TW201017880A - Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices - Google Patents

Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices Download PDF

Info

Publication number
TW201017880A
TW201017880A TW97139707A TW97139707A TW201017880A TW 201017880 A TW201017880 A TW 201017880A TW 97139707 A TW97139707 A TW 97139707A TW 97139707 A TW97139707 A TW 97139707A TW 201017880 A TW201017880 A TW 201017880A
Authority
TW
Taiwan
Prior art keywords
region
type
semiconductor substrate
disposed
igbt
Prior art date
Application number
TW97139707A
Other languages
Chinese (zh)
Other versions
TWI387106B (en
Inventor
Yeh-Ning Jou
Shang-Hui Tu
Jui-Chun Chang
Chen-Wei Wu
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW97139707A priority Critical patent/TWI387106B/en
Publication of TW201017880A publication Critical patent/TW201017880A/en
Application granted granted Critical
Publication of TWI387106B publication Critical patent/TWI387106B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices are presented. An IGBT-ESD device includes a semiconductor substrate and patterned insulation regions disposed on the semiconductor substrate defining a first active region and a second active region. A high-V N-well is formed in the first active region of the semiconductor substrate. A P-body doped region is formed in the second active region of the semiconductor substrate, wherein the high-V N-well and the P-body doped region are separated with a predetermined distance exposing the semiconductor substrate. A P+ doped drain region is disposed in the high-V N-well. A P+ diffused region and an N+ doped source region are disposed in the P-body doped region. A gate structure is disposed on the semiconductor substrate with one end adjacent to the N+ doped source region and the other end extending over the insulation region.

Description

201017880 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種靜電放電防護裝置,特別是有關 於一種閘極絕緣雙接面電晶體(IGB T)靜電放電防護元件。 【先前技術】 傳統高電壓靜電放電(Electrostatic Discharge,簡稱 Φ ESD)防護元件包括橫向擴散金氧半功率電晶體(LDM0S Power Transistor)、金氧半電晶體(M0SFET)、石夕控整流器 (SCR)、雙載子電晶體(BJT)、二極體(Diode)和場氧化電晶 體(Field Oxide Device,FOD)。在高壓靜電放電防護上由 於其過高的觸發電壓(trigger voltage)和過低的持有電壓 (holding voltage),不是造成内部電路先損壞就是造成問鎖 效應(latch-up)發生,所以要加上額外的驅動電路或是透過 調變佈局參數(layout parameter)去使觸發電壓降低和使持 φ 有電壓超過元件之工作電壓(operation voltage),如此才可 作為高壓靜電放電防護元件。 在傳統的超高壓元件(ultra-HV device)中,往往利用絕 緣層上有矽(SOI)基底及其相關的製程,隔離個別的元件, 以減少因高壓操作造成元件間的寄生效應。而利用絕緣層 上有矽(SOI)基底及其相關的製程對ESD元件的散熱造成 不利的影響,因此業界亟需有效地處理ESD元件的散熱問 題。尤其是,在超高壓元件的製程中’井區(well)的控散濃 度均偏低,使得相對的阻抗也就偏高,不利於ESD元件的 97010 /0516-A41790TW/fmal 6 201017880 更均勻一致的啟動(uniform turn-on)。 【發明内容】 有鑑於此,為了克服上述先前技術的缺點,因而利用 閘極絕緣雙接面電晶體(IGBT)元件做為靜電放電防護元 件,並改良IGBT元件的汲極區域的佈局,使其能夠更均 勻一致的啟動,以提升ESD的保護效能。 本發明之一實施例提供一種閘極絕緣雙接面電晶體 φ (IGBT)靜電放電防護元件包括:一半導體基底;一圖案化 的隔離區設置於該半導體基底上,定義一第一主動區及一 第二主動區;一高壓N-型井區於該半導體基底的該第一主 動區中;一 P-型體摻雜區於該半導體基底的該第二主動區 中,其中該高壓N-型井區和該P-型體摻雜區相隔一特定距 離,露出該半導體基底;一 P-型濃摻雜汲極區設置於該高 壓N-型井區中;一對相鄰的一 N-型和一 P-型濃摻雜源極 區設置於該P-型體摻雜區中;以及一閘極結構於該半導體 φ 基底上,其一端與該N-型濃摻雜源極區相接,其另一端延 伸至該圖案化的隔離區上。 本發明另一實施例提供一種閘極絕緣雙接面電晶體 (IGBT)靜電放電防護元件包括:一半導體基底;一高壓N-型井區於該半導體基底中;一圖案化的隔離區設置於該高 壓N-型井區上,定義一第一主動區及一第二主動區;一 N-型雙擴散區設置於該高壓N-型井區的該第一主動區 中;一 P-型濃摻雜汲極區設置於該N-型雙擴散區中;一 P-型體摻雜區於該高壓N-型井區的該第二主動區中,其中 97010 / 0516-A41790TW/final 7 201017880 該N-型雙擴散區和該P-型體摻雜區相隔一特定距離,露出 該高壓N-型井區;一對相鄰的一 N-型和一 P-型濃摻雜源 極區設置於該P-型體摻雜區中;以及一閘極結構於該高壓 N-型井區上,其一端與該N-型濃摻雜源極區相接,其另一 端延伸至該圖案化的隔離區上。 本發明又一實施例提供一種閘極絕緣雙接面電晶體 (IGBT)靜電放電防護元件包括:一半導體基底;一高壓N-型井區於該半導體基底中;一圖案化的隔離區設置於該高 ❹ 壓N-型井區上,定義一第一主動區及一第二主動區;一 P-型雙擴散區設置於該高壓N-型井區的該第一主動區中;一 P-型濃摻雜汲極區設置於該P-型雙擴散區中;一 P-型體摻 雜區於該高壓N-型井區的該第二主動區中,其中該P-型雙 擴散區和該P-型體摻雜區相隔一特定距離,露出該高壓N-型井區;一對相鄰的一 N-型和一 P-型濃摻雜源極區設置於 該P-型體摻雜區中;以及一閘極結構於該高壓N-型井區 上,其一端與該N-型濃摻雜源極區相接,其另一端延伸至 ® 該圖案化的隔離區上。 本發明又一實施例提供一種閘極絕緣雙接面電晶體 (IGBT)靜電放電防護元件包括:一半導體基底;一高壓P-型井區於該半導體基底中;一高壓N-型井區於該半導體基 底中;一圖案化的隔離區設置於該半導體基底上,定義一 第一主動區於該高壓N·型井區及一第二主動區和一第三 主動區於該高壓P-型井區;一 P-型濃摻雜汲極區設置於該 第一主動區中;一 N-型濃摻雜源極區設置於該第二主動區 97010 /0516-A41790TW/final 8 201017880 中,且一 p-型濃摻雜源極區設置於該第三主動區中;以及 一閘極結構於該高壓P-型井區上,其一端與該N-型濃摻雜 源極區相接,其另一端延伸至該圖案化的隔離區上。 本發明再一實施例提供一種閘極絕緣雙接面電晶體 (IGBT)靜電放電防護元件包括:一半導體基底;一圖案化 的隔離區設置於該半導體基底上,定義一第一主動區及一 第二主動區;一閘極結構設置於該半導體基底的該第一主 動區上;一 N-型雙擴散區位於該閘極結構的一側,且設置 © 該半導體基底的該第一主動區中;一 N-型井區設置於該 N-型雙擴散區中,其底部延伸至該半導體基底;一 P-型濃 摻雜汲極區設置於該N-型井區中;一 N-型濃摻雜源極區設 置於該閘極結構的另一侧的該半導體基底中;以及一 P-型 濃擴散區設置於該半導體基底的該第二主動區中。 為使本發明之上述目的、特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式,作詳細說明如下: ^ 【實施方式】 以下以各實施例詳細說明並伴隨著圖式說明之範例, 做為本發明之參考依據。在圖式或說明書描述中,相似或 相同之部分皆使用相同之圖號。且在圖式中,實施例之形 狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式 中各元件之部分將以分別描述說明之,另外,特定之實施 例僅為揭示本發明使用之特定方式,其並非用以限定本發 明。 第1A圖係顯示根據本發明之一實施例的閘極絕緣雙 97010 / 0516-A41790TW/final 9 201017880 接面電晶體(IGBT)靜電放電防護元件的剖面示意圖。於第 1A圖中,一閘極絕緣雙接面電晶體(IGBT)靜電放電防護 (ESD)元件100a包括一半導體基底110以及一圖案化的隔 離區130a、130b、130c設置於該半導體基底110上,定義 一第一主動區OD1及一第二主動區OD2。根據本發明之一 實施例,該半導體基底110為一絕緣層上有矽(SOI)基底, 例如一 P-型矽基底101,其上有一埋藏氧化層102,和一 P-型蟲晶層103形成於埋藏氧化層102上。一隔離區1〇5 ® 使IGBT-ESD元件100a與基底110上的其他元件隔離。 一高壓N-型井區115形成於該半導體基底的該第一主 動區OD1中,一 P-型體摻雜區120於該半導體基底的該第 二主動區OD2中,其中該高壓N-型井區115和該p-型體 摻雜區120相隔一特定距離,露出該半導體基底。一擴散 區113自該南壓N-型井區115向該P-型體捧雜區12〇延伸 靠近。一 P-型濃摻雜汲極區117設置於該高壓N_型井區 鲁 115中,以及汲極電極145a、145b與該P-型濃摻雜汲極區 1Π電性接觸。一對相鄰的一 N-型濃摻雜源極區124和一 P-型濃擴散區122設置於該P-型體摻雜區12〇中,源極電 極135a、135b分別與N-型濃摻雜源極區124和p-型濃擴 散區122電性接觸。一閘極結構140於該半導體基底上, 其一端與該N-型濃摻雜源極區124相接,其另_端延伸至 該圖案化的隔離區130b上。 根據本發明之一實施例’ P-型濃摻雜汲極區117的面 積可大於第一主動區0D1’但小於高壓N-型井區115的面 97010 / 0516-A41790TW/final 201017880 積’其平面佈局如第1B圖所示β 第2Α圖係顯示根據本發明另一實施例的IGBT-ESD元 件的剖面示意圖。於第2α圖中,IGBT-ESD元件100b與 第1A圖的IGBT-ESD元件1〇〇a實質上相同,為求簡明之 故’在此省略相同的敘述。不同之處在於,p_型濃摻雜汲 極區217a的面積小於該高壓N_型井區115的面積,其平 面佈局如第2B圖所示。在高壓型井區115中’高壓N-型井區115與P-型濃摻雜汲極區217a之間,存在一異型摻 ® 雜的介面’可分散並降低ESD電壓約0.7V。根據本發明另 一實施例,P-型濃摻雜汲極區217b為複數個分離的島區, 設置於高壓N-型井區115中,其平面佈局如第2C圖所示。 由於各個島區217b與高壓N-型井區115之間,皆存在一 異型摻雜的介面’可分散並降低ESD電壓,使得IGBT-ESD 元件能的更均勻一致的啟動(uniform turn-on)。 第3 A圖係顯示根據本發明又一實施例的IGBT-ESD元 件的剖面示意圖。於第3A圖中,一 IGBT-ESD元件300a ’ 包括一半導體基底310,例如P-型矽基底,及一高壓N-型 井區315設置於該半導體基底310中。一圖案化的隔離區 330a、330b、330c設置於該高壓N-型井區315上,定義一 第一主動區及一第二主動區。一 N-型雙擴散區316a設置 於高壓N-型井區315的第一主動區中,一 P-型濃摻雜汲極 區317設置於N-型雙擴散區316a中。一 P-型體摻雜區320 設置於該高壓N-型井區315的第二主動區中,其中該N-型雙擴散區316a和該P-型體摻雜區320相隔一特定距離, 97010 / 0516-A41790TW/final 11 201017880 露出該高壓N-型井區。一對相鄰的一 N-型濃摻雜源極區 324和一 P-型濃擴散區322設置於該P-型體摻雜區320 中。一閘極結構340於該高壓N-型井區315上’其一端與 該N-型濃摻雜源極區324相接,其另一端延伸至該圖案化 的隔離區330b上。 第3B圖係顯示根據本發明又一實施例的IGBT-ESD元 件的剖面示意圖。於第3B圖中,一 IGBT-ESD元件300b 與第3A圖的IGBT-ESD元件300a實質上相同,為求簡明 之故,在此省略相同的敘述。不同之處在於,IGBT-ESD 元件300b具有一 P-型雙擴散區316b設置於高壓N-型井區 315的第一主動區中,一 p_型濃摻雜汲極區317設置於該 P-型雙擴散區316b中。由於P-型濃摻雜汲極區317和P-型雙擴散區316b皆為P-型摻雜,因此更能增進ESD元件 的效能。 第4A圖係顯示根據本發明又一實施例的IGBT-ESD元 件的剖面示意圖。於第4A圖中,一 IGBT-ESD元件400a 包括一半導體基底410, 一高壓N-型井區415b於該半導體 基底中’ 一高壓P-型井區415c於該半導體基底中。一圖案 化的隔離區430a-430d設置於該半導體基底上,定義一第 一主動區於該高壓N-型井區415b及一第二主動區和一第 三主動區於該高壓P-型井區415c。高壓P·型井區415a設 置於隔離區430a下方。一 P-型濃摻雜沒極區417設置於該 第一主動區中’一 N-型濃摻雜源極區424設置於該第二主 動區中,且一 P-型濃摻雜擴散區422設置於該第三主動區 97010 /0516-A41790TW/final 12 201017880 中。一閘極結構440於該高壓p_型井區415c上,其一端與 該N-型濃摻雜源極區424相接,其另一端延伸至該圖案化 的隔離區430b上。 第4B圖係顯示根攄本發明又一實施例的IGBT_ESD元 件的剖面示意圖。於第4B圖中,一 igbt_ESd元件4〇〇b 包括一半導體基底410,例如一[型矽基底4〇1,其上有 一 P-型磊晶層403,以及一义型埋藏層4〇2設置於該p_ 型矽基底401與該P-型磊晶層4〇3之間。一高壓N_型井區 ❿ 415b於該半導體基底中,一高壓p_型井區415c於該半導 體基底中。一圖案化的隔離區430a-430f設置於該半導體 基底上’定義一第一主動區於該高壓N-型井區415b及一 第二主動區和一第三主動區於該高壓P-型井區415c。高壓 N-型井區415d設置於隔離區430e下方。一;P-型濃摻雜汲 極區417設置於該第一主動區中,一 N-型濃摻雜源極區424 設置於該第二主動區中,且一 P-型濃摻雜擴散區422設置 於該第三主動區中。再者,一額外的P·型濃摻雜區416設 ® 置於高壓P-型井區415a中,及一額外的P-型濃摻雜區426 設置於高壓P-型井區415e中。一閘極結構440於該高壓 P-型井區415c上,其一端與該N-型濃摻雜源極區424相 接,其另一端延伸至該圖案化的隔離區430c上。 第5圖係顯示根據本發明再一實施例的IGBT-ESD元 件的剖面示意圖。於第5圖中,一 IGBT-ESD元件500包 括:一半導體基底510,及一圖案化的隔離區530a-530c 設置於該半導體基底510上,定義一第一主動區及一第二 97010 /0516-A41790TW/final 13 201017880 主動區。一閘極結構540設置於該半導體基底的該第一主 動區上,一 N·型雙擴散區516位於該閘極結構54〇的一 側’且汉置該半導體基底510的該第一主動區中。'一 N-型井區515設置於該N-型雙擴散區516中’其底部延伸至 該半導體基底510, 一 型濃摻雜汲極區517設置於該N-型井區515中。一 N_型濃摻雜源極區524設置於該閘極結 構540的另一側的該半導體基底中,一义型輕摻雜(NLDD) 區524’延伸至該閘極結構54〇的間隙壁下方。一 p_型濃擴 ❹散區522 §免置於該半導體基底的該第二主動區中。 應注意的是,本發明各實施例的IGBT_ESD元件的 型濃摻雜没極區的面積小於該高壓N_型井區的面積,使得 高壓N-型井區與型濃摻雜汲極區之間,存在一異型摻雜 的介面’可分散並降低ESD電壓約〇.7V。更有甚者,P-型濃摻雜沒極區為複數個分離的島區,設置於高壓N_型井 區中’使得各個島區與高壓N_型井區之間,皆存在一異型 ❿ 摻雜的介面,可分散並降低ESD電壓,使得IGBT-ESD元 件能的更均勻一致的啟動(uniform turn_on)。 本發明雖以較佳實施例揭露如上,然其並非用以限定 本發明的範圍’任何所屬技術領域中具有通常知識者,在 不脫離本發明之精神和範圍内,當可做些許的更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 【圖式簡單說明】 第1A圖係顯示根據本發明之一實施例的閘極絕緣雙 97010 / 0516-A41790TW/final 201017880 接面電晶體(IGBT)靜電放電防護元件的剖面示意圖; 第1B圖係顯示第1A圖的IGBT-ESD元件的第一主動 區的平面佈局; 第2A圖係顯示根據本發明另一實施例的IGBT-ESD元 件的剖面示意圖; 第2B和2C圖分別顯示第2A圖的IGBT-ESEf元件的 第一主動區不同實施例的平面佈局; 第3A圖係顯示根據本發明又一實施例的IGBT-ESD元 ® 件的剖面示意圖; 第3B圖係顯示根據本發明又一實施例的IGBT-ESD元 件的剖面示意圖; 第4A圖係顯示根據本發明又一實施例的IGBT-ESD元 件的剖面示意圖; 第4B圖係顯示根據本發明又一實施例的IGBT-ESD元 件的剖面示意圖;以及 第5圖係顯示根據本發明再一實施例的IGBT-ESD元 ®件的剖面示意圖。 【主要元件符號說明】 100a、100b、300a、300b、400a、400b、500〜IGBT-ESD 元件; 101、401~ P-型矽基底; 102〜埋藏氧化層; 402〜N-型埋藏層; 103、403~ P-型磊晶層; 97010 /0516-A41790TW/fmal 15 201017880 105〜隔離區; 110、310、410、510〜半導體基底; 115、315、415匕、415(1、515〜高壓1^-型井區; 415a、415c、415e〜高壓P-型井區; 316a、516〜N-型雙擴散區; 316b〜P-型雙擴散區; 416〜額外的P-型濃摻雜區;201017880 IX. Description of the Invention: [Technical Field] The present invention relates to an electrostatic discharge protection device, and more particularly to a gate insulated double junction transistor (IGB T) electrostatic discharge protection device. [Prior Art] Traditional high voltage electrostatic discharge (Electrostatic Discharge, Φ ESD) protection components include laterally diffused gold oxide half power transistor (LDM0S Power Transistor), gold oxide semi-transistor (M0SFET), and stone-controlled rectifier (SCR) , Bi-carrier transistor (BJT), diode (Diode) and Field Oxide Device (FOD). In the high-voltage electrostatic discharge protection, due to its excessive trigger voltage and low holding voltage, it is not caused by internal circuit damage or latch-up, so it is necessary to add The additional driver circuit can be used as a high voltage ESD protection component by adjusting the layout parameter to lower the trigger voltage and holding the voltage above the operating voltage of the component. In conventional ultra-HV devices, a germanium-on-insulator (SOI) substrate and its associated process are often utilized to isolate individual components to reduce parasitic effects between components due to high voltage operation. The use of a germanium (SOI) substrate on the insulating layer and its associated processes adversely affects the heat dissipation of the ESD components, so there is an urgent need in the industry to effectively address the heat dissipation of ESD components. In particular, in the process of ultra-high voltage components, the well control concentration of the well is low, so that the relative impedance is high, which is not conducive to the ESD component 97010 /0516-A41790TW/fmal 6 201017880 more uniform Start (uniform turn-on). SUMMARY OF THE INVENTION In view of the above, in order to overcome the disadvantages of the prior art described above, a gate insulated double junction transistor (IGBT) element is used as an electrostatic discharge protection element, and the layout of the drain region of the IGBT element is improved. Enables more uniform startup to improve ESD protection. An embodiment of the present invention provides a gate insulated double junction transistor φ (IGBT) electrostatic discharge protection device including: a semiconductor substrate; a patterned isolation region disposed on the semiconductor substrate, defining a first active region and a second active region; a high voltage N-type well region in the first active region of the semiconductor substrate; a P-type body doped region in the second active region of the semiconductor substrate, wherein the high voltage N- The well region and the P-type body doped region are separated by a specific distance to expose the semiconductor substrate; a P-type densely doped drain region is disposed in the high voltage N-type well region; a pair of adjacent one N a -type and a P-type heavily doped source region are disposed in the P-type body doped region; and a gate structure is on the semiconductor φ substrate, one end thereof and the N-type heavily doped source region Docked, the other end extends to the patterned isolation region. Another embodiment of the present invention provides a gate insulated double junction transistor (IGBT) electrostatic discharge protection component comprising: a semiconductor substrate; a high voltage N-type well region in the semiconductor substrate; a patterned isolation region disposed on a first active region and a second active region are defined on the high-pressure N-type well region; an N-type double diffusion region is disposed in the first active region of the high-pressure N-type well region; a P-type a concentrated doped drain region is disposed in the N-type double diffusion region; a P-type body doped region is in the second active region of the high voltage N-type well region, wherein 97010 / 0516-A41790TW/final 7 201017880 The N-type double diffusion region and the P-type body doped region are separated by a specific distance to expose the high voltage N-type well region; a pair of adjacent one N-type and one P-type concentrated dopant source a region is disposed in the P-type body doped region; and a gate structure is disposed on the high voltage N-type well region, one end of which is connected to the N-type heavily doped source region, and the other end thereof extends to the Patterned isolation area. A further embodiment of the present invention provides a gate insulated double junction transistor (IGBT) electrostatic discharge protection component comprising: a semiconductor substrate; a high voltage N-type well region in the semiconductor substrate; a patterned isolation region disposed on a first active region and a second active region are defined on the high-pressure N-type well region; a P-type double diffusion region is disposed in the first active region of the high-pressure N-type well region; a type-rich doped drain region is disposed in the P-type double diffusion region; a P-type body doped region is in the second active region of the high voltage N-type well region, wherein the P-type double diffusion The region and the P-type body doped region are separated by a specific distance to expose the high voltage N-type well region; a pair of adjacent N-type and a P-type heavily doped source region are disposed in the P-type In the body doped region; and a gate structure on the high voltage N-type well region, one end of which is connected to the N-type heavily doped source region, and the other end of which extends to the patterned isolation region . Another embodiment of the present invention provides a gate insulated double junction transistor (IGBT) electrostatic discharge protection component comprising: a semiconductor substrate; a high voltage P-type well region in the semiconductor substrate; and a high voltage N-type well region a patterned isolation region is disposed on the semiconductor substrate, defining a first active region in the high voltage N·well region and a second active region and a third active region in the high voltage P-type a P-type densely doped drain region is disposed in the first active region; an N-type heavily doped source region is disposed in the second active region 97010 /0516-A41790TW/final 8 201017880 And a p-type heavily doped source region is disposed in the third active region; and a gate structure is disposed on the high-voltage P-well region, one end of which is connected to the N-type heavily doped source region The other end extends to the patterned isolation region. According to still another embodiment of the present invention, a gate insulated double junction transistor (IGBT) electrostatic discharge protection component includes: a semiconductor substrate; a patterned isolation region is disposed on the semiconductor substrate, defining a first active region and a a second active region; a gate structure is disposed on the first active region of the semiconductor substrate; an N-type double diffusion region is located on one side of the gate structure, and the first active region of the semiconductor substrate is disposed An N-type well region is disposed in the N-type double diffusion region, the bottom portion of which extends to the semiconductor substrate; a P-type densely doped drain region is disposed in the N-type well region; A type of heavily doped source region is disposed in the semiconductor substrate on the other side of the gate structure; and a P-type dense diffusion region is disposed in the second active region of the semiconductor substrate. The above described objects, features and advantages of the present invention will become more apparent from the aspects of the appended claims appended claims The examples accompanying the drawings illustrate the basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the various elements of the drawings are described in the following description, and the specific embodiments are merely illustrative of specific ways of using the invention, and are not intended to limit the invention. 1A is a cross-sectional view showing a gate insulating double 97010 / 0516-A41790TW/final 9 201017880 junction transistor (IGBT) electrostatic discharge protection element in accordance with an embodiment of the present invention. In FIG. 1A, a gate insulated double junction transistor (IGBT) electrostatic discharge protection (ESD) device 100a includes a semiconductor substrate 110 and a patterned isolation region 130a, 130b, 130c disposed on the semiconductor substrate 110. A first active area OD1 and a second active area OD2 are defined. According to an embodiment of the invention, the semiconductor substrate 110 is an SOI substrate on an insulating layer, such as a P-type germanium substrate 101 having a buried oxide layer 102 thereon and a P-type germane layer 103 thereon. Formed on the buried oxide layer 102. An isolation region 1〇5® isolates the IGBT-ESD device 100a from other components on the substrate 110. A high voltage N-type well region 115 is formed in the first active region OD1 of the semiconductor substrate, and a P-type body doped region 120 is in the second active region OD2 of the semiconductor substrate, wherein the high voltage N-type The well region 115 and the p-type body doped region 120 are separated by a specific distance to expose the semiconductor substrate. A diffusion region 113 extends from the south pressure N-type well region 115 to the P-type body doping region 12A. A P-type heavily doped drain region 117 is disposed in the high voltage N-type well region 115, and the drain electrodes 145a, 145b are in electrical contact with the P-type heavily doped drain region. A pair of adjacent N-type heavily doped source regions 124 and a P-type dense diffusion region 122 are disposed in the P-type body doped region 12A, and the source electrodes 135a, 135b are respectively associated with the N-type The heavily doped source region 124 and the p-type dense diffusion region 122 are in electrical contact. A gate structure 140 is disposed on the semiconductor substrate, one end of which is in contact with the N-type heavily doped source region 124, and the other end of which extends to the patterned isolation region 130b. According to an embodiment of the present invention, the area of the P-type densely doped drain region 117 may be larger than the first active region 0D1' but smaller than the surface of the high-pressure N-type well region 115 97010 / 0516-A41790TW/final 201017880 The planar layout is as shown in Fig. 1B. Fig. 2 is a cross-sectional view showing an IGBT-ESD element according to another embodiment of the present invention. In the second α diagram, the IGBT-ESD element 100b is substantially the same as the IGBT-ESD element 1A of Fig. 1A, and is simplified for the sake of brevity. The same description will be omitted. The difference is that the area of the p-type densely doped yttrium region 217a is smaller than the area of the high-pressure N-type well region 115, and its planar layout is as shown in Fig. 2B. Between the high-pressure N-type well region 115 and the P-type densely doped drain region 217a in the high-pressure well region 115, there is a hetero-doped interface that is dispersible and reduces the ESD voltage by about 0.7V. In accordance with another embodiment of the present invention, the P-type heavily doped drain region 217b is a plurality of discrete island regions disposed in the high pressure N-type well region 115, the planar layout of which is illustrated in Figure 2C. Since each of the island regions 217b and the high-voltage N-type well region 115 has a hetero-doped interface that can disperse and lower the ESD voltage, enabling uniform turn-on of the IGBT-ESD components. . Fig. 3A is a schematic cross-sectional view showing an IGBT-ESD element according to still another embodiment of the present invention. In Fig. 3A, an IGBT-ESD device 300a' includes a semiconductor substrate 310, such as a P-type germanium substrate, and a high voltage N-type well region 315 is disposed in the semiconductor substrate 310. A patterned isolation region 330a, 330b, 330c is disposed on the high voltage N-type well region 315 defining a first active region and a second active region. An N-type double diffusion region 316a is disposed in the first active region of the high voltage N-type well region 315, and a P-type densely doped drain region 317 is disposed in the N-type double diffusion region 316a. A P-type body doping region 320 is disposed in the second active region of the high voltage N-type well region 315, wherein the N-type double diffusion region 316a and the P-type body doping region 320 are separated by a specific distance. 97010 / 0516-A41790TW/final 11 201017880 Expose the high pressure N-type well area. A pair of adjacent N-type heavily doped source regions 324 and a P-type dense diffusion region 322 are disposed in the P-type body doped region 320. A gate structure 340 is coupled to the N-type heavily doped source region 324 at one end of the high voltage N-type well region 315 and extends to the patterned isolation region 330b at the other end. Fig. 3B is a schematic cross-sectional view showing an IGBT-ESD element according to still another embodiment of the present invention. In Fig. 3B, one IGBT-ESD element 300b is substantially the same as the IGBT-ESD element 300a of Fig. 3A, and the same description is omitted here for brevity. The difference is that the IGBT-ESD element 300b has a P-type double diffusion region 316b disposed in the first active region of the high voltage N-type well region 315, and a p_type densely doped drain region 317 is disposed at the P - Type double diffusion zone 316b. Since the P-type densely doped drain region 317 and the P-type double diffusion region 316b are all P-type doped, the performance of the ESD component can be further improved. Fig. 4A is a schematic cross-sectional view showing an IGBT-ESD element according to still another embodiment of the present invention. In Fig. 4A, an IGBT-ESD device 400a includes a semiconductor substrate 410 in which a high voltage N-type well region 415b is in the semiconductor substrate. A high voltage P-type well region 415c is in the semiconductor substrate. A patterned isolation region 430a-430d is disposed on the semiconductor substrate, defining a first active region in the high voltage N-type well region 415b and a second active region and a third active region in the high voltage P-type well Area 415c. A high pressure P type well region 415a is disposed below the isolation region 430a. A P-type heavily doped non-polar region 417 is disposed in the first active region, wherein an N-type heavily doped source region 424 is disposed in the second active region, and a P-type heavily doped diffusion region 422 is disposed in the third active area 97010 /0516-A41790TW/final 12 201017880. A gate structure 440 is disposed on the high voltage p_type well region 415c, one end of which is in contact with the N-type heavily doped source region 424, and the other end of which extends to the patterned isolation region 430b. Fig. 4B is a schematic cross-sectional view showing an IGBT_ESD element according to still another embodiment of the present invention. In FIG. 4B, an igbt_ESd device 4〇〇b includes a semiconductor substrate 410, such as a [type germanium substrate 4〇1 having a P-type epitaxial layer 403 thereon, and a german buried layer 4〇2 arrangement. Between the p_ type germanium substrate 401 and the p-type epitaxial layer 4〇3. A high voltage N_type well region ❿ 415b is in the semiconductor substrate, and a high voltage p_ type well region 415c is in the semiconductor substrate. A patterned isolation region 430a-430f is disposed on the semiconductor substrate to define a first active region in the high voltage N-type well region 415b and a second active region and a third active region in the high voltage P-type well Area 415c. A high pressure N-type well region 415d is disposed below the isolation region 430e. a P-type densely doped drain region 417 is disposed in the first active region, an N-type heavily doped source region 424 is disposed in the second active region, and a P-type dense doping diffusion A zone 422 is disposed in the third active zone. Furthermore, an additional P-type heavily doped region 416 is placed in the high pressure P-type well region 415a, and an additional P-type densely doped region 426 is disposed in the high pressure P-type well region 415e. A gate structure 440 is disposed on the high voltage P-type well region 415c, one end of which is connected to the N-type heavily doped source region 424, and the other end of which extends to the patterned isolation region 430c. Fig. 5 is a schematic cross-sectional view showing an IGBT-ESD element according to still another embodiment of the present invention. In FIG. 5, an IGBT-ESD device 500 includes a semiconductor substrate 510, and a patterned isolation region 530a-530c is disposed on the semiconductor substrate 510 to define a first active region and a second 97010 /0516. -A41790TW/final 13 201017880 Active zone. A gate structure 540 is disposed on the first active region of the semiconductor substrate, and an N· type double diffusion region 516 is located on a side of the gate structure 54〇 and the first active region of the semiconductor substrate 510 is disposed. in. An 'N-type well region 515 is disposed in the N-type double diffusion region 516' and a bottom portion thereof extends to the semiconductor substrate 510, and a type of densely doped drain region 517 is disposed in the N-type well region 515. An N-type heavily doped source region 524 is disposed in the semiconductor substrate on the other side of the gate structure 540, and a light-doped (NLDD) region 524' extends to the gap of the gate structure 54〇 Below the wall. A p_ type concentrated diffusion region 522 is erected in the second active region of the semiconductor substrate. It should be noted that the area of the concentrated doped non-polar region of the IGBT_ESD element of the embodiments of the present invention is smaller than the area of the high-pressure N_-type well region, so that the high-pressure N-type well region and the type rich doped drain region There is a hetero-doped interface that can disperse and lower the ESD voltage by about 77V. What's more, the P-type concentrated doping non-polar region is a plurality of separated island regions, which are disposed in the high-pressure N_-type well region, so that there is a heterogeneity between each island region and the high-pressure N_-type well region.掺杂 The doped interface disperses and reduces the ESD voltage, enabling a more uniform turn-on of the IGBT-ESD components. The present invention has been described above with reference to the preferred embodiments thereof, and is not intended to limit the scope of the invention, and the invention may be practiced without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a cross-sectional view showing a gate insulating double 97010 / 0516-A41790TW/final 201017880 junction transistor (IGBT) electrostatic discharge protection element according to an embodiment of the present invention; A plan layout of a first active region of the IGBT-ESD device of FIG. 1A is shown; FIG. 2A is a cross-sectional view showing an IGBT-ESD device according to another embodiment of the present invention; FIGS. 2B and 2C are respectively showing a second FIG. Planar layout of different embodiments of the first active region of the IGBT-ESEf device; FIG. 3A is a schematic cross-sectional view showing an IGBT-ESD element® device according to still another embodiment of the present invention; FIG. 3B is a view showing still another embodiment of the present invention FIG. 4A is a schematic cross-sectional view showing an IGBT-ESD device according to still another embodiment of the present invention; FIG. 4B is a cross-sectional view showing an IGBT-ESD device according to still another embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a cross-sectional view showing an IGBT-ESD element® according to still another embodiment of the present invention. [Description of main component symbols] 100a, 100b, 300a, 300b, 400a, 400b, 500~IGBT-ESD components; 101, 401~P-type germanium substrate; 102~ buried oxide layer; 402~N-type buried layer; 403~ P-type epitaxial layer; 97010 /0516-A41790TW/fmal 15 201017880 105~ isolation region; 110, 310, 410, 510~ semiconductor substrate; 115, 315, 415, 415 (1, 515~ high voltage 1 ^-type well area; 415a, 415c, 415e~ high pressure P-type well area; 316a, 516~N-type double diffusion area; 316b~P-type double diffusion area; 416~ additional P-type densely doped area ;

117、217a、217b、317、417、517〜P-型濃摻雜汲極區; 120、320〜P-型體摻雜區; 122、322、422、522〜P-型濃擴散區; 124、324、424、524〜N-型濃摻雜源極區; 524’〜N-型輕摻雜(NLDD)區; 426〜額外的P-型濃摻雜區; 130a-130c、330a-330c、430a-430f、530a-530c〜圖案化 的隔離區, 135a、135b~源極電極; 140、340、440、540〜閘極結構; 145a、145b〜汲極電極; OD1〜第一主動區; OD2〜第二主動區。 97010 / 0516-A41790TW/final 16117, 217a, 217b, 317, 417, 517~P-type concentrated doped drain region; 120, 320~P-type body doped region; 122, 322, 422, 522~P-type dense diffusion region; 324, 424, 524~N-type heavily doped source regions; 524'~N-type lightly doped (NLDD) regions; 426~ additional P-type heavily doped regions; 130a-130c, 330a-330c 430a-430f, 530a-530c~ patterned isolation region, 135a, 135b~ source electrode; 140, 340, 440, 540~ gate structure; 145a, 145b~dip electrode; OD1~first active region; OD2 ~ second active area. 97010 / 0516-A41790TW/final 16

Claims (1)

201017880 十、申锖專利範® : 1 •一種閘極絕緣雙接面電晶體(IGBT)靜電放電防護 元件’包括: 一半導體基底; 一圖案化的隔離區設置於該半導體基底上,定義一第 一主動區及-第二主動區; 一馬壓N-型井區於該半導體基底的該第一主動區中; 一 型體摻雜區於該半導體基底的該第二主動區中, ❹其中該尚壓N-型井區和該p_槊體摻雜區相隔一特定距 離,露出該半導體基底; 一 P-型濃摻雜没極區設置於該高壓N-型井區中, 一對相鄰的一 N-型和一 p-斑浪换雜源極區設置於該 P-型體摻雜區中;以及 一閘極結構於該半導體基底上,其一端與該N-型?辰摻 雜源極區相接,其另一端延伸炱該圖案化的隔離區上。 2. 如申請專利範圍第1項所述之閘極絕緣雙接面電晶 ❿體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區的 面積小於該第一主動區的面積。 3. 如申請專利範圍第2項所述&閘極絕緣雙接面電晶 體(IGBT)靜電放電防護元件,其中该P_型濃摻雜汲極區包 括複數個分離的島區。 4. 如中請專利範圍第丨項所述&閘極絕緣雙接面電晶 體(IGBT)靜電放電防護元件,其中该半導體基底為〜絕緣 層上有矽(SOI)基底。 97010 / 0516-A41790TW/final 17 201017880 5. 如申請專利範圍第1項所述之閘極絕緣雙接面電晶 體(IGBT)靜電放電防護元件,更包括一擴散區自該高壓N-型井區向該P-型體摻雜區延伸。 6. —種閘極絕緣雙接面電晶體(IGBT)靜電放電防護 元件,包括: 一半導體基底; 一高壓N-型井區於該半導體基底中; 一圖案化的隔離區設置於該高壓N-型井區上,定義一 ❿ 第一主動區及一第二主動區; 一 Ν-型雙擴散區設置於該高壓Ν-型井區的該第一主 動區中; 一 Ρ-型濃摻雜汲極區設置於該Ν-型雙擴散區中; 一 Ρ-型體摻雜區於該高壓Ν-型井區的該第二主動區 中,其中該Ν-型雙擴散區和該Ρ-型體摻雜區相隔一特定距 離,露出該高壓Ν-型井區; 一對相鄰的一 Ν-型和一 Ρ-型濃摻雜源極區設置於該 ® Ρ-型體摻雜區中;以及 一閘極結構於該高壓Ν-型井區上,其一端與該Ν-型濃 摻雜源極區相接,其另一端延伸至該圖案化的隔離區上。 7. 如申請專利範圍第6項所述之閘極絕緣雙接面電晶 體(IGBT)靜電放電防護元件,其中該Ρ-型濃摻雜汲極區的 面積小於該第一主動區的面積。 8. 如申請專利範圍第7項所述之閘極絕緣雙接面電晶 體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區包 97010 / 0516-A41790TW/final 18 201017880 括複數個分離的島區。 9. 一種閘極絕緣雙接面電晶體(IGBT)靜電放電防護 元件,包括: 一半導體基底; 一高壓N-型井區於該半導體基底中; 一圖案化的隔離區設置於該高壓N-型井區上,定義一 第一主動區及一第二主動區; 一 P-型雙擴散區設置於該高壓N-型井區的該第一主動 ❹區中; 一 P-型濃摻雜汲極區設置於該P-型雙擴散區中; 一;P-型體摻雜區於該高壓N-型井區的該第二主動區 中,其中該P-型雙擴散區和該P-型體掺雜區相隔一特定距 離’露出該南壓N-型井區, 一對相鄰的一 N-型和一 P-型濃摻雜源極區設置於該 P-型體摻雜區中;以及 一閘極結構於該高壓N-型井區上,其一端與該N-型濃 ® 摻雜源極區相接,其另一端延伸至該圖案化的隔離區上。 10. 如申請專利範圍第9項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該半導體基底包括一 單晶半導體基底、一磊晶半導體基底及一絕緣層上有矽 (SOI)基底。 11. 如申請專利範圍第9項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區 的面積小於該第一主動區的面積。 97010 / 0516_A41790TW/fmal 19 201017880 12. 如申請專利範圍第11項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該型濃摻雜汲極區 包括複數個分離的島區。 13. —種閘極絕緣雙接面電晶體(IGBT)靜電放電防護 元件,包括: 一半導體基底; 一局壓P-型井區於該半導體基底中; 一高壓N-型井區於該半導體基底中; 一圖案化的隔離區設置於該半導體基底上,定義一第 一主動區於該高壓N-型井區及一第二主動區和一第三主 動區於該高壓P-型井區; 一 P-型濃掺雜汲極區設置於該第一主動區中; 一 N-型濃摻雜源極區設置於該第二主動區中,且一 P-型濃摻雜源極區設置於該第三主動區中;以及 一閘極結構於該高壓P-型井區上,其一端與該N-型濃 摻雜源極區相接,其另一端延伸至該圖案化的隔離區上。 14. 如申請專利範圍第13項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該半導體基底為一 P_ 型矽基底,其上有一 P-型磊晶層,以及一 N-型埋藏層設置 於該P-型矽基底與該P-型磊晶層之間。 15. 如申請專利範圍第13項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區 的面積小於該第一主動區的面積。 16. 如申請專利範圍第15項所述之閘極絕緣雙接面電 97010 /0516-A41790TW/fmal 20 201017880 晶體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區 包括複數個分離的島區。 17. —種閘極絕緣雙接面電晶體(IGB T)靜電放電防護 元件,包括: 一半導體基底; 一圖案化的隔離區設置於該半導體基底上,定義一第 一主動區及一第二主動區; 一閘極結構設置於該半導體基底的該第一主動區上; 一 N-型雙擴散區位於該閘極結構的一側,且設置該半 導體基底的該第一主動區中; 一 N-型井區設置於該N-型雙擴散區中,其底部延伸至 該半導體基底; 一 P-型濃摻雜汲極區設置於該N-型井區中; 一 N-型濃摻雜源極區設置於該閘極結構的另一侧的該 半導體基底中;·以及 一 P-型濃擴散區設置於該半導體基底的該第二主動區 中〇 18. 如申請專利範圍第17項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該半導體基底包括一 單晶半導體基底、一磊晶半導體基底及一絕緣層上有矽 (SOI)基底。 19. 如申請專利範圍第17項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區 的面積小於該第一主動區的面積。 97010 / 0516-A41790TW/final 21 201017880 20.如申請專利範圍第19項所述之閘極絕緣雙接面電 晶體(IGBT)靜電放電防護元件,其中該P-型濃摻雜汲極區 包括複數個分離的島區。201017880 X. Shenyi Patent Fan®: 1 • A gate insulated double junction transistor (IGBT) ESD protection component 'includes: a semiconductor substrate; a patterned isolation region is disposed on the semiconductor substrate, defining a An active region and a second active region; a horse-pressed N-type well region in the first active region of the semiconductor substrate; a body-doped region in the second active region of the semiconductor substrate, The still-pressed N-type well region and the p_槊 body doped region are separated by a specific distance to expose the semiconductor substrate; a P-type concentrated doped non-polar region is disposed in the high-pressure N-type well region, a pair Adjacent one N-type and one p-spot wave-changing source region are disposed in the P-type body doped region; and a gate structure is on the semiconductor substrate, one end thereof and the N-type The doped source regions are connected and the other end extends over the patterned isolation regions. 2. The gate insulated double junction electro-ceramic body (IGBT) electrostatic discharge protection component according to claim 1, wherein the P-type densely doped drain region has an area smaller than that of the first active region area. 3. The gate insulating double junction dielectric (IGBT) electrostatic discharge protection component described in claim 2, wherein the P_type heavily doped drain region comprises a plurality of separate island regions. 4. The IGBT electrostatic discharge protection device of the < gate insulated double junction dielectric (IGBT) according to the scope of the patent application, wherein the semiconductor substrate is a germanium (SOI) substrate on the insulating layer. 97010 / 0516-A41790TW/final 17 201017880 5. The gate insulated double junction transistor (IGBT) ESD protection component as described in claim 1 further includes a diffusion region from the high voltage N-well region Extending to the P-type body doped region. 6. A gate insulated double junction transistor (IGBT) electrostatic discharge protection component comprising: a semiconductor substrate; a high voltage N-type well region in the semiconductor substrate; a patterned isolation region disposed at the high voltage N - a well region defining a first active zone and a second active zone; a Ν-type double diffusion zone disposed in the first active zone of the high pressure Ν-type well zone; a dopant region is disposed in the Ν-type double diffusion region; a Ρ-type body doped region is in the second active region of the high pressure Ν-type well region, wherein the Ν-type double diffusion region and the Ρ The shaped doped regions are separated by a specific distance to expose the high voltage Ν-type well region; a pair of adjacent one Ν-type and one Ρ-type heavily doped source regions are disposed in the Ρ-type body doping And a gate structure on the high voltage Ν-type well region, one end of which is connected to the Ν-type densely doped source region, and the other end of which extends to the patterned isolation region. 7. The gate insulated double junction dielectric (IGBT) electrostatic discharge protection component of claim 6, wherein the area of the Ρ-type heavily doped drain region is smaller than the area of the first active region. 8. The gate insulated double junction transistor (IGBT) electrostatic discharge protection component according to claim 7, wherein the P-type densely doped drain region package 97010 / 0516-A41790TW/final 18 201017880 A plurality of separate island areas. 9. A gate insulated double junction transistor (IGBT) electrostatic discharge protection component comprising: a semiconductor substrate; a high voltage N-type well region in the semiconductor substrate; a patterned isolation region disposed at the high voltage N- a first active region and a second active region are defined on the well region; a P-type double diffusion region is disposed in the first active germanium region of the high voltage N-type well region; a P-type concentrated doping a drain region is disposed in the P-type double diffusion region; a P-type body doped region in the second active region of the high voltage N-type well region, wherein the P-type double diffusion region and the P - the doped regions are exposed at a specific distance to expose the south N-type well region, and a pair of adjacent one N-type and one P-type heavily doped source regions are disposed in the P-type body doping And a gate structure on the high voltage N-type well region, one end of which is connected to the N-type rich® doped source region, and the other end of which extends to the patterned isolation region. 10. The gate insulated double junction transistor (IGBT) electrostatic discharge protection device of claim 9, wherein the semiconductor substrate comprises a single crystal semiconductor substrate, an epitaxial semiconductor substrate, and an insulating layer.矽 (SOI) substrate. 11. The gate insulated double junction transistor (IGBT) electrostatic discharge protection component of claim 9, wherein the P-type heavily doped drain region has an area smaller than an area of the first active region. 97010 / 0516_A41790TW/fmal 19 201017880 12. The gate insulated double junction transistor (IGBT) electrostatic discharge protection component of claim 11, wherein the concentrated doped drain region comprises a plurality of separate islands Area. 13. A gate insulated double junction transistor (IGBT) electrostatic discharge protection component comprising: a semiconductor substrate; a localized P-type well region in the semiconductor substrate; a high voltage N-type well region in the semiconductor a patterned isolation region is disposed on the semiconductor substrate, defining a first active region in the high voltage N-type well region and a second active region and a third active region in the high voltage P-type well region a P-type heavily doped drain region is disposed in the first active region; an N-type heavily doped source region is disposed in the second active region, and a P-type heavily doped source region Provided in the third active region; and a gate structure on the high voltage P-type well region, one end of which is connected to the N-type heavily doped source region, and the other end of which extends to the patterned isolation On the district. 14. The gate insulated double junction transistor (IGBT) electrostatic discharge protection device of claim 13, wherein the semiconductor substrate is a P_type germanium substrate having a P-type epitaxial layer thereon, and An N-type buried layer is disposed between the P-type germanium substrate and the P-type epitaxial layer. 15. The gate insulated double junction transistor (IGBT) electrostatic discharge protection component of claim 13, wherein the area of the P-type heavily doped drain region is less than the area of the first active region. 16. The gate insulated double junction electric 97010 /0516-A41790TW/fmal 20 201017880 crystal (IGBT) electrostatic discharge protection component according to claim 15 wherein the P-type densely doped drain region comprises a plurality A separate island area. 17. A gate insulated double junction transistor (IGB T) electrostatic discharge protection component, comprising: a semiconductor substrate; a patterned isolation region disposed on the semiconductor substrate defining a first active region and a second An active region; a gate structure disposed on the first active region of the semiconductor substrate; an N-type double diffusion region on one side of the gate structure and disposed in the first active region of the semiconductor substrate; An N-type well region is disposed in the N-type double diffusion region, and a bottom portion thereof extends to the semiconductor substrate; a P-type densely doped drain region is disposed in the N-type well region; an N-type rich blend a hetero-source region is disposed in the semiconductor substrate on the other side of the gate structure; and a P-type dense diffusion region is disposed in the second active region of the semiconductor substrate 〇18. A gate insulated double junction transistor (IGBT) electrostatic discharge protection device, wherein the semiconductor substrate comprises a single crystal semiconductor substrate, an epitaxial semiconductor substrate, and a germanium (SOI) substrate on an insulating layer. 19. The gate insulated double junction transistor (IGBT) electrostatic discharge protection component of claim 17, wherein the area of the P-type heavily doped drain region is less than the area of the first active region. 97010 / 0516-A41790TW/final 21 201017880 20. The gate insulated double junction transistor (IGBT) electrostatic discharge protection component of claim 19, wherein the P-type heavily doped drain region comprises a plurality A separate island area. 97010 / 05 16·A4179OTW/final 2297010 / 05 16·A4179OTW/final 22
TW97139707A 2008-10-16 2008-10-16 Insulated gate bipolar transistor (igbt) electrostatic discharge (esd) protection devices TWI387106B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97139707A TWI387106B (en) 2008-10-16 2008-10-16 Insulated gate bipolar transistor (igbt) electrostatic discharge (esd) protection devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97139707A TWI387106B (en) 2008-10-16 2008-10-16 Insulated gate bipolar transistor (igbt) electrostatic discharge (esd) protection devices

Publications (2)

Publication Number Publication Date
TW201017880A true TW201017880A (en) 2010-05-01
TWI387106B TWI387106B (en) 2013-02-21

Family

ID=44831001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97139707A TWI387106B (en) 2008-10-16 2008-10-16 Insulated gate bipolar transistor (igbt) electrostatic discharge (esd) protection devices

Country Status (1)

Country Link
TW (1) TWI387106B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455275B (en) * 2012-03-16 2014-10-01 Vanguard Int Semiconduct Corp Electrostatic discharge (esd) protection device
TWI456761B (en) * 2011-04-26 2014-10-11 Richtek Technology Corp High voltage device and manufacturing method thereof
TWI501374B (en) * 2011-05-17 2015-09-21 Richtek Technology Corp Improved structure of an ultra-high voltage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795713B (en) * 2021-01-18 2023-03-11 通嘉科技股份有限公司 High-voltage semiconductor devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362979A (en) * 1991-02-01 1994-11-08 Philips Electronics North America Corporation SOI transistor with improved source-high performance
US6900097B2 (en) * 2003-05-12 2005-05-31 United Microelectronics Corp. Method for forming single-level electrically erasable and programmable read only memory operated in environment with high/low-voltage
JP4547872B2 (en) * 2003-06-13 2010-09-22 日本ビクター株式会社 Method for manufacturing switching element
JP5261927B2 (en) * 2006-12-11 2013-08-14 パナソニック株式会社 Semiconductor device
JP5479915B2 (en) * 2007-01-09 2014-04-23 マックスパワー・セミコンダクター・インコーポレイテッド Semiconductor device
KR100847306B1 (en) * 2007-02-14 2008-07-21 삼성전자주식회사 Semiconductor device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456761B (en) * 2011-04-26 2014-10-11 Richtek Technology Corp High voltage device and manufacturing method thereof
TWI501374B (en) * 2011-05-17 2015-09-21 Richtek Technology Corp Improved structure of an ultra-high voltage device
TWI455275B (en) * 2012-03-16 2014-10-01 Vanguard Int Semiconduct Corp Electrostatic discharge (esd) protection device

Also Published As

Publication number Publication date
TWI387106B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US10937870B2 (en) Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells using body region extensions
USRE47198E1 (en) Power semiconductor device
CN103650147B (en) Semiconductor device
US6903421B1 (en) Isolated high-voltage LDMOS transistor having a split well structure
JP5641131B2 (en) Semiconductor device and manufacturing method thereof
US8049307B2 (en) Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices
JP7268330B2 (en) Semiconductor device and manufacturing method
JP2022121581A (en) Semiconductor device
US8482066B2 (en) Semiconductor device
US9196723B1 (en) High voltage semiconductor devices with Schottky diodes
JP2020038986A (en) Semiconductor device
US8299578B1 (en) High voltage bipolar transistor with bias shield
TW201017880A (en) Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices
US6930356B2 (en) Power semiconductor device having high breakdown voltage, low on-resistance, and small switching loss and method of forming the same
JP7327672B2 (en) semiconductor equipment
JP5520024B2 (en) Semiconductor device and manufacturing method thereof
CN102136491B (en) Static discharge protection device for gate insulation dual junction transistor
US8698194B2 (en) Semiconductor integrated circuit with high withstand voltage element forming trench isolation on substrate
JP2007258283A (en) Insulated-gate semiconductor device
TWI429073B (en) Semiconductor structure and method for forming the same
KR20120004954A (en) Semiconductor device
US10008594B2 (en) High voltage semiconductor device
TWI708364B (en) Semiconductor device and manufacturing method thereof
JP2009277956A (en) Semiconductor device
TWI394277B (en) Lateral diffused metal-oxide semiconductor