TW200832679A - Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method - Google Patents

Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method Download PDF

Info

Publication number
TW200832679A
TW200832679A TW96102732A TW96102732A TW200832679A TW 200832679 A TW200832679 A TW 200832679A TW 96102732 A TW96102732 A TW 96102732A TW 96102732 A TW96102732 A TW 96102732A TW 200832679 A TW200832679 A TW 200832679A
Authority
TW
Taiwan
Prior art keywords
memory
electrode
memory layer
layer structure
plug
Prior art date
Application number
TW96102732A
Other languages
Chinese (zh)
Other versions
TWI329356B (en
Inventor
Chia-Hua Ho
Erh-Kun Lai
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW96102732A priority Critical patent/TWI329356B/en
Publication of TW200832679A publication Critical patent/TW200832679A/en
Application granted granted Critical
Publication of TWI329356B publication Critical patent/TWI329356B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The present invention provides multilevel-cell memory structures with multiple memory layer structures where each memory layer structure includes a tungsten oxide region that defines different read current levels for a plurality of logic states. Each memory layer structure can provide two bits of information, which constitutes four 1ogic states, by the use of the tungsten oxide region that provides multilevel-cell function in which the four logic states equate to four different read current levels. A memory structure with two memory layer structures would provide four bits of storage sites and 16 logic states. In one embodiment, each of the first and second memory layer structures includes a tungsten oxide region extending into a principle surface of a tungsten plug member where the outer surface of the tungsten plug is surrounded by a barrier member.

Description

200832679咖狐 ^ 九、發明說明: 【發明所屬之技術領域】 本發明有關基於可程式化電阻型記憶體材料之高密 度記憶體裝置,其包括金屬氧化物型材料及其他材料:以 及製造此裝置的方法。 【先前技術】 馨、、相改變型記憶體材料廣泛用於讀寫光學碟片。此些材 有至少二固態相,包括例如一般非晶形固態相及-般 結晶形固態相。使用雷射脈衝於讀寫光學碟片上以在相之 間切換並在相改變後讀取材料光學性質。 相改變型記憶體材料,如硫屬化合物型材料及類似材 2 ’在藉由施用-適於執行於積體電路上電流量時亦可造 :改變相。此-般非晶形態特徵在於比一般結晶形態且有 =高的電阻性,其已可檢測出以顯示資料。此些特性已使 在可程式化電阻型材料以形成非揮發性記憶體電路上 產生利益,其可隨機存取讀寫。 曰,由非晶形改變為結晶形態通常為—低電流操作。由結 $改變至非晶形i此處為指如重置,通常為—較高電流 其包括-短1¾電流密度脈衝以、熔融或打斷結晶形結 小接著相改變材料迅速冷卻’淬火相改變製程,容許至 1一部份相改變結構在非晶形態安定。需要結晶形態 ㈤形態的相改變材料轉換的重置電流之強度最小化。 所需要之重置電流的強度可藉由減少在單元中相改變材BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density memory device based on a programmable resistive memory material, comprising a metal oxide type material and other materials: and manufacturing the device Methods. [Prior Art] Xin, phase-change memory materials are widely used for reading and writing optical discs. These materials have at least two solid phases including, for example, a generally amorphous solid phase and a generally crystalline solid phase. Laser pulses are used on the read and write optical discs to switch between phases and to read material optical properties after phase changes. Phase change memory materials, such as chalcogenide type materials and the like, can also be made by changing the amount of current applied to the integrated circuit by application. This general amorphous morphology is characterized by a higher resistivity than the general crystalline morphology and which has been detectable to reveal data. These features have resulted in the benefit of programmable resistive materials to form non-volatile memory circuits that are randomly readable and writable. Helium, changing from amorphous to crystalline is usually a low current operation. Change from junction $ to amorphous i here refers to resetting, usually - higher current, including - short 13⁄4 current density pulse, melting or breaking crystalline junction small, then phase changing material rapidly cooling 'quenching phase change The process allows the phase change structure to be stabilized in the amorphous form. The crystalline form is required. (5) The phase change of the morphology changes the strength of the reset current to minimize. The required reset current strength can be reduced by reducing the phase change in the cell

200832679「w3〇6iPA ^料元件的大小與電極及相改變材料間接觸面積大小而減 少,因此可以通過相改變材料元件的小絕對電流值獲得較 高的電流密度。 發展的一方向己朝向在積體電路結構中形成小孔,並 用少量可程式化電阻材料填充小孔。說明朝向小孔發展的 專利包括:1997年11月U日頒予〇vshinsky的美國專利第 5,687,112號 ’ Multibit Single CellMemory Element Having Tapered Contact”; 1998年8月4日頒予Zahorik等人的美國專 ⑩ 利第 5,789,277號,"Method of Making Chalogenide [sic]200832679 "The size of the w3〇6iPA ^ material element is reduced with the contact area between the electrode and the phase change material, so that a higher current density can be obtained by changing the small absolute current value of the material element. The development direction is already in the product. A small hole is formed in the body circuit structure, and the small hole is filled with a small amount of programmable resistance material. The patents for the development of the small hole include: U.S. Patent No. 5,687,112 issued to U.S. Element Having Tapered Contact”; US Patent No. 5,789,277 awarded to Zahorik et al. on August 4, 1998, "Method of Making Chalogenide [sic]

Memory Device” ; 2000年11月21日頒予Doan等人的美國專 利弟 6,150,253 號’ "Controllable Ovonic Phase-ChangeMemory Device”; US Patent No. 6,150,253 issued to Doan et al. on November 21, 2000. "Controllable Ovonic Phase-Change

Semiconductor Memory Device and Methods of Fabricating the Same”。 在製造此具有非常小尺寸且為滿足大型記憶體裝置 需要之嚴格規格之製程上的差異的裝置已產生問題。如尋 求較大記憶體容量的要求,已高度需求每記憶體層儲存多 ⑩ 位元之相改變記憶體。 【發明内容】 本I明供具有多記憶體層結構之多層單元(mlC)記 憶體結構’其每一記憶體層結構包含一氧化鎢區域,其定 義多個邏輯態之不同讀取電流量。每一記憶體層結構藉由 使用氡化鎢區域提供多層單元功能可提供二位元資訊,其 構成四邏輯態,其中四邏輯態等於四不同讀取電流。一具Semiconductor Memory Device and Methods of Fabricating the Same" has caused problems in manufacturing such a device having a very small size and meeting the strict specifications required for a large memory device. If a large memory capacity is sought, It has been highly demanded to store more than 10 bits of phase change memory per memory layer. [Invention] The present invention provides a multi-cell unit (mlC) memory structure having a multi-memory layer structure, wherein each memory layer structure comprises tungsten monoxide. A region that defines a different amount of read current for a plurality of logic states. Each memory layer structure provides two-bit information by providing a multi-level cell function using a tungsten-tungsten region, which constitutes a four-logic state in which four logic states are equal to four Different reading currents

200832679.謂PA •有二記憶體層結構之記憶體結構可提供四位元儲存位址 及十六邏輯態。 在第一實施例中,一多層單元記憶體結構包含一第一 記,體層結構及-第二記憶體層結構。每一記憶體層結構 為只貝且宅性連接至頂部的一位元線。第一或低記憶體 層結構為連接至-财二極體,其中Ν·ρ二極體為連接至第 一位70線。第二或上層記憶體層為連接至在底部之二 極體’其中Ρ-Ν二極體為連接至第二位元線。第二位元線 籲在第-記憶體層結構及第二記憶體層結構間共同使用。第 二1元線再連接至第__記憶體層結構。第—及第二記憶體 層結構各自包含一氧化鎢區域延伸入鎢栓元件的主要表 面’ S亥鎢栓之外表面由一阻障元件包圍。 氧化鎢區域之關鍵尺寸為小於鎢栓元件的大小。氧 化鶴區域之關鍵尺寸亦小於Ρ-Ν二極體之大小。氧化鶴區 域之關鍵尺寸、鶴检元件之關鍵尺寸及Ρ-Ν二極體的厚产 間的關係可由下職學式表示:㈣Μ - 2 * tj> 其中參數“代表鶴栓之關鍵尺寸,參數dw代表检結構元件 之關鍵尺寸’及參數b代表P-N:極體之關鍵尺寸。二 極體之關鍵尺寸比氧化鶴區域之關鍵尺寸大,數學表示為 dA〉dw。 句 在第二實施例中’一多層單元記憶體結構包含一第一 記憶體層結構及一第二記憶體層結構。第一及第 層結構各自包含—㈣以件之主要表面延伸之氧$ 8200832679. PA: A memory structure with two memory layer structures provides a four-bit storage address and a sixteen logic state. In the first embodiment, a multi-layer cell memory structure includes a first memory, a bulk layer structure, and a second memory layer structure. Each memory layer structure is a one-dimensional line connecting the shell to the top. The first or lower memory layer structure is connected to the quadruple body, wherein the Ν·ρ diode is connected to the first 70 line. The second or upper memory layer is connected to the diode at the bottom 'where the Ρ-Ν diode is connected to the second bit line. The second bit line is used in common between the first memory layer structure and the second memory layer structure. The second 1-yuan line is then connected to the __memory layer structure. The first and second memory layer structures each comprise a tungsten oxide region extending into the major surface of the tungsten plug component. The outer surface of the tungsten plug is surrounded by a barrier element. The critical dimension of the tungsten oxide region is less than the size of the tungsten plug component. The critical size of the oxidized crane area is also smaller than the size of the Ρ-Ν diode. The key dimensions of the oxidized crane area, the critical dimensions of the crane inspection component, and the relationship between the 产-Ν diode's thick production can be expressed by the lower vocational school: (4) Μ - 2 * tj> where the parameter “represents the key size of the crane bolt, parameters Dw represents the critical dimension of the structural component 'and the parameter b represents the critical dimension of the PN: polar body. The critical dimension of the diode is larger than the critical dimension of the oxidized crane region, mathematically expressed as dA>dw. In the second embodiment A multi-level cell memory structure includes a first memory layer structure and a second memory layer structure. The first and first layer structures each comprise - (iv) oxygen on the main surface of the piece.

fW3061PA 200832679 區域,該鎢栓元件之外表面由一阻障元件包圍。每一鎢栓 結構具有的大小為小至足以使在製造製程中省略介電步 驟。每一鎢栓結構之關鍵尺寸為大約相同於活化區域(氧化 鶴區域)之關鍵尺寸。 在第三實施例中,一多層單元記憶體結構包含一第一 記憶體層結構及一第二記憶體層結構。第一記憶體層結構 包含氧化鎢區域、一具有第一栓部份及第二栓部份之鎢栓 結構,且第二栓的外壁由一阻障元件包圍。第一栓部份之 關鍵尺寸相似於活化區域之關鍵尺寸’亦即,氧化鶴區 域。氧化鎢部份由第一栓部份之主要表面或頂表面延伸。 第一栓部份具有之尺寸值小於第二栓部份者。在每一記憶 體層結構中第一栓部份及第二栓部份可使用自我對準製 程或非自我對準製程製造。 亦揭露一種製造記憶體裝置的方法,其包含一以阻障 材料包圍栓材料且置於介電元件間之栓結構。栓材料之頂 部份及阻障材料使用第一化學乾蝕刻接著使用第二化學 濕凹槽蝕刻進行蝕刻。介電間隙壁在蝕刻栓材料的主要表 面上形成。使用乾氧電漿去除形成一氧化鎢區域進入蝕刻 栓材料的主要表面。形成一位元線至介電間隙壁及在氧化 鎢區域上方。 廣義而言,一具有多記憶體層之記憶體結構包含一第 一記憶體層結構,其具有一具有主要表面的第一電極及一 氧化鎢區域,氧化鎢區域由第一電極的主要表面延伸並在 第一電極及第二電極電性間連接,第一電極具有一實質相fW3061PA 200832679 Area, the outer surface of the tungsten plug element is surrounded by a barrier element. Each tungsten plug structure has a size that is small enough to omit the dielectric step in the fabrication process. The critical dimension of each tungsten plug structure is approximately the same as the critical dimension of the activation zone (oxidized crane zone). In a third embodiment, a multi-level cell memory structure includes a first memory layer structure and a second memory layer structure. The first memory layer structure comprises a tungsten oxide region, a tungsten plug structure having a first plug portion and a second plug portion, and the outer wall of the second plug is surrounded by a barrier element. The critical dimension of the first plug portion is similar to the critical dimension of the activation zone, i.e., the oxidized crane region. The tungsten oxide portion extends from the major surface or top surface of the first plug portion. The first plug portion has a smaller dimension than the second plug portion. The first plug portion and the second plug portion can be fabricated using a self-aligned process or a non-self-aligned process in each memory layer structure. A method of fabricating a memory device is also disclosed that includes a plug structure that surrounds the plug material with a barrier material and is placed between the dielectric elements. The top portion of the plug material and the barrier material are etched using a first chemical dry etch followed by a second chemical wet etch. A dielectric spacer is formed on the major surface of the etch plug material. Dry oxygen plasma is used to remove the formation of the tungsten oxide region into the major surface of the etch plug material. A single line is formed to the dielectric spacer and over the tungsten oxide region. Broadly speaking, a memory structure having a plurality of memory layers includes a first memory layer structure having a first electrode having a major surface and a tungsten oxide region extending from a major surface of the first electrode and The first electrode and the second electrode are electrically connected, and the first electrode has a substantial phase

;W3061PA 200832679 似於氧化鎢區域尺寸的尺寸;及一第二記憶體層結構,耦 合至第一記憶體層結構,具有一具有主要表面的第一電極 及一氧化鎢區域,氧化鎢區域由第一電極之主要表面延伸 至第二記憶體層結構並在第二記憶體層結構之第一電極 與第二記憶體層結構之第二電極電性連接,第二記憶體層 結構之第一電極具有實質相似於第二記憶體層結構之氧 化鎢區域尺寸之尺寸。 本發明之結構及方法將於下文詳細描述。此發明說明 部份並不用以界定本發明。本發明以申請專利範圍界定。 本發明技術之此些及其他實施例、特徵、態樣、及優點可 由下文描述、後附之申請專利範圍及所附圖示而瞭解。 本發明將以特定實施例並配所附圖式作詳細說明。 【實施方式】 本發明之結構實施例及方法的描述將配合第1至11圖 說明。需瞭解其非用以限制本發明至特定揭露的實施例, 且本發明可使用其他特徵、元件、方法及實施例實施。在 不同實施例的相似元件大體上以相似的標號說明。 不同的實施例為有關三次元記憶體結構及記憶體的 製造方法,如非揮發性嵌入式記憶體實現可程式化電阻型 RAM。電阻型裝置RAM的例示為電阻式記憶體(RRAM)、 聚合物記憶體、及相改變記憶體(PCRAM)。 第1圖為圖示說明雙穩態電阻式隨機存取記憶體陣列 100,其可如此處所示實現。在第1圖之線路圖說明中,共; W3061PA 200832679 is similar to the size of the tungsten oxide region; and a second memory layer structure coupled to the first memory layer structure, having a first electrode having a main surface and a tungsten oxide region, and the tungsten oxide region is formed by the first electrode The main surface extends to the second memory layer structure and is electrically connected to the first electrode of the second memory layer structure and the second electrode of the second memory layer structure, and the first electrode of the second memory layer structure is substantially similar to the second The size of the tungsten oxide region size of the memory layer structure. The structure and method of the present invention will be described in detail below. This description of the invention is not intended to define the invention. The invention is defined by the scope of the patent application. These and other embodiments, features, aspects, and advantages of the present invention will be apparent from the description and appended claims appended claims. The invention will be described in detail with reference to the specific embodiments and drawings. [Embodiment] Descriptions of structural embodiments and methods of the present invention will be described with reference to Figs. It is to be understood that the invention is not limited to the embodiments of the invention, and the invention may be practiced otherwise. Similar elements in different embodiments are generally illustrated by like reference numerals. Different embodiments are related to the fabrication of ternary memory structures and memory, such as non-volatile embedded memory to implement programmable resistive RAM. Examples of the resistive device RAM are a resistive memory (RRAM), a polymer memory, and a phase change memory (PCRAM). Figure 1 is a diagram illustrating a bistable resistive random access memory array 100 that can be implemented as shown herein. In the description of the circuit diagram in Figure 1, a total of

rW3061PA 200832679 _用源極線128、-字元線123及—字元線124大致在γ方向上 平打配置。位70線141及142大致在χ方向上平行配置。因 此’在區塊Μ5之γ解碼器及字元線驅動裝置耦合至字元線 123、124。在區塊146中之-X解碼蒲及一組感測放大器為 輕合至位元線141及142。共用源極線128耦合至存取電晶 體15Ό、151、152及153之源極端。存取電晶體15〇之閘極 耦合字το線123。存取電晶體151之閘極耦合字元線124。 存取電晶體152之閘極耦合字元線123。存取電晶體153之 • 閘極耦合至字元線124。存取電晶體150之汲極耦合至側壁 端子記憶體單元135之底部電極元件132,其具有頂部電極 元件134及底部電極元件132。頂部電極元件134耦合至位 元線141。可見到共用源極線128由二列記憶體單元共用, 在說明之電路圖中為配置在γ方向的一列。在另一實施例 中,存取電晶體可由二極體或其他結構取代以控制電流至 陣列中之特定裝置以讀取或寫入資料。 弟2圖為一依本發明實施例之rram架構的積體電路 馨 200之簡化方塊圖。積體電路275包含在一半導體基材上使 用側壁活化端子之雙穩態電阻式隨機存取記憶體單元實 現之記憶體陣列。一列解碼器261耦合至多個字元線262, 且在記憶體陣列260中沿列配置。一端子解碼器263耦合至 記憶體陣列260中沿端子配置的多個位元線264以在記憶 體陣列260中由侧壁端子記憶體單元讀取及程式化資料。 在匯流排265上供應位址至端子解碼器263及一列解碼器 261。在區塊266之感測放大器及資料寫入結構經由資料匯 200832679rW3061PA 200832679 _ The source line 128, the word line 123, and the word line 124 are arranged substantially in the gamma direction. The bit 70 lines 141 and 142 are arranged substantially in parallel in the x direction. Thus, the gamma decoder and word line driver at block Μ5 are coupled to word lines 123,124. The block X and the set of sense amplifiers in block 146 are lightly coupled to bit lines 141 and 142. A common source line 128 is coupled to the source terminals of the access transistors L, 151, 152, and 153. The gate of the access transistor 15 is coupled to the word το line 123. The gate of the transistor 151 is coupled to the word line 124. The gate of the transistor 152 is coupled to the word line 123. The gate of access transistor 153 is coupled to word line 124. The drain of the access transistor 150 is coupled to the bottom electrode element 132 of the sidewall memory cell unit 135 having a top electrode component 134 and a bottom electrode component 132. Top electrode element 134 is coupled to bit line 141. It can be seen that the common source line 128 is shared by the two columns of memory cells, and is arranged in a column in the γ direction in the circuit diagram of the description. In another embodiment, the access transistor can be replaced by a diode or other structure to control current to a particular device in the array to read or write data. Figure 2 is a simplified block diagram of an integrated circuit 200 of a rram architecture in accordance with an embodiment of the present invention. The integrated circuit 275 includes a memory array implemented on a semiconductor substrate using a bistable resistive random access memory cell with sidewall activation terminals. A column of decoders 261 is coupled to a plurality of word lines 262 and arranged in columns in memory array 260. A terminal decoder 263 is coupled to a plurality of bit lines 264 disposed along the terminals in the memory array 260 to be read and programmed by the side wall terminal memory cells in the memory array 260. An address is supplied to the terminal decoder 263 and a column of decoder 261 on the bus 265. The sense amplifier and data write structure at block 266 is via data sink 200832679

-_ ^V3061PA /瓜t^267輕合至端子解碼器263。資料係由寫入線271自積 體私5^275之輪入/輪出埠或積體電路2乃之内部或外部的 =他育料源提供至區塊266中之資料寫人結構。在說明的 貝^例中在積體電路上包含其他電路,如一通用處理 =或特殊目的應用之電路,或—模組組合,其可提供由 薄膜雙穩態電阻式隨機存取記憶體單元_支援之系統 單晶^ 1能。資料係經由資料輸出線272自區塊266之感測 放大裔提供至積體電路275之輸入/輸出埠或積體電路275 # 之内或外或其他資料標的點。 在此實施例中使用偏壓佈設態儀269以利用一控制器 控制偏壓佈設供應電壓268之應用,如讀取、程式化、拭 除、找除驗證及程式驗證電壓。此控制器可使用此技藝中 已知的特殊目的邏輯電路實現。在一可替換的實施例中, 控制器包含一通用處理器,其可在相同積體電路中實現, 其執行一電腦程式以控制裝置的操作。在另一實施例中, 可利用特殊功能的邏輯電路及一通用邏輯電路的組合以 • 實現控制器。 v 口 第3圖為一簡化製程圖30〇,其說明製造在一單一記憔 體單元具有標準鎢栓(W-栓)或介層窗之雙穩態電阻式隨 機存取記憶體之製程的參考步驟。一介層窗或—接觸 介電元件310、312及阻障材料320形成。一鎢材料33〇填= 入設置於阻障材料320間之介層窗中。一研磨技術如化學 機械研磨(CMP)或回蝕刻在鎢材料330沉積後於表面34〇: 進行。在一實施例中,鎢栓(W-栓)330之關鍵尺寸(cd)符 12-_ ^V3061PA / melon t^267 is lightly coupled to the terminal decoder 263. The data is written or written by the write line 271 from the product 5/275 round or round out or the integrated circuit 2 is internal or external = the source of the feed is provided to the data writer structure in block 266. In the illustrated example, other circuits are included on the integrated circuit, such as a general processing = or a special purpose application circuit, or a module combination, which can be provided by a thin film bistable resistive random access memory cell _ Supported system single crystal ^ 1 can. The data is provided from the sense amplifiers of block 266 via data output line 272 to the input/output ports of integrated circuit 275 or to points within or outside of integrated circuit 275 # or other data points. In this embodiment, a biasing device 269 is used to control the application of the supply voltage 268 by a controller, such as reading, programming, erasing, verifying, and verifying the voltage. This controller can be implemented using special purpose logic circuits known in the art. In an alternate embodiment, the controller includes a general purpose processor that can be implemented in the same integrated circuit that executes a computer program to control the operation of the device. In another embodiment, a special function logic circuit and a combination of general purpose logic circuits can be utilized to implement the controller. Figure 3 is a simplified process diagram 30〇 illustrating the fabrication of a bistable resistive random access memory device with a standard tungsten plug (W-plug) or via window in a single memory cell. Refer to the steps. A via or contact dielectric elements 310, 312 and a barrier material 320 are formed. A tungsten material 33 is filled in the via window disposed between the barrier materials 320. A grinding technique such as chemical mechanical polishing (CMP) or etch back is performed on the surface 34 after the tungsten material 330 is deposited. In one embodiment, the critical dimension (cd) of the tungsten plug (W-plug) 330 12

200832679_61PA 合下列設計:〇·13μιη技術節點,W-栓CD之介層窗或孔在 Ο.ίμιη 至 0·25μιη範圍間。 第4圖為製程圖400,其顯示製造雙穩態電阻式隨機存 取記憶體的下一步驟,其為進行鎢栓元件430之凹槽银 刻。鶴栓元件430之凹槽钱刻製程可由SF6乾餘刻、或其他 化學物包括Ar及/或A及/或〇2進行。凹槽蝕刻之長寬比約 為1,例如,200 nm關鍵尺寸具有約200 nm的深度。在鶴 凹槽餞刻後’ 一阻障等向性姓刻製程由阻障材料320钱刻200832679_61PA The following design: 〇·13μιη technology node, W-plug CD mesoporous window or hole between Ο.ίμιη to 0·25μιη range. Figure 4 is a process diagram 400 showing the next step in fabricating a bistable resistive random access memory for recessed silver ingots of tungsten plug component 430. The groove engraving process of the crane bolt member 430 can be carried out by SF6 dry engraving, or other chemicals including Ar and/or A and/or 〇2. The groove etch has an aspect ratio of about 1, for example, a 200 nm critical dimension having a depth of about 200 nm. After the engraving of the crane groove, a barrier-like isotropic process engraved by the barrier material 320

去除部份Ti或TiN以形成一阻障元件420。一合宜之阻障材 料等向性姓刻的蝕刻技術為以化學氯(CL)及/或三氣化· (BCI3)及/或其他,如氩(Ar),之乾蝕刻。可使用一溶劑如 EKC265或其他之濕清潔以去除在阻障材料蝕刻時之聚合 物殘餘物。 ° 弟圖為一製程圖500,其說明氧化鎢(w〇x)以一介 間隙壁蝕刻、一乾氧電漿蝕刻及一濕去除而形成。在介 間隙壁_中,製程涉及沉積—介電膜及_介電間隙 510、512。介電膜以化學氣相沉積(CVD)技術沉積於鶴 个430上。Λ現介電膜之合宜材料包括氧化矽、 ^ =氮切麵。介電料有細i質的特性 厚度在_nm至約⑽nm範圍間。介電 元細上、,錢㈣以形成介電間隙壁川 ㈣,ιΓ物CF4及7或他之乾麵刻為適於介電間隙壁 独刻’其中餘刻止於鶴栓元件43 鶴凹槽以確保充足的過度似的上表面亚具有一些 13 200832679 _ 在介電間隙壁蝕刻後,WOx元件520以氧(〇2)電漿乾 去除形成。氧電漿乾去除的實施例包括〇2氣體電漿化學, 或〇2電漿之混合化學,如〇2/N2*〇2/N2/h2。〇2電漿之合宜 混合化學包括〇2/n2、o2m2/H2、或純〇2氣體與一電漿,如 直電漿、磁場增進反應離子電漿、或下游電漿。下游電漿 之參數例示包括壓力約1500毫托耳、功率約1000W、02/N2 流約3000 sccm/200sccm、溫度約150oC、持續時間約400秒。 進行一濕去除步驟以除去在介電間隙壁蝕刻製程間產 藝 生之聚合物。一合宜之濕去除化合物為水性有機混合物, 如EKC265溶劑或其他相同或相似混合物型式。若乾〇2電 漿己充分過度去除,此濕去除步驟為選擇性的。 第6圖為製程圖600,其顯示製造具有位元線形成之雙 穩恶電阻式隨機存取記憶體的下一步驟。一可選擇步驟為 使用化學氣相沉積法沉積一阻障層61〇於介電元件31〇、 312及介電間隙壁510、512上。例如,可選用氮化鈦(TiN) 或氮化(TaN)為實現阻障層61〇的合宜材料。若當位元線層 _ 620沉積時已有足夠的黏合性,阻障層61〇為一可選擇的步 驟。 右執打阻障層的沉積作用,位元線層620沉積於阻障層 610上。若略過阻障層61〇的沉積,位元線層直接沉積 於介電元件310、312及介電間隙壁51〇、512上。合宜用於 實現位元線層620的材料包括多晶以、w、Cu,或A1Cu。 若選用多晶si實現位元線層62〇,需要大量的捧雜以減少電 阻量。A portion of Ti or TiN is removed to form a barrier element 420. An appropriate etching technique for the isotropic barrier material is dry etching with chemical chlorine (CL) and/or triple gasification (BCI3) and/or others such as argon (Ar). A solvent such as EKC265 or other wet cleaning can be used to remove polymer residue during etching of the barrier material. The diagram is a process diagram 500 illustrating that tungsten oxide (w〇x) is formed by a spacer etch, a dry oxygen plasma etch, and a wet removal. In the dielectric spacers, the process involves deposition-dielectric films and dielectric gaps 510, 512. The dielectric film is deposited on the crane 430 by chemical vapor deposition (CVD) techniques. Suitable materials for the present dielectric film include yttrium oxide, ^ = nitrogen cut surface. The dielectric material has fine properties ranging from _nm to about (10) nm. The dielectric element is fine, and the money (4) is used to form the dielectric gap wall (4), the ι Γ material CF4 and 7 or his dry surface is engraved as suitable for the dielectric gap wall singularly, where the remainder stops at the crane bolt element 43 crane groove To ensure sufficient excess of the upper surface sub-amount has some 13 200832679 _ After the dielectric spacer etch, the WOx element 520 is formed by dry removal of oxygen (〇2) plasma. Examples of oxygen plasma dry removal include 〇2 gas plasma chemistry, or a mixed chemistry of 〇2 plasma, such as 〇2/N2*〇2/N2/h2. 〇2 Suitable for plasma Mixing chemistry includes 〇2/n2, o2m2/H2, or pure 〇2 gas and a plasma such as direct plasma, magnetic field enhanced reactive ion plasma, or downstream plasma. The parameters of the downstream plasma are exemplified by a pressure of about 1500 mTorr, a power of about 1000 W, a 02/N2 flow of about 3000 sccm/200 sccm, a temperature of about 150 o C, and a duration of about 400 seconds. A wet removal step is performed to remove the polymer produced during the dielectric spacer etching process. A suitable wet removal compound is an aqueous organic mixture such as EKC265 solvent or other similar or similar mixture type. A number of 〇2 plasmas have been sufficiently removed, and this wet removal step is selective. Figure 6 is a process diagram 600 showing the next step in fabricating a bistable resistive random access memory having bit line formation. An optional step is to deposit a barrier layer 61 over the dielectric elements 31A, 312 and the dielectric spacers 510, 512 using chemical vapor deposition. For example, titanium nitride (TiN) or nitride (TaN) may be selected as a suitable material for achieving the barrier layer 61. If the bit line layer _ 620 has sufficient adhesion when deposited, the barrier layer 61 is an optional step. A bit line layer 620 is deposited on the barrier layer 610 by depositing a right barrier layer. If the deposition of the barrier layer 61 is skipped, the bit line layer is deposited directly on the dielectric elements 310, 312 and the dielectric spacers 51, 512. Materials suitable for implementing the bit line layer 620 include polycrystalline, w, Cu, or A1Cu. If the polysilicon is used to realize the bit line layer 62, a large amount of impurities is required to reduce the amount of resistance.

200832679寫1PA - 製程圖600表示一簡化之具有記憶體層結構850及頂 部位元線710的記憶體單元,其包括僅有位元線層62〇或位 元線層620及阻障層610的組合,與介電間隙壁$ 1 〇、$ 12, 及介電元件310、312。第7圖為製程圖7〇〇,其顯示製造與 選疋裝置連接之雙穩悲電阻式隨機存取記憶體的下一步 驟。纪憶體層結構850耦合至P-N二極體72〇,其接著耦合 至底部位元線730。用以實現底部位元線層73〇之合宜材料 包括多晶Si、w、Cu、或AlCu。 ⑩ 第8圖為一製程圖,其說明用於多層單元功能之具有 多S憶體層及一氧化鎢區域的記憶體結構8〇〇之第一實施 例。在此實施例中,記憶體結構δ〇〇包括二記憶體層,一 第一記憶體層810及一第二記憶體層8 5 〇。第一記憶體層 810耦合至Ν_Ρ二極體820,其接著耦合至底部位元線83〇。 第一纪憶體層結構81〇包含一氧化鎢區域816、一鎢栓元件 812及一阻障元件814。 氧化鎢區域816延伸入鎢栓元件812或一第一電極812 ⑩ 之主要表面。阻障元件814包圍鎢栓元件812。 在第一記憶體層結構810中之氡化鎢區域816電性接觸 至一第二位元線860或一與第一記憶體層結構81〇結之第 一電極。弟二位元線860包括僅有位元線730,或位元線730 與阻Ρ早層862的組合。在此實施例之第二位元線提供雙 重目的,苐一為做為與第一記憶體層結構結合之頂部 位元線’及第二為與第二記憶體層結構85〇結合之底部位 元線。 15 200832679一 • 第二位元線860電性連接至P-Ν二極體720頂部,其接 著電性耦合至第二記憶體層結構85〇。第二記憶體層結構 850包含氧化鎢區域52〇、鎢栓元件430及阻障元件42〇。氧 化鎢區域520延伸入鎢栓元件或第一電極43〇之主要表 面。阻障元件420包圍鎢栓元件430。 在第二記憶體層結構850中之氧化鎢區域520電性連 接至頂部位元線或一第三位元線7 1 Q,或一與第二之第一 記憶體層結構710結合之第二電極。第三位元線71〇包含僅 _ 有位元線620,或位元線620及阻障層610的組合。 活化區域的關鍵尺寸(亦即,氧化鎢區域52〇)由鎢栓元 件430的大小及介電間隙壁51〇、512的厚度決定。在此實 施例中,氧化鎢區域520之關鍵尺寸為小於鎢栓元件43〇之 大小氧化鶴&域之關鍵尺寸亦小於二極體720的 大小。氧化鎢區域520關鍵尺寸、鎢栓元件關鍵尺寸、 及P-N二極體720的厚度間之關係可由下列數學式表示:200832679 write 1PA - process diagram 600 represents a simplified memory cell having a memory layer structure 850 and a top bit line 710 comprising a combination of only a bit line layer 62 or a bit line layer 620 and a barrier layer 610 And dielectric spacers $1 〇, $12, and dielectric elements 310, 312. Figure 7 is a process diagram of Figure 7 showing the next step in the fabrication of a bistable snubber-type random access memory connected to an optional device. The memory layer structure 850 is coupled to a P-N diode 72A, which is then coupled to the bottom bit line 730. Suitable materials for achieving the bottom bit line layer 73 include polycrystalline Si, w, Cu, or AlCu. 10 Fig. 8 is a process diagram illustrating a first embodiment of a memory structure 8 having a multi-S memory layer and a tungsten oxide region for use in a multi-layer cell function. In this embodiment, the memory structure δ 〇〇 includes two memory layers, a first memory layer 810 and a second memory layer 85 〇. The first memory layer 810 is coupled to a Ν_Ρ diode 820, which is then coupled to the bottom bit line 83A. The first memory layer structure 81A includes a tungsten oxide region 816, a tungsten plug component 812, and a barrier element 814. The tungsten oxide region 816 extends into the major surface of the tungsten plug component 812 or a first electrode 812 10 . Barrier element 814 surrounds tungsten plug element 812. The tungsten germanium region 816 in the first memory layer structure 810 is electrically contacted to a second bit line 860 or a first electrode that is coupled to the first memory layer structure 81. The two bit line 860 includes a bit line 730 only, or a combination of the bit line 730 and the early layer 862. The second bit line in this embodiment provides a dual purpose, that is, the top bit line ' combined with the first memory layer structure and the second bit line combined with the second memory layer structure 85 〇 . 15 200832679 A • The second bit line 860 is electrically coupled to the top of the P-Ν diode 720, which is then electrically coupled to the second memory layer structure 85A. The second memory layer structure 850 includes a tungsten oxide region 52, a tungsten plug element 430, and a barrier element 42. The tungsten oxide region 520 extends into the main surface of the tungsten plug element or first electrode 43A. The barrier element 420 surrounds the tungsten plug element 430. The tungsten oxide region 520 in the second memory layer structure 850 is electrically connected to the top bit line or a third bit line 7 1 Q, or a second electrode combined with the second first memory layer structure 710. The third bit line 71A includes only _ bit line 620, or a combination of bit line 620 and barrier layer 610. The critical dimension of the active region (i.e., the tungsten oxide region 52A) is determined by the size of the tungsten plug member 430 and the thickness of the dielectric spacers 51, 512. In this embodiment, the critical dimension of the tungsten oxide region 520 is less than the size of the tungsten plug element 43. The critical dimension of the oxidized crane & field is also smaller than the size of the diode 720. The relationship between the critical dimensions of the tungsten oxide region 520, the critical dimensions of the tungsten plug component, and the thickness of the P-N diode 720 can be expressed by the following mathematical formula:

dA^dw - 2 * tD 馨其中參數4代表鎢栓520之關鍵尺寸,參數dw代表栓結構 元件之430關鍵尺寸,及參數。代表二極體720之關鍵 尺寸。P-N二極體720之關鍵尺寸比氧化鎢區域52〇之關鍵 尺寸大,數學表示為dA>dw。在一實施例中,例如,ρ·Ν二 極體720之關鍵尺寸約為氧化鎢區域52〇之關鍵尺寸的⑺ 倍,以數學式表示為dD > 10*dA。前述參數的其他例示關 鍵尺寸為但未僅限於,P-N二極體之關鍵尺寸如=〇.3 μπι,鎢栓元件之關鍵尺寸dw=〇.3 μπι,介電間隙壁厚度之dA^dw - 2 * tD 馨 where parameter 4 represents the critical dimension of the tungsten plug 520, and parameter dw represents the critical dimension of the 430 of the plug structure component, and parameters. Represents the key dimensions of the diode 720. The critical dimension of the P-N diode 720 is larger than the critical dimension of the tungsten oxide region 52, mathematically expressed as dA > dw. In one embodiment, for example, the critical dimension of the p·Ν diode 720 is approximately (7) times the critical dimension of the tungsten oxide region 52〇, expressed as a mathematical expression of dD > 10*dA. Other exemplary critical dimensions of the aforementioned parameters are but not limited to, the critical dimensions of the P-N diode are = 〇.3 μπι, the critical dimension of the tungsten plug component is dw = 〇.3 μπι, the thickness of the dielectric spacer

rW3061PA 200832679 關鍵尺悔135醜,及氧化_域之關鍵尺寸dA,nm。 第9圖為一製程圖,复笱 ,、况明用於多層單元功能之具 多記憶體層及-氧化鎢區域的記憶體結構_之第二實施 例。記憶體結構_包含-第—記憶體層結構91〇及-第Γ 記憶體層結構。第-記憶體層結構则包含一氧_ 域816,其由被阻障元物2包圍之鎢栓結構的主要二 面廷伸。第二記憶體層結構95Q包括氧化㈣域別,rW3061PA 200832679 Key ruler 135 ugly, and the key size of the oxidation _ domain dA, nm. Fig. 9 is a process diagram, a rehearsal, and a second embodiment of a memory structure having a multi-memory layer and a tungsten oxide region for multi-layer cell functions. The memory structure _ contains - the first memory layer structure 91 〇 and - the Γ memory layer structure. The first-memory layer structure then includes an oxygen-domain 816 extending from the main dice of the tungsten plug structure surrounded by the barrier element 2. The second memory layer structure 95Q includes an oxidation (four) domain,

蓋於被阻障元件962包圍之麵結構960的主要表面。鎢栓 結構920、960各自具有-尺寸小至足以使第5圖所述之介 電步驟在製造記憶體結構9_ 略過。鎢栓結構92〇、 960大小的關鍵尺寸為約相同於各自活化區域的關鍵尺寸 之大小,亦即氧化鎢區域816及氧化鎢區域52〇。位於氧化 鎢區域816之上及P-N二極體43〇之下的第二位元線98〇具 有一與位元線元件720尺寸相似尺寸的阻障元件982。 第10圖為一製程圖,其說明用於多層單元功能之具有 多記憶體層及一氧化鎢區域的記憶體結構1〇〇〇之第三實 %例。§己憶體結構1〇〇〇包含一第一記憶體層結構1〇1〇及 一第二記憶體結構1050。第一記憶體層結構1〇1〇包含—氧 化鎢區域816,一具有第一栓部份1〇2〇及第二栓部份1〇22 之鎢栓結構,且第二栓之外壁部份由阻障元件1〇24包圍。 第一栓部份1062之關鍵尺寸為相似於活化區域的關鍵尺 寸’亦即氧化鎢區域520。氧化鎢部份816由第一栓部份 1020的頂表面之主要表面延伸。第一栓部份1〇2〇具有小於 第二栓部份1022尺寸值。 17Covering the major surface of the face structure 960 surrounded by the barrier element 962. The tungsten plug structures 920, 960 each have a size that is small enough that the dielectric step described in Figure 5 is skipped in the fabrication of the memory structure 9_. The critical dimensions of the tungsten plug structure 92 〇, 960 size are about the same as the critical dimensions of the respective activation regions, i.e., the tungsten oxide region 816 and the tungsten oxide region 52 〇. The second bit line 98, which is located above the tungsten oxide region 816 and below the P-N diode 43A, has a barrier element 982 that is similar in size to the bit line component 720. Figure 10 is a process diagram illustrating a third example of a memory structure having a multi-memory layer and a tungsten oxide region for multi-layer cell functions. The memory structure 1 includes a first memory layer structure 1〇1〇 and a second memory structure 1050. The first memory layer structure 1〇1〇 includes a tungsten oxide region 816, a tungsten plug structure having a first plug portion 1〇2〇 and a second plug portion 1〇22, and the outer wall portion of the second plug is The barrier element 1〇24 is surrounded. The critical dimension of the first plug portion 1062 is similar to the critical dimension of the active region, i.e., the tungsten oxide region 520. The tungsten oxide portion 816 extends from the major surface of the top surface of the first plug portion 1020. The first plug portion 1〇2〇 has a smaller size than the second plug portion 1022. 17

W3061PA 200832679, ’ 第一栓部份1020及第二栓部份可使用自我對準 衣私或一非自我對準製程製造。對非自我對準勢程,某 本上使用二微影製程以界定具有不同關鐽尺寸之二鶏栓 結構,第一栓部份1〇2〇之第一關鍵尺寸及第二栓部份ι〇22 之第二關鍵尺寸。 自我對準製程涉及以減少部份層間觸點的橫切面之 步驟。此減少製程在某些實施例中進行,其藉由形成至少 覆蓋部份層間觸點之介電結構,及藉由在未覆蓋^電纟士 ς • 的部份層間觸點除去材料以減少部份㈣^點^切 面。減少橫切面之-實施例如下進行。由層間觸點曝岀之 )1私層,至少藉由層間觸點除去另一介電層。形成一新介 電層以至少部份覆蓋層間觸點。僅有部份覆蓋層間觸點之 新介電層被除去除,因而留下至少部份覆蓋層間觸點的介 電結構。除去新材料的-實施例為以濕餘刻部份新介電層 -段時間,其控制經由減少橫切面而得之層間觸點的關^ 龜 尺寸。一化學機械研磨(CMP)製裎平坦化由介電結構形成 _ a蓋之觸點的表面及開口。〇2電聚氧化作用係用以形成氧 化鎢區域520及氧化鎢區域816。自我對準製程及化學機械 研磨製程的更多資訊可參閱於2〇〇6年6月23日由本案專利 申請人提出之美國專利申請案第11/426,213,發明名稱為 "Programmable Resistive RAM and Manufacturing Method" ’該專利申請案全文列人本案參考。 第Π圖為圖示1100說明用於第一實施例以氧化鎢區 域520為活化區域的記憶體結構800之讀取電流的多層單W3061PA 200832679, ' The first plug portion 1020 and the second plug portion can be fabricated using a self-aligning garment or a non-self-aligning process. For non-self-aligned potentials, a second lithography process is used to define a two-pronged plug structure having different dimensions, the first key portion of the first key portion and the second key portion and the second plug portion The second key size of 〇22. The self-alignment process involves the step of reducing the cross-section of a portion of the interlayer contacts. The reduction process is performed in some embodiments by forming a dielectric structure covering at least a portion of the interlayer contacts and reducing the material by removing material from portions of the interlayer contacts that are not covered by the electrician Share (four) ^ point ^ cut surface. The reduction of the cross section - the implementation is performed as follows. The private layer is exposed by the interlayer contact, and at least the other dielectric layer is removed by the interlayer contact. A new dielectric layer is formed to at least partially cover the interlayer contacts. Only a portion of the new dielectric layer covering the interlayer contacts is removed, leaving at least a portion of the dielectric structure covering the interlayer contacts. An example of the removal of the new material is to wet the portion of the new dielectric layer for a period of time which controls the size of the layer of the interlayer contact obtained by reducing the cross-section. A chemical mechanical polishing (CMP) system planarizes the surface and opening of the contact formed by the dielectric structure. The 〇2 electropolyoxidation is used to form a tungsten oxide region 520 and a tungsten oxide region 816. For more information on the self-alignment process and the chemical mechanical polishing process, see U.S. Patent Application Serial No. 11/426,213, filed on Jun. 23, 1989, entitled, "Programmable Resistive RAM and Manufacturing Method" 'The patent application is incorporated by reference in its entirety. The first diagram is a diagram 1100 illustrating a multi-layer single for the read current of the memory structure 800 used in the first embodiment with the tungsten oxide region 520 as the active region.

200832679rW3〇6iPA f 元控制例示。圖1110以x軸u12表示電流量及及Y軸表示讀 取次數1114描述。活化區域’亦即氧化鶬區域520,對每 一記憶體層可以四態操作(2位元/單元),係以讀取電流量 定義。在多層單元控制中的四不同態以讀取電流決定。一 第一資料線Π20表示一第一態(”〇”態),一第二資料線1122 表示一第二態("1”態),一第三資料線1124表示一第三態 ("-Γ態),及第四資料線1126表示一第四態("-2”態)。最高 讀取電流態需要一高電流以進行讀取操作。活化區域的減 _ 少,例如至1/10大小,可減少二極體之電流密度承载至約 低於103 A/cm2。在一實施例中,四態之讀取電流各自為:4 nA、40 ηΑ、0·4 μΑ、及2 μΑ。本發明可擴展至進一步對 具有多位元之記憶體單元分割讀取電流窗,如在一記憶體 單元中4位元為16表示態。 下文為簡短概述適用於實現本發明記憶體結構之四 型式電阻記憶體材料。適用於本發明實施例之第一型記憶 體材料為超巨磁電阻("CMR”)材料,如PrxCayMn03,其中 _ x:y = 0.5 : 0.5,或其他具有X : 〇〜丨;y : W之組合物。亦 可選擇使用含有氧化錳之CMR材料。 形成CMR材料之例示方法為使用ρν〇濺鍍或磁控濺 鍍法,以Αγ、Ν2、〇2、及/或沿等為源氣體在壓力為】毫托 耳至100¾托耳下。沉積作用的溫度可由室温至6〇〇。(:,其 係依後=積作用的處理狀況而定。可使用具有長寬比為卜5 之測準&以改進填充性能。為改進填充性能,亦可使用數 十電壓至數百電壓的加偏壓。另—方面,dc偏驗浏準 19 200832679200832679rW3〇6iPA f-element control instantiation. Figure 1110 depicts the amount of current on the x-axis u12 and the number of readings 1114 on the Y-axis. The activated region, i.e., the yttrium oxide region 520, can be operated in four states (2 bits/cell) for each memory layer, as defined by the amount of read current. The four different states in the control of the multi-level cell are determined by the read current. A first data line Π20 represents a first state ("〇" state), a second data line 1122 represents a second state ("1" state), and a third data line 1124 represents a third state (&quot ;-Γ state), and the fourth data line 1126 represents a fourth state ("-2" state). The highest read current state requires a high current for the read operation. The reduction of the activation region, for example to 1/10 size, reduces the current density of the diode to less than about 103 A/cm2. In one embodiment, the four states of the read current are each: 4 nA, 40 η Α, 0·4 μΑ, and 2 μΑ. The present invention can be extended to further divide the read current window for a memory cell having multiple bits, such as a 4-bit representation of 16 bits in a memory cell. The following is a brief overview of a four-type resistive memory material suitable for use in implementing the memory structure of the present invention. The first type of memory material suitable for use in embodiments of the present invention is a super giant magnetoresistance ("CMR") material, such as PrxCay Mn03, wherein _ x:y = 0.5 : 0.5, or other having X : 〇 丨 丨; y : The composition of W. The CMR material containing manganese oxide may also be selected. The exemplary method for forming the CMR material is to use ρν〇 sputtering or magnetron sputtering, with Αγ, Ν2, 〇2, and/or The gas is at a pressure of from 1 mTorr to 1003⁄4 Torr. The temperature of the deposition can be from room temperature to 6 〇〇. (:, depending on the processing condition of the post-product effect. It can be used with a length to width ratio of 5 Measure & to improve the filling performance. In order to improve the filling performance, it is also possible to use a bias voltage of tens of voltages to hundreds of voltages. On the other hand, the dc bias test is 19 200832679

rW3061PA * 管可同時使用。可施用數十高斯至高至一特斯拉(10,000高 斯)的磁場以改進磁性結晶相。 可選擇進行在真空或N2氛圍或〇2/凡混合氛圍中之後 沉積退火處理以改進CMR材料之結晶態。退火温度基本上 於400°C至600°C範圍間及一小於2小時的退火時間。rW3061PA * Tube can be used at the same time. A magnetic field of tens of Gauss to as high as one Tesla (10,000 Gauss) can be applied to improve the magnetic crystalline phase. A deposition annealing treatment may be optionally performed after vacuum or N2 atmosphere or 〇2/any mixed atmosphere to improve the crystalline state of the CMR material. The annealing temperature is substantially between 400 ° C and 600 ° C and an annealing time of less than 2 hours.

CMR材料的厚度依單元結構的設計而定。可使用1 〇 nm至200 nm之CMR厚度做為核心材料。通常使用YBC〇 (YBaCu〇3 ’其為一面温超導材料型式)之緩衝層以促進 ⑩ CMR材料之結晶態。YBCO在CMR材料沉積前沉積。YBCO 的厚度在30 um至200 um範圍間。 弟二型記憶體材料為二元素化合物,如Nix〇y ; 了丨〇 ;The thickness of the CMR material depends on the design of the unit structure. CMR thickness from 1 〇 nm to 200 nm can be used as the core material. A buffer layer of YBC 〇 (YBaCu 〇 3 ', which is a one-side superconducting material type) is usually used to promote the crystalline state of the 10 CMR material. YBCO is deposited prior to deposition of the CMR material. The thickness of YBCO ranges from 30 um to 200 um. The second type of memory material is a two-element compound, such as Nix〇y;

AlxOy ’ WxOy,ZnxOy,ZrxOy,CuxOy 等’其中 X : y = 〇 5 : 〇·5 ’或其他具有χ : 0〜1 ; y : 〇〜1之組合物。一例示的形成 方法為使用PVD濺鍍或磁控濺鍍方法,係以Ar、N2、〇2、 及/或He等為反應氣體並於1毫托耳-loo毫托耳之麼力下以 _ Zrx〇y ; CuxOy等。沉積作用通常在室温下進行。可使用具 有長寬比為1-5之測準管以改進填充性能。為改進填充^ 能’亦可使用數十電壓至數百電壓的DC偏屋。若需要, DC偏壓及測準管可同時使用。 可選擇進行在真空或沁氛圍或〇2爪2混合氛圍中之後 沉積退火處理以改進金屬氧化物之氧分佈。退火溫度在 400°C至600°C範圍間及一小於2小時的退火時間。 一可選擇的形成方法為使用PVD濺鍍或磁控濺鍍方 20 200832679·· - 法,係以 Αγ/02、Ar/N2/〇2、純 02、He/02、He/N2/02 等為 反應氣體並於1毫托耳-100毫托耳之壓力下以金屬氧化物 為標輕,如Ni、Ti、Al、W、Zn、Zr、Cu等。沉積作用通 常在室温下進行。可使用具有長寬比為1·5之測準管以改進 填充性能。為改進填充性能,亦可使用數十電壓至數百電 壓的DC偏壓。若需要,DC偏壓及測準管可同時使用。 可選擇進行在真空或N2氛圍或〇2^2混合氛圍中之後 沉積退火處理以改進金屬氧化物之氧分佈。退火溫度在 馨 4⑼。c至6〇0°C範圍間及一小於2小時的退火時間。 另一形成方法係使用高温氧化作用系統之氧化作 用,如高温爐或快速熱脈衝("RTP”)系統。温度由200。。 至700 C範圍間以純Ο:或Ο2/%混合氣體於數毫托耳至1大 氣壓的壓力下。時間可在數分鐘至數小時的範圍間。另一 氧化作用方法為電漿氧化作用。使用以純〇2*Αγ/〇2混合 氣體或Αγ/Ν2/〇2混合氣體於丨毫托耳至1〇〇毫托耳壓力: RF或DC源電漿以氡化金屬表面,如犯、Ti、Ai、w、Ζη、 _ Zr、或Cu等。氧化作用時間可在數秒至數分鐘範圍間。氧 化作用温度可在室温至3,C_間,依電漿氧化作用温 度而定。 第二型記憶體材料為聚合物材料,如具有c⑼、 Ag等摻雜之TCNQ或PCBM_TCNQ混合聚合物。一形成方 法係使用藉由熱蒸錢、電子束蒸鍍、或分子束蠢晶(”mbe") 线之蒸鍵作用。-固態TCNQ及摻雜物顆粒在一單一反 應室中共蒸鐘。固態TCNQ及摻雜物顆粒為置於舟或 21AlxOy ' WxOy, ZnxOy, ZrxOy, CuxOy, etc. where X : y = 〇 5 : 〇 · 5 ' or other composition having χ : 0 〜 1 ; y : 〇 〜1. An exemplary formation method is to use a PVD sputtering or a magnetron sputtering method, using Ar, N2, 〇2, and/or He as a reaction gas and under a force of 1 mTorr-loo. _ Zrx〇y ; CuxOy et al. The deposition is usually carried out at room temperature. A gauge tube with an aspect ratio of 1-5 can be used to improve fill performance. In order to improve the filling energy, a DC partial housing of several tens of voltages to several hundreds of voltages can also be used. The DC bias and the calibrator can be used simultaneously if required. Alternatively, a deposition annealing treatment may be performed after the vacuum or helium atmosphere or the 爪 2 claw 2 mixed atmosphere to improve the oxygen distribution of the metal oxide. The annealing temperature is in the range of 400 ° C to 600 ° C and an annealing time of less than 2 hours. An alternative method of formation is to use PVD sputtering or magnetron sputtering. The method is Αγ/02, Ar/N2/〇2, pure 02, He/02, He/N2/02, etc. It is a reaction gas and is lightly measured by a metal oxide such as Ni, Ti, Al, W, Zn, Zr, Cu, etc. under a pressure of 1 mTorr to 100 mTorr. The deposition is usually carried out at room temperature. A measuring tube having an aspect ratio of 1.5 can be used to improve the filling performance. To improve the filling performance, a DC bias of several tens of voltages to several hundreds of voltages can also be used. The DC bias and the measuring tube can be used simultaneously if required. Alternatively, a deposition annealing treatment may be performed after vacuum or N2 atmosphere or 〇2^2 mixed atmosphere to improve the oxygen distribution of the metal oxide. The annealing temperature is in Xin 4(9). Between c and 6 〇 0 ° C and an annealing time of less than 2 hours. Another method of formation uses the oxidation of a high temperature oxidation system, such as a high temperature furnace or a rapid heat pulse ("RTP" system. The temperature ranges from 200 to 700 C with a pure enthalpy: or Ο 2/% mixed gas. From millitorr to 1 atm. The time can range from a few minutes to several hours. Another oxidation method is plasma oxidation. Use pure 〇2*Αγ/〇2 mixed gas or Αγ/Ν2/〇 2 mixed gas at 丨 millitorn to 1 Torr millitorn pressure: RF or DC source plasma to deuterate metal surface, such as thief, Ti, Ai, w, Ζη, _Zr, or Cu, etc. Oxidation time It can be in the range of seconds to minutes. The oxidation temperature can be between room temperature and 3, C_, depending on the plasma oxidation temperature. The second type of memory material is a polymer material, such as doping with c(9), Ag, etc. TCNQ or PCBM_TCNQ mixed polymer. One method of formation is by steaming by hot steaming, electron beam evaporation, or molecular beam streak ("mbe"). - Solid state TCNQ and dopant particles are co-steamed in a single reaction chamber. Solid state TCNQ and dopant particles are placed in the boat or 21

200832679TW3061pA ’ 一Ta舟或一陶瓷舟中。施用一高電流或一電子束熔融源以 使材料混合及蒸鍍至晶圓上。沒有反應性化學作用或氣 體。在HT4托耳至10’托耳壓力下進行沉積作用。晶圓温 度在室温至200〇C範圍間。 可選擇進行在真空或%氛圍中之後沉積退火處理以 改進聚合物材料之組合物分佈。退火温度在室温至3〇〇〇c 範圍間以一小於1小時的退火時間。 另一形成聚合物型記憶體材料的技術為使用一以摻 Φ 雜-TCNQ溶液於小於1000rPm旋轉速度之旋轉塗覆。在旋 轉塗覆後’支撐晶圓(基本上在室温或小於2〇〇〇c的温度) 一段足以使固態形成的時間。此支撐時間由數分鐘至數天 範圍間,其係依時間及形成狀況而定。 第四型為硫屬化合物材料,如GexSbyTez,其中χ : 丫 : z =2 : 2 : 5,或其他具有x ·· 〇 · 5 ; y ·· 〇〜5 ; z : 〇〜1〇之組 合物。可選擇使用GeSbTe具有摻雜,如N-、Si-、Ti-、或 其元素摻雜。 馨形成硫屬化合物材料之例示方法為使用pvD濺鍍或 磁控濺鍍方法,其以Ar、N2、及/或^㊁等源氣體於丨毫托耳 至100毫托耳的壓力下。沉積作用通常在室温下進行。可 使用具有長寬比為1-5之測準管以改進填充性能。為改進填 充性犯’亦可使用數十電壓至數百電壓的DC偏壓。另一方 面’ DC偏壓及測準管可同時使用。 可選擇進行在真空或队氛圍中之後沉積退火處理以 改進硫屬化合物材料之結晶態。退火温度在 22200832679TW3061pA ‘A boat or a ceramic boat. A high current or an electron beam melting source is applied to mix and vaporize the material onto the wafer. There is no reactive chemistry or gas. The deposition was carried out under HT4 to 8' torr pressure. The wafer temperature ranges from room temperature to 200 °C. A deposition annealing treatment may be optionally performed after vacuum or % atmosphere to improve the composition distribution of the polymeric material. The annealing temperature ranges from room temperature to 3 〇〇〇c with an annealing time of less than 1 hour. Another technique for forming polymeric memory materials is to use a spin coating with a Φ-doped-TCNQ solution at a rotational speed of less than 1000 rPm. After the spin coating, the wafer is supported (substantially at room temperature or at a temperature of less than 2 〇〇〇c) for a period of time sufficient for the solid to form. This support time ranges from a few minutes to a few days, depending on the time and condition. The fourth type is a chalcogen compound material such as GexSbyTez, wherein χ: 丫: z = 2 : 2 : 5, or other combination having x ··〇· 5 ; y ·· 〇~5 ; z : 〇~1〇 Things. It is optional to use GeSbTe with doping such as N-, Si-, Ti-, or elemental doping. An exemplary method for forming a chalcogenide material is to use a pvD sputtering or magnetron sputtering method using a source gas of Ar, N2, and/or II at a pressure of from Torr to 100 mTorr. The deposition is usually carried out at room temperature. A measuring tube with an aspect ratio of 1-5 can be used to improve filling performance. A DC bias of tens of voltages to several hundred voltages can also be used to improve the filling behavior. On the other hand, the DC bias and the measuring tube can be used simultaneously. A deposition annealing treatment may be optionally performed after the vacuum or the team atmosphere to improve the crystalline state of the chalcogenide material. Annealing temperature is 22

200832679麵1PA fe圍間以一小於30分鐘的退火時間。硫屬化合物材料的厚 度依單元結構的設計而定。通常,具有厚度高於8 nm之硫 屬化合物材料具有一相改變特性,故材料顯現至少二安定 電阻型態。 雙穩態RRAM300之記憶體單元的實施例可包含相改 變型記憶體材料做為第一電阻型隨機存取記憶體層310及 第二電阻型隨機存取記憶體層320,其包括硫屬化合物型 材料及其他材料。硫族元素包括構成元素週期表第VI族部 _ 份的四元素氧(0)、硫(3)、硒(86)及碲(^)之任一者。硫屬 化合物包含一硫族元素與另一正電元素或取代基的化合 物。硫屬化合物合金包含硫屬化合物與其他材料之組合, 如過渡金屬。一硫屬化合物合金通常含有至少一元素週期 表第六行的元素,如鍺(Ge)及錫(Sn)。通常,硫屬化合物 合金包括含有至少一銻(Sb)、鎵(Ga)、銦(In)、及銀(Ag)的 組合。許多相改變型記憶體材料己描述於技術文獻中,包 括合金:Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、 _ In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/InISb/Te、The 200832679 face 1PA fe has an annealing time of less than 30 minutes. The thickness of the chalcogenide material depends on the design of the unit structure. Generally, a chalcogenide material having a thickness of more than 8 nm has a phase change characteristic, so that the material exhibits at least a second stability type. An embodiment of the memory cell of the bistable RRAM 300 may include a phase change memory material as the first resistive random access memory layer 310 and a second resistive random access memory layer 320, including a chalcogenide type material. And other materials. The chalcogen element includes any one of four elements of oxygen (0), sulfur (3), selenium (86), and ruthenium (^) constituting part VI of the periodic table. A chalcogenide compound contains a compound of a chalcogen element and another positively charged element or substituent. The chalcogenide alloy contains a combination of a chalcogenide compound and other materials, such as a transition metal. The monochalcogenide alloy usually contains at least one element of the sixth row of the periodic table, such as germanium (Ge) and tin (Sn). Generally, the chalcogenide alloy includes a combination containing at least one of strontium (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change memory materials have been described in the technical literature, including alloys: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, _In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/InISb/Te,

Ge/Sn/Sb/Te、Ge/Sb/Se/Te及Te/Ge/Sb/S。在 Ge/Sb/Te合金 族中’廣範圍的合金組成物為可運用的。組成物的特徵為 TeaGebSbn^aw。一研究員己描述最有效的合金為在沉積 材料中Te的平均濃度為低於70%,代表性的為低於約6〇0/〇 且範圍大致在低至約23%到高至約58% Te,且最佳為約 48%至58%Te。在材料中Ge濃度為高於約5%及在一平均為 在约8%之低點至約30%的範圍間,其餘的通常為5〇%。Ge 23Ge/Sn/Sb/Te, Ge/Sb/Se/Te, and Te/Ge/Sb/S. In the Ge/Sb/Te alloy family, a wide range of alloy compositions are available. The composition is characterized by TeaGebSbn^aw. One researcher has described that the most effective alloy is that the average concentration of Te in the deposited material is less than 70%, representatively less than about 6 〇 0 / 〇 and ranging from as low as about 23% up to about 58%. Te, and most preferably about 48% to 58% Te. The Ge concentration in the material is above about 5% and in the range of an average of from about 8% to about 30%, the remainder is typically 5%. Ge 23

:W3061PA 200832679 濃度最佳為在約8%至約40%範圍間。在組合物中主要構成 元素外之其餘者為Sb。此些百分比為全部100%構成元素原 子之原子百分比。(Ovshinsky的美國專利第5,687,112號, 第10-11攔。)由另一研究者評估之特別合金包括 Ge2Sb2Te5、GeSb2Te4 及 GeSb4Te7,(Noboru Yarnada, ”Potential of Ge-Sb-Te Phase-Change Optical Disks for High-Data-Rate Recording”,SPIE v· 3109,pp· 28-37 (1997)。)更綜言之,過渡金屬如鉻(Cr)、鐵(Fe)、鎳(Ni)、 錕(Nb)、絶(Pd)、鉑(pt)及其等之混合物或合金可與 Ge/Sb/Te組合以形成一具有可程式化電阻性質之相改變合 金。可用為記憶體材料之特定例子提供於〇vshinsky的美國 專利第5,687,112號第11-13欄,其等實施例列入本文參考。 相改變合金可在第一結構態及一第二結構態間轉 變,第-結構態之材料為-大致非晶形固態相,及第二結:W3061PA 200832679 The concentration is preferably in the range of from about 8% to about 40%. The remainder of the main constituent elements in the composition is Sb. These percentages are the atomic percentages of all 100% constituent element atoms. (Ovshinsky, U.S. Patent No. 5,687,112, pp. 10-11.) Special alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4, and GeSb4Te7, (Noboru Yarnada, "Potential of Ge-Sb-Te Phase-Change Optical" Disks for High-Data-Rate Recording", SPIE v. 3109, pp. 28-37 (1997).) More specifically, transition metals such as chromium (Cr), iron (Fe), nickel (Ni), cesium ( A mixture or alloy of Nb), Pd (Pd), platinum (pt), and the like can be combined with Ge/Sb/Te to form a phase change alloy having programmable resistance properties. A specific example of a memory material that can be used is provided in U.S. Patent No. 5,687,112, the entire disclosure of which is incorporated herein by reference. The phase change alloy can be transformed between a first structural state and a second structural state, the material of the first structural state being a substantially amorphous solid phase, and the second junction

構態之材料在單元的活化通道區域以其局部規則為一大 致結晶形固態相單元。此些合金為至少雙態。非晶形一詞 為用以說明比-單晶體相對較少規則、較混a之結構,其 具有可檢狀特性如比結晶形高的電隨。結晶形一詞為 用以說明f指^—非晶形結構相對較多規則、較整齊之結 為;之T生如比非晶形低的電阻性。相改變 二邱則的不^及完全非晶形及完全結晶形態間頻譜 於局部規_不同可檢測態間電性轉換。_曰护及 結晶形相間改變影響之材料特性者包括原;::電子 密度及活化能。材料可在不_態相或至少二固態相混合 24 200832679一 $間轉換,在完全非晶形及完全結晶形態提供一灰階帶。 在材料中的電性依此改變。 相,變合金可藉由利用電脈衝由一態轉換至另— …。已觀察到—較短、較高振幅脈衝傾向於改變相改變材 料至-大致非晶形態。一較長、較低振幅脈衝傾向於改變 相改變材料至.^ JL «Λ Q rt/ Ab , 旦 大致、、、〇日日形恶。在一較短、較高振幅脈衡 中的處量為高至足以使結晶形結構的鍵結斷裂,且短至防 止此原子重新排列為結晶形態。在未經過度實驗下可決定 ⑩ 適且脈衝的數據表,特別是適用於特定相改變合金。在 下文的揭露中,相改變材料為指GST,且將瞭解可使用其 他至式相改變材料。此處描述可用以實現pCRAM的材料為 Gc2Sb2Tc^ 〇 可使用於本發明其他實施例之其他可程式化電阻記 ,體材料包括%摻雜GST、GexSby、或其他可使用不同結 晶相改變以決定電阻型的材料;PrxCayMn03、PrSrMn03、 • ΖΐΌ:、WQx、TiOx、ALOx、或其他可使用電脈衝改變電阻 型恶之材料;7,7,8,8-四氰基蓖噚二曱烷(TCNQ),甲烷富 勒稀 M-苯基 C61- 丁 酸甲酯(PCBM)、TCNQ-PCBM、 Cu-TCNQ、Ag_TCNQ、C6『TCNq、以其他金屬摻雜之 TCNQ、或其他具有以電脈衝控制之雙態或多態電阻型態 的聚合物材料。 相改變隨機存取記憶體裝置之製造、元件材料、使用 及操作的額外資訊可參閱於2005年6月Π曰由本案專利申 權人提出美國專利申請案第11/155,067號,名稱為”丁hin 25The material of the configuration is a substantially crystalline solid phase unit in its active channel region with its local regularity. These alloys are at least two states. The term amorphous is used to describe a relatively small, more complex structure of a single-crystal, which has detectable characteristics such as a higher electrical conductivity than a crystalline form. The term "crystalline" is used to describe the relatively regular and relatively uniform structure of the f-type amorphous structure; the T-generation is less resistive than the amorphous one. Phase change Erqiu does not have a completely amorphous and completely crystalline morphology between the local _ different detectable state electrical conversion. _ 曰 及 and the material properties of the crystal phase change affect the original; :: electron density and activation energy. The material can be converted between a non-state phase or a mixture of at least two solid phases 24 200832679 to provide a gray-scale band in a completely amorphous and fully crystalline form. The electrical properties in the material change accordingly. The phase change alloy can be converted from one state to another by using an electric pulse. It has been observed that shorter, higher amplitude pulses tend to change the phase change material to a substantially amorphous form. A longer, lower amplitude pulse tends to change the phase change material to .^ JL «Λ Q rt/ Ab , 丹 roughly, ,, 〇日日恶恶. The amount in a shorter, higher amplitude pulse balance is high enough to break the bond of the crystalline structure and is short enough to prevent the atoms from rearranging into a crystalline form. A suitable and pulsed data sheet can be determined without undue experimentation, especially for specific phase change alloys. In the disclosure below, the phase change material refers to GST and it will be appreciated that other materials can be used to change the phase. The material described herein that can be used to implement the pCRAM is Gc2Sb2Tc^. Other programmable resistances that can be used in other embodiments of the present invention include bulk doped GST, GexSby, or others that can be changed using different crystalline phases to determine resistance. Type of material; PrxCayMn03, PrSrMn03, • ΖΐΌ:, WQx, TiOx, ALOx, or other material that can change electrical resistance using electrical impulses; 7,7,8,8-tetracyanoquinonedioxane (TCNQ) Methane fullerene M-phenyl C61-methyl butyrate (PCBM), TCNQ-PCBM, Cu-TCNQ, Ag_TCNQ, C6 "TCNq, TCNQ doped with other metals, or other pairs with electrical pulse control A polymeric material of a state or a polymorphic resistance type. Additional information on the manufacture, component materials, use and operation of phase-change random access memory devices can be found in June 2005. US Patent Application No. 11/155,067, entitled "Ding" Hin 25

200832679rw3061PA β Layer Fuse Phase Change RAM and Manufacturing Method”,該專利全文列入本案參考。 本發明已配合較佳例示實施例說明。在未偏離本發明 精神及範疇下可進行各種之更動與潤飾。因此,說明書及 圖式為用以說明本發明之技術思想而非用以限制,故本發 明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been described in connection with the preferred embodiments. Various changes and modifications can be made without departing from the spirit and scope of the invention. The specification and the drawings are intended to be illustrative of the present invention and are not intended to be limiting, and the scope of the invention is defined by the scope of the appended claims.

2626

-W3061PA 200832679 【圖式簡單說明】 弟1圖為本發明雙穩恶笔阻式隨機存取記彳豪艘陣列之 線路圖。 第2圖為一依本發明實施例之雙穩態電阻武隨機存取 記憶體架構的積艨電路之簡化方塊圖。 第3圖為本發明一簡化製程圖,以說明製造在一單一 記憶體單元具有標準鎢栓(W-栓)或介層窗之雙穩態電阻 式隨機存取記憶體之製程的參考步驟。 第4圖為本發明之製程圖,其顯示製造具有鎢栓結構 之凹槽钱刻的雙穩態電阻式隨機存取記憶體的下一步驟。 第5圖為本發明之製程圖,其說明氧化鎢(wOx)區域 以一介電間隙壁蝕刻、一乾氧電漿蝕刻及一濕去除而形 成0 第6圖為本發明之製程圖,其顯示製造具有位元線形 成之雙1¾電阻式隨機存取§己憶體的下一步驟。 第7圖為本發明之製程圖,其顯示製造與選定裝置連 接之雙穩態電阻式隨機存取記憶體的下一步驟。 第8圖依本發明之一製程圖,其說明用於多層單元功 能之具有多記憶體層及一氧化鎢區域的記憶體結構之第 一實施例。 第9圖為本發明之一製程圖,其說明用於多層單元功 能之具有多記憶體層及一氧化鎢區域的記憶體結構之第 二實施例。 第10圖為本發明之一製程圖,其說明用於多層單元功 27-W3061PA 200832679 [Simple diagram of the diagram] The brother 1 is the circuit diagram of the sturdy pen-resistant random access memory array of the invention. 2 is a simplified block diagram of a accumulation circuit of a bistable resistive random access memory architecture in accordance with an embodiment of the present invention. Figure 3 is a simplified process diagram of the present invention to illustrate the steps of fabricating a bistable resistive random access memory device having a standard tungsten plug (W-plug) or via window in a single memory cell. Fig. 4 is a process diagram of the present invention showing the next step of fabricating a bistable resistive random access memory having a tungsten plug structure. 5 is a process diagram of the present invention, which illustrates that a tungsten oxide (wOx) region is formed by a dielectric spacer etching, a dry oxygen plasma etching, and a wet removal. FIG. 6 is a process diagram of the present invention, which shows The next step of fabricating a dual 13⁄4 resistive random access § memory with bit line formation. Figure 7 is a process diagram of the present invention showing the next step in fabricating a bistable resistive random access memory coupled to a selected device. Figure 8 is a process diagram of a process of the present invention illustrating a first embodiment of a memory structure having a multi-memory layer and a tungsten oxide region for use in a multi-layer cell function. Figure 9 is a process diagram of the present invention illustrating a second embodiment of a memory structure having a multi-memory layer and a tungsten oxide region for use in a multi-layer cell function. Figure 10 is a process diagram of the present invention, which is illustrated for use in a multi-layer unit.

200832679W3〇61PA w 能之具有多記憶體層及一氧化鎢區域的記憶體結構之第 三實施例。 第π圖為圖示說明本發明第一實施例之以氧化鎢區 域為活化區域的記憶體結構中讀取電流之多層單元控制 的例示。 【主要元件符號說明】 100 雙穩態電阻式隨機存取記憶體陣列 123、 124 字元線 128 源極線 132 底部電極元件 134 頂部電極元件 135 記憶體單元 141、 142位元線 146 區塊 150、 151 、 152 、 153 存取電晶體 200 積體電路 260 記憶體陣列 261 列解碼器 262 字元線 263 端子解碼器 264 位元線 265 匯流排 266 區塊 267 資料匯流排 268 偏壓佈設供應電壓 269 偏壓佈設態儀 271 寫入線 272 資料輸出線 275 積體電路 300 製程圖 310 ^ 312介電元件 320 阻障材料 330 鶴材料 340 鎢材料表面 400 製程圖 420 阻障元件 28 200832679_paA third embodiment of the memory structure of a multi-memory layer and a tungsten oxide region of 200832679W3〇61PA w. The πth diagram is an illustration illustrating the control of the multilayer unit for reading current in the memory structure in which the tungsten oxide region is the active region in the first embodiment of the present invention. [Main component symbol description] 100 bistable resistive random access memory array 123, 124 word line 128 source line 132 bottom electrode element 134 top electrode element 135 memory unit 141, 142 bit line 146 block 150 , 151 , 152 , 153 access transistor 200 integrated circuit 260 memory array 261 column decoder 262 word line 263 terminal decoder 264 bit line 265 bus 266 block 267 data bus 268 bias supply voltage 269 biasing device 271 write line 272 data output line 275 integrated circuit 300 process diagram 310 ^ 312 dielectric component 320 barrier material 330 crane material 340 tungsten material surface 400 process diagram 420 barrier element 28 200832679_pa

430 鎢栓元件 500 製程圖 510、: 512介電間隙壁 520 氧化鎢元件 600 製程圖 610 阻障層 620 位元線層 700 製程圖, 710 頂部位元線 720 P-N二極體 730 底部位元線 800 製程圖 810 第一記憶體層 812 鎢栓元件或第一電極 814 阻障元件 816 氧化鎢區域 830 底部位元線 820 N-P二極體 850 第二記憶體層結構 860 第二位元線 862 阻障層 900 製程圖 910 第一記憶體層結構 920 鎢栓結構 922 阻障元件 950 第二記憶體層結構 960 鎢栓結構 980 第二位元線 982 阻障元件 1000 製程圖 1010 第一記憶體層結構 1020 第一栓部份 1022 第二栓部份 1024 阻障元件 1050 第二記憶體結構 1062 第一栓部份 1100 圖 1110 X軸電流量 1112 Y軸讀取次數 1120 第一資料線 1122 第二資料線 1124 第三資料線 1126 第四貢料線 29430 Tungsten Bolt Element 500 Process Diagram 510,: 512 Dielectric Gap Wall 520 Tungsten Oxide Element 600 Process Diagram 610 Barrier Layer 620 Bit Line Layer 700 Process Diagram, 710 Top Bit Line 720 PN Diode 730 Bottom Bit Line 800 process diagram 810 first memory layer 812 tungsten plug element or first electrode 814 barrier element 816 tungsten oxide region 830 bottom bit line 820 NP diode 850 second memory layer structure 860 second bit line 862 barrier layer 900 Process diagram 910 First memory layer structure 920 Tungsten plug structure 922 Barrier element 950 Second memory layer structure 960 Tungsten plug structure 980 Second bit line 982 Barrier element 1000 Process diagram 1010 First memory layer structure 1020 First pin Portion 1022 Second plug portion 1024 Barrier element 1050 Second memory structure 1062 First plug portion 1100 Figure 1110 X-axis current amount 1112 Y-axis read times 1120 First data line 1122 Second data line 1124 Third Data line 1126 fourth tributary line 29

Claims (1)

200832679漏謹 — 十、申請專利範圍·· 1.—-種具有多記憶體層之記憶體結構,其包含: -弟-記憶體層結構,其具有—具有主要表面的一第 -電極及-氧似I區域,該氧化鎢區域由該第—電極的該 主要表面延伸並在該第一電極及一第二電極間電性連 接’該第-電極具有實質相似於該氧化鎮區域尺寸的一尺 寸;及 ★第—錢體層結構,_合至該第-記憶體層結構, ⑩該第^記憶體層結構具有_具有主要表面的一第一電極 及氧化僞區域,該氧化鎢區域由該第一電極之該主要表 面^申至該第—§己憶體層結構並在該第二記憶體層結構 之違第-電極與該第二記憶體層結構之一第二電極電性 連,,該第二記憶體層結構之該第一電極具有實質相似於 該第二記憶體層結構之該氧化鎢區域尺寸之一尺寸。 ^ 2·如申請專利範圍第〗項所述之記憶體結構,其中該 氧化鎢區域提供在該第一記憶體層中操作的多層功能。 ^ 3·如申請專利範圍第1項所述之記憶體結構,其中該 第一電極包含以鎢填充之一栓結構。 4·如申請專利範圍第3項所述之記憶體結構,其進一 步包含阻障材料包圍該栓結構中之鎢的外表面。 5·如申請專利範圍第1項所述之記憶體結構,其進一 步包含一N-P二極體電性耦合至該第一記憶體層結構之該 弟一電極。 30 200832679rW3〇61PA 6. 如申請專利範圍第5項所述之記憶體結構,其進一 y ^ ^第一位元線電性輕合至該N-P二極體。 7. 如申请專利範圍第5項所述之記憶體結構,i進一 =包含-Ι>·Ν二極體電性轉合至該第二記憶體層結構之該 .如申请專利範圍第7項所述之記憶體結構,1進一 =含-第二位元線電性搞合至該第—記憶體層結構的 "亥氧化鎢區域與該Ρ-Ν二極體間。200832679 Missing - Ten, the scope of application for patents · · - a memory structure with multiple memory layers, including: - brother - memory layer structure, which has a - surface with a major electrode - oxygen In the region I, the tungsten oxide region extends from the main surface of the first electrode and is electrically connected between the first electrode and a second electrode. The first electrode has a size substantially similar to the size of the oxidized town region; And a first-electrode layer structure, _to the first-memory layer structure, 10 the first memory layer structure has a first electrode having a main surface and an oxidized dummy region, the tungsten oxide region being composed of the first electrode The main surface is applied to the first § memory layer structure and electrically connected to the second electrode of the second memory layer structure and the second memory layer structure, the second memory layer structure The first electrode has a size that is substantially similar to the size of the tungsten oxide region of the second memory layer structure. The memory structure of claim 1, wherein the tungsten oxide region provides a multi-layered function for operation in the first memory layer. The memory structure of claim 1, wherein the first electrode comprises a plug structure filled with tungsten. 4. The memory structure of claim 3, further comprising a barrier material surrounding the outer surface of the tungsten in the plug structure. 5. The memory structure of claim 1, further comprising an N-P diode electrically coupled to the first electrode of the first memory layer structure. 30 200832679rW3〇61PA 6. The memory structure according to claim 5, wherein the first bit line is electrically coupled to the N-P diode. 7. The memory structure according to claim 5, wherein the semiconductor structure is electrically connected to the second memory layer structure, as in claim 7 of the patent application scope. The memory structure is described as follows: the 1st-inclusive-second-bit line is electrically coupled to the "Hg tungsten oxide region of the first-memory layer structure and the Ρ-Ν diode. 9·如申料利_第8項舰找龍結構,其進一 含一第三位元線電性耦合至該第二記憶體層結 该氧化鎢區域。 10· 一種具有多記憶體層之記憶體結構,其包含: 一 ♦一第一記憶體層結構,其具有一具有主要表面的—第 一電極及一氧化鎢區域,該氧化鎢區域延伸入該第一電極 的該主要表面並在該第一電極及該第二極 接;及 』% r玍遷 ^ 第一纪憶體層結構,耦合至該第一記憶體層結構, 該第二纪憶體層結構具有一具有主要表面的一第一電極 及氧化鶴區域,該氧化鎢區域延伸入該第一電極之該主 要辛面至該第二記憶體層結構並在該第二記憶體層結構 之該第一電極與該第二記憶體層結構之該第二電極 連接。 病· η·如申請專利範圍第丨〇項所述之記憶體結構,其中 該氧化鎢區域提供在第一記憶體層中操作的多層功能。 31 :W3061PA 200832679, 十12·如申請專利範圍第10項所述之記憶體結構,Α φ 第一電極包含以鎢填充之一栓結構。 /、 如申料職圍第咖所述之記憶體結構, 一步包合阻障材料包圍該栓結構中之鎢的外表面。 14·如申請專利範圍第陶所述之記憶體結構,其進 :3:Ν·Ρ二極體電性-合至該第一記憶體層結構之 一 15··如f料利範圍第14項所述之記憶體結構,其 一步包合一第一位元線電性耦合至該^^^二極體。 、 一 1&如申請專利範圍第10項所述之記憶體結構,其 該二極體電絲合至該第二記憶體層結構之 π•如申請專利範圍第16項所述之記憶體結構,复 二包第二位元線獅合至該第一記憶體層結構 的該軋化鴿區域與該厂^^二極體間。 再 一牛=8人如申請專利範圍第17項所述之記憶體結構,其進 =^一第三位元線電性耦合至該第二記憶體層結構 之。亥氧化鶴區域。 H 一種具有多記憶體層之記憶體結構,其包含. 一+ 一第一記憶體層結構,其具有一具有主要表面的一第 一電極及—氧化鎢區域,該氧化鎢區域由該第-電極的該 要表面延伸並在該第一電極及該第二電極間電性連 該第一電極具有一栓結構,該栓結構具有一尺寸的一 第一栓部份及具有一尺寸的一第二栓部份,豸第-栓部份 32 200832679彻。酿 ^ 的該尺寸具有比該第二栓部份的該尺寸較小的值,該氧化 鎢區域具有一實質相似於該第一電極之該尺寸的一尺 寸;及 一第二記憶體層結構,具有一具有主要表面的第一電 極及一氧化鎢區域,該氧化鎢區域由該第一電極之該主要 表面延伸至該第二記憶體層結構並在該第二記憶體層結 構之該第一電極與該第二記憶體層結構之該第二電極電 性連接,該第二記憶體層結構之該第一電極具有實質相似 φ 於該第二記憶體層結構之該氧化鎢區域之該尺寸之一尺 寸,在該第二記憶體層結構之該第一電極具有一栓結構, 該栓結構具有一具有一尺寸的一第一栓部份及具有一尺 寸的一第二栓部份,在該第二記憶體層結構之該栓結構中 的該第一栓部份的該尺寸具有比在該第二記憶體層結構 之該栓結構中的該第二栓部份的該尺寸較小的值,該第二 記憶體層結構之該第一電極具有一第一尺寸係實質相似 於在該第二記憶體層結構之該氧化鎢區域的一第一尺寸。 • 20·如申請專利範第19項之記憶體結構,其中該第一 栓部份為自我對準於該第二栓部份。 21. 如申請專利範第20項之記憶體結構,其中該第一 栓部份為非自我對準於該第二栓部份。 22. —種製造記憶體裝置的方法,其包含: 形成一栓結構,其以一阻障材料包圍一栓材料且置於 介電元件間; 蝕刻該栓材料之一頂部份及該阻障材料,其使用一第 33 ;W3061PA 200832679 ▼ 一化學乾蝕刻接著使用一第二化學濕凹槽蝕刻; 形成一介電間隙壁於該蝕刻栓材料的一主要表面上; 使用乾氧電漿去除形成一氧化鎢區域以進入該蝕刻 检材料的該主要表面,及 形成一位元線至該介電間隙壁及在該氧化鎢區域上 方。 23.如申請專利範圍第22項之方法,其中以該第一化 學乾姓刻包括一SF6乾#刻。 • 24.如申請專利範圍第22項之方法,其中該第二化學 凹槽蝕刻包含一使用氯、三氯化硼或氬之阻障等向性蝕 刻。 25. 如申請專利範圍第22項之方法,其中該乾氧電漿 去除包含02/N2或02爪2/112混合化學。 26. 如申請專利範圍第22項之方法,其中該乾氧電漿 去徐包含純氧氣體與包括直電漿、磁場增進反應離子電 漿、或下游電漿之一電漿。 ® 27.如申請專利範圍第22項之方法,其中該位元線包 含位於阻障層上之一位元線。 349. If the claim is for the _ _ 8th ship to find the dragon structure, the further one of the third bit line is electrically coupled to the second memory layer to form the tungsten oxide region. 10. A memory structure having a plurality of memory layers, comprising: a first memory layer structure having a first surface and a tungsten oxide region, the tungsten oxide region extending into the first The main surface of the electrode is connected to the first electrode and the second electrode; and the "% r" is a first memory layer structure coupled to the first memory layer structure, the second memory layer structure has a a first electrode having a major surface and an oxidized crane region, the tungsten oxide region extending into the main surface of the first electrode to the second memory layer structure and the first electrode of the second memory layer structure and the The second electrode of the second memory layer structure is connected. The memory structure of the invention of claim 2, wherein the tungsten oxide region provides a multi-layer function of operation in the first memory layer. 31: W3061PA 200832679, 119. The memory structure of claim 10, wherein the first electrode comprises a plug structure filled with tungsten. /, as described in the application of the memory structure described in the coffee, a step of the barrier material surrounding the outer surface of the tungsten in the plug structure. 14. The memory structure as described in the patent application No. Ditao, the advance: 3: Ν · Ρ diode electrical - combined to one of the first memory layer structure 15 · · f material range 14th The memory structure has a first bit line electrically coupled to the ^^^ diode. The memory structure according to claim 10, wherein the diode wire is coupled to the second memory layer structure, and the memory structure is as described in claim 16 of the patent application. The second strand of the second strand of the lion is combined with the rolling pigeon region of the first memory layer structure and the factory ^^ diode. Further, a cow = 8 persons, such as the memory structure described in claim 17, wherein the third bit line is electrically coupled to the second memory layer structure. The oxidized crane area. A memory structure having a plurality of memory layers, comprising: a + first memory layer structure having a first electrode having a major surface and a tungsten oxide region, the tungsten oxide region being composed of the first electrode Extending the surface and electrically connecting the first electrode and the second electrode to the first electrode to have a plug structure, the plug structure having a first plug portion of a size and a second plug having a size Part, 豸第-栓 part 32 200832679 彻. The size of the brewing ^ has a smaller value than the size of the second plug portion, the tungsten oxide region has a size substantially similar to the size of the first electrode; and a second memory layer structure having a first electrode having a major surface and a tungsten oxide region extending from the major surface of the first electrode to the second memory layer structure and the first electrode and the second memory layer structure The second electrode of the second memory layer structure is electrically connected, and the first electrode of the second memory layer structure has a size substantially similar to the size of the size of the tungsten oxide region of the second memory layer structure. The first electrode of the second memory layer structure has a plug structure having a first plug portion having a size and a second plug portion having a size, in the second memory layer structure The size of the first plug portion in the plug structure has a smaller value than the size of the second plug portion in the plug structure of the second memory layer structure, the second memory layer junction Of the first electrode having a first size based on a first substantially similar to the size of the region of the tungsten oxide layer structure of the second memory. • The memory structure of claim 19, wherein the first plug portion is self-aligned to the second plug portion. 21. The memory structure of claim 20, wherein the first plug portion is non-self-aligned to the second plug portion. 22. A method of fabricating a memory device, comprising: forming a plug structure that surrounds a plug material with a barrier material and disposed between dielectric elements; etching a top portion of the plug material and the barrier material , using a 33rd; W3061PA 200832679 ▼ a chemical dry etch followed by a second chemical wet etch; forming a dielectric spacer on a major surface of the etch plug material; using dry oxygen plasma removal to form a The tungsten oxide region enters the major surface of the etch test material and forms a one-dimensional line to the dielectric spacer and over the tungsten oxide region. 23. The method of claim 22, wherein the first chemical dry name includes an SF6 stem. 24. The method of claim 22, wherein the second chemical groove etch comprises an isotropic etch using a barrier of chlorine, boron trichloride or argon. 25. The method of claim 22, wherein the dry oxygen plasma removal comprises a 02/N2 or 02 claw 2/112 mixed chemistry. 26. The method of claim 22, wherein the dry oxygen plasma comprises a pure oxygen gas and a plasma comprising a direct plasma, a magnetic field enhanced reactive ion plasma, or a downstream plasma. ® 27. The method of claim 22, wherein the bit line comprises a bit line on the barrier layer. 34
TW96102732A 2007-01-24 2007-01-24 Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method TWI329356B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96102732A TWI329356B (en) 2007-01-24 2007-01-24 Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96102732A TWI329356B (en) 2007-01-24 2007-01-24 Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method

Publications (2)

Publication Number Publication Date
TW200832679A true TW200832679A (en) 2008-08-01
TWI329356B TWI329356B (en) 2010-08-21

Family

ID=44818943

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96102732A TWI329356B (en) 2007-01-24 2007-01-24 Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method

Country Status (1)

Country Link
TW (1) TWI329356B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555247B (en) * 2015-01-23 2016-10-21 旺宏電子股份有限公司 Memory structure and manufacturing method of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496146B (en) * 2011-09-23 2015-08-11 Univ Nat Sun Yat Sen Resistance random access memory (rram) structure having a silicon nitride insulation layer
TWI501234B (en) * 2011-09-23 2015-09-21 Univ Nat Sun Yat Sen Resistance random access memory (rram) structure having a silicon oxide insulation layer
US9847478B2 (en) 2012-03-09 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for resistive random access memory (RRAM)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555247B (en) * 2015-01-23 2016-10-21 旺宏電子股份有限公司 Memory structure and manufacturing method of the same
US9515258B2 (en) 2015-01-23 2016-12-06 Macronix International Co., Ltd. Memory structure and manufacturing method of the same

Also Published As

Publication number Publication date
TWI329356B (en) 2010-08-21

Similar Documents

Publication Publication Date Title
US7560337B2 (en) Programmable resistive RAM and manufacturing method
US7569844B2 (en) Memory cell sidewall contacting side electrode
US7595218B2 (en) Programmable resistive RAM and manufacturing method
TWI323937B (en) Memory cell device and manufacturing method
US7879645B2 (en) Fill-in etching free pore device
US7910906B2 (en) Memory cell device with circumferentially-extending memory element
US7397060B2 (en) Pipe shaped phase change memory
US7551473B2 (en) Programmable resistive memory with diode structure
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
US9076964B2 (en) Methods for forming resistance random access memory structure
TWI335662B (en) Memory cell with memory material insulation and manufacturing method
US7816661B2 (en) Air cell thermal isolation for a memory array formed of a programmable resistive material
US7919766B2 (en) Method for making self aligning pillar memory cell device
US20080173931A1 (en) Multilevel-Cell Memory Structures Employing Multi-Memory Layers with Tungsten Oxides and Manufacturing Method
US7510929B2 (en) Method for making memory cell device
US7527985B2 (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
US20080096344A1 (en) Method for Manufacturing a Resistor Random Access Memory with a Self-Aligned Air Gap insulator
US7956344B2 (en) Memory cell with memory element contacting ring-shaped upper end of bottom electrode
TW200832679A (en) Multilevel-cell memory structures employing multi-memory layers with tungsten oxides and manufacturing method
TWI357635B (en) Resistor random access memory cell with reduced ac