TW201009512A - Exposure method, exposure apparatus and device manufacturing method - Google Patents

Exposure method, exposure apparatus and device manufacturing method Download PDF

Info

Publication number
TW201009512A
TW201009512A TW098125770A TW98125770A TW201009512A TW 201009512 A TW201009512 A TW 201009512A TW 098125770 A TW098125770 A TW 098125770A TW 98125770 A TW98125770 A TW 98125770A TW 201009512 A TW201009512 A TW 201009512A
Authority
TW
Taiwan
Prior art keywords
gas
air
temperature
exposure
exposure apparatus
Prior art date
Application number
TW098125770A
Other languages
Chinese (zh)
Inventor
Saburo Kamiya
Shigeru Hagiwara
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW201009512A publication Critical patent/TW201009512A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Abstract

An exposure apparatus which exposes a wafer with an illumination light via a reticle includes a vortex tube which generates a cool gas and a warm gas from a compressed gas injected from a compressed gas supply tube; a flow rate control valve and a Y-shaped joint which mix the cool gas and the warm gas generated from the vortex tube at a variable mixing ratio to output a temperature-controlled gas; and a gas supply duct which supplies the temperature-controlled gas to a heat source or a vicinity thereof. It is possible to perform the local temperature control or the local cooling by the simple mechanism without using any refrigerant or any cooling medium.

Description

201009512 六、發明說明: 【發明所屬之技術領域】 本發明係關於使用溫度控制技術之曝光技術,在進行 構成例如製造半導體元件及液晶顯示器等各種元件時所使 用之曝光裝置之構件之温度控制時所適合者。又,本發明 係關係使用該種曝光技術之元件製造技術。 【先前技術】 在例如半導體元件(電子元件、微型元件)之一製程之微 影製程中,為了將形成於標線片(或光罩等)之圖案轉印曝光 至塗有抗蝕劑之晶圓(或玻璃板等)上,係使用步進機等之一 次曝光型(靜止曝光型)投影曝光裝置或掃描步進機等之掃 也曝光型之投影曝光裝置等之曝光裝置。 於曝光裝置,為將照明光學系統之照明特性及投影光 學系統之成像特性維持於既定狀態、且將標線片、投影光 學系〜統及晶圓之位置關係維持於既定關係,俾以高曝光精 度(定位精度、同步精度等)進行曝光,須將標線片載台及晶 圓載台之温度、以及會對照明特性及成像特性造成影響之 光學構件之溫度維持在目標之温度範圍内。為此,一直以 來,曝光裝置之照明光學系統、標線片載台、投影光學系 統及晶圓載台係設在箱型之收容室内,收容室内被控制在 既定舰度、以降流方式供應通過防塵過滤器之潔淨空氣。 :近亦進订對設置在該收容室内之機構中特別被要 於二度控制精度之部分、例如對進行載台位置測量之雷 射干涉儀之測量用光圭夕止 光路’以降流及/或側流方式供 201009512 應進-步高度的經温度控制之空氣的局部温度控制(例如 參照專利文獻1)。 ’ [專利文獻1]國際公開第2006/〇28188號小冊子 【發明内容】 習知曝光裝置’為進行收容室内局部温度控制之办 • 4,亦和以降流方式供應至收容室全體之空氣同樣的,: • 使取自外氣之空氣及/或流過收容室内後回收之空氣通過 魯例如使用冷媒之冷卻機構及防塵過濾器來生成。 然而,今後為進一步提高曝光精度而增加收容室内欲 進行局部温度控制部分之數目之情形時,若對各部分分別 使用使用冷媒之冷卻機構來進行温度控制的話,則溫度控 制機構將益加複雜化而有維修保養頻度亦變高之虞。 本發明有鑑於此點,其目的在提供一種可在不使用冷 媒之情形下以簡單之機構進行局部溫度控制或冷卻之曝光 技術及使用此曝光技術之元件製造技術。 ❹ 本發明之第1態樣提供一種曝光方法,係以曝光用光 照明圖案,以該曝光用光透過該圖案使物體曝光,其包含: 將氣體注入涡旋管;調整從該渦旋管產生之冷氣與暖氣之 混合比以生成經温度控制之氣體;以及將該經温度控制之 氣體供應至熱源或其附近。[Technical Field] The present invention relates to an exposure technique using a temperature control technique, and performs temperature control of members of an exposure apparatus used for constituting various elements such as semiconductor elements and liquid crystal displays. Suitable for those. Further, the present invention relates to a component manufacturing technique using such an exposure technique. [Prior Art] In a lithography process such as a process of a semiconductor element (electronic component, micro component), in order to transfer a pattern formed on a reticle (or a mask, etc.) to a resist-coated crystal In the circle (or a glass plate or the like), an exposure apparatus such as a one-exposure type (still exposure type) projection exposure apparatus such as a stepper or a scanning exposure type projection exposure apparatus such as a scanning stepper is used. In the exposure apparatus, the illumination characteristics of the illumination optical system and the imaging characteristics of the projection optical system are maintained in a predetermined state, and the positional relationship between the reticle, the projection optical system, and the wafer is maintained in a predetermined relationship, and the exposure is high. Accuracy (positioning accuracy, synchronization accuracy, etc.) is exposed, and the temperature of the reticle stage and the wafer stage, and the temperature of the optical member that affects the illumination characteristics and imaging characteristics must be maintained within the target temperature range. For this reason, the illumination optical system, the reticle stage, the projection optical system, and the wafer stage of the exposure apparatus have been installed in the box-type accommodation room, and the accommodation room is controlled to be installed in a predetermined ship degree, and is supplied with dust in a downflow manner. Clean air from the filter. : Nearly, the part of the mechanism provided in the accommodating chamber is particularly required for the second-degree control accuracy, for example, the measurement of the laser interferometer for measuring the position of the stage is used to reduce the flow and/or Or the lateral flow mode is used for the local temperature control of the temperature-controlled air of the step height of 201009512 (for example, refer to Patent Document 1). [Patent Document 1] International Publication No. 2006/〇28188 [Invention] The conventional exposure apparatus 'is the same as the air supplied to the entire interior of the storage chamber in order to perform local temperature control in the storage chamber. , : • The air taken from the outside air and/or the air recovered after flowing through the storage chamber is generated by a cooling mechanism such as a refrigerant and a dust filter. However, in the future, in order to further increase the exposure accuracy and increase the number of partial temperature control portions in the storage chamber, if the cooling mechanism using the refrigerant is used for temperature control of each portion, the temperature control mechanism will be complicated. And the frequency of maintenance and repair is also high. The present invention has been made in view of the above, and an object thereof is to provide an exposure technique capable of local temperature control or cooling with a simple mechanism without using a refrigerant, and a component manufacturing technique using the exposure technique. A first aspect of the present invention provides an exposure method for illuminating a pattern with an exposure light, and exposing the object through the pattern by the exposure light, comprising: injecting a gas into the vortex tube; adjusting the generation from the vortex tube a mixture of cold air and warm air to generate a temperature controlled gas; and supplying the temperature controlled gas to or near the heat source.

本發明之第2態樣提供一種曝光方法,係以曝光用光 照明圖案’以該曝光用光透過該圖案使物體曝光,其包含: 將氣體注入渦旋管;將從該渦旋管產生之冷氣與暖氣分別 刀為第1及第2冷氣與第1及第2暖氣;視混合了該第J 201009512 冷氣與該第1暖氣之第1氣趙之温度資訊,控制該第1冷 氣及該第1暖氣之流量;將該第丨氣體供應至第1温度控 制區域;以及將混合了該第2冷氣之至少一部分與該第2 暖氣之至少一部分之第2氣體供應至温度之目標控制精度 低於該第1温度控制區域之第2温度控制區域。 本發明之第3態樣提供一種曝光方法,係以曝光用光 照明圖案’以該曝光用光透過該圖案使物體曝光,其包含: 生成藉由使壓縮氣體經由狹缝部喷出時之負壓以吸入周圍 氣體而使流量增加之氣體;以及將該流量增加之氣體供應 至熱源或其附近。 本發明之第4態樣提供一種曝光裝置,係以曝光用光 照明圖案,以該曝光用光透過該圖案使物體曝光,其具備: 渦旋管,藉由從壓縮氣體源注入之壓縮氣體產生冷氣與暖 氣;氣體混合部,將從該渦旋管產生之該冷氣與該暖氣以 可變之混合比混合後輸出經溫度控制之氣體;以及氣體供 應路,將該經温度控制之氣體供應至熱源或其附近。 本發明之第5態樣提供一種曝光裝置,係以曝光用光 照明圖案,以該曝光用光透過該圖案使物體曝光,其具備: 渦旋管,係氣體源注入氣體以產生冷氣與暖氣;第1及第2 分離部,用以將從該渦旋管產生之該冷氣與該暖氣分別分 為第1及第2冷氣與第1及第2暖氣;第1及第2混合部, 分別將該第1冷氣與該第1暖氣加以混合,將該第2冷氣 之至少一部分與該第2暖氣之至少一部分加以混合;溫度 感測器,用以測量從該第1混合部輸出之第1氣體之溫度 201009512 資訊’控制部,係視該温度感測器之測量資訊控制該第1 v乳及u第丨暖氣之流量;第1氣體供應路,用以將該第1 氧體供應至第1温度控制區域;以及第2氣體供應路,用 以將從該第2混合部輸出之第2氣體供應至溫度之目標控 制精度較該第1溫度控制區域低之第2温度控制區域。 本發明之第6態樣提供一種曝光裝置,係以曝光用光 照明圖案’以該曝光用光透過該圖案使物體曝光,其具備: 官線’用以從壓縮氣體源導引壓縮氣體;氣體增幅部,其 包含經由該管線注入該壓縮氣體之注入口、連通於該注入 口之槽部、與該槽部相鄰設置之外氣吸入口、以及噴出從 έ亥槽部流出之氣體與從該外氣吸入口吸入之外氣之嘴出 口;以及氣體供應路,用以將從該氣體增幅部噴出之氣體 供應至熱源或其附近。 本發明之第7態樣提供一種元件製造方法,其包含: 使用本發明之曝光方法或曝光裝置於基板上形成感光層圖 案之動作;以及對形成該圖案之基板進行處理之動作。 根據本發明,藉由使用從壓縮氣體經渦旋管所生成之 經温度控制之氣體、或將壓縮氣體予以增幅之氣體,可在 不使用冷媒之情形下以簡單之機構進行局部温度控制或冷 卻°又’作為壓縮氣體,由於可使用來自一般工場等所具 備之壓縮空氣源等之氣體,因此無須特別具備專用之氣體 壓縮設備等。 【實施形態】 <第1實施形態> 201009512 以下,參照圖1〜圖5説明本發明之第1實施形態之一 例。本實施形態,係在進行由掃描步進機(掃描機)所構成之 掃描曝光型投影曝光裝置(掃描型曝光裝置)之温度控制之 場合,適用本發明者。 圖1係顯示本實施形態之曝光裝置10之部分剖斷圖。 圖1中,曝光裝置10係設置在例如半導體元件製造工場之 無塵至内之地板FL上。曝光裝置10,具備用以產生曝光用 照明光EL(曝光用光)之光源部4、以照明光EL照明標線片 R(光罩)之照明光學系統ILS、吸附保持標線片R移動之標 線片載台RST、以及將標線片尺之圖案之像投影至晶圓 W(基板)上之投影光學系統PLe進一步的,曝光裝置1〇, 具備吸附保持晶圓W移動之晶圓載台WST、包含由統籌控 制曝光裝置10之動作之電腦所構成之主控制裝置2〇的控 制系統(參照圖2)、其他驅動機構、支承機構及感測器類等、 以及用以收納照明光學系統ILS、標線片載台rst、投影光 學系統PL及晶圓載台WST等之箱型的收容室2。此外,主 控制裝置20係配置在收容室2之外側。收容室2内所收容 之照明光學系統ILS、標線片載台RST、投影光學系統PL 及晶圓載台WST等構件,適當的總稱為曝光裝置本體1〇〇〇。 又,曝光裝置10具備用以進行收容室2之内部全體之 空調的整體空調系統。此整體空調系統,具備:通過收容 室2上部之多數個開口 2a將温度受到控制、通過防塵過渡 器(HEPA過濾器、ULPA過濾器等)之潔淨空氣(例如乾燥空 氣)以降流方式供應至收容室2内之主空調裝置8,以及控 201009512 制此動作之主空調控制系統35(參照圖2)。舉—例而言,流 過收容室2内之空氣通過設在收容室2底面之地板fl之多 數個開口(未圖示)流至地板下之管線(未圖示),該管線内之 空氣回到主空調裝置8之氣體回收部而再利用。 以下,於囷1中,以和投影光學系統PL之光軸人乂平 行的取z軸、在與z軸垂直之平面内與圖i之紙面垂直的 轴以和圖1之紙面平行的取γ轴來進行説明。本實 ❹施形態中,掃描曝光時之標線片R及晶圓W之掃描方向係 與γ軸平行之方向(Y方向)。此外,繞χ軸、¥軸、2軸之 旋轉方向亦稱0X、0y、方向。 首先’設置在收容室2外側地板Fl上之光源部4,具 備產生作為照明光EL之ArF準分子雷射(波長i93nm)之雷 射光源(曝光用光源)、將該照明光EIj導至照明光學系統ils 之光束送光光學系統、使照明光EL之剖面形狀成形為既定 形狀之光束成形光學系統。光源部4之照明光EL之射出端 H 通過收容室2之+ γ方向側面上部之開口配置在收容室2 内。又,作為曝光用光源,亦可使用KrF準分子雷射光源(波 長248nm)等之紫外脈衝雷射光源、YAG雷射之高次諧波產 生光源、固體雷射(半導體雷射等)之高次諧波產生裝置、或 水銀燈(i線等)等。 又’配置在收容室2内上部之照明光學系統ILS,例如 特開2001 — 313250號公報(對應美國專利申請公開第2〇〇3 / 0025890號說明書)等所揭示,具備:包含光學積分器(複 眼透鏡、桿狀積分器(内面反射型積分器)、繞射光學元件等) 201009512 等之照度均勻化光學系統、標線片遮簾(皆未圖示)、包含複 數個聚光透鏡之聚光光學系統、及光路彎折鏡等之複數個 光學構件。此等光學構件被支承在照明系統鏡筒6内。照 明光學系統ILS’將照明光杜以大致均—之照度照明以標 線片遮簾規定之標線片r上之y古A。e 乃K上之X方向細長之狹縫狀照明區 域0 形成於標線片R之圖案區域中,照明區域内之圖案之 像係透過兩側遠心且投影倍率石為縮小倍率(例如丨/句之 投影光學系統PL投影而成像於塗有抗蝕劑(感光材料)之晶 圓W上。舉一例而言,投影光學系統pL之視野直徑為 〜30mm程度。 又於圖1之收容室2内之地板FL上透過複數個台座 π設有下部框架12,於下部框架12之中央部固定有平板 狀之基座構:13,於基座構件"上透過例如3處(或4處A second aspect of the present invention provides an exposure method for exposing an object to an exposure light illuminating pattern by transmitting the exposure light through the pattern, comprising: injecting a gas into the vortex tube; and generating the vortex tube from the vortex tube The air-conditioning and heating heaters are the first and second cold air and the first and second heating units respectively; and the temperature information of the first air-conditioning and the first air-conditioning of the first heating is mixed, and the first air-conditioning and the first air-conditioning are controlled. a flow rate of the heating; supplying the second gas to the first temperature control region; and the target control accuracy of supplying the second gas mixed with at least a portion of the second cold air and at least a portion of the second heating to the temperature is lower than The second temperature control region of the first temperature control region. A third aspect of the present invention provides an exposure method of exposing an object to an exposure light illumination pattern by transmitting the exposure light through the pattern, comprising: generating a negative when the compressed gas is ejected through the slit portion Pressurizing a gas that increases the flow rate by inhaling the surrounding gas; and supplying the gas whose flow rate is increased to or near the heat source. According to a fourth aspect of the present invention, there is provided an exposure apparatus which emits an illumination light pattern for exposing an object through the pattern, wherein the vortex tube is provided by a compressed gas injected from a compressed gas source. a gas mixture unit that mixes the cold air generated from the vortex tube with the heating mixture at a variable mixing ratio to output a temperature-controlled gas; and a gas supply path that supplies the temperature-controlled gas to Heat source or its vicinity. A fifth aspect of the present invention provides an exposure apparatus for exposing a pattern to an exposure light, wherein the exposure light passes through the pattern to expose an object, and the method includes: a scroll tube that injects a gas into a gas source to generate cold air and a heating; The first and second separating units divide the cold air generated from the scroll into the first and second cold air and the first and second heating units, respectively, and the first and second mixing units, respectively The first cold air is mixed with the first heating unit, at least a part of the second cold air is mixed with at least a part of the second heating unit, and a temperature sensor is configured to measure the first gas output from the first mixing unit. Temperature 201009512 Information 'Control Department, based on the measurement information of the temperature sensor, controls the flow rate of the 1st v milk and the uth heating; the 1st gas supply path for supplying the 1st oxygen body to the 1st a temperature control region; and a second gas supply path for supplying the second gas output from the second mixing unit to the second temperature control region having a lower target control accuracy than the first temperature control region. A sixth aspect of the present invention provides an exposure apparatus for exposing an object to an exposure light illumination pattern by transmitting the exposure light through the pattern, comprising: an official line for guiding a compressed gas from a compressed gas source; The amplification unit includes an injection port through which the compressed gas is injected, a groove portion that communicates with the injection port, a gas suction port that is disposed adjacent to the groove portion, and a gas that flows out from the channel portion The external air suction port sucks the outlet of the external gas; and the gas supply path for supplying the gas ejected from the gas amplifying portion to the heat source or the vicinity thereof. A seventh aspect of the present invention provides a device manufacturing method comprising: an operation of forming a photosensitive layer pattern on a substrate by using the exposure method or the exposure device of the present invention; and an operation of processing a substrate on which the pattern is formed. According to the present invention, local temperature control or cooling can be performed with a simple mechanism without using a refrigerant by using a temperature-controlled gas generated from a compressed gas through a vortex tube or a gas that amplifies the compressed gas. ° As a compressed gas, since a gas such as a compressed air source provided in a general workshop can be used, it is not necessary to have a special gas compression device. [Embodiment] <First Embodiment> 201009512 Hereinafter, an example of the first embodiment of the present invention will be described with reference to Figs. 1 to 5 . In the present embodiment, the temperature is controlled by a scanning exposure type projection exposure apparatus (scanning type exposure apparatus) composed of a scanning stepper (scanner), and the present inventors apply to the present invention. Fig. 1 is a partial cross-sectional view showing the exposure apparatus 10 of the embodiment. In Fig. 1, an exposure device 10 is disposed, for example, on a floor FL of a semiconductor component manufacturing plant that is dust-free. The exposure device 10 includes a light source unit 4 for generating exposure illumination light EL (exposure light), an illumination optical system ILS for illuminating the reticle R (mask) with illumination light EL, and a absorbing and holding reticle R moving. The reticle stage RST and the projection optical system PLe for projecting the image of the reticle pattern onto the wafer W (substrate), and the exposure apparatus 1 〇, the wafer stage with the adsorption holding wafer W moving The WST includes a control system (see FIG. 2) of the main control device 2 including a computer that controls the operation of the exposure device 10, other drive mechanisms, support mechanisms, sensors, and the like, and a housing for accommodating the illumination optical system. A box-type housing chamber 2 such as an ILS, a reticle stage rst, a projection optical system PL, and a wafer stage WST. Further, the main control unit 20 is disposed on the outer side of the storage chamber 2. The components such as the illumination optical system ILS, the reticle stage RST, the projection optical system PL, and the wafer stage WST housed in the accommodating chamber 2 are collectively referred to as an exposure apparatus main body 适当. Further, the exposure apparatus 10 is provided with an overall air conditioning system for performing air conditioning in the entire interior of the storage chamber 2. The overall air conditioning system includes: a plurality of openings 2a in the upper portion of the storage chamber 2 are used to control the temperature, and the clean air (for example, dry air) through a dustproof transition device (such as a HEPA filter or a ULPA filter) is supplied to the housing in a downflow manner. The main air conditioning unit 8 in the room 2, and the main air conditioning control system 35 (see Fig. 2) that controls the operation of 201009512. For example, the air flowing through the storage chamber 2 flows through a plurality of openings (not shown) provided in the floor fl of the bottom surface of the storage chamber 2 to a pipeline (not shown) under the floor, and the air in the pipeline Returning to the gas recovery part of the main air conditioner 8, it is reused. Hereinafter, in 囷1, the z-axis parallel to the optical axis of the projection optical system PL, and the axis perpendicular to the plane of the i-plane in the plane perpendicular to the z-axis are taken in parallel with the plane of the paper of FIG. The axis is used for explanation. In the embodiment, the scanning direction of the reticle R and the wafer W during scanning exposure is parallel to the γ axis (Y direction). In addition, the direction of rotation around the χ axis, ¥ axis, and 2 axes is also called 0X, 0y, and direction. First, the light source unit 4 provided on the outer floor F1 of the storage chamber 2 is provided with a laser light source (exposure light source) for generating an ArF excimer laser (wavelength i93 nm) as illumination light EL, and directs the illumination light EIj to illumination. The light beam transmitting optical system of the optical system ils forms a beam forming optical system in which the sectional shape of the illumination light EL is formed into a predetermined shape. The emission end H of the illumination light EL of the light source unit 4 is disposed in the storage chamber 2 through the opening of the upper side of the + γ direction of the storage chamber 2. Further, as the light source for exposure, an ultraviolet pulse laser light source such as a KrF excimer laser light source (wavelength: 248 nm), a high-order harmonic light source of a YAG laser, and a solid laser (semiconductor laser, etc.) can be used. Subharmonic generating device, or mercury lamp (i line, etc.). Further, the illumination optical system ILS disposed in the upper portion of the accommodating chamber 2 is disclosed, for example, in Japanese Laid-Open Patent Publication No. 2001-313250 (corresponding to the specification of the U.S. Patent Application Publication No. 2/3,025,890), and includes an optical integrator ( Compound eye lens, rod integrator (inside reflection type integrator), diffractive optical element, etc.) 201009512 Illumination equalization optical system, reticle blind (all not shown), including a plurality of collecting lenses A plurality of optical members such as a light optical system and an optical path bending mirror. These optical members are supported within the illumination system barrel 6. The illumination optical system ILS' illuminates the illumination light with a substantially uniform illumination of y-A on the reticle r specified by the reticle. e is a slit-shaped illumination region 0 in the X direction on K, which is formed in the pattern region of the reticle R, and the image of the pattern in the illumination region is transmitted through both sides of the telecentricity and the projection magnification stone is reduced in magnification (for example, 丨/句The projection optical system PL is projected onto the wafer W coated with a resist (photosensitive material). For example, the projection optical system pL has a field of view diameter of about 30 mm. Also in the housing chamber 2 of FIG. The floor panel FL is provided with a lower frame 12 through a plurality of pedestals π, and a flat base structure 13 is fixed at a central portion of the lower frame 12, for example, three places (or four places) are passed through the base member.

) ° 4支承平板狀之晶圓基座WB,晶圓載台WST 透過工氣軸承裝載在晶圓基座WB之與平面平行之上面 而能移動於x方向、Y方向且繞θΖ方向旋轉。又,於下部 框架12上端,透過圍繞晶圓基座WB配置之例如3處(或4 處等)之防振# 15支承光學系統框架於光學系統框架 16之中央開口配置投影光學系統pL,於光學系統框架w 上圍繞投:光學系統PL固定上部框架17。防振台"及Μ, 舉例而。係、將空氣阻尼與音圈馬達等之電磁式阻尼加 以組。而成之能動型防振裝置。包含防振台"、15與此等 之控制系統(未圖示)之系統’分別構成能動型振動分離系統 201009512 之 AVIS(Active Vibration Isolation System)。 又,於光學系統框架16底面之+ Y方向端部固定有γ 軸雷射干涉儀21 WY,於該底面之+ X方向端部固定有 雷射干涉儀(未圖示)。由此等干涉儀構成之晶圓干涉儀 21W(參照圖2)分別對晶圓載台WST側面之反射面(或移動 • 鏡)照射複數軸之測量用光束,以例如投影光學系統PL側 面之參照鏡(未圖示)為基準,於複數處測量晶圓載台Wst ❹ 之X方向、γ方向位置’將測量值經由圖2之主控制襞置 20供應至晶圓載台驅動系統22W。亦根據此等測量值求出 晶圓載台WST之0X、0y、0Z方向之旋轉角。 又,於圖1之光學系統框架! 6底面,固定有測量晶圓 W上對準標記之位置之離轴之影像處理方式的對準系統 AL、以及包含於晶圓w上之複數個測量點斜入射方式光學 性測量z方向位置(聚焦位置)之照射系統25a與受光系統 25b的自動聚焦感測器(以下,稱AF感測器)25(參照圖 © 將對準系統AL之影像訊號以圖2之訊號處理系統27加以 處理據以求出被檢測標記之位置資訊,此位置資訊被供應 至主控制裝置20’控制裝置20根據此位置資訊進行晶圓w 、準此外將AF感測器25之檢測訊號以訊號處理系 ' 6加以處理據以求出之晶圓W上測量點之焦點位置之資 §透過主控制裝置20被供應至晶圓載台驅動系統22W。 晶圓載台驅動系統2 2 w根據晶圓干涉儀2丨w之測量值 及來自主控制裝置20之控制資訊’透過例如包含線性馬達 24等之驅動機構控制晶圓載台WST之X方向、γ方向之位 11 201009512 置及速度等,並控制0Z方向之旋轉角。再者,晶圓載台驅 動系統22W根據透過AF感測器乃測量之焦點位置之資 訊,透過晶圓載台WST内之z驅動部控制晶圓w之z方 向位置及θχ方向、0y方向之旋轉角,以將晶圓w之表 面對焦於投影光學系統PL之像面。 於晶圓載台WST内,亦裝備有用以測量標線片R之對 準標記以投影光學系統PL形成之像之位置的空間像測量系 ’ 統(未圖示)。主控制裝置2〇根據此空間像測量系統之測量 值進行標線片R之對準。 _ 另一方面,於上部框架17之+ 丫方向上部固定有照明 光學系、’先ILS之照明系統鏡筒6。此外,於上部框架17之 與XY平面平行之上面透過空氣軸承裝載有能於γ方向定 速移動之標線片載台RST。標線片載台RST亦能在上部框 架17上面往X方向移動及往0z方向之旋轉。 又,於上部框架17上面之+ γ方向端部固定有γ軸雷 射干涉儀21RYH面之+ χ方向端部@定有X轴雷射 干涉儀(參照圖12)。由此等干涉儀構成之標線片干涉儀❹ 21R(參照圖2),分別對設於標線片載台RST之移動鏡(或反 射面)照射複數軸之測量用光束,以例如投影光學系統PL 側面之參照鏡(未圖示)為基準,於複數處測量標線片載台 RST之X方向、γ方向位置,將測量值經由圖2之主控制 裝置20供應至標線片載台驅動系統22R。亦可根據此等測 量值求出標線片載台RST之0Z、《9X、0y方向之旋轉角。 標線片載台驅動系、统22R根據標線片干涉儀21R之測量值 12 201009512 及來自主控制裝置20之控制資訊,透過例如包含線性馬達 23等之驅動機構控制標線片載台RST之γ方向速度及位 置、以及X方向之位置及^方向之旋轉角等。此外,針對 標線片干涉儀及標線片载台RST之—配置構造例,將於後 述第2實施形態一邊參照圖12 一邊詳細說明。又,本說明 *書中,將晶圓W及標線片R之對準、及焦點檢測等之測量, ' 適當的稱為測量動作。 0 本實施形態中’晶圓載台驅動系統22W及標線片載台 驅動系統22R為熱源。因此,晶圓載台驅動系統22w及標 線片載台驅動系統22R,舉一例而言,係一起配置在於_γ =向之防振台15附近被光學系統框架16支承之箱狀控制 相30内。X ’控制箱3〇可例如配置在+ γ方向之防振台 15附近等、亦可以上部框架17等加以支承。此場合,亦可 將圖2之AF感測器25及對準系、統AL用之訊號處理系統 26、27等有可能成為熱源之其他裝置配置在控制箱3〇内。 ❹進’的,亦可將控制箱3 〇分為複數個小型之箱。 又,當本實施形態之曝光裝置10為液浸型之情形時, 於投影光學系統PL下端之光學構件下面配置例如環狀之喷 嘴頭(未圖不)’從圖2之液體供應裝置Μ經由未圖示之管 、線及該噴嘴頭將既定液體(純水等)供應至該光學構件與晶 圓門之局。卩的液浸區域。該液浸區域之液體經由未圖示 之管線以圖2之该_ 液體回收裝置29加以回收。包含該嗔嘴 頭、液體供應裝置28及液體回收裝置29之液浸機構,可 使用揭示於例如國際公開第2004/ 053955號小冊子(對應 13 201009512 美國專利申請公開第2005/0259234號)、歐洲專利申請公 開第1420298號說明書、或國際公開第2005/ 122218號;小 冊子(對應美國專利申請公開第2007/ 0291239號)等之液 浸機構。又,若曝光裝置10為乾式之情形時,則無需#痒據 該液浸機構。 又’於圖1之收容室2之例如一Y方向之側面方向配置 有標線片裝載系統(未圖示)及晶圓裝載系統(未圖示)。標線 片裝載系統及晶圓裝載系統係設置在與收容室2分開進行 空調之另一副收容室(未圖示)内,標線片裝載系統及晶圓Z 載系統分別通過收容室2侧面之開口(未圖示)進行標線片r 及晶圓W之更換。 於圖1之曝光裝置10之曝光時’首先進行標線片r及 晶圓W之對準。之後,開始照明光EL對標線片R之照射, 藉由一邊將標線片R之部分圖案透過投影光學系統pL之像 投影至晶圓W上之一個照射區域、一邊將標線片載台玟打 與晶圓載台WST以投影光學系統PL之投影倍率石為迷声 比同步移動(同步掃描)於γ方向之掃描曝光動作,將標線^ R之圖案像轉印至該照射區域。之後,停止照明光el之照 射,並藉由反覆進行透過晶圓載台WST使晶圓w於X方 向、Y方向步進移動之動作、與上述掃描曝光動作以步進 掃描(step & scan)方式將標線片R之圖案像轉印至晶圓力 上之所有照射區域。 其次,本實施形態之曝光裝置10,為了將照明光學系 、’先ILS之照明特性(同調因素(c〇herence仏以的、口值)、昭 201009512 度均句性等)及投影光學系統之成像特性(解析度 既定狀態、且將標線片R、投影光學系統卩 似夺於 m „ 久日日圓W之位 置關係維持於既定關係來以高曝光精度 也咏 萌度、同步牆 度4)進行曝光,具備包含將經溫度控制 承孚空氣以降流° 4 supports the flat wafer base WB, and the wafer stage WST is mounted on the wafer base WB in parallel with the plane through the gas bearing, and is movable in the x direction and the Y direction and rotates in the θ Ζ direction. Further, at the upper end of the lower frame 12, the projection optical system pL is disposed at the central opening of the optical system frame 16 through the anti-vibration #15 supporting optical system frame disposed around the wafer base WB, for example, three (or four) The optical system frame w is surrounded by a projection: the optical system PL fixes the upper frame 17. Anti-vibration table " and Μ, for example. System, electromagnetic damping of air damping and voice coil motors are added. It is a dynamic anti-vibration device. The system including the anti-vibration table ", 15 and the control system (not shown) constitutes the AVIS (Active Vibration Isolation System) of the active vibration separation system 201009512. Further, a γ-axis laser interferometer 21 WY is fixed to the + Y-direction end portion of the bottom surface of the optical system frame 16, and a laser interferometer (not shown) is fixed to the +X-direction end portion of the bottom surface. The wafer interferometer 21W (see FIG. 2) configured by the interferometer respectively irradiates the reflection surface (or the movement mirror) on the side surface of the wafer stage WST with the measurement beam of the plurality of axes, for example, with reference to the side surface of the projection optical system PL. The mirror (not shown) is used as a reference, and the X direction and the γ direction position of the wafer stage Wst ❹ are measured at a plurality of points. The measured value is supplied to the wafer stage drive system 22W via the main control unit 20 of Fig. 2 . Based on these measured values, the rotation angles of the wafer stage WST in the 0X, 0y, and 0Z directions are also obtained. Also, in the optical system frame of Figure 1! 6 bottom surface, an alignment system AL for fixing an off-axis image processing method for measuring the position of the alignment mark on the wafer W, and a plurality of measurement points obliquely incident on the wafer w for optically measuring the z-direction position ( The illumination system 25a of the focus position) and the autofocus sensor (hereinafter referred to as the AF sensor) 25 of the light receiving system 25b (refer to FIG. © the image signal of the alignment system AL is processed by the signal processing system 27 of FIG. To obtain the position information of the detected mark, the position information is supplied to the main control device 20'. The control device 20 performs the wafer w according to the position information, and the detection signal of the AF sensor 25 is further processed by the signal processing system. The information of the focus position of the measurement point on the wafer W is determined to be supplied to the wafer stage drive system 22W through the main control device 20. The wafer stage drive system 2 2 w according to the wafer interferometer 2丨w The measured value and the control information from the main control device 20 control the X direction of the wafer stage WST, the position of the γ direction 11 201009512, and the speed through a driving mechanism including a linear motor 24 or the like, and control the 0Z direction. In addition, the wafer stage driving system 22W controls the z-direction position of the wafer w and the θχ direction, 0y through the z driving unit in the wafer stage WST according to the information of the focus position measured by the AF sensor. The rotation angle of the direction to focus the surface of the wafer w on the image plane of the projection optical system PL. In the wafer stage WST, an image formed by the projection optical system PL for measuring the alignment mark of the reticle R is also provided. The position of the space is measured by the system (not shown). The main control unit 2 aligns the reticle R according to the measured value of the aerial image measuring system. _ On the other hand, the upper frame 17 + 丫The illumination optical system and the illumination system lens barrel 6 of the first ILS are fixed to the upper portion of the direction. In addition, the reticle stage RST capable of moving at a constant speed in the γ direction is loaded through the air bearing on the upper surface of the upper frame 17 parallel to the XY plane. The reticle stage RST can also move in the X direction and in the 0z direction on the upper frame 17. Further, the γ-axis laser interferometer 21RYH surface is fixed at the + γ-direction end of the upper frame 17 χ direction end @定有X轴雷The interferometer (see Fig. 12). The reticle interferometer ❹ 21R (see Fig. 2) constituted by the interferometer respectively irradiates the moving mirror (or the reflecting surface) provided on the reticle stage RST with a plurality of axes. The measuring beam is measured in the X direction and the γ direction of the reticle stage RST at a plurality of reference mirrors (not shown) on the side of the projection optical system PL, and the measured values are passed through the main control device of FIG. 20 is supplied to the reticle stage stage drive system 22R. Based on these measured values, the 0Z of the reticle stage RST and the rotation angle of the 9X and 0y directions can be obtained. The reticle stage stage drive system and the system 22R are based on The measured value 12 201009512 of the reticle interferometer 21R and the control information from the main control device 20 control the gamma directional velocity and position of the reticle stage RST and the position of the X direction by, for example, a drive mechanism including a linear motor 23 or the like. And the rotation angle of the ^ direction. In addition, the arrangement example of the reticle interferometer and the reticle stage RST will be described in detail with reference to Fig. 12 in the second embodiment to be described later. Further, in the present specification, the measurement of the alignment of the wafer W and the reticle R, and the detection of the focus, etc., is appropriately referred to as a measurement operation. In the present embodiment, the wafer stage drive system 22W and the reticle stage drive system 22R are heat sources. Therefore, the wafer stage drive system 22w and the reticle stage stage drive system 22R are arranged together in a box-like control phase 30 that is _γ = supported by the optical system frame 16 in the vicinity of the oscillating table 15 as an example. . The X' control box 3 can be disposed, for example, in the vicinity of the anti-vibration table 15 in the +γ direction, or can be supported by the upper frame 17 or the like. In this case, the AF sensor 25 of Fig. 2 and the signal processing systems 26, 27 for the alignment system, the AL, and other devices that may become heat sources may be disposed in the control box 3A. If you step into it, you can also divide the control box 3 into a plurality of small boxes. Further, when the exposure apparatus 10 of the present embodiment is in a liquid immersion type, a nozzle head (not shown), for example, is disposed on the lower surface of the optical member at the lower end of the projection optical system PL, via the liquid supply device of FIG. A tube, a wire, and the nozzle head, which are not shown, supply a predetermined liquid (pure water or the like) to the optical member and the wafer door. The immersion area of the cockroach. The liquid in the liquid immersion area is recovered by the liquid recovery unit 29 of Fig. 2 via a line (not shown). A liquid immersion mechanism including the boring head, the liquid supply device 28, and the liquid recovery device 29 can be used, for example, in the pamphlet of International Publication No. 2004/053955 (corresponding to 13 201009512 US Patent Application Publication No. 2005/0259234), European Patent A liquid immersion mechanism such as a specification of the publication No. 1420298, or International Publication No. 2005/122218; a booklet (corresponding to US Patent Application Publication No. 2007/0291239). Further, when the exposure apparatus 10 is in the dry state, it is not necessary to use the liquid immersion mechanism. Further, a reticle loading system (not shown) and a wafer loading system (not shown) are disposed in the side direction of the accommodating chamber 2 of Fig. 1, for example, in the Y direction. The reticle loading system and the wafer loading system are disposed in another sub-storage chamber (not shown) that is separate from the accommodating chamber 2 for air conditioning, and the reticle loading system and the wafer Z-loading system pass through the side of the accommodating chamber 2, respectively. The opening (not shown) replaces the reticle r and the wafer W. At the time of exposure of the exposure apparatus 10 of Fig. 1, the alignment of the reticle r and the wafer W is first performed. Thereafter, the illumination light EL is irradiated onto the reticle R, and the reticle stage is placed while projecting a part of the pattern of the reticle R through the projection optical system pL onto one of the irradiation areas on the wafer W. The beating and wafer stage WST transfers the pattern image of the reticle R to the irradiation area by the scanning magnification operation in which the projection magnification of the projection optical system PL is synchronously moved (synchronously scanned) in the gamma direction. Thereafter, the irradiation of the illumination light el is stopped, and the operation of stepwise moving the wafer w in the X direction and the Y direction through the wafer stage WST and the step scanning (step & scan) are performed in the scanning exposure operation. In a manner, the pattern image of the reticle R is transferred to all of the illumination areas on the wafer force. Next, in the exposure apparatus 10 of the present embodiment, in order to illuminate the illumination system, the illumination characteristics of the first ILS (the homologous factor (the value of the coherence), the uniformity of the 201009512 degree, and the projection optical system) Imaging characteristics (the resolution is in a predetermined state, and the reticle R and the projection optical system are similar to m „ The positional relationship of the long-day yen W is maintained at a predetermined relationship to high exposure accuracy, and the degree of synchronization is 4) Exposure, with the inclusion of temperature-controlled air to the downflow

式供應至收容室2内部之主空調裝置8的整體办調系 統。此外,曝光裝置亦具備用以控制或冷卻被要:高溫 度控制精度之部分、及例如控制箱3〇等熱源部分之温度的 局部空調系統。局部空調系統具有第丨局部空調裝置^41及 第2局部空調裝置43,此等係設置在收容室2之上部外側。 又,雖然整體空調系統之至少一部分(本例中係主空調裝置 8及局部空調系統)係設在收容室2之上部,但不限於此, 亦可設於例如收容室2之側部等。 為了對局部空調系統供應空調用空氣,於收容室2之 例如上部(地板下等亦可),配置有供應控制在大致既定温度 範圍、通過防塵過濾器(HEPA過濾器、ULAP過濾器等)之 空氣之空調用空氣(例如乾燥空氣)的空調空氣供應管4〇, 以及供應控制在大致既定温度範圍並經壓縮且通過防塵過 濾器之空氣之壓縮空氣(例如經壓縮之乾燥空氣)的壓縮空 氣供應管42。壓縮空氣供應管42係半導體製造工場等一般 皆有之設備。又’亦可不使用空調空氣供應管4〇,而使用 從主空調裝置8内分出之空調用空氣、或從壓縮空氣供應 管42擷取經減壓之空氣等。 設置將從空調空氣供應管4〇擷取之空氣之温度加以高 精度控制之第1局部空調裝置41,以第1局部空調裝置41 15 201009512The overall system of the main air conditioning unit 8 that is supplied to the inside of the accommodating chamber 2 is provided. Further, the exposure apparatus is also provided with a partial air conditioning system for controlling or cooling the temperature required for the high temperature control accuracy and the temperature of the heat source portion such as the control box 3〇. The local air conditioning system has a second partial air conditioner 41 and a second partial air conditioner 43, which are disposed outside the upper portion of the storage chamber 2. Further, at least a part of the overall air conditioning system (in this example, the main air conditioner 8 and the partial air conditioning system) is provided above the storage compartment 2, but the invention is not limited thereto, and may be provided, for example, on the side of the storage compartment 2. In order to supply the air-conditioning air to the local air-conditioning system, for example, in the upper part (under the floor or the like) of the storage room 2, the supply control is performed in a predetermined temperature range, and the dust filter (HEPA filter, ULAP filter, etc.) is passed. An air conditioning air supply pipe for air conditioning of air (for example, dry air), and compressed air for supplying compressed air (for example, compressed dry air) that controls air at a substantially predetermined temperature range and compressed through a dust filter. Supply tube 42. The compressed air supply pipe 42 is generally a device such as a semiconductor manufacturing factory. Further, the air-conditioning air supplied from the main air-conditioning unit 8 or the decompressed air or the like may be taken from the compressed air supply pipe 42 without using the air-conditioning air supply pipe 4'. The first partial air conditioner 41 that controls the temperature of the air taken from the air-conditioning air supply pipe 4 with high precision is provided, and the first partial air conditioner 41 15 201009512

加以高度温度控制之潔淨空氣經由第1㈣18R及第2導 管卿分別被導至收容室2内之照明光學系統ILS之照明 系統鏡筒6底面之送風部〗QR 4 19R及光學系統框架16底面之送 風部19W。第1局部空網祐罢^ . 工調裝置41,例如係以使用冷媒之壓 縮機進行空氣之温度控制。笼! a_ 又设制。第1局部空調裝置41之温度控 制動作係以圖2之干涉光路命喟批涂丨金 ’兀•路工凋控制系統3 6加以控制。送 風部19R及19W分別配罟太炉始^ 亂置在私線片载台rSt用之γ軸雷射 干涉儀2 1RΥ及晶圓截a 丁田★ v , 岡戟〇 WST用之Y軸雷射干涉儀21WYThe high-temperature-controlled clean air is guided to the air supply part of the illumination system lens barrel 6 of the illumination system ILS in the accommodating chamber 2 via the first (four) 18R and the second catheter lining, QR 4 19R and the air supply of the bottom surface of the optical system frame 16 Department 19W. The first partial air network is used to control the power adjustment device 41, for example, by using a compressor using a refrigerant to control the temperature of the air. cage! A_ is also set up. The temperature control operation of the first partial air conditioner (41) is controlled by the interference optical path of the second embodiment of Fig. 2, which is controlled by the sheet metal 兀 路 路 路 凋 control system. The air supply units 19R and 19W are respectively equipped with a γ-axis laser interferometer 2 1R Υ and a wafer cut-off a D-field v ★ v 私 私 私 私 私 私 私 私 , , , , , , , , , , , , , , , , γ γ γ γ γ γ γ γ γ Interferometer 21WY

之測量用光束之光路上。送風部19R、19w分別將由導管 18R、1請導來之經溫度控制之空氣AR、aw,以均勻之風 速分布採降流方式喷出至測量用光束之光路上。又亦可 以側流方式喷出空氣AR、AW。同樣的,對χ轴雷射干涉 儀之測量用光束之光路亦局部的供應經温度控制之空氣。 據此’即能以標線片干涉儀21R及晶圓干涉儀2iw高精度 的測量標線片載台RST及晶圓載台WST之位置。此外,對The light path of the measuring beam. The air blowing portions 19R and 19w respectively eject the temperature-controlled air AR and aw guided by the ducts 18R and 1 to the optical path of the measuring beam in a uniform wind speed distribution. It is also possible to spray air AR and AW in a side stream manner. Similarly, the optical path of the measuring beam for the x-axis laser interferometer is also partially supplied with temperature-controlled air. According to this, the position of the reticle stage RST and the wafer stage WST can be measured with high precision by the reticle interferometer 21R and the wafer interferometer 2iw. In addition, right

從X軸及γ轴雷射干涉儀(21RX及21RY)照射至標線片載 台RST之測量用光束之光路(65χ及65γ)之空氣ar(ary 及ARX)流動,顯示於後述圖12。 又,設置從擷取自壓縮空氣供應管42之壓縮空氣以較 高精度生成經温度控制之潔淨々空氣之2局部空調裝置43, 來自第2局部空調裝置43之經温度控制之空氣A8透過供 氣導管44喷吹於收容室2内之控制箱3〇側面。第2局部 空調裝置43之温度控制動作以圖2之控制箱空調控制系統 37加以控制。舉一例而言,供氣導管44之前端部分為2個 16 201009512 分歧導管44a及44b,從分歧導管44a及44b分別將經温度 控制之空氣A8喷吹於控制箱30之側面。相於收容室2内 由主空調裝置8以降流供應之空氣之設定温度(例如20〜25 °C内之既定温度),空氣A8之設定温度(目標温度)被設定為 低若干程度(例如數deg)。據此,能抑制含熱源之控制箱30 之温度上昇,提高收容室2内之曝光裝置各部之温度控制 精度,近曰來提高曝光精度等。 以下,參照圖3、圖4詳細說明第2局部空調裝置43 之構成。圖3係顯示第2局部空調裝置43之構成的方塊圖, 圖4係顯示圖3中渦旋管(Vortex Tube)45的剖面圖。 圖3中,第2局部空調裝置43具備壓縮空氣供應管42 與透過管線47連結之渦旋管45。又,於管線47之途中設 有壓力平滑化用之調節器48R及流量控制用之主流量控制 閥48F,於渦旋管45連結有管線49A及50A。渦旋管45, 包含:從壓縮空氣供應管42透過管線47供應壓縮空氣A1 之供應口 45a、將溫度高於壓縮空氣A1之暖氣A3噴出至 管線50A之排氣口 45c、將溫度低於壓縮空氣A1之冷氣 A5喷出至管線49A之排氣口 45d、以及控制暖氣A3與冷 氣A5之流量比及冷氣A5之温度之節流閥46。 如圖4所示,渦旋管45係一圓筒狀構件,於此圓筒狀 構件内之回旋室45b之一方端部設有排氣口 45d,於此附近 之側面設有供應口 45a,於回旋室45b之另一方端部設有用 以調整暖氣A3之流量可伸縮之節流閥46,於節流閥46附 近之端部設有排氣口 45c。此場合,從供應口 45a供應至回 17 201009512 旋室45b内之壓縮空氣A1被分為朝向排氣口 45c側之外側 回旋流的自由渦A2、與朝向排氣口 45d側之内側回旋流的 強制渦A4,自由渦A2之溫度逐漸上昇、強制渦A4之溫度 則逐漸降低。此外,自由渦A2之一部分作為暖氣A3從排 氣口 45c喷出至管線50A,強制渦A4之一部分則作為冷氣 A5從排氣口 45d喷出至管線49A。 一般皆知,藉調整節流閥46可使冷氣A5之温度相對 壓縮空氣A1降低10〜70°C程度。本實施形態中,若設壓縮 空氣A1之温度為例如20°C程度的話,即能生成温度例如為 —50〜10°C程度之冷氣A5。此場合,由於在渦旋管45沒有 可動部分,因此可藉由壓縮空氣之使用,實質上在無需維 修保養之情形下生成冷氣。 使用渦旋管之冷氣之冷凍機例,已揭示於例如特開 2001 — 255023號公報(對應美國專利申請公開第2001/ 0020366 號)、特開 2006— 23010 號公報、特開 2005— 180752 號公報等。本實施形態之不同點在於,不僅是渦旋管之冷 氣而係使用將冷氣與暖氣以可變之混合比加以混合之空 氣。 回到圖3,管線49A中之冷氣A5將經由T型接頭52A 分歧供應至管線49B、49C,管線50A中之暖氣A3則經由 T型接頭52B分歧供應至管線50B、50C。進一步的,管線 49B中之冷氣A7與管線50B中之暖氣A6藉Y型接頭52C 而混合,作為混合氣體(經温度控制之空氣A8)被供應至供 氣導管44,管線49C中之冷氣與管線53D中之暖氣藉T型 18 201009512 接頭52D而混合後供應至排氣導管57。供氣導管44内經温 度控制之空氣A8喷吹於圖1之控制箱30之側面。排氣導 管57中之空氣A9,例如被供應至主空調裝置8而作為空調 空氣加以利用。 又,於管線49B、50B之途中設有第1及第2流量控制 閥53A、53B,管線49C、5 0C之途中設有第3及第4流量 控制閥53C、53D,管線49B、50B之途中則設有用以防止 來自Y型接頭52C之氣體逆流之逆止閥54A、54B。再者, 於管線49A内配置有分別測量冷氣A5之温度及流量之温度 感測器55A及流量感測器56A,於管線50A内配置有分別 測量暖氣A3之温度及流量之温度感測器55B及流量感測器 56B,於供氣導管44内配置有分別測量空氣A8之温度及流 量之温度感測器55C及流量感測器56C。 温度感測器55A〜55C及流量感測器56A〜56C之測量 值係供應至控制箱空調控制系統37,控制箱空調控制系統 37根據該等測量值及主控制裝置20所供應之控制資訊(空 氣A8之設定温度及設定流量等),控制主流量控制閥48F 及流量控制閥53A〜53D之開度(0〜100%)。又,控制箱空 調控制系統37亦可進一步進行調節器48R所供應之空氣壓 及/或渦旋管45之節流閥46之控制(冷氣A5之流量、温 度之控制)。包含上述渦旋管45、管線47、49A〜49C、50A 〜50C、調節器48R、主流量控制閥48F、T型接頭52A、 5 2B、52D、Y型接頭52C、流量控制閥53A〜53D、逆止閥 54入、548、供氣導管44、排氣導管57、温度感測器55入〜 19 201009512The air ar (ary and ARX) radiated from the X-axis and γ-axis laser interferometers (21RX and 21RY) to the optical paths (65χ and 65γ) of the measuring beam of the reticle stage RST is shown in Fig. 12 which will be described later. Further, a local air conditioner 43 for generating temperature-controlled clean air from the compressed air drawn from the compressed air supply pipe 42 is provided, and the temperature-controlled air A8 from the second partial air conditioner 43 is supplied through The air duct 44 is sprayed on the side of the control box 3 in the accommodating chamber 2. The temperature control operation of the second partial air conditioner 43 is controlled by the control box air conditioner control system 37 of Fig. 2 . For example, the front end portion of the air supply duct 44 is two 16 201009512 divergent ducts 44a and 44b, and the temperature-controlled air A8 is blown from the branch ducts 44a and 44b to the side of the control box 30, respectively. The set temperature (target temperature) of the air A8 is set to be lower than the set temperature of the air supplied by the main air conditioner 8 in the accommodating chamber 2 (for example, a predetermined temperature within 20 to 25 ° C) (for example, the number) Deg). As a result, the temperature rise of the control box 30 containing the heat source can be suppressed, the temperature control accuracy of each portion of the exposure apparatus in the storage chamber 2 can be improved, and the exposure accuracy can be improved in the near future. Hereinafter, the configuration of the second partial air conditioner (43) will be described in detail with reference to Figs. 3 and 4 . 3 is a block diagram showing the configuration of the second partial air conditioning unit 43, and FIG. 4 is a cross-sectional view showing the Vortex tube 45 of FIG. In FIG. 3, the second partial air conditioner (43) includes a scroll (45) that connects the compressed air supply pipe (42) to the transmission line (47). Further, a regulator 48R for pressure smoothing and a main flow control valve 48F for flow rate control are provided in the middle of the line 47, and the lines 49A and 50A are connected to the scroll 45. The scroll 45 includes: a supply port 45a for supplying compressed air A1 from the compressed air supply pipe 42 through the line 47, and a discharge port 45c for discharging the heater A3 having a temperature higher than the compressed air A1 to the line 50A, and the temperature is lower than the compression The cold air A5 of the air A1 is ejected to the exhaust port 45d of the line 49A, and the throttle valve 46 for controlling the flow ratio of the heating A3 to the cold air A5 and the temperature of the cold air A5. As shown in Fig. 4, the scroll 45 is a cylindrical member, and an exhaust port 45d is provided at one end portion of the swirl chamber 45b in the cylindrical member, and a supply port 45a is provided on the side surface thereof. The other end of the swirl chamber 45b is provided with a throttle valve 46 for adjusting the flow rate of the heater A3, and an exhaust port 45c is provided at the end portion near the throttle valve 46. In this case, the compressed air A1 supplied from the supply port 45a to the back 17 201009512 in the swirl chamber 45b is divided into a free vortex A2 that circulates toward the outer side of the exhaust port 45c side and a swirling flow toward the inner side toward the exhaust port 45d side. Forced vortex A4, the temperature of the free vortex A2 gradually rises, and the temperature of the forced vortex A4 gradually decreases. Further, a part of the free vortex A2 is discharged as a warm air A3 from the exhaust port 45c to the line 50A, and a part of the forced vortex A4 is discharged as a cool air A5 from the exhaust port 45d to the line 49A. It is generally known that by adjusting the throttle valve 46, the temperature of the cold air A5 can be lowered by 10 to 70 °C with respect to the compressed air A1. In the present embodiment, when the temperature of the compressed air A1 is, for example, about 20 °C, the cold air A5 having a temperature of, for example, -50 to 10 °C can be produced. In this case, since there is no movable portion in the scroll 45, it is possible to generate cold air substantially without the need for maintenance by the use of compressed air. An example of a refrigerating machine using a vortex tube is disclosed in, for example, JP-A-2001-255023 (corresponding to U.S. Patent Application Publication No. 2001/0020366), JP-A-2006-23010, and JP-A-2005-180752 Wait. The present embodiment is different in that air which is a mixture of cold air and warm air at a variable mixing ratio is used not only for the cold air of the scroll. Returning to Fig. 3, the cold air A5 in the line 49A will be supplied to the lines 49B, 49C via the T-joints 52A, and the heating A3 in the line 50A will be supplied to the lines 50B, 50C via the T-joints 52B. Further, the cold air A7 in the line 49B is mixed with the heating A6 in the line 50B by the Y-type joint 52C, and is supplied as a mixed gas (temperature-controlled air A8) to the air supply duct 44, and the cold air and the line in the line 49C. The heating in the 53D is mixed by the T-type 18 201009512 joint 52D and supplied to the exhaust duct 57. The temperature-controlled air A8 in the air supply duct 44 is blown to the side of the control box 30 of Fig. 1. The air A9 in the exhaust duct 57 is supplied to the main air conditioner 8 for example, and is used as air-conditioning air. Further, the first and second flow rate control valves 53A and 53B are provided in the middle of the lines 49B and 50B, and the third and fourth flow rate control valves 53C and 53D are provided in the middle of the lines 49C and 50C, and the lines 49B and 50B are in the middle of the line. There are provided check valves 54A, 54B for preventing backflow of gas from the Y-shaped joint 52C. Further, a temperature sensor 55A and a flow rate sensor 56A for measuring the temperature and flow rate of the cold air A5 are disposed in the line 49A, and a temperature sensor 55B for measuring the temperature and flow rate of the heater A3 is disposed in the line 50A. The flow sensor 56B is provided with a temperature sensor 55C and a flow sensor 56C for measuring the temperature and flow rate of the air A8 in the air supply duct 44. The measured values of the temperature sensors 55A to 55C and the flow sensors 56A to 56C are supplied to the control box air conditioning control system 37, and the control box air conditioning control system 37 controls the information supplied by the main control device 20 based on the measured values ( The set temperature of the air A8, the set flow rate, and the like) control the opening degree (0 to 100%) of the main flow rate control valve 48F and the flow rate control valves 53A to 53D. Further, the control box air-conditioning control system 37 can further control the air pressure supplied from the regulator 48R and/or the throttle valve 46 of the scroll 45 (control of the flow rate and temperature of the cold air A5). The scroll tube 45, the lines 47, 49A to 49C, 50A to 50C, the regulator 48R, the main flow control valve 48F, the T-joints 52A, 5 2B, 52D, the Y-joint 52C, the flow control valves 53A to 53D, Check valve 54 inlet, 548, air supply conduit 44, exhaust conduit 57, temperature sensor 55 into ~ 19 201009512

至排氣導管57側之閥(釋氣閥等)。 55C 及流晉成:a,i gg ς/ς A 〜^ 此外, 接頭 53C、 其次,參照圖5之流程圖説明圖3之第2局部空調裝 置43之一空調動作例。此動作係以控制箱空調控制系統37 加以控制以和曝光裝置10之曝光動作平行實施。又,此動 作不僅可與曝光動作平行實施,亦可與其他動作、例如測❿ 量動作等平行實施,或在曝光裝置1〇之運轉中持續實施。 此時,從調節器48R輸出之空氣之壓力係設定為例如大氣 壓之3〜5倍程度,渦旋管45之節流閥46則係調整為相對 送至圖1之控制箱30之空氣Α8之設定温度(例如丨5〜2〇 c内之既定温度)’冷氣Α5之温度較低、而暖氣八3之温度 較高。此外,空氣Α8之設定流量,舉一例而言,係設定為 小於主流量控制閥48F之開度被設定在中央值(5〇%)附近 時之壓縮空氣Α1之流量。 © 首先,於圖5之步驟101,將第i〜第4流量控制閥53Α 〜53D之開度設定於例如中央值。於其次之步驟丨〇2,將主 流量控制閥48F之開度蚤設定於例如中央值,從壓縮空氣 供應管42透過管線47將壓縮空氣A1導入渦旋管45。據 此’從渦旋管45將冷氣A5供應至管線49A、將暖氣A3供 應至管線50A ’從管線49A被分歧至管線49B之冷氣A7、 與從管線50A被分歧至管線5〇b之暖氣A6即以Y型接頭 20 201009512 52C展口而被供應至供氣導管44。此時,冷氣A5及暖氣 A3中未作為空氣A8使用之部分即經由管線49C、5〇c及 T型接頭52D排至排氣導管57。A valve (exhaust valve, etc.) to the side of the exhaust duct 57. 55C and flow promotion: a, i gg ς / ς A 〜 ^ In addition, the joint 53C, next, an example of the air conditioning operation of the second partial air conditioner 43 of Fig. 3 will be described with reference to the flowchart of Fig. 5 . This action is controlled in parallel with the exposure action of the exposure apparatus 10 by the control box air conditioning control system 37. Further, this operation can be performed not only in parallel with the exposure operation, but also in parallel with other operations such as the measurement operation, or continuously during the operation of the exposure apparatus 1. At this time, the pressure of the air output from the regulator 48R is set to, for example, about 3 to 5 times the atmospheric pressure, and the throttle valve 46 of the scroll 45 is adjusted to be sent to the air port 8 of the control box 30 of FIG. Set the temperature (for example, the predetermined temperature in 丨5~2〇c). The temperature of the cold air Α5 is lower, and the temperature of the heating 八3 is higher. Further, the set flow rate of the air enthalpy 8 is, for example, set to be smaller than the flow rate of the compressed air Α1 when the opening degree of the main flow control valve 48F is set near the central value (5 〇%). © First, in step 101 of Fig. 5, the opening degrees of the i-th to fourth flow control valves 53A to 53D are set to, for example, a central value. In the next step 丨〇2, the opening degree 蚤 of the main flow control valve 48F is set to, for example, a central value, and the compressed air A1 is introduced from the compressed air supply pipe 42 through the line 47 to the vortex tube 45. Accordingly, 'the supply of cold air A5 from the scroll 45 to the line 49A, the supply of the heater A3 to the line 50A' is branched from the line 49A to the cold air A7 of the line 49B, and the heating unit A6 which is branched from the line 50A to the line 5〇b That is, the air supply duct 44 is supplied to the Y-type joint 20 201009512 52C. At this time, the portion of the cold air A5 and the heating A3 that is not used as the air A8 is discharged to the exhaust duct 57 via the lines 49C, 5〇c and the T-joint 52D.

其次’以温度感測器55A、55B及流量感測器56A、56B 測量冷氣A5及暖氣A3之温度及流量,將測量值供應至控 制I目空調控制系統37(步驟1〇3)。進一步的,以温度感測器 55C及流量感測器56c測量供氣導管44内混合氣體之空氣 A8之温度及流量’將測量值供應至控制箱空調控制系統 37(步驟 104)。 之後’控制箱空調控制系統37判斷所測量之空氣A8 之流量是否相對主控制裝置2〇所供應之設定值在預先設定 之容許範圍(設定範圍)内(步驟1〇5)β單該流量在設定範圍 内時即移至步驟107,而當該流量不在設定範圍内時則移至 步驟106。 於步驟106,控制箱空調控制系統37在空氣Α8之流量 少於設定範圍時’將第1及第2流量控制閥53A、53Β之開 度增加第1控制量(例如數% ),並減少第3及第4流量控制 閥53C、53D之開度以抵消該增加分,另一方面,當空氣 A8之流量多於設定範圍時,則將流量控制閥53A、mb之 開度減少該第1控制量,並增加流量控制閥5 3 C、5 3 D之開 度以抵消該減少分。又,亦可取代該第1控制量而使用流 量本身之控制量。 此外’可在重複多數次步驟1〇3〜1〇8之動作後,於步 驟106流量控制閥53 A、53B之至少一方之開度達到既定下 21 201009512 限⑼如_程度)或上限(例如9G%)時,分別將主流量控制 閥48F之開度減少或增加既定量。 θ於其次之步驟107,控制箱空調控制系統”判斷所測 量之空氣A8(混合氣體)之溫度是否相對主控制裝f 2〇所供 應之設定值在預先設定之容許範圍(設定範圍)内。當該温度 在設定範圍内時即回到步驟103反複進行步驟1〇3〜1〇8之 動作。又,當該温度不在設定範圍内時即移至步驟1〇8。 於步驟108’控制箱空調控制系統37在空氣A8之温度 較設定範圍低時’將第i流量控制閥53 A之開度減少第2 © 既定量(例如數%),並增加第2流量控制閥53β之開度以補 償因此(開度減少)而造成之空氣A8之流量減少量。藉由此 冷氣A7與暖氣A6之混合比之控制,空氣A8之流量雖不 會變化,但空氣A8中冷氣A7之比率減少而使空氣A8之 溫度上昇。此時,增加及減少第3及第4流量控制閥53C、 53D之開度,以抵消流量控制閥53A、53B之流量之變化分。 另一方面,當空氣A8之温度高於設定範圍時,即將流 量控制閥53A之開度增加該第2既定量,並減少流量控制 ® 閥53B之開度以抵消因此(開度增加)而造成之空氣as之流 量之增加量。據此,空氣A8之流量雖不會變化,但空氣 A8中冷氣A7之比率增加而使空氣A8之溫度降低。此時, 藉減少及增加流量控制閥53C、53D之開度,以抵消流量控 制閥5 3 A、5 3 B之流量之變化分。此外’亦可取代該第2控 制量而使用流量本身之控制量。之後,進行之動作回到步 驟103,接著’重複步驟1〇3〜1〇8之動作直到主控制裝置 22 201009512 2〇對控制箱空調控制系統37發出空調停止之指示為止。 此時,從渦旋管45喷出之冷氣Α5之溫度較空氣八8之 設定温度低、且暖氣八3之温度較該設定溫度高,因此於步 驟⑽調整冷氣Α7肖暖氣八6之混合比,即能容易的將供 應至圖1之控制箱3 〇之空ϋ A 8 >、θ rir 剌相川之工軋A8之溫度控制在設定範圍内。 本實施形態之曝光裝置10之作用效果等如以下所述。 〇)使用曝光裝置1〇之曝光方法,係以照明光EL照明 參 標線片R,以照明光队透過標線片R之圖案及投影光學系 統PL使晶圓W曝光,其包含將壓縮氣體ai注入滿旋管45 之步驟1〇2、調整從渦旋管45產生之冷氣A·)與暖氣 A3(A6)之混合比以生成經温度控敎空氣A8之步驟1〇7、 108、以及將空氣A8喷吹於收納熱源之控制箱川之側面之 步驟108。 此外’曝光裝置1〇具備第2局部空調裝置43及控制 箱空調控制系、统37,第2局部空調裝i 43#備從壓縮空氣 供應管42注入之壓縮氣體A1來產生冷氣A5與暖氣八3之 渦旋管45、將冷氣A5與暖氣A3以可變之混合比加以混合 以輸出經温度控制之空氣A8之混合機構(管線49B、5〇b、 流量控制閥53A、53B及Y型接頭52c)、以及將空氣a8 供應至控制箱30側面之供氣導管44。如此,以渦旋管45 從壓縮空氣生成冷氣及暖氣,並控制此等冷氣及暖氣之現 合比以生成經温度控制之空氣,即能在不使用冷媒之情形 下以簡單之機構在收容室2内進行局部之温度控制。 再者’由於在半導體元件製造工場等一般皆裝備有壓 23 201009512 縮空氣供應管42,因此能降低第2局部空調裝置杓之製造 成本。 (2) 又,該曝光方法進一步包含藉由流量控制閥53八來 增加或減少冷氣A7之流量並與此平行的藉流量控制閥53B 增加或減少暖氣A6之流量,以控制使用γ型接頭52C混 合之空氣A8之流量的步驟105、1〇6。因此,亦能容易的控 制送至控制箱30之空氣A8之流量。 此外,步驟105、106之流量控制步驟是可省略的。 (3) 又,圖1之供氣導管44(分歧導管44a、44b)之空氣 © A8之噴出口係朝向收納熱源之控制箱3〇之側面配置,而空 氣A8係以開放方式噴吹至控制箱30之側面,因此局部空 調機構之構成簡單。不過,亦可將空氣A8直接送至控制箱 30内之標線片載台驅動系統22R等之熱源。此場合,可另 行設置用以將流過控制箱3 0内之空氣排出之排氣導管。 (4) 又,此實施形態中,雖將熱源收納在控制箱30内, 但亦可將例如圖2之線性馬達23、24或標線片干涉儀21R、Next, the temperature and flow rate of the cold air A5 and the warm air A3 are measured by the temperature sensors 55A and 55B and the flow sensors 56A and 56B, and the measured values are supplied to the control I-air air-conditioning control system 37 (step 1〇3). Further, the temperature and flow rate of the air A8 of the mixed gas in the air supply conduit 44 are measured by the temperature sensor 55C and the flow sensor 56c. The measured value is supplied to the control box air conditioning control system 37 (step 104). Then, the control box air-conditioning control system 37 determines whether the measured flow rate of the air A8 is within a predetermined allowable range (set range) relative to the set value supplied by the main control unit 2 (step 1〇5). When the setting range is within, the process moves to step 107, and when the flow rate is not within the set range, the process moves to step 106. In step 106, the control box air-conditioning control system 37 increases the opening degree of the first and second flow rate control valves 53A, 53A by the first control amount (for example, several %) when the flow rate of the air volume 8 is less than the set range, and reduces the number of 3 and the fourth flow control valves 53C, 53D open to offset the increase, and when the flow rate of the air A8 is greater than the set range, the opening of the flow control valves 53A, mb is reduced by the first control The amount and the opening of the flow control valve 5 3 C, 5 3 D are increased to offset the decrease. Further, the control amount of the flow rate itself may be used instead of the first control amount. In addition, after the operations of the plurality of steps 1〇3 to 1〇8 are repeated, the opening degree of at least one of the flow control valves 53 A, 53B in step 106 reaches a predetermined limit of 21 201009512 (9) such as _ degree or upper limit (for example) At 9 G%), the opening degree of the main flow control valve 48F is reduced or increased by a predetermined amount. θ In the next step 107, the control box air conditioning control system determines whether the measured air A8 (mixed gas) temperature is within a predetermined allowable range (set range) relative to the set value supplied by the main control unit f 2 . When the temperature is within the set range, the process returns to step 103 to repeat the operations of steps 1〇3 to 1〇8. Further, when the temperature is not within the set range, the process moves to step 1〇8. In step 108' control box When the temperature of the air A8 is lower than the set range, the air-conditioning control system 37 reduces the opening degree of the i-th flow rate control valve 53 A by a second amount (for example, several %), and increases the opening degree of the second flow rate control valve 53β. The amount of flow reduction of the air A8 caused by the compensation (reduction in opening degree) is controlled by the mixing ratio of the cold air A7 and the heating A6, and the flow rate of the air A8 does not change, but the ratio of the cold air A7 in the air A8 is reduced. The temperature of the air A8 is increased. At this time, the opening degrees of the third and fourth flow rate control valves 53C, 53D are increased and decreased to offset the change in the flow rate of the flow rate control valves 53A, 53B. On the other hand, when the air A8 is Temperature is higher than the setting range That is, the opening degree of the flow control valve 53A is increased by the second predetermined amount, and the opening degree of the flow control valve 53B is decreased to offset the increase in the flow rate of the air as caused by the increase in opening degree. Accordingly, the air A8 Although the flow rate does not change, the ratio of the cold air A7 in the air A8 is increased to lower the temperature of the air A8. At this time, the opening of the flow control valves 53C, 53D is reduced and increased to offset the flow control valve 53 A, 5 3 The change in the flow rate of B. In addition, the control amount of the flow rate itself may be used instead of the second control amount. Thereafter, the operation proceeds back to step 103, and then the steps of steps 1〇3 to 1〇8 are repeated. Until the main control device 22 201009512 2〇 gives an instruction to the control box air-conditioning control system 37 to stop the air-conditioning. At this time, the temperature of the cold air Α 5 ejected from the vortex tube 45 is lower than the set temperature of the air 八8, and the heating 八3 The temperature is higher than the set temperature. Therefore, in step (10), the mixing ratio of the cold air Α7 xiao heating 八6 is adjusted, that is, the space supplied to the control box 3 of Fig. 1 can be easily arbitrarily A 8 >, θ rir 剌相川The temperature control of the work rolling A8 is set The operation and effect of the exposure apparatus 10 of the present embodiment are as follows. 〇) Using the exposure method of the exposure apparatus 1 , the illumination light EL is used to illuminate the reference line R to illuminate the light beam through the reticle The pattern of R and the projection optical system PL expose the wafer W, which includes the step of injecting the compressed gas ai into the full coil 45, adjusting the cold air A·) generated from the scroll 45, and the heating A3 (A6). The mixing ratio is performed by the steps 1 to 7, 108 for generating the temperature-controlled air A8, and the step 108 of blowing the air A8 to the side of the control box for accommodating the heat source. Further, the exposure device 1 is provided with the second partial air conditioner 43. And the control box air conditioning control system, the system 37, the second partial air conditioning unit i 43# prepares the compressed air A1 injected from the compressed air supply pipe 42 to generate the cold air A5 and the heating VIII vortex 45, the cold air A5 and the heating A3 Mixing means for outputting the temperature-controlled air A8 (lines 49B, 5〇b, flow control valves 53A, 53B and Y-joints 52c) in a variable mixing ratio, and supplying air a8 to the side of the control box 30 Air supply conduit 44. In this way, the vortex tube 45 generates cold air and heating from the compressed air, and controls the ratio of the cold air and the heating to generate the temperature-controlled air, that is, the simple mechanism can be used in the accommodating chamber without using the refrigerant. Local temperature control is performed within 2. Furthermore, since the air supply pipe 42 is generally equipped with a pressure 23 201009512 in a semiconductor component manufacturing factory, the manufacturing cost of the second partial air conditioner can be reduced. (2) Further, the exposure method further includes increasing or decreasing the flow rate of the cold air A7 by the flow control valve 53 and increasing or decreasing the flow rate of the heating A6 by the flow control valve 53B in parallel to control the use of the γ-type joint 52C. Steps 105, 1〇6 of the flow rate of the mixed air A8. Therefore, the flow rate of the air A8 sent to the control box 30 can also be easily controlled. Furthermore, the flow control steps of steps 105, 106 can be omitted. (3) Further, the air outlets of the air supply ducts 44 (the branch ducts 44a and 44b) of Fig. 1 are disposed toward the side of the control box 3 收纳 accommodating the heat source, and the air A8 is blown to the control in an open manner. The side of the box 30 is such that the configuration of the local air conditioning mechanism is simple. However, the air A8 can also be directly sent to the heat source of the reticle stage driving system 22R or the like in the control box 30. In this case, an exhaust duct for discharging the air flowing through the control box 30 may be additionally provided. (4) Further, in this embodiment, although the heat source is housed in the control box 30, for example, the linear motor 23, 24 or the reticle interferometer 21R of Fig. 2,

Q 晶圓干涉儀21W之雷射光源視為熱源,而對此等熱源吹送 來自供氣導管44之經温度控制之空氣。 其次,說明上述實施形態之變形態樣。首先,參照圖 6(A)及(Β)説明第1變形態樣。此第1變形態樣中雖仍使用 圖3之第2局部空調裝置43,但圖1之曝光裝置10之控制 箱30以散熱裝置方式加以冷卻之點則不同。 [第1變形形態] 此變形形態,係顯示將第1實施形態之曝光裝置之控 24 201009512 制箱3〇之局部空調之方式加以變更 之相異點為中心 以第1實施形態 進仃忒明,除此外之部分由於盥 形態相同因此省略其q ' 1實施 1嗒其忒明。圖6(A)係顯示包含筮 樣之控制箱30之主要μ 匕3第1變形態 之 IB線的:二構成的圖、圖6⑻係沿圖6㈧The laser source of the Q wafer interferometer 21W is regarded as a heat source, and the heat source blows the temperature-controlled air from the air supply duct 44. Next, a modification of the above embodiment will be described. First, the first modification will be described with reference to Figs. 6(A) and (Β). In the first modification, the second partial air conditioner (43) of Fig. 3 is used. However, the control box 30 of the exposure apparatus 10 of Fig. 1 is cooled by the heat sink. [First Modification] This modification is based on the difference between the partial air conditioners in which the local air conditioner of the control unit 24 201009512 of the exposure apparatus of the first embodiment is changed, and the first embodiment is described. In addition to the other parts, since the 盥 form is the same, its q '1 implementation is omitted. Fig. 6(A) shows the IB line including the first modification of the main μ 匕 3 of the control box 30 of the sample: Fig. 6 (8) is along the line of Fig. 6 (8)

ά體3 0Α内虚之相狀 。圖同樣的收納有標線片载台驅動系餅㈣ 等之熱源,於筐體3〇a 、、 R 罢划㈧低面上固疋有溥型箱狀之散埶裝The corpus callosum 3 0 Α 之 之 。. In the same manner, the heat source such as the reticle stage drive system cake (4) is housed, and the box body is fixed on the low surface of the casing 3〇a and R (eight).

° 。如圖6(B)所示,散熱裝置部58之内部被古低不、n 夕公眩4«= e U冲极间低不同 c、58d、58e分隔為端部連通之第i、、 3及第4空間,於各弓 第 之散轨/ 有多數之小型角柱狀 声散…、片59。又’於散熱裝置部58之第^間前面設有供 矶口 583、第4空間前面設有排氣口 58b。此外,來自圖; 之第2局部空調裝置43之供氣導管44經由筐體取側面 之開口連結於供氣口 58a’例如連結於圖1之主空調裝置8 之氣體回收部之排氣導管6〇,經由箧體30A側面之另一開 口連結於排氣口 58b。 此第1變形態樣,在進行控制箱3〇之局部空調(冷卻) 時’以圖1之第2局部空調裝置43生成之經温度控制之空 氣A8 ’經由供氣導管44被供應至圖6(A)之控制箱3〇内之 散熱裝置部58之供氣口 58a。所供應之空氣A8,在如箭頭 B1〜B4所示般彎曲通過散熱裝置部58内設有多數散熱片 59之4個空間後,如箭頭B5所示從排氣口 5讣經由排氣導 管60被回收。據此,即能有效的冷卻控制箱30。又,此第 1變形態樣中,亦可取代供氣導管44及排氣導管6〇而使用 25 201009512 具有可撓性之管線。 [第2變形形態] 此變形形態,係將第1實施形態之曝光裝置之控制箱 30 以變更’並變更了局部空調之方式。參照此變 t L樣之圖7説明如下。又,以和第i實施形態之相異點 為中心進行説明’除此以外之部分由於與帛ι實施形態相 同因此省略其説明。此第2變形態樣亦仍使用圖3之第2 局4工調裝置43,但不同處在於取代圖1之曝光裝置1〇之 控制相3G,而使用圖7之包含2個空間之控制箱嫩。 ❹ a圖7係顯不包含該第2變形態樣之控制箱30A之主要 P位之構成的剖面圖。目7中控制箱撤之筒狀營體川 之内部,係透過具有間隙之分隔板262被分隔為大空間之 第1至C1、以及在此第1室C1 ;£面側之小空間之第2室 於第1至c 1内收納標線片載台驅動系統22R、晶圓載 台駆動系統22W等之熱源。又,控制箱3〇A之底面係透過 ^熱傳導率小之材料(例如陶請構成之平板狀隔熱板i6i ,於防振台15上,於第uC2之端部底面設有筒狀之❹ ^導管部30Ac。此外,於控制箱3〇A之第2室c2之側 面開口,連結圖1之第2局部空調裝置43之供氣導管44 之噴出口。 加此第2變形態樣,於曝光裝置之曝光時,從圖丨之主 空調裴置8以降流方式送來之經温度控制之空氣Bu、° . As shown in Fig. 6(B), the inside of the heat dissipating device portion 58 is divided into the i-th, the third end of the end portion by the difference between c, 58d, and 58e. And the 4th space, the scattered track in each bow / a small number of small angular columnar sounds..., piece 59. Further, a supply port 583 is provided in front of the second portion of the heat sink unit 58 and an exhaust port 58b is provided in front of the fourth space. Further, the air supply duct 44 of the second partial air conditioner (43) is connected to the air supply port 58a' via the opening of the casing side, for example, to the exhaust duct 6 of the gas recovery part of the main air conditioner 8 of Fig. 1. The 〇 is connected to the exhaust port 58b via another opening on the side of the body 30A. In the first modification, when the local air conditioner (cooling) of the control box 3 is performed, the temperature-controlled air A8' generated by the second partial air conditioner (43) of Fig. 1 is supplied to the air supply duct 44 via Fig. 6 The air supply port 58a of the heat sink unit 58 in the control box 3 of (A). The supplied air A8 is bent through the four spaces in which the plurality of fins 59 are provided in the heat sink portion 58 as indicated by arrows B1 to B4, and then exhausted from the exhaust port 5 through the exhaust duct 60 as indicated by an arrow B5. Be recycled. According to this, the control box 30 can be effectively cooled. Further, in the first modification, the air supply duct 44 and the exhaust duct 6〇 may be used instead of the flexible pipe of 2010 201012. [Second Modification] This modification is a mode in which the control box 30 of the exposure apparatus according to the first embodiment is changed and the local air conditioner is changed. Referring to Fig. 7 of this variable t L, the following is explained. In addition, the description will be made focusing on the difference from the i-th embodiment. The other portions are the same as the embodiment of the first embodiment, and thus the description thereof will be omitted. The second modification also uses the second office 4 adjustment device 43 of FIG. 3, but the difference is that instead of the control phase 3G of the exposure apparatus 1 of FIG. 1, the control box including two spaces of FIG. 7 is used. soft. Fig. 7 is a cross-sectional view showing the configuration of the main P bit of the control box 30A which does not include the second modification. The inside of the tubular trunk body of the control box is removed from the first to the first space of the large space through the partition plate 262 having the gap, and the small space on the side of the first chamber C1; In the second chamber, the heat source such as the reticle stage driving system 22R and the wafer stage raking system 22W is housed in the first to c1. Further, the bottom surface of the control box 3A is transmitted through a material having a small thermal conductivity (for example, a flat heat shield i6i made of ceramics), and a cylindrical shape is provided on the bottom surface of the end portion of the uC2 on the vibration isolating table 15. The duct portion 30Ac is opened on the side surface of the second chamber c2 of the control box 3A, and is connected to the discharge port of the air supply duct 44 of the second partial air conditioner (43) of Fig. 1. With the second modification, When the exposure device is exposed, the temperature-controlled air Bu sent from the main air conditioning device 8 of the figure is down-flowed.

Bl2,從圖7之控制箱30A之筐體3〇Aa上部之開口 3〇从 流入第1室cn。空氣BU、B12在流過第i室ci内熱源之 26 201009512 周圍後,如箭頭B13所示,從分隔板262之間隙流入第2 室C2之端部。與此動作平行的,以圖i之第2局部空調裝 置43生成之經温度控制之空氣A8,經由圖7之供氣導管 44從筐體30Aa之開口被供應至第…2。而流過第2室 C2之空氣A8在與流過第!室〇之空氣bu、bi2$流後, 如箭頭B14所示,從排氣導管部3〇Ac排至筐體3〇α&外。 如此’藉主空調裝置8之降流與第2局部空調裝置Μ進行 之局部空調之併用,即能有效率的冷卻控制箱3〇a。又,此 第2變形態樣,亦可將從排氣導管部3〇Ac排出之空氣經 由管線(未圖示)直接回收至圖丨之主空調裝置8之氣體回收 部、或排出至收容室2外部。此外,帛1實施形態及第i 變形態樣中,皆可為了避免被供應至控制箱3〇之空氣在收 容室2内部擴散,而將該空氣回收至氣體回收部或排出 至收容室外部。 <第2實施形態> 接著,參照圖8〜圖12説明本發明之曝光裝置之第2 實施形態。如圖8所示’本實施形態之曝光裝置5〇〇亦與 第1實施形態之曝光裝置同樣的係掃描曝光型之投影曝光 裝置(掃描型曝光裝置)’為了將照明光,學系統ILS之照明特 性及投影光學系統之成像特性維持於既定狀態且將標線 片R、投影光學系統PL及晶圓w之位置關係維持於既定關 係而以高曝光精度進行曝光,具備整體空調系統,此整體 空調系統包含將經温度控制之潔淨空氣以降流方式供應至 收容室2内部之主空調裝置8。第2實施形態之曝光裝置雖 27 201009512 亦係在收容至2内實施局部温度控制,但與第1實施形態 主要不同點在於,此實施形態之曝光裝置5〇〇中取代第2 局部空調裝置43而設置第3局部空調裝置ι43,以第3局 部空調裝置143將温度控制及流量受到限制之氣體導入照 明系統鏡筒6内部及其下方。以下’以第2實施形態特有 之曝光裝置之構造及動作為中心進行説明,與第1實施形 態相同之曝光裝置之構造及動作則省略説明。 如圖8所示,曝光裝置500設有將擷取自空調空氣供 應管40之空氣之温度以高精度控制之第}局部空調裝置 © 41 ’以第1局部空調裝置41將高度的經溫度控制之潔淨空 氣經由第1導管18R及第2導管18w,分別導向收容室2 内照明光學系統ILS之照明系統鏡筒6底面之送風部19R 及光學系統框架16底面之送風部19W。第1局部空調裝置 41之温度控制動作係以圖9之干涉光路空調控制系統36加 以控制。送風部19R及19W分別配置在標線片載台RST用 之雷射干涉儀21RY等及晶圓載台WST用之雷射干涉儀 21WY等之測量用光束之光路上。送風部19R,如圖Η所 〇 示,對從雷射干涉儀21RY及21RX照射至標線片載台RST 之測量用光束之光路65Y及65X上,分別將從導管18R導 來之經溫度控制之空氣ARY及ARX以降流方式且均勻之風 速分布噴出。空氣ARY及ARX在圖8中係以空氣AR統一 表示。 圖8之送風部19W,將從導管18w導來之經温度控制 之空氣AW以均勻之風速分布以降流方式喷出至測量用光 28 201009512 束之光路上。又,亦可以側流方式噴出空氣AR、AW。其 結果,即能以標線片干涉儀21R及晶圓干涉儀21W高精度 測量標線片載台RST及晶圓載台WST之位置。 又,亦設有將從壓縮空氣供應管42擷取之壓縮空氣以 較高精度且不同之精度生成經温度控制之潔淨之二空氣 A28及A29之第3局部空調裝置143。第3局部空調裝置 143具備用以分別供應空氣A28及A29之供氣導管44F及Bl2 flows into the first chamber cn from the opening 3 of the upper portion 3A of the casing 3A of the control box 30A of Fig. 7 . The air BU and B12 flow around the heat source 26 201009512 in the i-th chamber ci, and then flow from the gap of the partition plate 262 to the end of the second chamber C2 as indicated by an arrow B13. In parallel with this operation, the temperature-controlled air A8 generated by the second partial air conditioning unit 43 of Fig. i is supplied from the opening of the casing 30Aa to the second portion via the air supply duct 44 of Fig. 7 . And the air A8 flowing through the second room C2 is flowing with the first! After the air bu and bi2$ flow in the chamber, as indicated by an arrow B14, the exhaust duct portion 3〇Ac is discharged to the outside of the casing 3〇α & Thus, the combination of the downflow of the main air conditioner 8 and the local air conditioner of the second partial air conditioner , can effectively cool the control box 3〇a. Further, in the second modification, the air discharged from the exhaust duct portion 3AAc can be directly recovered to the gas recovery portion of the main air conditioner 8 of the drawing or discharged to the storage chamber via a line (not shown). 2 external. Further, in the 帛1 embodiment and the i-th modification, in order to prevent the air supplied to the control box 3 from diffusing inside the accommodation chamber 2, the air may be recovered to the gas recovery portion or discharged to the outside of the storage chamber. <Second Embodiment> Next, a second embodiment of the exposure apparatus of the present invention will be described with reference to Figs. 8 to 12 . As shown in FIG. 8 , the exposure apparatus 5 of the present embodiment is also a scanning exposure type projection exposure apparatus (scanning type exposure apparatus) similar to the exposure apparatus of the first embodiment, in order to illuminate the light, the system ILS The illumination characteristics and the imaging characteristics of the projection optical system are maintained in a predetermined state, and the positional relationship between the reticle R, the projection optical system PL, and the wafer w is maintained in a predetermined relationship and exposed with high exposure accuracy, and the overall air conditioning system is provided. The air conditioning system includes a main air conditioning unit 8 that supplies temperature-controlled clean air to the interior of the containment chamber 2 in a downflow manner. In the exposure apparatus of the second embodiment, 27 201009512, the local temperature control is performed in the storage unit 2, but the main difference from the first embodiment is that the second local air conditioner 43 is replaced by the exposure apparatus 5 in the embodiment. On the other hand, the third partial air conditioner ι43 is installed, and the third partial air conditioner 143 introduces a gas whose temperature control and flow rate are restricted into the inside and below of the illumination system barrel 6. The structure and operation of the exposure apparatus which is unique to the second embodiment will be mainly described below, and the structure and operation of the exposure apparatus which are the same as those of the first embodiment will not be described. As shown in FIG. 8, the exposure apparatus 500 is provided with a partial air conditioner #41' that controls the temperature of the air taken from the air-conditioning air supply pipe 40 with high precision, and the temperature is controlled by the first partial air conditioner 41. The clean air is guided to the air blowing portion 19R on the bottom surface of the illumination system lens barrel 6 of the illumination optical system ILS in the storage chamber 2 and the air blowing portion 19W on the bottom surface of the optical system frame 16 via the first duct 18R and the second duct 18w. The temperature control operation of the first partial air conditioning unit 41 is controlled by the interference optical path air conditioning control system 36 of Fig. 9. The air blowing portions 19R and 19W are disposed on the optical path of the measuring beam such as the laser interferometer 21RY for the reticle stage RST and the laser interferometer 21WY for the wafer stage WST. The air blowing portion 19R, as shown in Fig. ,, controls the temperature of the optical paths 65Y and 65X of the measuring beam from the laser interferometers 21RY and 21RX to the reticle stage RST, respectively, from the conduit 18R. The air ARY and ARX are sprayed in a downflow manner and a uniform wind speed distribution. Air ARY and ARX are represented in Figure 8 by air AR. The air blowing portion 19W of Fig. 8 discharges the temperature-controlled air AW guided from the duct 18w at a uniform wind speed in a downflow manner to the optical path of the measuring light 28 201009512. Further, the air AR and AW may be ejected in a side stream manner. As a result, the position of the reticle stage RST and the wafer stage WST can be accurately measured by the reticle interferometer 21R and the wafer interferometer 21W. Further, a third partial air conditioner 143 for generating the temperature-controlled clean air A28 and A29 with high precision and different precision from the compressed air drawn from the compressed air supply pipe 42 is also provided. The third partial air conditioner 143 is provided with an air supply duct 44F for supplying air A28 and A29, respectively.

44R。此場合,從第3局部空調裝置143經由供氣導管44R 將空氣A29供應至照明光學系統ILS之照明系統鏡筒6内 部,流過照明系統鏡筒6内之空氣透過例如未圖示之排氣 導官被回收至主空調裝置8之氣體回收部。因此,供氣導 管44R之前端貫通照明系統鏡筒6之壁面。如圖8所示, 於照明系統鏡筒6内收容有使來自聚光光學系統之第j聚 光透鏡(未圖不)之光反射之光路彎折鏡]^1£及第2聚光透鏡 CL。 於照明系統鏡筒6之第2聚光透鏡CL下方安裝有開口 徑逐漸變小之圓筒構件6 1,並以圍繞標線片載台RST上之 私線片R之方式固定有逐漸擴張之罩部62。圓筒構件61 係配置成圍繞照明光EL之光路。罩部62,如圖12所示, 包含於Y方向挾著標線片R之一對逐漸擴張之平板狀罩片 62YA、62YB、以及在此等罩片62γΑ、62γΒ内側於將χ 方向挾著標線片R之一對逐漸擴張平板狀罩片62χΑ、 62ΧΒ。圖 12 中,亦顯不 了罩片 62γΑ、62γΒ、62χΑ、62χΒ、 與標線片載台RST及標線片干涉儀21R之配置關係。圖l2 29 201009512 中,雷射干涉儀21RY對配置在標線片載台RST之十γ方 向端邛2處之由回反射器構成之移動鏡2ΐΜγ照射測量用 光束,雷射干涉儀21RX則對固定在標線片載台RST2 + x 方向端部之棒狀移動鏡21MX照射複數軸之測量用光束。 雷射干涉儀21RX' 21RY以例如投影光學系統pL側面之參 照鏡(未圖示)為基準,於複數處測量標線片載台RST之X 方向、Y方向之位置,將測量值經由圖9之主控制裝置2〇 供應至標線片載台驅動系統22R。又,亦可取代移動鏡 21MY、21Μχ而使用標線片載台RST側面之反射面。 ⑩ 圖12所示之構造中’即使在掃描曝光時標線片載台 RST於γ方向來回移動’圓筒構件61下端之開口亦會在以 4個罩片62YA、62YB、62XA、62XB之上端部所圍繞之矩 形區域之上部移動。於圓筒構件之一γ方向上端形成有 矩形之缺口部61a。 回到圖9 ’從第3局部空調裝置143經由供氣導管44F 將更高精度經温度控制之空氣A29供應至圓筒構件61之缺 口部61a(參照圖12^空氣A29以降流方式從圓筒構件61❿ 内部流至標線片R上面之罩部62。之後,空氣A28如圖12 之箭頭64A〜64D所示,從罩片62YA、62YB、62XA、62XB 之間隙流出至外側’在流過地板FL側後被回收至主空調裝 置8之氣體回收部。 相對於收容室2内從主空調裝置8以降流方式供應之 空氣之設定温度(例如20〜25t:内之既定温度),空氣A28 及A29之設定温度(目標温度)係設定為相同溫度。不過,從 30 201009512 以降流方式供應之空氣設定温度之容許範圍 二氣A29之容許範圍被設定得較窄,空氣a2844R. In this case, the air A29 is supplied from the third partial air conditioner 143 to the illumination system barrel 6 of the illumination optical system ILS via the air supply duct 44R, and the air flowing through the illumination system barrel 6 is transmitted through, for example, an exhaust gas not shown. The guide is recycled to the gas recovery section of the main air conditioner 8. Therefore, the front end of the air supply duct 44R penetrates the wall surface of the illumination system barrel 6. As shown in FIG. 8, an optical path bending mirror for reflecting light from a j-th collecting lens (not shown) of the collecting optical system is accommodated in the illumination system lens barrel 6 and a second collecting lens. CL. A cylindrical member 161 having a gradually smaller opening diameter is mounted under the second condensing lens CL of the illumination system lens barrel 6 and is gradually expanded to surround the private wire R on the reticle stage RST. Cover portion 62. The cylindrical member 61 is disposed to surround the optical path of the illumination light EL. As shown in FIG. 12, the cover portion 62 includes a flat cover piece 62YA, 62YB which is gradually expanded in the Y direction next to one of the reticle R, and the inside of the cover piece 62γΑ, 62γΒ in the direction of the χ One of the reticle R is gradually expanded by the flat cover sheets 62χΑ, 62ΧΒ. In Fig. 12, the arrangement relationship between the cover sheets 62γΑ, 62γΒ, 62χΑ, 62χΒ, and the reticle stage RST and the reticle interferometer 21R is also shown. In the case of 201009512, the laser interferometer 21RY illuminates the measuring beam with the moving mirror 2ΐΜγ composed of the retroreflector disposed at the ten-γ direction end 邛2 of the reticle stage RST, and the laser interferometer 21RX is The rod-shaped moving mirror 21MX fixed to the end portion of the reticle stage RST2 + x direction irradiates the measuring beam of the plurality of axes. The laser interferometer 21RX' 21RY measures the X-direction and the Y-direction of the reticle stage RST at a plurality of points with reference to a reference mirror (not shown) on the side of the projection optical system pL, and the measured value is transmitted via FIG. The main control unit 2 is supplied to the reticle stage drive system 22R. Further, instead of the moving mirrors 21MY and 21Μχ, the reflecting surface on the side surface of the reticle stage RST can be used. 10 In the configuration shown in Fig. 12, 'the reticle stage RST moves back and forth in the gamma direction even during scanning exposure'. The opening of the lower end of the cylindrical member 61 is also at the upper end of the four cover sheets 62YA, 62YB, 62XA, 62XB. The upper part of the rectangular area around the part moves. A rectangular notch portion 61a is formed at one end of the cylindrical member in the γ direction. Returning to Fig. 9 'the third-part local air conditioner 143 supplies the temperature-controlled air A29 of higher precision to the notch portion 61a of the cylindrical member 61 via the air supply duct 44F (refer to Fig. 12, the air A29 is descending from the cylinder) The member 61 ❿ flows inside to the cover portion 62 above the reticle R. Thereafter, the air A28 flows out from the gaps of the cover sheets 62YA, 62YB, 62XA, 62XB to the outside as shown by arrows 64A to 64D in Fig. 12 The FL side is recovered to the gas recovery part of the main air conditioner 8. The air A28 and the set temperature of the air supplied from the main air conditioner 8 in a downflow mode (for example, a predetermined temperature within 20 to 25 t) in the storage chamber 2 The set temperature (target temperature) of A29 is set to the same temperature. However, from 30 201009512, the allowable range of air set temperature supplied by the downflow mode is set to a narrower range, air a28

以下,參照圖1 〇詳細説明第3 3局部空調裝置143之構 主空調裝置 (控制精度), 成。圖10係顯示第3局部空調裝置143之構成的方塊圖。 *圖10中,第3局部空調裝置143具備透過壓縮空氣供 應管42與管線47連結之渦旋管乜。渦旋管45,如圖4所 不’係使用與第1實施形態所使用之相同之物。於管線47 之途中設有壓力平滑化用之調節器48R及流量控制用之主 流量控制閥48F’於渦旋管45連結有管線49A及50A。又, 亦可取代調節器48R而設置壓力感測器(氣壓計p渦旋管 Ο 45 ’包含:從壓縮空氣供應管42經由管線47供應壓縮空 氣A1之供應口 45a、將溫度高於壓縮空氣Ai之暖氣A3喷 出至管線50A之排氣口 45c、將温度低於壓縮空氣A1之冷 氣A5喷出至管線49A之排氣口 45d、以及控制暖氣A3與 冷氣A5之流量比及冷氣A5之温度之節流閥46。 管線49A中之冷氣A5透過τ型接頭52A被分歧供應 至管線49B、49C’管線50A中之暖氣A3透過T型接頭52B 被分歧供應至管線5〇B、50C。進一步的,管線49B中之冷 氣A7及管線50B中之暖氣A6藉由Y型接頭52C而被混 31 201009512 合,作為第1混合氣體之經温度控制之空氣A28被供應至 供氣導管44F。此外,管線49C中之冷氣透過T型接頭52E 被分歧供應至管線49D及管線158,管線49D中之冷氣與 管線50C中之暖氣藉由Y型接頭152D而被混合,作為第2 混合氣體之經温度控制之空氣A29被供應至供氣導管 44R。供氣導管44F、44R内之經温度控制之空氣A28、A29 分別吹出至圖8之圓筒構件61内及照明系統鏡筒6内。管 線158中之冷氣,例如係供應至主空調裝置8而作為空調 空氣加以利用。 又,於管線49C、50C之途中設有第1及第2流量控制 閥153A、153B,於管線158之途中設有第3流量控制閥 153C,於管線49B、50B之途中設有用以防止來自Y型接 頭52C之氣體逆流之逆止閥54A、54B。同樣的,於管線 49C、50C之途中設有用以防止來自Y型接頭152D之氣體 逆流之逆止閥54C、54D。 進一步的,於管線47内配置有測量壓縮空氣A1之温 度及流量之温度感測器55M及流量感測器56M,於管線 49A、50A内配置有測量冷氣A5及暖氣A3之温度之温度感 測器55A、55B,於管線49B、50B内配置有分別測量冷氣 A7及暖氣A6之流量之流量感測器56A、56B。又,於供氣 導管44F内配置有分別測量空氣A28之温度、流量及壓力 之温度感測器55C、流量感測器56C及壓力感測器57C,於 供氣導管44R内配置有分別測量空氣A29之温度、流量及 壓力之温度感測器55D、流量感測器56D及壓力感測器 32 201009512 57D。 温度感測器55M、55A〜55D、流量感測器56M、56A 〜56D及壓力感測器57C、57D之測量值被供應至局部空調 控制系統1 3 7 ’局部空調控制系統13 7根據該等測量值及由 主控制裝置20供應之控制資訊(空氣A28之設定温度、設 定流量及空氣A29之設定温度等),控制主流量控制閥 及流量控制閥153A〜153C之開度(〇〜1〇〇%)。又,局部空 ❹ 調控制系統13?亦可進一步進行由調節器48R所供應之空 氣壓及/或渦旋管45之節流閥46之控制(冷氣A5之流量、 温度之控制)。包含上述渦旋管45、管線47、49A〜49D、 50A〜50C、158、調節器48R、主流量控制閥48F、T型接Hereinafter, the main air conditioning apparatus (control accuracy) of the third partial air conditioner 143 will be described in detail with reference to Fig. 1 . Fig. 10 is a block diagram showing the configuration of the third partial air conditioner 143. * In Fig. 10, the third partial air-conditioning apparatus 143 includes a scroll cymbal that is connected to the line 47 through the compressed air supply pipe 42. The vortex tube 45 is the same as that used in the first embodiment as shown in Fig. 4 . In the middle of the line 47, a regulator 48R for pressure smoothing and a main flow control valve 48F' for flow control are connected to the scrolls 45 to connect the lines 49A and 50A. Further, a pressure sensor may be provided instead of the regulator 48R (the barometer p scroll Ο 45' includes: a supply port 45a for supplying compressed air A1 from the compressed air supply pipe 42 via the line 47, and the temperature is higher than the compressed air The heating A3 of Ai is discharged to the exhaust port 45c of the line 50A, the cold air A5 of the temperature lower than the compressed air A1 is discharged to the exhaust port 45d of the line 49A, and the flow ratio of the heating A3 to the cold air A5 and the cold air A5 are controlled. The temperature throttle valve 46. The cold air A5 in the line 49A is supplied to the line 49B, 49C' through the τ-type joint 52A, and the heater A3 in the line 50A is supplied to the line 5B, 50C through the T-joint 52B. The cooling air A7 in the line 49B and the heating unit A6 in the line 50B are mixed by the Y-type joint 52C 31 201009512, and the temperature-controlled air A28 as the first mixed gas is supplied to the air supply duct 44F. The cold air in the line 49C is branchedly supplied to the line 49D and the line 158 through the T-joint 52E, and the cold air in the line 49D and the heater in the line 50C are mixed by the Y-type joint 152D as the temperature control of the second mixed gas. Air A29 was It is supplied to the air supply duct 44R. The temperature-controlled air A28, A29 in the air supply ducts 44F, 44R are respectively blown out into the cylindrical member 61 of Fig. 8 and in the illumination system barrel 6. The cold air in the line 158, for example, It is supplied to the main air conditioner 8 and used as air conditioning air. Further, the first and second flow rate control valves 153A and 153B are provided in the middle of the lines 49C and 50C, and the third flow rate control valve 153C is provided in the middle of the line 158. Check valves 54A and 54B for preventing backflow of gas from the Y-type joint 52C are provided in the middle of the lines 49B and 50B. Similarly, in the middle of the lines 49C and 50C, a gas counterflow prevention from the Y-type joint 152D is provided. The check valves 54C and 54D. Further, a temperature sensor 55M and a flow rate sensor 56M for measuring the temperature and flow rate of the compressed air A1 are disposed in the line 47, and the measuring air conditioner A5 and the heating are disposed in the lines 49A and 50A. The temperature sensors 55A and 55B of the temperature of A3 are provided with flow rate sensors 56A and 56B for measuring the flow rates of the cold air A7 and the warm air A6 in the lines 49B and 50B. Further, they are separately measured in the air supply duct 44F. The temperature of air A28, The temperature and pressure temperature sensor 55C, the flow sensor 56C and the pressure sensor 57C are provided with a temperature sensor 55D for measuring the temperature, flow rate and pressure of the air A29, and the flow sensing in the air supply conduit 44R. The device 56D and the pressure sensor 32 201009512 57D. The measured values of the temperature sensors 55M, 55A to 55D, the flow sensors 56M, 56A to 56D and the pressure sensors 57C, 57D are supplied to the local air conditioning control system 1 3 7 'The local air conditioning control system 13 7 controls the main flow control valve and the flow control valve based on the measured values and the control information supplied by the main control device 20 (the set temperature of the air A28, the set flow rate, and the set temperature of the air A29, etc.) The opening degree of 153A~153C (〇~1〇〇%). Further, the local air modulating control system 13 can further control the air pressure supplied from the regulator 48R and/or the throttle valve 46 of the scroll 45 (the flow rate of the cold air A5 and the temperature control). The vortex tube 45, the lines 47, 49A to 49D, 50A to 50C, 158, the regulator 48R, the main flow control valve 48F, and the T-type connection are included.

頭52A、52B、52E、Y型接頭52C,152D、流量控制閥153A 〜153C、逆止閥54A〜54D、供氣導管44F、44R、温度感 測器55M、55A〜55D、流量感測器56M、56A〜56D及塵 力感測器57C、57D,構成第3局部空調裝置143。 ❹ 又,流量控制閥153A、153B亦可設在例如管線49B、 50B 内。 其次,參照圖11之流程圖説明圖10之第3局部空調 裝置143 —空調動作例。此動作係與曝光裝置1〇之曝光動 作平行實施,且由局部空調控制系統137加以控制。此時, 從調節器48R輸出之空氣之壓力係設定為例如大氣壓之3 〜5倍程度,渦旋管45之節流閥46係調整為相對圖8之空 氣A28、A29之設定溫度(例如20〜25°C内之既定温度),冷 氣A5之温度較低、暖氣A3之温度較高。此外,空氣A28 33 201009512 之設定流量,舉一例而言,係設定為較主流量控制閥48f 之開度被設定在中央值(50% )附近時之壓縮空氣a 1之流量 小 。 首先,於圖11之步驟11〇1,將第1、第2流量控制閥 153 A、153B之開度設定於例如中央值。又,第3流量控制 閥153C之開度則係設定為較小之值(例如丨〇%程度)。於其 次之步驟1102,將主流量控制閥48F之開度設定為例如中 央值’從壓縮空氣供應管42經由管線47將壓縮空氣A1導 入渦旋管45。據此,從渦旋管45將冷氣A5供應至管線 〇 49A、將暖氣A3供應至管線50A,從管線49A被分歧至管 線49B之冷氣A7、與從管線50A被分歧至管線50B之暖氣 A6藉由Y型接頭52C被混合而作為空氣A28供應至供氣導 管44F。此時’通過管線49D之冷氣及通過管線50C之暖 氣被混合而作為空氣A29供應至供氣導管44R。從流量控 制閥153C被供應至管線158侧之冷氣則被回收。 其次’以温度感測器55A、55B及流量感測器56A、56B 測量冷氣A5(A7)及暖氣A3(A6)之温度及流量,將測量值供 ® 應至局部空調控制系統137(步驟u〇3)。進一步的,以温度 感測器55C、55D、流量感測器56C、56D及壓力感測器57C、 5 7D分別測量供氣導管44F内之空氣A28(第1調溫空氣)及 供氣導管44R内之空氣A29(第2調溫空氣)之温度、流量及 壓力’將測量值供應至局部空調控制系統丨3 7 (步驟1丨〇4)。 之後’局部空調控制系統1 37,判斷所測量之空氣A28 之飢量相對主控制裝置20所供應之設定值是否在預先設定 34 201009512 之容許範圍(設定範圍)内(步驟11〇5)。當該流量在設定範圍 内時移至步驟1107,而該流量不在設定範圍内時則移至步 驟 1106。 於步驟1106 ’局部空調控制系統137在空氣A28之流 量少於設定範圍時’使第1及第2流量控制閥153A、153B 之開度減少第1控制量(例如數% ^據此’冷氣A7及暖氣 A6之流量皆增加而使空氣A28之流量增加。又,由於冷氣 A7及暖氣A6之流量已在步驟丨丨〇3加以測量,因此可使流 量控制閥153A、153B之開度減少此測量值之合計值與其設 定值之差之1/2相當量。另一方面,在空氣A28之流量多 於設定範圍時’使流量控制閥1 53 A、153B之開度例如僅增 加該第1控制量,以使冷氣A7及暖氣A6之流量減少。 又’在重複多數次步驟11〇3〜11〇8之動作後,於步驟 1106中流量控制閥153A、153B之至少一方之開度達到既 定下限(例如10%程度)或上限(例如9〇%)時,可分別使主流 量控制閥48F之開度增加或減少既定量。 於其次之步驟11 〇 7,局部空調控制系統丨3 7,判斷所 測量之空氣A28(第1調溫空氣)之温度相對主控制裝置 所供應之設定值是否在預先設定之容許範圍(設定範圍) 内。該温度在設定範圍内時移至步驟11〇9,而當該温度不 在設定範圍内時則移至步驟11 〇8。 於步驟1108 ’局部空調控制系統137,在空氣a28之 温度較設定範圍低時,使第1流量控制閥153A之開度增加 第2既定量(例如數% ),並減少第2流量控制閥i53B之開 35 201009512 度以抵消因此(開度增加)造成之空氣A28之流量減少量。藉 由此冷氣A7與暖氣A6之混合比之控制,空氣A28之流量 雖不會變化,但空氣A28中冷氣A7之比率減少而使得空氣 A28之温度上昇。 另一方面,在空氣A28之温度較設定範圍高時,使流 量控制閥153A之開度減少該第2既定量,並增加流量控制 閥153B之開度以抵消因此(開度減少)所造成之空氣A28之 流量增加量。據此,空氣A28之流量雖不會變化,但空氣 A28中冷氣A7之比率增加而使得空氣A28之温度降低。 又,亦可取代該第2控制量而使用流量本身之控制量。 於其次之步驟1109,局部空調控制系統137,判斷所 測量之空氣A29(第2調溫空氣)之温度是否相對主控制裝置 20所供應之設定值在預先設定之容許範圍(設定範圍)内。 空氣A29之温度之設定範圍設定得較空氣A28之温度之設 定範圍廣。當該温度在設定範圍内時即回到步驟Π 〇3重複 進行步驟1103〜1110之動作。又,當該温度不在設定範圍 内時則移至步驟1110。 於步驟1110,局部空調控制系統1 37在空氣A29之温 度較設定範圍低時,使第3流量控制閥153C之開度增加第 3既定量(例如1 %程度)。據此,空氣A29中冷氣之比率減 少而使得空氣A29之温度上昇。相反的,在空氣A29之温 度較設定範圍高時,只要使流量控制閥153C之開度增加該 第3既定量即可。反複進行複數次此動作,即能將空氣A29 之温度亦控制在設定範圍内。 36 201009512 又,在使流量控制閥153c之開度為〇% (完全關閉)之 情形,若有通過供氣導管44R之空氣A29之温度較設定温 度高之傾向時,可將τ型接頭52E設於管線則側,以排 出管線50C内之部分暖氣。此外,在使流量控制閥i53c之 開度為〇%之狀態下能使空氣A29之温度在設定範圍内 時,可省略τ型接頭52E、管、線158及流量控制闕i53c, 並省略步驟1109、1110之動作。 Q 之後,動作回到步驟其後,在主控制裝置20對 局部空調控制系統137發出空調停止之指示為止,反複進 行步驟1103〜1110之動作。此時,由於從渦旋管45吐出 之冷氣A5之温度較空氣A28之設定温度低、且暖氣a3之 温度較其設定温度高,因此於步驟u〇8進行冷氣A?與暖 氣A6之混合比之調整,即能容易的將供應至圖8之供氣導 管44F之空氣A28之温度控制在設定範圍内。 本實施形態之曝光裝置10之作用效果等如下。 Ο (1)以曝光裝置10進行之曝光方法,係以照明光£1^照 明標線片R,以照明光EL透過標線片R之圖案及投影光學 系統PL使晶圓W曝光,其包含:於渦旋管杉注入壓縮空 氣A1以產生冷氣A5及暖氣A3之步驟11〇2,將產生之冷 氣A5分為第丨冷氣(冷氣A7)及第2冷氣、將產生之暖^ A3分為第i暖氣(暖氣A6)及第2暖氣之步驟u〇3,視冷氣 A7與暖氣A3之混合後空氣A28(第1調溫空氣)之温度控制 冷氣A7及暖氣A3之流量之步驟11〇7、11〇8,將該空氣 A28供應至圖8之圓筒構件61内之步驟ιι〇8,以及將該第 37 201009512 2冷氣之至少一部分與該第2暖氣之混合後空氣A29(第2 調溫空氣)供應至温度之目標控制精度較圓筒構件61内低 之照明系統鏡筒6内之步驟11 1 〇。 又,曝光裝置10具備包含第3局部空調裝置143及局 部空調控制系統137之局部空調系統,第3局部空調裝置 143具備:渦旋管45,將從渦旋管45產生之冷氣A5與暖 氣A3分別分為冷氣A7及第2冷氣與暖氣A6及第2暖氣 之T型接頭52A及52B,將冷氣A7與暖氣Αό加以混合之 Υ型接頭52C及將該第2冷氣之至少一部分與該第2暖氣 © 加以混合之Υ型接頭152D,測量從γ型接頭52C輸出之空 氣A28之温度之温度感測器55C,視溫度感測器55C之測 量值控制冷氣A7及暖氣A6之流量之流量控制閥153A、 15 3B,將空氡A28供應至圓筒構件61之供氣導管44F ,將 從Y型接頭152D輸出之空氣A29供應至照明系統鏡筒6 之供氣導管44R。 因此,藉由渦旋管45從壓縮空氣生成冷氣及暖氣,控 制此等冷氣及暖氣之混合比以生成經温度控制之空氣,即 G 能在不使用冷媒之情形下以簡單之機構,於收容室2内之2 處進行局部的温度控制。其結果,能維持高曝光精度。此 外’由於與空氣A28之温度控制精度相較,空氣A29之温 度控制精度設定得較低,因此於第3局部空調裝置143内 首先根據空氣A28之温度控制冷氣A7及暖氣A6之流量即 可’能簡化第3局部空調裝置M3之構成。 再者’由於在半導體元件製造工場等一般皆裝備有壓 38 201009512 縮空氣供應管42,因此能降低第3局部空調裝置143之製 造成本。 又,供應至渦旋管45之氣體不一定須為壓縮空氣,亦 可以是體積較一般氣體少若干程度之氣體。 (2) 該曝光方法,進一步包含視空氣A28之流量之測量 值控制冷氣A7及暖氣A6之流量之步驟11 05、1 1 06。因此, 能將空氣A28之温度及流量控制在設定範圍内。 (3) 此外,從圖8之供氣導管44F供應至圓筒構件61内 零 之空氣A28,如圖1 2所示,係在從圓筒構件61内之空間流 過標線片載台RST上圍繞標線片 R設置之罩片62 YA、 62YB、62XA、62XB 内之空間後,從罩片 62YA、62YB、 62XA、62XB之間隙排出。承上所述,由於空氣A28不會 阻礙供應至雷射干涉儀21RY、21RX之光路之經温度控制 之空氣ARY、ARX之流動,因此能維持雷射干涉儀21RY、 21RX之高測量精度。 _ (4)此場合,空氣A28係透過照明光學系統ILS(照明系 ❿ 統鏡筒6)與圓筒構件61間之缺口部61 a以降流方式供應。 因此,例如從標線片R產生之微小異物等亦能與空氣A28 一起從地板FL側排出。 [第3變形形態] 第2實施形態,雖係將來自第3局部空調裝置143之 經温8度控制之二空氣A28、A29供應至圓筒構件61内及 照明系統鏡筒6内,但該二空氣A28、A29恐供應至其他任 意之區域。例如,可如圖13之變形形態之曝光裝置600所 39 201009512 示,從第3局部空調裝置143經由供氣導管44ρ將空氣A” 供應至照明系統鏡筒6内,並經由供氣導管44R將空氣A29 噴吹於收納熱源之控制箱30外面。於此場合,供應至照明 系統鏡筒6内之空氣A28之温度之控制精度係設定為較喷 吹於控制箱30外面之空氣A29之温度之控制精度高。此 外此變形开^態中,除將空氣A29喷吹於控制箱3〇外面之 外皆與第2實施形態相同,因此省略曝光裝置之構造及動 作之説明。 進一步的,亦可將第1實施形態中從第2局部空調裝❿ 置43產生之二空氣A8、A9、或第2實施形態中從第3局 部空調裝£ 143 1生之二线A28、A29之一方或兩方使用 分歧管分為2個以上,並將分歧之空氣供應至第丨實施形 態中空氣A8、A9所供應之部位、或第2實施形態中空氣 A28、A29所供應之部位外’另—熱源、例如供應至標線片 干涉儀21R及/或晶圓干涉儀21w之雷射光源或af感測 器25及/或對準系統AL用之訊號處理系統26、27等。。 又,亦可對被照明光EL之照射而熱膨漲之標線片R供應上 〇 述/刀歧之空氣。此外,供應從局部空調系統產生之空氣之 部位不限於上述,可任意設定。 &lt;第3實施形態&gt; 其次,參照圖14説明本發明之第3實施形態。此實施 =態之曝光裝置及曝光方法’係將從圖1G之壓縮空氣供應 s 42供應之壓縮空氣^使用空氣增幅技術加以增幅。 圖14係顯不此實施形態之局部空調裝置(第4局部空調 40 201009512 裝置)之主要部位的剖面圖。圖14中,從圖ι〇之壓縮空氣 供應管42透過管線47擷取之壓縮空氣A1,被供應至空氣 增幅構件51之注入口 51 Aa。空氣增幅構件51係將圓筒狀 之外筒51A與圓筒狀之内筒51B以螺栓部51Bb加以螺合連 結而成。外筒5 1A之側面形成有注入口 51 Aa ,外筒5 1A之 與螺栓部5 lBb相異之端部為外氣吸入口 5 1Ab,於外氣吸 入口 5lAb附近之外筒51A内之段差部、與内筒51B之端 _ 部之間’形成有連通於注入口 51Aa且寬度d可變之槽部 51Ac。藉調整外筒51A與内筒51B螺合之寬度即能調整槽 部51Ac之寬度。 又’對向於外氣吸入口 51 Ab之内筒51B之端部為噴出 口 51Ba,透過送風導管261與喷出口 51仏對向配置有温度 控制對象物162。温度控制對象物162係例如圖8之收納熱 源之控制箱30或光源部4等。除此以外之曝光裝置之構成 與圖1及圖8之實施形態相同。 鑤 此實施形態’在局部冷卻温度控制對象物162時,係 從圖1 0之壓縮空氣供應管42經由管線47(於此途中設有調 節器48R及主流量控制閥48F)將壓縮空氣Ai注入圖14之 空氣增幅構件5 1之注入口 51 Aa。注入之壓縮空氣a 1經由 槽部5 1 Ac(狹縫部)如箭頭All所示的喷出至内筒51B之内 部。藉由喷出時形成之負壓’周圍之空氣A21從外氣吸入 口 51Ab如箭頭A22所示被吸入内筒51B之内部,實質上 壓縮空氣A1之流量增加(增幅步驟)。 此壓縮空氣A1與周圍空氣A21混合之空氣A41,流經 201009512 送風導管261内部後被送至温度控制對…62(供應步 驟)。因此,能在不你用久丄甘Λ &amp; 使用冷媒之情形下以簡單之機構進行局 部的温度控制,,與使用空氣增幅構件51將從I縮空 乳供應管42透過管繞ιέ 線47擷取之壓縮空氣A1直接喷吹於温 度控制對象物1 62之情形相較,能更有效率的進行溫度控 制或冷卻。此時,由於_由贫c,η ’ 田於内筒51Β之前端部外側之空氣A31 亦被空氣A41之流動誤遵&gt; 勒诱導而吹送至温度控制對象物162,因 此温度控制或冷卻效率能進一步提昇。 ❿ 此實施形態,亦可空氣增幅構件51之槽部51Ac之寬 度d調整為温度控制對象物162之温度控制效率為例 如使既定時間内之温度上昇幅度為最小)。 又,上述實施形態,雖係使用從壓縮空氣供應管42操 取之壓縮工氣來進订溫度控制或冷卻,但亦可使用例如以 壓縮機、調節器及防塵過攄器所生成之壓縮空氣來進行温 度控制或冷卻βHeads 52A, 52B, 52E, Y-type joints 52C, 152D, flow control valves 153A to 153C, check valves 54A to 54D, air supply ducts 44F, 44R, temperature sensors 55M, 55A to 55D, flow rate sensor 56M 56A to 56D and dust sensors 57C and 57D constitute a third partial air conditioner 143. Further, the flow rate control valves 153A, 153B may be provided, for example, in the lines 49B, 50B. Next, an example of the air conditioning operation of the third partial air conditioner 143 of Fig. 10 will be described with reference to a flowchart of Fig. 11 . This action is carried out in parallel with the exposure of the exposure device 1 and is controlled by the local air conditioning control system 137. At this time, the pressure of the air output from the regulator 48R is set to, for example, about 3 to 5 times the atmospheric pressure, and the throttle valve 46 of the scroll 45 is adjusted to the set temperature of the air A28 and A29 of FIG. 8 (for example, 20). The temperature is lower than ~25 °C), the temperature of the cold air A5 is lower, and the temperature of the heating A3 is higher. Further, the set flow rate of the air A28 33 201009512 is, for example, set to be smaller than the flow rate of the compressed air a 1 when the opening degree of the main flow rate control valve 48f is set near the center value (50%). First, in step 11〇1 of Fig. 11, the opening degrees of the first and second flow rate control valves 153 A and 153B are set to, for example, a central value. Further, the opening degree of the third flow rate control valve 153C is set to a small value (e.g., 丨〇%). In the next step 1102, the opening degree of the main flow control valve 48F is set to, for example, a central value ', and the compressed air A1 is introduced into the scroll 45 from the compressed air supply pipe 42 via the line 47. According to this, the cold air A5 is supplied from the scroll 45 to the line port 49A, the heater A3 is supplied to the line 50A, the cold air A7 branched from the line 49A to the line 49B, and the heating A6 branched from the line 50A to the line 50B. It is mixed by the Y-shaped joint 52C and supplied to the air supply duct 44F as air A28. At this time, the cold air passing through the line 49D and the warm air passing through the line 50C are mixed and supplied as the air A29 to the air supply duct 44R. The cold air supplied from the flow control valve 153C to the side of the line 158 is recovered. Secondly, the temperature and flow rate of the cold air A5 (A7) and the heating A3 (A6) are measured by the temperature sensors 55A, 55B and the flow sensors 56A, 56B, and the measured values are supplied to the local air conditioning control system 137 (step u 〇 3). Further, the air sensor A28 (the first temperature-regulating air) and the air supply duct 44R in the air supply duct 44F are respectively measured by the temperature sensors 55C, 55D, the flow sensors 56C, 56D, and the pressure sensors 57C, 57D. The temperature, flow rate and pressure of the air A29 (2nd tempered air) are supplied to the local air conditioning control system 丨3 7 (step 1丨〇4). Thereafter, the local air conditioning control system 137 determines whether or not the measured hunger amount of the air A28 is within the allowable range (setting range) of the preset setting 2010201012 (step 11〇5). When the flow rate is within the set range, the process moves to step 1107, and if the flow rate is not within the set range, then the process moves to step 1106. In step 1106, the local air conditioning control system 137 reduces the opening degree of the first and second flow rate control valves 153A, 153B by the first control amount when the flow rate of the air A28 is less than the set range (for example, %%) The flow rate of the heating A6 is increased to increase the flow rate of the air A28. Moreover, since the flow rate of the cold air A7 and the heating A6 has been measured in step 丨丨〇3, the opening degree of the flow control valves 153A, 153B can be reduced. The total value of the value is equivalent to 1/2 of the difference between the set value and the set value. On the other hand, when the flow rate of the air A28 is more than the set range, the opening degree of the flow rate control valves 1 53 A, 153B is increased by, for example, only the first control. The amount is such that the flow rate of the cold air A7 and the heating unit A6 is reduced. Further, after the operations of the plurality of steps 11〇3 to 11〇8 are repeated, the opening degree of at least one of the flow rate control valves 153A and 153B reaches the predetermined lower limit in step 1106. (for example, 10%) or an upper limit (for example, 9〇%), the opening degree of the main flow control valve 48F may be increased or decreased by a predetermined amount. In the next step 11 〇 7, the local air conditioning control system 丨 3 7, judge Air A28 measured (1st tone Whether the temperature of the air is relative to the set value supplied by the main control device within a preset allowable range (set range). When the temperature is within the set range, the process moves to step 11〇9, and when the temperature is not within the set range, Go to step 11 〇 8. In step 1108, the local air conditioning control system 137 increases the opening degree of the first flow rate control valve 153A by a second predetermined amount (for example, several %) when the temperature of the air a28 is lower than the set range. The second flow control valve i53B is opened to reduce the flow rate of the air A28 caused by the increase in the opening degree. However, the ratio of the cold air A7 in the air A28 is decreased to increase the temperature of the air A28. On the other hand, when the temperature of the air A28 is higher than the set range, the opening degree of the flow control valve 153A is decreased by the second predetermined amount, and Increasing the opening degree of the flow control valve 153B to offset the increase in the flow rate of the air A28 caused by the decrease in the opening degree. Accordingly, the flow rate of the air A28 does not change, but the air flow A7 is air-cooled A7. The ratio is increased to lower the temperature of the air A 28. Alternatively, the control amount of the flow rate itself may be used instead of the second control amount. In the next step 1109, the local air conditioning control system 137 determines the measured air A29 (second adjustment) Whether the temperature of the warm air is within a predetermined allowable range (setting range) with respect to the set value supplied by the main control unit 20. The setting range of the temperature of the air A29 is set to be wider than the setting range of the temperature of the air A28. When it is within the setting range, it returns to step Π 〇3 to repeat the operations of steps 1103 to 1110. Further, when the temperature is not within the set range, the process proceeds to step 1110. In step 1110, when the temperature of the air A29 is lower than the set range, the local air-conditioning control system 137 increases the opening degree of the third flow rate control valve 153C by a third amount (for example, about 1%). Accordingly, the ratio of the cold air in the air A29 is decreased to cause the temperature of the air A29 to rise. On the other hand, when the temperature of the air A29 is higher than the set range, the opening degree of the flow rate control valve 153C may be increased by the third predetermined amount. By repeating this operation a plurality of times, the temperature of the air A29 can be controlled within the set range. 36 201009512 Further, when the opening degree of the flow rate control valve 153c is 〇% (completely closed), if the temperature of the air A29 passing through the air supply duct 44R is higher than the set temperature, the τ type joint 52E can be set. On the side of the pipeline, a portion of the heating in the line 50C is discharged. Further, when the temperature of the air A29 can be within the set range in a state where the opening degree of the flow control valve i53c is 〇%, the τ-type joint 52E, the pipe, the line 158, and the flow rate control 阙i53c can be omitted, and the step 1109 is omitted. The action of 1110. After Q, the operation returns to the step, and the operations of steps 1103 to 1110 are repeated until the main control device 20 gives an instruction to the local air-conditioning control system 137 to stop the air-conditioning. At this time, since the temperature of the cold air A5 discharged from the scroll 45 is lower than the set temperature of the air A28, and the temperature of the warm air a3 is higher than the set temperature, the mixing ratio of the cold air A? and the heating A6 is performed in the step u〇8. The adjustment can easily control the temperature of the air A28 supplied to the air supply duct 44F of Fig. 8 within the set range. The effects and the like of the exposure apparatus 10 of the present embodiment are as follows. Ο (1) The exposure method by the exposure device 10 is to illuminate the reticle R with the illumination light, and expose the wafer W by the illumination light EL through the pattern of the reticle R and the projection optical system PL. : Step 11〇2 of injecting compressed air A1 into the vortex tube to generate cold air A5 and heating A3, and dividing the generated cold air A5 into the second cold air (cold air A7) and the second cold air, and the generated warm A 3 is divided into The i-th heating (heating A6) and the second heating step u〇3, depending on the temperature of the air-cooling A7 and the heating A3, the temperature of the air A28 (the first tempered air) controls the flow of the cold air A7 and the heating A3. 11〇8, the step of supplying the air A28 to the cylindrical member 61 of FIG. 8 and the mixing of at least a portion of the 37 201009512 2 cold air with the second heating air A29 (2nd tone) The warm air) is supplied to the temperature with a target control accuracy lower than that in the illumination system barrel 6 which is lower in the cylindrical member 61. Further, the exposure apparatus 10 includes a local air conditioning system including a third partial air conditioner 143 and a local air conditioning control system 137, and the third partial air conditioner 143 includes a scroll 45 and cold air A5 and heating A3 generated from the scroll 45. Divided into cold air A7 and second air-conditioning and heating A6 and second heating T-joints 52A and 52B, the air-type connector 52C that mixes the cold air A7 and the heating radiator, and at least a part of the second cold air and the second Heating © Mixed Υ connector 152D, temperature sensor 55C measuring the temperature of air A28 output from γ-type connector 52C, flow control valve for controlling the flow of cold air A7 and heating A6 depending on the measured value of temperature sensor 55C 153A, 15 3B, the air supply duct A is supplied to the air supply duct 44F of the cylindrical member 61, and the air A29 output from the Y-type joint 152D is supplied to the air supply duct 44R of the illumination system barrel 6. Therefore, the cold air and the warm air are generated from the compressed air by the vortex tube 45, and the mixing ratio of the cold air and the warm air is controlled to generate the temperature-controlled air, that is, G can be accommodated in a simple mechanism without using the refrigerant. Local temperature control is performed at 2 of the chamber 2. As a result, high exposure accuracy can be maintained. In addition, since the temperature control accuracy of the air A29 is set lower than the temperature control accuracy of the air A28, the flow rate of the cold air A7 and the heating A6 is first controlled in the third partial air conditioner 143 based on the temperature of the air A28. The configuration of the third partial air conditioner M3 can be simplified. Furthermore, since the air supply pipe 42 is generally equipped with a pressure 38 201009512 in a semiconductor component manufacturing factory or the like, the manufacturing cost of the third partial air conditioner 143 can be reduced. Further, the gas supplied to the scroll 45 does not have to be compressed air, and may be a gas having a volume smaller than that of a general gas. (2) The exposure method further includes the steps 11 05 and 1 1 06 for controlling the flow rate of the cold air A7 and the heating A6 depending on the measured value of the flow rate of the air A28. Therefore, the temperature and flow rate of the air A28 can be controlled within the set range. (3) Further, the air A28 supplied from the air supply duct 44F of Fig. 8 to the zero inside the cylindrical member 61, as shown in Fig. 12, flows through the space inside the cylindrical member 61 through the reticle stage RST. The space in the cover sheets 62 YA, 62YB, 62XA, 62XB provided around the reticle R is discharged from the gaps of the cover sheets 62YA, 62YB, 62XA, 62XB. As described above, since the air A28 does not hinder the flow of the temperature-controlled air ARY and ARX supplied to the optical paths of the laser interferometers 21RY and 21RX, the high measurement accuracy of the laser interferometers 21RY and 21RX can be maintained. (4) In this case, the air A28 is supplied in a downflow manner through the notch portion 61a between the illumination optical system ILS (the illumination system lens barrel 6) and the cylindrical member 61. Therefore, for example, minute foreign matter generated from the reticle R can be discharged from the floor FL side together with the air A28. [Third Modification] In the second embodiment, the two airs A28 and A29 controlled by the temperature of eight degrees from the third partial air conditioner 143 are supplied into the cylindrical member 61 and the illumination system barrel 6, but The two airs A28 and A29 may be supplied to any other area. For example, as shown in the deformation apparatus 600 of the modified form of FIG. 13, 201009512, the air A" is supplied from the third partial air conditioner 143 to the illumination system barrel 6 via the air supply duct 44p, and will be supplied via the air supply duct 44R. The air A29 is blown outside the control box 30 accommodating the heat source. In this case, the control accuracy of the temperature of the air A28 supplied to the illumination system barrel 6 is set to be higher than the temperature of the air A29 blown outside the control box 30. Further, in the deformation state, the air A29 is sprayed on the outside of the control box 3, and is the same as the second embodiment. Therefore, the structure and operation of the exposure apparatus will be omitted. In the first embodiment, the two airs A8 and A9 generated from the second partial air conditioning unit 43 or the second line A28 and A29 which are generated from the third partial air conditioner unit 143 1 in the second embodiment are used. The branch pipe is divided into two or more, and the divergent air is supplied to the portion supplied by the air A8, A9 in the third embodiment, or the portion other than the portion supplied by the air A28, A29 in the second embodiment, for example, Supply to standard The laser beam source or the af sensor 25 of the interferometer 21R and/or the wafer interferometer 21w and/or the signal processing system 26, 27 for the alignment system AL, etc. The reticle R which is heated and swelled is supplied with air which is described as knives. The portion of the air generated from the local air conditioning system is not limited to the above, and can be arbitrarily set. <Third Embodiment> Next, A third embodiment of the present invention will be described with reference to Fig. 14. The exposure apparatus and the exposure method of this embodiment are increased from the compressed air supplied from the compressed air supply s 42 of Fig. 1G using an air amplification technique. A cross-sectional view of a main part of the local air conditioner (fourth partial air conditioner 40 201009512) of the embodiment. In Fig. 14, the compressed air A1 drawn from the compressed air supply pipe 42 of Fig. 1 through the line 47 is supplied. The air inlet member 51 is formed by screwing the cylindrical outer cylinder 51A and the cylindrical inner cylinder 51B with the bolt portion 51Bb. The side surface of the outer cylinder 5 1A is formed. There are injection port 51 Aa, outer cylinder 5 1A The end portion different from the bolt portion 5 lBb is an external air suction port 5 1Ab, and is formed in communication between the step portion in the outer cylinder 51A and the end portion of the inner cylinder 51B in the vicinity of the outer air suction port 5lAb. The groove portion 51Ac having the inlet 51Aa and the width d is variable. The width of the groove portion 51Ac can be adjusted by adjusting the width of the outer cylinder 51A and the inner cylinder 51B. The inner cylinder 51B facing the outer air suction port 51 Ab The end portion is the discharge port 51Ba, and the temperature control object 162 is disposed to face the discharge port 51 through the air supply duct 261. The temperature control object 162 is, for example, the control box 30 or the light source unit 4 that houses the heat source of Fig. 8 . The configuration of the exposure apparatus other than this is the same as that of the embodiment of Figs. 1 and 8. In the embodiment, when the object 162 is locally cooled, the compressed air Ai is injected from the compressed air supply pipe 42 of Fig. 10 via the line 47 (the regulator 48R and the main flow control valve 48F are provided in the middle). The injection port 51 Aa of the air amplifying member 51 of Fig. 14. The injected compressed air a 1 is ejected to the inside of the inner cylinder 51B via the groove portion 5 1 Ac (slit portion) as indicated by an arrow A11. The air A21 around the negative pressure formed at the time of ejection is sucked into the inner cylinder 51B from the outside air suction port 51Ab as indicated by an arrow A22, and the flow rate of the compressed air A1 is substantially increased (amplifying step). The air A41 mixed with the ambient air A21 and the ambient air A21 flows through the interior of the air supply duct 261 of 201009512 and is sent to the temperature control pair 62 (supply step). Therefore, it is possible to perform local temperature control with a simple mechanism without using a long-term use of the refrigerant, and to use the air amplifying member 51 to pass the I-shrinking milk supply pipe 42 through the tube around the ι line 47. When the compressed air A1 is directly sprayed on the temperature control object 1 62, temperature control or cooling can be performed more efficiently. At this time, since the air A31 outside the end portion of the inner cylinder 51 is also leaned by the flow of the air A41, the air is blown to the temperature control object 162, so the temperature is controlled or cooled. Efficiency can be further improved. In this embodiment, the width d of the groove portion 51Ac of the air amplifying member 51 may be adjusted so that the temperature control efficiency of the temperature control target 162 is, for example, the temperature increase range within a predetermined time period is minimized. Further, in the above embodiment, the temperature control or cooling is performed using the compressed process gas obtained from the compressed air supply pipe 42, but compressed air generated by, for example, a compressor, a regulator, and a dustproof filter may be used. For temperature control or cooling

G 上記實施形態,雖係舉具有第1局部空調裝置41與第 2局部空調裝置43或第3局部空調裝置143之曝光裝置 但從本發明之目的來看,省略第1局部空調 ,、疋可此的。此場合’可在原本以帛丨局部空調 供應經温度控制之空氣之處’以第2局部空調裝 局部空調裝置來供應經溫度控制之空氣。或者,不 局部空調襞置而採用#用圖 ^ *…α 圖 所説明之洞旋管之 :置(第2局部空調裝置或第3局部空調裝置),來 第1局部空調裝置亦是可以的。 ,,、, 42 * 201009512 又,上述實施形態雖係使用空氣作為空調用氣體(例如 乾燥空氣)’但亦可取代空氣而使用氮氣或稀有氣體(氦、氖 等)等之惰性氣體,或此等氣體之混合氣體等。此外,如前 所述,供應至渦旋管之氣體可以不是壓縮氣體(空氣),例如 可以是體較一般氣體減少若干程度之氣體。 又’使用上述實施形態之曝光裝置或曝光方法製造半 導體元件等之電子元件(或微元件)之情形時,如圖15所 示’電子元件係經進行電子元件之功能、性能設計之步驟 ® 221、根據此設計步驟製作光罩(標線片)之步驟222、製造 元件基材之基板(晶圓)定塗布抗钱劑之步驟223、以前述實 施形態之曝光裝置或曝光方法將光罩圖案曝光於基板(感應 基板)之步驟、使曝光後基板顯影之步驟、包含顯影後基板 之加熱(cure)及蝕刻製程等之基板處理步驟224、元件組裝 步驟(包含切割步驟、結合步驟、封裝步驟等之加工程 序)225、以及檢査步驟226等而製造。 φ 因此’此兀件製造方法包含使用上述實施形態之曝光 裝置或曝光方法於基板上形成感光層之圖案、以及對形成 有该圖案之基板進行處理(步驟224)。根據該曝光裝置或曝 光方法,由於犯使用壓縮空氣降低維修保養頻度而進行曝 光裝置之温度控制,因此能以高精度、低價製造電子元件。 又,本發明不限於掃描曝光型之投影曝光裝置,亦能 適用於使用一次曝光型(步進機型)之投影曝光裝置來進行 曝光之場合。此外,本發明在以不使用投影光學系統之近 接方式及接觸方式之曝光裝置等進行曝光時亦能適用。 43 201009512 又,本發明亦能適用於使用例如國際公開第2001 / 035168號小冊子所揭示之,藉由在晶圓上形成干涉紋,以 將線與空間圖案之像投影至晶圓上之曝光裝置(微影系統)。 又,本發明不限於半導體元件之製程之適用,亦能廣 泛的適用於例如形成為方型玻璃板片之液晶顯示元件、或 電漿顯示器等顯示器裝置之製程、攝影元件(CCD等)、微型 機器、MEMS(Microelectromechanical Systems :微電氣機械 系統)、薄膜磁頭及DNA晶片等各種元件之製程。此外,本 發明亦能適用於在使用微影製程製造形成有各種元件之光 _ 罩圖案之光罩(光罩、標線片等)時之製程。 本發明亦能適用於例如特開平10_ 163099號公報(及 對應寸石美國專利第6,590,634號說明書)、特表2〇〇〇 — 505958號公報(及對應美國專利第5 969,441號說明書)、美 國專利第6,208,407號說明書等所揭示之具有複數個載台之 多載台型曝光裝置、或例如特開平u — 1354〇〇號公報(及對 應國際公開第1999/23692號小冊子)、特開2〇〇〇— 1645〇4G is an embodiment in which the first partial air conditioner 41 and the second partial air conditioner 43 or the third partial air conditioner 143 are exposed. However, for the purpose of the present invention, the first partial air conditioner is omitted. This. In this case, the temperature-controlled air can be supplied by the second partial air conditioner local air conditioner at the place where the temperature-controlled air is originally supplied to the local air conditioner. Alternatively, instead of the local air conditioning unit, it is possible to use the first partial air conditioning unit (the second partial air conditioning unit or the third partial air conditioning unit) as described in the figure. . Further, in the above embodiment, air is used as an air-conditioning gas (for example, dry air), but an inert gas such as nitrogen or a rare gas (such as helium or neon) may be used instead of air. a mixed gas such as a gas. Further, as described above, the gas supplied to the scroll may not be a compressed gas (air), and may be, for example, a gas whose body is reduced to some extent as compared with a general gas. Further, when an electronic component (or a micro component) such as a semiconductor element is manufactured by using the exposure apparatus or the exposure method of the above embodiment, as shown in FIG. 15, the electronic component is subjected to the function and performance design of the electronic component. Step 222 of fabricating a mask (reticle) according to the design step, a step 223 of coating the substrate (wafer) of the component substrate, and a mask pattern by the exposure apparatus or the exposure method of the foregoing embodiment. a step of exposing to a substrate (inductive substrate), a step of developing the substrate after exposure, a substrate processing step 224 including a curing and etching process of the substrate after development, and a component assembly step (including a cutting step, a bonding step, and a packaging step) It is manufactured by the processing program 225, and the inspection step 226 and the like. φ Therefore, the manufacturing method of the component includes forming a pattern of a photosensitive layer on a substrate by using the exposure apparatus or the exposure method of the above embodiment, and processing the substrate on which the pattern is formed (step 224). According to the exposure apparatus or the exposure method, since the temperature of the exposure apparatus is controlled by using compressed air to reduce the frequency of maintenance, the electronic component can be manufactured with high precision and at low cost. Further, the present invention is not limited to the scanning exposure type projection exposure apparatus, and can be applied to an exposure using a single exposure type (stepper type) projection exposure apparatus. Further, the present invention is also applicable to exposure by an exposure apparatus or the like which does not use a projection optical system in a proximity mode or a contact mode. 43 201009512 Moreover, the present invention is also applicable to an exposure apparatus for projecting an image of a line and space pattern onto a wafer by forming an interference pattern on a wafer as disclosed in, for example, International Publication No. 2001/035168. (Vinition system). Further, the present invention is not limited to the application of the semiconductor element process, and can be widely applied to, for example, a process of forming a liquid crystal display element such as a square glass plate or a display device such as a plasma display, a photographic element (CCD, etc.), and a micro Processes for various components such as machines, MEMS (Microelectromechanical Systems), thin film magnetic heads, and DNA wafers. Further, the present invention is also applicable to a process for manufacturing a photomask (a mask, a reticle, etc.) in which a light-shielding pattern of various elements is formed by using a lithography process. The present invention is also applicable to, for example, Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 6,590,634, A multi-stage type exposure apparatus having a plurality of stages as disclosed in the specification of No. 6, 208, 407, or the like, or, for example, Japanese Patent Laid-Open No. 1354 No. (and corresponding International Publication No. 1999/23692), special opening 2 〇 — 1645〇4

號公報(及對應美國專利第6,897,963號說明書)等所揭示之 G 具備具有測量構件(基準標記、感測器等)之測量載台的曝光 裝置。 σ 又,上述各實施形態中,雖係以干涉儀系統分別測量 標線片載台RST及晶圓載台WST之位置,但不限於此,亦 可藉由例如美國專财請公開第觸/刪121號等所揭 示之編碼器系統來測量標線片載台RST及晶圓載台術之 至少一方之位置。 44 201009512 上述各實施形態中,雜你/古。 雖係使用在光透射性基板上形成 有既定遮光圖案之標線只 味月(先透射型光罩),但亦可取代此種 光透射性光罩而使用你丨‘ M # !如美國專利第6,778,257號說明 曰所揭不之根據待曝光圖案之電子資料來形成透射圖案或 反射圖案、或者發光圖案之電子光罩(可變成形光罩)。 又’在本國際中請所指定之指定國(或所選擇之選擇國) 國内法7許可範圍内,援用上述各公報、各國際公開小冊 子、美國專利及美國專利中請公開說明書之揭示之作為本 說明書記載之一部分。 本發明不限疋於上述實施形態,在不脫離本發明之要 旨範圍内當然可有各種構成之變更。 [産業上可利用性] 本發明之曝光方法及曝光裝置,由於可在不使用氟氣 烷等冷媒之情形下以簡單之機構一邊進行局部的温度控制 或冷卻一邊進行曝光’因此就環境面及生産成本面皆非常 φ 優異。因此’本發明能對使用曝光技術之半導體產業等精 密機器產業之國際發展有顯著之貢獻。 【圖式簡單説明】 圖1係顯示一實施形態例之曝光裝置構成的部分缺剖 斷圖。 圖2係顯示圖1之曝光裝置之控制系統的方塊圖。 圖3係顯示圖1中之第2局部空調裝置43之構成的方 塊圖。 圖4係顯示圖3中之渦旋管45的剖面圖。 45 201009512 圖5係顯示曝光裝置之一空調動作例的流程圖。 圖6(A)係顯示實施形態之第1變形形態之主要部位的 部分剖斷圖、圖6(B)係沿圖6(A)之VIB — VIB線之剖面圖。 圖7係顯示實施形態之第2變形形態之主要部位的剖 面圖。 圖8係顯示第2實施形態之曝光裝置之構成的部分剖 斷圖。 圖9係顯示圖8之曝光裝置之控制系統的方塊圖。 圖係顯示圖8中之第3局部空調裝置143之構成的 方塊圖。 圖11係顯示圖8之曝光裝置之一空調動作例的流程 圖。 圖丨2係顯示圖8之標線片載台及標線片干涉儀之一配 置例的立體圖。 圖13係顯示變形形態之曝光裝置之部分剖斷圖。 圖14係顯示第3實施形態之局部空調裝置之主要部位 的剖面圖。 _ 圖15係顯示電子元件之一製程例的流程圖。 【主要元件代表符號】 2 收容室 2a 開口 6 照明系統鏡筒 8 主空調裝置 !〇 ' 500 ' 600 曝光裝置 46 201009512G disclosed in the Japanese Patent Publication No. 6,897,963, and the like, is provided with an exposure device having a measurement stage (reference mark, sensor, etc.). σ Further, in each of the above embodiments, the position of the reticle stage RST and the wafer stage WST is measured by the interferometer system, but the present invention is not limited thereto, and may be disclosed or deleted by, for example, the US special fund. The encoder system disclosed in No. 121 et al. measures the position of at least one of the reticle stage RST and the wafer stage. 44 201009512 In each of the above embodiments, you are old. Although it is used to form a reticle with a predetermined light-shielding pattern on a light-transmitting substrate, it is only a moon (first transmission type reticle), but it can also be used instead of such a light-transmitting ray mask. No. 6,778,257 describes an electronic reticle (variable shaped reticle) which forms a transmissive pattern or a reflective pattern or a luminescent pattern according to the electronic material of the pattern to be exposed. In addition, in the designated countries (or selected countries) designated by the International, please refer to the disclosures in the above-mentioned bulletins, international publications, US patents, and US patents. As part of the description of this manual. The present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the invention. [Industrial Applicability] The exposure method and the exposure apparatus of the present invention can perform exposure while performing local temperature control or cooling with a simple mechanism without using a refrigerant such as fluorine gas. The production cost is very excellent in φ. Therefore, the present invention can make a significant contribution to the international development of the precision machine industry such as the semiconductor industry using exposure technology. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a partially broken perspective view showing the configuration of an exposure apparatus according to an embodiment. 2 is a block diagram showing a control system of the exposure apparatus of FIG. 1. Fig. 3 is a block diagram showing the configuration of the second partial air conditioner (43) in Fig. 1. Figure 4 is a cross-sectional view showing the scroll 45 of Figure 3. 45 201009512 FIG. 5 is a flow chart showing an example of an air conditioning operation of one of the exposure devices. Fig. 6(A) is a partial cross-sectional view showing a main part of a first modification of the embodiment, and Fig. 6(B) is a cross-sectional view taken along line VIB-VIB of Fig. 6(A). Fig. 7 is a cross-sectional view showing a main part of a second modification of the embodiment. Fig. 8 is a partial cross-sectional view showing the configuration of an exposure apparatus according to a second embodiment. Figure 9 is a block diagram showing a control system of the exposure apparatus of Figure 8. The figure shows a block diagram of the configuration of the third partial air conditioner 143 in Fig. 8. Fig. 11 is a flow chart showing an example of an air-conditioning operation of the exposure apparatus of Fig. 8. Fig. 2 is a perspective view showing an arrangement example of one of the reticle stage stage and the reticle interferometer of Fig. 8. Fig. 13 is a partially cutaway view showing an exposure apparatus of a modified form. Fig. 14 is a cross-sectional view showing a main part of a local air conditioner according to a third embodiment. Figure 15 is a flow chart showing an example of a process of electronic components. [Main component symbol] 2 Containment chamber 2a Opening 6 Lighting system lens barrel 8 Main air conditioner !〇 ' 500 ' 600 Exposure unit 46 201009512

11 台座 12 下部框架 13 基座構件 14、15 防振台 16 光學系統框架 18R 第1導管 18W 第2導管 19R &gt; 19W 送風部 20 主控制裝置 21R 標線片干涉儀 21RY 標線片載台用Y軸雷射干涉儀 21WY 晶圓載台用Y軸雷射干涉儀 21 W 晶圓干涉儀 22R 標線片載台驅動系統 22W 晶圓載台驅動系統 24 線性馬達 25 AF感測器 25a 照射系統 25b 受光系統 26 訊號處理系統 28 液體供應裝置 29 液體回收裝置 30 控制箱 35 主空調控制系統 47 201009512 37 控制箱空調控制系統 40 空調空氣供應管 41 第1局部空調裝置 42 壓縮空氣供應管 43 第2局部空調裝置 44 供氣導管 44a、 44b 分歧導管 45 渦旋管 45a 供應口 45c ' 45d排氣口11 pedestal 12 lower frame 13 base member 14 and 15 anti-vibration table 16 optical system frame 18R first duct 18W second duct 19R &gt; 19W air supply unit 20 main control unit 21R reticle interferometer 21RY reticle stage Y-axis laser interferometer 21WY Y-axis laser interferometer for wafer stage 21 W wafer interferometer 22R reticle stage stage drive system 22W wafer stage drive system 24 linear motor 25 AF sensor 25a illumination system 25b light receiving System 26 signal processing system 28 liquid supply device 29 liquid recovery device 30 control box 35 main air conditioning control system 47 201009512 37 control box air conditioning control system 40 air conditioning air supply pipe 41 first partial air conditioning device 42 compressed air supply pipe 43 second partial air conditioning Device 44 gas supply conduits 44a, 44b divergent conduit 45 vortex tube 45a supply port 45c '45d exhaust port

46 節流閥 47、49A〜49C、50A〜50C、158 管線 48F、53A、53B 流量控制閥 48R 壓力平滑化用調節器 51 空氣增幅構件46 throttle valve 47, 49A~49C, 50A~50C, 158 line 48F, 53A, 53B flow control valve 48R pressure smoothing regulator 51 air amplifying member

5 1A 外筒 51B 内筒 51Aa 注入口 5 1 Ab 外氣吸入口 51 Ac 槽部 5IBa 喷出口 52A、52B、52D T 型接頭 52C ' 152D Y型接頭 53A〜53D 第1〜第4流量控制閥 48 201009512 54A、54B 逆止閥 55A〜55D、55M 温度感測器 56A〜56D、56M 流量感測器 57 排氣導管 57C、57D 壓力感測器 58 散熱裝部 58a 供氣口 58b 排氣口 58c ' 58d ' 58e 分隔板 62 罩部 62YA、62YB、62XA、62XB 罩片 137 局部空調控制系統 143 第3局部空調裝置 153A〜153C 第1〜第3流量控制閥 162 温度控制對象物 261 送風導管 1000 曝光裝置本體 A1 壓縮空氣 A3 ' A6 暖氣 A5、A7 冷氣 A8、A9、A28、A29 空氣 FL 地板 ILS 照明光學系統 PL 投影光學系統 49 201009512 R 標線片 RST 標線片載台 W 晶圓 WST 晶圓載台5 1A Outer tube 51B Inner tube 51Aa Injection port 5 1 Ab Outer air suction port 51 Ac Groove portion 5IBa Spray port 52A, 52B, 52D T-joint 52C ' 152D Y-joint 53A to 53D 1st to 4th flow control valve 48 201009512 54A, 54B check valves 55A to 55D, 55M temperature sensors 56A to 56D, 56M flow sensor 57 exhaust ducts 57C, 57D pressure sensor 58 heat sink 58a air supply port 58b exhaust port 58c ' 58d ' 58e Partition plate 62 Cover part 62YA, 62YB, 62XA, 62XB Cover piece 137 Partial air conditioning control system 143 Third partial air conditioning unit 153A to 153C First to third flow control valve 162 Temperature control target 261 Air supply duct 1000 Exposure Unit body A1 Compressed air A3 ' A6 Heating A5, A7 Air-conditioning A8, A9, A28, A29 Air FL Floor ILS Illumination optical system PL Projection optical system 49 201009512 R Marking sheet RST Marking wafer stage W Wafer WST Wafer stage

Claims (1)

201009512 七、申請專利範圍: 種曝光方法’係以曝光用光照明圖案,以該曝光用 光透過該圖案使物體曝光,其包含: 將氣體注入渦旋管; 調整從該堝旋管產生之冷氣與暖氣之混合比以生成經 温度控制之氣體;以及 將該經溫度控制之氣體供應至熱源或其附近。201009512 VII. Patent application scope: The exposure method is an exposure illumination illumination pattern, and the exposure light is used to expose an object through the pattern, which comprises: injecting gas into the vortex tube; adjusting air-conditioning generated from the gyrotron tube a mixing ratio with the heating to generate a temperature controlled gas; and supplying the temperature controlled gas to or near the heat source. 2·如中請專利範圍第1項之曝光方法,其中,注入該渦 旋管之氣體係壓縮氣體。 、3·如中請專利範圍第1項之曝光方法,其中,調整從該 渴旋管產生之冷氣與暖氣之混合比以生成經温度控制之氣 體’包含分別調整該冷氣及該暖氣之流量與混合比。 4.如申請專利範圍第丨至3項中任_項之曝光方法,其 中,供應該氣體之動作,係將該經溫度控制之氣體嘴吹於 該熱源或收納該熱源之構件。 、 5·如申請專利範圍第…項中任_項之曝光方法,其 中’該氣體之供應’係將該經温度控制之氣體供應至設於 該熱源附近之散熱裝置。 6·如申請專利範圍第u 3項中任_項之曝光方法,其 中,該氣體之供應,係將該經温度控制之氣體供應至隔著 間隔壁與包含該熱源之第1室相鄰之第2室。 7·如申請專利範圍第6項之曝光方法,其令,該氣體之 供應,包含將流過該第丨室之氣體與流過該第2室之氣體 加以混合後予以排氣。 51 201009512 8·如申請專利範圍第丨項之曝光方法,其中,在以該曝 光用光透過該圖案使物體曝光之期間,將該經溫度控制之 氣體供應至熱源或其附近。 9. 如申請專利範圍第1或8項之曝光方法,其進一步包 含: 將從該渦旋管產生之冷氣與暖氣分別分為第丨及第2 冷氣與第1及第2暖氣; 視混合了該第1冷氣與該第丨暖氣之第丨氣體之溫度 資訊’控制該第1冷氣及該第1暖氣之流量; · 將該第1氣體供應至第1温度控制區域;以及 將混合了該第2冷氣之至少一部分與該第2暖氣之至 少一部之第2氣體,供應至與該第丨温度控制區域不同之 第2溫度控制區域。 10. —種曝光裝置,係以曝光用光照明圖案,以該曝光 用光透過該圖案使物體曝光,其具備: 渦旋管,藉由從壓縮氣體源注入之壓縮氣體產生冷二 與暖氣; ' 氣體混合部,將從該渦旋管產生之該冷氣與該暖氣以 可變之混合比混合後輸出經溫度控制之氣體丨以及 、 氣體供應路,將該經温度控制之氣體供應至埶源 附近。 再 11. 如申請專利範圍第10項之曝光裝置,其進— 備: 、芡八 温度感測器,用以測量以該可變之混合比混合之氣體 52 201009512 之温度資訊;以及 控制部’根據該溫度感測器之剛量資訊控制在該氣體 混合部之該混合比。 12•如申請專利範圍第u項之曝光裝置,其中,該氣體 混合部,包含控制該冷氣流量之第t力量控制部、控制該 暖氣流量之第2流量控制部、與將從該第i及第2流量控 制部輸出之氣體加以混合之混合部; 並具備測量以該混合部混合之氣體之流量資訊之流量 感測器, 該控制部根據該温度感測器及該流量感測器之測量資 訊’控制在該第1及第2流量控制部之氣體之流量。 13. 如申請專利範圍第1〇至12項中任一項之曝光裝 置’其中’該氣體供應路之喷出口係配置成朝向該熱源内 部或收納該熱源之構件。 14. 如申請專利範圍第1〇至12項中任一項之曝光裝 ❹ 置’其具備配置在該熱源附近之散熱裝置; 該氣體供應路之噴出口德速結於該散熱裝置。 15. 如申請專利範圍第炱12項中任一項之曝光裝 置,其進一步具備包含該熱源之第1室、與隔著間隔壁與 該第1室相鄰之第2室; 將通過該氣體供應路之氟雜供應至該第2室。 16·如申請專利範圍第15頊之曝光裝置,其具備將流過 該第1室之氣體與流過該第2室之氣體加以混合後予以排 氣之排氣路。 53 201009512 17.如申請專利範圍第1〇至16項中任—項之曝光裝 置’其中’該曝光裝置具備曝光裝置本體與收容此本體之 收容室,該熱源係收容在收容室内之曝光裝置本體之一部 分。 18·如申請專利範圍第17項之曝光裝置,其中,進一步 具備將經温度控制之氣體供應至該收容室内之空調裝置, 該控制部係將從該氣體混合部輸出之氣體之溫度,控制為 較從該空調裝置供應之氣體之温度低。 19. 如申請專利範圍第17或18項之曝光裝置,其中, _ 該渴旋管與該氣體混合部係設在該收容室外侧。 20. 如申請專利範圍第1〇或17至19項中任一項之曝光 裝置,其具備: 第1及第2分離部,用以將從該渦旋管產生之該冷氣 與該暖氣分別分為第1及第2冷氣與第1及第2暖氣; 第1混合部,分別將該第1冷氣與該第1暖氣加以混 合; 第2混合部’將該第2冷氣之至少一部分與該第2暖 β 氣之至少一部分加以混合; 溫度感測器,用以測量從該第1混合部輸出之第1氣 體之温度資訊; 控制部’係視該温度感測器之測量資訊控制該第1冷 虱及該第1暖氣之流量; 第1氣體供應路,將該第1氣體供應至第1温度控制 區域;以及 54 201009512 第2氣體供應路,將從該第2混合部輪 供應至與該第i、,日谇地βu 心弟2乳體 第1 /皿度控制區域不同之第2溫度 儿如申請專利範圍第10至12、17至2〇項中任—^之 曝光裝置’其中,職體供應路係構成為將經溫度控制之 氣體局部的供應至射入該圖案之曝光用光之光路;控制之 22.-種曝光方法,係以曝光用錢明圖案,以該曝光 用光透過該圖案使物體曝光,其包含:2. The exposure method of claim 1, wherein the gas system of the vortex is injected into the compressed gas. 3. The exposure method of claim 1, wherein adjusting the mixing ratio of the cold air and the heating generated from the thirsty coil to generate the temperature-controlled gas includes adjusting the flow rate of the cold air and the heating separately mixing ratio. 4. The exposure method according to any one of claims 1-3, wherein the act of supplying the gas is to blow the temperature-controlled gas nozzle to the heat source or a member accommodating the heat source. 5. The exposure method according to any of the preceding claims, wherein the supply of the gas supplies the temperature-controlled gas to a heat sink disposed adjacent to the heat source. 6. The exposure method according to any one of clauses 5, wherein the supply of the gas is to supply the temperature-controlled gas to a chamber adjacent to the first chamber containing the heat source via a partition wall. Room 2. 7. The method of exposure of claim 6, wherein the supply of the gas comprises mixing a gas flowing through the first chamber with a gas flowing through the second chamber and venting the gas. The method of exposing the invention according to the invention, wherein the temperature-controlled gas is supplied to or near the heat source while the object is exposed to light through the pattern. 9. The exposure method of claim 1 or 8, further comprising: dividing the cold air and the heating generated from the vortex tube into a second air conditioner and a second air conditioner, respectively, and the first and second heating heaters; Temperature information of the first cold air and the second gas of the second heating unit 'control the flow rate of the first cold air and the first warm air; · supply the first gas to the first temperature control region; and mix the first The second gas of at least a part of the cold air and at least one of the second heating units is supplied to a second temperature control region different from the second temperature control region. 10. An exposure apparatus for illuminating a pattern with an exposure light, wherein the exposure light is transmitted through the pattern to expose an object, comprising: a vortex tube for generating cold and heating by compressing gas injected from a compressed gas source; a gas mixing portion that mixes the cold air generated from the vortex tube with the heating mixture at a variable mixing ratio, and outputs a temperature-controlled gas gas and a gas supply path to supply the temperature-controlled gas to the gas source nearby. 11. The exposure apparatus of claim 10, wherein: the temperature sensor is used to measure the temperature information of the gas mixed with the variable mixing ratio 52 201009512; and the control unit' The mixing ratio at the gas mixing portion is controlled based on the amount information of the temperature sensor. 12. The exposure apparatus of claim U, wherein the gas mixing unit includes a t-th power control unit that controls the flow of the cold air, a second flow control unit that controls the flow of the heating, and the i-th and a mixing unit that mixes the gas outputted by the second flow rate control unit; and a flow rate sensor that measures flow information of the gas mixed by the mixing unit, and the control unit measures the temperature sensor according to the temperature sensor and the flow sensor The information 'controls the flow rate of the gas in the first and second flow rate control units. 13. The exposure apparatus of any one of claims 1 to 12 wherein the discharge port of the gas supply path is disposed toward the inside of the heat source or a member accommodating the heat source. 14. The exposure apparatus according to any one of claims 1 to 12, wherein the exposure apparatus has a heat dissipating device disposed near the heat source; and the discharge port of the gas supply path is decelerated to the heat dissipating device. 15. The exposure apparatus according to any one of claims 12, further comprising: a first chamber including the heat source; and a second chamber adjacent to the first chamber via the partition wall; The supply of fluorine is supplied to the second room. 16. The exposure apparatus according to the fifteenth aspect of the patent application, comprising: an exhaust passage for mixing a gas flowing through the first chamber and a gas flowing through the second chamber to exhaust the gas. The invention relates to an exposure apparatus of any one of the first to sixth aspects of the invention, wherein the exposure apparatus comprises an exposure apparatus body and a housing chamber for accommodating the main body, and the heat source is an exposure apparatus body housed in the housing chamber. Part of it. [18] The exposure apparatus of claim 17, further comprising: an air conditioner that supplies a temperature-controlled gas to the accommodation chamber, wherein the control unit controls the temperature of the gas output from the gas mixing unit to The temperature of the gas supplied from the air conditioner is lower. 19. The exposure apparatus of claim 17 or 18, wherein the thirst coil and the gas mixing portion are disposed outside the housing chamber. 20. The exposure apparatus according to any one of claims 1 to 17, wherein the first and second separation portions are configured to separate the cold air generated from the vortex tube from the heating unit. The first and second cold air and the first and second heating units; the first mixing unit respectively mixes the first cold air with the first heating unit; and the second mixing unit 'at least a part of the second cold air and the first heating unit 2 at least a part of the warm beta gas is mixed; a temperature sensor is used to measure the temperature information of the first gas outputted from the first mixing unit; and the control unit controls the first information based on the measurement information of the temperature sensor Cooling and the flow rate of the first heating; the first gas supply path supplying the first gas to the first temperature control region; and 54 201009512 the second gas supply path, supplying the second mixing portion wheel to the first In the i-th, the Japanese β u u 心 心 心 心 心 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The service supply system is configured to supply the temperature-controlled gas locally to the injection. The light path of the light for exposure of the pattern; the method for controlling exposure is a method for exposing an object by exposing the light to the object by using the light pattern for exposure, which comprises: 將氣體注入渦旋管; 將從該渦旋管產生之冷氣與暖氣分別分為帛1及第2 冷氣與第1及第2暖氣; 視混合了該第i冷氣與該第【暖氣之第i氣體之温度 資訊,控制該第1冷氣及該第1暖氣之流量; 將該第1氣體供應至第1温度控制區域;以及 將混合了該第2冷氣之至少—部分與該第2暖氣之至 少-部分之第2氣體供應至温度之目標控制精度低於該第】 温度控制區域之第2温度控制區域。 3.如申明專利範圍第22項之曝光方法,其中,該控 制,係視該第1氣體之温度資訊及流量資訊控制該第丨冷 氣及該第1暖氣之流量。 24. 如申請專利範圍第22或23項之曝光方法,其中, 該第1溫度控制區域包含形成有該圖案之光罩上之區域; 該第2温度控制區域,包含以該曝光用光照明該圖案 之照明光學系統之至少一部分之光路的區域。 25. 如申請專利範圍第24項之曝光方法,其中,該第1 55 201009512 温度控制區域,包含設於該照明光學系統之該曝光用 出端之間隔壁部、與設於該光罩之該照明光學系統側 片構件所圍繞之區域。 26·如申請專利範圍第25項之曝光方法,其中,將該第 1氣體供應至第1温度控制區域,包含將該第丨氣體從該照 明光學系'统與該間隔壁部之間以降流方式供應至該間:壁 部内側。 27. 如申請專利範圍第22至26項中任—項之曝光方 法,其進一步包含視第2氣體之温度資訊進行該第2冷氣❹ 之流量之控制。 28. 如申請專利範圍第22至27項中任一項之曝光方 法,其中,在以該曝光用光透過該圖案使物體曝光之期間, 將該經温度控制之第1氣體及第2氣體分別供應至與第丄 温度控制區域不同之第2温度控制區域。 29. —種曝光裝置’係以曝光用光照明圖案,以該曝光 用光透過該圖案使物體曝光,其具備: 渦旋管’係氣體源注入氣體以產生冷氣與暖氣; ® 第1及第2分離部,用以將從該渦旋管產生之該冷氣 與該暖氣分別分為第1及第2冷氣與第1及第2暖氣; 第1及第2混合部,分別將該第1冷氣與該第1暖氣 加以混合,將該第2冷氣之至少一部分與該第2暖氣之至 少一部分加以混合; 温度感測器,用以測量從該第1混合部輸出之第1氣 體之温度資訊; 56 201009512 _控制部,係視該溫度感測器之測量資訊控制該第丨冷 氣及該第1暖氣之流量; 第1氣體供應路,用以將該第1氣體供應至第i温产 控制區域;以及 卜第2氣體供應路,用以將從該第2混合部輸出之第2 乳體供應至温度之目標控制精度較該第!温度控制區域低 之第2溫度控制區域。 _ 3〇·如申請專利範圍第29項之曝光裝置,其具備測量該 第1氣體之流量資訊之流量感測器; 該控制部,視該温度感測器及該流量感測器之測量資 訊控制該第1冷氣及該第1暖氣之流量。 31. 如申請專利範圍第29或3〇項之曝光裝置,進一步 的,具備以該曝光用光照明該圖案之照明光學系統,該第工 度控制區域包含形成了該圖案之光罩上之區域; 該第2温度控制區域係包含該照明光學系統之至少一 ❾ 部分光路之區域。 32. 如申請專利範圍第31項之曝光裝置,其進一步具備 設在該照明光學系統之該曝光用光射出端之間隔壁部、與 設在該光罩之該照明光學系統側之罩構件,該第丨温度控 制區域包含該間隔壁部與該罩構件所圍之區域。 33·如申請專利範圍第32項之曝光裝置’其中,該第1 氣體供應路之噴出口係配置在該照明光學系統與該間隔壁 部之間。 34.如申請專利範圍第29至33項中任一項之曝光裝 57 201009512 置’其中’該曝光裝置具備曝光裝置本體與收容此本體之 收容室,該第1温度控制區域及第2温度控制區域係被收 容在收容室内之曝光裝置本體之一部分。 35.如申請專利範圍第29至34項中任一項之曝光裝 置’其進一步具備將經温度控制之氣體供應至該收容室内 之空調裝置,該控制部係將從該氣體混合部輸出之氣體之 温度控制成較從該空調裝置供應之氣體之温度低。 36·如申請專利範圍第35項之曝光裝置,其進一步具備 用以進行與該收容室内之該第1温度控制區域及第2溫度 © 控制區域不同部位之局部空調控制的空調控制裝置。 37. —種曝光方法,係以曝光用光照明圖案,以該曝光 用光透過該圖案使物體曝光,其包含: 生成藉由使壓縮氣體經由狹縫部喷出時之負壓以吸入 周圍氣體而使流量增加之氣體;以及 將該流量增加之氣體供應至熱源或其附近。 3 8.如申請專利範圍第37項之曝光方法,其中,在以該 曝光用光透過該圖案使物體曝光之期間,將該流量增加之 氣體供應至熱源或其附近。 39. —種元件製造方法,其包含: 使用如申請專利範圍第1至9、22至28、37或38潤 一項之曝光方法於基板上形成感光層之圖案之動作;以及 對形成該圖案之基板進行處理之動作。 40. —種曝光裝置,係以曝光用光照明_案’以該曝光 用光透過該圖案使物體曝光,其具備: 58 201009512 管線,用以從壓縮氣體源導引壓縮氣體; 氣體增幅部、,其包含經由該管線注入該麼縮氣體之注 入口、連通於該注人°之槽部、與該槽部相鄰設置之外氣 吸入口 、及喷出從該槽部流出之氣體與從該外氣吸入口 吸入之外氣之喷出口;以及 氣體供應路’用以將從該氣體增幅部噴出之氣體供應 至熱源或其附近。The gas is injected into the vortex tube; the cold air and the heating generated from the vortex tube are respectively divided into 帛1 and the second cold air and the first and second heating units; the i-th cold air is mixed with the first heating unit Temperature information of the gas, controlling the flow rate of the first cold air and the first heating; supplying the first gas to the first temperature control region; and mixing at least a portion of the second cold air with at least the second heating - The target control accuracy of the portion of the second gas supply to the temperature is lower than the second temperature control region of the first temperature control region. 3. The exposure method of claim 22, wherein the control controls the flow rate of the third cooling gas and the first heating according to temperature information and flow information of the first gas. 24. The exposure method of claim 22, wherein the first temperature control region includes a region on the mask on which the pattern is formed; and the second temperature control region includes illuminating the exposure light The area of the optical path of at least a portion of the illumination optics of the pattern. 25. The exposure method of claim 24, wherein the temperature control region of the first 55 201009512 includes a partition wall portion disposed at the exposure end of the illumination optical system, and the spacer portion disposed on the photomask The area surrounded by the side members of the illumination optics. The exposure method of claim 25, wherein the supplying the first gas to the first temperature control region comprises flowing the second gas from the illumination optical system to the partition wall portion The way is supplied to the room: inside the wall. 27. The exposure method of any one of clauses 22 to 26, further comprising controlling the flow rate of the second cold gas 视 based on the temperature information of the second gas. 28. The exposure method according to any one of claims 22 to 27, wherein the temperature-controlled first gas and second gas are respectively exposed while the exposure light passes through the pattern to expose the object It is supplied to a second temperature control area different from the second temperature control area. 29. An exposure apparatus for illuminating a pattern by exposure light, wherein the exposure light is transmitted through the pattern to expose an object, the method comprising: a vortex tube for injecting gas into a gas source to generate cold air and heating; a separating unit for dividing the cold air generated from the scroll into the first and second cold air and the first and second heating, respectively; and the first and second mixing units, respectively, the first cold air Mixing with the first heating unit, mixing at least a portion of the second cooling air with at least a portion of the second heating unit; and a temperature sensor for measuring temperature information of the first gas outputted from the first mixing unit; 56 201009512 The control unit controls the flow rate of the third cooling air and the first heating unit according to the measurement information of the temperature sensor; and the first gas supply path for supplying the first gas to the ith temperature control area And the second gas supply path, the target control accuracy for supplying the second emulsion outputted from the second mixing unit to the temperature is higher than the first! The second temperature control area where the temperature control area is low. _ 3〇 · The exposure device of claim 29, which has a flow sensor for measuring flow information of the first gas; the control unit, depending on the temperature sensor and the measurement information of the flow sensor The flow rate of the first cold air and the first heating is controlled. 31. The exposure apparatus of claim 29 or 3, further comprising an illumination optical system for illuminating the pattern with the exposure light, the gradation control region comprising an area on the reticle forming the pattern The second temperature control region is a region including at least a portion of the optical path of the illumination optical system. The exposure apparatus of claim 31, further comprising: a partition wall portion provided at the exposure light emitting end of the illumination optical system; and a cover member provided on the illumination optical system side of the photomask. The second temperature control region includes the partition wall portion and a region surrounded by the cover member. 33. The exposure apparatus of claim 32, wherein the discharge port of the first gas supply path is disposed between the illumination optical system and the partition wall portion. 34. The exposure apparatus according to any one of claims 29 to 33, wherein the exposure apparatus includes an exposure apparatus main body and a housing chamber for housing the main body, the first temperature control area and the second temperature control The area is housed in a portion of the body of the exposure apparatus in the housing chamber. The exposure apparatus according to any one of claims 29 to 34, further comprising an air conditioner that supplies a temperature-controlled gas to the accommodation chamber, the control unit is a gas that is to be output from the gas mixing unit The temperature is controlled to be lower than the temperature of the gas supplied from the air conditioner. 36. The exposure apparatus of claim 35, further comprising an air conditioning control device for performing local air conditioning control at a portion different from the first temperature control region and the second temperature control region in the storage chamber. 37. An exposure method of exposing an object to an exposure light, wherein the exposure light passes through the pattern to expose an object, comprising: generating a negative pressure when the compressed gas is ejected through the slit portion to absorb the surrounding gas; a gas that increases the flow rate; and supplies the increased flow rate gas to or near the heat source. 3. The exposure method of claim 37, wherein the gas having an increased flow rate is supplied to or near the heat source while the exposure light is transmitted through the pattern to expose the object. 39. A method of manufacturing a component, comprising: an action of forming a pattern of a photosensitive layer on a substrate using an exposure method as disclosed in claims 1 to 9, 22 to 28, 37 or 38; and forming the pattern The action of processing the substrate. 40. An exposure apparatus for exposing an exposure light to an object by exposing the exposure light to the object, the method comprising: 58 201009512 a pipeline for guiding a compressed gas from a compressed gas source; a gas amplification unit, The injection port through which the gas is injected through the line, the groove portion connected to the injection chamber, the gas suction port disposed adjacent to the groove portion, and the gas flowing out from the groove portion and the gas discharged from the groove portion The external air suction port sucks a discharge port of the external air; and the gas supply path ' serves to supply the gas ejected from the gas amplification portion to the heat source or the vicinity thereof. ❹ 41. 如申請專利範圍第4〇項之曝光裝置,其中,該氣體 增幅部之該槽部之寬度可調整。 42. —種元件製造方法,其包含: 使用申請專利範圍第1〇至21 ' 29至36、40或41項 中任一項之曝光裝置於基板上形成感光層圖案之動作;从 及 對形成該圖案之基板進行處理之動作。 八、圖式: (如次頁) 59The exposure apparatus of claim 4, wherein the width of the groove portion of the gas amplifying portion is adjustable. 42. A method of manufacturing a component, comprising: an action of forming a photosensitive layer pattern on a substrate using an exposure apparatus according to any one of claims 1 to 21 '29 to 36, 40 or 41; forming from a pair The substrate of the pattern is processed. Eight, the pattern: (such as the next page) 59
TW098125770A 2008-08-01 2009-07-31 Exposure method, exposure apparatus and device manufacturing method TW201009512A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008199197 2008-08-01
JP2008199445 2008-08-01

Publications (1)

Publication Number Publication Date
TW201009512A true TW201009512A (en) 2010-03-01

Family

ID=41610370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125770A TW201009512A (en) 2008-08-01 2009-07-31 Exposure method, exposure apparatus and device manufacturing method

Country Status (4)

Country Link
US (1) US20100033694A1 (en)
JP (1) JP2010056545A (en)
TW (1) TW201009512A (en)
WO (1) WO2010013671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675169B2 (en) 2010-10-19 2014-03-18 Asml Netherlands B.V. Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufacturing method
TWI788540B (en) * 2018-03-26 2023-01-01 日商東京威力科創股份有限公司 Substrate processing device, air conditioning method, and storage medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111851A1 (en) 2010-03-12 2011-09-15 Canon Kabushiki Kaisha Ophthalmologic apparatus and control method for the same
CN102841508B (en) * 2011-06-23 2014-09-17 上海微电子装备有限公司 Shunt type air bath duct
JP5850060B2 (en) * 2011-10-04 2016-02-03 株式会社ニコン Shape measuring apparatus, X-ray irradiation method, and structure manufacturing method
JP5984413B2 (en) * 2012-02-06 2016-09-06 キヤノン株式会社 Exposure apparatus, stage apparatus, and device manufacturing method
WO2014067802A1 (en) * 2012-10-31 2014-05-08 Asml Holding N.V. Patterning device support, lithographic apparatus, and method of controlling patterning device temperature
CN105334698A (en) * 2014-05-30 2016-02-17 中芯国际集成电路制造(上海)有限公司 Wafer chuck cleaning system used for lithography machine and cleaning method thereof
KR102599417B1 (en) * 2017-03-15 2023-11-08 에이에스엠엘 네델란즈 비.브이. Apparatus For Delivering Gas and Illumination Source for Generating High Harmonic Radiation
JP6932017B2 (en) * 2017-03-27 2021-09-08 株式会社Screenホールディングス Substrate processing equipment and substrate processing method
JP6603751B2 (en) * 2018-05-18 2019-11-06 キヤノン株式会社 Exposure apparatus, exposure method, and article manufacturing method
US11681233B2 (en) 2018-10-05 2023-06-20 Asml Netherlands B.V. Gas mixing for fast temperature control of a cooling hood
CN114439650A (en) * 2022-01-17 2022-05-06 西安航天动力试验技术研究所 Single-unit attitude and orbit control engine body cooling device and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982290B2 (en) * 1990-11-08 1999-11-22 東京エレクトロン株式会社 Exhaust device
JPH06307731A (en) * 1993-02-26 1994-11-01 Jiro Ishiguro Air-conditioning device
JP3254331B2 (en) * 1994-05-23 2002-02-04 株式会社富士化工機製作所 Gas mixers and flow heating devices
JPH08316673A (en) * 1995-05-17 1996-11-29 Fujitsu Ltd Cooling structure
JP2926472B2 (en) * 1996-02-28 1999-07-28 日本酸素株式会社 Temperature and humidity control method for ground air conditioner for aircraft
US6002987A (en) * 1996-03-26 1999-12-14 Nikon Corporation Methods to control the environment and exposure apparatus
JP4090104B2 (en) * 1998-03-31 2008-05-28 株式会社Sokudo Substrate heat treatment equipment
JP2001244179A (en) * 2000-02-29 2001-09-07 Canon Inc Aligner equipped with temperature controller, and method of manufacturing device
JP2003307111A (en) * 2002-04-16 2003-10-31 Komatsu Ltd Device for reducing color of gas
JP2005101537A (en) * 2003-08-29 2005-04-14 Canon Inc Lithography and method of manufacturing device using same
JP2005142382A (en) * 2003-11-07 2005-06-02 Canon Inc Exposure apparatus
JP2005180752A (en) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd Refrigerating machine for transportation and its operation control method
KR20070048722A (en) * 2004-09-10 2007-05-09 가부시키가이샤 니콘 Stage apparatus and exposure apparatus
JP2007242732A (en) * 2006-03-06 2007-09-20 Canon Inc Exposure device and process for fabricating device
JP4769117B2 (en) * 2006-04-20 2011-09-07 虹技株式会社 Temperature and air volume control device for vortex tube.
JP2008016669A (en) * 2006-07-06 2008-01-24 Sony Corp Cleaning method and cleaning apparatus
JP4665856B2 (en) * 2006-07-13 2011-04-06 株式会社富士通ゼネラル Vortex tube and refrigerant circuit using the same
US20080073596A1 (en) * 2006-08-24 2008-03-27 Asml Netherlands B.V. Lithographic apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675169B2 (en) 2010-10-19 2014-03-18 Asml Netherlands B.V. Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufacturing method
TWI788540B (en) * 2018-03-26 2023-01-01 日商東京威力科創股份有限公司 Substrate processing device, air conditioning method, and storage medium

Also Published As

Publication number Publication date
JP2010056545A (en) 2010-03-11
US20100033694A1 (en) 2010-02-11
WO2010013671A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
TW201009512A (en) Exposure method, exposure apparatus and device manufacturing method
US6970228B1 (en) Exposure method and system
JP4621700B2 (en) Lithographic apparatus and device manufacturing method
US9378722B2 (en) Lithographic apparatus with actuator to compensate acoustic vibration
WO2000030163A1 (en) Exposure method and device
TW200846838A (en) Support structure and exposure apparatus
US20110109892A1 (en) Source module of an euv lithographic apparatus, lithographic apparatus, and method for manufacturing a device
JP4429201B2 (en) Lithographic apparatus and device manufacturing method
JP2002190438A (en) Projection aligner
JP2000091192A (en) Projection aligner
JP2004063847A (en) Aligner, exposure method, and stage device
JP4580915B2 (en) Lithographic apparatus and device manufacturing apparatus internal space adjustment method
JP2005276932A (en) Aligner and device-manufacturing method
US10394139B2 (en) Patterning device cooling apparatus
US7202934B2 (en) Lithographic apparatus and device manufacturing method
JP2006287158A (en) Gas supplying apparatus, exposure apparatus and method of manufacturing device
JP2001319873A (en) Projection aligner, its manufacturing method, and adjusting method
JP2006287160A (en) Exposure device and manufacturing method therefor
JP2006134944A (en) Exposure device
JP2005136263A (en) Aligner and gas supply method therefor
US7227612B2 (en) Lithographic apparatus and device manufacturing method
JP2005244193A (en) Lithographic apparatus with alignment system
KR101528577B1 (en) A lithographic apparatus, a projection system and a device manufacturing method
US7816658B2 (en) Extreme ultra-violet lithographic apparatus and device manufacturing method
JP2002124451A (en) Temperature control method, temperature-regulated chamber, and projection aligner