TW201021222A - Metal film electrode for organic solar cells and the method for forming the same - Google Patents

Metal film electrode for organic solar cells and the method for forming the same Download PDF

Info

Publication number
TW201021222A
TW201021222A TW97146142A TW97146142A TW201021222A TW 201021222 A TW201021222 A TW 201021222A TW 97146142 A TW97146142 A TW 97146142A TW 97146142 A TW97146142 A TW 97146142A TW 201021222 A TW201021222 A TW 201021222A
Authority
TW
Taiwan
Prior art keywords
film electrode
solar cell
thin film
metal thin
array
Prior art date
Application number
TW97146142A
Other languages
Chinese (zh)
Inventor
Hsuen-Li Chen
Shang-Yu Chuang
Wen-Hao Lee
Wei-Fang Su
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW97146142A priority Critical patent/TW201021222A/en
Publication of TW201021222A publication Critical patent/TW201021222A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The present invention discloses a metal film electrode for organic solar cells, wherein the metal film electrode is fabricated by lithography process. The metal film electrode thickness is 5nm to 500nm, and having a hole array to enhance the light transmission, wherein the light transmission is up to 40% to 90%.

Description

201021222 < ’ “ 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能電池之金屬薄膜電極,特別係關於 一種具有穿透性孔洞陣列之太陽能電池之金屬薄膜電極。 【先前技術】 於1985年開始發展有機太陽能電池之研究,然而目前有機太 φ _電池發電效率遠比-般傳統讀料之太陽能電池之效能遜 ' 色許多,故提高有機太陽能電池之光轉換效率乃發展之重點。其 中’有機太陽能f:池普制用低功函數(lQw_wQrk_funeti〇n)之 銘薄膜作為陰極’並且以高光穿透率且具導電性之氧化銦锡作為 材料然而,對於有機太陽能電池而言,由於氧化銦錫的高 片電阻值之故’氧化銦錫的導電性仍不盡如理想。 因此根據W上所述’開發出具有良好導電性以及高光穿透率之太陽 ❹ ㈣池的電極’私提升有機太陽能電池之發電效率係產料碰發展之 重點。 【發明内容】 馨於上述發明背景中’為了符合產業上之要求,本發明提供 -種太陽能電池之金屬薄骐電極。 本發明之特徵在於提供-種藉由膠體微影(colloidal g aphy)所製成的太陽*電池之金屬薄膜電極,上述金屬 薄膜電極具有一 φ话 牙遗性孔洞陣列,藉此提高金屬薄膜電極之光穿 透率上述金屬薄膜電極之光穿透率能達40%~90%。 3 201021222 根據以上所述之特徵’本發明揭示了一種具有一穿透性孔洞 陣列之太陽能電池之金屬薄膜電極,上述金屬薄膜電極因具有孔 洞陣列提高了入射光的波向量,進而於電極表面產生表面電漿共 振(surface plasmon resonance,SPR) ’並且表面電衆共振波 將被侷制於金屬薄膜電極之表面。據此増加光作用層與金屬薄膜 電極介面間之激子(exciton)的產生’以提升太陽能電池之光轉 換效率。 【實施方式】 本發明在此所探討的方向為一種太陽能電池之金屬薄膜電 極。為了能徹底地瞭解本發明,將提出詳盡的描述說明。顯然地, 本發明的施行並未限定於該領域之技藝者所熟習的特殊細節。另 一方面,眾所周知的組成或步驟並未描述於細節中,以避免造成 本發明不必要之限制。本發明的較佳實施例會詳細描述如下,然 而除了這些詳細描述之外,本發明還可以廣泛地施行在其他的實 e 施例中,且本發明的範圍不受限定,其以之後的專利範圍為準。 本發明之第一實施例係揭露一種藉由膠體微影(colloidal lithography)所製成的太陽能電池之金屬薄膜電極,上述金屬 薄膜電極之厚度係能為5nm〜500nm,且具有一穿透性孔洞陣列, 藉此提高金屬薄膜電極之光穿透率,上述金屬薄膜電極之光穿透 率能達40%〜90%。 其中,上述穿透性孔洞陣列係能為一週期性排列之穿透性孔 洞陣列,並且上述孔洞陣列具有至少一種孔徑之孔洞,其孔洞直 4 201021222 徑以及孔洞_距離約為2Gnm~_me再者,上述金屬薄膜電極 之金屬薄膜係選自下列族群之一者:鋁、銀銅、金鉑、鈀、 錄與钻。 本發明之第二實施例係揭露一種太陽能電池之金屬薄膜電 極的形成方法,其中,上述金屬薄膜電極之厚度係能為 5mn~5_m’且具有-穿透性孔洞陣列,藉此提高金屬薄膜電極201021222 < ' " " Description of the Invention: [Technical Field] The present invention relates to a metal thin film electrode of a solar cell, and more particularly to a metal thin film electrode of a solar cell having a penetrating array of holes. 】 In 1985, the development of organic solar cells began to be studied. However, the current organic φ _ battery power generation efficiency is much less than that of traditional solar cells. Therefore, improving the light conversion efficiency of organic solar cells is developing. Focus: 'Organic solar energy f: Chipu uses a low-work function (lQw_wQrk_funeti〇n) film as the cathode' and uses high-light transmittance and conductive indium tin oxide as a material. However, for organic solar cells Due to the high sheet resistance of indium tin oxide, the conductivity of indium tin oxide is still not satisfactory. Therefore, according to the above, the electrode of the solar cell (four) cell with good conductivity and high light transmittance has been developed. 'The power generation efficiency of privately-raised organic solar cells is the focus of development of production materials. 【Contents】 In order to meet the requirements of the industry, the present invention provides a metal thin tantalum electrode for a solar cell. The present invention is characterized by providing a sun made by colloidal g aphy. * The metal thin film electrode of the battery, the metal thin film electrode has a φ tooth cavity array, thereby improving the light transmittance of the metal thin film electrode. The light transmittance of the metal thin film electrode can reach 40% to 90%. 201021222 According to the above features, the present invention discloses a metal thin film electrode of a solar cell having a penetrating array of holes, the metal thin film electrode having a hole array for increasing the wave vector of the incident light and thereby generating a surface on the electrode surface Surface plasmon resonance (SPR)' and the surface electric resonance wave will be fabricated on the surface of the metal film electrode. According to this, the generation of exciton between the light-applying layer and the metal film electrode interface is Improving the light conversion efficiency of a solar cell. [Embodiment] The invention is directed to a solar cell. Metal film electrodes. In order to be able to fully understand the present invention, a detailed description will be given. It is obvious that the practice of the invention is not limited to the specific details familiar to those skilled in the art. On the other hand, well known compositions or steps The invention is not described in detail to avoid unnecessary limitations of the invention. The preferred embodiments of the invention are described in detail below, but in addition to these detailed description, the invention may be widely practiced in other embodiments. The scope of the present invention is not limited, and the scope of the following patents shall prevail. The first embodiment of the present invention discloses a metal thin film electrode of a solar cell fabricated by colloidal lithography. The metal thin film electrode has a thickness of 5 nm to 500 nm and has a penetrating array of holes, thereby increasing the light transmittance of the metal thin film electrode, and the light transmittance of the metal thin film electrode can reach 40% to 90%. . The penetrating aperture array can be a periodically arranged penetrating aperture array, and the hole array has at least one aperture hole, and the hole diameter 4 201021222 diameter and the hole_distance are about 2Gnm~_me The metal thin film of the metal thin film electrode is selected from one of the following groups: aluminum, silver copper, gold platinum, palladium, recording and drilling. A second embodiment of the present invention discloses a method for forming a metal thin film electrode of a solar cell, wherein the metal thin film electrode has a thickness of 5 nm to 5 mm and has a through-hole array, thereby improving the metal thin film electrode.

❹ 之光穿透率’上述金屬薄膜電極之光穿透率能$概.,並 且,上述穿透性孔洞陣列係能為—週期性排列之穿透性孔洞陣 列’上述孔洞陣列具有至少―種孔徑之孔洞,其孔洞直徑以及孔 洞間隙距離約為2〇nm〜l〇Mm。 上述金屬薄膜電極的形成方法包含:首先,進行一塗佈程 序,形成-緊密堆積之第—單層奈米球層^基材上,其次,利 用-電聚侧程序,用以㈣上述緊密堆積之第—單層奈米球 層,以便形成-第二單層奈树層,其中,該第二單層奈米球屠 中之奈米球間係以間隔性排列,接著,谁 灯一沉積程序,用以沉 積金屬於第二單層奈米球間之間陈並形成層最 後’進行-移除程序,藉由-溶劑溶解移除上述奈米球以便形成 上述具穿透性孔洞陣列的太陽能電池之金屬薄膜電極於上述基 材上,其中,上述移除程序更包含一超音波震盪程序。 熱蒸鍍(thermal 其中’上述塗佈程序係能為旋轉塗佈(spin c〇ating)與浸泡 式塗佈(dip coating)。其次’沉積程序係能為物理氣相沉積 (physical vapor deposition ; PVD)與化學氣相沉積(cheinicai vapor deposition ; CVD ),較佳者: 5 201021222 * evaporation)、濺鍍、電子束蒸鍍法(eiectr〇ri beam evaporation)、化學氣相濺鍍法(sputter)、電子搶蒸鍍(e-gUn evaporation)與離子束濺錄(i〇n-beam sputter)。 再者,上述基材係能為無機基材與有機基材,較佳者:玻璃、 石英、矽、聚碳酸酯(Polycarbonate ; PC)、聚氣乙烯(p〇ly(vinyl chloride) ; PVC)、聚對苯二曱酸乙二酯(Poly(ethylene terephthalate ; PET)、 聚甲基丙烯酸甲酯 • (P〇ly(methylmethacrylate) ; PMMA)與軟質基材。 ® 此外,述金屬薄膜電極之金屬薄膜係選自下列族群之一者: 銘、銀、銅、金、銘、把、錄與鈷。 於本實施例之一較佳範例中,上述奈米球係為聚苯乙烯 (polystyrene,PS)’並且上述電漿蝕刻程序係利用氧氣電漿(〇2 plasma),而上述移除程序所使用之溶劑係選自下列族群之一 者:曱苯、丙酮、甲醇、苯、氣仿與二氣甲烷(CH2Cl2)。 於本實施例之另一較佳範例中,上述奈米球係為二氧化矽 φ (Silica),並且電漿蝕刻程序所利用之氣體係選自下列族群之一 者:三氟甲烧電漿(CHF3 plasma)、四氟化碳電聚(CF4plasma)、 氬氣電漿(Arplasma)與六氟化硫電漿(SF6plasma),而上述移除 程序所使用之溶劑係選自下列族群之一者:濕蝕刻液(buffer oxide etch ; Β0Ε)、HF、Κ0Η 與 NaOH 及其他強鹼。 本發明之第二實施例係揭露一種太陽能電池,其包含:一具 有用以提高金屬薄膜電極之光穿透率的穿透性孔洞陣列之金屬 薄膜電極、一與該具有穿透性孔洞陣列之金屬薄膜電極之相反電 201021222 極與一光作用層,上述光作用層位於上述電極之間,其中,該光 作用層包含一電子受體(electron acceptor)與一電子予體 (electron donor)。此外,上述具有用以提高金屬薄膜電極之 光穿透率的穿透性孔洞陣列之金屬薄膜電極如第二實施例所述 之太陽能電池之金屬薄膜電極。 其次,上述具有穿透性孔洞陣列之金屬薄膜電極之相反電極 係選自下列族群之一者:鋁、鎵、銦、錫、弼、鎂與銀。 . 上述之電子受體(electron acceptor)係選自下列族群之一 ® 者或其任意組合:奈米碳管(CNT)、導電高分子、硒化鎘(CdSe)、 碌化録(CdTe)、硫化鑛(CdS)、二氧化鈦(titanium dioxide)、 氡化鋅(znic oxide)、氧化鐵(iron oxide)、钟化鎵(GaAs)、磷 化鎵(GaP)、二氧化錫(Sn〇2)、碳化矽(SiC)、氮化銦(InN)、氮化 鎵銦(InGaN)、氮化鎵(GaN)、硫化鉛(PbS)、硫化鉍(Bi2S3)、硫 化砸(Bi2Se3)、硫化鐵(Fe2S3)、硫化砸(BiaSe3)、确嫁銦銅 (Cu-In-Ga-Se)、硫鎵銦銅(Cu-In-Ga-S)、碳六十(C60)、碳七十 ❹ (C70)、碳八十四(C84)、PCBM ([6, 6]-phenyl-C61 butyric acid methyl ester,a fullerene derivative)、及其衍生物。 上述之電子予體(electron donor)係衍生自下列導電性高 分子單鍾結構之一者或其任意組合:苯(benzene)、乙炔 (acetylene)、噻吩(thiophene)、苯胺(aniline )、呋喃(furan)、 0弓 In朵(Indole )、苯基硫(phenyl ene sulfide)、乙炔(acetylene )、 對苯乙快(phenyl vinylene ; PV )、並五苯(pentacene)、苐 (fluorene)、及其衍生物或募聚物。 再者’上述太陽能電池更包含一電洞傳導層,上述之電洞傳 7 201021222 導層係選自下列族群之一者:聚3, 4-乙烯二氧噻吩 (polyethylene dioxythiophene ; PED0T)、聚 3, 4-已稀二氧嘆吩: 聚苯乙稀績酸複合物(polyethylene dioxythiophene blend poly styrenesulfonate ; PED0T:PSS) 、 (Tetraaryl biphenyl diamine; TBD)、聚乙稀(polyethylene)、聚嗟吩 (polythiophene )、聚苯胺(polyaniline )、聚苯胺 (Polyaniline)、銅醜菁(Copper phthalocyanine ; CuPc)、六 腈六氮苯並菲(hexanitrilehexaazatriphenylene ;HTA)、及 其衍生物。 本發明之第四實施例係揭露一種藉由膠體微影(colloidal lithography)所製成的太陽能電池之金薄膜電極,上述金薄膜 電極之厚度係能為5nm〜500nm,且具有一穿透性孔洞陣列,藉此 提高金薄膜電極之光穿透率,上述金薄膜電極之光穿透率能達 40%〜90%。 φ 其中’上述穿透性孔洞陣列係能為一週期性排列之穿透性孔 洞陣列’並且上述孔洞陣列具有至少一種孔徑之孔洞,其孔洞直 徑以及孔洞間隙距離約能為20nm〜l〇ym。 範例一太陽能電池之金薄膜電極的製備 首先利用旋轉塗佈機塗佈聚苯乙烯奈米球層於一玻璃基材 上,利用氧氣電漿姑刻調控奈米球之尺寸,聚苯乙烯奈米球經氧 氣電漿蝕刻後之掃瞄式電子顯微鏡圖片如第一圖所示:(a)聚苯 乙烯奈米球經5秒之氧氣電漿蝕刻(b)聚苯乙烯奈米球經1〇秒 8 201021222 之氧氣電漿蝕刻。接著,藉由熱蒸鍍沉積金薄膜於聚笨乙烯奈米 球層上,最後使用甲基苯溶劑於超音波震盪下溶解移除聚苯乙烯 奈米球,以形成一具有穿透性孔洞陣列的太陽能電池之金薄臈電 極於玻璃基材上° 上述製備過程示意圓如第二圖所示,而金薄膜電極如第三圓所 不,其中,孔洞直徑為240nm,而孔洞間隙距離為28〇nm。光 Light transmittance 'The light transmittance of the above metal thin film electrode can be substantially, and the above-mentioned penetrating array of holes can be a periodically arranged penetrating array of holes. The above array of holes has at least one kind The hole diameter of the hole has a hole diameter and a hole gap distance of about 2 〇 nm to l 〇 Mm. The method for forming the metal thin film electrode comprises: first, performing a coating process to form a closely packed first-layer nanosphere layer substrate, and secondly, using the -electropolymerization side program for (4) the above-mentioned close packing a first layer of a single layer of nanospheres to form a second monolayer of nevi, wherein the nanospheres of the second single layer of nanospheres are arranged in a spaced relationship, and then, a lamp deposition process, a method of depositing metal between the second single-layer nanospheres and forming a layer final 'practicing-removing procedure, removing the above-mentioned nanospheres by solvent-solving to form the above-mentioned solar cell with a penetrating array of holes The metal film electrode is on the substrate, wherein the removing process further comprises an ultrasonic oscillation program. Thermal evaporation (thermal where 'the above coating procedure can be spin coating and dip coating. Secondly, the deposition process can be physical vapor deposition (PVD) And chemical vapor deposition (CVD), preferably: 5 201021222 * evaporation), sputtering, electron beam evaporation (eiectr〇ri beam evaporation), chemical vapor sputtering (sputter), Electron evaporation (e-gUn evaporation) and ion beam splattering (i〇n-beam sputter). Furthermore, the substrate may be an inorganic substrate or an organic substrate, preferably glass, quartz, tantalum, polycarbonate (PC), polystyrene (vinyl chloride), PVC. Polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and soft substrate. ® In addition, the metal of the metal film electrode The film is selected from one of the following groups: Ming, Silver, Copper, Gold, Ming, Hand, Record and Cobalt. In a preferred embodiment of the present embodiment, the nanosphere is polystyrene (PS). And the above plasma etching procedure utilizes oxygen plasma (〇2 plasma), and the solvent used in the above removal procedure is selected from one of the following groups: toluene, acetone, methanol, benzene, gas and two Gas methane (CH2Cl2). In another preferred embodiment of the present embodiment, the nanosphere system is cerium oxide φ (Silica), and the gas system utilized by the plasma etching process is selected from one of the following groups: Trifluoromethane (CHF3 plasma), carbon tetrafluoride (CF4plasma) Arplasma and sulphur hexafluoride plasma (SF6plasma), and the solvent used in the above removal procedure is selected from one of the following groups: wet etchant (buffer oxide etch; Β0Ε), HF,第二0Η with NaOH and other strong bases. A second embodiment of the present invention discloses a solar cell comprising: a metal thin film electrode having a penetrating array of holes for increasing the light transmittance of the metal thin film electrode; The opposite electrode of the metal thin film electrode having the penetrating array of holes is connected to a photo-acting layer between the electrodes, wherein the photo-active layer comprises an electron acceptor and an electron Further, the above-mentioned metal thin film electrode having a penetrating hole array for improving the light transmittance of the metal thin film electrode, such as the metal thin film electrode of the solar cell described in the second embodiment. The opposite electrode of the metal thin film electrode having the array of penetrating holes is selected from one of the following groups: aluminum, gallium, indium, tin, antimony, magnesium, and silver. The electron acceptor is selected from one of the following groups: or any combination thereof: carbon nanotube (CNT), conductive polymer, cadmium selenide (CdSe), cadmium (CdTe), sulfide ore ( CdS), titanium dioxide, znic oxide, iron oxide, gallium arsenide (GaAs), gallium phosphide (GaP), tin dioxide (Sn〇2), tantalum carbide ( SiC), Indium Nitride (InN), InGaN, InGaN, GaN, PbS, Bi2S3, Bi2Se3, Fe2S3, Vulcanization BiaSe3, Cu-In-Ga-Se, Cu-In-Ga-S, C60, C70, C8 Fourteen (C84), PCBM ([6, 6]-phenyl-C61 butyric acid methyl ester, a fullerene derivative), and derivatives thereof. The above electron donor is derived from one of the following conductive polymer monocyclic structures or any combination thereof: benzene, acetylene, thiophene, aniline, furan ( Furan), 0 bow Indole, phenyl ene sulfide, acetylene, phenyl vinylene (PV), pentacene, fluorene, and Derivative or polymer. Furthermore, the above solar cell further comprises a hole conducting layer, and the above hole hole 7 201021222 is selected from one of the following groups: poly 3,4-ethylene dioxythiophene (PED0T), poly 3 , 4-Diluted Dioxetane: Polyethylene dioxythiophene blend poly styrenesulfonate (PED0T:PSS), (Tetraaryl biphenyl diamine; TBD), Polyethylene, Polythiophene ), polyaniline, polyaniline, copper phthalocyanine (CuPc), hexanitrile hexazatriphenylene (HTA), and derivatives thereof. A fourth embodiment of the present invention discloses a gold thin film electrode for a solar cell fabricated by colloidal lithography, wherein the gold thin film electrode has a thickness of 5 nm to 500 nm and has a penetrating hole. The array, thereby increasing the light transmittance of the gold thin film electrode, the light transmittance of the gold thin film electrode can reach 40% to 90%. φ wherein the above-mentioned penetrating array of holes can be a periodically arranged penetrating array of holes' and the array of holes has at least one aperture of a hole having a hole diameter and a hole gap distance of about 20 nm to 1 〇 ym. Example 1 Preparation of a Gold Thin Film Electrode of a Solar Cell Firstly, a polystyrene nanosphere layer is coated on a glass substrate by a spin coater, and the size of the nanosphere is fixed by oxygen plasma, and the polystyrene nanometer is used. The scanning electron microscope image of the ball after oxygen plasma etching is shown in the first figure: (a) polystyrene nanospheres are etched by oxygen plasma for 5 seconds (b) polystyrene nanospheres are passed through 1〇 Oxygen plasma etching of seconds 8 201021222. Next, a gold film is deposited on the polystyrene nanosphere layer by thermal evaporation, and finally the polystyrene nanosphere is dissolved and removed by ultrasonic vibration using a methylbenzene solvent to form a penetrating pore array. The gold thin electrode of the solar cell is on the glass substrate. The above preparation process is as shown in the second figure, and the gold film electrode is not in the third circle, wherein the hole diameter is 240 nm, and the hole gap distance is 28 〇nm.

❹ 上述具有穿透性孔洞陣列的太陽能電池之金薄膜電極於太陽 能電池之構造示意圖’如第四圖所示。其中,#上述具有穿透性 孔洞陣列之金薄膜電極的厚度為45η_,其光穿透率能達咖, 若具有穿透性孔_狀金_電_厚賴少為15nm,則光穿 透率提升為m。再者’具有穿透性孔洞陣列之金薄膜電極與不 具有穿透性孔洞陣列之金薄膜電極的光穿透率關係圖如第五圖 所〇 正與ΓΓ地’依照上面實施例中的描述,本發明可能有許多的修 除了上^因此需要在其附加的權利要求項之_内加以理解, 施行。外,本發明還可以廣泛地在其他的實施例中 之申請專利:較佳實施例而已,並非用以限定本發明 等效改變或二它未脫離本發明所揭示之精神下所完成的 '"飾,均應包含在下述申請專利範圍内。 9 201021222 【圖式簡單說明】 第一圖為範例一中,聚苯乙烯奈米球經氧氣電漿蝕刻後之掃 瞄式電子顯微鏡圖片; 第二圖為範例一中,太陽能電池之金薄膜電極的製備示意 圖; 第三圖為範例一中,具有穿透性孔洞陣列的太陽能電池之金 薄膜電極的掃瞄式電子顯微鏡圖片; 0 第四圖為具有穿透性孔洞陣列的太陽能電池之金薄膜電極 於太陽能電池之構造示意圖; 第五圖為具有穿透性孔洞陣列之金薄膜電極與不具有穿透 性孔洞陣列之金薄膜電極的光穿透率關係圖。构造 The structure of the gold thin film electrode of the solar cell with the penetrating array of holes described above is shown in the fourth figure. Wherein, the thickness of the above-mentioned gold thin film electrode having a penetrating array of holes is 45η_, and the light transmittance thereof can reach a coffee, and if the penetrating hole has a thickness of 15 nm, the light penetrates. The rate is increased to m. Furthermore, the relationship between the light transmittance of a gold thin film electrode having a penetrating aperture array and a gold thin film electrode having no penetrating aperture array is as described in the fifth figure, as described in the above embodiment. The invention is susceptible to numerous modifications and needs to be carried out within the scope of the appended claims. In addition, the present invention may be broadly applied in other embodiments, and the preferred embodiment is not intended to limit the equivalent changes of the present invention or the '" The decoration shall be included in the scope of the following patent application. 9 201021222 [Simple description of the diagram] The first picture is the scanning electron microscope picture of the polystyrene nanosphere after oxygen plasma etching; the second picture is the gold film electrode of the solar cell in the first example Schematic diagram of preparation; the third picture is a scanning electron microscope image of a gold thin film electrode of a solar cell with a penetrating array of holes in the first example; 0 is a gold film of a solar cell with a penetrating array of holes Schematic diagram of the structure of the electrode in the solar cell; Figure 5 is a diagram showing the relationship between the light transmittance of the gold film electrode having the penetrating hole array and the gold film electrode having the penetrating hole array.

Claims (1)

201021222 七、申請專利範圍: 一種太陽能電池之金屬薄膜電極,該金屬薄膜電極具有一 穿透性孔洞陣列,藉此提高該金屬薄膜電極之光穿透率。 1.如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, 該金屬薄膜電極光穿透率係40%〜90%。 φ 2.如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, ' 該金屬薄膜電極之厚度係5mn〜500nm。 3. 如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, 該穿透性孔洞陣列具有至少一種孔徑之孔洞。 4. 如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, φ 該穿透性孔洞陣列之孔洞直徑係20nm〜10/z m。 5. 如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, 該金屬薄膜電極之金屬薄膜係選自下列族群之一者:鋁、銀、銅、 金、始、把、錄與钻。 6. 如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, 該穿透性孔洞陣列之孔洞間隙距離係20nm~10/zm。 11 201021222 7. 如申請專利範圍第1項所述之太陽能電池之金屬薄膜電極,其中, 該穿透性孔洞陣列係為一週期性排列之穿透性孔洞陣列。 8. 如申請專利範圍第1項所述之用太陽能電池之金屬薄膜電極,其中, 該金屬薄膜電極係由膠體微影(colloidal lithography)製成。 9. 一種太陽能電池之金屬薄膜電極,該金薄膜電極具有一穿透性孔洞 〇 陣列,其形成方法包含: 形成一緊密堆積之第一單層奈米球層於一基材上; 進行一電漿敍刻程序(plasma etching process),用以蚀縮該 緊密堆積之第一單層奈米球層,以便形成一第二單層奈米球層,其 中,該第二單層奈米球層中之奈米球間係以間隔性排列; 進行一沉積程序,用以沉積金屬於該第二單層奈米球間之間隙 並形成一金屬/奈米球層; © 進行一移除程序,用以移除該奈米球以便形成該具穿透性孔洞 陣列的太陽能電池之金屬薄膜電極於該基材上,其中,該穿透性孔 洞陣列係用以提高該金屬薄膜電極之光穿透率。 10. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中,該基材係為無機基材與有機基材。 12 201021222 11. 如申請專利範圍第11項所述之太陽能電池之金屬薄膜電極, 其中’該基材係選自下列族群之一者:玻璃、石英、石夕、聚碳 酸酯(Polycarbonate ; PC)、聚氣乙稀(p〇ly(vinyi chloride) ; PVC)、聚對苯二曱酸乙二酯(p〇iy(ethyiene terephthalate ; PET)、聚甲基丙烯酸甲酯 (poly(methylmethacrylate) ; PMMA)與軟質基材。 12. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極, 其中,形成該第一單層奈米球層於該基材上之方法係選自 下列族群之一者:旋轉塗佈(spin coating)與浸泡式塗佈 (dip coating) 〇 13. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極, 其中’該奈米球係為聚苯乙稀(polystyrene,PS)。 14_如申請專利範圍第14項所述之太陽能電池之金屬薄膜電極, 其中’該電漿蝕刻程序係利用氧氣電漿(〇2 plasma)。 15. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極, 其中,該奈米球係為二氧化矽(Silica)。 16. 如申請專利範圍第16項所述之太陽能電池之金屬薄膜電極, 其中’該電漿蚀刻程序所利用之氣體係選自下列族群之一者: 二氟甲烧電衆(CHF3 plasma)、四氟化碳電聚(CF4 plasma)、氬 氣電漿(Ar plasma)與六氟化硫電襞(SF6 plasma)。 17. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極, 其中’其中,該沉積程序係選自下列族群之一者:物理氣相沉 積(phys i ca 1 vapor depos i t i on; PVD )與化學氣相沉積(chem i ca 1 13 201021222 vapor deposition ; CVD)。 18. 如申請專利範圍第l〇項所述之太陽能電池之金屬薄膜電極,其 中’該沉積程序係選自下列族群之一者:熱蒸鍍(thermal evaporation)、滅艘、電子束蒸鍵法(electron beam evaporation)、化學氣相濺鍍法(sputter)、電子槍蒸鍍(e_gun evaporation)與離子束濺鍵(ion-beam sputter)。 19. 如申請專利範圍第1〇項所述之太陽能電池之金屬薄膜陽極,其 φ 中,該金屬薄膜陽極之金屬薄膜係選自下列族群之一者:銘、 . 銀、鋼、金、翻、把、錄與钻。 20. 如申請專利範圍第14項所述之太陽能電池之金屬薄膜電極,其 中’該移除程序係藉由一溶劑溶解移除該奈米球,該溶劑係選自 下列族群之一者:甲苯、丙酮、甲醇、苯、氣仿與二氣甲烷(CH2Cl2> 21. 如申請專利範圍第16項所述之太陽能電池之金屬薄膜電極,其 中’該移除程序係藉由一溶劑溶解移除該奈米球,該溶劑係選自 φ 下列族群之一者:濕姓刻液(buffer oxide etch ; B0E)、HF、 K0H與NaOH及其他強鹼。 22. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中’該移除程序更包含一超音波震盪程序。 23_如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中’該金屬薄膜電極光穿透率係4〇%~9〇%。 24_如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中’該金屬薄膜電極之厚度係5nm〜5〇〇nm。 201021222 25. 26. 27.參 • 28. 29. 參 30. 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中,該穿透性孔洞陣列具有至少一種孔徑之孔洞。 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中,該穿透性孔洞陣列之孔洞直徑係20nm〜10 /z m。 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中,該穿透性孔洞陣列之孔洞間隙距離係20nm〜10/zm。 如申請專利範圍第10項所述之太陽能電池之金屬薄膜電極,其 中,該穿透性孔洞陣列為一週期性排列之穿透性孔洞 一種太陽能電池,該太陽能電池包含: 一具有穿透性孔洞陣列之金屬薄膜電極,其中,該穿透性孔 洞陣列係用以提高該金屬薄膜電極之光穿透率; 一與該具有穿透性孔洞陣列之金屬薄膜電極之相反電極;以 及一光作用層於上述電極之間,其中,該光作用層包含一電子受 體(electron acceptor)與一電子予體(electron donor)。 31. 如申請專利範圍第30項所述之太陽能電池其中,該金屬薄膜電 極光穿透率係40%〜90%。 如申請專利範圍第30項所述之太陽能電池,其中,該金屬薄膜電 極之厚度係5mn〜500nm。 如申請專利範圍第30項所述之太陽能電池之,其中,該穿透性孔 洞陣列具有至少一種孔徑之孔洞。 15 32. 201021222 33. 34. 35. ‘ 36. ❿ 37. 如申請專利範圍第30項所述之太陽能電池,其中,該穿透性孔洞 陣列之孔洞直徑係2Onm〜10 # m。 如申請專利範圍第30項所述之太陽能電池,其中,該穿透性孔洞 陣列之孔洞間隙距離係2Onm~ 10 // m。 如申請專利範圍第30項所述之太陽能電池之,其中,該穿透性孔 洞陣列為一週期性排列之穿透性孔洞。 如申請專利範圍第30項所述之太陽能電池之,其中,該電子受體 (electron acceptor)係選自下列族群之一者或其任意組合:奈米 碳管(CNT)、導電高分子、硒化鎘(CdSe)、碲化鎘(CdTe)、硫化鎘 (CdS)、二氧化欽(titanium dioxide)、氧化鋅(znic oxide)、氧 化鐵(iron oxide)、钟化鎵(GaAs)、碟化鎵(GaP)、二氧化錫 (Sn〇2)、碳化矽(SiC)、氮化銦(InN)、氮化鎵銦(InGaN)、氮化鎵 (GaN)、硫化鉛(PbS)、硫化鉍(BhSa)、硫化硒(BhSe3)、硫化鐵 (Fe2S3)、硫化iS(Bi2Se3)、ί®嫁姻銅(Cu_In-Ga-Se)、硫嫁姻銅 (Cu-In-Ga-S)、碳六十(C60)、碳七十(C70)、碳八十四(C84)、 PCBM ([6,6]-phenyl-C61 butyric acid methyl ester, a fullerene derivative)、及其衍生物。 如申請專利範圍第30項所述之太陽能電池之,其中,該電子予體 (electron donor)係衍生自下列導電性高分子單醴結構之一者 或其任意組合:苯(benzene)、乙炔(acetylene)、噻吩 (thiophene)、苯胺(aniline)、吱嗔(furan)、β引β朵(Indole)、 苯基硫(phenylene sulfide)、乙炔(acetylene)、對苯乙炔 (phenyl vinylene; PV)、並五苯(pentacene)、苐(fluorene)、 及其衍生物或寡聚物。 201021222 38. 如申請專利範圍第30項所述之太陽能電池之,其中,與詨 透性孔洞陣列之金屬薄膜電極之相反電極係選自下列族、穿 者:銘、鎵、銦、錫、約、鎮與銀。 39. 如申請專利範圍第30項所述之太陽能電池,其中,該金屬薄膜 極之金屬薄膜係選自下列族群之一者:鋁、銀、銅、金、鉑、鈀、 鎳與鈷。 40. 如申請專利範圍第30項所述之太陽能電池,其中,該太陽能電池 更包含一電洞傳導層。 41. 如申請專利範圍第41項所述之太陽能電池,其中,該電洞傳導層 係選自下列族群之一者.聚3, 4-乙婦二氧喧吩(p〇iyethylene 以〇乂71±丨〇?116116;?£1)01')、聚3,4-乙烯二氧噻吩:聚苯乙烯續酸 ❹ 複合物(polyethylene dioxythiophene blend poly styrenesulfonate;PED0T:PSS) ' (Tetraaryl biphenyl diamine; TBD)、聚乙烯(polyethylene)、聚噻吩(p〇lythiophene)、聚苯 胺(polyaniline )、聚苯胺(P〇lyaniiine)、銅酞菁(Copper phthalocyanine ; CuPc)、六腈六氮苯並菲(hexanitrile hexaazatriphenylene ; ΗΤΑ)、及其衍生物。 42. —種太陽能電池之金薄膜電極,該金薄膜電極具有一穿透性孔洞 陣列,藉此提高該金薄膜電極之光穿透率。 43. 如申請專利範圍第43項所述之太陽能電池之金薄膜電極,其 中’該金薄膜電極光穿透率係40%〜90%。 44. 如申請專利範圍第43項所述之太陽能電池之金薄膜電極,其中, 該金薄膜電極之厚度係5nm~500mn。 17 201021222 45. 46. 47. ‘ 48. 如申請專利範圍第43項所述之太陽能電池之金薄膜電極,其中, 該穿透性孔洞陣列具有至少一種孔徑之孔洞。 如申請專利範圍第43項所述之太陽能電池之金薄膜電極,其中, 該穿透性孔洞陣列之孔洞直徑係20nm〜10/zm。 如申請專利範圍第43項所述之太陽能電池之金薄膜電極,其中, 該穿透性孔洞陣列之孔洞間隙距離係20nm〜10//m。 如申請專利範圍第43項所述之太陽能電池之金薄膜電極,其中, 該穿透性孔洞陣列係為一週期性排列之穿透性孔洞陣列。 如申請專利範圍第43項所述之用太陽能電池之金薄膜電極,其 中,該金薄膜電極係由膠體微影(colloidal 1 ithography)製成。 49.201021222 VII. Patent application scope: A metal thin film electrode of a solar cell, the metal thin film electrode having an array of penetrating holes, thereby increasing the light transmittance of the metal thin film electrode. 1. The metal thin film electrode of the solar cell according to claim 1, wherein the metal thin film electrode has a light transmittance of 40% to 90%. The metal thin film electrode of the solar cell according to the first aspect of the invention, wherein the thickness of the metal thin film electrode is 5 nm to 500 nm. 3. The metal thin film electrode of the solar cell of claim 1, wherein the penetrating array of holes has at least one aperture. 4. The metal thin film electrode of the solar cell according to claim 1, wherein the diameter of the hole of the penetrating hole array is 20 nm to 10/z m. 5. The metal thin film electrode of the solar cell according to claim 1, wherein the metal thin film of the metal thin film electrode is selected from one of the following groups: aluminum, silver, copper, gold, beginning, and recording. With a drill. 6. The metal thin film electrode of the solar cell according to claim 1, wherein the hole gap of the penetrating hole array is 20 nm to 10/zm. The metal thin film electrode of the solar cell of claim 1, wherein the penetrating array of holes is a periodically arranged array of penetrating holes. 8. The metal thin film electrode for a solar cell according to claim 1, wherein the metal thin film electrode is made of colloidal lithography. 9. A metal thin film electrode for a solar cell, the gold thin film electrode having an array of penetrating holes, the method comprising: forming a closely packed first single layer of nanospheres on a substrate; a plasma etching process for etching the closely packed first single layer of nanospheres to form a second single layer of nanospheres, wherein the second single layer of nanospheres The middle nanospheres are arranged in a space; a deposition process is performed to deposit a metal between the second single layer of nanospheres and form a metal/nanosphere; © performing a removal procedure, a metal thin film electrode for removing the nanosphere to form the solar cell having the penetrating array of holes, wherein the transparent hole array is used to improve light penetration of the metal thin film electrode rate. 10. The metal thin film electrode for a solar cell according to claim 10, wherein the substrate is an inorganic substrate and an organic substrate. The metal thin film electrode of the solar cell according to claim 11, wherein the substrate is selected from one of the following groups: glass, quartz, stellite, polycarbonate (Polycarbonate; PC) , p〇ly (vinyi chloride); PVC), polyethylene terephthalate (PET), polymethylmethacrylate (PM), PMMA The metal thin film electrode of the solar cell according to claim 10, wherein the method of forming the first single-layer nanosphere layer on the substrate is selected from the following groups And a smear coating of the solar cell of the solar cell according to claim 10, wherein the nanosphere is polystyrene A metal thin film electrode for a solar cell according to claim 14, wherein the plasma etching process utilizes an oxygen plasma (〇2 plasma). Item 10 The metal thin film electrode of the solar cell, wherein the nanosphere is a cerium oxide (Silica). The metal thin film electrode of the solar cell according to claim 16, wherein the plasma etching process The gas system utilized is selected from one of the following groups: CHF3 plasma, CF4 plasma, Ar plasma, and sulfur hexafluoride ( SF6 plasma). The metal thin film electrode of the solar cell according to claim 10, wherein 'the deposition procedure is selected from one of the following groups: physical vapor deposition (phys i ca 1 vapor depos Iti on; PVD ) and chemical vapor deposition ( chem i ca 1 13 201021222 vapor deposition; CVD) 18. The metal thin film electrode of the solar cell according to claim 1 wherein the deposition procedure is selected From one of the following groups: thermal evaporation, destruction, electron beam evaporation, chemical vapor deposition (sputter), electron gun evaporation (e_gun evaporation) and ions Splashing key (ion-beam sputter). 19. The metal film anode of the solar cell according to claim 1, wherein the metal film of the metal film anode is selected from one of the following groups: Ming, . Silver, steel, gold, and , put, record and drill. 20. The metal thin film electrode for a solar cell according to claim 14, wherein the removal procedure removes the nanosphere by dissolution of a solvent selected from one of the following groups: toluene And a metal film electrode of a solar cell according to claim 16, wherein the removal procedure is performed by dissolving the solvent. Nanospheres, the solvent is selected from one of the following groups of φ: buffer oxide etch (B0E), HF, K0H and NaOH, and other strong bases. 22. As described in claim 10 A metal thin film electrode of a solar cell, wherein the removal process further comprises a supersonic oscillation process. The metal film electrode of the solar cell according to claim 10, wherein the metal film electrode has a light transmittance The metal thin film electrode of the solar cell according to claim 10, wherein the thickness of the metal thin film electrode is 5 nm to 5 〇〇 nm. 201021222 25. 26. 27 Participation The metal thin film electrode of the solar cell of claim 10, wherein the penetrating aperture array has at least one aperture of the aperture. The solar energy according to claim 10 The metal thin film electrode of the battery, wherein the hole diameter of the array of the penetrating holes is 20 nm to 10 /zm. The metal thin film electrode of the solar cell according to claim 10, wherein the transparent hole array The metal film electrode of the solar cell of claim 10, wherein the penetrating hole array is a periodically arranged penetrating hole, a solar cell, The solar cell comprises: a metal film electrode having a penetrating array of holes, wherein the penetrating hole array is used to increase the light transmittance of the metal film electrode; and the metal film having the penetrating hole array a counter electrode of the electrode; and a light-acting layer between the electrodes, wherein the photo-active layer comprises an electron acceptor The solar cell according to claim 30, wherein the metal film electrode has a light transmittance of 40% to 90%, as described in claim 30. The solar cell of the present invention, wherein the thickness of the metal film electrode is from 5 nm to 500 nm. The solar cell of claim 30, wherein the penetrating aperture array has at least one aperture. 15 32. 201021222 The solar cell of claim 30, wherein the penetrating array of holes has a hole diameter of 2 Onm to 10 #m. The solar cell of claim 30, wherein the hole gap of the penetrating hole array is 2 Onm~10 // m. The solar cell of claim 30, wherein the penetrating aperture array is a periodically arranged penetrating aperture. The solar cell of claim 30, wherein the electron acceptor is selected from one of the following groups or any combination thereof: carbon nanotube (CNT), conductive polymer, selenium Cadmium (CdSe), CdTe, CdS, titanium dioxide, znic oxide, iron oxide, gallium (GaAs), dish Gallium (GaP), tin dioxide (Sn〇2), tantalum carbide (SiC), indium nitride (InN), indium gallium nitride (InGaN), gallium nitride (GaN), lead sulfide (PbS), antimony sulfide (BhSa), selenium sulfide (BhSe3), iron sulfide (Fe2S3), sulfided iS (Bi2Se3), ί® dowry copper (Cu_In-Ga-Se), sulfur dowry copper (Cu-In-Ga-S), carbon Sixty (C60), carbon seventy (C70), carbon eighty (C84), PCBM ([6,6]-phenyl-C61 butyric acid methyl ester, a fullerene derivative), and derivatives thereof. The solar cell according to claim 30, wherein the electron donor is derived from one of the following conductive polymer monoterpene structures or any combination thereof: benzene, acetylene ( Acetylene, thiophene, aniline, furan, indole, phenylene sulfide, acetylene, phenyl vinylene (PV), Pentacene, fluorene, and derivatives or oligomers thereof. The solar cell of claim 30, wherein the electrode opposite to the metal thin film electrode of the permeable pore array is selected from the group consisting of: Ming, gallium, indium, tin, and about , town and silver. 39. The solar cell of claim 30, wherein the metal thin film of the metal thin film is selected from the group consisting of aluminum, silver, copper, gold, platinum, palladium, nickel, and cobalt. 40. The solar cell of claim 30, wherein the solar cell further comprises a hole conducting layer. The solar cell of claim 41, wherein the hole conducting layer is selected from one of the following groups: poly 3, 4-ethoxy dioxin (p〇iyethylene 〇乂 71 ±丨〇?116116;?£1)01'), poly 3,4-ethylenedioxythiophene: polyethylene dioxythiophene blend poly styrenesulfonate (PED0T:PSS) ' (Tetraaryl biphenyl diamine; TBD ), polyethylene, p〇lythiophene, polyaniline, P〇lyaniiine, copper phthalocyanine (CuPc), hexanitrile hexaazatriphenylene ; ΗΤΑ), and its derivatives. 42. A gold thin film electrode for a solar cell, the gold thin film electrode having an array of penetrating holes, thereby increasing the light transmittance of the gold thin film electrode. 43. The gold film electrode of a solar cell according to claim 43, wherein the light transmittance of the gold film electrode is 40% to 90%. 44. The gold thin film electrode for a solar cell according to claim 43, wherein the thickness of the gold thin film electrode is 5 nm to 500 nm. The gold thin film electrode of the solar cell of claim 43, wherein the penetrating array of holes has at least one aperture of the aperture. The gold thin film electrode of the solar cell according to claim 43, wherein the penetrating hole array has a hole diameter of 20 nm to 10/zm. The gold thin film electrode of the solar cell according to claim 43 , wherein the hole gap of the penetrating hole array is 20 nm to 10 //m. The gold thin film electrode of the solar cell of claim 43, wherein the penetrating array of holes is a periodically arranged array of penetrating holes. The gold thin film electrode for a solar cell according to claim 43, wherein the gold thin film electrode is made of colloidal lithography. 49.
TW97146142A 2008-11-28 2008-11-28 Metal film electrode for organic solar cells and the method for forming the same TW201021222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146142A TW201021222A (en) 2008-11-28 2008-11-28 Metal film electrode for organic solar cells and the method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146142A TW201021222A (en) 2008-11-28 2008-11-28 Metal film electrode for organic solar cells and the method for forming the same

Publications (1)

Publication Number Publication Date
TW201021222A true TW201021222A (en) 2010-06-01

Family

ID=44832565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146142A TW201021222A (en) 2008-11-28 2008-11-28 Metal film electrode for organic solar cells and the method for forming the same

Country Status (1)

Country Link
TW (1) TW201021222A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406302B (en) * 2010-08-16 2013-08-21 Univ Nat Cheng Kung Photo-switched anodized aluminum oxide film, method of fabricating the same, and photo-switched device comprising the same
TWI416544B (en) * 2010-06-23 2013-11-21 Nat Univ Tsing Hua Composite electrode and mathod for fabricating the same, electrode of a silicon solar cell and silicon solar cell thereof
US8748221B2 (en) 2012-08-07 2014-06-10 National Chiao Tung University Nanoball solution coating method and applications thereof
TWI660907B (en) * 2014-02-24 2019-06-01 National University Of Kaohsiung Method for manufacturing nano microstructure by solvent treatment
CN112993061A (en) * 2020-12-02 2021-06-18 湖北大学 Self-powered CsPbBr adopting net-shaped hollow structure3Photoelectric detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416544B (en) * 2010-06-23 2013-11-21 Nat Univ Tsing Hua Composite electrode and mathod for fabricating the same, electrode of a silicon solar cell and silicon solar cell thereof
TWI406302B (en) * 2010-08-16 2013-08-21 Univ Nat Cheng Kung Photo-switched anodized aluminum oxide film, method of fabricating the same, and photo-switched device comprising the same
US8748221B2 (en) 2012-08-07 2014-06-10 National Chiao Tung University Nanoball solution coating method and applications thereof
TWI660907B (en) * 2014-02-24 2019-06-01 National University Of Kaohsiung Method for manufacturing nano microstructure by solvent treatment
CN112993061A (en) * 2020-12-02 2021-06-18 湖北大学 Self-powered CsPbBr adopting net-shaped hollow structure3Photoelectric detector
CN112993061B (en) * 2020-12-02 2022-08-02 湖北大学 Self-powered CsPbBr adopting net-shaped hollow structure 3 Photoelectric detector

Similar Documents

Publication Publication Date Title
Chaturvedi et al. All slot‐die coated non‐fullerene organic solar cells with PCE 11%
US20100096004A1 (en) Solar cell with nanostructure electrode(s)
US20080023067A1 (en) Solar cell with nanostructure electrode
US20080023066A1 (en) Transparent electrodes formed of metal electrode grids and nanostructure networks
Miller et al. Carbon nanotubes grown on In2O3: Sn glass as large area electrodes for organic photovoltaics
CN107364851B (en) A kind of method of rosin resin transfer graphene and the preparation and application of transparent graphene conductive film
US10263186B2 (en) Bulk heterojunction organic photovoltaic cells made by glancing angle deposition
Sun et al. Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode
Peng et al. Scalable, efficient and flexible perovskite solar cells with carbon film based electrode
Duan et al. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices
Chen et al. Efficiency enhancement of PEDOT: PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface
TW201021222A (en) Metal film electrode for organic solar cells and the method for forming the same
Thomas et al. C60 fullerene nanocolumns–polythiophene heterojunctions for inverted organic photovoltaic cells
Jeon et al. Stamping transfer of a quantum dot interlayer for organic photovoltaic cells
Li et al. A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells
JP2010109227A (en) Organic photoelectric conversion element
Liu et al. Highly flexible inverted organic solar cells with improved performance by using an ultrasmooth Ag cathode
US20120156825A1 (en) Transparent Contacts Organic Solar Panel by Spray
Yu et al. Efficiency boosting of inverted polymer solar cells with a polyvinylpyrrolidone-modified Al-doped ZnO electron transport layer
KR101170919B1 (en) Solar cell with enhanced energy efficiency by surface plasmon resonance effect
Luo et al. Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT: PSS
JP2007095782A (en) Method of manufacturing organic solar cell
RU2017141051A (en) THIN FILM HYBRID PHOTO-ELECTRICAL CONVERTER AND METHOD OF ITS MANUFACTURE
EP2208543A1 (en) process for the deposition of a material on the surface of an object
JP5310230B2 (en) Organic photoelectric conversion element