TW201015763A - Dielectric mesh isolated phase change structure for phase change memory - Google Patents

Dielectric mesh isolated phase change structure for phase change memory Download PDF

Info

Publication number
TW201015763A
TW201015763A TW098116798A TW98116798A TW201015763A TW 201015763 A TW201015763 A TW 201015763A TW 098116798 A TW098116798 A TW 098116798A TW 98116798 A TW98116798 A TW 98116798A TW 201015763 A TW201015763 A TW 201015763A
Authority
TW
Taiwan
Prior art keywords
electrode
phase change
memory device
phase
dielectric material
Prior art date
Application number
TW098116798A
Other languages
Chinese (zh)
Other versions
TWI433363B (en
Inventor
Hsiang-Lan Lung
Chieh-Fang Chen
Yen-Hao Shih
Ming-Hsiu Lee
Matthew J Breitwisch
Chung Lam
Baumann H Frieder
Flaitz Philip
Raoux Simone
Original Assignee
Macronix Int Co Ltd
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd, Ibm filed Critical Macronix Int Co Ltd
Publication of TW201015763A publication Critical patent/TW201015763A/en
Application granted granted Critical
Publication of TWI433363B publication Critical patent/TWI433363B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

A method for manufacturing a memory device, and a resulting device, is described using silicon oxide doped chalcogenide material. A first electrode having a contact surface; a body of phase change memory material in a polycrystalline state including a portion in contact with the contact surface of the first electrode, and a second electrode in contact with the body of phase change material are formed. The process includes melting and cooling the phase change memory material one or more times within an active region in the body of phase change material without disturbing the polycrystalline state outside the active region. A mesh of silicon oxide in the active region with at least one domain of chalcogenide material results. Also, the grain size of the phase change material in the polycrystalline state outside the active region is small, resulting in a more uniform structure.

Description

201015763 >9twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種硫屬材料(chalcogenide materials) 型記憶裝置及其製造方法。 【先前技術】 像是硫屬材料及類似的材料之相變(phase change)型 記憶體材料以適合在積體電路(integrated circuits)中實施的 準位(level)施加電流可導致非結晶狀態(amorphous state)與 結晶狀態(crystalline state)之間的相變化。一般非結晶狀態 的特徵為電阻高於一般結晶狀態,這點易於感測因而可指 示資料。這些特徵使人對於利用可程式化電阻材料 (programmable resistive material)來形成以隨機存取方式來 讀取及寫入之非揮發性記憶體電路(n〇nv〇latile memwy circuits)產生興趣。201015763 >9twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a chalcogenide materials type memory device and a method of manufacturing the same. [Prior Art] A phase change type memory material such as a chalcogen material and the like may apply an electric current at a level suitable for implementation in an integrated circuit to cause an amorphous state ( Phase change between amorphous state and crystalline state. The generally amorphous state is characterized by a higher electrical resistance than the general crystalline state, which is easy to sense and thus can indicate data. These features have generated interest in the use of programmable resistive materials to form non-volatile memory circuits that are read and written in a random access manner.

從非結晶狀態變成結晶狀態通常是較低電流的操 作。在此稱為重置(獄t)之從結晶狀態變成非結晶狀態通 常是較高電流的操作,射包括⑽高電流密度脈衝來溶 解或朋解結晶結構’讀快速地冷卻相變㈣,以火 ,變製程且容許至少-部分的相變材料穩定於非結晶狀 藉由縮小記憶胞的相變材料元件的大小及 (decides)與相變材料之間的接觸面積所兩 電流的大小,因此藉由相變材料 罝所而 達成較高的電流密度。· 件⑽小的絕對電流 ^i.doc/n 201015763 然而一由於小接觸表面所產生的故障以 锸且太因漆疮一 因為錯録碲(Ge_S1>Te,GST)有兩 曰i離抑ΐ人蚊結晶狀態,調節兩種結晶狀態與非結 Γ上及在鍺銻碲(GST)材料内導致應力。 措由對相變材料摻雜可 流的大小。可將雜皙 日更所而之重置電 体詩紐&㈣獅硫屬㈣及魏_變材料以 “ΐ 2的硫屬材料之記憶元件(memoryelem她)的 溫度、熔解溫度以及其他的特性。用以捧雜 於硫屬材料的代表性雜質包括H氧、氧化砍、氮化 石夕、銅、銀、金、銘、氧化铭、组、氧化叙、氮化组、鈦 以及乳化鈦。例如,參關國專利第6,_,504號(金屬摻 雜)及美國專利申請案第2〇〇遞295〇2號(氮摻雜)。Changing from an amorphous state to a crystalline state is generally a lower current operation. The operation referred to herein as resetting (prison t) from a crystalline state to an amorphous state is generally a higher current operation, including (10) high current density pulses to dissolve or dissolve the crystalline structure 'read to rapidly cool the phase transition (4) to Fire, variable process and allow at least a portion of the phase change material to be stabilized in an amorphous state by reducing the size of the phase change material element of the memory cell and the magnitude of the current between the decides and the phase change material. A higher current density is achieved by the phase change material. · Piece (10) small absolute current ^i.doc/n 201015763 However, due to the fault caused by the small contact surface, it is too much because of the paint sore because of the misrecording (Ge_S1>Te, GST). The crystalline state of human mosquitoes regulates the two crystalline states and causes stress on non-crusted and in gadolinium (GST) materials. The size of the flowable phase change material is doped. The temperature of the memory element (memoryelem) of the sulphur material of the scorpion 2, and the melting temperature and other Characteristics: Representative impurities used to hold the chalcogenide materials include H Oxygen, Oxidation Chop, Nitride Xi, Copper, Silver, Gold, Ming, Oxidation, Group, Oxidation, Nitriding, Titanium, and Emulsified Titanium. For example, the participating patents No. 6, _, 504 (metal doping) and U.S. Patent Application No. 2, 295 〇 2 (nitrogen doping).

Ovshinsky等人提出之美國專利第6,〇87,674號以及其 專利母案美國專利第5,825,G46號說明如何形成複合記憶 ,材料(composite memory material),其中將相變材料與較 南濃度的介電質材料混合以便控制複合記憶體材料的電 阻。這些專利所述之複合記憶體材料的本質並不清楚,因 為所述之複合材料不但是分層結構而且是混合結構。這些 專利所述之介電質材料包含非常廣的範圍。 一些研究人員已經研究如何使用氧化矽摻雜於硫屬 材料以便減少操作記憶裝置所需之重置電流。參閱Ryu等 人在 2006 年發表於 Electrochemical and Solid-State Letters ’ 9 (8) G259-G261 之「Si〇2 Incorporation Effects in 201015763 w.(9twf.doc/nU.S. Patent No. 6, 〇 87, 674 to Ovshinsky et al., and its patent parent, U.S. Patent No. 5,825, G46, describes how to form a composite memory material in which a phase change material and a southerly-concentrated dielectric are formed. The material is mixed to control the electrical resistance of the composite memory material. The nature of the composite memory materials described in these patents is not clear, as the composite materials are not only layered but also hybrid structures. The dielectric materials described in these patents contain a very wide range. Some researchers have studied how to use yttrium oxide to do so in a chalcogenide material in order to reduce the reset current required to operate a memory device. See Ryu et al., 2006, Electrochemical and Solid-State Letters ’ 9 (8) G259-G261, “Si〇2 Incorporation Effects in 201015763 w. (9twf.doc/n

Ge2Sb2Te5 Films Prepared by Magnetron Sputtering for Phase Change Random Access Memory Devices」;Lee 等人 在 2006 年發表於 Applied Physics Letters 89,163503 之 「Separate domain formation in Ge2Sb2Te5 - SiOx mixed layer」;Czubatyj等人在2006年發表於E*PCOS06之 「Current Reduction in Ovonic Memory Devices」;以及 Noh"Separate domain formation in Ge2Sb2Te5 - SiOx mixed layer" by Lee et al. "Current Reduction in Ovonic Memory Devices" by E*PCOS06; and Noh

等人在 2006 年發表於 Mater. Res. Soc. Symp. Proc.第 888 卷之「Modification of Ge2Sb2Te5 by the Addition of SiOx for Improved Operation of Phase Change Random AccessEt al., 2006, Mater. Res. Soc. Symp. Proc. 888, "Modification of Ge2Sb2Te5 by the Addition of SiOx for Improved Operation of Phase Change Random Access

Memory」。這些參考文獻指出將較低濃度的氧化矽掺雜於 鍺錄磚合金(Gejt^Te5)可導致電阻的實質增加及重置電流 的相對應減少。Czubatyj等人的論文指出摻雜氧化矽的鍺 銻碲(GST)合金之電阻改善的飽和點在大約丨〇體積百分比 ❹ (vol°/〇)(6.7原子百分比(at〇/0)),並且表示已經測試過推雜讀 度多達30體積百分比的氧化矽,然而並未提供細節。Le 等人的文章說明一種出現於大約8·4原子百分比之較高以 摻雜濃度的現象,其中在高溫退火(annealing)之後氧化石j 呈現與鍺銻碲(GST)分離,因而形成由主要成分是氧化备 的邊界所圍繞之鍺銻碲(GST)區域。 ’ 相關研究已經進展至藉由調整相變材料的 ^提供極小尺寸的結構來獲得以低重置電流操作的^ 裝置。極小尺寸的相變裝置的問題之—是耐 ’、 非結晶對結晶狀態的不穩定^ 地改變時,利用相變材料製造的記憶月丨 doc/n 201015763 (11^111〇7〇^13)可能故障。例如,主動區(:邮^1>啦〇11)已經 被重置為一般非結晶狀態的記憶胞經過一段時間可能在此 主動區中形成結晶區。若這些結晶區連接形成穿越主動區 的低電阻路徑,則在讀取記憶胞時將偵測到較低的電阻狀 態而導致資料錯誤。參閱Gleixner在2007年發表於tutorial. 22nd NVSMW 之「Phase Change Memory Reliability」。 因此本發明想要提供具有小重置電流的記憶胞並且 解决上述負料保存的問題,同時解決上述電極與相變材料 之間的小接觸表面的可靠性問題。 【發明内容】 -種記憶裝置的製造方法,此方法湘摻雜氧化石夕的 硫屬材料雜得改㈣錢胞。上述方法包括形成具有接 觸表面的第-電極;形成有_部分與第—電極的接觸表面 接觸之多結晶狀態的相變記憶體材料主體;以及形成與 =材料主體接觸之第二電極。相變記憶體材料包括推雜介 ’質材料的硫屬材料。上述製程包括在相變材料主體的 ____ 形成介電質材 不在主動區外二成:格有區域’但 的娜…示範,其中上工方= =至善=百的裝置顯二實 雜介電質的材料’其特徵為將‘成== 201015763 "Jtwf.doc/n 環的結果,多結晶狀態之縮小的晶粒尺寸,以及抑制多結 晶狀態的多個結晶相當中至少一個之形成。 對於所使用的硫屬材料,其特徵為多個固態結晶相, 例如GexSbyTez,其中x=2、y=2以及z=5,這些相包括面 心立方(face-centered cubic ’ FCC)固態結晶相及六方最密堆 積(hexagonal close-packed,HCP)固態結晶相,以其濃度足Memory". These references indicate that doping a lower concentration of cerium oxide to a eucalyptus cement (Gejt^Te5) results in a substantial increase in electrical resistance and a corresponding reduction in reset current. The paper by Czubatyj et al. indicates that the resistance of the yttria-doped yttrium (GST) alloy improves the saturation point at about 丨〇 volume percent vol (vol° / 〇) (6.7 atomic percent (at 〇 / 0)), and It indicates that up to 30% by volume of yttrium oxide has been tested, but no details are provided. Le et al.'s article describes a phenomenon in which a higher doping concentration occurs at about 8.4 atomic percent, in which after the high temperature annealing, the oxidized stone j exhibits a separation from strontium (GST), thus forming a major The composition is the 锗锑碲 (GST) region surrounded by the boundary of the oxidation reserve. Related research has progressed to obtain a device operating at a low reset current by adjusting the structure of the phase change material to provide a very small size. The problem with the extremely small size of the phase change device is that the resistance is ', the amorphous is unstable to the crystalline state, and the memory of the phase change material is made doc/n 201015763 (11^111〇7〇^13) May be malfunctioning. For example, a memory cell in which the active area (: _1 > 〇 11) has been reset to a generally amorphous state may form a crystallization zone in the active area over a period of time. If these crystallization regions are joined to form a low resistance path across the active region, a lower resistance state will be detected when reading the memory cells, resulting in data errors. See Gleixner's "Phase Change Memory Reliability" in tutorial. 22nd NVSMW in 2007. SUMMARY OF THE INVENTION Accordingly, the present invention is intended to provide a memory cell having a small reset current and to solve the above problem of negative material storage while solving the problem of reliability of a small contact surface between the above electrode and the phase change material. SUMMARY OF THE INVENTION A method for manufacturing a memory device, in which the chalcogenide material of the doped oxide oxide is mixed with (4) money cells. The above method includes forming a first electrode having a contact surface; forming a phase change memory material body having a polycrystalline state in which the portion is in contact with the contact surface of the first electrode; and forming a second electrode in contact with the material body. The phase change memory material includes a chalcogenide material that pushes the dielectric material. The above process includes the formation of a dielectric material in the body of the phase change material that is not outside the active area. The grid has a region 'but the Na... demonstration, where the upper work == to the good = hundred devices The material of the electric material is characterized by the result of the formation of the ==201015763 "Jtwf.doc/n ring, the reduced grain size of the polycrystalline state, and the formation of at least one of the plurality of crystals corresponding to the polycrystalline state. . For the chalcogenide used, it is characterized by a plurality of solid crystalline phases, such as GexSbyTez, where x = 2, y = 2, and z = 5, these phases include face-centered cubic 'FCC solid state crystalline phases And the hexagonal close-packed (HCP) solid crystalline phase, at its concentration

以避免在主動區外部的材料體中形成至少一種上述固態結 晶相(例如六方最密堆積(HCP)固態結晶相)之介電質材料 來摻雜硫屬材料。因此,相變記憶體材料所使用的硫屬材 料在不摻雜介電質時其特徵為具有第一體積之第一固態結 晶=(例如六方最密堆積(HCP))以及具有第二體積之第二 固態結晶相(例如面心立方(FCC)),非結晶相之相變記憶體 材料的體積更接近第二體積而非第—體積,其中硫屬材料 中的’I電質材料的濃度足以促使形成第二固態結晶相。藉 =制六方最密堆積(HCP)相的形成,使設定㈣㈣她)It is avoided that a dielectric material of at least one of the above-described solid crystalline phases (e.g., hexagonal closest packed (HCP) solid crystalline phase) is formed in the body of material outside the active region to dope the chalcogenide material. Therefore, the chalcogenide material used in the phase change memory material is characterized by having a first volume of the first solid crystal = (eg, hexagonal closest packing (HCP)) and having a second volume when the dielectric is not doped. The second solid crystalline phase (eg, face centered cubic (FCC)), the volume of the amorphous phase phase change memory material is closer to the second volume than the first volume, where the concentration of the 'I dielectric material in the chalcogenide material Sufficient to promote the formation of a second solid crystalline phase. Borrow = the formation of the most densely packed (HCP) phase of the six parties, so that the setting (four) (four) she)

或實質上只有面心立方(FCC)相,因而 ,^ ¥、、、°日曰相轉換成結晶相所產生之體積變化量,由 =善=的可靠性。並且,當侷限於只有或實質上只 。方(FCC)相時’設定操作將更快發生。 尺寸並二晶狀態的相變材料是小晶粒 加-連串= 胞來寫入資料,以及藉由施 3連串的設定及重置脈衝至記憶胞 7 *..doc/n 201015763 在記憶胞的主動區中進行上述熔解及冷卻循環。 依照本發明之一種相變記憶裝置,包括第Or substantially only the face-centered cubic (FCC) phase, thus, the amount of volume change caused by the conversion of the 曰 phase, the 曰 phase into the crystalline phase, and the reliability of = good =. And, when limited to only or substantially only. The square (FCC) phase setting operation will occur faster. The phase-change material of the size and the twin crystal state is a small crystal grain plus a series of cells to write data, and by applying a series of settings and resetting pulses to the memory cell 7 *..doc/n 201015763 in memory The above melting and cooling cycles are carried out in the active zone of the cell. A phase change memory device according to the present invention, including

St二與第,第二電極接觸之相變記憶體ί 此相變記憶體材料包括摻雜氧化發(或其他的介 貝材料)的硫屬材料。此相變材料主體具有 — 第二電極之主動區(此主動區包含具有至少」二:: =之t質:料的網格)’並且具有主動區外部的無網 熊〃中相變Z It體材料具有小晶粒尺寸的多結晶狀 為讓本發明之上述特徵和優點能更明顯易懂,下 舉實施例,並配合所附圖式作詳細說明如下。 · 【實施方式】 本發明的下列說明將參考特定的實施例及方法。須知 本發明不應視為侷限於特定的實_及方法,相反地,可 =用其他的雜、元件、方法以及實施例來實施本發明。 圭實施例仙錢明本發明,並未蚊其範圍因此本 ,明的權利保護範圍將㈣請專利範圍予以定義。任何所 ,技術領域巾具有通常知識者㈣瞭下列的說明可能存在 =等效及變化。各實施射_的元件將以相同的參考 数子來表不。 在相變記憶體中,藉由使相變材料駐祕在非結晶 :二晶相之間轉換來儲存㈣。圖i為具有兩種狀態(儲存 位疋的資料)之—的記憶胞的曲線圖’包括低電阻設定 (程式化)狀‘態100及高電阻重置(抹除)狀態1〇2,其中每一 201015763 99twf.doc/n 種狀態具有不重疊的電阻範圍。 低電阻設定狀態100的最高電阻R1與高電阻重置狀 態102的最低電阻R2之間的差異定義用以區別處於設定 狀態100的記憶胞與處於重置狀態1〇2的記憶胞之讀取邊 際(readmargin)lOl。藉由測定記憶胞的電阻是否對應於低 電阻設定狀態100或高電阻重置狀態1〇2可測定記憶胞所 儲存的資料’例如藉由測量記憶胞的電阻是否高於或低於 §貝取邊際101内的臨界電阻值(threshold resistance ❹ vahie)RSA 103。 為了可靠地區別重置狀態102與設定狀態100,維持 較大的讀取邊際101很重要。然而,有人已經觀察到某些 處於重置狀感102的相變記憶胞可能經歷飄忽不定的「拖 尾位元(tailing bit)」效應,此效應為記憶胞的電阻經過一 段時間將減少至低於臨界電阻值Rsa 1〇3,導致那些記憶 胞產生資料保存問題及位元錯誤。 —圖2A至圖2C是三種習知之相變記憶胞的示意圖,其 ❹ 中母種具有相變材料記憶元件220(圖中以可變電阻器表 示)且與例如電晶體或二極體(diode)的選擇裝置耦接。 圖2A是習知之包含場效電晶體(field 恤㈣咖,FET)210作為選擇裝置的記憶胞20㈣示意圖。 =第一方向延伸的字元線~〇1^ line)24()與場效電晶體 (ET)210的閘極耦接,並且記憶元件22〇 卿_的汲極與㈣二方岐伸的位元細( 9 -i.doc/n 201015763 圖2B是類似於圖2A的記憶胞之記憶胞202的示意 圖’除了存取裝置是雙載子接面電晶體(bipolar junetion transistor,BJT)212之外,而圖2C則是類似於圖2A的記 憶胞之記憶胞204的示意圖,除了存取裝置是二極體214 之外。 藉由施加適合的電壓至字元線240及位元線23〇以引 起電流穿越記憶元件220可達成讀取或寫入。所施加的電 壓的準位及持續期間取決於所進行的操作,例如讀取操作 或寫入操作。 ’、 在具有記憶元件220的記憶胞的重置(或抹除)操作 € 中’將施加具適合的振幅及持續期間之重置脈衝至字元線 240及位元線230以引起足以導致相變材料的主動區轉換 成非結晶相之電流,藉以將相變材料設定成與重置狀態有 關的電阻值範圍内的電阻。重置脈衝是較高能量的脈衝, 足以至少提升記憶it件220的主動區的溫度至高於相變材 料的轉換(結晶化)溫度且高於熔解溫度,因而至少將主動 區置於液怨。接著快速終止重置脈衝以獲得較快的淬火時 間(quenching time),主動區快速冷卻至低於轉換溫度以便 ❹ 至少將主動區穩定於非結晶相。 在具有記憶元件220之記憶胞的設定(或程式化)操作 中’將施加具適合的振幅及持續期間之程式脈衝至字元線 240及位元線230以引起足以提升至少一部分的主動區的 溫度至高於轉換溫度之電流,使得至少一部分的主動區從 非結晶相轉換成結晶相,這轉換降低記憶元件加的電阻 10 201015763 99twf.doc/n 且將記憶胞設定成想要的狀態。 在具有記憶元件220之記憶胞的讀取(或感測)操作 中,將施加具適合的振幅及持續期間之讀取脈衝至字元線 240及位元線230以引起不使記憶元件220產生電阻狀態 變化之電流。穿越記憶胞的電流取決於記憶元件22〇的電 阻,因而取決於記憶胞所儲存的資料值。 如上所述’在陣列中某些處於高電阻重置狀態的記憶 胞可能經歷拖尾位元效應,其中那些記憶胞經過一段時間 〇 將經歷電阻減少,因而導致資料保存問題及位元錯誤。 圖3及圖4繪示在重置狀態中記憶胞的拖尾位元效應 之可能的早天(early-fail)模型》因為經歷拖尾位元效應的記 憶胞的初始重置電阻值高,所以小的或其他的有缺陷的主 動區不被認為是可能的原因。在圖3及圖4所示之早天模 型中通常非結晶的主動區内的隨機分佈的結晶區反而將經 ^成長一段時間。對於經歷拖尾位元效應的記憶胞而言, 隨機排列的結晶區導致在形成穿越主動區的低電阻路徑之 ❹ 刖需要非常微小的成長。 圖3A繪示習知之「簟型(mushroom type)」記憶胞 300 ’其中包括穿過介電質315延伸的第一電極314、包含 相變材料的記憶元件220以及位於記憶元件220上的第二 電極312。例如,第一電極314可與例如二極體或電晶體 的存取裝置的端子麵接,同時第二電極312可與位元 ,。第一電極314的寬度316小於第二電極312及記憶元 ^ 220的寬度。因為這種寬度差異,所以在操作上鄰近第 201015763^ 一電極314的區域有最大的電流密度,使得主動區310具 有如圖所示之簟形。 最好最小化第一電極314的寬度(在某些例子中是直 徑),以便利用穿越記憶元件220的小絕對電流值達成較高 的電流密度。然而,嘗試減少第一電極314的寬度可能導 致第一電極314與記憶元件220之間的介面的電性及機械 可靠性問題,這是由於其間的小接觸表面。 在重置狀態中,記憶元件220具有一般非結晶的主動 區310以及主動區310内的隨機分佈的結晶區320。如圖 3B所示,經過一段時間主動區310内的結晶區320將經歷 成長’但是不會形成穿越主動區310之完全低電阻路徑。 因此’雖然圖3A及圖3B所示之記憶胞可能經歷電阻降 低,但是不會經歷拖尾位元效應。 圖4A及圖4B繪示具有主動區410内的隨機分佈的結 晶區420之記憶胞400’因而經過一段時間將如圖4B所示 形成穿越主動區410的低電阻路徑450,導致圖4A及圖 4B的§己憶胞經歷拖尾位元效應。 圖5A及圖5B是記憶胞5〇〇的斷面圖,其主動區51〇 包括田含;I電質的網格(dielectric-rich mesh)512内的相變 區域(phase change domains)511 ’記憶胞500解決上述拖尾 位兀及可靠性問題,並且獲得改良的資料贿、減 元錯誤以及較局速的操作。 記憶胞500包括穿過介電質53〇延伸以接觸記憶元 516的底面之第-電極52〇,以及位於由摻雜介電質的相變 201015763—_Phase change memory in which St and the second electrodes are in contact ί This phase change memory material includes a chalcogenide material doped with oxidized hair (or other smear material). The phase change material body has - an active region of the second electrode (this active region contains a mesh having at least "two:: = t: material") and has a phase change Zie in the net-free bear cub outside the active region The above-described features and advantages of the present invention can be more clearly understood from the above-described features and advantages of the present invention. The following embodiments are described in detail with reference to the accompanying drawings. [Embodiment] The following description of the present invention will refer to specific embodiments and methods. It is to be understood that the invention is not intended to be limited to the specific embodiments, and the invention may be practiced otherwise. The example of the invention is the invention of Xian Qianming, and the scope of the rights of the present invention is defined by the scope of the patent rights. Anything in the technical field has the usual knowledge (4) The following descriptions may exist = equivalent and change. Each component that implements the _ will be represented by the same reference number. In phase change memory, it is stored (4) by switching the phase change material between amorphous and dicrystalline phases. Figure i is a graph of memory cells with two states (data stored in 疋), including a low resistance set (stylized) state 100 and a high resistance reset (erase) state 1 〇 2, where Each of the 201015763 99twf.doc/n states has a non-overlapping range of resistance. The difference between the highest resistance R1 of the low resistance setting state 100 and the lowest resistance R2 of the high resistance reset state 102 is defined to distinguish the memory cell in the set state 100 from the read margin of the memory cell in the reset state 1〇2. (readmargin) lOl. The data stored in the memory cell can be determined by measuring whether the resistance of the memory cell corresponds to the low resistance setting state 100 or the high resistance reset state 1 〇 2 'for example, by measuring whether the resistance of the memory cell is higher or lower than the margin of § Threshold resistance ❹ vahie RSA 103 in 101. In order to reliably distinguish between the reset state 102 and the set state 100, it is important to maintain a large read margin 101. However, it has been observed that some phase change memory cells in the sense of resetting 102 may experience an erratic "tailing bit" effect, which is a reduction in the resistance of the memory cell over a period of time. The critical resistance value Rsa 1〇3 causes those memory cells to generate data preservation problems and bit errors. - Figures 2A through 2C are schematic diagrams of three conventional phase change memory cells, wherein the mother species have a phase change material memory element 220 (represented by a variable resistor in the figure) and with, for example, a transistor or a diode (diode) The selection device is coupled. 2A is a schematic diagram of a conventional memory cell 20 (four) including a field effect transistor (field) (FET) 210 as a selection device. = word line extending in the first direction ~ 〇 1^ line) 24 () is coupled to the gate of the field effect transistor (ET) 210, and the memory element 22 〇 _ _ 汲 与 与 与 与 与 与Bit detail (9 -i.doc/n 201015763 Figure 2B is a schematic diagram of a memory cell 202 similar to the memory cell of Figure 2A except that the access device is a bipolar junetion transistor (BJT) 212 2C is a schematic diagram similar to the memory cell 204 of the memory cell of FIG. 2A except that the access device is a diode 214. By applying a suitable voltage to the word line 240 and the bit line 23〇 Reading or writing can be achieved by causing current to flow through the memory element 220. The level and duration of the applied voltage depends on the operation being performed, such as a read operation or a write operation. ', in memory with memory element 220 The reset (or erase) operation of the cell will apply a reset pulse of appropriate amplitude and duration to word line 240 and bit line 230 to cause sufficient conversion of the active region of the phase change material to amorphous. Phase current to set the phase change material to a resistance related to the reset state The resistance in the range. The reset pulse is a higher energy pulse sufficient to at least increase the temperature of the active region of the memory member 220 to be higher than the conversion (crystallization) temperature of the phase change material and higher than the melting temperature, thus at least the active region The liquid repulsion is then placed. The reset pulse is then quickly terminated to obtain a faster quenching time, and the active region is rapidly cooled to below the switching temperature to stabilize at least the active region in the amorphous phase. In the setting (or stylization) operation of the memory cell, a program having a suitable amplitude and duration is applied to the word line 240 and the bit line 230 to cause a temperature sufficient to raise at least a portion of the active region to be higher than the switching temperature. The current causes at least a portion of the active region to be converted from a non-crystalline phase to a crystalline phase, which reduces the resistance of the memory element 10 201015763 99twf.doc/n and sets the memory cell to a desired state. In the read (or sense) operation of the cell, a read pulse having a suitable amplitude and duration is applied to the word line 240 and the bit line 230 to induce The current flowing through the memory cell is not caused by the memory element 220. The current through the memory cell depends on the resistance of the memory element 22 and thus on the data value stored by the memory cell. As described above, some of the arrays are in high resistance. The memory cells in the state may experience a trailing bit effect, in which those memory cells will experience a decrease in resistance over a period of time, resulting in data retention problems and bit errors. Figures 3 and 4 show the memory cells in the reset state. The possible early-fail model of the trailing bit effect. Because the initial reset resistance value of the memory cell experiencing the trailing bit effect is high, small or other defective active regions are not considered Is the possible reason. The randomly distributed crystallization regions in the normally amorphous active regions in the early models shown in Figures 3 and 4 will instead grow for a period of time. For memory cells undergoing a trailing bit effect, the randomly arranged crystalline regions result in very small growth in the formation of a low resistance path across the active region. 3A illustrates a conventional "mushroom type" memory cell 300' including a first electrode 314 extending through a dielectric 315, a memory element 220 including a phase change material, and a second memory element 220. Electrode 312. For example, the first electrode 314 can be interfaced with a terminal of an access device such as a diode or a transistor, while the second electrode 312 can be associated with a bit. The width 316 of the first electrode 314 is smaller than the width of the second electrode 312 and the memory cell 220. Because of this difference in width, the region adjacent to the electrode 314 in operation has the largest current density, so that the active region 310 has a meander shape as shown. Preferably, the width of the first electrode 314 (in some examples, the diameter) is minimized to achieve a higher current density using a small absolute current value across the memory element 220. However, attempts to reduce the width of the first electrode 314 may cause electrical and mechanical reliability problems with the interface between the first electrode 314 and the memory element 220 due to the small contact surface therebetween. In the reset state, memory element 220 has a generally amorphous active region 310 and a randomly distributed crystalline region 320 within active region 310. As shown in FIG. 3B, the crystallization zone 320 in the active zone 310 will undergo growth during a period of time but will not form a completely low resistance path through the active zone 310. Therefore, although the memory cells shown in Figs. 3A and 3B may experience a decrease in resistance, they do not experience a trailing bit effect. 4A and 4B illustrate a memory cell 400' having a randomly distributed crystalline region 420 within the active region 410. Thus, a low resistance path 450 is formed across the active region 410 as shown in FIG. 4B over a period of time, resulting in FIG. 4A and FIG. 4B's § memory has experienced a trailing bit effect. 5A and 5B are cross-sectional views of the memory cell 5〇〇, the active region 51〇 including the field containing; phase change domains 511 'in the dielectric-rich mesh 512'. The memory cell 500 solves the above-mentioned problem of smearing and reliability, and obtains improved information bribes, error reductions, and faster operations. The memory cell 500 includes a first electrode 52〇 extending through the dielectric 53〇 to contact the bottom surface of the memory cell 516, and a phase transition from the doped dielectric 201015763—

材料主體所構成的記憶元件516上的第二電極540。第一 電極520及第二電極540可包括例如氮化鈦(TiN)或氮化钽 (TaN)。另一方面,第一電極520及第二電極540每一個都 可以是鎢(W)、氮化鎢(WN)、氮化鋁鈦(TiAIN)或氮化鋁钽 (TaAIN),或者在另外的例子中包括由掺雜的石夕 (doped-Si)、矽(Si)、碳(C)、鍺(Ge)、鉻(Cr)、鈦(Ti)、鎢(W)、 鉬(Mo)、鋁(A1)、钽(Ta)、銅(Cu)、鉑(Pt)、銥(Ir)、鑭(La)、 鎳(Ni)、氮(N)、氧(Ο)、釕(Ru)以及其組合所構成的群組當 中選取的一個或多個成分。 在所示之實施例中’介電質530包括氮化矽(SiN)。另 一方面’可使用其他的介電質材料。 在此例中,記憶元件516的相變材料包括摻雜1〇至 20原子百分比氧化矽的鍺銻碲合金(Ge2Sb2Te5)材料。也可 使用其特徵為網格形成之其他的硫屬材料及介電質材料。 從圖中可看出第一電極52〇的寬度522(在某些實施例中是 直徑)小於記憶元件516及頂部電極54〇的寬度,因此電流 將聚集於記憶元件516鄰近第一電極52〇的部分,導致如 圖所不之主動區510。記憶元件516也包括主動區51〇 部的非主動區(inactive regi〇n)5 i 3,非主動區5 i 3是小晶 尺寸的多結晶狀態,而且未形成介電質網格。 主動區510包括富含介電f的網格512 Θ的相變區 電質的網格512的氧化矽材料濃度高於非主 、°1存▲、化石夕材料漢度’並且相變區域511的硫屬材 浪度局於非主動區513的硫屬材料濃度。 vi.doc/n 201015763 圖5A緣示處於高電阻重置狀態的記憶胞500。在記 憶胞500的重置操作中,與第一電極52〇及第二電極54〇 輕接之偏壓電路(例如,參閱圖的偏壓電路電壓及電流 源1736連同控制器(c〇ntr〇ller)1734)引起電流經由記憶元 件516在第一電極52〇與第二電極54〇之間流動,此電流 ^以在主動區510的相變區域511中引起通常非結晶相的 间電阻,以便在記憶胞5〇〇中建立高電阻重置狀態。在主 動區外部的非主動區513中,摻雜介電質的硫屬材料主體 保持小晶粒尺寸的多結晶狀態。 圖5B繪不處於低電阻設定狀態的記憶胞5〇〇。在記 憶胞500的設定操作中,與第一電極52〇及第二電極54〇 耦接的偏壓電路引起電流經由記憶元件516在第一電極 520與第二電極54〇之間流動,此電流足以在主動區 的相變區域叩中引起通常結晶相的低電阻,以便在記情 胞500中建立低電阻設定狀態。處於低電阻狀態的區域^ 大小可不同於高電阻狀態,如圖5A及圖5B所示。然而, 這尚未藉由實驗予以清楚地示範。 …、 圖6是在圖5A的重置狀態下記憶胞5〇〇 ,考此圖提供-種用以說明記憶胞的改良耐久^理 :使電質網格512圍繞且隔離相變區域511,所以 ίιι提晶的相變區域511内的結晶區經由某些區域 ==路 =〇〇’記憶胞_ ΐ成Ξ :質 _—段時間將限制結晶區的 再成長,並且藉以限制穿越主動區训之低電阻 201015763 9twf.doc/n 成。因此明顯減少拖尾位 保存及減少的位元錯誤。 千亚且獲侍改良的資料 圖7是依照本發明之故障 了記憶胞之改良的資料保存。 圖=中= 憶胞的測量資料的推斷,其主 材枓之纪 内的相變區域。,、主動&包括•含介電質的網格A second electrode 540 on the memory element 516 formed by the body of material. The first electrode 520 and the second electrode 540 may include, for example, titanium nitride (TiN) or tantalum nitride (TaN). On the other hand, the first electrode 520 and the second electrode 540 may each be tungsten (W), tungsten nitride (WN), titanium nitride (TiAIN) or aluminum nitride tantalum (TaAIN), or in another Examples include doped-Si, bismuth (Si), carbon (C), germanium (Ge), chromium (Cr), titanium (Ti), tungsten (W), molybdenum (Mo), Aluminum (A1), tantalum (Ta), copper (Cu), platinum (Pt), iridium (Ir), lanthanum (La), nickel (Ni), nitrogen (N), oxygen (Ο), ruthenium (Ru), and One or more components selected from the group consisting of the combinations. In the illustrated embodiment, the dielectric 530 includes tantalum nitride (SiN). On the other hand, other dielectric materials can be used. In this example, the phase change material of memory element 516 comprises a germanium alloy (Ge2Sb2Te5) material doped with 1 to 20 atomic percent yttrium oxide. Other chalcogenide materials and dielectric materials characterized by a grid can also be used. It can be seen that the width 522 (in some embodiments, the diameter) of the first electrode 52A is less than the width of the memory element 516 and the top electrode 54A, so current will concentrate on the memory element 516 adjacent the first electrode 52〇. The part that leads to the active area 510 is not shown. The memory element 516 also includes an inactive regi〇n 5 i 3 of the active region 51. The inactive region 5 i 3 is a polycrystalline state of small crystal size and does not form a dielectric mesh. The active region 510 includes a phase change region of the grid 512 富含 rich in dielectric f 的 矽 矽 矽 矽 浓度 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The sulfur species has a concentration of chalcogen in the inactive zone 513. Vi.doc/n 201015763 FIG. 5A illustrates the memory cell 500 in a high resistance reset state. In the reset operation of the memory cell 500, a bias circuit is connected to the first electrode 52A and the second electrode 54A (for example, referring to the bias circuit voltage and current source 1736 of the figure together with the controller (c〇 The ntr〇ller) 1734) causes a current to flow between the first electrode 52A and the second electrode 54A via the memory element 516, which causes a mutual resistance of the normally amorphous phase in the phase change region 511 of the active region 510. In order to establish a high resistance reset state in the memory cell 5〇〇. In the inactive region 513 outside the active region, the body of the chalcogen-doped dielectric material maintains a polycrystalline state of small grain size. Fig. 5B shows the memory cell 5 which is not in the low resistance setting state. In the setting operation of the memory cell 500, a bias circuit coupled to the first electrode 52A and the second electrode 54A causes current to flow between the first electrode 520 and the second electrode 54A via the memory element 516. The current is sufficient to cause a low resistance of the generally crystalline phase in the phase change region 主动 of the active region to establish a low resistance set state in the cell 500. The area in the low resistance state can be different in size from the high resistance state as shown in FIGS. 5A and 5B. However, this has not been clearly demonstrated by experiments. ..., FIG. 6 is a memory cell 5 in the reset state of FIG. 5A. This figure provides an improved endurance for describing the memory cell: the power grid 512 is surrounded and the phase change region 511 is isolated. Therefore, the crystallization region in the phase change region 511 of the crystallization is via some regions ==路=〇〇' memory cell _ ΐ Ξ Ξ 质 质 质 质 质 质 质 质 质 质 质 质 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段Training low resistance 201015763 9twf.doc/n into. Therefore, the bit position error and the reduced bit error are significantly reduced. Information on the improvement of the memory and the improvement of the memory Figure 7 is a data storage of the improved memory cell in accordance with the present invention. Fig. = Medium = Inference of the measurement data of the memory cell, the phase change region within the main material. , Active & include • Dielectric-containing grid

_圖材:710 ’此線表示包含未摻雜的錯銻碲 (GST)材枓之δ己憶胞的測量資料的推斷。從圖7可看出, 對於具有包括富含介電質的網格内_變區域之主動區之 記憶胞達成明顯改善故障時間。_Picture: 710 ′ This line indicates the inference of the measurement data of the δ-resonance cell containing the undoped GST material. As can be seen from Fig. 7, a significant improvement in the failure time is achieved for a memory cell having an active region including a dielectric-rich intra-grid region.

圖8Α及圖8Β繪示根據未摻雜的鍺銻碲合金 你种办5)相變材料的退火之X光繞射(x_my出份触如, XRD)光譜資料。基於鍺銻碲(GST)的記憶體材料通常包括 兩種結晶相,較低轉換溫度的面心立方(face_centered cubic,FCC)相及較高轉換溫度的六方最密堆積(hexag〇nal closed-packed,HCP)相,六方最密堆積(HCP)相的密度高 於面心立方(FCC)相的密度。一般而言,最好不要從面心 立方(FCC)相轉換成六方最密堆積(HCP)相,因為結果將減 少記憶體材料體積而在記憶體材料内及在電極與記憶體材 料之間的介面上產生應力。並且,面心立方(FCC)相材料 從非結晶相到結晶相的體積變化較小’因而轉換將以較高 速率發生。 圖8A及圖8B繪示發生在低於400°C的退火溫度之未 15 Λ-doc/n 201015763 3 _2Sb2Te5)從面心立方_相轉換成 二方堆積(HCP)相。因為包含未摻雜的錯録碌合金 呀咖叫心己憶胞在設定操作期間可能經歷棚。c或更 == =,於轉換成六方最密堆積阔狀態 (HC^^ 〇 ^ 圖8A及圖8B也緣示依照本發明之換雜㈣子百分 子百分比氧化石夕的錯録蹄合金(Ge2Sb2Te5)材料 (tX2光譜純,其巾糾了摻義材料的結 ^構在㊅達_C的退火溫度下簡面心、立方(FCC)狀 20上且石八因h為在圖8A及圖8B中摻雜10原子百分比與 錄錦碲合金__的繞射峰 值=访所以摻雜的錯録蹄合金你讲㈣的晶粒尺寸將 未摻雜的錯錦碲合金(Ge2Sb2Te5)的晶粒尺寸。 =果,較於包含未摻_鍺料合金⑼说柯之 ;二===_的溫度下退火的依 人全ίΤν^τ至20原子百分比氧化矽的鍺銻碲 的可乂 較小的機械應力,且具有較大 了 j 的切換速度(SW滅㈣_)。 元件的二包碲_材料以修改記憶 /、L雜各種原子百分比氛的鍺録碲合 201015763— 金(=e2Sb2Te5)材料的χ光繞射(xRD)資料。圖9說明了發 生低於40〇C的退火溫度之推雜兔的錯録蹄合金 (2Sb2Tes)彳欠面心立方(FCC)狀態轉換成六方最密堆積 (HCP) m Jt彳目較於包含摻雜氮的鍺銻碲合金 之§己憶胞’域本發明之包含雜10至2G原子百分比氧 化石夕的鍺録碎合金你撕叫材料之記憶胞將經歷較小的 機械應力,且具有較大的可靠性及較高的速度。 圖1〇疋依照本發明之一種製程的流程圖,並且圖 ❹至® 是依照本發狀-難造包含雜1G至2〇原子 ^分比氧化石夕的鍺銻碑合金(Ge2Sb2Te5)材料之記憶胞的製 程的步驟’此記憶胞具有包括富含介電質的網格内的相變 區域之主動區。 在步驟1000,形成具有寬度或直徑522且穿過介電質 53〇_延伸之第—電極52G,因而獲得如圖11A的橫斷面圖 所不之結構。在所示之實施例中,第一電極52〇包括氮化 鈦(TiN),且介電質53〇包括氮化矽(SiN)。在某些實施例 ❹ 中,第一電極52〇具有次微影寬度(sublitliographic width) 或直徑522。 第一電極520穿過介電質53〇延伸至下面的存取電路 (未繪示)。藉由所屬技術領域中眾所周知的標準的製程可 形成下面的存取電路,並且存取電路的元件的組態取決於 實施依照本發明之記憶胞的陣列組態。通常,存取電路可 包括例如電晶體和二極體的存取裝置、字元線和源極線、 導電插塞(conductive plugs)以及半導體基底㈣以歸如伽 201015763 -----.- tdoc/n substrate)内的摻雜區域。 例如,可利用2007年6月18日提出申請且名為 「Method f0r Manufacturing a 心记 Change M_ryFigure 8A and Figure 8B show the X-ray diffraction (x_my output, XRD) spectral data of the 5) phase change material according to the undoped niobium alloy. GST-based memory materials typically include two crystalline phases, a face_centered cubic (FCC) phase with a lower switching temperature and a hexagonal closest packing with a higher switching temperature (hexag〇nal closed-packed). , HCP) phase, the density of the hexagonal closest packed (HCP) phase is higher than the density of the face centered cubic (FCC) phase. In general, it is best not to convert from the face-centered cubic (FCC) phase to the hexagonal closest packed (HCP) phase, as the result is a reduction in the volume of the memory material in the memory material and between the electrode and the memory material. Stress is generated at the interface. Also, the face centered cubic (FCC) phase material undergoes a small change in volume from the amorphous phase to the crystalline phase' and thus the transition will occur at a higher rate. 8A and 8B show that 15 Λ-doc/n 201015763 3 _2Sb2Te5) occurring at an annealing temperature lower than 400 ° C is converted from a face-centered cubic phase to a two-sided stacked (HCP) phase. Because it contains undoped erbium alloys, it is possible to experience the shed during the set operation. c or more == =, in the most densely packed state of the hexagonal conversion (HC ^ ^ 〇 ^ Figure 8A and 8B also shows the misplaced hoof alloy of the modified (four) sub-percentage oxidized stone in accordance with the present invention ( Ge2Sb2Te5) material (tX2 is pure in spectrum, and the structure of the blended material is corrected at the annealing temperature of six _C, the simple face center, the cubic (FCC) shape 20 and the stone eight is h in Fig. 8A and Fig. 8A The doping of 10 atomic percent in 8B and the diffraction peak of the recorded bismuth alloy __ = the so-called mis-recorded hoof alloy you talk about (4) the grain size of the undoped bismuth alloy (Ge2Sb2Te5) grains Size = fruit, compared with the alloy containing undoped bismuth (9) said Ke; the temperature of the second === _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Mechanical stress, and has a large switching speed of SW (SW off (four) _). The second package of the component _ material to modify the memory /, L miscellaneous atomic percentage atmosphere of the combination of 201015763 - gold (= e2Sb2Te5) material The Xenon Diffraction (xRD) data. Figure 9 illustrates the misplaced hoof alloy (2Sb2Tes) 彳 面 face centered cubic (FCC) of the push rabbit that has an annealing temperature below 40 °C. The state is converted into a hexagonal closest packed (HCP) m Jt eye compared to a nitrogen-containing niobium alloy § 忆 胞 cell domain. The present invention contains a 10 to 2 G atomic percent oxidized stone 锗 锗 碎 合金 alloy The memory cell you tear the material will experience less mechanical stress and have greater reliability and higher speed. Figure 1 is a flow chart of a process according to the present invention, and Figure ❹ to ® is in accordance with this Hair-to-draw process of a memory cell containing a 1G to 2 atomic atomic ratio of a oxidized stone alloy (Ge2Sb2Te5) material. This memory cell has a dielectric-rich grid. The active region of the phase change region. At step 1000, a first electrode 52G having a width or diameter 522 and extending through the dielectric 53〇 is formed, thereby obtaining a structure as shown in the cross-sectional view of Fig. 11A. In the illustrated embodiment, the first electrode 52A includes titanium nitride (TiN), and the dielectric 53A includes tantalum nitride (SiN). In some embodiments, the first electrode 52 has a sub-lithography Sublitliographic width or diameter 522. The first electrode 520 extends through the dielectric 53〇 to Surface access circuitry (not shown). The following access circuitry can be formed by standard processes well known in the art, and the configuration of the components of the access circuitry depends on the array of memory cells in accordance with the present invention. Configuration. Typically, the access circuitry may include access devices such as transistors and diodes, word and source lines, conductive plugs, and semiconductor substrates (4) to return to Gigalog 201015763 ---- Doped region within -.- tdoc/n substrate). For example, you can apply on June 18, 2007 and name it "Method f0r Manufacturing a Mind Change M_ry

Device with PUlar B0tt0m Electr〇de」之美國專利申請案第 11/764,678號所揭露的方法、材料以及製程來形成第一電 極520及介電質層530,此專利申請案的内容將併入本案 供參考。例如’可在存取電路(未緣示)的頂面上形成電極 材料層,然後利用標準的光微影技術(沖〇切lith〇gmphic techniques)在電極層上製作一層的光阻(ph〇t〇resist)圖案, 以便形成覆蓋第-電極52〇的位置的光阻的罩幕(mask)。 而後:利用例如氧電漿(Plasma)來修整光阻罩幕,以便形 成覆蓋第一電極520的位置的次微影尺寸的罩幕結構。然 後,利用修整過的光阻罩幕來蝕刻電極材料層,藉以形成 具有= 人微影直徑522的第一電極520。之後,形成及平坦 化介電質材料530,因而獲得圖HA所示之結構。 「於另—例,可利用2007年9月14日提出申請且名為 「Phase Change Memory Cell in Via Array withThe first electrode 520 and the dielectric layer 530 are formed by the method, material, and process disclosed in U.S. Patent Application Serial No. 11/764,678, the disclosure of which is incorporated herein. reference. For example, a layer of electrode material can be formed on the top surface of the access circuit (not shown), and then a layer of photoresist is formed on the electrode layer using standard photolithography techniques (ph〇 The pattern is patterned to form a mask that covers the photoresist of the position of the first electrode 52A. Thereafter, the photoresist mask is trimmed using, for example, an oxygen plasma to form a sub-lithographic-sized mask structure covering the position of the first electrode 520. The electrode material layer is then etched using a trimmed photoresist mask to form a first electrode 520 having a human lithography diameter 522. Thereafter, the dielectric material 530 is formed and planarized, thereby obtaining the structure shown in Fig. HA. "In another case, you can use the application called "Phase Change Memory Cell in Via Array with" on September 14, 2007.

Self-Aligned, Self-Converged Bottom Electrode and Method ⑩ for· Manufacturing」之美國專利申請案第i 1/855,979號所揭 露之方法、材料以及製程來形成第一電極52〇及介電質 530 ’此專利申請案的内容將併入本案供參考。例如,可在 存取電路的頂面上形成介電質53〇,然後依序形成絕緣層 與犧牲層(sacrificial layer)。而後,在犧牲層上形成其開口 接近或等於用以產生罩幕的製程的最小特徵大小之罩幕, 18 201015763 ^9twf.doc/n 此開口位於第-電極52〇的位置上方。然後利用罩幕選擇 性餘刻絕緣層及犧牲層,藉以在絕緣層及犧牲層中形成通 孔(vm)且曝露介電質層53〇的頂面。在移除罩幕之後,在 通孔上進行選擇性底切敍刻(仙如⑽仿啤咖h),以便姓刻 絕緣層同時讓犧牲層及介電質層別完整無缺。然後在通 孔中形成填充材料’其由於選擇性底切餘刻製程而導致填 充材料之自行對準的空洞(self_aligned v〇id)形成在通孔 内。之後,在i真充材料上進行非等向性钱刻製程(anis〇卿化 ® etching process)以打開空洞,並且 層別於空洞下方的區域為止,藉以形成包二路二: 充材料之侧壁隔層(sidewaii spacer)。側壁隔層具有實質上 ,由空洞尺寸決定之開π尺寸,因此可能小於微影製程的 最小特徵大小。然後,利用側壁隔層作為蝕刻罩幕來蝕刻 介電質層530 ’藉以在介電f層53()中形成其直徑小於最 小特徵大小之開口。接著,在介電質層53〇的開口内形成 電極層然後進行例如化學機械研磨(chemical mechanical ❹ p〇hshing,CMP)之平坦化製程,以移除絕緣層及犧牲層且 形成第一電極520,因而獲得圖11A所示之結構。 在步驟1010,在圖11A的第一電極52〇及介電質53〇 上沈積包含摻雜10至20原子百分比氧化矽的鍺銻碲合金 (Gejb^Te5)材料之相變材料層u〇〇,因而獲得圖ιΐβ所示 之結構。藉由鍺銻碲(GST)靶材的共濺鍍(<:〇_叩11灶沉111&)可 實,,,碲合金(Gejbje5)及氧化石夕的沈積,舉例來說, 在氬氣環境下10瓦(Watts)的直流(DC)功率及具1〇至115 19 201015763 ry/^^ wfdoc/n 瓦(Watts)的射頻(RF)功率之二氧化石夕(Si02)乾材。 然後’在步驟1()2〇,進行退火以結晶化相變材料。在 所不之實施例甲,在氮氣環境下以^㈨^進行熱退火步驟 達100秒。另—方面,因為執行完成裝置之後續的後段 (back-end-〇f-iine,BE〇L)製程根據用以完成裝置的製造技 術可包括高溫循環及/或熱退火步驟,所以在某些實施例 中可藉由下列製程完成步驟1020的退火,並且無單獨的退 火步驟被加至生產線。 接著’在步驟1030,形成第二電極540,因而獲得圖 ® 11C所不之結構。在所示之實施例中,第二電極540包括 氮化鈦(TiN)。 然後,在步驟1040,進行後段(BE0L)製程以完成晶 片的半導體製程步驟。後段(BE0L)製程可以是所屬技術領 域中眾所周知的標準製程,並且根據實施記憶胞的晶片的 組態來進行製程。通常,後段(BE0L)製程所形成的結構在 包含耦接記憶胞與周邊電路的電路之晶片上可包括用於内 連線之接觸窗、層間介電質以及各種金屬層。這些後段 (BEOL)製程可包括在高溫沈積介電質材料,例如在々^^ ❹ 下的氮化矽(SiN)沈積或在500°C或更高的溫度下的高密度 電漿(high density plasma,HDP)氧沈積。這些製程的結果 是在裝置上形成圖17所示之控制電路及偏壓電路。 之後,在步驟1050,施加電流至陣列的記憶胞以熔解 主動區,並且容許冷卻以形成介電質網格,例如利用控制 電路及偏壓電路在記憶胞500上藉由重置循環(或設 20 201015763 :99twf.doc/n 201015763 :99twf.doc/n ❹The method, material, and process disclosed in U.S. Patent Application Serial No. 1/855,979, the entire disclosure of which is incorporated herein by reference. The content of the application will be incorporated into this case for reference. For example, a dielectric 53 can be formed on the top surface of the access circuit, and then an insulating layer and a sacrificial layer are sequentially formed. Then, a mask having a minimum feature size whose opening is close to or equal to the process for creating the mask is formed on the sacrificial layer, 18 201015763 ^9twf.doc/n This opening is located above the position of the first electrode 52〇. Then, the mask is used to selectively form the insulating layer and the sacrificial layer, thereby forming via holes (vm) in the insulating layer and the sacrificial layer and exposing the top surface of the dielectric layer 53A. After the mask is removed, a selective undercut is performed on the through hole (Xian Ru (10) imitation beer coffee h) so that the surname is engraved and the sacrificial layer and the dielectric layer are intact. A fill material is then formed in the vias. The self-aligned voids (self_aligned v〇id) of the fill material are formed in the vias due to the selective undercutting process. After that, an anisotropic etching process is performed on the i-filled material to open the cavity and layer the area below the cavity, thereby forming the package two-way: the side of the filling material Wallwaier (sidewaii spacer). The sidewall spacers have substantially π dimensions depending on the size of the void and may therefore be less than the minimum feature size of the lithography process. Then, the dielectric layer 530' is etched by using the sidewall spacer as an etching mask to form an opening having a diameter smaller than the minimum feature size in the dielectric f layer 53(). Next, an electrode layer is formed in the opening of the dielectric layer 53A and then subjected to a planarization process such as chemical mechanical ❹p〇hshing (CMP) to remove the insulating layer and the sacrificial layer and form the first electrode 520. Thus, the structure shown in Fig. 11A is obtained. In step 1010, a phase change material layer containing a bismuth alloy (Gejb^Te5) material doped with 10 to 20 atomic percent of yttrium oxide is deposited on the first electrode 52A and the dielectric 53A of FIG. 11A. Thus, the structure shown in Fig. ΐβ is obtained. Co-sputtering (<: 〇 叩 叩 11 沉 111 111 & ) ) 叩 灶 灶 & & & & & & ) ) G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 10 watts (Watts) of direct current (DC) power in a gas environment and a radioactive (RF) power of 1 to 115 19 201015763 ry / ^ ^ wfdoc / n Watts (Watts) of the dioxide (Si02) dry material. Then, in step 1 () 2, annealing is performed to crystallize the phase change material. In the case of the Example A, the thermal annealing step was carried out in a nitrogen atmosphere for 100 seconds. On the other hand, since the subsequent back-end-〇f-iine (BE〇L) process of the finished device may include high temperature cycling and/or thermal annealing steps depending on the manufacturing techniques used to complete the device, Annealing of step 1020 can be accomplished in the examples by the following process, and no separate annealing step is added to the line. Next, at step 1030, the second electrode 540 is formed, thereby obtaining the structure of Fig. 11C. In the illustrated embodiment, the second electrode 540 comprises titanium nitride (TiN). Then, at step 1040, a post-stage (BE0L) process is performed to complete the semiconductor process steps of the wafer. The post-stage (BE0L) process can be a standard process well known in the art, and the process is performed in accordance with the configuration of the wafer on which the memory cell is implemented. Typically, the structure formed by the back-end (BE0L) process can include contact windows for interconnects, interlayer dielectrics, and various metal layers on the wafer including the circuitry that couples the memory cells to the peripheral circuitry. These back-end (BEOL) processes may include deposition of dielectric materials at high temperatures, such as tantalum nitride (SiN) deposition under 々^^ 或 or high density plasma at 500 ° C or higher (high density). Plasma, HDP) Oxygen deposition. The result of these processes is the formation of the control circuit and bias circuit shown in Figure 17 on the device. Thereafter, at step 1050, a current is applied to the memory cells of the array to melt the active region, and cooling is allowed to form a dielectric mesh, such as by a control circuit and a bias circuit on the memory cell 500 by a reset cycle (or Set 20 201015763 : 99twf.doc/n 201015763 :99twf.doc/n ❹

St解及冷卻主動區至少-次或足夠的次數以形 F二?、。形成包括富含介電質的網格512内的相變 !域=之主動區510所需之循環次數可以是例如以刚 二結構繪示於圖UD。此循環包含施加適當的 由Γ「至一電極520及第二電極540歧在記憶元件 僅古起足赠駐祕㈣之電流,後續綱則無電流或 ,小電流以容許主動區冷卻。藉由施加—個或多個足以 …主動區的重置脈衝或—連串的設定及重置脈衝,可利 用震置上的設定//重置電路來實祕解/冷卻循環。此 夕利用與在裝置操作期間使用的正常設定/重置循環不 同=電壓準位及脈衝長度,可實施㈣電路及偏壓電路以 執行網格形成模式。在另外的實施例巾,利用在製造期間 連接晶片的生產線設備(例如測試設備)可執行熔解/冷卻 循環,以便設定電壓大小及脈衝高度。St solves and cools the active zone at least once or enough times to shape F? ,. The number of cycles required to form the active region 510 including the phase change in the dielectric-rich grid 512 can be, for example, shown in Figure UD. This cycle involves applying an appropriate current from the "one electrode 520 and the second electrode 540 to the memory element, and the subsequent program has no current or a small current to allow active area cooling." Applying one or more reset pulses or a series of setting and reset pulses sufficient for the active area, the set/reset circuit on the settling can be used to implement the secret/cooling cycle. The normal set/reset cycle used during device operation is different = voltage level and pulse length, and the (4) circuit and bias circuit can be implemented to perform the mesh formation mode. In another embodiment, the wafer is connected during fabrication. Line equipment (such as test equipment) can perform a melting/cooling cycle to set the voltage magnitude and pulse height.

圖12至圖14也繪示包含摻雜1〇至2〇原子百分比氧 化矽的鍺銻碲合金(Gejl^Te5)材料之記憶胞,其主動區包 括富含介電質的網格内的相變區域。以上參考圖5A及圖 5B的元件所述之材料可實施於圖12至圖14的記憶胞,因 此不再重複這些材料的詳細說明。 圖12是第二記憶胞1200的斷面圖,其主動區ι210 包括富含介電質的網格1212内的相變區域1211。 記憶胞1200包括隔離第一電極1220與第二電極1240 之介電質隔層(dielectric spacer) 1215。記憶元件1216延伸 跨越介電質隔層1215以接觸第一電極1220及第二電極 21 i.aoc/n 201015763 1240,藉以定義介於第一電極122〇與第二電極i24〇之電 極間電流路徑,此路徑具有由介電質隔層1215的寬度12口 所定義的路徑長度。在操作上,當電流在第一電極122〇 與第二電極1240之間流通且經過記憶元件1216時,主動 區1210比記憶元件1216的剩餘部分1213更快變熱。 圖13是第三記憶胞1300的斷面圖,其主動區i3i〇 包括富含介電質的網格1312内的相變區域丨311。 記憶胞1300包括分別在頂部1322與底面1324接觸 第一電極1320與第二電極1340之柱狀(piUar)記憶元件 1316。記憶元件1316的寬度1317實質上與第一電極l32〇 ® 及第二電極1340的寬度相同,以便定義由介電質(未繪示) 所圍繞的多層柱。當在此使用時,術語「實質上」打瞀包 括製造容忍度(manufacturing tolerance)。在操作上,舍電 流在第一電極1320與第二電極1340之間流通且經過二憶 元件1316時,主動區1310比記憶元件的剩餘部分13& 更快變熱。 圖14是第四記憶胞1400的斷面圖,其主動區141〇 包括富含介電質的網格1412内的相變區域14ιι。 ❹ 記憶胞1400包括由分別在頂部與底面接觸第一電極 1420與第二電極1440的介電質(未繪示)所園繞之孔=型 記憶元件(pore-type memory element) 1416。記憶元件的寬 度小於第一及第二電極的寬度,並且在操作上當電流在第 一電極與第二電極之間流通且經過記憶元件時,主^區比 記憶元件的剩餘部分更快變熱。 °° 22 201015763 ,,9twf.doc/n 、須知本發明並未侷限於在此所述之記憶胞結構 *並且 通W括,、有主動區的記憶胞,此主動區包括富含介 的網格内的相變區域。 ' 圖15A及圖15B分別是在1〇次循環之後於重置與設 定狀態下依照本發明之-種包含摻雜氧化石夕的相變材料之 蕈型記憶胞㈣斷_ f透式電子顯微雖a_issi〇n ―如請如⑽啊’丁聊影像^说及圖別的記憶 胞的形成方式如同以上參考圖1G及圖u所述,因此包括 ❹推雜10至20原子百分比氧化石夕的錯録碲合金(Ge2sb2Te5) 材料’且具有包括富含介電質的網格内的相變區域之主動 區。從圖15A及圖15B可看出在重置及設定兩種狀態下主 動區的相變區域。在照片t,摻雜的相變材料在中央呈現 中間灰色水平棒,在相變材料上面具有深灰色的頂部電 極’並且具有穿過相變材料下方的黑棒延伸之模糊可見的 底部電極柱。具有半徑恰小於膜層厚度之圓頂狀主動區經 仔細檢視可看出具有不同於此主動區外部的材料主體之物 φ 理排列。相變材料的主體顯現非常均勻的邊界,其特徵為 小晶粒尺寸的多結晶結構。 圖16A至圖16C是在重置狀態下圖15A及圖15B之 記憶胞的其他穿透式電子顯微鏡(TEM)影像。圖16A是記 憶兀•件的主動區(位於長方形内部)的擴展影像,其中顯示 相變區域之間的邊界。在圖16A中,可看見介電質網格内 的區域。圖16B與圖16C分別是矽(Si)與氧(〇)的電子能量 損失能譜儀(electron energy l〇ss spectroscopy,EELS)的影 201015763 像。圖16B及圖16C顯示矽(Si)與氧⑼的位置的清楚相關 性,並且顯示在圖16A中可見的相變區域邊界之間的矽(si) 與氧(Ο)。並且,相變區域呈現無矽(Si)及氧(〇)。 圖17是依照本發明之一種包括利用記憶胞來實施的 記憶體陣列(memory array)1712之積體電路1710的簡化方 塊圖’所述記憶胞具有包括富含介電質的網格内的相變區 域之主動區。具有讀取、設定以及重置模式的字元線解碼 器(word line decoder)1714與沿著記憶體陣列1712的列排 列之多條子元線1716耗接且電性通訊(eiectricai 德 communication)。位元線(行)解碼器1718與沿著陣列1712 的行排列之多條位元線1720電性通訊,以便讀取、設定以 及重置陣列1712的相變記憶胞(未繪示)。匯流排(bus)1722 提供位址(addresses)給字元線解碼器及驅動器丨7丨4及位元 線解碼器(1^1丨1^&(^〇(161*)1718。包含讀取、設定以及重置 模式之電壓及/或電流源之方塊1724的感測電路(感測放 大器(amplifiers))及資料輸入(data-in)結構經由資料匯流排 1726與位元線解碼器1718柄接。資料從積體電路pH)的 輸入/輸出埠或積體電路1710的其他内部或外部資料源 _ 經由資料輸入線1728到方塊1724的資料輸入結構。其他 的電路1730可包含於積體電路1710上,例如一般用途處 理^l(processor)或特殊用途電路,或者是提供陣列1712有 支援的單晶片系統(system-on-a-chip)功能之模組的組合。 資料《方塊1724的感測放大器經由資料輪出線1732提供 給積體電路1710的輸入/輸出埠或資料積體電路171〇的 24 201015763™ 一他内σρ或外部資料目標(data destinati〇ns)。 在此例中所實施的控制器Π34利用偏壓安排狀態機 土控制偏壓電路電壓及電流源1736的應用,以便應用於包 3 »賣取程式化、抹除、抹除驗證以及程式化驗證字元線 及位元線的電壓及/或電流之偏壓安排。此外,可利用上 述方式來實施溶解/冷卻循環之偏壓排列。可利用所屬技 術領域中眾所周知的特殊用途邏輯電路來實施控制器 m ^34 °在另外的實施例中,控制器Π34包括可在相同“ 電路上實施以執行電腦程式來控制裝置的操作之一般用 理器。在其他的實施例,可利用特殊用途邏輯電路與 般用途處理器的組合來實施控制器1734。 曰如圖Μ所示,陣列1712的每一個記憶胞包括存取電 :曰,(或其他的存取裝置,例如二極體)以及具有主動區的 2憶兀件,此主動區包括富含介電質的網格内的相變區 、在圖18中,緣示分別具有記憶元件1840、1842、1844 、及1846的四個記憶胞1830、1832、1834以及1836,代 ❹ 表可包括數百萬個記憶胞的陣列的小區塊。 曰圯憶胞1830、1832、1834以及1836的每一個存取電 =體的源極共同連接源極線(source㈣刪,源極線1854 、、;止於源極線終端電路1855,例如接地端子。在其他的實 例中,存取裝置的源極線並未電性連接,而是可獨立控 雷的。在某些實施例中,源極線終端電路1855可包括例如 =源及電流源之偏壓電路’以及將除了接地以外的偏壓 文排應用於源極線1854之解碼電路。 25 201015763 t.doc/n 包含字元線1856、1858的多條字元線沿著第—方 平行延伸。字元線1856、1858與字元線解碼器1714電性 通訊。記憶胞咖及滅胞1834的存取電的間極連 接字το線1856 ’並且記⑽觀及記憶胞1836的存 晶體的閘極共同地連接字元線1858。 包含位兀線1860、1862的多條位元線以第二方向平 行延伸且與位元線解碼器1718電性通訊。在所示之實施例 中,將每一個記憶元件排列在相對應的存取裝置的汲極與 相對應的位元線之間。另一方面,記憶元件可位於相對^ 的存取裝置的源極端上。 … ❹ 須知記憶體陣列1712並未侷限於圖18所示之陣列組 態,也可使用其他的陣列組態。此外,在某些實施例中, 可使用雙載子電晶體或二極體來取代金屬氧化物半導體 (M0S)電晶體作為存取裝置。 在操作中,陣列1712的每一個記憶胞根據相對應的 記憶元件的電阻來儲存資料。可測定上述資料值,例如藉 由感測電路1724的感測放大器來比較所選擇的記憶胞^ 位元線電流與適合的參考電流。可將參考電流設定為預定 ❹ 範圍的電流對應於邏輯「〇」,而不同範圍的電流則對應於 邏輯「1」。 因此’可達成讀取或寫入陣列1712的記憶胞,其方 式為施加適合的電壓至字元線1858、1856之一且將位元線 I860、1862之一與電壓源耦接,以使電流流經所選擇的記 憶胞。例如,建立穿越所選擇的記憶胞(在此例是記憶胞 26 201015763 >9twf.doc/n 1830及相對應的記憶元件184〇)之電流路徑〗88〇,其方式 為把加電壓至位元線186G、字元線1856以及源極線1854, 足以導通s己憶胞183〇的存取電晶體,且在路徑188〇中引 起電流從位元線職流到源極線1854,反之亦然。所施 力的電壓的準位及持續期間取決於所進行的操作,例如讀 取4呆作或寫入操作。 在η己憶胞1830的重置(或抹除)操作中,字元線解碼器 1714促使乂供適合的電壓脈衝給字元線以導通記憶 參胞1830的存取電晶體。位元線解碼器1718促使供應具^ 合的振幅及持續期間之電壓脈衝給位元線1860以引起電 ^流經記憶元件184〇,此電流提高記憶元件184〇的主動 區的溫度至高於相變材料的轉換溫度且高於熔解溫度,以 便將主動區_變材料置於液態巾。接著終止電流(例如藉 由終止位元線1860及字元線1856上的電壓脈衝)以獲得較 ,的淬火時間,在主動區的相變區域中主動區冷卻至通常 咼電阻的非結晶相以便在記憶胞中建立高電阻重置 _ 狀態。重置操作也可包括多於一個脈衝,例如使用—對脈 衝。 __在所選擇的δ己憶胞1830的設定(或程式化)操作中,字 几線解碼器1714促使提供適合的電壓脈衝給字元線a% 以導通記憶胞1830的存取電晶體。位元線解碼器1718促 使供應具適合的振幅及持續期間之電壓脈衝給位元線 ' 丨起電流流經記憶元件腦,此電流脈衝足以提升 主動區的溫度至高於轉換溫度,且使主動區的相變區域從 27 201015763 通晶狀態轉換成通常低電阻的結晶狀態, 憶元件侧的電阻,皿定記憶胞 1530至低電阻狀態。12 to 14 also illustrate a memory cell comprising a bismuth alloy (Gejl^Te5) material doped with 1 〇 to 2 〇 atomic percent yttrium oxide, the active region of which includes a phase in a dielectric-rich grid. Variable area. The materials described above with reference to the elements of Figures 5A and 5B can be implemented in the memory cells of Figures 12 through 14, and thus a detailed description of these materials will not be repeated. 12 is a cross-sectional view of a second memory cell 1200 having an active region ι 210 including a phase change region 1211 within a dielectric-rich grid 1212. The memory cell 1200 includes a dielectric spacer 1215 that isolates the first electrode 1220 from the second electrode 1240. The memory element 1216 extends across the dielectric spacer 1215 to contact the first electrode 1220 and the second electrode 21 i.aoc/n 201015763 1240, thereby defining a current path between the electrodes of the first electrode 122 〇 and the second electrode i24 〇 This path has a path length defined by the width 12 of the dielectric spacer 1215. In operation, when current flows between the first electrode 122A and the second electrode 1240 and passes through the memory element 1216, the active region 1210 heats up faster than the remaining portion 1213 of the memory element 1216. 13 is a cross-sectional view of a third memory cell 1300 having an active region i3i〇 including a phase change region 311 in a dielectric-rich mesh 1312. The memory cell 1300 includes a piUar memory element 1316 that contacts the first electrode 1320 and the second electrode 1340 at the top 1322 and the bottom surface 1324, respectively. The width 1317 of the memory element 1316 is substantially the same as the width of the first electrode 132x and the second electrode 1340 to define a multilayer pillar surrounded by a dielectric (not shown). As used herein, the term "substantially" includes "manufacturing tolerance." In operation, when the home current circulates between the first electrode 1320 and the second electrode 1340 and passes through the two-memory element 1316, the active region 1310 heats up faster than the remaining portion 13& of the memory element. 14 is a cross-sectional view of a fourth memory cell 1400 having an active region 141A including a phase change region 14ι within a dielectric-rich grid 1412. The memory cell 1400 includes a pore-type memory element 1416 surrounded by a dielectric (not shown) that contacts the first electrode 1420 and the second electrode 1440 at the top and bottom surfaces, respectively. The width of the memory element is less than the width of the first and second electrodes, and operatively, when current flows between the first electrode and the second electrode and passes through the memory element, the main area heats up faster than the remainder of the memory element. °° 22 201015763 ,, 9twf.doc/n, it should be noted that the present invention is not limited to the memory cell structure described herein* and includes a memory cell having an active region including a rich network. The phase change region within the grid. 15A and 15B are respectively a type of memory cell containing a phase change material doped with oxidized oxidized stone according to the present invention in a reset and set state after 1 cycle, respectively. Although a_issi〇n - such as please (10) ah 'Ding chat image ^ said and the figure of the memory cell formation as described above with reference to Figure 1G and Figure u, so including ❹ ❹ 10 to 20 atomic percent oxidized stone The erbium-doped alloy (Ge2sb2Te5) material' has an active region comprising a phase change region within the dielectric-rich grid. The phase change region of the active region in the reset and set states can be seen from Figs. 15A and 15B. In photograph t, the doped phase change material presents an intermediate gray horizontal bar in the center, a dark gray top electrode ' on top of the phase change material and a blurred visible bottom electrode column extending through the black bars below the phase change material. A dome-shaped active region having a radius just smaller than the thickness of the film layer can be seen to have an arrangement of materials different from the material body outside the active region. The body of the phase change material exhibits a very uniform boundary characterized by a polycrystalline structure of small grain size. 16A to 16C are other transmission electron microscope (TEM) images of the memory cells of Figs. 15A and 15B in a reset state. Figure 16A is an expanded image of the active area of the memory element (located inside the rectangle) showing the boundary between the phase change regions. In Figure 16A, the area within the dielectric grid is visible. 16B and 16C are images of electron energy loss spectroscopy (EELS) of 矽(Si) and oxygen (〇), respectively. Figures 16B and 16C show a clear correlation of the position of bismuth (Si) with oxygen (9) and show 矽(si) and oxygen (Ο) between the boundaries of the phase change regions visible in Figure 16A. Also, the phase change region exhibits no bismuth (Si) and oxygen (〇). 17 is a simplified block diagram of an integrated circuit 1710 including a memory array 1712 implemented using memory cells in accordance with the present invention. The memory cell has a phase within a dielectric including a dielectric rich matrix. The active area of the variable area. A word line decoder 1714 having read, set, and reset modes is consuming and electrically communicating with a plurality of sub-elements 1716 along the column arrangement of the memory array 1712 (eiectricai communication). Bit line (row) decoder 1718 is in electrical communication with a plurality of bit lines 1720 arranged along the rows of array 1712 for reading, setting, and resetting phase change memory cells (not shown) of array 1712. Bus 1722 provides addresses to the word line decoder and driver 丨7丨4 and bit line decoder (1^1丨1^&(^〇(161*)1718. Contains read The sensing circuits (sensing amplifiers) and data-in structures of the voltage and/or current source block 1724 of the fetch, set, and reset modes are via the data bus 1726 and the bit line decoder 1718. The handle is connected to the input/output of the integrated circuit pH or other internal or external data source of the integrated circuit 1710 via the data input line 1728 to the data input structure of block 1724. Other circuits 1730 may be included in the integrated body. The circuit 1710, for example, a general purpose processor or a special purpose circuit, or a combination of modules providing a system-on-a-chip function supported by the array 1712. The sense amplifier is supplied to the input/output port of the integrated circuit 1710 or the data integrated circuit 171 via the data wheel output line 1732. The σρ or the external data target (data destinati〇ns) in this example. The implemented controller Π 34 utilizes a bias arrangement The application of the earth control bias voltage and current source 1736 is applied to the package 3 »selling, erasing, erasing verification and stylizing the voltage and/or current of the word line and bit line Bias arrangement. In addition, the bias arrangement of the dissolution/cooling cycle can be implemented in the manner described above. The controller m ^ 34 ° can be implemented using special purpose logic circuits well known in the art, in other embodiments, the controller The device 34 includes a general purpose processor that can be implemented on the same "circuit to execute a computer program to control the operation of the device. In other embodiments, the controller 1734 can be implemented using a combination of special purpose logic circuits and a general purpose processor. As shown in FIG. ,, each of the memory cells of the array 1712 includes an access memory: 曰, (or other access device, such as a diode), and a memory device having an active region including a rich medium. The phase change region within the grid of electrical mass, in Fig. 18, shows four memory cells 1830, 1832, 1834, and 1836 having memory elements 1840, 1842, 1844, and 1846, respectively, which may include a cell block of an array of millions of memory cells. The sources of each of the access cells 1830, 1832, 1834, and 1836 are connected to a source line (source), source line 1854, and In the source line termination circuit 1855, such as a ground terminal. In other examples, the source line of the access device is not electrically connected, but can be independently controlled. In some embodiments, the source line terminal Circuitry 1855 can include, for example, a bias circuit of source and current sources and a decoding circuit that applies a bias field other than ground to source line 1854. 25 201015763 t.doc/n A plurality of word lines including word lines 1856, 1858 extend in parallel along the first side. Word lines 1856, 1858 are in electrical communication with word line decoder 1714. The memory cell and the access terminal of the cell 1834 are connected to the word το line 1856' and the gate of the memory cell of the memory cell 1836 is commonly connected to the word line 1858. A plurality of bit lines including bit lines 1860, 1862 extend in a second direction and are in electrical communication with bit line decoder 1718. In the illustrated embodiment, each memory element is arranged between the drain of the corresponding access device and the corresponding bit line. Alternatively, the memory element can be located at the source terminal of the opposite access device. ... ❹ Note that the memory array 1712 is not limited to the array configuration shown in Figure 18, and other array configurations can be used. Moreover, in some embodiments, a bipolar transistor or a diode may be used in place of a metal oxide semiconductor (MOS) transistor as an access device. In operation, each of the memory cells of array 1712 stores data based on the resistance of the corresponding memory element. The above data values can be determined, for example, by the sense amplifier of sense circuit 1724 to compare the selected memory cell line current with a suitable reference current. The current with the reference current set to the predetermined ❹ range corresponds to the logic "〇", while the current of the different range corresponds to the logic "1". Thus, the memory cells of the array 1712 can be read or written by applying a suitable voltage to one of the word lines 1858, 1856 and coupling one of the bit lines I860, 1862 to the voltage source for current Flow through the selected memory cells. For example, a current path 〇88〇 is established to traverse the selected memory cell (in this case, memory cell 26 201015763 > 9twf.doc/n 1830 and corresponding memory component 184A) in such a manner that the voltage is applied in place. The line 186G, the word line 1856, and the source line 1854 are sufficient to turn on the access transistor of the 183 cell, and cause a current flow from the bit line to the source line 1854 in the path 188 ,, and vice versa. Of course. The level and duration of the applied voltage depends on the operation being performed, such as reading 4 or writing. In the reset (or erase) operation of the NMOS cell 1830, the word line decoder 1714 causes the appropriate voltage pulse to be applied to the word line to turn on the access transistor of the memory cell 1830. The bit line decoder 1718 causes the supply of the amplitude and duration of the voltage pulse to the bit line 1860 to cause the current to flow through the memory element 184, which increases the temperature of the active region of the memory element 184 to above the phase. The transition temperature of the variable material is higher than the melting temperature in order to place the active region-variable material in the liquid towel. The current is then terminated (e.g., by terminating the voltage pulses on bit line 1860 and word line 1856) to obtain a more quenching time in which the active region is cooled to the amorphous phase of the normal zeta resistance in the phase change region of the active region. Establish a high resistance reset _ state in the memory cell. The reset operation can also include more than one pulse, such as using a pair of pulses. __ In the set (or stylized) operation of the selected delta cell 1830, the word line decoder 1714 causes the appropriate voltage pulse to be supplied to the word line a% to turn on the access transistor of the memory cell 1830. The bit line decoder 1718 causes the supply of a voltage pulse of a suitable amplitude and duration to the bit line' to pick up the current flowing through the memory element brain. This current pulse is sufficient to raise the temperature of the active region above the switching temperature and to cause the active region The phase change region is converted from a crystallized state of 27 201015763 to a crystalline state of generally low resistance, recalling the resistance of the component side, and the memory cell 1530 to a low resistance state.

在記^胞刪所儲存的資料值的讀取(或感測)操作 子兀'碼H Π14促使提供適合的電壓脈衝給字元線 1856以導通記憶胞刪的存取電晶體。位元線解碼器㈣ 促使供應具適合的振幅及__之電壓純元線觸 以引起電流流經記憶元件184〇,其不會使記憶元件產生電 P且狀態變化。位元線觸上的電流及穿越記憶胞183〇的 電流=決於記憶胞的電阻’目而取決於與記憶胞有關的資 料狀態。因此,藉由偵測記憶胞183〇的電阻是否對應於高 電阻狀悲或低電阻狀態可測定記憶胞的資料狀態,例如藉 由感測電路1724的感測放大器來比較位元線186〇上的電 流與適合的參考電流。 依照本發明的實施例所使用之材料包含氧化矽及鍺 銻碲合金(GeJbzTe5)。也可使用其他的硫屬材料。硫族元The read (or sense) operation of the data value stored in the cell deletes the code 'code H Π 14 to cause the appropriate voltage pulse to be supplied to the word line 1856 to turn on the memory cell. The bit line decoder (4) causes the supply of a suitable amplitude and __ voltage pure element line to cause current to flow through the memory element 184, which does not cause the memory element to generate a power P and change state. The current touched by the bit line and the current through the memory cell 183 = = depends on the resistance of the memory cell, depending on the state of the data associated with the memory cell. Therefore, the data state of the memory cell can be determined by detecting whether the resistance of the memory cell 183 对应 corresponds to a high resistance sad or low resistance state, for example, by comparing the bit line 186 by the sense amplifier of the sensing circuit 1724. The current is with a suitable reference current. Materials used in accordance with embodiments of the present invention comprise yttria and yttrium-niobium alloys (GeJbzTe5). Other chalcogenide materials can also be used. Chalcogen

素(chalcogens)包括氧(〇)、硫(S)、石西(Se)以及碌(Te)等四種 元素之任一種(形成週期表(periodic table)的VIA族元素的 一部分)。硫屬材料包括具有較多的正電元素或自由基 (radical)之硫族元素的化合物。硫屬合金包括硫屬材料與例 如過渡金屬(transition metals)的其他材料之組合。硫屬合金 通常包含元素週期表的IVA族元素當中一個或多個元素, 例如鍺(Ge)及錫(Sn)。硫屬合金通常包括銻(Sb)、鎵(Ga)、 銦(In)以及銀(Ag)當中一個或多個的組合。許多基於相變的 28 201015763 9twf.doc/n 記憶體材料已經在科技文獻中予以說明,其中包括下列合 金:鎵(Ga)/銻(Sb)、銦(In)/銻(Sb)、銦(In)/硝(Se)、銻 (Sb)/碲(Te)、鍺(Ge)/碲(Te)、鍺(Ge)/銻(Sb)/碲(Te)、 銦(In)/銻(Sb)/碲(Te)、鎵(Ga)/砸(Se)/碲(Te)、錫(Sn) / 銻(Sb)/碲(Te)、銦(In)/銻(Sb)/鍺(Ge)、銀(Ag)/銦(In) /銻(Sb)/碲(Te)、鍺(Ge)/錫(Sn)/銻(Sb)/碲(Te)、鍺 (Ge)/銻(Sb)/砸(Se)/碲(Te)以及碲(Te)/鍺(Ge)/銻(Sb) /琉(S)。在鍺(Ge)/錄(Sb)/碲(Te)合金的族群裡,可使 ❹ 用廣泛範圍的合金組合。此組合的特徵可表示為 TeaGebSb100(a+b)。一名研究人員已經表示最有用的合金是在 沈積的材料中碲(Te)的平均濃度最好低於70%,通常低於 大約60% ’且一般而言其範圍從低至大約23%到高達大約 58%的碲(Te),並且最好是大約48%至58%的碲(Te)。在材 料中鍺(Ge)的平均濃度高於大約5%,且其範圍從低至大約 8%到高達大約30% ’剩下的元素通常低於50%。鍺(Ge) 的濃度範圍最好從大約8%到大約40%。在這組合中剩餘 ❹ 的主要構成元素是銻(Sb)。這些百分比是構成元素的原子 之合計為1〇〇%的原子百分比(〇vshinsky所提出的第 5,687,112號專利之第1〇至u行)。其他的研究人員所評 估的特殊合金包括下列鍺銻碲合金:Ge2Sb2Te5、GeSb2Te4 以及 GeSb4Te7(參閱 Noboru Yamada在 1997 年發表於 SPIE 第 3109 卷第 28 至 37 頁之「Potential of Ge-Sb-TeChalcogens include any of four elements (a part of a group VIA element forming a periodic table) of oxygen (〇), sulfur (S), lithus (Se), and Te (Te). Chalcogenic materials include compounds having more positively charged elements or radical chalcogen elements. Chalcogenide alloys include combinations of chalcogenide materials with other materials such as transition metals. Chalcogenide alloys typically contain one or more elements of Group IVA elements of the Periodic Table of the Elements, such as germanium (Ge) and tin (Sn). Chalcogenide alloys typically include a combination of one or more of bismuth (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change-based 28 201015763 9twf.doc/n memory materials have been described in the scientific literature, including the following alloys: gallium (Ga) / antimony (Sb), indium (In) / antimony (Sb), indium ( In)/Nitrate (Se), Sb/S (Te), Ge (Ge)/Te (Te), Ge (Ge)/锑(Sb)/碲(Te), Indium(In)/锑( Sb)/碲(Te), gallium (Ga)/砸(Se)/碲(Te), tin(Sn)/锑(Sb)/碲(Te), indium(In)/锑(Sb)/锗( Ge), Silver (Ag) / Indium (In) / Sb (Sb) / 碲 (Te), 锗 (Ge) / Tin (Sn) / 锑 (Sb) / 碲 (Te), 锗 (Ge) / 锑 ( Sb) / 砸 (Se) / 碲 (Te) and 碲 (Te) / 锗 (Ge) / 锑 (Sb) / 琉 (S). In the group of bismuth (Ge)/recorded (Sb)/tellurium (Te) alloys, a wide range of alloy combinations can be used. The characteristics of this combination can be expressed as TeaGebSb100(a+b). One researcher has indicated that the most useful alloy is that the average concentration of cerium (Te) in the deposited material is preferably less than 70%, usually less than about 60% 'and generally ranges from as low as about 23% to Up to about 58% of cerium (Te), and preferably about 48% to 58% of cerium (Te). The average concentration of germanium (Ge) in the material is above about 5%, and ranges from as low as about 8% to as high as about 30%. The remaining elements are typically less than 50%. The concentration of germanium (Ge) preferably ranges from about 8% to about 40%. The main constituent element of the remaining ❹ in this combination is 锑(Sb). These percentages are atomic percentages of a total of 1% by atom of the constituent elements (the first to the uth of the 5th, 687, 112th patent proposed by 〇vshinsky). Other alloys evaluated by other researchers include the following niobium alloys: Ge2Sb2Te5, GeSb2Te4, and GeSb4Te7 (see Noboru Yamada, 1997, SPIE, Vol. 3109, pp. 28-37, "Potential of Ge-Sb-Te"

Phase-Change Optical Disks for High-Data-Rate Recording」)。更常見的是可將例如鉻(Cr)、鐵(Fe)、鎳(Ni)、 29 doc/n 201015763 鈮(Nb)、鈀fRd)、鉑(Pt)之過渡金屬 組合而形成具二 徵的相變合金。可能有用的記恃體 P特 其例子特此併入本案供參考。 至13订’ 雖然本發明已以實施例揭露如上,鈇1 ❿ ^是-種相變記憶胞之記憶狀態的電阻分 置的=圖至圖2C是—種包含各種存轉置_變記憶裝 圖3A及圖3B是習知之—種具有主動區 ⑽响記憶胞,此杨區通常是具有結晶塊的非 圖4A及圖4B是習知之_接目士 一 & 胞,此主動區通常是且有一起成^ 區的簟狀記憶 的非結晶相。起成長導致故障模式之結晶塊 j 5A及圖5B分別是在設定與重置狀態下依照本發明 人且古!例之Γ種具有主動區的蕈狀記憶胞,此主動區包 έ八有相變材料區域的介電質網格。 圖6是在重置狀態下依照本發明之一實施例之一種記 憶胞的主動區的示意圖,此主動區具有以介電質材料薄層 30 201015763 ^twf.doc/i 隔離來避免圖4A及圖4B所述之故障 域0 圖7是藉由依照本發明之一實施例 之改良的資料保存。 種記憶胞達成 圖8A及圖8B是依照本發明之_警他乂 繞射(x-my dif— ’ XRD)光譜資料’其:之二種X光Phase-Change Optical Disks for High-Data-Rate Recording"). More commonly, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), 29 doc/n 201015763 铌 (Nb), palladium fRd), platinum (Pt) can be combined to form a binary sign. Phase change alloy. Possible useful notes P. The examples are hereby incorporated by reference.至13订' Although the present invention has been disclosed by way of example, 鈇1 ❿ ^ is a phase change memory cell of the memory state of the resistance division = map to Figure 2C is a variety of memory transposition _ variable memory 3A and 3B are conventionally known that the active region (10) has a memory cell, and the pop region is usually a crystalline block. FIG. 4A and FIG. 4B are conventionally known as a contact and a cell, and the active region is usually There is also a non-crystalline phase that forms a scorpion-like memory. The crystal blocks j 5A and FIG. 5B which are caused by the growth failure mode are respectively the memory cells having the active region according to the inventors of the present invention in the set and reset state, and the active region contains eight phases. A dielectric mesh of the variable material region. 6 is a schematic diagram of an active region of a memory cell in a reset state in accordance with an embodiment of the present invention, the active region having a thin layer of dielectric material 30 201015763 ^twf.doc/i to avoid FIG. 4A and Fault Domain 0 as depicted in Figure 4B Figure 7 is an improved data preservation by an embodiment in accordance with the present invention. Fig. 8A and Fig. 8B are diagrams of x-my dif-' XRD spectral data according to the present invention.

摻雜氧化㈣碲(GST)的六方最密堆積= =有 圖9是-種用以比較之摻雜氮的錯 日日 ^的X光繞射(X戦賴,其中顯^制任)= 圖12是依照本發明之一實施例之一種在主動區中使 用具有介電質網格之相變材料的橋型記憶胞結構。The hexagonal closest packing of doped oxidized (tetra) ytterbium (GST) = = there is a kind of X-ray diffraction that is used to compare the doping of nitrogen with X-rays (X 戦 ,, where ^ ^ 任 ) 12 is a bridge type memory cell structure using a phase change material having a dielectric mesh in an active region in accordance with an embodiment of the present invention.

模式的相變材料區 程圖圖H)是依照本剌之—實施狀—難程的簡化流 圖11ASW 11DS依照本發明之一實施例之一種形 成在主動區中具有介電質網格之記憶胞的製程的步驟。 圖13是依照本發明之一實施例之一種在主動區中使 用具有介電質網格之相變材料的「主動通孔(active in via)」 型s己憶胞結構。 圖14是依照本發明之一實施例之一種在主動區中使 用具有介電質網格之相變材料的孔洞型記憶胞結構。 圖15A及圖15B分別是在重置與設定狀態下依照本發 明之一實施例之一種包含摻雜氧化矽的鍺銻碲(GST)之簟 型記憶胞的橫斷面的穿透式電子顯微鏡(TEM)影像。 201015763d/ ..... /i.doc/nThe mode phase change material region diagram H) is a simplified flow diagram according to the present invention-implementation-difficulty process. 11ASW 11DS is a memory having a dielectric grid formed in the active region according to an embodiment of the present invention. The steps of the process of the cell. Figure 13 is a diagram showing an "active in via" type of memory cell using a phase change material having a dielectric grid in an active region in accordance with an embodiment of the present invention. Figure 14 is a perspective view of a memory cell structure using a phase change material having a dielectric grid in an active region in accordance with an embodiment of the present invention. 15A and 15B are respectively a transmission electron microscope of a cross section of a 记忆-type memory cell containing yttrium oxide (GST) doped with yttrium oxide according to an embodiment of the present invention in a reset and set state. (TEM) image. 201015763d/ ..... /i.doc/n

圖16A至圖16C是在重置狀態下圖i5a及圖i5B之 記憶胞的穿透式電子顯微鏡(TEM)影像,其中圖16A是記 憶元件的主動區(位於長方形内部)的擴展影像,而圖16B 與圖16C則分別是矽與氧的電子能量損失能譜儀(EELS) 的影像。 圖17是依照本發明之一實施例之一種包含相變記憶 胞的積體電路記憶裝置的簡化方塊圖。 圖18是依照本發明之一實施例之一種包含相變記憶 胞的記憶體陣列的簡化電路圖。 【主要元件符號說明】 1〇〇 :設定狀態 101 .讀取邊際 102 :重置狀態 103、RSA :臨界電阻值 200、202、204、300、400、500、1200、1300、1400、 1830、1832、1834、1836 :記憶胞 210 :場效電晶體 212 :雙載子接面電晶體 214 :二極體 220、516、1216、1316、1416、1840、1842、1844、 1846 :記憶元件 230、1720、1860、1862 :位元線 240、1716、1856、1858 :字元線 310、410、510、1210、1310、1410 :主動區 32 201015763 ;99twf.doc/n 312、540、1240、1340、1440 :第二電極 314、 520、1220、1320、1420 :第一電極 315、 530 :介電質 316、 522、1217、1317 :寬度 320、420 :結晶區 450、600 :低電阻路徑 511、 1211、13H、1411 :相變區域16A to 16C are transmission electron microscope (TEM) images of the memory cells of FIGS. i5a and i5B in a reset state, wherein FIG. 16A is an expanded image of the active region (located inside the rectangle) of the memory element, and FIG. 16B and Figure 16C are images of the electron energy loss spectrometer (EELS) of helium and oxygen, respectively. Figure 17 is a simplified block diagram of an integrated circuit memory device including phase change memory cells in accordance with one embodiment of the present invention. Figure 18 is a simplified circuit diagram of a memory array including phase change memory cells in accordance with an embodiment of the present invention. [Description of main component symbols] 1〇〇: setting state 101. Reading margin 102: reset state 103, RSA: critical resistance values 200, 202, 204, 300, 400, 500, 1200, 1300, 1400, 1830, 1832 , 1834, 1836: memory cell 210: field effect transistor 212: bipolar junction transistor 214: diode 220, 516, 1216, 1316, 1416, 1840, 1842, 1844, 1846: memory elements 230, 1720 , 1860, 1862: bit lines 240, 1716, 1856, 1858: word lines 310, 410, 510, 1210, 1310, 1410: active area 32 201015763; 99twf.doc / n 312, 540, 1240, 1340, 1440 : second electrodes 314, 520, 1220, 1320, 1420: first electrodes 315, 530: dielectrics 316, 522, 1217, 1317: widths 320, 420: crystallization regions 450, 600: low resistance paths 511, 1211, 13H, 1411: phase change region

512、 1212、1312、1412 :富含介電質的網格 513 :非主動區 700 、 710 :線 1000、1010、1020、1030、1040、1050 :步驟 1100 :相變材料層 1213、1313 :剩餘部分512, 1212, 1312, 1412: dielectric-rich grid 513: inactive regions 700, 710: lines 1000, 1010, 1020, 1030, 1040, 1050: step 1100: phase change material layers 1213, 1313: remaining section

1215 介電質隔層 1322 頂面 1324 底面 1710 積體電路 1712 記憶體陣列 1714 字元線解碼器 1718 位元線解碼器 1722 匯流排 1724 感測電路 1726 資料匯流排 1728 資料輸入線 33 201015763一 1730 :其他的電路 1732 :資料輸出線 1734:控制器 1736 :偏壓電路電壓及電流源 1854 :源極線 1855 :源極線終端電路 1880 :電流路徑 R1 :低電阻設定狀態的最高電阻 R2:高電阻重置狀態的最低電阻1215 Dielectric spacer 1322 Top surface 1324 Substrate 1710 Integrated circuit 1712 Memory array 1714 Word line decoder 1718 Bit line decoder 1722 Bus line 1724 Sensing circuit 1726 Data bus 1728 Data input line 33 201015763 - 1730 : Other circuit 1732: Data output line 1734: Controller 1736: Bias circuit voltage and current source 1854: Source line 1855: Source line termination circuit 1880: Current path R1: High resistance R2 of low resistance setting state: Minimum resistance of high resistance reset state

Claims (1)

201015763 99twf.doc/n 七、申請專利範圍: 1·一種記憶裝置的製造方法,包括: 形成第一電極及第二電極; 在所述第電極與所述第二電極之間形成主體 主體由相變記憶體材料形忐,μ 迷 雜介電質材料的硫屬材料以^知記減材料包括摻 ❿ 二斤述主體在所述第—電極與所述第二電極之 網格二域且述主動區外且無所述介電質材料的 的區域之所述介電質材料的所述網格。^屬材枓 2·如中#專利範圍第1項所述之記憶袭置 法,更包括: ^ 形成多結晶狀態的所述主體,其中包括與所述第 ^接觸的部分’所述相變記憶體材料包括掺雜所述介電質 材料的所述硫屬材料;以及201015763 99twf.doc/n VII. Patent application scope: 1. A method for manufacturing a memory device, comprising: forming a first electrode and a second electrode; forming a main body body between the first electrode and the second electrode a memory material shape, a chaotic dielectric material of the chalcogenide material, including a ruthenium-doped ruthenium body, in the grid-domain of the first electrode and the second electrode The grid of dielectric material outside the active region and without the region of the dielectric material. ^ 属 · · · · · · 之 之 之 之 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 ^ 记忆 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The memory material includes the chalcogenide material doped with the dielectric material; 憶體體的所述主動區⑽解及固化所述相變記 “曰—次,但是不會干擾在所述主動區外的所述 二曰曰狀想,因而在所述主動區中形成具有至少一個所 瓜屬材料的區域之所述介電質材料的所述網格。 法,^如申请專利範圍第1項所述之記憶裝置的製造方 松:其中所述相變記憶體材料所使用的所述硫屬材料在不 所述介電質材料時其特徵為具有第一體積的第—固態 ^曰曰,及具有第二體積的第二固態結晶相,所述相變記憶 材料具有較接近所述第二體積而非所述第一體積之非結 35 t.aoc/n 201015763 來i:所述硫屬材料中之所述介電質材料的濃度 足以促使形f所述第二固態結晶相。 法,述:記憶裝置的製造方 述第二固態,二 =最密堆積相’並鋪 、土 專利範圍第1項所述之記憶裝置的製造方Recalling that the active region (10) of the body dissolves and solidifies the phase change "曰-time, but does not interfere with the dimorphism outside the active region, thus forming in the active region The mesh of the dielectric material in the region of at least one of the melon materials. The method of manufacturing the memory device according to claim 1, wherein the phase change memory material is The chalcogenide material used is characterized by having a first volume of a first solid state and a second volume of a second solid crystalline phase without the dielectric material, the phase change memory material having a non-junction 35 t.aoc/n 201015763 that is closer to the second volume than the first volume to i: the concentration of the dielectric material in the chalcogenide material is sufficient to promote the shape f Solid state crystalline phase. Method, description: The manufacturing method of the memory device, the second solid state, the second = the closest packed phase, and the manufacturing method of the memory device described in the first paragraph of the soil patent scope 妓蚀二+、人=相變記憶體材料所使㈣所述硫屬材料在不 質材料時其特徵為多種固態結晶相,其中所 ί硫^材料中之所述介電質材_濃度足⑽免在所述主 動區中形成至少-種所述固態結晶相。 、、6‘如中請專利範圍第1項所述之記憶裝置的製造方 八中所述相己憶體材料所使用的所述硫屬材料在不 摻雜所述介電質材料時其特徵為多種㈣結晶相,其中所 述硫屬材料中之所述介電質材料的濃度足㈣免在所述主 動區外形成至少一種所述固態結晶相。(2) The chalcogenide material is characterized by a plurality of solid crystalline phases in the case of a non-ferrous material, wherein the dielectric material in the material is sufficient (10) preventing formation of at least one of the solid crystalline phases in the active region. And the characteristics of the chalcogenide material used in the phase-recall material described in the manufacture of the memory device described in the first aspect of the patent device of claim 1 are not doped with the dielectric material. And a plurality of (four) crystalline phases, wherein the concentration of the dielectric material in the chalcogenide material is sufficient to form at least one of the solid crystalline phases outside the active region. 7. 如申請專利範圍第1項所述之記憶裝置的製造方 法’其中所述硫屬材料中之所述介電質材料是氧化石夕,所 述介電質材料的濃度在丨〇至2〇原子百分比的範圍内。 8. 如申請專利範圍第2項所述之記憶裝置的製造方 法,更包括在所述記憶裝置上形成電路以跨越所述第一電 極與所述第二電極施加設定脈衝及重置脈衝來寫入資料, 以及藉由跨越所述第一電極與所述第二電極施加重置脈衝 來執行所述熔解及所述固化。 9.如申請專利範圍第2項所述之記憶裝置的製造方 36 201015763 ^twf.doc/i 法’更包括在所述記憶裝置上形成電路以跨越所述第一電 極與所述第一電極施加設定脈衝及重置脈衝來寫入資料, 以及藉由跨越所述第一電極與所述第二電極施加設定脈衝 及重置脈衝來執行所述熔解及所述固化。 1〇.如申晴專利範圍第1項所述之記憶裝置的製造方 八中所述相變記憶體材料所使用的所述硫屬材料包括 GexSbyTez。7. The method of manufacturing a memory device according to claim 1, wherein the dielectric material in the chalcogenide material is oxidized stone, and the concentration of the dielectric material is 丨〇2 Within the range of 〇 atomic percentages. 8. The method of manufacturing a memory device according to claim 2, further comprising forming a circuit on the memory device to write a set pulse and a reset pulse across the first electrode and the second electrode. The data is entered, and the melting and the curing are performed by applying a reset pulse across the first electrode and the second electrode. 9. The method of manufacturing a memory device according to claim 2, wherein the method further comprises forming a circuit on the memory device to span the first electrode and the first electrode. The set pulse and the reset pulse are applied to write data, and the melting and the curing are performed by applying a set pulse and a reset pulse across the first electrode and the second electrode. 1. The chalcogenide material used in the phase change memory material described in the eighth aspect of the invention of the memory device of the first aspect of the invention is GexSbyTez. 、、,U.如申請專利範圍第丨項所述之記憶裴置的製造方 =中所述相變記憶體材料所使用的所述硫屬材料包括 ex yTez,其中χ=2、y==2以及z=5,並且其中 介電質材料是氧化梦,所述介電質材料“ 度在10至20原子百分比的範圍内。 12. —種相變記憶裝置,包括: 第—電極及第二電極;The U.S. chalcogenide material used in the phase change memory material as described in the manufacturer of the memory device described in the second paragraph of the patent application includes ex yTez, wherein χ=2, y== 2 and z=5, and wherein the dielectric material is an oxidative dream, the dielectric material "in the range of 10 to 20 atomic percent. 12. A phase change memory device comprising: a first electrode and a Two electrodes; 所述記憶體材料形成’位於所述第-電極與 材料的二=二勵變記憶體材料包括她 主動i斤述ί體在所述第—電極與所述第二電極之間呈有 網格:區域且介電質材料的 的區域之所述介電質材料的所i網i(個所逑硫屬材料 翻翻第12項魏之相變記 中所迷相變記憶體材料所使用的所述 ^置八 述介電質材料時其特徵為具有第-體積的第’4:;: 37 201015763 及具有第二體積的第二固態結晶相,所述相變記憶體材 具有較接近所述第二體積而非所述第一體積之非結晶相體 積,其中所述硫屬材料中之所述介電質材料的濃度足 使形成所述第二固態結晶相。 從 14.如申請專利範圍第12項所述之相變記憶裝置, 中所述第-固態結晶相是六方最密堆積相’並且所述二 固態結晶相是面心立方相。The memory material forms a second=two-excited memory material located at the first electrode and the material, including the active body, and a grid between the first electrode and the second electrode : the region and the region of the dielectric material of the dielectric material of the dielectric material (the sulphur material is turned over in the 12th item of the phase change memory used in the phase change memory material The eighth dielectric material is characterized by a first volume having a '4:;: 37 201015763 and a second solid crystalline phase having a second volume, the phase change memory material having a closer a second volume other than the first volume of the amorphous phase volume, wherein the concentration of the dielectric material in the chalcogenide material is sufficient to form the second solid crystalline phase. From 14. In the phase change memory device of item 12, the first solid state crystalline phase is a hexagonal closest packed phase ' and the two solid crystalline phase is a face centered cubic phase. 15·如申請專利範圍第12項所述之相變記憶裝置,』 中所述相變記,隨⑽所使用的所述硫騎料在不播^ 述介電質材料時其特徵為多種關結晶相,其中所述 材料中之所述介電質材料的濃度足以避免在所述主動區 形成至少一種所述固態結晶相。 16.如申請專利範圍第12項所述之相變記憶裝置,$ 中所述相變記歸材料所使㈣所述硫屬材料在不推雜 2電質材料時其特徵為多種_結晶相,其中所述硫^ 二中之所述介電質㈣的濃度足簡免在所述主 形成至少一種所述固態結晶相。 參 π.如+料魏_ 12項所叙機域裝置^ 質中之所述介電質材料是氧化石夕,所述的 '材枓的浪度在1G至2G原子百分比的範圍内。 18.如申:月專利範圍第12項所述之相變記憶裝置,^ ^一^於所述相變記憶裝置上的電路,所述電路跨越所划 次斗/極無料二電極施加設定脈衝及重置脈衝來寫/ 貝枓’以及精由跨越所述第—電極與所述第二電極施加; 38 201015763 99twf.doc/n 少一個重置脈衝來熔解及固化所述主動區。 19·如申請專利範圍第12項所述之相變記憶裝置, 包括位於所述相變記憶裝置上的電路,所述電路跨越所述 第一電極與所述第二電極施加設定脈衝及重置脈衝來寫= 貪料,以及藉由跨越所述第一電極與所述第二電極施加至 少一個設定脈衝及至少一個重置脈衝來熔解及固化所述主 動區。 20. 如申請專利範圍帛12項所述之相變記憶裝置,其15. The phase change memory described in the phase change memory device of claim 12, wherein the sulfur riding material used in (10) is characterized by a plurality of types when the dielectric material is not broadcasted. a crystalline phase, wherein the concentration of the dielectric material in the material is sufficient to avoid formation of at least one of the solid crystalline phases in the active region. 16. The phase change memory device according to claim 12, wherein the chalcogenide material according to (4) is characterized in that the chalcogenide material is characterized by a plurality of crystal phases. Wherein the concentration of the dielectric (4) in the sulfur is sufficient to form at least one of the solid crystalline phases in the main. The dielectric material in the device of the reference device is oxidized stone, and the wave length of the material is in the range of 1 G to 2 G atomic percent. 18. The phase change memory device of claim 12, wherein the circuit is applied to the phase change memory device, and the circuit applies a set pulse across the stroke/poleless electrode. And resetting the pulse to write /Bei' and finely applying across the first electrode and the second electrode; 38 201015763 99twf.doc / n One less reset pulse to melt and solidify the active region. The phase change memory device of claim 12, comprising a circuit on the phase change memory device, the circuit applying a set pulse and resetting across the first electrode and the second electrode Pulse writing = grazing, and melting and solidifying the active region by applying at least one set pulse and at least one reset pulse across the first electrode and the second electrode. 20. The phase change memory device of claim 12, wherein 中所述相變記憶體材料所使用的所述硫屬材料包括 GexSbyTez。 21. 如申請專利範圍g 12項所述之相變記憶裝置,其 中所述相變s己憶體材料所使用的所述疏屬材科包括 =exSbyH,其中x=2、y=2以及z=:5,並且其中所述介電 質材料是氧切’所述介電f材料的濃度在’Μ%原子 百分比的範圍内。The chalcogenide material used in the phase change memory material described herein includes GexSbyTez. 21. The phase change memory device of claim 12, wherein the phase of the phase change s memory material comprises: exSbyH, wherein x=2, y=2, and z =: 5, and wherein the dielectric material is oxygen cut 'the concentration of the dielectric f material is in the range of 'Μ% atomic percent. 專職料12項所述之相變記憶装置’其 中所仏雜料在所述主麵外具有多結晶狀態。The phase change memory device of the above-mentioned item 12, wherein the dopants have a polycrystalline state outside the main surface.
TW098116798A 2008-10-02 2009-05-20 Dielectric mesh isolated phase change structure for phase change memory TWI433363B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/286,874 US8324605B2 (en) 2008-10-02 2008-10-02 Dielectric mesh isolated phase change structure for phase change memory

Publications (2)

Publication Number Publication Date
TW201015763A true TW201015763A (en) 2010-04-16
TWI433363B TWI433363B (en) 2014-04-01

Family

ID=42075075

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098116798A TWI433363B (en) 2008-10-02 2009-05-20 Dielectric mesh isolated phase change structure for phase change memory

Country Status (3)

Country Link
US (1) US8324605B2 (en)
CN (1) CN101714609B (en)
TW (1) TWI433363B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773165B (en) * 2020-03-30 2022-08-01 台灣積體電路製造股份有限公司 Semiconductor device and method for manufacturing semiconductor device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7729161B2 (en) 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8624217B2 (en) * 2010-06-25 2014-01-07 International Business Machines Corporation Planar phase-change memory cell with parallel electrical paths
US8634235B2 (en) 2010-06-25 2014-01-21 Macronix International Co., Ltd. Phase change memory coding
US8575008B2 (en) 2010-08-31 2013-11-05 International Business Machines Corporation Post-fabrication self-aligned initialization of integrated devices
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
CN102487119B (en) * 2010-12-02 2013-07-31 中国科学院上海微系统与信息技术研究所 Sb2Tex-SiO2 nano composite phase change material used on phase change memory and preparation method of Sb2Tex-SiO2 nano composite phase change material
US8374019B2 (en) 2011-01-05 2013-02-12 Macronix International Co., Ltd. Phase change memory with fast write characteristics
US9253822B2 (en) * 2013-06-25 2016-02-02 International Business Machines Corporation Phase change material variable capacitor
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
CN105742490B (en) * 2016-03-11 2018-09-07 中国科学院上海微系统与信息技术研究所 A kind of phase-change material layers structure improving phase transition storage data retention
US10050196B1 (en) 2017-05-04 2018-08-14 Macronix International Co., Ltd. Dielectric doped, Sb-rich GST phase change memory
US10490742B2 (en) 2017-08-28 2019-11-26 Taiwan Seminconductor Manufacturing Co., Ltd. Method for forming a phase change memory (PCM) cell with a low deviation contact area between a heater and a phase change element
US10541271B2 (en) 2017-10-18 2020-01-21 Macronix International Co., Ltd. Superlattice-like switching devices
US10374009B1 (en) 2018-07-17 2019-08-06 Macronix International Co., Ltd. Te-free AsSeGe chalcogenides for selector devices and memory devices using same
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application

Family Cites Families (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
US4177475A (en) 1977-10-31 1979-12-04 Burroughs Corporation High temperature amorphous memory device for an electrically alterable read-only memory
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (en) 1983-12-26 1985-07-20 Toshiba Corp Manufacture of semiconductor device
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (en) 1987-12-28 1997-12-03 株式会社東芝 Nonvolatile semiconductor memory device
JP2606857B2 (en) 1987-12-10 1997-05-07 株式会社日立製作所 Method for manufacturing semiconductor memory device
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (en) 1991-08-06 1998-11-18 日本電気株式会社 Semiconductor memory device
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (en) 1992-01-24 1993-08-13 Mitsubishi Electric Corp Field effect transistor and its manufacture
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (en) 1992-10-30 1999-04-19 日本電気株式会社 Semiconductor memory
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (en) 1995-12-27 1999-04-15 김주용 Flash memory device
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US6337266B1 (en) 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US5825046A (en) * 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US7935951B2 (en) * 1996-10-28 2011-05-03 Ovonyx, Inc. Composite chalcogenide materials and devices
US5716883A (en) 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
FR2774209B1 (en) 1998-01-23 2001-09-14 St Microelectronics Sa METHOD FOR CONTROLLING THE READING CIRCUIT OF A MEMORY PLAN AND CORRESPONDING MEMORY DEVICE
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (en) 1998-11-27 2000-06-16 Mitsubishi Electric Corp Manufacture of semiconductor storage device
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
EP1171920B1 (en) 1999-03-25 2006-11-29 OVONYX Inc. Electrically programmable memory element with improved contacts
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6444557B1 (en) 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
KR100382729B1 (en) 2000-12-09 2003-05-09 삼성전자주식회사 Metal contact structure in semiconductor device and forming method thereof
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100625129B1 (en) 2001-01-30 2006-09-18 가부시키가이샤 히타치세이사쿠쇼 Method for producing semiconductor integrated circuit device
KR100400037B1 (en) 2001-02-22 2003-09-29 삼성전자주식회사 Semiconductor device with contact plug and method for manufacturing the same
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (en) 2001-06-12 2003-01-02 Infineon Technologies Ag Production of a semiconductor memory comprises forming edge regions in an insulating region using a spacer element after forming the recess to expose the surface region of an access electrode arrangement
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
DE10136304C2 (en) * 2001-07-26 2003-07-24 Infineon Technologies Ag Method of manufacturing an integrated memory circuit and integrated memory circuit
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6885021B2 (en) 2001-12-31 2005-04-26 Ovonyx, Inc. Adhesion layer for a polymer memory device and method therefor
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (en) 2002-02-01 2007-07-25 株式会社日立製作所 Semiconductor memory device and manufacturing method thereof
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (en) 2002-02-28 2006-07-12 富士通株式会社 Nonvolatile semiconductor memory device
TWI224403B (en) 2002-03-15 2004-11-21 Axon Technologies Corp Programmable structure, an array including the structure, and methods of forming the same
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
AU2003221003A1 (en) 2002-04-09 2003-10-20 Matsushita Electric Industrial Co., Ltd. Non-volatile memory and manufacturing method thereof
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4133141B2 (en) 2002-09-10 2008-08-13 株式会社エンプラス Socket for electrical parts
JP4190238B2 (en) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ Nonvolatile semiconductor memory device
AU2003259447A1 (en) 2002-10-11 2004-05-04 Koninklijke Philips Electronics N.V. Electric device comprising phase change material
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
JP4928045B2 (en) 2002-10-31 2012-05-09 大日本印刷株式会社 Phase change type memory device and manufacturing method thereof
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
KR100476690B1 (en) 2003-01-17 2005-03-18 삼성전자주식회사 Semiconductor device and Method of manufacturing the same
EP1593126B1 (en) 2003-01-31 2009-03-25 Nxp B.V. Mram architecture for low power consumption and high selectivity
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
KR100486306B1 (en) 2003-02-24 2005-04-29 삼성전자주식회사 Phase-change memory device having self-heater structure
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
KR100504698B1 (en) 2003-04-02 2005-08-02 삼성전자주식회사 Phase change memory device and method for forming the same
KR100979710B1 (en) 2003-05-23 2010-09-02 삼성전자주식회사 Semiconductor memory device and fabricating method thereof
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
KR100615586B1 (en) 2003-07-23 2006-08-25 삼성전자주식회사 Phase change memory device including localized phase transition area in porous dielectric layer and method of forming the same
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US20050062087A1 (en) 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (en) 2003-09-30 2005-05-04 Infineon Technologies Ag Method for producing a hard mask and hard mask arrangement
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
KR100558548B1 (en) 2003-11-27 2006-03-10 삼성전자주식회사 Write driver circuit in phase change memory device and method for driving write current
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (en) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 Phase change resistor cell and non-volatile memory device using the same
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (en) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ Phase change memory
KR100564608B1 (en) 2004-01-29 2006-03-28 삼성전자주식회사 Phase-change memory device
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
JP4529493B2 (en) 2004-03-12 2010-08-25 株式会社日立製作所 Semiconductor device
KR100598100B1 (en) 2004-03-19 2006-07-07 삼성전자주식회사 Method of fabricating a phase changeable memory device
DE102004014487A1 (en) 2004-03-24 2005-11-17 Infineon Technologies Ag Memory device with embedded in insulating material, active material
KR100532509B1 (en) 2004-03-26 2005-11-30 삼성전자주식회사 Trench capacitor using SiGe layer and method of fabricating the same
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
US7359231B2 (en) 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (en) 2004-08-21 2006-12-14 삼성전자주식회사 Memory Device Comprising Voltage Controller and Method of Manufacturing the Same
US7365385B2 (en) 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (en) 2004-09-06 2006-08-09 삼성전자주식회사 Semiconductor memory device capable of compensating for leakage current
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
TWI277207B (en) 2004-10-08 2007-03-21 Ind Tech Res Inst Multilevel phase-change memory, operating method and manufacture method thereof
KR100626388B1 (en) 2004-10-19 2006-09-20 삼성전자주식회사 Phase-changable memory device and method of forming the same
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
DE102004052611A1 (en) 2004-10-29 2006-05-04 Infineon Technologies Ag Method for producing an opening at least partially filled with a filling material, method for producing a memory cell and memory cell
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US7638786B2 (en) 2004-11-15 2009-12-29 Renesas Technology Corp. Semiconductor and semiconductor manufacturing arrangements having a chalcogenide layer formed of columnar crystal grains perpendicular to a main substrate surface
US7608503B2 (en) 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
US7202493B2 (en) 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
JP2006156886A (en) 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor
JP2006165553A (en) 2004-12-02 2006-06-22 Samsung Electronics Co Ltd Phase-change memory device comprising phase-change substance layer including phase-change nano particle and method for manufacturing the same
KR100827653B1 (en) 2004-12-06 2008-05-07 삼성전자주식회사 Phase changeable memory cells and methods of forming the same
US7355238B2 (en) * 2004-12-06 2008-04-08 Asahi Glass Company, Limited Nonvolatile semiconductor memory device having nanoparticles for charge retention
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (en) 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 Semiconductor device
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
KR100668333B1 (en) 2005-02-25 2007-01-12 삼성전자주식회사 Phase-change RAM and fabrication method of the same
JP2006244561A (en) 2005-03-01 2006-09-14 Renesas Technology Corp Semiconductor apparatus
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (en) 2005-04-20 2007-01-26 삼성전자주식회사 Phase change memory devices employing cell diodes and methods of fabricating the same
KR100682946B1 (en) 2005-05-31 2007-02-15 삼성전자주식회사 Phase change random access memory and method of operating the same
KR100668846B1 (en) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 Method of manufacturing phase change RAM device
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
KR100682969B1 (en) * 2005-08-04 2007-02-15 삼성전자주식회사 Phase changing material, Phase change Random Access Memory comprising the same and methods of manufacturing and operating the same
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
KR100655443B1 (en) 2005-09-05 2006-12-08 삼성전자주식회사 Phase change random access memory and method of operating the same
US7615770B2 (en) 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7973384B2 (en) 2005-11-02 2011-07-05 Qimonda Ag Phase change memory cell including multiple phase change material portions
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
KR100763908B1 (en) 2006-01-05 2007-10-05 삼성전자주식회사 Phase changing material, Phase change Random Access Memory comprising the same and methods of operating the same
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US20070267620A1 (en) * 2006-05-18 2007-11-22 Thomas Happ Memory cell including doped phase change material
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7453081B2 (en) * 2006-07-20 2008-11-18 Qimonda North America Corp. Phase change memory cell including nanocomposite insulator
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7501648B2 (en) 2006-08-16 2009-03-10 International Business Machines Corporation Phase change materials and associated memory devices
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7473576B2 (en) 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
EP2140509B1 (en) * 2007-04-20 2013-02-27 Nxp B.V. An electronic component, and a method of manufacturing an electronic component
US20080265234A1 (en) 2007-04-30 2008-10-30 Breitwisch Matthew J Method of Forming Phase Change Memory Cell With Reduced Switchable Volume
US7679163B2 (en) * 2007-05-14 2010-03-16 Industrial Technology Research Institute Phase-change memory element
US7906368B2 (en) 2007-06-29 2011-03-15 International Business Machines Corporation Phase change memory with tapered heater
US7745807B2 (en) * 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US7755935B2 (en) 2007-07-26 2010-07-13 International Business Machines Corporation Block erase for phase change memory
US7893420B2 (en) * 2007-09-20 2011-02-22 Taiwan Seminconductor Manufacturing Company, Ltd. Phase change memory with various grain sizes
US7759770B2 (en) * 2008-06-23 2010-07-20 Qimonda Ag Integrated circuit including memory element with high speed low current phase change material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773165B (en) * 2020-03-30 2022-08-01 台灣積體電路製造股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US11411181B2 (en) 2020-03-30 2022-08-09 Taiwan Semiconductor Manufacturing Co., Ltd. Phase-change memory device and method
US11997933B2 (en) 2020-03-30 2024-05-28 Taiwan Semiconductor Manufacturing Co., Ltd. Phase-change memory device and method

Also Published As

Publication number Publication date
TWI433363B (en) 2014-04-01
US20100084624A1 (en) 2010-04-08
CN101714609A (en) 2010-05-26
CN101714609B (en) 2012-03-14
US8324605B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
TW201015763A (en) Dielectric mesh isolated phase change structure for phase change memory
US8158965B2 (en) Heating center PCRAM structure and methods for making
US7619237B2 (en) Programmable resistive memory cell with self-forming gap
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
TWI323940B (en) Method for fabricating a pillar-shaped phase change memory element
US7560337B2 (en) Programmable resistive RAM and manufacturing method
US7816661B2 (en) Air cell thermal isolation for a memory array formed of a programmable resistive material
US7696503B2 (en) Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7449710B2 (en) Vacuum jacket for phase change memory element
US7569844B2 (en) Memory cell sidewall contacting side electrode
US7786460B2 (en) Phase change memory device and manufacturing method
US7619311B2 (en) Memory cell device with coplanar electrode surface and method
US7879645B2 (en) Fill-in etching free pore device
US20110049456A1 (en) Phase change structure with composite doping for phase change memory
TWI313044B (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
US20070176261A1 (en) Vertical Side Wall Active Pin Structures in a Phase Change Memory and Manufacturing Methods
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
TW200947695A (en) Memory cell having a buried phase change region and method for fabricating the same
TW200905873A (en) 4F2 self align fin bottom electrode fet drive phase change memory
TW201005936A (en) Fully self-aligned pore-type memory cell having diode access device
TW200814235A (en) Self-aligned structure and method for confining a melting point in a resistor random access memory
TW200822294A (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
US7884342B2 (en) Phase change memory bridge cell
TW200832679A (en) Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method