein. The method and apparatus of the present invention preheat fluid using waste heat from the processing system (e.g., waste effluent from the processing chamber and waste heat generated by other processing system components) prior to use in the same and/or other processing systems And help reduce the energy consumption of substrate processing systems (such as semiconductors, flat panels, photovoltaics or other dream and thin 7 201033570 membrane processing systems). Reducing the heat of the treatment effluent is more beneficial for the subsequent treatment of the treatment effluent, for example by attenuating or other means of disposal. Figure 1 illustrates a processing system in accordance with some embodiments of the present invention. The processing system 1 can operate a process that requires heating of the input (gas or liquid). In the example of Figure 1, input 2 (e.g., cold ultrapure water (UPW)) is supplied to the processing chamber 3»the processing system further includes a plurality of waste heat sources 4, 5, 6. The waste heat source can be a processing device, a weakening device, an air conditioning device, etc., which will be described in detail below. In some embodiments, the waste heat source (e.g., waste heat source 4) is the effluent disposed of by the processing chamber 3 itself (e.g., the dashed line connecting the processing chamber 3 to the waste heat source 4). The processing system 1 includes one or more heat pumps 7 for transferring the heat of the waste heat sources 5, 6 and then heating the input of the chamber 3 prior to disposal in the effluent system 1 . If compatible, the waste heat sources 5, 6 can be collected and the same heat pump (as shown) used. Alternatively, an incompatible waste heat can be used with an independent hot fruit system (not shown). Depending on the situation, a preheater (e.g., heat exchanger 8) can be used to deliver heat from the spent φ gas/effluent that is not compatible with the heat pump 7 to the processing chamber 3 prior to disposal in the effluent system 11. Input 2° In some embodiments, the effluent systems 10, 11 are the same effluent system. Also depending on the situation, the heater 9 is arranged to further heat the input 2 to the desired process temperature as needed. Many variations of the system will be described later. Figure 2 is a green substrate processing system in accordance with some embodiments of the present invention. The semiconductor processing system 100 includes a processing chamber 102 that is configured for wet processing (e.g., wet bench process). The processing chamber 1 can be any processing chamber suitable for liquid processing, while the liquid system 8 201033570 has a heated effluent for the delivery of liquid reagents and recoverable heat. Suitable processing chambers include any single substrate or batch cleaning system' such as chambers for wet chemical etching or cleaning (e.g., preheating or stripping wet cleaning). An example processing chamber includes OASIS STRIPtm or OASIS CLEANTM, which is commercially available from Applied Materials, Inc. of Santa Clara, California. Further, as shown in Fig. 1, the processing chamber 1〇2 includes a substrate support member 112 for supporting the substrate 114. The substrate 114 can be any material suitable for processing, such as crystalline germanium (e.g., Si<l>4 Si<lll>), cerium oxide, strain enthalpy, cerium, doped or undoped polycrystalline germanium, doped Hetero- or undoped germanium wafers, patterned or unpatterned wafers, silicon dioxide-on-insulator (SOI), carbon-doped germanium oxide, tantalum nitride, germanium-doped germanium , germanium, gallium antimonide, glass, sapphire, display substrate (such as liquid crystal display (LCD), plasma display, electroluminescent (EL) lamp display, etc.), solar array substrate, light-emitting diode (LED) substrate, etc. . The substrate 114 can be of various sizes, such as wafers having a diameter of 200 millimeters (mm) or 30 inches, and rectangular or square panels. The front side of the substrate 114 can be hydrophilic, hydrophobic, or a combination thereof. The front side is patterned or has one or more patterned layers (e.g., a photomask) placed thereon. The substrate 114 is placed in a recess 116 on the surface of the substrate support 112. The recess 116 is used, for example, to immerse the substrate 114 in the reagent bath. The reagent is supplied by a nozzle 118 provided above the support member 112. The recess 116 is not limited to the recess formed on the surface of the substrate support. Therefore, the recess 116 can be formed, for example, by a side ring around the substrate for supporting the substrate 114 or by a frame (not shown). The substrate 114 constitutes a recess base. The substrate support further includes a plate (not shown) disposed about 3 millimeters (mm) below the back side of the substrate 114. The board includes a transducer (not shown) that can emit a range of ultrasonic frequencies or sounds of about 800-2000 kilohertz (kHz). A fluid inlet (not shown) is disposed in the substrate support 112 and passes through the plate to supply the fluid, and further supplies the liquid during processing to fill a gap of about 3 mm between the plate and the back side of the substrate u4 (not shown). The carrier which can be used to transfer the ultrasonic energy to the substrate 114 can be used, for example, as a means of providing a search during the cleaning process or as a means of heating the wafer. The substrate fulcrum member further includes a lifting/rotating member (not shown) which is used, for example, to controllably spread the reagent evenly over the entire front surface of the substrate 114. The top of the processing chamber 1〇2 includes a filter (not shown) for cleaning the air flowing into the processing chamber to the front side of the substrate 114. The nozzle 118 can be coupled to the incoming fluid line 104 at the wall of the processing chamber 1〇2. The nozzles are arranged to direct the airflow, vapor # or liquid reservoir to the front side of the substrate 114. In some embodiments, the nozzle 118 dispenses reagent to fill the recess 116 whereby the front side of the substrate 114 is immersed in the reagent. In some embodiments, the nozzles 118 dispense and evenly distribute the reagents across the front side of the substrate 114. For example, the nozzles dispense reagents at a flow rate sufficient to allow the reagent to cover the front side of the substrate 114 while maintaining a rotational speed sufficient to allow the reagent to cover the front side of the substrate 114, The front side is covered with reagents. The reagent source 108 is coupled to the processing chamber 1〇2' via a feed stream line 1〇4 to provide a liquid reagent to the processing chamber 1〇2, for example, through the nozzle 118. Heater 120 is placed along fluid line (10) to heat the liquid reagent flowing through fluid line 104 prior to use in liquid reagent 201033570 in processing chamber 102. The heater 12A can be placed at any suitable point along the fluid line 1'4, for example as close as possible to the processing chamber 1〇2 to minimize heat loss to the heater 12, for example using a point heater (p〇int 〇 f use heater) or other suitable heating device for heating the reagent to the desired temperature. For example, in some embodiments, the reagent source 108 supplies a liquid reagent at a level of from about 5 C to about 180 °C. In some embodiments, the heater 丨 2 〇 heats the liquid reagent from about 35 ° C to about 18 。.

熱交換器103係設置而與加熱器12〇上游的送入流體 管線104對準(in_line _),以將於來自於試劑源⑽ 的液態試劑在流過加熱胃12〇之前進行預熱。熱交換器 103般包括第一側邊和第二側邊,其穩健地熱麵接, 以於二者間傳熱。熱交換器103的第一側邊對準耦接至 送入流艘管線104 , 流經其中。熱交換器 室102的流出物管線 流經其中》 以供試劑源1 所供應的液態試劑 103的第二側邊對準耦接至處理腔 106 ’以供處理腔室1〇2的流出物 來自處理腔室102之漭屮队丄 瓦出物中所儲存的熱係透過熱交 換器103傳遞到供給處理 腔至102的液態試劑。例如, 在一些實施例中,處理腔室 102處理後所排放的流出物 之溫度呈約3 0 °C至約18 〇 „ . 5 . 。故流出物中所儲存的熱可 用來對供給至處理腔窒1n〇 Λ 的液態試劑進行預熱,進而 減夕加熱器120加熱液態試 $劑所需的功率。在一此實施 例中,利用傳輸自流出物營 你 一 線10ό的熱來預熱該液態試 201033570 劑’則可減少加熱器12〇的能量消耗至少約20%。 熱交換器103可為任何適合交換二液體間之熱的熱交 換器’且可視實際可用空間而具有任何適當尺寸。在― 些實施例中,熱交換器103為非加壓系統’其中流出物 因重力而流過熱交換器的第二側邊。在一些實施例中, 熱交換器103為加壓系統,其中流出物例如收集在槽或 中間貯槽105中’並可抽吸通過熱交換器的第二側邊。 儘管圖式繪示獨立部件,然在一些實施例中,熱交換 器103可與加熱器12〇整合成單一裝置,其提供上述兩 種功能。在一些實施例中,熱交換器103與處理腔室1〇2 整合,如此經由熱交換器輸送到處理腔室前,液態試劑 只需加熱至較低溫度’則其可提高液態試劑溫度至期望 處理溫度、或熱交換器設有出口以附接加熱器。 流出物管線106耦接至處理腔室102的基底。處理腔 室102的基底不需如第1圖般呈水平,且通常為傾斜讓 處置流出物朝向單一位置流動,例如設於基底並與流出 物管線106相連的排放設備《處理腔室1〇2的流出物例 如流過流出物管線1〇6而至流出物系統11〇,以處理及/ 或處置流出物。流出物系統11 〇例如包括減弱系統或其 他適合處置流出物的系統。 送入流趙管線104包含任何有助於在流出物管線ι〇6 與流體管線中之液態試劑間穩健地進行熱傳的適當材 料。流出物管線106包含任何有助於在流出物與流體管 線104間穩健地進行熱傳的適當材料。在一些實施例 12 201033570 中,材料具高導熱性(如大於或等於約3〇〇w/mK)。在一 些實施例中’導熱性可以為較低(例如考量材料相容性 而需使用聚合物的情況)。在—些實施例中,材料包括 銅、鋼、不錄鋼、鑛辞鋼、欽、鶴、高錄含量的合金、 碳、聚合物、矽、覆矽金屬、鋁、碳、石英、陶莞與玻 璃、和陶瓷及/或玻璃塗覆材料的至少其中之一者。在一 些實施例中,更依據與試劑的化學相容性來選擇送入流 體管線ι〇4的材料。在一些實施例中,更依據與處置流 出物的化學相容性來選擇流出物管線1〇6的材料。 如上所述’部分的流出物管線1〇6(即熱交換器103的 第二側邊)係熱耦接至部分的送入流體管線1〇4(即熱交 換器103的第一側邊)。或者,流出物管線1〇6可盤繞在 流體管線104周圍、或以任何適當配置而熱耦接至送入 流想管線104,以使得在流出物管線1〇6中流動之流出 物與在送入流體管線1〇4中流動並流向處理腔室1〇2之 ❹ 液態試劑間的熱傳最大化(例如,流出物管線106和送入 流體管線104的配置實質構成熱交換器)。或者或此外, 部分的流出物管線1 〇6可熱耦接至試劑源1 〇8,以助於 把熱傳遞到流體管線104中的試劑。 處理系統100更包括耦接至處理腔室1〇2的控制器 122 ’用以控制其運作及/或控制處理系統100的一或多 個其他部件。控制器122 —般包含中央處理單元(CPU)、 記憶趙和支援電路(未繪示)。控制器122直接或利用腔 室部件相關的個別控制器(未繪示)來控制處理腔室1 〇2 13 201033570 和各種腔室部件。在一些實施例中,可使用其他控制元 件’例如不含CPU的工業控制器。 操作時,首先,液態試劑從試劑源i08流入該送入流 體管線104,且經加熱器12〇加熱達期望溫度。試劑接 著流入處理腔室1〇2及通過喷嘴118而至基板114。試劑 與基板114或設置於其上的材料反應及/或變成污染物, 進而形成流出物。流出物藉由流出物管線1〇6而於腔室 1〇2的基底處置。流出物管線1〇6透過熱交換器ι〇3將 來自流出物之熱傳遞到流體管線〗〇4中的液態試劑。因 回收流出物之熱而升溫的液態試劑在進入處理腔室1〇2 前’加熱器120只需提供較少能量。故回收流出物之熱 可減少處理系統1〇〇(—些實施例包括加熱器1〇2)的能量 消耗。 或者’外部廢熱源可代替上述來自處置流出物之内部 循環廢熱以提供廢熱。採用外部廢熱源的示例處理系統 將配合第3圖說明於下。 第3圖繪示根據本發明一些實施例之基板處理系統。 半導髏處理系統包括半導體處理系統300和廢熱重獲 (recapture)系統301,用以預熱用於系統300的試劑。半 導體處理系統300實質類似於處理系統1 〇〇。但不像流 出物管線106供給系統1〇〇廢熱,耦接中間貯槽1〇5和 流出物系統110的流出物管線107不提供廢熱給系統300 的送入流體管線104。 廢熱重獲系統301包括熱泵124,該熱泵124經由廢 201033570 熱導管125耦接至廢熱源123和系統300的送入流體管 線1〇4(或其他欲被加熱之流體管線p廢熱重獲系統301 利用來自廢熱源123的廢熱來預熱流過送入流體管線 104的試劑。 廢熱源123可為任何來自液態或氣態製程或其他晶圓 廠(fab)設備的適合廢熱源,例如出自加熱浴的液態化學 品、配置用於氣態製程之處理腔室的液態冷卻劑或氣態 排放物、處理泵堆棧、其他腔室設備(如電漿源、加熱器、 熱水排放裝置等)、壓縮空氣系統、空氣分離壓縮機、空 氣壓縮機、來自減弱裝置的氣態排放物或液態冷卻劑、 來自電子及/或機械設備的熱空氣或液態冷卻劑等。熱泵 124係設置而與廢熱導管125對準。廢熱導管125更耦 接廢熱源123和排放系統129。排放系統129例如為減 弱系統或其他適合的廢物處理系統。廢熱導管125通常 用於輸送從廢熱源123排放到排放系統129的氣態流出 物。 在一些實施例中,熱泵124包括壓縮機126和熱泵熱 交換器128。儘管圖式纷示獨立部件,然在一些實施例 中’熱泵124更包括(如整合)加熱器12〇或配設不同加 熱器。熱果的操作類似液體至水的地熱熱泵(liquid t〇 water geothermic heat pump)。或者,若需要加熱器,則 熱系124可選擇性耦接至加熱器(例如加熱器ι2〇)。 在一些實施例中,壓縮機126係設置而與廢熱源123 與熱泵熱交換器128間的廢熱導管125對準。壓縮機ι26 15 201033570 可為任何適合壓縮氣態流出物的裝置。增加氣態流出物 的壓力可提高廢熱導管125中的流出物溫度,而有助於 改善熱泵熱交換器128的熱傳。 熱泵熱交換器128可為任何適合交換廢流出物與送入 流體間之熱的熱交換器,且可視實際可用空間具任何適 當尺寸。熱泵熱交換器128係設置而與加熱器12〇(若有) 上游的送入流體管線104對準,以於來自試劑源1〇8的 試劑進入處理腔室102(或其他加熱試劑使用位置)之 前,預熱該試劑《熱泵熱交換器128 一般包括第一側邊 和第二側邊,其穩健地熱耦接,以於二者間傳熱。熱泵 熱交換器128的第一側邊係耦接而與送入流體管線1〇4 對準’以供試劑源1〇8供應的試劑流經其中。熱泵熱交 換器128的第一側邊係耦接而與廢熱導管對準,以 供廢熱源123的流出物流經其中。 操作時,流經該送入流體管線1〇4的試劑在熱果熱交 鲁換器m内透過流經廢熱導管125之廢流出物之熱的熱 傳而加熱。廢流出物在流經熱泵熱交換器128之前經壓 機126麼縮,可增進藉由廢流出物的溫度提高而產生 的熱傳。 自廢*’、、源123之廢流出物中所儲存的熱係透過熱杲 熱^換器128傳遞到供給處理腔室1G2的試劑。例如, 】中廢熱源123排放的氣態流出物溫度呈 約30〇C至約90°c。勒·盗能山& + 故氣態流出物中所儲存的熱可用來預 熱供給處理腔官】 102的試劑,進而減少或免除加熱器120 16 201033570 加熱液態試劑達期望溫度所需的功率。在一些實施例 中,利用廢熱導管125傳遞的熱來預熱試劑,可減少加 熱器120的能量消耗、在一些實施例中,廢熱導管i 傳遞的熱可完全免除使用加熱器120來進一步加熱。 至少在熱泵熱交換器128内,送入流體管線1〇4和廢 熱導管125包含任何製程相容的適當材料,其有助於在 廢熱導管125與流體管線之流體間穩健地傳熱。在—些 實施例中,材料具高導熱性(如大於或等於約 ❿ 30〇W/mK)。在一些實施例中,導熱性可以為較低,例如 考量材料相容性而需使用聚合物的情況。在一些實施例 中’材料包括銅、鋼、不鏽鋼、鍍辞鋼、鈦、鎢、高錄 含量的合金、碳、聚合物(如聚甲基戊烯,例如 TPX®)、聚苯硫醚(PPS)、聚四氟乙烯(PTFE)和其他說化 或交聯氟化聚合物等非限定實例)、矽、覆矽金屬、鋁、 碳(包括結晶、無定形和玻璃狀石墨)、石英、陶瓷、玻 ❹ 璃、複合物和陶瓷及/或玻璃塗覆材料的至少其中之一 者。在一些實施例中,更依據與流貫流體的化學相容性 來選擇送入流體管線1〇4及/或廢熱導管125的材料。 如上所述’部分的廢熱導管125(如熱泵熱交換器128 的第二側邊)係熱耦接至部分的送入流艎管線104(如熱 栗熱交換器128的第一側邊”廢熱導管125可盤繞於流 趙管線104的周圍、或以任何適當配置而熱耦接至送入 流艘管線104,以加強或最大化於廢熱導管125中流動 之流出物與在送入流體管線1〇4流動而流至處理腔室 17 201033570 :::之試劑之間的熱傳。或者或此外,部分的廢熱導管 可熱執接至試劍源108,以助於把熱傳遞到流艘管線 104中的試劑β 一實施例中,如第3Α圖所示,熱泵124採用熱泵 124之内部導管内含熱傳流體的封閉迴路系統。一部分 的Μ導管構成部分具廢熱導管125的第—熱系熱交換 器12、。另一部分的内部導管構成部分具送入流體管線 1〇4的第一熱泵熱交換器128^。操作時,熱泵】透過 第一熱泵熱交換器128a將來自廢熱源之熱傳遞到熱傳流 體以蒸發熱傳流體。蒸發之熱傳流體接著經壓縮機126 壓縮及抽吸至第二熱泵熱交換器128b,以將來自熱傳流 體之熱傳遞到在送入流體管線1〇4中流動的流體。第3A 圓的熱泵配置可用於所述任何熱泵實施例。 回到處理腔室102,流出物管線107耦接至處理腔室 102的基底。處理腔室102的基底不需如第1圖般呈水 平,且通常為傾斜讓處置流出物朝單一位置流動,例如 設於基底中並與流出物管線107相連的排放設備。處理 腔室102的流出物例如流過流出物管線1〇7而至流出物 系統110,以處理及/或處置流出物。在一些實施例令, 處置流出物例如收集在槽或中間貯槽105 (其設在流出 物管線107中)。在一些實施例中’處置流出物可以抽自 中間貯槽1〇5且通過熱交換器(熱泵熱交換器i 28或不同 的熱交換器)’以進一步預熱送入流體管線104中的試 劑,此將參照第4圖說明於下。 18 201033570 處理系統300更包括耦接至處理腔室1〇2的控制器 122,用以控制其運作及/或控制處理系統及/或廢熱 重獲系統301的一或多個其他部件。控制器122 一般包 含中央處理單元(CPU)、記憶體和支援電路(未繪示控 制器122直接或利用腔室部件相關的個別控制器(未繪示) 來控制處理腔室1〇2和各種腔室部件。在一些實施例 中,可使用其他控制元件,例如不含cPU的工業控制器。 等 操作時,試劑從試劑源108流入送入流體管線1〇4且 經熱泵124加熱達期望溫度,廢熱源123排放的流出物 經壓縮機126加壓而提高流出物溫度◊加壓之流出物流 過熱泵熱交換器128的第二侧邊並把熱傳遞到送入流體 管線104中的試劑。預熱之試劑接著流入處理腔室ι〇2 及通過喷嘴118而至基板π 4。試劑與基板114或設置於 其上的材料反應及/或變成污染物,進而形成流出物。流 出物經由流出物管線1 〇6於腔室丨〇2的基底處置而流到 . 流出物系統11 〇。視情況而定,若試劑需額外加熱,則 可於進入處理腔室102前’使用加熱器丨20來進一步預 熱試劑。 第3圖處理系統尚有替代實施例β例如,系統3 〇 〇可 示範並配置用於液態製程以外的製程,例如氣態製程(其 中試劑為氣態試劑)》另外,廢熱重獲系統301的配置可 示範並配置用於其他適合佈置》例如,廢熱重獲系統301 不需配置來處置氣態流出物。例如,廢熱重獲系統301 為用以移除熱的封閉迴路系統,例如冷凍單元 19 201033570 (refrigeration unit)或其他採用熱泵之封閉迴路系統。例 如’封閉迴路系統的熱處置側可耦接至送入流體管線 104 ° 另外,上述系統100、300的實施例可結合成一處理系 統。示例系統組合將配合第4-5圖說明於下。 例如,第4圖繪示根據本發明一些實施例之半導體處 理系統。例如,半導體處理系統400包括處理系統1〇〇 和處理系統450。半導體處理系統400可為部分示例生 ® 產線’且生產線更可包含複數個内接處理系統,而不限 於所述二系統。如第4圖所示,第二處理系統45〇從送 入流體管線104耦接至處理系統1〇〇,以於試劑進入處 理腔室102前協助試劑的預熱。類似上述概念,處理系 統400有助於回收來自二處理系統100、45〇的廢熱。 處理系統100實質描述如上。如第4圖所示,處理系 統100包括熱交換器103,其係設置而與加熱器12〇上 φ 游的送入流體管線104對準,以於來自試劑源1〇8的試 劑流過加熱器120之前,預熱該試劑。 半導體處理系統450說明次要系統的特殊實例,其做 為上述廢熱重獲系統301的一部分。半導體處理系統45〇 包括處理腔室452,其配置用於氣態製程。處理腔室452 包括上述示例之氣態處理腔室。另外,處理腔室452可 包括任何適合採用氣態製程的系統,例如壓縮空氣系 統、減弱系統、空氣分離壓縮機等。 處理系統450包括熱泵454,其係設置而與加熱器 20 201033570 120(若有)上游的送入流體管線104對準,以於來自試劑 源108的試劑流入處理腔室102之前,預熱該試劑。熱 泵454 —般包括壓縮機456和熱泵熱交換器458。壓縮 機456可設置而與處理腔室452的排放管線ι6〇對準。 壓縮機456可為任何適合加壓氣態流出物的壓縮機,例 如上述的壓縮機126 » 熱交換器458例如設在壓縮機456的下游,如此腔室 452排放的氣態流出物將於進入熱交換器458前,進入 ❹ 壓縮機456。熱交換器458實質類似熱泵熱交換器128, 除了須注意熱交換器458包含系統1〇〇的部件(部分的送 入流體管線104)和系統450的部件(部分的排放管線 160)。熱泵熱交換器458包括第一側邊和第二側邊,其 穩健地熱耦接’以於二者間傳熱。熱泵熱交換器458的 第一侧邊係搞接而與送入流艘管線1〇4對準,以供試劑 源108供應的試劑流經其中。熱系熱交換器458的第二 參側邊係耦接而與處理腔室452的流出物管線460對準, 以供處理腔室452的加壓氣態流出物流經其中。 來自處理腔室452之氣態流出物或液態冷卻劑中所儲 存的熱透過熱泵454傳遞到供給處理腔室1〇2的試劑。 例如’在一些實施例中’處理腔室452處理後排放的氣 態流出物或液態冷卻劑溫度呈約30°C至約300°C。排放 的氣態流出物或液態冷卻劑經壓縮機456加壓後可提高 溫度。故加壓之氣態流出物中所儲存的熱可用來預熱供 給處理腔室102的試劑,進而減少加熱器12〇加熱液態 21 201033570 試劑所需的功率。在一些實施例中,利用傳遞自氣態流 出物管線460的熱來預熱液態試劑,可減少加熱器120 的能量消耗。當結合經由熱交換器103回收的熱時,結 合出自氣態流出物管線460與流出物管線106的熱可進 一步減少加熱器120的能量消耗,並且不需使用加熱器 120 〇 流出物管線460耦接至處理腔室102的基底。處理腔 • 室452排放的流出物例如流經流出物管線! 60而至流出 物系統462 ’以處理及/或處置流出物。流出物系統462 例如包括減弱系統或其他適合處置流出物的系統。 流出物管線460包含任何有助於在氣態流出物與流體 管線104間穩健地進行熱傳的適當材料。在一些實施例 中’材料具高導熱性(如大於或等於約300W/mK)。在其 他實施例中’導熱性可以為較低,例如考量材料相容性 而需使用聚合物的情況。在一些實施例中,材料包括配 % 合排放管線106使用的材料》在一些實施例中,更依據 與氣態製程(例如蝕刻製程或其他產生腐蝕性流出物的 製程)的化學相容性來選擇流出物管線460的材料。 如上所述’部分的流出物管線460(如熱交換器458的 第二側邊)係熱耦接至部分的送入流體管線1〇4(如熱泵 熱交換器458的第一側邊)。例如,流出物管線460可盤 繞於流體管線104的周圍、或以任何適當配置而熱耦接 至送入流體管線104,以使得在流出物管線460中流動 之流出物與在送入流體管線104中流動並流至處理腔室 22 201033570 的忒劑之間的熱傳最大化。或者或此外,部分的流 出物管線460係熱耦接至試劑源1〇8,以助於把熱傳遞 到流體管線104中的試劑。 處理系統450更包括耦接至處理腔室452的控制器 464用以控制其運作及/或控制處理系統45〇的一或多 個其他件。控制器464實質等同控制器122,且直接 或利用腔室部件相關的個別控制器(未繪示)來控制處理 _ 腔至1〇2和各種腔室部件。另外,處理系統400更包括 中央控制器(未繪示),以直接或利用系統相關的個別控 制器(如控制器122、464)來控制各處理系統(如處理系統 100、450)的部件。 操作時,試劑從試劑源108流入該送入流體管線1〇4。 在一些實施例中,試劑先經加熱器120加熱達期望溫 度。試劑接著流入處理腔室1〇2及通過喷嘴118而至基 板試劑與基板114或設置於其上的材料反應及/或 Φ 變成污染物,進而形成流出物(如:第一流出物流出 物經由流出物管線106而於腔室1〇2的基底處置。流出 物管線106透過熱交換器103將來自流出物的熱傳遞到 流體管線104中的試劑。同樣地,第二流出物經由流出 物管線460排出腔室452並按路徑至熱泵454。第二流 出物經愿縮機456加愿’流出物管線460則透過熱泵熱 交換器458將加壓之第二流出物的熱傳遞到流體管線 104中的液態試劑。因回收第一與第二流出物之熱而升 溫的試劑在進入處理腔室1〇2前,加熱器12〇只需提供 23 201033570 較少能量。 量消耗。 故回收流出物 之熱可減少處理系統400的能 處理系統4〇〇尚有替 首代實施例。例如,處理系統100The heat exchanger 103 is arranged to align (in_line_) with the feed fluid line 104 upstream of the heater 12A to preheat the liquid reagent from the reagent source (10) before flowing through the heated stomach. The heat exchanger 103 generally includes a first side and a second side that are thermally and thermally joined to transfer heat therebetween. The first side of heat exchanger 103 is alignably coupled to the feed stream line 104 and flows therethrough. The effluent line of the heat exchanger chamber 102 flows through therein for the second side of the liquid reagent 103 supplied by the reagent source 1 to be coupled to the processing chamber 106' for the effluent of the processing chamber 1〇2 The heat stored in the rafts from the processing chamber 102 is transferred through the heat exchanger 103 to the liquid reagent supplied to the processing chamber 102. For example, in some embodiments, the temperature of the effluent discharged after processing chamber 102 is from about 30 ° C to about 18 〇 5 . . . so that the heat stored in the effluent can be used to supply to the treatment. The liquid reagent of the chamber 1n is preheated, and the power required to heat the liquid reagent is reduced. In one embodiment, the heat is transferred from the effluent to preheat the line. The liquid test 201033570 agent can reduce the energy consumption of the heater 12 Torr by at least about 20%. The heat exchanger 103 can be any heat exchanger suitable for exchanging heat between two liquids and can have any suitable size depending on the actual available space. In some embodiments, heat exchanger 103 is a non-pressurized system 'where the effluent flows through the second side of the heat exchanger due to gravity. In some embodiments, heat exchanger 103 is a pressurized system in which the effluent is flowing The contents are, for example, collected in the trough or intermediate sump 105' and can be drawn through the second side of the heat exchanger. Although the figures depict separate components, in some embodiments, the heat exchanger 103 can be coupled to the heater 12. Single synthesis The two functions described above are provided. In some embodiments, the heat exchanger 103 is integrated with the processing chamber 1〇2 such that the liquid reagent only needs to be heated to a lower temperature before being transported to the processing chamber via the heat exchanger. It can then raise the temperature of the liquid reagent to the desired processing temperature, or the heat exchanger is provided with an outlet to attach the heater. The effluent line 106 is coupled to the substrate of the processing chamber 102. The substrate of the processing chamber 102 need not be as 1 is generally horizontal and generally inclined to allow the treatment effluent to flow towards a single location, such as a discharge apparatus disposed on the substrate and connected to the effluent line 106. The effluent of the processing chamber 1〇2 flows, for example, through the effluent tube. Line 1〇6 to the effluent system 11〇 to treat and/or dispose of the effluent. The effluent system 11 〇 includes, for example, a weakening system or other system suitable for handling the effluent. A suitable material for rigorous heat transfer between the effluent line ι6 and the liquid reagent in the fluid line. The effluent line 106 contains any material that facilitates heat transfer between the effluent and the fluid line 104. Suitable materials. In some embodiments 12 201033570, the material has high thermal conductivity (e.g., greater than or equal to about 3 〇〇 w/mK). In some embodiments, 'thermal conductivity may be lower (e.g., considering material compatibility) In the case of the use of polymers, in some embodiments, the materials include copper, steel, non-recorded steel, mineral steel, Qin, crane, high-alloy alloy, carbon, polymer, niobium, and tantalum-coated metal. At least one of aluminum, carbon, quartz, ceramic and glass, and ceramic and/or glass coating materials. In some embodiments, the fluid supply is selected based on chemical compatibility with the reagent. The material of 〇4. In some embodiments, the material of effluent line 1〇6 is selected based on the chemical compatibility with the treatment effluent. As described above, the 'partial effluent line 1〇6 (i.e., the second side of the heat exchanger 103) is thermally coupled to a portion of the feed fluid line 1〇4 (i.e., the first side of the heat exchanger 103) ). Alternatively, the effluent line 1〇6 can be coiled around the fluid line 104, or thermally coupled to the feed stream line 104 in any suitable configuration, such that the effluent flowing in the effluent line 1〇6 The heat transfer between the liquid reagents flowing in the feed fluid line 1〇4 and flowing to the processing chamber 1〇2 is maximized (for example, the configuration of the effluent line 106 and the feed fluid line 104 constitutes a heat exchanger) . Alternatively or in addition, a portion of the effluent line 1 〇6 can be thermally coupled to the reagent source 1 〇 8 to facilitate the transfer of heat to the reagents in the fluid line 104. The processing system 100 further includes a controller 122' coupled to the processing chamber 110 for controlling its operation and/or controlling one or more other components of the processing system 100. The controller 122 generally includes a central processing unit (CPU), memory, and support circuitry (not shown). The controller 122 controls the process chambers 1 〇 2 13 201033570 and various chamber components either directly or using individual controllers (not shown) associated with the chamber components. In some embodiments, other control elements may be used, such as an industrial controller without a CPU. In operation, first, the liquid reagent flows from the reagent source i08 into the feed fluid line 104 and is heated by the heater 12 to a desired temperature. The reagent then flows into the processing chamber 1〇2 and through the nozzle 118 to the substrate 114. The reagent reacts with the substrate 114 or the material disposed thereon and/or becomes a contaminant, thereby forming an effluent. The effluent is disposed at the base of the chamber 1〇2 by the effluent line 1〇6. The effluent line 1〇6 transfers heat from the effluent to the liquid reagent in the fluid line 〇4 through the heat exchanger ι〇3. The liquid reagent that is warmed by the heat of the recovered effluent is only required to provide less energy before entering the processing chamber 1〇2. Therefore, recovering the heat of the effluent can reduce the energy consumption of the processing system 1 (these embodiments include the heater 1〇2). Alternatively, an external waste heat source may be substituted for the internal circulating waste heat from the treatment effluent to provide waste heat. An example processing system using an external waste heat source will be described below in conjunction with Figure 3. Figure 3 illustrates a substrate processing system in accordance with some embodiments of the present invention. The semi-conducting treatment system includes a semiconductor processing system 300 and a waste heat recovery system 301 for preheating reagents for system 300. The semiconductor processing system 300 is substantially similar to the processing system 1 〇〇. However, unlike the effluent line 106 supplying system 1 waste heat, the effluent line 107 coupled to the intermediate sump 1 〇 5 and the effluent system 110 does not provide waste heat to the feed fluid line 104 of the system 300. The waste heat recovery system 301 includes a heat pump 124 coupled via a waste 201033570 heat pipe 125 to a waste heat source 123 and a feed fluid line 1〇4 of the system 300 (or other fluid line to be heated p waste heat recovery system 301) The waste heat from waste heat source 123 is utilized to preheat the reagent flowing through fluid feed line 104. Waste heat source 123 can be any suitable waste heat source from a liquid or gaseous process or other fab equipment, such as from a heating bath. Liquid chemicals, liquid coolant or gaseous emissions configured for processing chambers in a gaseous process, treatment pump stacks, other chamber equipment (eg, plasma sources, heaters, hot water discharges, etc.), compressed air systems, An air separation compressor, an air compressor, a gaseous or liquid coolant from a weakening device, hot air or liquid coolant from an electronic and/or mechanical device, etc. The heat pump 124 is arranged to align with the waste heat pipe 125. Waste heat The conduit 125 is further coupled to a waste heat source 123 and an exhaust system 129. The exhaust system 129 is, for example, a weakened system or other suitable waste treatment system. The waste heat conduit 125 is typically The gaseous effluent discharged from the waste heat source 123 to the exhaust system 129 is delivered. In some embodiments, the heat pump 124 includes a compressor 126 and a heat pump heat exchanger 128. Although the drawings show separate components, in some embodiments ' The heat pump 124 further includes (e.g., integrated) a heater 12 or a different heater. The operation of the hot fruit is similar to a liquid to water geothermic heat pump. Alternatively, if a heater is required, the heat system 124 may be selectively coupled to a heater (e.g., heater ι2 〇). In some embodiments, compressor 126 is disposed to align with waste heat pipe 125 between waste heat source 123 and heat pump heat exchanger 128. Compressor ι26 15 201033570 can be any device suitable for compressing gaseous effluent. Increasing the pressure of the gaseous effluent can increase the effluent temperature in the waste heat pipe 125 and help improve heat transfer from the heat pump heat exchanger 128. The heat pump heat exchanger 128 can Any heat exchanger suitable for exchanging heat between the spent effluent and the incoming fluid, and may be of any suitable size depending on the actual available space. The heat pump heat exchanger 128 is configured to Heater 12A (if any) The upstream feed fluid line 104 is aligned to preheat the reagent "heat pump heat" before the reagent from reagent source 1〇8 enters processing chamber 102 (or other heated reagent use position). The exchanger 128 generally includes a first side and a second side that are thermally coupled thermally to transfer heat therebetween. The first side of the heat pump heat exchanger 128 is coupled to the feed fluid line. 4 The reagents supplied with the reagent source 1 〇 8 are passed therethrough. The first side of the heat pump heat exchanger 128 is coupled to align with the waste heat conduit for the effluent stream of waste heat source 123 to pass therethrough. In operation, the reagent flowing through the feed fluid line 1〇4 is heated in the hot fruit heat exchanger m by the heat transfer of the waste effluent flowing through the waste heat pipe 125. The waste effluent is condensed by the press 126 before flowing through the heat pump heat exchanger 128 to enhance heat transfer by increasing the temperature of the spent effluent. The heat stored in the waste effluent from the waste *' and the source 123 is transmitted to the reagent supplied to the processing chamber 1G2 through the heat exchanger 128. For example, the temperature of the gaseous effluent discharged by the waste heat source 123 is from about 30 ° C to about 90 ° C. The energy stored in the gaseous effluent can be used to preheat the reagents supplied to the processing chamber 102, thereby reducing or eliminating the power required by the heater 120 16 201033570 to heat the liquid reagent to the desired temperature. In some embodiments, utilizing the heat transferred by the waste heat pipe 125 to preheat the reagents, the energy consumption of the heater 120 can be reduced, and in some embodiments, the heat transferred by the waste heat pipe i can be completely dispensed with using the heater 120 for further heating. At least within the heat pump heat exchanger 128, the feed fluid line 1〇4 and the waste heat pipe 125 contain any process compatible suitable material that facilitates robust heat transfer between the waste heat pipe 125 and the fluid of the fluid line. In some embodiments, the material has a high thermal conductivity (e.g., greater than or equal to about 30 〇 W/mK). In some embodiments, the thermal conductivity may be lower, such as where material compatibility is desired and where a polymer is desired. In some embodiments, 'materials include copper, steel, stainless steel, rhodium-plated steel, titanium, tungsten, high-alloyed alloys, carbon, polymers (eg, polymethylpentene, such as TPX®), polyphenylene sulfide ( Non-limiting examples of PPS), polytetrafluoroethylene (PTFE) and other chemically or crosslinked fluorinated polymers), bismuth, bismuth metal, aluminum, carbon (including crystalline, amorphous and vitreous graphite), quartz, At least one of ceramic, glass, composite, and ceramic and/or glass coating materials. In some embodiments, the material fed to fluid line 1〇4 and/or waste heat pipe 125 is selected based on chemical compatibility with the flowing fluid. As described above, the 'partial waste heat pipe 125 (e.g., the second side of the heat pump heat exchanger 128) is thermally coupled to a portion of the feed stream line 104 (e.g., the first side of the hot pump heat exchanger 128) waste heat The conduit 125 can be coiled around the flow line 104, or thermally coupled to the feed line 104 in any suitable configuration to enhance or maximize the effluent flowing in the waste heat pipe 125 with the incoming fluid line 1 〇4 flows to the heat transfer between the processing chamber 17 201033570::: or, in addition, a portion of the waste heat pipe can be thermally coupled to the test source 108 to assist in transferring heat to the flow pipeline In the embodiment of the reagent β in Fig. 104, as shown in Fig. 3, the heat pump 124 uses a closed loop system containing a heat transfer fluid in the inner conduit of the heat pump 124. A part of the helium conduit constitutes a first heat system having a waste heat pipe 125. The heat exchanger 12, another portion of the inner conduit forming portion has a first heat pump heat exchanger 128, which is fed into the fluid line 1〇4. In operation, the heat pump transmits heat from the waste heat source through the first heat pump heat exchanger 128a. Passed to the heat transfer fluid to evaporate heat The evaporated heat transfer fluid is then compressed and pumped by compressor 126 to second heat pump heat exchanger 128b to transfer heat from the heat transfer fluid to the fluid flowing in feed fluid line 1-4. A circular heat pump configuration can be used for any of the heat pump embodiments. Returning to the processing chamber 102, the effluent line 107 is coupled to the substrate of the processing chamber 102. The substrate of the processing chamber 102 need not be horizontal as in Figure 1. And generally inclined to allow the treatment effluent to flow toward a single location, such as a discharge device disposed in the substrate and connected to the effluent line 107. The effluent from the processing chamber 102 flows, for example, through the effluent line 1〇7 The effluent system 110 processes and/or treats the effluent. In some embodiments, the treatment effluent is collected, for example, in a tank or intermediate storage tank 105 (which is disposed in the effluent line 107). In some embodiments, the treatment The effluent may be drawn from the intermediate storage tank 1〇5 and passed through a heat exchanger (heat pump heat exchanger i 28 or a different heat exchanger) to further preheat the reagents fed into the fluid line 104, as will be explained with reference to Figure 4 Below. 18 20103 The 3570 processing system 300 further includes a controller 122 coupled to the processing chamber 110 for controlling its operation and/or controlling one or more other components of the processing system and/or the waste heat recovery system 301. The controller 122 Generally, a central processing unit (CPU), a memory, and a support circuit are included (the controller 122 is not shown to control the processing chamber 1〇2 and various chamber components directly or by using individual controllers (not shown) associated with the chamber components. In some embodiments, other control elements may be used, such as an industrial controller without cPU. During operation, reagents flow from reagent source 108 into feed fluid line 1〇4 and are heated by heat pump 124 to a desired temperature, waste heat source. The 123 effluent effluent is pressurized by compressor 126 to increase the effluent temperature ◊ pressurized effluent stream to the second side of heat pump heat exchanger 128 and transfer heat to the reagents fed to fluid line 104. The preheated reagent then flows into the processing chamber ι2 and through the nozzle 118 to the substrate π4. The reagent reacts with the substrate 114 or the material disposed thereon and/or becomes a contaminant, thereby forming an effluent. The effluent flows through the effluent line 1 〇 6 at the substrate of the chamber 丨〇 2 and flows to the effluent system 11 〇. Depending on the situation, if the reagent requires additional heating, the heater 丨20 can be used to further preheat the reagent before entering the processing chamber 102. FIG. 3 has an alternative embodiment of the processing system. For example, the system 3 can be exemplified and configured for processes other than the liquid process, such as a gaseous process (where the reagent is a gaseous reagent). In addition, the configuration of the waste heat recovery system 301 can be Demonstrated and configured for other suitable arrangements, for example, the waste heat recovery system 301 does not require configuration to handle gaseous effluents. For example, the waste heat recovery system 301 is a closed loop system for removing heat, such as a refrigeration unit 19 201033570 (refrigeration unit) or other closed loop system employing a heat pump. For example, the thermal treatment side of the 'closed loop system can be coupled to the feed fluid line 104 °. Additionally, embodiments of the systems 100, 300 described above can be combined into a processing system. An example system combination will be described below in conjunction with Figures 4-5. For example, Figure 4 illustrates a semiconductor processing system in accordance with some embodiments of the present invention. For example, semiconductor processing system 400 includes a processing system 1 and a processing system 450. The semiconductor processing system 400 can be a partial example production line' and the production line can include a plurality of inline processing systems, and is not limited to the two systems. As shown in Fig. 4, a second processing system 45 is coupled from the feed fluid line 104 to the processing system 1 to assist in preheating the reagents before the reagents enter the processing chamber 102. Similar to the above concept, the processing system 400 facilitates the recovery of waste heat from the two processing systems 100, 45. Processing system 100 is substantially described above. As shown in FIG. 4, the processing system 100 includes a heat exchanger 103 that is arranged to align with the feed fluid line 104 on the heater 12 to facilitate flow of reagent from the reagent source 1〇8. Preheat the reagent before the device 120. Semiconductor processing system 450 illustrates a particular example of a secondary system that is part of the waste heat recovery system 301 described above. The semiconductor processing system 45A includes a processing chamber 452 that is configured for a gaseous process. Processing chamber 452 includes the gaseous processing chamber of the above examples. Additionally, processing chamber 452 can include any system suitable for use in a gaseous process, such as a compressed air system, abatement system, an air separation compressor, and the like. The processing system 450 includes a heat pump 454 that is configured to align with the feed fluid line 104 upstream of the heater 20 201033570 120 (if any) to preheat the reagent before the reagent from the reagent source 108 flows into the processing chamber 102. . Heat pump 454 typically includes a compressor 456 and a heat pump heat exchanger 458. Compressor 456 can be positioned to align with discharge line ι6 of processing chamber 452. The compressor 456 can be any compressor suitable for pressurizing the gaseous effluent, such as the compressor 126 described above » the heat exchanger 458 is disposed, for example, downstream of the compressor 456 such that the gaseous effluent discharged from the chamber 452 will enter the heat exchange In front of the 458, the compressor 456 is entered. Heat exchanger 458 is substantially similar to heat pump heat exchanger 128 except that heat exchanger 458 includes components of system 1 (partially fed fluid line 104) and components of system 450 (partial discharge line 160). The heat pump heat exchanger 458 includes a first side and a second side that are thermally coupled thermally to transfer heat therebetween. The first side of the heat pump heat exchanger 458 is engaged and aligned with the feed line 1〇4 for the reagent supplied by the reagent source 108 to flow therethrough. The second side of the thermal heat exchanger 458 is coupled to align with the effluent line 460 of the processing chamber 452 for the pressurized gaseous effluent of the processing chamber 452 to flow therethrough. The gaseous effluent from the processing chamber 452 or the heat stored in the liquid coolant is passed through the heat pump 454 to the reagent supplied to the processing chamber 1〇2. For example, in some embodiments, the temperature of the gaseous effluent or liquid coolant discharged after processing chamber 452 is from about 30 ° C to about 300 ° C. The discharged gaseous effluent or liquid coolant is pressurized by compressor 456 to increase the temperature. Thus, the heat stored in the pressurized gaseous effluent can be used to preheat the reagents supplied to the processing chamber 102, thereby reducing the power required by the heater 12 to heat the liquid 21 201033570 reagent. In some embodiments, the energy consumption of the heater 120 can be reduced by preheating the liquid reagent with heat transferred from the gaseous effluent line 460. When combined with heat recovered via heat exchanger 103, combining heat from gaseous effluent line 460 and effluent line 106 may further reduce energy consumption of heater 120 and eliminate the need for heater 120 〇 effluent line 460 is coupled to the substrate of processing chamber 102. Processing Chamber • The effluent from chamber 452 flows, for example, through the effluent line! 60 to the effluent system 462' to treat and/or treat the effluent. The effluent system 462 includes, for example, a weakening system or other system suitable for handling effluent. The effluent line 460 contains any suitable material that facilitates robust heat transfer between the gaseous effluent and the fluid line 104. In some embodiments the material has a high thermal conductivity (e.g., greater than or equal to about 300 W/mK). In other embodiments, the thermal conductivity may be lower, such as where the polymer compatibility is desired and the polymer is used. In some embodiments, the material includes materials used in conjunction with the venting line 106. In some embodiments, it is selected based on chemical compatibility with a gaseous process such as an etching process or other process that produces corrosive effluents. The material of the effluent line 460. As described above, the 'partial effluent line 460 (e.g., the second side of the heat exchanger 458) is thermally coupled to a portion of the feed fluid line 1〇4 (e.g., the first side of the heat pump heat exchanger 458). . For example, the effluent line 460 can be coiled around the fluid line 104, or thermally coupled to the feed fluid line 104 in any suitable configuration, such that the effluent flowing in the effluent line 460 is in the incoming fluid. The heat transfer between the tanning agents flowing in line 104 and flowing to processing chamber 22 201033570 is maximized. Alternatively or in addition, a portion of the effluent line 460 is thermally coupled to the reagent source 1 〇 8 to aid in the transfer of heat to the reagents in the fluid line 104. Processing system 450 further includes a controller 464 coupled to processing chamber 452 for controlling its operation and/or controlling one or more other components of processing system 45A. The controller 464 is substantially identical to the controller 122 and controls the process chambers 1 to 2 and various chamber components either directly or with individual controllers (not shown) associated with the chamber components. In addition, processing system 400 further includes a central controller (not shown) for controlling the components of each processing system (e.g., processing system 100, 450) either directly or with system-related individual controllers (e.g., controllers 122, 464). In operation, reagents flow from reagent source 108 into the feed fluid line 1〇4. In some embodiments, the reagent is first heated by heater 120 to a desired temperature. The reagent then flows into the processing chamber 1〇2 and through the nozzle 118 to the substrate reagent reacts with the substrate 114 or the material disposed thereon and/or Φ becomes a contaminant, thereby forming an effluent (eg, the first effluent stream via The effluent line 106 is disposed at the base of the chamber 1 〇 2. The effluent line 106 passes heat from the effluent through the heat exchanger 103 to the reagents in the fluid line 104. Similarly, the second effluent flows through The line 460 exits the chamber 452 and follows the path to the heat pump 454. The second effluent is passed through the retractor 456. The effluent line 460 passes the heat pump heat exchanger 458 to transfer the pressurized second effluent. The liquid reagent to the fluid line 104. The reagent that is warmed by the heat of recovering the first and second effluents is only required to supply 23 201033570 less energy before entering the processing chamber 1 。 2 . Thus, recovering the heat of the effluent can reduce the energy processing system of the processing system 400. There is still a first generation embodiment. For example, the processing system 100

可選擇性不包括熱交拖II 热父換器103,而只以處理系統45〇的 熱泵454預熱。在另一桂处杏 ^替代實施例中,若廢熱回收系統(如Optionally, the hot-roller II hot-replacer 103 is not included, but only the heat pump 454 of the processing system 45〇 is preheated. In another alternative embodiment, if the waste heat recovery system (such as

熱交換H 1G3和熱泵454)足以預熱送人錢達操作溫 度’則可選擇性排除不設置加熱器12()。在一些實施例 中,熱交換器103位於熱泵454的下游。 處理系統400尚有其他替代實施例。例如處理腔室 102、452可為溼檯、或二者均配置用於氣態製程。 第5圖繪示根據本發明一些實施例之半導體處理系 統。例如,半導體處理系統5〇〇類似處理系統1〇〇和處 理系統450 ’除了來自二處理系統的廢熱通過共用的熱 交換設備502 »類似處理系統400,半導體處理系統5〇〇 可為部分示例生產線’且生產線更可包含複數個内接處 理系統,而不限於所述二系統。如第5圓所示,熱交換 設備502從送入流體管線104耦接處理系統1〇〇、45〇, 以於試劑進入處理腔室102前,協助預熱該試劑。類似 上述概念’處理系統400有助於回收來自二處理系統 100、450的廢熱。 熱交換設備502詳述於第5A圖。熱交換設備502包括 單一封閉區内之熱交換器103和上述系統4〇〇之熱泵454 的實質所有部件。明確地說’熱交換設備5〇2包括包含 部分的送入流體管線1〇4的第一側邊和包含複數個熱交 24 201033570 換導管(如第5圖所示之第一熱交換導管5 58和第二熱交 換導管503)的第二側邊。複數個熱交換導管可視為獨立 的熱交換器,其各具一致侧邊供液態試劑流經其中、或 視為單一熱交換器,其一側具有複數個導管供廢熱流體 流經其中。壓縮機設於至少一熱交換導管(壓縮機556顯 示為耦接而與第一熱交換導管558對準)。如同上述熱果 和熱交換器,熱交換設備502的第一側邊穩健地熱耦接The heat exchange H 1G3 and heat pump 454) are sufficient to preheat the delivery of the operating temperature to selectively remove the heater 12 (). In some embodiments, heat exchanger 103 is located downstream of heat pump 454. Processing system 400 has other alternative embodiments. For example, the processing chambers 102, 452 can be wet stations, or both configured for a gaseous process. Figure 5 illustrates a semiconductor processing system in accordance with some embodiments of the present invention. For example, the semiconductor processing system 5 is similar to the processing system 1 and the processing system 450' except that the waste heat from the two processing systems passes through the shared heat exchange device 502 » similar processing system 400, which may be part of the example production line 'And the production line may further include a plurality of inline processing systems, and is not limited to the two systems. As indicated by circle 5, heat exchange device 502 is coupled from feed fluid line 104 to processing system 1〇〇, 45〇 to assist in preheating the reagent before it enters processing chamber 102. Similar to the above concept, the processing system 400 facilitates the recovery of waste heat from the two processing systems 100,450. The heat exchange device 502 is detailed in Figure 5A. The heat exchange apparatus 502 includes substantially all of the components of the heat exchanger 103 in a single enclosed area and the heat pump 454 of the above system. Specifically, the heat exchange device 5〇2 includes a first side containing a portion of the feed fluid line 1〇4 and includes a plurality of heat exchanges 24 201033570 exchange conduits (such as the first heat exchange conduit 5 shown in FIG. 5) 58 and a second side of the second heat exchange conduit 503). A plurality of heat exchange conduits can be considered as separate heat exchangers having a uniform side for liquid reagent flow therethrough or as a single heat exchanger having a plurality of conduits on one side for waste thermal fluid to flow therethrough. The compressor is disposed in at least one heat exchange conduit (compressor 556 is shown coupled to align with first heat exchange conduit 558). As with the hot fruit and heat exchanger described above, the first side of the heat exchange device 502 is thermally coupled thermally

至所有配置在第二側邊的熱交換導管,以助於盡可能把 熱從第二侧邊(廢流出物)有效地傳遞到第一側邊(試劑)。 操作時,處理系統500實質類似上述處理系統400的 運作。然如上所述,各系統100、450之流出物的廢熱沿 著送入流體管線104的共用部分而熱耦接至來自試劑源 1〇8的送入試劑,其中送入流體管線1〇4的共用部分構 成熱交換設備502的第一側邊。因此,藉著使流出物流 過各熱交換導管503、558 ,可同時將出自二系統1〇〇、 450的廢熱傳遞到送入試劑。或者,視各處理系統的工 作週期(duty CyCle)而定,可以交替使用各個熱交換導管 503、558,而廢熱則可熱傳遞至該送入試劑。可依各處 理系統100、450之工作週期所指定的任何適合方案,以 將廢熱傳遞到該送人試劑。例如’若處理系統45〇的工 作週期為系統1GG的兩倍,則使用熱交換導管⑸預熱 來自試劑源108之送入詁钿的七奴认 , ‘ 达入忒劑的次數約比熱交換導管503 頻繁兩倍。另外,上述系統5〇〇的任何操作方案當可配 合系統400使用。 25 201033570 處系統5 〇〇尚有替代實施例。例如,處理腔室〗〇2、 二2可為溼檯。在—些實施例中,純給各職的化學 品乃化學性相容,則排放管線1〇6、46〇可饋入一共用管 線(未缚示)。共用管線例如做為共用熱交換器的第二側 邊’其取代熱交換導管5〇3、558個別的第二側邊。另外, 共用管線饋入共用排放系統,其取代個別的排放系統 110、462。亦可有其他替代實施例。例如,二處理腔室 φ ι〇2、452可配置用於氣態製程。在一些實施例中,若供 給各腔室的氣態試劑乃化學性相容,則系統500可配置 成上述類似配置。此外,在所述任一實施例中,若來自 不同來源的廢熱流出物是相容的,則可在其進入共用熱 泵前,先聚集在一起。 上述處理系統實施例大致是描述在進入處理腔室前, 預熱試劑。但其他設備也可受益於本發明。例如離子 交換器(如用於產生超純水(如液態試劑))可受益於本發 # 明。例如,使再生水流過離子交換器前,上述設備可利 用出自處置流出物之熱來預熱再生水。例如,藉由移除 交換器收集的離子物種’再生水可用於清潔或再生離子 交換器。在一些實施例中,上述設備可用來重獲廢熱以 驅動鹵化聚合物(如併入鹵素原子以附接其主鏈之聚合 物)次大氣壓酸蒸餾/純化系統及/或樹脂基(resin base句 滚縮器’以回收廢酸(如氫氟酸(HF)、氫氣酸(HC1)、確 酸(HNO3)或其他廢化學品)、及將其送回用於製程當作試 劑或清潔液。 26 201033570 處理基板的方法將敘述於下。本發明之方法可用於本 發明上述之處理系統,然其他處理系統亦可受益於本發 明之方法。 第6圖為根據本發明一些實施例,用於回收來自處置 流出物之熱的方法600的流程圖。方法6〇〇將配合第2、 4及5圖所示之系統_描述於下。方法働—般始於 步驟602,其提供耦接至熱交換器的處理腔室,例如上 冑處理腔室1〇2和熱交換胃1〇3。如上所述,熱交換器 1 〇3具有供液態試劑流至處理腔室丨〇2的第一側邊(如與 送入流鱧管線1〇4對準)和供流出物流出處理腔室1〇2的 第二側邊(如與流出物管線1〇6對準卜流出物管線1〇6 可以採任何適當配置而熱耦接至流鳢管線1〇4,以於流 出物系統110中處置前,増加自流出物回收的熱。在一 些實施例中,流出物可以流入中間貯槽1〇5,然後從中 間貯槽105流向熱交換器ι〇3的第二側邊。 Φ 在步驟604中,利用熱交換器103,預熱液態試劑。 例如,藉由擴散進入流出物管線106的材料,以回收來 自流出物的熱。此材料可包括任何如上述之高導熱性材 料。從流出物管線106,熱擴散進入流體管線1〇4且沿 著熱輕接至流出物管線1〇6的部分流趙管線ι〇4而最終 流至順著流動或靜置之試劑。 液態試劑例如包括水、超純水、去離子水等,其例如 用於濕式化學钱刻或濕式化學清潔製程期間调洗基板 U4。另外’液態試劑可包括任何在處理腔室⑽中使用 27 201033570 之前需加熱的適合化學品及/或化學溶液。例如,適合的 化學品及/或化學溶液包括用於溼式剝除或溼蝕刻製程 的化學品,例如氫氣酸(HC1)、氫氟酸(HF)、氫氧化銨 (ΝΗ4〇Η)、過氧化氫(Η2〇2)、磷酸(η3ρο4)或硫酸(h2so4) 等。雖然上述實例是有關溼蝕刻、溼式剝除和溼式化學 清潔製程’但其當可應用到任何其他採用所述液態試劑 的矽處理。 籲 熱傳之前的液態試劑溫度為約室溫、或介於約15 °C至 約180°C之間。回收自流出物的熱可預熱液態試劑達約 3〇°C 至約 180°C。 在步驟606中,利用例如加熱器12〇,預熱液態試劑 達期望溫度。例如,加熱器12〇加熱試劑至高達約18〇 C、或介於約35 C至約180°C之間。一旦加熱液態試劑 達期望溫度,使加熱之液態試劑流入處理腔室1〇2,如 此方法600即大致結束》 參 或者’第7圖為根據本發明一些實施例,用於回收來 自處置流出物之熱的方法700的流程囷。方法700將配 合第2圖說明’但其也可配合第4-5圓所示之系統400、 500使用。在步驟702中,使液態試劑流過熱交換器1〇3 的第一側邊(如與送入流體管線1〇4為對準),以預熱液 態試劑。在步驟704中,利用加熱器120,加熱該已預 熱之液態s式劑達期望溫度。在步驟706中,使已加熱之 液態試劑流入處理腔室102,其中已加熱之液態試剤用 於液態製程’例如溼式化學蝕刻該基板1丨4。經加熱之 28 201033570 液態試劑變成污染物及/或與基板114反應而形成流出 物。流出物保留加熱之液態試劑中的至少部分熱。在步 驟7〇8中,使流出物從處理腔室1〇2流過熱交換器1〇3 的第二側邊(如與流出物管線1〇6對準),以預熱流過熱 交換器103之第一側邊(如同步驟71〇)的液態試劑。在一 些實施例中,製程流出物係流入中間貯槽j〇5,然後從 中間貯槽105流向熱交換器1〇3的第二側邊。 • 第8圖為根據本發明一些實施例,用於回收來自處置 流出物之熱的方法800的流程圖。方法8〇〇可配合第3_5 圖之任一圖使用,且大致上是參照第4-5圖說明。方法 800 —般始於步驟8〇2,其提供廢熱源,例如上述具熱泵 454之處理腔室45 2。如上所述,熱泵454包括壓縮機 456和熱泵熱交換器458。壓縮機456用來加壓處理腔室 452排放的流出物或在熱泵454之内部導管流動的熱傳 流體。對於排放之流出物或熱傳流體進行加壓係將依據 φ 理想氣體定律行為而提高流出物或熱傳流截的溫度。熱 泵熱交換器458具有供液態試劑流至第二處理腔室(如處 理腔室102)的第一側邊(如與送入流體管線1〇4對準)和 供加壓之流出物流出處理腔室452的第二側邊(如與流出 物管線460對準)。流出物管線460可以採任何適當配置 而熱耦接至流體管線104,以於流出物系統462中處置 前’使得自流出物回收的熱最大化。或者,熱栗454可 裝配有内部熱傳迴路,而用於在熱泵的第一部分(把熱 從廢熱源傳遞到熱傳流體)與熱泵的第二部分(把熱從 29 201033570 熱傳流體傳遞到流體管線中之試劑)之間循環熱傳流體。 在步驟804中’使第一流出物排出廢熱源(如處理腔室 452)。第一流出物可為氣態形式且例如為半導體製程(例 如银刻製程、沉積製程或任何產生可回收廢熱之流出物 的適當製程)的製程氣體或氣態副產物。或者或此外, 擷取來自處理系統之其他來源的廢熱例如來自壓縮氣 體系統、空氣分離壓縮機、泵、電子及/或機械設備、減 弱裝置等。或者,廢熱可以藉由液態冷卻劑擷取。 視情況而定,在步驟8〇6中,加壓第一流出物。例如, 壓縮機456壓縮第一流出物而提高第一流出物的溫度。 藉由加壓提高溫度有助於改善第一流出物與待加熱試劑 間的熱傳。或者,第—流出物可按路徑通過熱泵,以將 熱傳遞到熱傳流體’其接著經加壓及抽吸通過熱泵而至 用來加熱流體管線中之試劑的部分。 ❹ 在步驟808中’藉由將來自第一流出物的廢熱傳遞到 試劑’以預減劑。例如,試劑可靜置於或流動通過麵 接至處理腔室.(如處理腔室1〇2)的部分送入流體管線 叫如熱録交換^ 458的[側邊或㈣至部分熱果 454)。藉著傳遞流動通過或靜置於部分排放管# _(如 熱泵熱交換器458的第二側邊_接至部分熱泵454)之 第一流出物的廢熱,可預熱試劑。 試劑例如包括水、超純水、去離子水等,其例如用於 濃式化學蝕刻或濕式化學清潔製程期間潤洗基板114。 另外,液態試劑可包括任何在處理腔s 1〇2中使用前需 30 201033570 加熱的適合化學品及/或化學溶液例如,適合的化學品 及/或化學溶液包括用於溼式剝除或溼蝕刻製程或濕式 清潔製程的酸、鹼及/或溶劑,例如氫氣酸(HC1)、氫氟 酸(HF)、氫氧化銨(ΝΗ4〇Η)、過氧化氫(Η2〇2)、磷酸(η3ρ〇4) 或硫酸(HzSO4)等。雖然上述實例是有關溼蝕刻、溼式剝 除和溼式化學清潔製程,但本發明當可應用到任何其他 採用所述液態或氣態試劑的基板處理。To all of the heat exchange conduits disposed on the second side to help transfer heat from the second side (waste effluent) as efficiently as possible to the first side (reagent). In operation, processing system 500 is substantially similar to the operation of processing system 400 described above. As described above, the waste heat of the effluent of each of the systems 100, 450 is thermally coupled along with the common portion of the feed fluid line 104 to the incoming reagent from the reagent source 1〇8, which is fed to the fluid line 1〇4. The shared portion constitutes the first side of the heat exchange device 502. Therefore, by allowing the effluent to flow through the heat exchange conduits 503, 558, the waste heat from the two systems 1 〇〇, 450 can be simultaneously transferred to the feed reagent. Alternatively, depending on the duty cycle of each processing system, each of the heat exchange conduits 503, 558 may be alternately used, and waste heat may be transferred to the incoming reagent. Waste heat can be transferred to the delivery reagent in accordance with any suitable protocol as specified by the duty cycle of the various systems 100, 450. For example, if the processing cycle of the processing system 45 is twice that of the system 1GG, the heat exchange conduit (5) is used to preheat the seven slaves from the reagent source 108, and the number of times the herbicide is reached is about the heat exchange conduit. 503 is twice as frequent. Additionally, any of the operational schemes of system 5 described above are used with the configurable system 400. 25 201033570 System 5 There are alternative embodiments. For example, the processing chambers 〇 2, 2 may be wet stations. In some embodiments, the chemicals for each job are chemically compatible, and the discharge lines 1〇6, 46〇 can be fed into a common line (not labeled). The common line, for example, acts as a second side of the common heat exchanger, which replaces the individual second side of the heat exchange conduits 5〇3,558. In addition, the shared line is fed into a common exhaust system that replaces the individual exhaust systems 110, 462. Other alternative embodiments are also possible. For example, the two processing chambers φ ι 2, 452 can be configured for a gaseous process. In some embodiments, system 500 can be configured in a similar configuration as described above if the gaseous reagents supplied to each chamber are chemically compatible. Moreover, in any of the embodiments described, if the waste heat effluents from different sources are compatible, they may be brought together before they enter the shared heat pump. The above described embodiment of the processing system generally describes preheating the reagent prior to entering the processing chamber. However, other devices may also benefit from the present invention. For example, an ion exchanger (e.g., for producing ultrapure water (e.g., a liquid reagent)) can benefit from the present invention. For example, prior to flowing the reclaimed water through the ion exchanger, the apparatus can preheat the reclaimed water using heat from the treated effluent. For example, the ionic species collected by removing the exchanger's reclaimed water can be used to clean or regenerate the ion exchanger. In some embodiments, the apparatus described above can be used to recover waste heat to drive a halogenated polymer (eg, a polymer incorporating a halogen atom to attach its backbone) to a sub-atmospheric acid distillation/purification system and/or a resin base (resin base sentence) The roller reducer 'recovers waste acid (such as hydrofluoric acid (HF), hydrogen acid (HC1), acid (HNO3) or other waste chemicals), and returns it to the process for use as a reagent or cleaning solution. 26 201033570 A method of processing a substrate will be described below. The method of the present invention can be used in the above described processing system of the present invention, although other processing systems can also benefit from the method of the present invention. Figure 6 is a diagram of an embodiment of the present invention, for use in accordance with some embodiments of the present invention, A flow diagram of a method 600 of recovering heat from the treatment of the effluent. Method 6 is described below in conjunction with systems shown in Figures 2, 4, and 5. The method begins with step 602, which provides coupling to The processing chamber of the heat exchanger, such as the upper processing chamber 1〇2 and the heat exchange stomach 1〇3. As described above, the heat exchanger 1 〇3 has the first liquid reagent flow to the processing chamber 丨〇2 Side (as aligned with the incoming flow line 1〇4) The second side of the supply chamber 1 2 is vented out (e.g., aligned with the effluent line 1 〇 6 and the effluent line 1 〇 6 can be thermally coupled to the raft line 1 in any suitable configuration. 4. The heat recovered from the effluent is added prior to disposal in the effluent system 110. In some embodiments, the effluent may flow into the intermediate storage tank 1〇5 and then flow from the intermediate storage tank 105 to the heat exchanger ι 3 Two sides. Φ In step 604, the liquid reagent is preheated using heat exchanger 103. For example, by diffusion into the material of effluent line 106 to recover heat from the effluent. This material may include any of the above. The high thermal conductivity material. From the effluent line 106, the heat is diffused into the fluid line 1〇4 and is connected along the heat to the partial stream of the effluent line 1〇6, and finally flows to the flow. Or a reagent for standing. The liquid reagent includes, for example, water, ultrapure water, deionized water, etc., which is used, for example, to rinse the substrate U4 during a wet chemical or wet chemical cleaning process. Further, the liquid reagent may include any Before the processing chamber (10) is used 27 201033570 Suitable for chemical and/or chemical solutions. For example, suitable chemicals and/or chemical solutions include chemicals used in wet stripping or wet etching processes, such as hydrogen acid (HC1), hydrofluoric acid (HF). , ammonium hydroxide (ΝΗ4〇Η), hydrogen peroxide (Η2〇2), phosphoric acid (η3ρο4) or sulfuric acid (h2so4), etc. Although the above examples are related to wet etching, wet stripping and wet chemical cleaning processes' It can be applied to any other hydrazine treatment using the liquid reagent. The temperature of the liquid reagent prior to heat transfer is about room temperature, or between about 15 ° C and about 180 ° C. The heat recovered from the effluent The liquid reagent can be preheated to a temperature of from about 3 ° C to about 180 ° C. In step 606, the liquid reagent is preheated to a desired temperature using, for example, a heater 12A. For example, heater 12 〇 heats the reagent up to about 18 〇 C, or between about 35 C to about 180 ° C. Once the liquid reagent is heated to the desired temperature, the heated liquid reagent is flowed into the processing chamber 1 , 2, such that the method 600 is substantially terminated or 'Fig. 7 is for recycling the effluent from the treatment according to some embodiments of the present invention. The flow of the hot method 700 is flawed. Method 700 will be described in conjunction with Figure 2, but it can also be used in conjunction with systems 400, 500 shown in Circles 4-5. In step 702, the liquid reagent is passed through a first side of heat exchanger 1〇3 (as aligned with feed fluid line 1〇4) to preheat the liquid reagent. In step 704, the preheated liquid s formula is heated to a desired temperature by heater 120. In step 706, the heated liquid reagent is flowed into the processing chamber 102, wherein the heated liquid test is used for liquid processing, such as wet chemical etching of the substrate 1丨4. Heated 28 201033570 The liquid reagent becomes a contaminant and/or reacts with the substrate 114 to form an effluent. The effluent retains at least a portion of the heat in the heated liquid reagent. In step 7〇8, the effluent is passed from the processing chamber 1〇2 through the second side of the heat exchanger 1〇3 (as aligned with the effluent line 1〇6) to preheat the heat exchanger. A liquid reagent on the first side of 103 (as in step 71). In some embodiments, the process effluent flows into the intermediate sump j〇5 and then from the intermediate sump 105 to the second side of the heat exchanger 〇3. • Figure 8 is a flow diagram of a method 800 for recovering heat from disposal of an effluent, in accordance with some embodiments of the present invention. Method 8 can be used in conjunction with any of Figures 3-5, and is generally illustrated with reference to Figures 4-5. The method 800 generally begins at step 8A2, which provides a source of waste heat, such as the processing chamber 452 described above with a heat pump 454. As noted above, heat pump 454 includes compressor 456 and heat pump heat exchanger 458. Compressor 456 is used to pressurize the effluent from chamber 452 or the heat transfer fluid flowing through the internal conduit of heat pump 454. Pressurization of the effluent or heat transfer fluid will increase the temperature of the effluent or heat transfer cut in accordance with the φ ideal gas law behavior. The heat pump heat exchanger 458 has a first side for the liquid reagent to flow to the second processing chamber (e.g., the processing chamber 102) (e.g., aligned with the feed fluid line 1〇4) and a effluent stream for processing The second side of chamber 452 (as aligned with effluent line 460). The effluent line 460 can be thermally coupled to the fluid line 104 in any suitable configuration to maximize the heat recovered from the effluent prior to disposal in the effluent system 462. Alternatively, the hot pump 454 can be equipped with an internal heat transfer circuit for use in the first portion of the heat pump (transferring heat from the waste heat source to the heat transfer fluid) and the second portion of the heat pump (transferring heat from the 29 201033570 heat transfer fluid to The heat transfer fluid is circulated between the reagents in the fluid line. In step 804, the first effluent is discharged from a source of waste heat (e.g., processing chamber 452). The first effluent can be in gaseous form and is, for example, a process gas or gaseous by-product of a semiconductor process (e.g., a silver engraving process, a deposition process, or any suitable process for producing an effluent of recoverable waste heat). Alternatively or additionally, waste heat from other sources of the processing system may be drawn, for example, from a compressed gas system, an air separation compressor, a pump, an electronic and/or mechanical device, a reduced device, and the like. Alternatively, waste heat can be drawn by liquid coolant. Optionally, in step 8〇6, the first effluent is pressurized. For example, compressor 456 compresses the first effluent to increase the temperature of the first effluent. Increasing the temperature by pressurization helps to improve heat transfer between the first effluent and the reagent to be heated. Alternatively, the first effluent may be passed through a heat pump in a path to transfer heat to the heat transfer fluid, which is then pressurized and pumped through a heat pump to a portion of the reagent used to heat the fluid line. ❹ In step 808, the pre-reduction agent is used by transferring waste heat from the first effluent to the reagent. For example, the reagent may be placed or flowed through the face to the processing chamber. (eg, the processing chamber 1〇2) is fed into the fluid line called [hot side exchange ^ 458 [side or (four) to part of the hot fruit 454 ). The reagent can be preheated by passing the waste heat through or through the first effluent of the partial discharge pipe #_ (e.g., the second side of the heat pump heat exchanger 458 to the partial heat pump 454). The reagents include, for example, water, ultrapure water, deionized water, and the like, which are used, for example, to rinse the substrate 114 during a concentrated chemical etching or wet chemical cleaning process. In addition, the liquid reagent may comprise any suitable chemical and/or chemical solution that requires 30 201033570 heating prior to use in the processing chamber s 1 〇 2, for example, suitable chemicals and/or chemical solutions including for wet stripping or wet An acid, a base, and/or a solvent for an etching process or a wet cleaning process, such as hydrogen acid (HC1), hydrofluoric acid (HF), ammonium hydroxide (ΝΗ4〇Η), hydrogen peroxide (Η2〇2), phosphoric acid ( Η3ρ〇4) or sulfuric acid (HzSO4), etc. While the above examples are related to wet etching, wet stripping, and wet chemical cleaning processes, the invention is applicable to any other substrate processing using the liquid or gaseous reagents.

在一些實施例中,舉例來說,熱傳前的試劑溫度為約 室溫、或介於約15。〇至約3〇。〇之間。回收流出物的廢熱 可預熱試劑達約30°C至約180°C。 在一些實施例中,如步驟814所示,接著使已加熱之 試劑流入處理腔室以供使用。一旦提供加熱之試劑至處 理腔室102或一些其他目標,方法8〇〇大致終了。然方 法800尚有附加實施例。例如,若出自加壓之第一流出 物的廢熱不足以預熱試劑達處理溫度,則可使用加.熱器 120來進一步預熱試劑達期望處理溫度。 另外,廢熱可回收自其他來源,並結合自第一流出物 回收的廢熱來預熱試劑。例如,經處理腔室1〇2處理後, 試劑轉化成第二流出物’其從處理腔冑1〇2排放。例如, 第二流出物可包括試劑和副產物材料例如來自待處理 基板的材料。部分由加熱試劑組成的第二流出物具有可 回收的廢熱。 在一些實施例中 出處理腔室102。 ,如步驟810所示,使第二流出物排 第二流出物具有可回收的廢熱來預熱 31 201033570 待於處理腔室102中使用的試劑。 就其本身而論,在步驟812中,藉由將來自第二流出 物的廢熱傳遞到試劑,以進一步預熱用於處理腔室1〇2 的試劑。在一些實施例中,藉由將來自第二流出物的廢 熱傳遞通過熱泵,以預熱試劑。在一些實施例中,藉由 將來自第二流出物的廢熱傳遞通過熱交換器,以預熱試 劑。在一些實施例中’試劑可靜置於或流動通過耦接至 φ 處理腔室(如處理腔室1〇2)的部分之送入流體管線 1〇4(如熱交換器103的第一側邊)。藉著傳遞流動通過或 靜置於部分排放管線16〇(如熱交換器1〇3的第二側邊) 之第二流出物的廢熱,可預熱試劑。 熱交換器103可搭配、輪流或替代熱泵458來預熱試 劑。如上所述,熱交換器1〇3可位於熱泵458的下游(未 繪示)、上游(第4圖)或重疊於上(類似第5圖)。 出自第二流出物的廢熱不需再循環來加熱進入相同處 • 理腔室(如處理腔室1〇2)(第二流出物由此產生)的試劑。 例如,來自第二流出物的廢熱可用來預熱用於不同處理 腔室(類似第4-5圖)的試劑。 故在此已揭露用於回收來自處置流出物之熱的方法和 設備。本發明之方法和設備藉由利用處置流出物之熱來 預熱進入處理系統的試劑,而有助於減少半導體或其他 處理系統的能量消耗。處置流出物中的熱之減少可更有 利於處置流出物的後續處理,例如減弱。 雖然本發明已以實施例揭露如上,然在不脫離本發明 32 201033570 之精神和範圍内,當可衍生其他和進一步之實施例,因 此本發明之保護範圍視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 為讓本發明之上述特徵更明顯易懂,可配合參考實施 例說明,其部分乃繪示如附圖式。須注意的是雖然所 • 附圖式揭露本發明特定實施例,但其並非用以限定本發 明之精神與範圍’任何熟習此技藝者,當可作各種之更 動與潤飾而得等效實施例。 第1圖繪示根據本發明一些實施例之處理系統。 第2圖繪示根據本發明一些實施例之半導體處理系 統。 、 第3-3 A圖續示根據本發明一些實施例之半導體處理 系統》 嚳 第4圖繪示根據本發明一些實施例之半導艘處理系 統。 第5圖繪示根據本發明一些實施例之半導體處理系 統。 第5A圖纷示根據本發明一些實施例之熱回收設備。 第6圖為根據本發明一些實施例’用於回收來自處置 流出物之熱的方法流程圖。 第7圖為根據本發明一些實施例,用於回收來自處置 33 201033570 流出物之熱的方法流程圓。 第8圖為根據本發明一些實施例,用於回收來自處置 流出物之熱的方法流程圓。 為助於理解’各圏中相同的元件符號代表相似的元 件。圖式並未按比例繪製且經簡化以便於說明。In some embodiments, for example, the temperature of the reagent prior to heat transfer is about room temperature, or about 15 degrees. 〇 to about 3 〇. Between 〇. Waste heat recovery of the effluent Preheat the reagent up to about 30 ° C to about 180 ° C. In some embodiments, as shown in step 814, the heated reagent is then flowed into the processing chamber for use. Once the heated reagent is provided to the processing chamber 102 or some other target, the method 8 is substantially complete. However, there are additional embodiments of the method 800. For example, if the waste heat from the pressurized first effluent is insufficient to preheat the reagent to the processing temperature, the heater 120 can be used to further preheat the reagent to the desired processing temperature. In addition, waste heat can be recovered from other sources and combined with waste heat recovered from the first effluent to preheat the reagents. For example, after treatment in the processing chamber 1〇2, the reagent is converted to a second effluent' which is discharged from the processing chamber 胄1〇2. For example, the second effluent can include reagents and by-product materials such as materials from the substrate to be treated. A second effluent, consisting in part of the heated reagent, has recoverable waste heat. Processing chamber 102 is in some embodiments. As shown in step 810, the second effluent second effluent has recyclable waste heat to preheat 31 201033570 The reagent to be used in the processing chamber 102. For its part, in step 812, the reagent for processing chamber 1〇2 is further preheated by transferring waste heat from the second effluent to the reagent. In some embodiments, the reagent is preheated by passing waste heat from the second effluent through a heat pump. In some embodiments, the reagent is preheated by passing waste heat from the second effluent through a heat exchanger. In some embodiments, the reagent may be placed or flowed through a portion of the feed fluid line 1-4 that is coupled to the portion of the φ processing chamber (eg, processing chamber 1〇2) (eg, the first side of heat exchanger 103) side). The reagent can be preheated by passing waste heat through the second effluent flowing through or resting on a portion of the discharge line 16 (e.g., the second side of heat exchanger 1〇3). Heat exchanger 103 can be used in conjunction with, alternately or in place of heat pump 458 to preheat the reagent. As described above, the heat exchanger 1〇3 may be located downstream (not shown), upstream (Fig. 4) or superimposed on the heat pump 458 (similar to Fig. 5). The waste heat from the second effluent does not need to be recycled to heat the reagents into the same place • the chamber (e.g., the processing chamber 1〇2) (the second effluent is thereby produced). For example, waste heat from the second effluent can be used to preheat reagents used in different processing chambers (similar to Figures 4-5). Methods and apparatus for recovering heat from the disposal of effluent have been disclosed herein. The method and apparatus of the present invention help to reduce the energy consumption of a semiconductor or other processing system by preheating the reagents entering the processing system by utilizing the heat of the effluent. The reduction in heat in the treatment effluent may be more conducive to subsequent treatment of the treatment effluent, such as attenuation. While the present invention has been disclosed by way of example, the scope of the present invention is defined by the scope of the appended claims. Prevail. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above-described features of the present invention more apparent and easy to understand, reference may be made to the accompanying embodiments. It is to be understood that the particular embodiments of the invention are not to be construed as limiting the scope of the invention. . Figure 1 illustrates a processing system in accordance with some embodiments of the present invention. Figure 2 illustrates a semiconductor processing system in accordance with some embodiments of the present invention. 3-3A continues with a semiconductor processing system in accordance with some embodiments of the present invention. 喾 FIG. 4 illustrates a semi-guide boat processing system in accordance with some embodiments of the present invention. Figure 5 illustrates a semiconductor processing system in accordance with some embodiments of the present invention. Figure 5A illustrates a heat recovery apparatus in accordance with some embodiments of the present invention. Figure 6 is a flow diagram of a method for recovering heat from a treated effluent in accordance with some embodiments of the present invention. Figure 7 is a process flow circle for recovering heat from the treatment 33 201033570 effluent, in accordance with some embodiments of the present invention. Figure 8 is a process flow circle for recovering heat from the treatment of effluent, in accordance with some embodiments of the present invention. To facilitate understanding, the same component symbols in the various figures represent similar elements. The drawings are not drawn to scale and are simplified for illustration.

【主要元件符號說明】 1 處理系統 2 輸入 3 腔室 4、5、6 廢熱源 7 熱泵 8 熱交換器 9 加熱器 10、 11 流出物系統 100 處理系統 102 腔室 103 熱交換器 104 、106-107、160 管線 105 貯槽 108 試劑源 110 流出物/排放系統 112 支撐件 114 基板 116 凹部 118 喷嘴 120 加熱器 122 控制器 123 廢熱源 124 熱泵 125 導管 126 壓縮機 128 ' 128A-b 熱交換器 129 排放系統 300 、301 系統 400 ' 450系统 452 腔室 454 熱泵 456 壓縮機 34 201033570 460 管線 464 控制器 502 熱交換設備 556 壓縮機 602 ' 604 ' 606 步驟 458 熱交換器 462 流出物/排放系統 500 系統 503、558 導管 600 ' 700 ' 800 方法 702 ' 704、706、708、710 步驟 802、804、806、808、810、812、814 步驟[Main component symbol description] 1 Processing system 2 Input 3 Chambers 4, 5, 6 Waste heat source 7 Heat pump 8 Heat exchanger 9 Heater 10, 11 Effluent system 100 Processing system 102 Chamber 103 Heat exchanger 104, 106- 107, 160 Line 105 Sump 108 Reagent source 110 Effluent/discharge system 112 Support 114 Substrate 116 Recess 118 Nozzle 120 Heater 122 Controller 123 Waste heat source 124 Heat pump 125 Pipe 126 Compressor 128 ' 128A-b Heat exchanger 129 Emissions System 300, 301 System 400 '450 System 452 Chamber 454 Heat Pump 456 Compressor 34 201033570 460 Line 464 Controller 502 Heat Exchange Equipment 556 Compressor 602 ' 604 ' 606 Step 458 Heat Exchanger 462 Effluent / Emission System 500 System 503 558 conduit 600 ' 700 ' 800 method 702 ' 704, 706, 708, 710 steps 802, 804, 806, 808, 810, 812, 814 steps

3535

Claims (1)

201033570 七、申請專利範圍: 1. 一種基板處理系統,包含: 一處理腔室,係配置用於液態製程; 一第一熱交換器,具有一第一側邊與一第二側邊,係 配置以於該第一側邊與該第二側邊之間傳遞熱,其中該 第一侧邊係配置以使一液態試劑流經其中並流至該處理 腔室’且其中該第二側邊係配置以使來自該處理腔室的 一流出物流經其中;以及 一加熱器’係設置而與該第一熱交換器的該第一側邊 對準(in line with),以於該液態試劑進入該處理腔室 前,加熱該液態試劑。 2. 如申請專利範圍第1項所述之系統,更包含: 一中間貯槽,設於該處理腔室與該第一熱交換器之 間’用以收集來自該處理腔室的一流出物及抽吸該流出 ❹ 物使該流出物通過該第一熱交換器。 3. 如申請專利範圍第1項所述之系統,更包含: 一第一廢熱源’用以提供内儲存有一廢熱的一第一廢 流體;以及 一熱泵,耦接於該第一廢熱源以及一送入流體 (incoming fluid)管線之間,該送入流體管線使該液態 試劑流入該處理腔室’該熱泵配置以傳遞來自該第一廢 36 201033570 熱源之熱到該送入流體管線中的該液態試劑。 4. 如申請專利範圍第3項所述之系統,其中該熱泵設在 該加熱器與該第一熱交換器之間。 5. 如申請專利範圍第3項所述之系統,其中該廢熱源包 含下列一或多者:配置用於液態或氣態製程之一處理腔 室、一壓縮空氣系統、一空氣分離壓縮機、一空氣壓縮 ❿ 機、來自一減弱裝置的一液態冷卻劑或一氣態排放物、 或來自一電子設備或一機械設備的一液態冷卻劑或一熱 空氣。 6. 如申請專利範圍第3項所述之系統,更包含: 一第二廢熱源’用以提供内健存有一廢熱的一第二廢 流體給該熱泵’以將内儲存之該廢熱傳遞到該送入流體 義 管線中的該液態試劑。 7. 如申請專利範圍第1項所述之系統,更包含: 一第一廢熱源’用以提供内儲存有一廢熱的一第一廢 流體;以及 一熱泵,具有一壓縮機和一第二熱交換器,其中該壓 縮機係柄接而與該第一廢熱源和該第二熱交換器的一第 一側邊對準,且其中該第一熱交換器的一第二侧邊係配 置以使該液態試劑流經其中並流至該處理腔室。 37 201033570 8. 如申請專利範圍第7項所述之系統,其中該[熱交 換器的該第-側邊和該第二熱交換器的$第二側邊是一 致的(coincident)。 9. 一種基板處理系統,包含: 一廢熱源,用以提供内儲存有一廢熱的一第一廢流 體; 一第一處理腔室,具有一試劑源,該試劑源與該第一 處理腔室耦接且配置以提供一試劑至該第一處理腔室的 一内部容積(inner volume );以及 一熱果’耗接於該廢熱源以及一送入試劑管線之間, 而該送入試劑管線係使該試劑流入該處理腔室之該内部 容積’該熱泵係配置以傳遞來自該廢熱源之熱到該送入 試劑管線中的該試劑。 10. 如申請專利範圍第9項所述之系統,更包含: 一加熱器,係設置而與該熱泵對準,以於該試劑進入 該第一處理腔室前,進一步加熱該試劑。 11. 如申請專利範圍第9項所述之系統,其中該廢熱源 包含下列一或多者:配置用於液態或氣態製程的一處理 腔室、一壓縮空氣系統、一空氣分離壓縮機、一空氣壓 縮機、來自一減弱裝置的一液態冷卻劑或一氣態排放 38 201033570 物、或來自一電子設備或一機械設備的一液態冷卻劑或 一熱空氣。 12·如申請專利範圍第9項所述之系統,其中該第一處 理腔室係配置用於液態製程,且其中該廢熱源包含配置 用於氣態製程的一第二處理腔室,且提供該第一廢流體 當作出自該第二處理腔室的一氣態排放物。 ® 13.如中請專利範圍第12項所述之系統,其中該熱果更 包含: 一壓縮機和一第一熱交換器,其中該壓縮機係耦接而 與該廢熱源和該第一熱交換器的一第一側邊對準,並在 該第一廢流體流過該熱交換器的該第一側邊前,加麽該 第-廢流體’且該第一熱交換器的一第二側邊係配置以 使該試劑流經其中。 14.如申請專利範圍第9項所述之系統,更包含: 具有第側邊與一第二側邊的一熱交換器,該熱交 換器係配置以於該第-侧邊與該第二侧邊之間傳遞熱, 其中該熱交換器的該第_側邊係配置以使該試劑流經其 中並流至該第一處理腔室,且其中該熱交換器的該第二 側邊係配置以使從續笛 ^ 從该第一處理腔室排出的一第二廢流體 流經其中。 39 201033570 15. 如申請專利範園第14項所述之系統,更包含: 一加熱器,係設置而與該熱泵和該熱交換器的該第一 側邊對準,以於該試劑進入該第一處理腔室前,加熱該 試劑。 16. —種處理一基板的方法,包含: 使一液態試劑流經一熱交換器的一第一側邊,以預熱 該液態試劑; 籲 利用一加熱器,以加熱經預熱之該液態試劑達一期望 溫度; 使經加熱之該液態試劑流至配置用於液態製程的一 處理腔室;以及 使來自該處理腔室的一製程流出物流經該熱交換器 的第一侧邊,以預熱流經該熱交換器之該第一側邊的 該液態試劑。 ❹ 17_如申明專利範圍第16項所述之方法更包含: 使該製程流出物流入一中間貯槽;以及 使該製程流出物從該中間貯槽流到該熱交換器的該 第二側邊。 18. —種處理一基板的方法,包含: 使一試劑流經耦接至一廢熱源的一熱泵,以將來自該 廢熱源之一熱傳遞到該試劑而加熱該試劑;以及 40 201033570 使經加熱之該試劑流至一處理腔室,以處理該基板。 19.如申請專利範圍第18項所述之方法,其中該廢熱源 包含下列一或多者:排放自同一或一第二處理腔室的一 液態或氣態流出物、一壓縮空氣系統、—空氣分離壓縮 機、-空氣壓縮機、來自一減弱裝置的一液態冷卻劑或 -氣態排放物、或來自一電子設備或一機械設備的一液 態冷卻劑或一熱空氣。 20.如申請專利範圍第18項所述之方法更包含· 利用設於該熱泵與該處理腔室之間的—加熱器,進一 步加熱該經加熱之試劑達一期望溫度。 21.如申請專利範圍第18項所述之方法,更包人. 使該試劑流過一熱交換器的一第— 燜邊,該熱交換器201033570 VII. Patent Application Range: 1. A substrate processing system comprising: a processing chamber configured for a liquid process; a first heat exchanger having a first side and a second side, configured Transferting heat between the first side and the second side, wherein the first side is configured to flow a liquid reagent therethrough and to the processing chamber ' and wherein the second side Arranged to pass a first-rate outlet from the processing chamber therethrough; and a heater is disposed in line with the first side of the first heat exchanger to allow the liquid reagent to enter The liquid reagent is heated before the processing chamber. 2. The system of claim 1, further comprising: an intermediate storage tank disposed between the processing chamber and the first heat exchanger to collect primary fluids from the processing chamber and The effluent is pumped to pass the effluent through the first heat exchanger. 3. The system of claim 1, further comprising: a first waste heat source 'to provide a first waste fluid storing a waste heat therein; and a heat pump coupled to the first waste heat source and Between an incoming fluid line that causes the liquid reagent to flow into the processing chamber 'the heat pump configuration to transfer heat from the first waste 36 201033570 heat source to the feed fluid line The liquid reagent. 4. The system of claim 3, wherein the heat pump is disposed between the heater and the first heat exchanger. 5. The system of claim 3, wherein the waste heat source comprises one or more of the following: a processing chamber configured for a liquid or gaseous process, a compressed air system, an air separation compressor, a An air compressor, a liquid coolant or a gaseous effluent from a weakening device, or a liquid coolant or a hot air from an electronic device or a mechanical device. 6. The system of claim 3, further comprising: a second waste heat source 'to provide a second waste fluid with a waste heat inside to the heat pump' to transfer the waste heat stored therein to The liquid reagent fed into the fluid line. 7. The system of claim 1, further comprising: a first waste heat source 'to provide a first waste fluid storing a waste heat therein; and a heat pump having a compressor and a second heat An exchanger, wherein the compressor is coupled to be aligned with the first waste heat source and a first side of the second heat exchanger, and wherein a second side of the first heat exchanger is configured to The liquid reagent is passed therethrough and passed to the processing chamber. The system of claim 7, wherein the first side of the heat exchanger and the second side of the second heat exchanger are coincident. 9. A substrate processing system comprising: a waste heat source for providing a first waste fluid having a waste heat stored therein; a first processing chamber having a reagent source coupled to the first processing chamber And configured to provide a reagent to an inner volume of the first processing chamber; and a heat fruit 'to be consumed between the waste heat source and a feed reagent line, and the feed reagent line system The internal volume of the reagent flow into the processing chamber is configured to transfer heat from the waste heat source to the reagent in the feed reagent line. 10. The system of claim 9, further comprising: a heater disposed in alignment with the heat pump to further heat the reagent prior to entering the first processing chamber. 11. The system of claim 9, wherein the waste heat source comprises one or more of: a processing chamber configured for a liquid or gaseous process, a compressed air system, an air separation compressor, a An air compressor, a liquid coolant from a weakening device or a gaseous discharge 38 201033570, or a liquid coolant or a hot air from an electronic device or a mechanical device. The system of claim 9, wherein the first processing chamber is configured for a liquid process, and wherein the waste heat source comprises a second processing chamber configured for a gaseous process, and the The first spent fluid is made from a gaseous effluent from the second processing chamber. The system of claim 12, wherein the hot fruit further comprises: a compressor and a first heat exchanger, wherein the compressor is coupled to the waste heat source and the first a first side of the heat exchanger is aligned, and before the first waste fluid flows through the first side of the heat exchanger, the first waste fluid is added and one of the first heat exchangers The second side is configured to flow the reagent therethrough. 14. The system of claim 9, further comprising: a heat exchanger having a first side and a second side, the heat exchanger being configured to the first side and the second side Transferring heat between the sides, wherein the first side of the heat exchanger is configured to flow the reagent therethrough and to the first processing chamber, and wherein the second side of the heat exchanger A second waste fluid discharged from the first processing chamber is configured to flow therethrough. 39 201033570 15. The system of claim 14, wherein the system further comprises: a heater disposed in alignment with the heat pump and the first side of the heat exchanger to allow the reagent to enter the The reagent is heated before the first processing chamber. 16. A method of processing a substrate, comprising: flowing a liquid reagent through a first side of a heat exchanger to preheat the liquid reagent; and utilizing a heater to heat the preheated liquid Resolving the reagent to a desired temperature; flowing the heated liquid reagent to a processing chamber configured for the liquid processing; and passing a process effluent from the processing chamber through the first side of the heat exchanger to Preheating the liquid reagent flowing through the first side of the heat exchanger. The method of claim 16 further comprising: flowing the process effluent into an intermediate sump; and flowing the process effluent from the intermediate sump to the second side of the heat exchanger. 18. A method of processing a substrate, comprising: flowing a reagent through a heat pump coupled to a waste heat source to transfer heat from the waste heat source to the reagent to heat the reagent; and 40 201033570 The heated reagent flows to a processing chamber to process the substrate. 19. The method of claim 18, wherein the waste heat source comprises one or more of: a liquid or gaseous effluent discharged from the same or a second processing chamber, a compressed air system, - air A compressor, an air compressor, a liquid coolant or a gaseous effluent from a weakening device, or a liquid coolant or a hot air from an electronic device or a mechanical device. 20. The method of claim 18, further comprising: further heating the heated reagent to a desired temperature using a heater disposed between the heat pump and the processing chamber. 21. The method of claim 18, further comprising enclosing the reagent through a first side of a heat exchanger, the heat exchanger 係設置而與該熱泵對準;以及 使該第一處理腔室排放的一流出鉍 风出物流經該熱交換器 的一第二側邊’以加熱流經該熱交 入供器之該第一側邊的 該試劑。 41Aligning with the heat pump; and passing the first-stage venting effluent from the first processing chamber through a second side of the heat exchanger to heat the flow through the heat supply The reagent on one side. 41
TW098135139A 2008-10-16 2009-10-16 Methods and apparatus for recovering heat from processing systems TW201033570A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10594908P 2008-10-16 2008-10-16
US22981209P 2009-07-30 2009-07-30
US12/579,472 US20100096110A1 (en) 2008-10-16 2009-10-15 Methods and apparatus for recovering heat from processing systems

Publications (1)

Publication Number Publication Date
TW201033570A true TW201033570A (en) 2010-09-16

Family

ID=42107241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098135139A TW201033570A (en) 2008-10-16 2009-10-16 Methods and apparatus for recovering heat from processing systems

Country Status (6)

Country Link
US (1) US20100096110A1 (en)
JP (1) JP2012506155A (en)
KR (1) KR20110086052A (en)
CN (1) CN102187429A (en)
TW (1) TW201033570A (en)
WO (1) WO2010045468A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120091099A1 (en) * 2010-10-18 2012-04-19 Applied Materials, Inc. Methods and apparatus for recovery and reuse of reagents
JP5766453B2 (en) * 2011-01-31 2015-08-19 三菱重工業株式会社 Hot water cleaning system and hot water cleaning method
KR101419440B1 (en) * 2013-01-22 2014-07-14 주식회사 디엠에스 System for treating substrate and evaporating unit of the system for chemical recovery
WO2016182648A1 (en) * 2015-05-08 2016-11-17 Applied Materials, Inc. Method for controlling a processing system
US10641552B2 (en) * 2015-12-23 2020-05-05 Tesla, Inc. Heat-recovering temperature-gradient based oven system
KR101966648B1 (en) * 2016-09-05 2019-08-14 주식회사 디엠에스 Apparatus for cleaning a substrate
KR102239362B1 (en) * 2019-07-01 2021-04-09 세메스 주식회사 Substrate treatment apparatus
KR20220049476A (en) 2020-10-14 2022-04-21 한국과학기술원 Charge Trapping Non-volatile Organic Memory Device
US11984513B2 (en) 2020-10-14 2024-05-14 Korea Advanced Institute Of Science And Technology Charge trapping non-volatile organic memory device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513573A (en) * 1972-05-12 1985-04-30 Funk Harald F System for treating and recovering energy from exhaust gases
US4501318A (en) * 1982-09-29 1985-02-26 Hebrank William H Heat recovery and air preheating apparatus
JPH0574758A (en) * 1991-09-17 1993-03-26 Mitsubishi Electric Corp Chemical vapor deposition apparatus
DE4212336C1 (en) * 1992-03-06 1993-09-02 Gea Luftkuehler Gmbh, 4630 Bochum, De
JP4428818B2 (en) * 2000-06-05 2010-03-10 株式会社日本触媒 Waste gas treatment equipment
JP2002081752A (en) * 2000-09-01 2002-03-22 Hitachi Ltd Heat recovery type heat storage apparatus
US6822202B2 (en) * 2002-03-15 2004-11-23 Oriol, Inc. Semiconductor processing temperature control
JP4199072B2 (en) * 2003-08-27 2008-12-17 株式会社ルネサステクノロジ High dielectric film forming method, semiconductor device manufacturing method, and semiconductor manufacturing apparatus
DE102004001095A1 (en) * 2004-01-05 2005-07-28 Blue Membranes Gmbh RF sputtering
JP4689308B2 (en) * 2005-03-18 2011-05-25 キヤノン株式会社 Exposure apparatus and device manufacturing method

Also Published As

Publication number Publication date
WO2010045468A3 (en) 2010-07-15
JP2012506155A (en) 2012-03-08
US20100096110A1 (en) 2010-04-22
KR20110086052A (en) 2011-07-27
CN102187429A (en) 2011-09-14
WO2010045468A2 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
TW201033570A (en) Methods and apparatus for recovering heat from processing systems
US20080210273A1 (en) Batch photoresist dry strip and ash system and process
TWI801568B (en) Manufacturing method of heated ozone water, heated ozone water and semiconductor wafer cleaning solution
WO2002089532A1 (en) A method and apparatus for heating a gas-solvent solution
CN101591146A (en) The method of cleaning of quartz member and cleaning system
JP2006066727A (en) Semiconductor manufacturing device and chemical exchanging method
JP4294910B2 (en) Substance supply system in semiconductor device manufacturing plant
US9892939B2 (en) Substrate treating apparatus and chemical recycling method
JP5527502B2 (en) Hot ultrapure water supply use point piping startup cleaning method
JP2009189905A (en) Heat recovery type cleaning equipment
CN101028918B (en) Recovery of hydrofluoric acid
TWI497630B (en) Substrate treating apparatus and chemical recycling method
JP2002210422A (en) Apparatus and method for cleaning substrate to be treated
TW200947171A (en) Improved reclaim function for semiconductor processing systems
KR101966648B1 (en) Apparatus for cleaning a substrate
TW201020032A (en) Chemical treatment apparatus
WO2002067308A1 (en) System and method for utilization of waste heat of semiconductor equipment and heat exchanger used for utilization of waste heat of semiconductor equipment
KR100943321B1 (en) Devices for etching glass and Methods for removing sludge of glass panel
JP3664794B2 (en) Cooling and heating equipment for semiconductor processing liquid
WO2021098038A1 (en) Method and device for wet processing integrated circuit substrates using a mixture of chemical steam vapors and chemical gases
CN114405037B (en) Photoresist waste liquid recovery device
KR102458920B1 (en) Fluid supply device
JP3041410U (en) Heat exchange system
US9875915B2 (en) Method for removing metal contamination and apparatus for removing metal contamination
JP2010073826A (en) Processing liquid feeding device