TW201027756A - Thin film transistor and fabricating method of the same - Google Patents

Thin film transistor and fabricating method of the same Download PDF

Info

Publication number
TW201027756A
TW201027756A TW098141764A TW98141764A TW201027756A TW 201027756 A TW201027756 A TW 201027756A TW 098141764 A TW098141764 A TW 098141764A TW 98141764 A TW98141764 A TW 98141764A TW 201027756 A TW201027756 A TW 201027756A
Authority
TW
Taiwan
Prior art keywords
region
layer
insulating layer
source
gate electrode
Prior art date
Application number
TW098141764A
Other languages
Chinese (zh)
Inventor
Jae-Sang Ro
Won-Eui Hong
Original Assignee
Ensiltech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensiltech Corp filed Critical Ensiltech Corp
Publication of TW201027756A publication Critical patent/TW201027756A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth

Abstract

Provided are a thin film transistor (TFT) and a method of fabricating the same, which include applying an electrical field to a gate electrode material to generate high heat through Joule heating so that an a-Si layer can be crystallized into a poly-Si layer and a semiconductor layer of the TFT can be formed using the poly-Si layer. The gate electrode material may be connected to the a-Si layer using a contact hole included in the TFT so that occurrence of arcs may be prevented during a crystallization process without adopting an additional mask for removing a predetermined region of a gate insulating layer, and a conductive ion doping process may be performed on source and drain regions of the semiconductor layer using the gate insulating layer having a contact hole and the gate electrode as a mask. Thus, fabrication cost may be reduced, and the entire process may be simplified. The TFT includes a substrate, a semiconductor layer disposed on the substrate and including a channel region and source and drain regions, each of the source and drain regions having a first region and a second region, a gate insulating layer disposed on the semiconductor layer, a gate electrode disposed on the gate insulating layer, an interlayer insulating layer disposed on the gate electrode, and source and drain electrodes disposed on the interlayer insulating layer, the source and drain electrodes electrically connected to the source and drain regions of the semiconductor substrate through contact holes formed in the gate insulating layer and the interlayer insulating layer to expose predetermined regions of the source and drain regions of the semiconductor layer. In this case, the source and drain regions contain conductive impurity ions, and a projection range of conductive impurity ions contained in the first region is different from a projection range of conductive impurity ions contained in the second region.

Description

201027756 六、發明說明: 【發明所屬之技術頌威】 [0001] 本發明相關於〆種薄膜電晶體(TFT)以及其製造方 法,以及更特別地是,一種TFT以及該TFT的製造方法, 該方法包括將/電場施加至一閘極電極材質,以透過焦 耳熱效應(J〇u丨e heating)而產生高熱’因而使得一 非晶矽(a-Si,amorphous silicon)層可以被結晶成 為一多晶矽(poiy-si ’ polycrystalline silicon) 層,之後,可以利用該多晶矽層來形成該TFT的一半導體 β 層。在該TFT以及其製造方奪申 ' 該閛極電極材質可以利 用被包含在該TFT中的一接 洞和被速參至非晶矽層’ 因此,就可以在不使用用來的一預定 區域的—額::外遮罩的情形期間避免電 弧的發生,並且,藉由將具有一接觸洞的該閘極絕緣層 以及該閘極電極使用作為一遮罩,一傳導離子摻雜程序 可以被執行耷讓半導體層il_iackei域之上。因 此,製造成本可以被降低,也可以被簡化。201027756 VI. Description of the Invention: [Technology of the Invention] [0001] The present invention relates to a thin film transistor (TFT) and a method of fabricating the same, and, more particularly, to a TFT and a method of fabricating the same, The method includes applying an electric field to a gate electrode material to generate high heat through a Joule heating effect, thereby allowing an amorphous silicon layer (a-Si) to be crystallized into a polycrystalline germanium. (poiy-si 'polycrystalline silicon) layer, after which the polycrystalline germanium layer can be utilized to form a semiconductor beta layer of the TFT. In the TFT and the manufacturer thereof, the material of the gate electrode can utilize a hole included in the TFT and the surface of the amorphous layer can be used. Therefore, a predetermined region for use can be used. - The amount of:: avoiding the occurrence of an arc during the case of the outer mask, and by using the gate insulating layer having a contact hole and the gate electrode as a mask, a conducting ion doping program can be Execution 耷 let the semiconductor layer above the il_iackei domain. Therefore, the manufacturing cost can be reduced or simplified.

參 C^)frirP Ψ · 、, - « ill [先前 [0002] 一般而言,非晶發(a-Si,amorphous si 1 icon ) 在作為電射載子的電子遷移率以及開口率(aperture ratio)是低的,並且,也不相容於一互補金屬氧化半導 體(CMOS ’ complementary metal oxide semiconductor) 。 而相較之下 ,不同於一非晶矽 TFT , 多晶矽 (poly-Si)薄膜裝置則是可以致能在一基板上以像素寫 入一影像訊號(例如,一像素^·!'陣列)時所需要的一驅 098141764 動器積體電路(1C)的形成。據此,由於多晶矽薄膜裝 表單編號A0101 第5頁/共31頁 0993047690-0 201027756 置並不需要將複數個終端與該驅動器ic相連接,因此, 產率以及可靠度都可以被提高,且同時間,一面板的厚 度也可以被降低。再者,因為一多晶矽TFT程序的執行能 夠以原來的方式利用一矽大型積體電路(LSI,Large Scale Integration)程序,因而可以形成精細的互連 結構。因此,由於該驅動器1C (不像在非晶石夕TFT中)可 以在不考慮間距限制的情形下透過捲帶自動焊接(TAB, tape automated bonding)而進行黏著(mounted) ’故會有助於降級(downscaling)像素,並且,也可以 利用窄視角來實現複數個像素。相較於具有一非晶矽活 化層的TFT,具有一多晶矽的TFT會具¥良好的切 換特徵,並且也可以透過自我對1 f-a;l i gnment ) 而決定該活化層的一通道位、置’《藉此使r得該tft能夠被 降級以及可以被應用於一CMOS程序。根據上述的理由, 該多晶矽TFT已被使用在用於主動矩降(active-mat- ^ _ 豢哲 :| rix)平面顯示器(FPDs,;何致』iftCJMCliisplays )( 舉例而言,液晶顯示器有機發光二極體( 0LED)顯示裝置)的像素切’並且,也已被突 顯為是在擴大以及實現驅動器嵌入(driver-embedded )玻璃覆晶基板(COG ’ chip-〇n-glass)產品的使用 時所必須的裝置。 根據韓國專利申請案第2004-74493號’本案發明人 已經提出了 一種將一非晶石夕層結晶成為一多晶石夕層的方 法,包括在該非晶梦層上形成一絕緣層,在該絕緣層上 形成一傳導層,以及將一電場施加至該傳導層’以透過 焦耳熱效應(Joule heating)而產生高熱’如此一來 098141764参C^)frirP Ψ · , , - « ill [previous [0002] In general, a-Si, asymmetrical si 1 icon in the electron mobility as an electro-optic carrier and aperture ratio (aperture ratio ) is low and is not compatible with a complementary metal oxide semiconductor (CMOS 'complementary metal oxide semiconductor). In contrast, unlike an amorphous germanium TFT, a poly-Si thin film device can be used to write an image signal (for example, a pixel ^·!' array) on a substrate. The required one drive 098141764 actuator integrated circuit (1C) is formed. Accordingly, since the polycrystalline silicon film package form number A0101 page 5/31 page 0993047690-0 201027756 does not need to connect a plurality of terminals to the driver ic, the yield and reliability can be improved, and the same Time, the thickness of a panel can also be reduced. Furthermore, since the execution of a polysilicon TFT program can utilize a large scale integrated circuit (LSI) program in the original manner, a fine interconnection structure can be formed. Therefore, since the driver 1C (unlike in the amorphous TFT) can be mounted by tape automated bonding (TAB) regardless of the pitch limitation, it will contribute to The pixels are downscaled, and a plurality of pixels can also be implemented with a narrow viewing angle. Compared with a TFT having an amorphous germanium activation layer, a TFT having a poly germanium has a good switching characteristic, and can also determine a channel position of the active layer by self-pairing 1 fa; "But this allows r to be degraded and can be applied to a CMOS program. For the above reasons, the polysilicon TFT has been used for active-matrix (active-mat-^ _ 豢:: rix) flat panel displays (FPDs,; Ho Chi iftCJMCliisplays) (for example, liquid crystal display organic light The pixel cut of the diode (0LED) display device has also been highlighted as expanding and enabling the use of driver-embedded glass-on-glass (COG 'chip-〇n-glass) products. The necessary equipment. According to Korean Patent Application No. 2004-74493, the inventor of the present invention has proposed a method of crystallizing an amorphous layer into a polycrystalline layer, comprising forming an insulating layer on the amorphous layer. A conductive layer is formed on the insulating layer, and an electric field is applied to the conductive layer to generate high heat through Joule heating. Thus 098141764

表單煸號A010I 第6頁/共31頁 0993047690-0 201027756 • ,就可以防止具有非晶矽層的基板因高熱以及結晶作用 Φ 而受到損害,而且,相較於習知的狀況,摻質活性,熱 氧化,以及晶格缺陷的硬化(curing)的執行都可以更 有效率地在低溫下(較佳地是,在室溫)以及在短時間 内進行。根據韓國專利申請案第2005-62186號,為了避 免在利用該非晶矽層以及該傳導層間的一電位差時,因 該絕緣層的損壞而發生電弧,該絕緣層會被部分地移除 ,因而使得該非晶矽層能夠直接與該傳導層接觸。 當結晶程序被用於製造一TFT時,在一閘極電極材質 被使用作為該傳導層的同時,一閘極絕緣層亦可被使用 作為該絕緣層。在此情形下,為了避免電弧的發生,該 閘極絕緣層可以被部分地移除,因而讓該閘極電極材質 能夠直接與該非晶矽層接觸,然而,當要從一接觸洞以 外的區域部分移除該閘極絕緣層時,就會需要一額外的 遮罩。 ;; I [0003] ❿ 【發明内容】 !、 本發明所相關的是一薄膜電晶體(TFT)以及其製造 方法,該方法包括將一電場施加至一閘極電極材質,以 透過焦耳熱效應(Joule heating)而產生高熱,因而 使得一非晶矽(a-Si)層可以被結晶成為一多晶矽( poly-Si)層,且該多晶矽層可被利用來形成該TFT的一 半導體層。利用被包含在該TFT中的一接觸洞而將該閘極 電極材質與該非晶矽層相連接,就可以在不使用用於移 除一閘極絕緣層的一預定區域的一額外遮罩的情形下, 在一結晶程序期間避免電弧的發生,並且,藉由將具有 098141764 一接觸洞的該閘極絕緣層以及該閘極電極使用作為一遮 表單編號A0101 第7頁/共31頁 0993047690-0 201027756 罩,一傳導離子摻雜程序可以被執行在該半導體層的源 極以汲極及區域之上。因此,製造成本可以被降低,而 整個程序也可以被簡化。 根據本發明〆方面的構想而提供的是一薄膜電晶體( TFT),其包括:〆基板;一半導體層,設置於該基板之 上,並包括一通道暖域以及源極與汲極區域’其中’該 等源極與汲·極區城的每一個都具有一第一區域以及一第 二區域;一閘極絕緣層,設置於該半導體層之上;一閘 極電極,設置在該閘極絕緣層之上;一中間層絕緣層, 設置在該閘極電極之上;以及琢極與轉極電極’設置在 ® 該中間層絕緣層之上’且該夢琢極·_與汲靛電極會透過形 成在該閘極絕緣層以及該中_闇/屠絕之中命接觸洞而 被電連接至該丰導體基板的焱.輕區域,進而 暴露該半導體層的該等源極與汲極區域的預定區域。該 等源極與汲極區域包含傳導性不純物離子,並且,在該 第一區域中所包含的傳導性『不]龜—'線+的J+·投射範圍不 ... r. 同於被包含在該第二區域物離子的一投 射範圍。 DN'^e ❹ 根據本發明另一方面的構想而提供的是一種製造一薄 膜電晶體(TFT)的方法,包括:提供一基板;在該基板 上形成一非晶矽(a-Si)層;圖案化該非晶矽層;在該 基板的整體表面上形成一閘極絕緣層;在該閘極絕緣層 上形成一接觸洞;在該閘極絕緣層上形成一閘極電極材 質;施加一電場至該閘極電極材質’並透過焦耳熱效應 而將該已圖案化非晶珍廣結晶成為一多晶碎(poly-Si) 層,以形成一半導體層;圈案化該閘極電極材質,以形 098141764 表單編號A0101 0993047690-0 第8賓/兵31頁 201027756 成-閘極電極,利用將該閘極電極以及具有該接觸洞的 朗極絕緣層使用作為一遮罩而將傳導性不純物離子摻 雜進入該半導體層中,以形成源極與沒極區域,其中, 該等源極與汲極區域的每一個都會包括具有不同摻質濃 度的-第-區域以及-第二區域;在具有該閘極電極的 該基板的整體表面上形成一中間層絕緣層;蝕刻該中間 層絕緣層的-預定區域,以使該閘極絕緣層的該接觸洞 延伸進入該中間層絕緣層;以及在該中間層絕緣層上形 &分別電連接至該半導趙層的該等源極與沒極區域的源 ^ 極與汲極電極。 【實施方式】 ·,¥ [闺 接下來,本發_示範更詳細的敘 述。然而,本發明並不舞限泌瘗下來所德ς,的示範性實 把例,而疋可以實行多备種的型態。因此,本發明所提 供的示範性實施例是善知為本領产具通常知識者完整地 揭示本發明,以及徹底地罐士。 帛1A圖至第1E圖的剖面g g g tfi列說明根據本發明 一示範性實施例的一種製晶體(TFT)的程序 〇 請參閱第1A圖’一緩衝層101會被形成在一基板1〇〇 之上’例如’一玻璃基板、或一塑膠基板❶該緩衝層1〇1 可以是利用化學氣相沈積(CVD)、或物理氣相沈積( PVD)所形成的單獨一層,或多層的氧化矽層、或氮化矽 層’因此,在此情形下’該緩衝層101可以防止在該基板 100中所產生的濕氣、或不純物離子的擴散,或是可以控 制在一結晶程序期間的熱傳輸率,進而有助於製造一非 098141764 表單編號 A0101 第 9 頁/共 31 頁 0993047690-0 201027756 晶矽(a-Si )層的結晶。該緩衝層ι〇1可以被形成為具有 一約2000至5000A的厚度。 之後’一非晶矽層102會被形成在具有該緩衝層ιοί的 該基板100之上。舉例而言,該非晶矽層1〇2的形成可以 利用低壓CVD、大氣壓力CVD、電漿輔助CVD (PECVD)、 濺鍍、或真空蒸鍍( vacuum evaporation)來達成。 較佳地是’該非晶矽層102可利用PECVD來形成。該非晶 矽層102可以被形成為具有一約500至2000A的厚度》 請參閱第1B圖,該非晶矽層1〇2會進行圖案化處理, 以形成一TFT的一半導體着的形狀。 © 之後’ 一閘極絕緣層104令被形成在該_已。掘案化的非晶 矽層103之上。該閘極絕緣層:1〇4的功用在於使一閘極電 極與一半導體層絕緣。並亘該間極絕緣惠104也可以在 該已圖案化非晶矽層103利用焦耳熱效應而進行結晶的期 間’防止該已圖案化非晶矽層1 〇3被一閘極電極材質所污 染。該閘極絕緣層104可以化矽層、或一氮化石夕 層所形赛,且厚度可為;約 之後,對該前極絕緣層預定區域進行蝕刻, © 以暴露出該已圖案化非晶矽層103的一預定區域,也就是 ,將來要形成一半導體層的源極以及汲極區域的位置, 以藉此在該閘極絕緣層104中形成一接觸洞105。 請參閱第1C圖,一閘極電極材質106會被形成在具有 該閘極絕緣層104的該基板1〇〇的整個表面之上。該閘極 電極材質106可以是由熔點約1300°C、或更高的一金屬、 或合金所形成,例如,鉬(Mo)、鈦(Ti)、鉻(Cr) 、或鉬化鎢(MoW)。 098141764 表單編號A0101 第10頁/共31頁 0993047690-0 201027756 根據本發明的示範性實施例,在利用焦耳熱效 以 結晶的期間,-電場會被施加至該閘極電極材質咖,仃 利用焦耳減“料已圖案㈣晶韻⑽結晶 多晶石夕(P〇ly,)層。在此情形下,當該已圖案化非曰 二1〇3在— 或更高的高溫下進行結晶時: —程序就不會僅單次施加電料結束。因此,v 施加程序就應該會重複數次4且,當該電場施加程序 重複數次時’每—次電場施加都應在數秒㈣間間Form nickname A010I Page 6 of 31 0993047690-0 201027756 • It is possible to prevent the substrate with amorphous enamel layer from being damaged by high heat and crystallization Φ, and, compared with the conventional conditions, the dopant activity The thermal oxidation, as well as the curing of the lattice defects, can be performed more efficiently at low temperatures (preferably at room temperature) and in a short period of time. According to Korean Patent Application No. 2005-62186, in order to avoid an arc occurring due to damage of the insulating layer when utilizing the potential difference between the amorphous germanium layer and the conductive layer, the insulating layer is partially removed, thereby making The amorphous germanium layer can be in direct contact with the conductive layer. When a crystallization process is used to fabricate a TFT, a gate insulating layer can also be used as the insulating layer while a gate electrode material is used as the conductive layer. In this case, in order to avoid the occurrence of an arc, the gate insulating layer may be partially removed, thereby allowing the gate electrode material to directly contact the amorphous germanium layer, however, when it is to be from a contact hole When the gate insulation is partially removed, an additional mask is required. The invention relates to a thin film transistor (TFT) and a method of fabricating the same, which method comprises applying an electric field to a gate electrode material to transmit a Joule heating effect ( Joule heating generates high heat, so that an amorphous germanium (a-Si) layer can be crystallized into a poly-Si layer, and the poly germanium layer can be utilized to form a semiconductor layer of the TFT. Connecting the gate electrode material to the amorphous germanium layer by a contact hole included in the TFT, an additional mask for removing a predetermined region of a gate insulating layer may be used In this case, the occurrence of an arc is avoided during a crystallization procedure, and by using the gate insulating layer having a contact hole of 098141764 and the gate electrode as a mask form number A0101, page 7 / total 31 pages 0993047690- 0 201027756 hood, a conducted ion doping procedure can be performed on the source of the semiconductor layer above the drain and region. Therefore, the manufacturing cost can be reduced, and the entire program can be simplified. Provided in accordance with the teachings of the present invention is a thin film transistor (TFT) comprising: a germanium substrate; a semiconductor layer disposed over the substrate and including a channel warm region and a source and drain region Wherein each of the source and the NMOS regions has a first region and a second region; a gate insulating layer disposed over the semiconductor layer; a gate electrode disposed at the gate Above the pole insulating layer; an intermediate layer of insulating layer disposed over the gate electrode; and a drain electrode and a rotating electrode 'on the upper layer of the interlayer layer' and the nightmare _ and 汲靛The electrode is electrically connected to the light-emitting region of the conductive conductor substrate through the gate insulating layer and the middle-dark/slaughtering contact hole, thereby exposing the source and the germanium of the semiconductor layer A predetermined area of the polar region. The source and drain regions contain conductive impurity ions, and the conductive "not] turtle contained in the first region - the line + J + projection range is not... r. A projection range of the ions in the second region. DN'^e ❹ Provided is a method of fabricating a thin film transistor (TFT) according to another aspect of the present invention, comprising: providing a substrate; forming an amorphous germanium (a-Si) layer on the substrate Forming the amorphous germanium layer; forming a gate insulating layer on the entire surface of the substrate; forming a contact hole on the gate insulating layer; forming a gate electrode material on the gate insulating layer; applying a An electric field is applied to the gate electrode material material to transmit the patterned amorphous crystal into a poly-Si layer by a Joule heating effect to form a semiconductor layer; the gate electrode material is patterned Form 098141764 Form No. A0101 0993047690-0 8th Bing / Bing 31 page 201027756 into a gate electrode, using the gate electrode and the Langji insulating layer with the contact hole as a mask to conduct conductive impurities Doping into the semiconductor layer to form a source and a non-polar region, wherein each of the source and drain regions includes a -first region and a second region having different dopant concentrations; The gate electrode Forming an intermediate layer of insulating layer on the entire surface of the substrate; etching a predetermined region of the interlayer insulating layer to extend the contact hole of the gate insulating layer into the interlayer insulating layer; and insulating layer in the intermediate layer The upper shape & is electrically connected to the source and drain electrodes of the source and the non-polar region of the semiconductor layer, respectively. [Embodiment] ·, ¥ [闺 Next, the present invention_description is described in more detail. However, the present invention does not limit the exemplary examples of the defamation, and the 备 can implement a variety of types. Accordingly, the exemplary embodiments of the present invention are intended to provide a complete disclosure of the present invention, as well as a thorough understanding of the present invention. A section of the ggg tfi of 帛1A to 1E illustrates a procedure for forming a crystal (TFT) according to an exemplary embodiment of the present invention. Referring to FIG. 1A, a buffer layer 101 is formed on a substrate 1A. Above the 'for example, a glass substrate, or a plastic substrate, the buffer layer 〇1 may be a single layer formed by chemical vapor deposition (CVD), or physical vapor deposition (PVD), or a plurality of layers of yttrium oxide. Layer, or tantalum nitride layer ' Therefore, in this case, the buffer layer 101 can prevent the diffusion of moisture or impurity ions generated in the substrate 100, or can control heat transfer during a crystallization process. The rate, in turn, helps to make a non-098141764 form number A0101 page 9 of 31 0993047690-0 201027756 Crystallization of the wafer (a-Si) layer. The buffer layer ι〇1 may be formed to have a thickness of about 2,000 to 5,000 Å. Thereafter, an amorphous germanium layer 102 is formed over the substrate 100 having the buffer layer ιοί. For example, the formation of the amorphous germanium layer 1 2 can be achieved by low pressure CVD, atmospheric pressure CVD, plasma assisted CVD (PECVD), sputtering, or vacuum evaporation. Preferably, the amorphous germanium layer 102 can be formed by PECVD. The amorphous germanium layer 102 may be formed to have a thickness of about 500 to 2000 Å. Referring to Fig. 1B, the amorphous germanium layer 1 〇 2 is patterned to form a semiconductor shape of a TFT. © After 'a gate insulating layer 104 is formed in the _ has been. Over the surface of the amorphous layer 103. The gate insulating layer: 1 〇 4 functions to insulate a gate electrode from a semiconductor layer. Further, the interpolar insulating layer 104 may prevent the patterned amorphous germanium layer 1 〇 3 from being contaminated by a gate electrode material during the period in which the patterned amorphous germanium layer 103 is crystallized by the Joule heating effect. The gate insulating layer 104 may be formed by a germanium layer or a layer of nitride layer, and may have a thickness; after about, a predetermined region of the front insulating layer is etched, to expose the patterned amorphous A predetermined region of the germanium layer 103, that is, a source and a drain region of a semiconductor layer are formed in the future, thereby forming a contact hole 105 in the gate insulating layer 104. Referring to Fig. 1C, a gate electrode material 106 is formed over the entire surface of the substrate 1 having the gate insulating layer 104. The gate electrode material 106 may be formed of a metal or alloy having a melting point of about 1300 ° C or higher, for example, molybdenum (Mo), titanium (Ti), chromium (Cr), or tungsten molybdenum (MoW). ). 098141764 Form No. A0101 Page 10 of 31 0993047690-0 201027756 According to an exemplary embodiment of the present invention, during the crystallization using Joule heating, an electric field is applied to the gate electrode material, and Joule is utilized. Reducing the "patterned (4) crystal rhyme (10) crystalline polycrystalline stone (P〇ly,) layer. In this case, when the patterned non-曰2〇3 is crystallized at a high temperature of - or higher: - The program will not end the application of the material only once. Therefore, the v application procedure should be repeated several times 4 and when the electric field application procedure is repeated several times, 'every-times electric field application should be between several seconds (four)

接著的下—次電場施加,㈣免•累積而產生不均句 。而如此㈣果則是,該結晶程序所需的總程序時間會 長達數分鐘。The next lower electric field is applied, and (4) the accumulation is unacceptable and the uneven sentence is generated. And (4), the total program time required for the crystallization process can be as long as several minutes.

然而’當該已圖案化非籍約1眞、或更 高的高溫下進行結晶時,該“4序齡施心 電場即結束’而且,τ次電場施加所需要的時間是非常 短暫的數微秒(MS)。;因此,,結晶程序在約13〇代 、或更高的高溫下執行時的總程序時 間就會顯著地減少”另,外序僅在高溫度下 進行一次電場施加時,晶‘if^t^f^aiiinity)也會獲 得改善。 該閘極電極材質106可以利用一濺鍍程序、或一蒸鍍 程序而形成為具有厚度約500至3000A » 之後’由於一電場會被施加至該閘極電極材質1〇6, 因此,該已圖案化非晶矽層103會被結晶成為一多晶矽層 ,以形成利用焦耳熱效應而進行結晶的一半導體層(第 1D圖的1〇8) ^在一電場被施加至該閘極電極材質1〇6之 前,該基板1〇〇可以毛預熱至一適當的溫度範圍。在此, 098141764 表單編號A0101 第11頁/共31頁 0993047690-0 201027756 該適當的溫度範圍所指的是該基板100在整個製造過程中 都不會受損的一溫度範圍。較佳地是’該適當溫度範圍 低於該基板1〇〇會發生熱變形的一溫度。而預熱的方法則 是沒有特別的限制,可以包括,舉例而言,將該基板1〇〇 放入一普通回火爐中的方法’或是將一燈的輕射熱施加 至該基板100的方法。 有關對於該閘極電極材質106的該電場施加,其所施 加的能量的功率密度要能夠產生足夠的熱,以引導#已 圊案化非晶碎層103透過焦耳熱效.應而進行結曰^ τ 、、’0日日正如前 述’當該能量施加時:的功率密度所產生的熱能夠到達約 1300°C、或更高的高溫,叫閱舞.可双被縮短。 由於該電場的施加是取f <例而言,該 閘極電滅_餘106的.電隊、*^%^以及>^^^因此,要對 該電場施加進行具體規範是有困難的。所施加的電流可 以是一直流電流(DC)、或是交流電流(AC)。而一次 電場施加程序所需的時間貝〇00, 〇()() 〇〇〇, 〇〇〇至1〇 1 介知171,However, when the crystallization is carried out at a high temperature of about 1 眞 or higher, the "4th-order ageing electric field is over" and the time required for the application of the τ electric field is a very short time. Seconds (MS); therefore, the total program time when the crystallization procedure is performed at a high temperature of about 13 、, or higher is significantly reduced. "In addition, when the external sequence is applied only at a high temperature, an electric field is applied. Crystal 'if^t^f^aiiinity) will also be improved. The gate electrode material 106 can be formed to have a thickness of about 500 to 3000 A by a sputtering process or an evaporation process. After that, an electric field is applied to the gate electrode material 1〇6. Therefore, the The patterned amorphous germanium layer 103 is crystallized into a polycrystalline germanium layer to form a semiconductor layer which is crystallized by the Joule heating effect (1〇8 of FIG. 1D). An electric field is applied to the gate electrode material. Prior to 6, the substrate 1 can be preheated to a suitable temperature range. Here, 098141764 Form No. A0101 Page 11 of 31 0993047690-0 201027756 This suitable temperature range refers to a temperature range in which the substrate 100 is not damaged throughout the manufacturing process. Preferably, the appropriate temperature range is lower than a temperature at which the substrate 1 is thermally deformed. The method of preheating is not particularly limited and may include, for example, a method of placing the substrate 1 into an ordinary tempering furnace or applying a light heat of a lamp to the substrate 100. method. Regarding the application of the electric field to the gate electrode material 106, the power density of the applied energy should be sufficient to generate heat to guide the # 圊 amorphous layer 103 to pass through the Joule heating effect. ^ τ , , '0 day as in the aforementioned 'when the energy is applied: the heat generated by the power density can reach a high temperature of about 1300 ° C, or higher, called dance. Can be double shortened. Since the application of the electric field is f < For example, the gate is electrically extinguished _ remaining 106. The electric power, *^%^, and > ^^^ Therefore, it is difficult to specifically regulate the application of the electric field. of. The applied current can be a direct current (DC) or an alternating current (AC). And the time required for an electric field application program is 〇00, 〇()() 〇〇〇, 〇〇〇 to 1〇 1 171,

至100秒的範圍内,較隹 秒之間,以及更其優勢地是* ’介於i/〗’000, 000至1秒之 間。該電場施加程序能夠以規律、或不規律的間隔重複 數次。因此,雖然總回火時間會比電場施加的時間長, 但該總回火時間至少會比習知結晶方法中所需的時間短 上許多。 根據本發明的實施例中’沈積在中間夾有該閘極絕緣 層104的該已圖案化非晶矽層103上的該閘極電極材質 106會被施加一電場,以使該已圖案化非晶矽層103可透 過焦耳熱效應而結晶成為一多晶石夕層,而該多晶矽層則 098141764 表單編號A0101 第12貢/共31頁 201027756 是在高溫下會表現出傳導性。在此狀況下,穿插於中間 的該多晶矽層,該閘極電極材質106,以及該閘極絕緣層 104可構成一電容器。在此情況下,當所產生的一電位差 超過該閘極絕緣層104的一崩潰電壓時,電流就會流經該 閘極絕緣層104,因而造成電弧的發生。 然而,根據本發明,由於該閘極電極材質106可透過 在該電場施加程序期間被形成在該閘極絕緣層104中的該 接觸洞105而直接與該多晶矽層接觸,因此可以避免電弧 的發生。在本發明之中,製造一TFT會包括,形成將源極 ❹ 與汲極電極電連接至一半導體層的該接觸洞105,以防止 —公書③:鐵知譲犧:議a: ' 電弧的發生。如此的結果是,既然不再需要透過用於移 除該閘極絕緣層104的一預定區域的一額外遮罩來使該閘 極電極材質106與該已圖案化非晶矽層103直接接觸,製 造成本就可以被降低,並且,程序就可以被簡化。 接著,請參閱第1D圖,該閘極電極材質106會被圖案 化,以藉此在一位置處形成一蘭極電極1翻I,且此位置會 對應於要被定義為該半導體層一通道區域的一區域 © 。 , 一預先設定量的傳導性不純物離子會利用具有該接觸 洞105的該閘極絕緣層104以及該閘極電極107作為一遮 罩,而被摻雜至該半導體層108之中,以藉此在該半導體 層108之中形成源極與汲極區域109,110以及一通道區 域111。根據本發明,用於在該半導體層108中形成該源 極以及汲極區域109,110的一傳導性離子摻雜程序,其 可以利用具有該接觸洞105的該閘極絕緣層104以及該閘 極電極107被作為一遮罩而執行。因此,該傳導性離子摻 098141764 表單編號Α0101 第13頁/共31頁 0993047690-0 201027756 雜程序就不需要-額外的遮罩,因而能夠降低製造成本 以及簡化整體程序.。 一TFT的形成可以使用p型 '或n型不純物離子來作為 該等傳導性;f純物離子。該?财純物離子可選自下列群 組,包括:棚⑻’銘(A1),鎵(⑷,以及銦(in ),另夕卜,該η财純物離子則是可選自下列群組,包括 :磷(Ρ) ’砷(As) ’以及銻(Sb)。 請參閲第1D圖,根據本發明的示範性實施例,於該傳 導性離子雜程序_,在該半導體層議麟源極以及 汲極區域109 ’ 11〇的孩定區域會因該接觸洞1〇5而被暴 露的同時,其剩餘的區域对昧該%棒释緣層1〇4所覆 蓋。當該等料衫純物^ 入該半導體層108中時,該*暴露出、且位 於該半導體層108的該源極以及汲極區域1〇9,11〇中的 第一區域112以及Π3,其由被掺雜進入該半導體層 的不純物離子所形成的投4_齒||_|^_^該等第一區 域112以及113以外的第二區今p4k^U5。在本發明的 說明書中,該等木魏物離孕‘邊^觀圍卟所代表的是一 垂直範圍,而此垂直範圍則是自該閘極絕緣層104的頂面 至該等不純物離子於該基板100方向的濃度變化達到一最 大值時的位置》 將於接下來進行更進一步詳細敘述地是,在該半導體 層108的該源極以及汲極區域109及110之中,該等接觸 洞105所暴露的該等第一區域112以及113中的該不純物 離子的投射範圍Rp,會不同於該等第一區域112以及113 以外的第二區域114以及115的情形。該等第一區域112 098141764 表單編號A0101 第14頁/共31頁 201027756 、以及113的該投射範圍Rp會位在比該等第二區域ii4以及 115的該投射範圍Rp更深的位置(自該閘極絕緣層1〇4的In the range of up to 100 seconds, between the second and the second, and the advantage is * ’ between i/〗 ’000, 000 to 1 second. The electric field application procedure can be repeated several times at regular or irregular intervals. Thus, although the total tempering time will be longer than the time the electric field is applied, the total tempering time will be at least much shorter than the time required in conventional crystallization methods. In the embodiment of the present invention, the gate electrode material 106 deposited on the patterned amorphous germanium layer 103 sandwiching the gate insulating layer 104 is applied with an electric field to cause the patterned non- The germanium layer 103 can be crystallized into a polycrystalline layer by the Joule heating effect, and the polycrystalline layer is 098141764. Form No. A0101 12th/31 pages 201027756 exhibits conductivity at high temperatures. In this case, the polysilicon layer interposed in the middle, the gate electrode material 106, and the gate insulating layer 104 may constitute a capacitor. In this case, when a potential difference generated exceeds a breakdown voltage of the gate insulating layer 104, a current flows through the gate insulating layer 104, thereby causing an arc to occur. However, according to the present invention, since the gate electrode material 106 can directly contact the polysilicon layer through the contact hole 105 formed in the gate insulating layer 104 during the electric field application process, arc generation can be avoided. . In the present invention, fabricating a TFT may include forming the contact hole 105 electrically connecting the source 汲 and the drain electrode to a semiconductor layer to prevent - the book 3: arbitrarily: a: 'arc happened. As a result, since it is no longer necessary to directly contact the gate electrode material 106 with the patterned amorphous germanium layer 103 through an additional mask for removing a predetermined region of the gate insulating layer 104, Manufacturing costs can be reduced and the program can be simplified. Next, referring to FIG. 1D, the gate electrode material 106 is patterned to thereby form a blue electrode 1 at a position, and this position corresponds to a channel to be defined as the semiconductor layer. An area of the area © . a predetermined amount of conductive impurity ions is doped into the semiconductor layer 108 by using the gate insulating layer 104 having the contact hole 105 and the gate electrode 107 as a mask. Source and drain regions 109, 110 and a channel region 111 are formed in the semiconductor layer 108. In accordance with the present invention, a conductive ion doping process for forming the source and drain regions 109, 110 in the semiconductor layer 108 can utilize the gate insulating layer 104 having the contact hole 105 and the gate The electrode 107 is performed as a mask. Therefore, the conductive ion doping 098141764 Form No. Α0101 Page 13 of 31 0993047690-0 201027756 Miscellaneous programs do not need - additional masks, thus reducing manufacturing costs and simplifying the overall program. The formation of a TFT can use p-type ' or n-type impurity ions as the conductivity; f pure ion. What? The pure ion can be selected from the following groups, including: shed (8) 'Ming (A1), gallium ((4), and indium (in), in addition, the η pure ion can be selected from the following groups, Including: phosphorus (Ρ) 'arsenic (As)' and bismuth (Sb). Please refer to FIG. 1D, in accordance with an exemplary embodiment of the present invention, in the conductive ion impurity program, in the semiconductor layer The child's area of the pole and the bungee region 109'11〇 will be exposed due to the contact hole 1〇5, while the remaining area is covered by the % bar release layer 1〇4. When these shirts are covered When the pure material is incorporated into the semiconductor layer 108, the * is exposed, and is located at the source of the semiconductor layer 108 and the first region 112 and the Π3 of the drain region 1 〇9, 11 ,, which are doped The second region of the first region 112 and 113, which is formed by the impurity ions entering the semiconductor layer, is in the second region of the first region 112 and 113. In the specification of the present invention, the wood Wei The object of the 'pregnant' edge is a vertical range, and the vertical range is from the top surface of the gate insulating layer 104 to the impurity ions. The position at which the concentration change in the direction of the substrate 100 reaches a maximum value will be described in further detail below. Among the source and drain regions 109 and 110 of the semiconductor layer 108, the contact holes 105 The projected range Rp of the impurity ions in the exposed first regions 112 and 113 may be different from the second regions 114 and 115 other than the first regions 112 and 113. The first regions 112 098141764 The projection range Rp of Form No. A0101, page 14 of 31, 201027756, and 113, will be located deeper than the projection range Rp of the second regions ii4 and 115 (from the gate insulating layer 1〇4)

頂面朝向該基板100的方向),舉例而言,當該等第一區 域112以及113的該投射範圍Rp位在該半導體層之中 時’該等第二區域114以及115的該投射範圍RP會位在該 閘極絕緣層104之中。或者,當該等第二區域114以及 115的該投射範圍Rp是位在該半導體層108之中時,則該 等第一區域112以及113的該投射範圍RP就會位在該緩衝 層101之中。或者’該等第一區域112以及113的該投射 範圍Rp可以與該等第二區域114以及115的該投射範圍Rp 位在同一層之中’只是位在拽.該斧黎令以及U5 的該投射範圍Rp更深的位置ϋ該;絕.@ 1 〇 4的頂面 朝向該基板1: 〇 〇的方向)。 · Ί _ 該等傳導性不純物離子的摻雜劑量可大約為 l*E14/ciH2至l*E16/cm2,並且,加速霉壓可大約為5至 25 keV。由於該源極以及霜iillflllO的該等第一 區域112以及113以及該等區義f|y以及115會被電連 接至源極以及汲極電極,因^,丨化奇以進行一預定劑量 * 、或更多的傳導性不純物離子的摻雜,以降低電阻。另 外’為了獲得一所需的電阻,被摻雜進入該等第一區域 112以及113以及該等第二區域114以及115的每一個中的 該等傳導性不純物離子的劑量可以為l>icE14/cm2、或更多 。當該等傳導性不純物離子是透過將劑量以及加速電壓 控制在上述的範圍内而達成摻雜時,則所掺雜的就會是 一適當劑量的不純物離子,因此,該半導體層108將不會 受到損害’但仍可提供一所需的電阻。 098141764 表單編號A0101 第i5頁/共31頁 0993047690-0 201027756 在製造根據本發明一示範性實施例的一TFT的期間, 當該閘極絕緣層ι〇4是由一氧化矽層所形成時,在該傳導 性離子摻雜程序後’被包含在該半導體層118的該第一區 域112的一頂面中的氧濃度就會變得不同於在該第二區域 113的一頂面中所包含的氡濃度。透過將該傳導性離子換 雜程序所造成的能量施加至尚未移除該閘極絕緣層1〇4的 該半導體層108的該等第二區域114以及115,被包含在 該閘極絕緣層中的氧就會在該閘極絕緣層1〇4以及該 半導體層108之間的一介面處’被部分地反彈回該半導體 層108。因此’被包食在該半導馥層108的該等第二區域The direction of the top surface toward the substrate 100), for example, when the projection range Rp of the first regions 112 and 113 is in the semiconductor layer, the projection range RP of the second regions 114 and 115 It will be located in the gate insulating layer 104. Alternatively, when the projection range Rp of the second regions 114 and 115 is in the semiconductor layer 108, the projection range RP of the first regions 112 and 113 is located in the buffer layer 101. in. Or the projection range Rp of the first regions 112 and 113 may be in the same layer as the projection range Rp of the second regions 114 and 115 'only in the 拽. The axe and the U5 The position of the projection range Rp is deeper; the top surface of the @1 〇4 faces the substrate 1: the direction of the )). · Ί _ The doping dose of these conductive impurities may be approximately l*E14/ciH2 to l*E16/cm2, and the accelerated mold pressure may be approximately 5 to 25 keV. Since the source and the first regions 112 and 113 of the frost iillflllO and the regions f|y and 115 are electrically connected to the source and the drain electrode, a predetermined dose is applied. , or more doping of conductive impurities to reduce electrical resistance. In addition, in order to obtain a desired resistance, the dose of the conductive impurity ions doped into the first regions 112 and 113 and each of the second regions 114 and 115 may be l>icE14/ Cm2, or more. When the conductive impurity ions are doped by controlling the dose and the acceleration voltage within the above range, the doping is an appropriate dose of impurity ions, and therefore, the semiconductor layer 108 will not Damaged' but still provides a required resistance. 098141764 Form No. A0101, page i5, page 31, 0993047690-0, 201027756 During the manufacture of a TFT according to an exemplary embodiment of the present invention, when the gate insulating layer ι4 is formed of a hafnium oxide layer, The oxygen concentration contained in a top surface of the first region 112 of the semiconductor layer 118 after the conductive ion doping procedure becomes different from that contained in a top surface of the second region 113. The concentration of cesium. Applying energy caused by the conductive ion exchange program to the second regions 114 and 115 of the semiconductor layer 108 from which the gate insulating layer 1〇4 has not been removed is included in the gate insulating layer Oxygen is partially bounced back to the semiconductor layer 108 at an interface between the gate insulating layer 1〇4 and the semiconductor layer 108. Thus being encased in the second regions of the semiconducting layer 108

114以及115的頂面中的氧 及113的頂面中所包含的氣爹泰灰&在 請參閱第1E圖,一中間層The gas in the top surface of 114 and 115 and the gas in the top surface of 113 are included in the first layer, an intermediate layer.

區域112以 形成在具有 該閘極電極107的該基板100的整體表面之上。該中間層 絕緣層116可以是一氛化矽層,一氧化矽層,或是上述的多層'。 之後,會對該中間層絕緣七坪的^^定區域進行姓刻, 以使被形成在該閘極絕緣層卩妗該接觸洞丨〇 5延伸進 入該中間層絕緣層116之中。 ❹ 098141764 之後’透過形成在關極絕緣層1()4以及該中間層絕 緣層116之中的該接觸洞105,源極以及没極電極117以 及118可以被形成,並被連接至該半導體層⑽的該源極 以及沒極區域m以及在此,該等源極以及没極電 極117以及118可被由Mo、Cr、鹤(W)、錢(A1_Nd )、Ti、Mow、以及A1組成知群組的選出者形成。因此 一根據一示範性實施例的了!^即可完成。 表單編號A0101 第16頁/共31頁 0993047690-0 201027756 接下來將會敘述根據本發明的實驗性實例,雖然接下 來的實驗性實例是以簡潔的方式陳述,但本發明並未因 此而受限。 實驗性實例1 一氧化矽層會被沈積在一有機基板之上,厚度約4000 A,以形成一緩衝層。該緩衝層上再沈積厚度約500A的一 非晶矽層,並進行圖案化,以形成一半導體層。之後, 一氧化矽層會被沈積在該已圖案化的非晶矽層之上,厚 度約1 000 A,以形成一閘極絕緣層,並且,在該閘極絕 緣層中會形成接觸洞,以暴露該已圖案化非晶矽層中將 要形成該半導體層的源極以及汲極區域的預定區域,接 著,在具有該等接觸洞的基板的嵆體表面上,鉬會被形 成作為一閘極電極材質,厚度約1000 A,之後,一電場 會被施加至該鉬之上,以使該已圖案化非晶矽層結晶成 為一多晶矽層,進而形成透過焦耳熱效應而結晶的一半 1 — II , | 導體層,並且,透過該等接鱗該准結晶程序期 間直接與該多晶矽層接觸,ά藉此防止電弧的發生。 之後,作為該閘極電極材質1的屬鉬會進行圖案化,以 形成一閘極電極,然後,利用該閘極電極以及將該具有 該等接觸洞的閘極絕緣層作為一遮罩,Β離子可作為ρ型 不純物離子,並以劑量l*E15/cm2以及約7keV的加速電壓 ,而被摻雜至該半導體層。 實驗性實例2 一TFT的製造會以相同於實驗性實例1的條件而執行, 除了 B離子是作為ρ型不純物離子,並以約20keV的加速電 壓而被摻雜至該半導體層之中。 098141764 表單編號A0101 第Π頁/共31頁 0993047690-0 201027756 第2A圖以及第2B圖是顯示B離子以及氧濃度變化相對 於根據實驗性實例1而製造的該T F T中的該閘極絕緣層、 該半導體層、以及該緩衝層的深度的曲線圖,另外,第 3A圖以及第3B圖是顯示B離子以及氧濃度變化相對於根據 實驗性實例2而製造的該TFT中的該閘極絕緣層、該半導 體層、以及該緩衝層的深度的曲線圖。第2A圖以及第3A 圖顯示在該等接觸洞所暴露的第一區域中所獲得的測量 ,而第2B圖以及第3B圖則是顯示在不被該等接觸洞所暴 露的第二區域中所獲得的測量。在第2A圖至第3B圖中, (1)表示該閘極絕緣層的區域,(2)表示該半導體層 的區域,以及(3)表示該緩衝層的區域。 請參閱第2A圖以及第2B圖,可以確認的是,B離子在 .. .画圍 ~ 該第一區域中的一投射範圍是位在該半導體層的區域(2 )中,且同時間,在該第二區域中B離子的一投射範圍位 在該閘極絕緣層的區域(1)中。另外,請參閱第2A圖, 在該半導體層2的該第一區域的表面牛的氧濃度無法被確 認。相較之下,請參閱第2B廚,可以確認的是,在該半 導體層2以及該閘極絕緣層1之間的一介面處,於該第二 區域中的氧濃度會比該第一區域中更高。因此,由此可 知,當該離子摻雜程序所造成的能量被施加至尚未移除 該閘極絕緣層的該第二區域時,在該閘極絕緣層以及該 半導體層之間的一介面處,被包含在該閘極絕緣層中的 氧會被反彈至該半導體層的頂面。 同時間,請參閱第3A圖以及第3B圖,可以確認的是, B離子在該第一區域中的投射範圍落在該緩衝層3之中, 而同時間,B離子在該第二區域中的投射範圍則是會落在 098141764 表單編號A0101 第18頁/共31頁 0993047690-0 201027756 〇 該半導體層2之中。另外,可以看出的是,被包含在該半 導體層2的該第二區域的該頂面中的氧濃度,會比被包含 在該第一區域的該頂面中的氧濃度更高。 第4圖是包括根據本發明一示範性實施例的一TFT的一 有激發光二極體(OLED)顯示裝置的一剖面圖。 請參閱第4圖,一絕緣層400可被形成在該基板100的 整體表面之上,且該基板100中包括有第1E圖的該TFT。 該絕緣層400可以是一無機層、或一有機層。該無機層所 選自的群組包括:氧化矽層,氮化矽層,以及旋塗玻璃 (SOG,spin-on-glass)層。該有機層可帔由聚醯亞 胺(polyimide)、環笨丁炼(、benzocyclubutene) 系列的樹脂、以及丙稀酸酯(acrylate )組成之群組的 選出者形成,或者,該絕緣層400可以是一無機層以及一 有機層的一堆疊結構。 該絕緣層400會進行蝕刻,以藉此形成一通孔,進而 暴露該源極電極117、或該;没極電極1=18。. 一第一驚極 401可以透過該通孔而被形:成,且被連接至該等源極以及 汲極電極117以及118的其申4 一工該第一電極4 01可以 被實施為一陽極、或一陰極。當該第一電極401是一陽極 時,該陽極可以是使用一透明傳導層,該透明傳導層被 由氧化銦錫(IT0,indium tin oxide)、氧化銦鋅( IZ0,indium zinc oxide)、以及氧化銦錫鋅(ITZ0 ,indium tin zinc oxide)所組成之群組的選出者形 成。當該第一電極401為陰極時,該陰極則是可以由鎂( Mg),約(Ca),铭,銀(Ag),鋇(Ba),或其合金 所製成。 098141764 表單編號A0101 第19頁/共31頁 0993047690-0 201027756 之後,一具有一開口的像素定義層402會被形成在該 第一電極401之上,以部分地暴露該第一電極401的表面 ,並且,一包括一發散層(EML)的有機層403會被形成 在該第一電極401的該已暴露表面上。該有機層403會更 進一步地包括由一電洞注入層(hole injection layer) 、 一電洞運輸層 (hole transport layer) 、 一 電洞阻檔層(hole Mocking layer)、一電子阻擋層 、一電子注入層、以及一電子運輸層所組成之群組的選 出者。之後,一第二電極404會被形成在該有機層403之 上。該第二電極404可以被實施為一陽極、或是一陰極。 當該第二電極404是一陽極時,該陽極可以是使用一透明 傳導層製成,該透明傳導層被由IT0、 IZ0、以及ITZ0 所組成之群組的選出者形成。另外,當該第一電極401為 陰極時,該陰極則是可以由Mg,Ca,Al,Ag,Ba,或其 合金所製成。因此,根據本發明一示範性實施例的一 0LED顯示裝置可以被完成。 據此,當一電場被施加至一閘極電極材質,以利用焦 耳熱效應而產生高熱,以及一非晶矽層被結晶成為一多 晶矽層,以利用該多晶矽層而形成一TFT的一半導體層時 ,該閘極電極材質可以利用被包括在該TFT中的一接觸洞 而被連接至該非晶矽層,因此,在不需要採用用於移除 一閘極絕緣層的一預定區域的一額外遮罩的情形下,仍 然可以在一結晶程序期間防止電弧的發生,並且,藉由 將具有一接觸洞的該閘極絕緣層以及該閘極電極使用作 為一遮罩,一傳導離子摻雜程序可以被執行在該半導體 層的源極以及汲極區域之上,因此,製造成本可以被降 098141764 表單編號A0101 第20頁/共31頁 0993047690-0 201027756 • 低,而整體程序也可以被簡化。 ❹ ❿ 在本發明已經藉由參考某些示範性實施例而進行顯示 與敘述的同時,本領域中具通常知識者將可瞭解的是, 在不脫離本發明由附加申請專利範圍所定義的精神以及 範疇的情形下,可以於形式上以及詳細内容方面有各種 改變。 正如前述,本發明提供的是一種薄膜電晶體(TFT) 以及一種製造該TFT的方法,其包括將一電場施加至一閘 極電極材質*以透過焦耳熱效應而產生南熱,因而使得 一非晶矽層可以被結晶成為一多晶矽層,且可以利用該 多晶矽層而形成該TFT的一半導體層。藉由利用被包括在 該TFT中的一接觸洞而將該閘極電極材質與該非晶矽層相 連接,就可以在不採用用於移除一閘極絕緣層的一預定 區域的一額外遮罩的情形下,仍能在一結晶程序期間防 止電弧的發生,並且,藉由將具有一接洞的該閘極絕 - ... 1 義 緣層以及該閘極電極使用作(為一遮革,一傳導離子摻雜 程序可以被執行在該半導體層源'極以及汲極區域之上 。因此,製造成本可以被降低,而整體程序也可以被簡 化。 [0005] 【圖式簡單說明】 第1A圖至第1E圖:其為舉例說明根據本發明一示範性 實施例,一種製造一薄膜電晶體(TFT)的方法的剖面圖 098141764 f 第2A圖以及第2B圖:其為顯示在根據實驗性實例1所 製造的一TFT中,硼(B)離子以及氧濃度變化相對於一 閘極絕緣層、一半導體層、以及一緩衝層的深度的曲線 表單編號A0101 第21頁/共31頁 0993047690-0 201027756 圖; 第3A圖以及第3B圖:其為顯示在根據實驗性實例2所 製造的一TFT中,硼(B)離子以及氧濃度變化相對於一 閘極絕緣層、一半導體層、以及一緩衝層的深度的曲線 圖;以及 第4圖:其為根據本發明的一示範性實施例,包括一 TFT的有機發光二極體(0LED)顯示裝置的一剖面圖。 【主要元件符號說明】 [0006] 100 基板 101緩衝層 104閘極絕緣層 105接觸洞 107閘極電極 108半導體層 109、110汲極區域 111通道區域 112、113第一區域 114、115第二區域 116中間層絕緣層 117、118源極與汲極電極 400絕緣層 401第一電極 402像素定義層 403有機層 404第二電極 098141764 表單編號A0101 第22頁/共31頁 0993047690-0A region 112 is formed over the entire surface of the substrate 100 having the gate electrode 107. The interlayer insulating layer 116 may be a layer of enamel, a layer of ruthenium oxide, or a plurality of layers described above. Thereafter, the interlayer of the intermediate layer is insulated by seven pings so as to be formed in the gate insulating layer, and the contact hole 5 extends into the interlayer insulating layer 116. 098 098141764 Then, through the contact hole 105 formed in the gate insulating layer 1 () 4 and the interlayer insulating layer 116, source and electrodeless electrodes 117 and 118 may be formed and connected to the semiconductor layer The source and the non-polar region m of (10) and the source and the electrodeless electrodes 117 and 118 may be composed of Mo, Cr, crane (W), money (A1_Nd), Ti, Mow, and A1. The selected members of the group are formed. Therefore, it can be completed according to an exemplary embodiment. Form No. A0101 Page 16 of 31 0993047690-0 201027756 An experimental example according to the present invention will be described next, although the following experimental examples are stated in a concise manner, but the present invention is not limited thereby . EXPERIMENTAL EXAMPLE 1 A niobium oxide layer was deposited on an organic substrate to a thickness of about 4000 Å to form a buffer layer. An amorphous germanium layer having a thickness of about 500 Å is further deposited on the buffer layer and patterned to form a semiconductor layer. Thereafter, a layer of germanium oxide is deposited on the patterned amorphous germanium layer to a thickness of about 1 000 A to form a gate insulating layer, and a contact hole is formed in the gate insulating layer. Exposing a predetermined region of the patterned amorphous germanium layer to the source and the drain region of the semiconductor layer, and then, on the surface of the substrate of the substrate having the contact holes, molybdenum is formed as a gate The electrode material has a thickness of about 1000 A. Thereafter, an electric field is applied to the molybdenum to crystallize the patterned amorphous germanium layer into a polycrystalline germanium layer, thereby forming a half of the crystallized through the Joule heating effect. And a conductor layer, and directly contacting the polysilicon layer during the quasi-crystallization process through the scales, thereby preventing arcing. Thereafter, the molybdenum as the gate electrode material 1 is patterned to form a gate electrode, and then the gate electrode and the gate insulating layer having the contact holes are used as a mask. The ions can be doped as p-type impurity ions and doped to the semiconductor layer at a dose of l*E15/cm2 and an acceleration voltage of about 7 keV. Experimental Example 2 The fabrication of a TFT was carried out under the same conditions as Experimental Example 1, except that B ions were doped as p-type impurity ions and doped into the semiconductor layer at an acceleration voltage of about 20 keV. 098141764 Form No. A0101 Page 3 of 31 0993047690-0 201027756 FIGS. 2A and 2B are diagrams showing changes in B ions and oxygen concentration with respect to the gate insulating layer in the TFT manufactured according to Experimental Example 1, a graph of the depth of the semiconductor layer and the buffer layer, and FIGS. 3A and 3B are diagrams showing changes in B ions and oxygen concentration with respect to the gate insulating layer in the TFT manufactured according to Experimental Example 2. a graph of the depth of the semiconductor layer and the buffer layer. FIGS. 2A and 3A show measurements obtained in the first region exposed by the contact holes, and FIGS. 2B and 3B are displayed in the second region not exposed by the contact holes. The measurements obtained. In Figs. 2A to 3B, (1) indicates a region of the gate insulating layer, (2) indicates a region of the semiconductor layer, and (3) indicates a region of the buffer layer. Referring to FIG. 2A and FIG. 2B, it can be confirmed that the B ion is in a range of . . . in the first region and is in the region (2) of the semiconductor layer, and at the same time, A projection range of B ions in the second region is in the region (1) of the gate insulating layer. Further, referring to Fig. 2A, the oxygen concentration of the bovine on the surface of the first region of the semiconductor layer 2 cannot be confirmed. In contrast, referring to the second kitchen, it can be confirmed that at an interface between the semiconductor layer 2 and the gate insulating layer 1, the oxygen concentration in the second region is higher than the first region. Higher in the middle. Therefore, it can be seen that when the energy caused by the ion doping process is applied to the second region where the gate insulating layer has not been removed, at an interface between the gate insulating layer and the semiconductor layer The oxygen contained in the gate insulating layer is bounced to the top surface of the semiconductor layer. Meanwhile, referring to FIG. 3A and FIG. 3B, it can be confirmed that the projection range of B ions in the first region falls in the buffer layer 3, and at the same time, B ions are in the second region. The projection range will fall on 098141764 Form No. A0101 Page 18 / Total 31 Page 0993047690-0 201027756 〇 This semiconductor layer 2. In addition, it can be seen that the concentration of oxygen contained in the top surface of the second region of the semiconductor layer 2 is higher than the concentration of oxygen contained in the top surface of the first region. 4 is a cross-sectional view of an OLED display device including a TFT in accordance with an exemplary embodiment of the present invention. Referring to FIG. 4, an insulating layer 400 may be formed over the entire surface of the substrate 100, and the TFT 100 includes the TFT of FIG. The insulating layer 400 may be an inorganic layer or an organic layer. The inorganic layer is selected from the group consisting of a ruthenium oxide layer, a tantalum nitride layer, and a spin-on-glass (SOG) layer. The organic layer may be formed of a group selected from the group consisting of a polyimide, a benzocyclubutene series resin, and an acrylate, or the insulating layer 400 may be It is a stack structure of an inorganic layer and an organic layer. The insulating layer 400 is etched to thereby form a via hole to expose the source electrode 117, or the electrodeless electrode 1 = 18. A first squirrel 401 can be formed through the through hole: and connected to the source and the drain electrodes 117 and 118. The first electrode 401 can be implemented as a An anode, or a cathode. When the first electrode 401 is an anode, the anode may be a transparent conductive layer, which is made of indium tin oxide (ITO), indium zinc oxide (IZ0), and A selected group of indium tin zinc oxide (ITZ0, indium tin zinc oxide) is formed. When the first electrode 401 is a cathode, the cathode may be made of magnesium (Mg), about (Ca), Ming, silver (Ag), barium (Ba), or an alloy thereof. 098141764 Form No. A0101 Page 19 of 31 0993047690-0 201027756 Thereafter, a pixel defining layer 402 having an opening is formed over the first electrode 401 to partially expose the surface of the first electrode 401. Also, an organic layer 403 including an emission layer (EML) is formed on the exposed surface of the first electrode 401. The organic layer 403 further includes a hole injection layer, a hole transport layer, a hole Mocking layer, an electron blocking layer, and a hole injection layer. The selector of the group of electron injection layers and an electron transport layer. Thereafter, a second electrode 404 is formed over the organic layer 403. The second electrode 404 can be implemented as an anode or a cathode. When the second electrode 404 is an anode, the anode may be formed using a transparent conductive layer formed by a selected group of IT0, IZ0, and ITZ0. Further, when the first electrode 401 is a cathode, the cathode may be made of Mg, Ca, Al, Ag, Ba, or an alloy thereof. Therefore, an 0 LED display device according to an exemplary embodiment of the present invention can be completed. Accordingly, when an electric field is applied to a gate electrode material to generate high heat by the Joule heating effect, and an amorphous germanium layer is crystallized into a polysilicon layer to form a semiconductor layer of a TFT by using the polysilicon layer. The gate electrode material can be connected to the amorphous germanium layer by a contact hole included in the TFT, and therefore, an additional mask for removing a predetermined region of a gate insulating layer is not required. In the case of a cover, arcing can still be prevented during a crystallization process, and by using the gate insulating layer having a contact hole and the gate electrode as a mask, a conductive ion doping program can It is executed over the source and drain regions of the semiconductor layer, so the manufacturing cost can be reduced by 098141764 Form No. A0101 Page 20 / Total 31 Page 0993047690-0 201027756 • Low, and the overall program can be simplified. The present invention has been shown and described with reference to certain exemplary embodiments, and it will be understood by those of ordinary skill in the art that the spirit of the invention is defined by the scope of the appended claims. As well as the scope of the category, there are various changes in form and detail. As described above, the present invention provides a thin film transistor (TFT) and a method of fabricating the same, which comprise applying an electric field to a gate electrode material* to generate south heat through a Joule heating effect, thereby making an amorphous The tantalum layer may be crystallized into a polysilicon layer, and the polysilicon layer may be utilized to form a semiconductor layer of the TFT. By connecting the gate electrode material to the amorphous germanium layer by using a contact hole included in the TFT, an additional mask for removing a predetermined region of a gate insulating layer can be used. In the case of a cover, it is still possible to prevent the occurrence of an arc during a crystallization process, and by using the gate electrode having a hole and the gate electrode and the gate electrode A conductive ion doping program can be performed on the 'pole and drain regions of the semiconductor layer source. Therefore, the manufacturing cost can be reduced, and the overall program can be simplified. [0005] [Simple diagram] 1A to 1E are cross-sectional views of a method of fabricating a thin film transistor (TFT) according to an exemplary embodiment of the present invention, 098141764f, 2A, and 2B, which are shown in accordance with Curve of the variation of boron (B) ions and oxygen concentration with respect to the depth of a gate insulating layer, a semiconductor layer, and a buffer layer in a TFT fabricated in Experimental Example 1 Form No. A0101 Page 21 of 31 0993047690-0 201027 756; FIG. 3A and FIG. 3B are diagrams showing boron (B) ions and oxygen concentration changes with respect to a gate insulating layer, a semiconductor layer, and a TFT fabricated in Experimental Example 2. A graph of the depth of the buffer layer; and FIG. 4 is a cross-sectional view of an organic light emitting diode (OLED) display device including a TFT according to an exemplary embodiment of the present invention. 100 substrate 101 buffer layer 104 gate insulating layer 105 contact hole 107 gate electrode 108 semiconductor layer 109, 110 drain region 111 channel region 112, 113 first region 114, 115 second region 116 intermediate layer insulating layer 117 118 source and drain electrode 400 insulating layer 401 first electrode 402 pixel defining layer 403 organic layer 404 second electrode 098141764 Form No. A0101 Page 22 of 31 0993047690-0

Claims (1)

201027756 七、申請專利範圍: 1 . 一種薄膜電晶體(TFT),包括: 一基板; 一半導體層,設置於該基板之上,並包括一通道區域以及 源極與汲極區域,其中,該源極與汲極區域的每一個都具 有一第一區域以及一第二區域; 一閘極絕緣層,設置於該半導體層之上; 一閘極電極,設置於該閘極絕緣層之上;201027756 VII. Patent application scope: 1. A thin film transistor (TFT) comprising: a substrate; a semiconductor layer disposed on the substrate and including a channel region and a source and drain region, wherein the source Each of the pole and the drain regions has a first region and a second region; a gate insulating layer disposed over the semiconductor layer; a gate electrode disposed over the gate insulating layer; 一中間層絕緣層,設置於該閘極電極之上;以及 源極與汲極電極,設置於該中間層絕緣層之上,且透過形 成在該閘極絕緣層以及該中間層絕緣層之中的接觸洞而被 電連接至該半導體基板的該源極與汲極區域,以暴露該半 導體層的該源極與汲極區域的預定區域, 其中,該源極與汲極區域中包含傳導性不純物離子,並且 ,在該第一區域中所包含的傳導性不純物離子的一投射範 圍不同於被包含在該第二區域斧的#純物離子的一 投射範圍。 2. 如申請專利範圍第1項所述的TFT,其中,該第一區域是 該等接觸洞所暴露的一區域,以及該第二區域是未被該等 接觸洞所暴露的一區域。 3. 如申請專利範圍第1項所述的TFT,其中,該第一區域的 該投射範圍在自該閘極絕緣層的頂面朝向該基板的方向上 ,是處於比該第二區域的該投射範圍更深的一位置。 4. 如申請專利範圍第1項所述的TFT,其中,該第一區域的 該投射範圍被設置於與該第二區域的該投射範圍不同的一 0993047690-0 098141764 表單編號A0101 第23頁/共31頁 201027756 層之中。 5 ·如申請專利範圍第1項所述的TFT,其中,該第—區域的 該投射範圍被設置於與該第二區域的該投射範圍相同的一 層之中。 如申請專利範圍第!項所述的TFT,其中,被摻雜進入該 第一以及第二區域的每一個之中的該等傳導性不純物離子 的劑量為l*E14/cm2 '或更多。 7 .如申請專利範圍第1項所述的TFT,其中,該閘極絕緣層 包括一氧化矽層。An intermediate insulating layer disposed on the gate electrode; and a source and a drain electrode disposed on the interlayer insulating layer and formed through the gate insulating layer and the interlayer insulating layer a contact hole electrically connected to the source and drain regions of the semiconductor substrate to expose a predetermined region of the source and drain regions of the semiconductor layer, wherein the source and drain regions comprise conductivity Impurity ions, and a projection range of the conductive impurity ions contained in the first region is different from a projection range of the #pure ion contained in the axe of the second region. 2. The TFT of claim 1, wherein the first region is an area exposed by the contact holes, and the second region is an area that is not exposed by the contact holes. 3. The TFT of claim 1, wherein the projection range of the first region is in a direction from the top surface of the gate insulating layer toward the substrate, which is in the second region. A position that projects a deeper range. 4. The TFT of claim 1, wherein the projection range of the first region is set to be different from the projection range of the second region. 0993047690-0 098141764 Form No. A0101 Page 23 / A total of 31 pages of 201027756 layers. 5. The TFT of claim 1, wherein the projection range of the first region is set in a layer that is the same as the projection range of the second region. Such as the scope of patent application! The TFT according to the item, wherein the dose of the conductive impurity ions doped into each of the first and second regions is 1*E14/cm2' or more. 7. The TFT of claim 1, wherein the gate insulating layer comprises a hafnium oxide layer. 8 .如申請專利範圍第7項所述的TFi,其中,被包含在該半 導體層的該第一區域之頂面中的.氡^後序洞於該第二區域 的一頂面中所包含的氧濃度》 9 .如申請專利「範園第8廣所述中被包含在該半 導體層的該第二區域的該頂面中的氧濃度高於該其第一區 域的該頂面中所包含的氧濃度。 10 ·如申請專利範圍第1項所述閘極電極是 由具有約、或合金所製8. The TFi of claim 7, wherein the rear hole included in the top surface of the first region of the semiconductor layer is included in a top surface of the second region Oxygen Concentration 9. The oxygen concentration in the top surface of the second region of the semiconductor layer is higher than that of the first region of the first region as described in the patent application The oxygen concentration contained. 10 · The gate electrode as described in item 1 of the patent application is made of alloy or alloy. 成。 Office 11 .如申請專利範圍第10項所述的TFT,其中,具有約13〇〇<t 、或更高的熔點的該金屬、或合金包括,鉬(Mo),欽( Ti ),鉻(Cr),或鉬化鎢(Mow)。 12 .如申請專利範圍第1項所述的押丁,其t,該半導體層是 利用透過焦耳熱效應而結晶的一多晶梦(P〇ly-Si)層所 製成。 13 . —種製造一薄膜電晶體(TFT)的方法,包括下列步驟: 提供一基板; 098141764 表單編號A0101 第24頁/共31頁 0993047690-0 201027756 在該基板上形成一非晶矽(a-Si)層; 圖案化該非晶矽層; 在該基板的整體表面上形成一閘極絕緣層; 在該閘極絕緣層上形成一接觸洞; 在該閘極絕緣層上形成一閘極電極材質; 施加一電場至該閘極電極材質,並透過焦耳熱效應而將該 已圖案化非晶矽層結晶成為一多晶矽(poly-Si)層,以 形成一半導體層; 圖案化該閘極電極材質,以形成一閘極電極: Ο 利用該閘極電極以及具有該接觸洞的該閘極絕緣層作為一 遮罩而將傳導性不純物離子摻雜進入該半導體層中,以形 成源極與汲極區域,其中,該源極與汲極區域的每一個都 包括具有不同摻質濃度的一第一區域以及一第二區域; 在具有該閘極電極的該基板的整體表面上形成一中間層絕 緣層; 14 . 蝕刻該中間層絕緣層的一預定區域,閘極絕緣層的 該接觸洞延伸進入該中間層絕$層;以.及 在該中間層絕緣層上形成分別電連接至該半導體層的該源 極與波極區域的源極與汲·極電極。 如申請專利範圍第13項所述的方法,其中,被摻雜進入該 源極與汲極區域的每一個的該第一區域的該等傳導性不純 物離子的一投射範圍不同於被摻雜進入其該第二區域的該 等傳導性不純物離子的一投射範圍。 如申請專利範圍第13項所述的方法,其中,該第一區域的 一投射範圍在自該閘極絕緣層的頂面朝向該基板的方向上 ,是處於比該第二區域的一投射範圍更深的一位置。 098141764 表單編號A0101 第25頁/共31頁 0993047690-0 15 . 201027756 16 .如申請專利範圍第13項所述的方法,其中,被摻雜進入該 半導體層的該源極與汲極區域之中的該等具傳導性不純物 離子的劑量為l*E14/cin2、或更多。 17 .如申请專利範圍第16項所述的方法,其中,該等傳導性不 純物離子的摻雜劑量約為BE!4/至丨外丨”⑽2,並且, —加速電壓約為5至25 keV。 18.如申清專利範圍第13項所述的方法其更包括在將該電場 施加至該閘極電極材質之前,預熱該基板。 19 ·如申請專利範圍第13項所述的方法,其中施加電場至該to make. The TFT according to claim 10, wherein the metal or alloy having a melting point of about 13 Å < t or higher comprises molybdenum (Mo), chin (Ti), chromium (Cr), or tungsten molybdenum (Mow). 12. The temper according to claim 1, wherein the semiconductor layer is made of a polycrystalline dream (P〇ly-Si) layer crystallized by a Joule heating effect. 13. A method of fabricating a thin film transistor (TFT) comprising the steps of: providing a substrate; 098141764 Form No. A0101 Page 24 of 31 0993047690-0 201027756 Forming an amorphous germanium on the substrate (a- a Si-layer layer; patterning the amorphous germanium layer; forming a gate insulating layer on the entire surface of the substrate; forming a contact hole on the gate insulating layer; forming a gate electrode material on the gate insulating layer Applying an electric field to the gate electrode material, and crystallizing the patterned amorphous germanium layer into a poly-Si layer by a Joule heating effect to form a semiconductor layer; patterning the gate electrode material, Forming a gate electrode: Ο using the gate electrode and the gate insulating layer having the contact hole as a mask to dope impurity impurities into the semiconductor layer to form a source and a drain region Wherein each of the source and drain regions includes a first region having a different dopant concentration and a second region; an overall surface of the substrate having the gate electrode Forming an intermediate layer of insulating layer; etching a predetermined region of the interlayer insulating layer, the contact hole of the gate insulating layer extending into the intermediate layer; and forming a difference on the interlayer insulating layer The source and the polarity of the source and the pole electrode are electrically connected to the semiconductor layer. The method of claim 13, wherein a projection range of the conductive impurity ions doped into the first region of each of the source and drain regions is different from being doped into a projection range of the conductive impurity ions of the second region. The method of claim 13, wherein a projection range of the first region is in a direction from the top surface of the gate insulating layer toward the substrate, and is in a projection range from the second region. A deeper position. The method of claim 13, wherein the method is doped into the source and the drain region of the semiconductor layer, wherein the method is the same as the method of claim 13 of the invention. The dose of such conductive impurity ions is 1*E14/cin2 or more. 17. The method of claim 16, wherein the conductive impurity ions are doped at a dose of about BE!4/to 丨"(10)2, and, - the acceleration voltage is about 5 to 25 keV. 18. The method of claim 13 further comprising preheating the substrate prior to applying the electric field to the gate electrode material. 19. The method of claim 13, Where an electric field is applied to the 閉極電極材質的步驟包括,施加功率密度可產生高溫約 1300 °C、或更高的熱的能量β , .The step of the material of the closed electrode includes applying a power density to generate a thermal energy β of a temperature of about 1300 ° C or higher. 098141764 表單編號Α0101 第26頁/共31頁 0993047690-0098141764 Form number Α0101 Page 26 of 31 0993047690-0
TW098141764A 2008-12-08 2009-12-07 Thin film transistor and fabricating method of the same TW201027756A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080124141A KR101043785B1 (en) 2008-12-08 2008-12-08 Thin film transistor and fabricating method of the same

Publications (1)

Publication Number Publication Date
TW201027756A true TW201027756A (en) 2010-07-16

Family

ID=42243184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141764A TW201027756A (en) 2008-12-08 2009-12-07 Thin film transistor and fabricating method of the same

Country Status (3)

Country Link
KR (1) KR101043785B1 (en)
TW (1) TW201027756A (en)
WO (1) WO2010067997A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100579188B1 (en) * 2004-02-12 2006-05-11 삼성에스디아이 주식회사 thin film transistor having LDD structure
KR100669804B1 (en) * 2004-12-06 2007-01-16 삼성에스디아이 주식회사 Thin film transistor with air gap and method for fabricating the same
KR100786498B1 (en) * 2005-09-27 2007-12-17 삼성에스디아이 주식회사 Transparent thin film transistor and manufacturing method thereof
KR100685848B1 (en) * 2005-12-16 2007-02-22 삼성에스디아이 주식회사 Fabricating method for thin film transistor
KR100731756B1 (en) * 2006-06-07 2007-06-22 삼성에스디아이 주식회사 Fabricating method of thin film transistor

Also Published As

Publication number Publication date
KR20100065680A (en) 2010-06-17
WO2010067997A2 (en) 2010-06-17
WO2010067997A3 (en) 2010-09-10
KR101043785B1 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5043781B2 (en) THIN FILM TRANSISTOR, ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE HAVING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
JP5250929B2 (en) Transistor and manufacturing method thereof
KR100889627B1 (en) Thin film transistor, fabricating method for the same, and organic light emitting diode display device comprising the same
JP5399152B2 (en) THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, AND ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE INCLUDING THE SAME
TWI578541B (en) Thin film transistor, method of fabricating the same and organic light emitting diode display device including the same
US8053297B2 (en) Method of fabricating a thin film transistor using joule heat from the gate electrode to form a crystallized channel region
EP1939933A2 (en) Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the same
US8569764B2 (en) Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the same
JP2001332741A (en) Method for manufacturing thin film transistor
KR101009646B1 (en) Thin film transistor and display device having the same
EP2204844A1 (en) Method of fabricating polysilicon, thin film transistor, method of fabricating the thin film transistor, and organic light emitting diode display device including the thin film transistor
TW595002B (en) Fabricating method of low temperature poly-silicon film and low temperature poly-silicon thin film transistor
TW201001715A (en) Thin film transistor and method of fabricating the same
TW201027756A (en) Thin film transistor and fabricating method of the same
JPH11283922A (en) Manufacture of semiconductor device and the semiconductor device
TW541703B (en) Thin film transistor substrate and process for producing the same
JP2022077434A (en) Thin film transistor, manufacturing method thereof and display device
KR101009432B1 (en) Thin film transistor and fabricating method of the same
US8278716B2 (en) Method of fabricating polysilicon, thin film transistor, method of fabricating the thin film transistor, and organic light emitting diode display device including the thin film transistor
KR100685409B1 (en) Thin film transistor and method for fabricating the same
KR20070056459A (en) Thin film transistor and fabricating method of the same
KR20110031840A (en) Fabricating method of thin film transistor
JP2015043388A (en) Semiconductor device, method of manufacturing semiconductor device, and electronic apparatus
KR20120118176A (en) Array substrate including thin film transistor of polycrystalline silicon and method of fabricating the same