TW201007788A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor Download PDF

Info

Publication number
TW201007788A
TW201007788A TW98109473A TW98109473A TW201007788A TW 201007788 A TW201007788 A TW 201007788A TW 98109473 A TW98109473 A TW 98109473A TW 98109473 A TW98109473 A TW 98109473A TW 201007788 A TW201007788 A TW 201007788A
Authority
TW
Taiwan
Prior art keywords
dielectric
crystal
mentioned
powder
rare earth
Prior art date
Application number
TW98109473A
Other languages
Chinese (zh)
Other versions
TWI412045B (en
Inventor
Masahiro Nishigaki
Hideyuki Osuzu
Jun Ueno
Hiroaki Mino
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of TW201007788A publication Critical patent/TW201007788A/en
Application granted granted Critical
Publication of TWI412045B publication Critical patent/TWI412045B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Abstract

Disclosed is a laminated ceramic capacitor comprising a dielectric ceramic that is composed mainly of barium titanate and contains vanadium, magnesium, manganese, rare earth elements stated in the description, and terbium in respective proportions specified in the description. The crystal constituting the dielectric ceramic comprises a first group of crystals formed of first crystal grains having a calcium concentration of not more than 0.2 atomic% and a second group of crystals formed of second crystal grains having a calcium concentration of not less than 0.4 atomic%. The dielectric ceramic satisfies a requirement of C2/(C1 + C2) of 0.3 to 0.7 wherein C1 represents the area of the first crystal grains that appear on a polished surface of the dielectric ceramic; and C2 represents the area of the second crystal grains that appear on the polished surface of the dielectric ceramic. In an X-ray diffraction chart for the dielectric ceramic, the diffraction intensity of (200) plane attributable to cubic barium titanate is larger than the diffraction intensity of (002) plane attributable to tetragonal barium titanate. The Curie temperature is 95 to 105 DEG C.

Description

201007788 六、發明說明: 【發明所屬之技術領域】 本發明係關於〜種錄 質層係由鈣濃度不同兔電容器’尤其係關於-種介電 層陶变電容器。°之鈇駿鋇所構成之小型且高電容的積 【先前技術】 近年來,伴隨著行動 人雷腦笪夕+ * €話等移動式設備之普及以及作為個 ==:r半—、高頻化,對於搭 要求越來越高。因此之積層陶瓷電容器之小型、高電容化的 層,要求薄層化以及高::構成積層喊電容器之介電質 陶Γ’:,,成積層層二。電容器之介電質層之介電質 岡瓮’先則以來一直椟田 用将缺酸鋇作為主成分之介電質材 (· 枓。近年來’正在,㈣_粉末與使_溶於欽酸鎖中 之粉末混合使用而使料介電贿料共存之複合系介電質 材料’並翻於積層_電容器中(例如參照專利文獻D。 於使用上述鈦酸鋇粉末及使鈣固溶於鈦酸鋇中之粉末而 製作之介電質陶瓷中,使用鎂、稀土元素及锰之各氧化物作 為添加劑。然後,於煅燒時’使該等添加劑固溶於鈦酸鋇粉 末及使鈣固溶於鈦酸鋇中之粉末各自之表面附近,而成為具 有所謂核-殼構造之晶粒’來實現介電常數及介電常數之溫 度特性等之提高。 098109473 3 201007788 此處,所謂晶粒之核-殼構造,係指作為晶粒之中心部之 核部、與作為外殼部之殼部形成物理上、化學上不同之相的 構造。將欽酸鋇作為主成分之晶粒成為核部由正方晶之結晶 相所佔據、殼部由立方晶之結晶相所佔據的狀態。 將由此種核-殼構造之晶粒所構成之介電質陶瓷作為介電 質層之積層陶瓷電容器’介電常數提高,並且介電常數之溫 度特性滿足X7R(以25°C為基準時之介電常數之溫度變化率 於-55〜125°C為±15%以内)。另外,使所施加AC電壓增加 ❹ 時之介電常數之變化小。 然而,對於上述積層陶究電容器而言,若使介電質層之厚 度薄層化至例如2 左右,則存在高溫負載試驗中之壽 命特性大幅度地下降之問題。 [專利文獻1]日本專利特開2001-156450號公報 【發明内容】 (發明所欲解決之問題) ❹ 本發明之課題在於提供一種具有如下介電質層之積層陶 究電容器,該介電質層係高介電係數且介電常數之溫度特性 之穩定性優異’並且使AC電壓增加時之介電常數之增加較 J、,且於馬溫負載試驗令之壽命特性優異。 (解決問題之手段) 本發明之積層陶瓷電容器係將介電質層與内部電極層交 替積層而形成’該介電質層係由將鈦酸鋇作為主成分,且含 09473 4 201007788 有鈣、鎂、釩、錳及铽以及自釔、銷、欽及斜中選擇之至少 1種稀土元素之介電質陶瓷所構成。上述介電質陶瓷中,相 對於構成上述鈥酸鋇之鈦100莫耳,含有以V2〇5換算計為 0.02〜0.2莫耳之上述釩,以Mg0換算計為〇 2〜〇 8莫耳之 上述鎂’以Mn〇換算計為〇.1〜0.5莫耳之上述錳,以re203 換算汁為0.3〜〇·8莫耳之自紀、鋼、鈥及斜中選擇之至少1 種上述稀土元素,以及以Tb4〇7換算計為〇 〇2〜〇 2莫耳之 ,上述轼。構成上述介電質陶兗之結晶具有:帛1結晶群組, 其係由將上述鈦酸鋇作為主成分、且上述鈣之濃度為〇 2原 子%以下之第1晶粒所組成;以及第2結晶群組,其係由將 上述鈦酸鋇作為主成分、且上述鈣之濃度為〇4原子%以上 之第2晶粒所組成。當將於上述介電質陶瓷之研磨面上所觀 察到之上述第1晶粒的面積設為C1、將上述第2晶粒之面 積設為C2時,C2/(C1 + C2)為0.3〜0.7。於上述介電質陶瓷 之X射線繞射圖中,顯示立方晶之鈦酸鋇之(細)面的繞射 強度大於顯示正方晶之鈦酸鋇之(〇〇2)面的繞射強度。居里 溫度為95〜1〇5。(^。 % 再者上述稀土元素表不為RE,其係基於元素週期表中 之稀土元素之英文記法(Rare earth)者。 (發明效果) 根據本發明,可獲得具有如下介電質層之積層陶瓷電容 器,该介電質層係高介電係數且可減小介電常數之溫度變化 098109473 5 201007788 率,並且使所施加之AC電壓增大時之介電常數之增加較小 (介電常數之AC電壓依存性較小),而且於高溫負載試驗中 之壽命優異。 【實施方式】 根據圓1及圖2,對本發明之積層陶瓷電容器加以詳細說 明。如圖1所示’本發明之積層陶瓷電容器係於電容器本體 1之兩端部形成有外部電極3。外部電極3例如係對Cu或 Cu與Νι之合金膏進行燒製而形成。 電容器本體1係將由介電質陶瓷所構成之介電質層5與内 部電極層7交替積層而構成。圖1中,將介電質層5與内部 電極層7之制狀態加以簡化表示,本發明之制陶竞電容 器係介電質層5與内部電極層7甚至達至數百層之積層體。 9 ::二所不’由介電質陶瓷所構成之介電質層5係由晶粒 9與曰曰界相U所構成。該介電質層5之厚 "以下’尤其理想為1 —下。藉此 容器小型、高電容化 藉此,可使積層陶究電 …,則可減小靜電=之若介電質層5之厚度為… 穩定化。 不均一’且可使電容溫度特性 作為形成内部電極層7之材 造成本加以抑制之方面而言,較理"相即便高積層化亦可對彳 尤其就可與本發明中之介電質層5為仏或〇11等卑金屬 言’更理想為Ni。 同時進行煅燒之方面1 098109473 201007788 構成本發明之積層陶瓷電容器中之介電質層5的介電質 陶瓷係由將鈦酸鋇作為主成分,且含有鈣(Ca)、鎂(Mg)、釩 (V)、猛(Μη)及軾(Tb)以及自紀(Y)、鏑(Dy)、鈥(Ho)及铒(Er) 中選擇之至少1種稀土元素(RE)之燒結體所構成。 上述燒結體中’相對於構成鈦酸鋇之鈦〗〇〇莫耳,含有以 V2〇5換算計為〇.〇2〜〇·2莫耳之飢,以MgO換算計為0.2 〜0.8莫耳之鎂,以MnO換算計為〇.1〜〇.5莫耳之錳,以 (© RE2〇3換算計為0.3〜0.8莫耳之自紀、銷、鈥及鋼:中選擇之 至少1種稀土元素,以及以Tb407換算計為〇.〇2〜0.2莫耳 之铽。 另外’形成於該介電質陶瓷中之晶粒9係由第1晶粒9a 與第2晶粒9b所構成,該第1晶粒9a構成由將鈦酸鋇作為 主成分、且鈣濃度為0.2原子%以下之晶粒所組成之第i結 晶群組,該第2晶粒9b構成由將鈦酸鋇作為主成份、且鈣 费濃度為0.4原子%以上之晶粒所組成之第2結晶群組。於該 晶粒9、9之間形成有晶界相11。晶界相u之主成分為玻 璃成分,且部分地含有介電質陶瓷中所含之上述鎂、釩、錳、 铽、稀土元素等之副成分。 於該介電質陶瓷中,第1晶粒9a與第2晶粒9b之比例為, 當將於介電質陶瓷之研磨面上所觀察到之上述第1晶粒9a 的面積設為Cl、將上述第2晶粒9b之面積設為C2時, C2/(C1 + C2)為 0.3〜0.7。 098109473 7 201007788 進而,於上述介電質陶瓷之x射線繞射圖中,顯示立方 晶之鈦酸鋇之(200)面的繞射強度大於顯示正方晶之鈦酸鋇 之(002)面的繞射強度,且居里溫度為95〜1〇5。〇。201007788 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a type of recording layer which is composed of a rabbit capacitor having a different calcium concentration, in particular, a dielectric layer ceramic capacitor. The small and high-capacitance product of the 鈇 鈇 鈇 【 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前 先前Frequency, the requirements for the ride are getting higher and higher. Therefore, a small-sized, high-capacitance layer of a multilayer ceramic capacitor is required to be thinned and high: a dielectric material constituting a laminated capacitor is formed as a layer 2 layer. The dielectric material of the dielectric layer of the capacitor has been used for the dielectric material that contains the acid-deficient yttrium as the main component (· 枓. In recent years, 'in the past, (four) _ powder and make _ dissolved in Qin The composite medium dielectric material in which the powder in the acid lock is mixed and used to make the dielectric brittle coexist is turned over in the laminate_capacitor (for example, refer to Patent Document D. The use of the above-mentioned barium titanate powder and solid solution of calcium In the dielectric ceramic produced by the powder in the barium titanate, each of the oxides of magnesium, rare earth elements and manganese is used as an additive. Then, when calcined, the additives are solid-dissolved in the barium titanate powder and the calcium is solidified. It is dissolved in the vicinity of the surface of each of the powders in the barium titanate to form a crystal grain having a so-called core-shell structure to improve the dielectric constant and the dielectric property of the dielectric constant, etc. 098109473 3 201007788 Here, the crystal grain The core-shell structure refers to a structure in which a core portion which is a central portion of a crystal grain and a shell which is physically and chemically different from a shell portion which is an outer shell portion. Occupied by the crystal phase of tetragonal crystal The state in which the shell portion is occupied by the crystal phase of the cubic crystal. The dielectric constant of the multilayer ceramic capacitor in which the dielectric ceramic composed of the crystal grains of the core-shell structure is used as the dielectric layer is improved, and the dielectric constant is The temperature characteristic satisfies X7R (the temperature change rate of the dielectric constant at 25 ° C is within ±15% from -55 to 125 ° C.) In addition, the change in dielectric constant when the applied AC voltage is increased by ❹ However, in the above-mentioned laminated ceramic capacitor, if the thickness of the dielectric layer is thinned to, for example, about 2, there is a problem that the life characteristics in the high-temperature load test are largely lowered. [Patent Document 1] JP-A-2001-156450 SUMMARY OF INVENTION Technical Problem The object of the present invention is to provide a laminated ceramic capacitor having a dielectric layer which is high dielectric. The coefficient and the stability of the dielectric property of the dielectric constant are excellent, and the increase in the dielectric constant when the AC voltage is increased is better than J, and the life characteristics of the horse temperature load test are excellent. (Means for solving the problem) The multilayer ceramic capacitor of the Ming is formed by alternately laminating a dielectric layer and an internal electrode layer to form 'the dielectric layer is composed of barium titanate as a main component, and contains calcium, magnesium, vanadium, manganese and strontium at 09473 4 201007788 and A dielectric ceramic of at least one rare earth element selected from the group consisting of ruthenium, pin, chin, and slant. The dielectric ceramics are contained in a V 2 〇 5 ratio with respect to 100 mils of titanium strontium strontium silicate. The above-mentioned vanadium is 0.02 to 0.2 mol, and the above-mentioned magnesium in the range of Mn 2 to 〇8 mol is 〇.1 to 0.5 mol of the above manganese, and the re203 conversion juice is 0.3. At least one of the above-mentioned rare earth elements selected from the group consisting of 〇 8 8 莫 、 、 、 钢 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼 轼The crystal constituting the dielectric ceramics has a 帛1 crystal group composed of the first crystal grains having the barium titanate as a main component and the calcium concentration of 〇2 atom% or less; The 2 crystal group is composed of the second crystal grain having the barium titanate as a main component and the calcium concentration of 〇4 atom% or more. When the area of the first crystal grain observed on the polished surface of the dielectric ceramic is C1 and the area of the second crystal grain is C2, C2/(C1 + C2) is 0.3~ 0.7. In the X-ray diffraction pattern of the above dielectric ceramic, the diffraction intensity of the (fine) face of the cubic crystal of barium titanate is larger than the diffraction intensity of the (〇〇2) face of the barium titanate exhibiting tetragonal. Curie temperature is 95~1〇5. (^. % Further, the above rare earth element is not RE, which is based on the Rare earth of the rare earth element in the periodic table. (Effect of the invention) According to the present invention, the following dielectric layer can be obtained. A multilayer ceramic capacitor having a high dielectric constant and a decrease in the dielectric constant temperature variation 098109473 5 201007788, and a small increase in the dielectric constant when the applied AC voltage is increased (dielectric The AC voltage dependence of the constant is small, and the lifetime is excellent in the high-temperature load test. [Embodiment] The multilayer ceramic capacitor of the present invention will be described in detail based on the circle 1 and FIG. 2. As shown in FIG. The multilayer ceramic capacitor is formed with external electrodes 3 at both end portions of the capacitor body 1. The external electrode 3 is formed by firing an alloy paste of Cu or Cu and Νι, for example, and the capacitor body 1 is made of dielectric ceramic. The dielectric layer 5 and the internal electrode layer 7 are alternately laminated. In Fig. 1, the state of the dielectric layer 5 and the internal electrode layer 7 is simplified, and the dielectric layer of the ceramic capacitor of the present invention is dielectric. 5 and the internal electrode layer 7 even up to several hundred layers of the laminate. 9 :: The second dielectric layer 5 composed of dielectric ceramics is composed of the crystal grains 9 and the boundary phase U. The thickness of the dielectric layer 5 is particularly preferably 1 to below. By means of the small size and high capacitance of the container, the laminated layer can be electrically charged, and the dielectric layer can be reduced. The thickness of 5 is ... Stabilized. It is not uniform and can make the temperature characteristics of the capacitor as the material for forming the internal electrode layer 7 as a result of the suppression of the material, and even if the layer is high, the layer can be especially high. The dielectric layer 5 in the present invention is preferably a Ni or the like, and is preferably Ni. The aspect of simultaneous calcination is 1 098109473 201007788 The dielectric of the dielectric layer 5 constituting the multilayer ceramic capacitor of the present invention. The ceramics consists of barium titanate as the main component and contains calcium (Ca), magnesium (Mg), vanadium (V), 猛 ()η) and 轼 (Tb), and Zi (Y), 镝 (Dy), A sintered body of at least one rare earth element (RE) selected from the group consisting of Ho (Ho) and 铒 (Er). The above sintered body is 'relative to the titanium constituting barium titanate〗 〇〇莫耳, containing V.〇2~〇·2 Moer's hunger in terms of V2〇5, in terms of MgO, 0.2 to 0.8 moles of magnesium, in terms of MnO, 〇.1~〇. 5 Molybdenum manganese, at least one rare earth element selected from the group consisting of: 0.3 to 0.8 moles of self-reported, pin, tantalum and steel, and converted to Tb407 as 〇.〇2~ Further, the crystal grains 9 formed in the dielectric ceramic are composed of a first crystal grain 9a and a second crystal grain 9b, and the first crystal grain 9a is composed of barium titanate as a main component. An i-th crystal group composed of crystal grains having a calcium concentration of 0.2 atom% or less, and the second crystal grain 9b is composed of a crystal grain having a barium titanate as a main component and having a calcium concentration of 0.4 atom% or more. The second crystal group composed. A grain boundary phase 11 is formed between the crystal grains 9, 9. The main component of the grain boundary phase u is a glass component, and partially contains the above-mentioned subcomponents such as magnesium, vanadium, manganese, cerium, and rare earth elements contained in the dielectric ceramic. In the dielectric ceramic, the ratio of the first crystal grains 9a to the second crystal grains 9b is such that the area of the first crystal grains 9a observed on the polished surface of the dielectric ceramic is Cl. When the area of the second crystal grain 9b is C2, C2/(C1 + C2) is 0.3 to 0.7. 098109473 7 201007788 Furthermore, in the x-ray diffraction pattern of the above dielectric ceramic, it is shown that the diffraction intensity of the (200) plane of the cubic crystal of barium titanate is larger than that of the (002) plane of the barium titanate exhibiting tetragonal crystal The intensity of the shot is, and the Curie temperature is 95~1〇5. Hey.

由此種特定構成所構成之本發明之介電質陶瓷係室溫(M C)之介電常數為3500以上,介電損失為12 5%以下,且介 電常數之溫度特性滿足X6S(即,以25它為基準時之介電^ 數之溫度變化率於_55〜1〇rc為土 22%以内,以下有時簡稱 為「X6S」)。另外,該介電質陶瓷係將Ac電壓設為】v時 之介電常數為將AC電壓設為〇.〇1 v時之介電常數之2户 以下。進而,該介電質陶瓷於高溫負載試驗(溫度· 1〇5它, 電愿:額定電壓之h5倍,試驗時間:1〇〇〇小時以下有時 簡稱為「高溫負载試驗」)中+良之發生得到抑制。因此, 具有由該介電質喊所構成之介電質層5的本發明之積層 陶究電容器具有較高之可靠性。以下,對其理由加以詳細說 明。 換於構成㈣鋇之鈦⑽莫耳,若鈒之含量以v2〇5 、一〜於G.G2莫耳,則高溫負載試驗中之可靠性下降。 另一方面’若飢之含量以v2〇5換算計多於〇2莫耳,則室 溫下之介電常數變低。 算計::·2成::鋇:^ WO莫耳’若鎂之含量以岣。換 離+側m ’介電常數之溫度特性容易大幅度地偏 7足作為靜電電容之溫度特性之X6S條件。另 098109473 201007788 於0.8莫耳,則室溫下之介電常數變 一方面,若鎂之含量多 低0 構成鈦酸鋇之鈦剛莫耳,若鍾之含量以〇換 田^於G.1莫耳,則介電質層5之絕緣電阻下降,因此高 ^載錢中之可靠性下降。另—方面,若猛之含量以歸 °十夕於G.5莫耳’則室溫下之介電常數變低。 ㈣於構成鈦_之鈦⑽莫耳,若自紀、_、鈥及斜中 @選擇之至少1種稀土元素之含量以RE2〇3換算計少於Μ莫 耳,則高溫負載試驗中之可靠性下降。另—方面,若上述稀 土元素之含量以RE2〇3換算計多於〇 8莫耳,則室溫下之介 電常數變低。 相對於之構成鈦酸鋇之鈦100莫耳,若轼之含量以Tb4〇7 換算計少於0.02莫耳,則於作為主成分之鈦酸鋇中的釩、 鎂、猛及稀土元素之固溶量變少。因此,介電質陶瓷之居里 度相^於顯不核·滅構造之欽酸锅之居里溫度(約125 °C),高溫負載試驗下之可靠性下降。另一方面,若铽之含 •量卩Tb4〇7換算計多於0.2莫耳,則於作為主成分之鈦酸鋇 中的釩、鎂、錳及稀土元素之固溶量變多。因此,與將AC 電壓設為0.01 v時之介電常數相比,將Ac電壓設為丄V 時之介電常數增大(介電常數之AC電壓依存性較大),額定 電屢變化時之介電質陶瓷之靜電電容之變化變大。 作為較佳之介電質陶莞之組成,較佳為才目對於構成欽酸鋇 098109473 9 201007788 之鈦100莫耳而含有以V205換算計為0.02〜0.08莫耳之 釩,以MgO換算計為0.3〜0.6莫耳之鎂,以MnO換算計 為0.2〜0.4莫耳之錳,以RE203換算計為0.4〜0.6莫耳之 自釔、鏑、鈥及餌中選擇之至少1種稀土元素,以及以Tb407 換算計為0.02〜0.08莫耳之铽。 由該組成所構成之介電質陶瓷係可將室溫之介電常數提 高至3700以上,且可使將AC電壓設為1 V時之介電常數 成為將AC電壓設為0.01 V時之介電常數之1.5倍以下。再 者,作為上述稀土元素,就可獲得更高之介電常數、且絕緣 電阻較高之方面而言,尤佳為釔。 另外,上述介電質陶瓷較理想為,相對於構成鈦酸鋇之鈦 100莫耳而含有以Tb407換算計為0.05〜0.08莫耳之铽。藉 此,可減小介電質陶竟之介電常數之變異係數(σ/χ,σ :標 準偏差,X:平均值)。因此,於製造積層陶瓷電容器時,即 便煅燒溫度存在差幅,亦可獲得靜電電容之不均一較小之積 層陶瓷電容器。 另外,如上所述,於上述介電質陶瓷中,第1晶粒9a與 第2晶粒9b之比例為,當將於介電質陶瓷之研磨面上所觀 察到之上述第1晶粒9a的面積設為C1、將上述第2晶粒 9b之面積設為C2時,C2/(C1 + C2)為0.3〜0.7。 即,若C2/(C1 + C2)低於0.3,則含有Ca之第2晶粒9b 之比例較少,故室溫下之介電常數變低。另一方面,若 098109473 10 201007788 C2/(C1 + C2)多於〇.7,則雖室溫下之介電常數增加,但高溫 負載試驗中之壽命下降。 C2/(C1 + C2)尤其理想& G4〜G 6,若為該範圍,則可將 室溫之介電質陶瓷之介電常數提高至40〇〇以上。 再者’第2晶粒9b之鈣濃度尤其理想為0.5〜2.5原子%。 若舰度為該範圍,則可朗充分固溶於鈦酸類中。另外, 可使未固溶而殘存於晶界等之鈣之化合物減少,因此介電常 ,數之AC電壓依存性變大,故可實現高介電係數化。再者, 第1晶粒9a包括鈣濃度為零者。另外,本發明中之居里溫 度係指於測定介電常數之溫度特性之範圍(6〇〜15(rc)中介 電常數達到最大之溫度。 關於晶粒9中之鈣濃度,係使用附設有元素分析設備之穿 透式電子顯微鏡,對藉由離子研磨將介電質層5之剖面研磨 至可進行觀察之程度為止的研磨面上所存在的晶粒9進行 ,元素分析。 此時’電子束之光點尺寸係設為5 nm。另外,分析部位 係於自晶粒9之晶界附近朝中心繪製之直線中自晶界起大 致等間隔地設定4〜5點。求出將自各測定點檢測出之Ba、 Ti、Ca、V、Mg、RE(稀土元素)及Μη之總量設為1〇〇〇/〇時 之鈣的比例,並求出於各測定點所求出之鈣比例之平均值作 為鈣濃度。然後,將所求出之鈣濃度為0.2原子%以下的晶 粒作為第1晶粒9a,且將所求出之鈣濃度為0.4原子%以上 098109473 11 201007788 的晶粒作為第2晶粒%。 測定鈣濃度之晶粒9係以如下方式選定。首先,使用穿透 式電子顯微鏡,拍攝對構成積層陶瓷電容器之介電質層5 之剖面加以研磨而得的研磨面之照片(倍率:20,000〜 100,000倍)。然後,於該照片上繪製包圍30個晶粒9之圓, 利用圖像處理根據位於該圓内及圓周上之各晶粒9之輪廓 求出各粒子之面積,並計算出替換為具有相同面積之圓時之 直徑。接著,將所求出之晶粒9之直徑處於利用後述方法求 出之平均粒徑之±30%的範圍内者作為晶粒9。 另外,求出自位於該圓内及圓周上之各晶粒9中選擇並測 定之第1晶粒9a及第2晶粒9b各自之總面積,而求出C2/(C1 + C2)之值。 再者,晶粒9之中心為該晶粒9之内接圓之中心,並且, 所謂晶粒9之晶界附近係指自該晶粒9之晶界起至5 nm内 侧為止之區域。而且,晶粒9之内接圓係將藉由穿透式電子 顯微鏡映出之圖像取入至電腦中,於其晝面上對晶粒9繪製 内接圓,並決定晶粒9之中心。 圖3係表示構成後述實施例中之樣品No.3之積層陶瓷電 容器的介電質陶瓷之X射線繞射圖。構成本發明之積層陶 瓷電容器的介電質陶瓷具有如圖3之X射線繞射圖所示之 繞射圖案。另外,圖4係表示樣品No.3之積層陶瓷電容器 之靜電電容之溫度特性的圖表。本發明之積層陶瓷電容器具 098109473 12 201007788 有如圖4所示之靜電電容之溫度特性。 於圖3之X射線繞射圖中,顯示立方晶之鈦酸鋇之(2〇〇) 面(26> =45.3。附近)與顯示正方晶之鈦酸鋇之(〇〇2)面(20 = 45.1°附近)的χ射線繞射波峰重疊,而成為寬幅之繞射波 峰。而且’顯示立方晶之鈦酸鋇之(2〇〇)面的繞射強度(Ic)大 於顯示正方晶之鈦酸鋇之(002)面的繞射強度(It)。該結晶構 造類似於習知之核-殼構造之X射線繞射圖案,但如圖4所 ^ 示’構成本發明之積層陶瓷電容器的介電質陶瓷之居里溫度 (Tc)為95〜l〇5°C ’而與居里溫度為i25°C之習知之具有核-殼構造的介電質陶瓷之介電特性不同。 即’使鎂、錳及稀土元素等之添加成分固溶於作為主成分 之欽酸鋇中而得之具有核-殼構造的介電質陶瓷顯示純粹之 鈦酸鋇之居里溫度(125。〇附近的居里溫度。相對於此,構 成本發明之積層陶瓷電容器之介電質層5的介電質陶瓷如 、參上所述,係於鈦酸鋇中固溶有鈣、釩、鎂、錳以及自釔、鏑、 鈥及铒中選擇之至少1種稀土元素以及铽。因此,儘管具有 於X射線繞射圖中顯示立方晶之鈦酸鋇之(2〇〇)面的繞射強 度大於顯示正方晶之鈦酸鋇之(〇〇2)面的繞射強度之結晶構 造,但居里溫度為95〜l〇5°c而具有偏向室溫侧之特性。 一般認為其原因在於,除了釩、鎂、錳及稀土元素等之添 加成分以外使少量之铽固溶,藉此添加成分於介電質陶瓷之 内部以特定之狀態而擴散,因此可使居里溫度為 95〜105 098109473 13 201007788 例如,於構成本發明之積層陶瓷電容器之介電質陶瓷中, 第1晶粒9 a及第2晶粒9 b係各自表層部之錳濃度減去深度 為1〇 nm之位置的錳濃度而得之濃度差為〇 3原子%以下, 並且表層部之稀土元素濃度減去深度為1〇 nm之位置的稀 土元素濃度而得之濃度差為原子%以上。具體而言,如 圖5(a)〜(c)所示。 圖5(a)係表示構成後述實施例中之樣品N〇3之積層陶瓷 電容器的介電質陶瓷之晶粒中所含之稀土元素及錳之濃度 變化的圖表。該介電質陶瓷為本發明之範圍内者。 圖5(b)係表示構成後述實施例中之樣品N〇 1之積層陶瓷 電容器的介電質陶瓷之晶粒中所含之稀土元素及錳之濃度 變化的圖表。該介電質陶瓷係使鎂、錳及稀土元素該等添加 成分固溶於作為主成分之鈦酸鋇中而得者,具有核殼構 造’居里温度為125。(:。 圖5(c)係表示構成後述實施例中之樣品N〇 6之積層陶瓷 電容器的介電質陶瓷之晶粒中所含之稀土元素及錳之濃度 變化的圖表。該介電_錢使鎂、锰及稀土元素該等添加 成刀固办於作為主成分之鈦酸鋇中並且過量添加铽而得 者。再者,ϋ 5(a)〜(c)中,稀土元素為釔⑺。 圖5(a)中,於晶粒9之表面附近,稀土元素(γ)顯示較大 之濃度變化’相對於此,錳(Μη)於表面附近之濃度變化較小。 098109473 201007788 另一方面,圖5(b)中,稀土元素(Y)及錳(Μη)兩種成分於 晶粒9之表面附近均顯示較大之濃度變化。圖5(c)中,稀土 元素(Υ)及錳(Μη)兩種成分於晶粒9之表面附近的濃度變化 均較小。 如上所述’本發明之積層陶瓷電容器係構成介電質陶瓷之 晶粒9之表面附近之稀土元素(Υ)的濃度變化較大,相對於 此錳(Μη)之濃度變化較小,於上述樣品No. 1與樣品No.6 ❿ 之間具有中間構造。因此,即便結晶構造近似於核-殼構造, 居里溫度亦顯示95〜105°C。 因此,本發明之積層陶瓷電容器中,擴散之元素補償了晶 粒中之氧缺陷,藉此介電質陶瓷之絕緣性提昇,而可提高於 高溫負載試驗中之壽命。 即,於在晶粒9中錳及稀土元素之固溶量較少之情況下, 包含較多之氧空位等的缺陷之核部所占之比例變多。因此, 參一般認為於施加直流電壓之情況下,於構成介電質陶究之晶 粒9之内部’氧空位等容易成為搬運電荷之载體,從而介電 質陶瓷之絕緣性下降。於構成本發明之積層陶竟電容器中之 介電質層5的介電質陶瓷中,加入釩與錢,而使作為包括上 述鈒與轼之添加成分的經及稀土元素之固溶狀態不同,從而 使居里溫度處於95〜105°C之範圍。因此,一般認為可使晶 粒9中之氧空位等之載體密度減少’含有較多之稀土元素及 鎂’而使晶粒9之内部之氧空位較少’故可獲得較高之絕緣 098109473 15 201007788 性 粒 9中所含之稀土元素及錳之濃度的測定係使用 有元素分析儀(EDS)之穿透式電子顯微鏡來進行。隹用附凝 之樣品,藉由離子研磨於積層方向上將積層陶瓷電办;刀析 至可進行觀察之程度為止’於其經研磨之介電質層°研磨 上,分別選取利用上述鈣濃度之測定所判定的第丨曰粒 及第2晶粒9b。 9aThe dielectric ceramic of the present invention having such a specific configuration has a dielectric constant of room temperature (MC) of 3,500 or more, a dielectric loss of 125% or less, and a temperature characteristic of a dielectric constant satisfying X6S (ie, The temperature change rate of the dielectric constant based on 25 is _55 to 1 〇 rc is within 22% of the soil, and hereinafter sometimes referred to as "X6S". In addition, the dielectric constant of the dielectric ceramic when the Ac voltage is ν is 2 or less of the dielectric constant when the AC voltage is 〇.〇1 v. Further, the dielectric ceramic is subjected to a high-temperature load test (temperature · 1 〇 5 it, electric wish: h5 times the rated voltage, test time: 1 〇〇〇 or less sometimes referred to as "high temperature load test") The occurrence is suppressed. Therefore, the laminated ceramic capacitor of the present invention having the dielectric layer 5 composed of the dielectric material has high reliability. The reason for this will be described in detail below. In place of the titanium (10) moth which constitutes (4) niobium, if the content of niobium is v2〇5, one to G.G2 moir, the reliability in the high temperature load test decreases. On the other hand, if the content of hunger is more than 〇2 mol in terms of v2〇5, the dielectric constant at room temperature becomes low. Calculation::·20%::钡:^ WO莫耳 If the content of magnesium is 岣. The temperature characteristic of the dielectric constant of the exchange + side m ′ is easily largely biased to the X6S condition as the temperature characteristic of the electrostatic capacitance. Another 098109473 201007788 At 0.8 m, the dielectric constant at room temperature changes, on the one hand, if the content of magnesium is low, 0 constitutes the titanium barium titanate, if the content of the clock is changed to G.1 In the case of Mohr, the insulation resistance of the dielectric layer 5 is lowered, so that the reliability in the high-loading is lowered. On the other hand, if the content of the fierce content is in the case of G.5 Moer, the dielectric constant at room temperature becomes lower. (4) In the case of titanium (10) Mo, which constitutes titanium, if the content of at least one rare earth element selected from Ziji, _, 鈥, and oblique @ is less than Μ莫耳 in terms of RE2〇3, it is reliable in high temperature load test. Sexual decline. On the other hand, if the content of the above rare earth element is more than 〇 8 mol in terms of RE2 〇 3, the dielectric constant at room temperature becomes low. Compared with the titanium 100 mil which constitutes barium titanate, if the content of strontium is less than 0.02 mol in terms of Tb4〇7, the solid of vanadium, magnesium, and rare earth elements in barium titanate as a main component The amount of solution is reduced. Therefore, the Curie phase of the dielectric ceramics is at the Curie temperature (about 125 °C) of the acid-free pot, and the reliability under the high-temperature load test is lowered. On the other hand, if the amount of 铽Tb4〇7 is more than 0.2 mol, the amount of solid solution of vanadium, magnesium, manganese, and rare earth elements in barium titanate as a main component increases. Therefore, compared with the dielectric constant when the AC voltage is set to 0.01 v, the dielectric constant increases when the Ac voltage is 丄V (the AC voltage dependence of the dielectric constant is large), and the rated power changes repeatedly. The change in the electrostatic capacitance of the dielectric ceramic becomes large. The composition of the preferred dielectric ceramics is preferably 0.02 to 0.08 moles of vanadium in the form of V205, which is 0.3 to 0.6 in terms of MgO, for the composition of 100 mils of titanium 098109473 9 201007788. Molybdenum magnesium, which is 0.2 to 0.4 mol of manganese in terms of MnO, and is at least one rare earth element selected from the group consisting of 〜, 镝, 鈥, and bait in terms of RE203, and converted to Tb407. Calculated as 0.02~0.08 moles. The dielectric ceramics having the composition can increase the dielectric constant at room temperature to 3700 or more, and the dielectric constant when the AC voltage is 1 V can be set to be 0.01 V when the AC voltage is set to 0.01 V. The electrical constant is 1.5 times or less. Further, as the rare earth element, a higher dielectric constant and a higher insulation resistance are preferable. Further, the dielectric ceramic is preferably contained in an amount of 0.05 to 0.08 mol in terms of Tb407 with respect to 100 mol of titanium constituting barium titanate. Thereby, the coefficient of variation (σ/χ, σ: standard deviation, X: average value) of the dielectric constant of the dielectric ceramic can be reduced. Therefore, in the case of manufacturing a multilayer ceramic capacitor, even if there is a difference in the calcination temperature, a laminated ceramic capacitor having a small uneven capacitance can be obtained. Further, as described above, in the dielectric ceramic, the ratio of the first crystal grains 9a to the second crystal grains 9b is such that the first crystal grains 9a are observed on the polished surface of the dielectric ceramic. When the area is C1 and the area of the second crystal grain 9b is C2, C2/(C1 + C2) is 0.3 to 0.7. That is, when C2/(C1 + C2) is less than 0.3, the ratio of the second crystal grains 9b containing Ca is small, and the dielectric constant at room temperature is lowered. On the other hand, if 098109473 10 201007788 C2/(C1 + C2) is more than 〇.7, the dielectric constant at room temperature increases, but the life in the high-temperature load test decreases. C2/(C1 + C2) is particularly desirable & G4 to G6. If it is in this range, the dielectric constant of the dielectric ceramic at room temperature can be increased to 40 Å or more. Further, the calcium concentration of the second crystal grains 9b is particularly preferably 0.5 to 2.5 atom%. If the ship's degree is within this range, it can be fully dissolved in the titanic acid. Further, since the amount of calcium compound which remains undissolved in the grain boundary or the like is reduced, the dielectric constant of the dielectric constant is increased, so that a high dielectric constant can be achieved. Further, the first crystal grains 9a include those having a calcium concentration of zero. In addition, the Curie temperature in the present invention means a range in which the temperature characteristic of the dielectric constant is measured (the temperature at which the dielectric constant of 6 〇 15 (rc) reaches the maximum. The calcium concentration in the crystal grain 9 is attached. A transmission electron microscope of an elemental analysis apparatus performs elemental analysis on the crystal grains 9 present on the polishing surface until the cross section of the dielectric layer 5 is polished by ion milling to the extent that it can be observed. The spot size of the beam is set to 5 nm, and the analysis portion is set at a substantially equal interval from the grain boundary in the straight line drawn from the vicinity of the grain boundary of the crystal grain 9 to 4 points. The ratio of the total amount of Ba, Ti, Ca, V, Mg, RE (rare earth element) and Μη detected by the point is set to 1〇〇〇/〇, and the calcium determined at each measurement point is obtained. The average value of the ratio is taken as the calcium concentration. Then, the crystal grains having a calcium concentration of 0.2 atom% or less are used as the first crystal grains 9a, and the obtained crystals having a calcium concentration of 0.4 atom% or more and 098109473 11 201007788 are obtained. The grain is the second crystal grain %. The crystal grain 9 of the calcium concentration is determined as First, a photograph of the polished surface obtained by grinding the cross section of the dielectric layer 5 constituting the laminated ceramic capacitor (magnification: 20,000 to 100,000 times) is taken using a transmission electron microscope. Then, in the photograph A circle enclosing 30 crystal grains 9 is drawn thereon, and the area of each particle is obtained by image processing based on the contours of the respective crystal grains 9 located in the circle and the circumference, and the diameter when replacing the circle having the same area is calculated. Then, the diameter of the obtained crystal grain 9 is within a range of ±30% of the average particle diameter determined by the method described later as the crystal grain 9. Further, each of the inside and the circumference of the circle is obtained. The total area of each of the first crystal grains 9a and the second crystal grains 9b selected and measured in the crystal grains 9 is obtained as a value of C2/(C1 + C2). Further, the center of the crystal grains 9 is the crystal grains 9 The center of the circle is inscribed, and the vicinity of the grain boundary of the grain 9 means a region from the grain boundary of the grain 9 to the inner side of 5 nm. Moreover, the inscribed circle of the grain 9 will be worn by The image reflected by the transmission electron microscope is taken into the computer and the grain 9 is drawn on the surface of the lens. In the circumstance of the circle, the center of the crystal grain 9 is determined. Fig. 3 is an X-ray diffraction pattern of a dielectric ceramic constituting the multilayer ceramic capacitor of the sample No. 3 in the later-described embodiment, which constitutes the multilayer ceramic capacitor of the present invention. The dielectric ceramic has a diffraction pattern as shown in the X-ray diffraction pattern of Fig. 3. Fig. 4 is a graph showing the temperature characteristics of the electrostatic capacitance of the multilayer ceramic capacitor of sample No. 3. The multilayer ceramic capacitor of the present invention. With 098109473 12 201007788 there is a temperature characteristic of the electrostatic capacitance shown in Fig. 4. In the X-ray diffraction diagram of Fig. 3, the (2〇〇) plane of the cubic crystal barium titanate (26> = 45.3. The χ-ray diffraction peaks of the (〇〇2) plane of the tetragonal barium titanate (near 20 = 45.1°) are overlapped to form a broad diffraction peak. Further, the diffraction intensity (Ic) of the (2 Å) plane showing the cubic crystal of barium titanate is larger than the diffraction intensity (It) of the (002) plane showing the tetragonal barium titanate. The crystal structure is similar to the conventional X-ray diffraction pattern of the core-shell structure, but as shown in Fig. 4, the Curie temperature (Tc) of the dielectric ceramic constituting the multilayer ceramic capacitor of the present invention is 95 to 1 〇 5 ° C ' differs from the dielectric properties of a conventional dielectric ceramic having a core-shell structure with a Curie temperature of i25 ° C. That is, a dielectric ceramic having a core-shell structure obtained by solid-solving an additive component such as magnesium, manganese, and a rare earth element into a bismuth silicate as a main component shows a Curie temperature of pure barium titanate (125. The Curie temperature in the vicinity of the crucible. In contrast, the dielectric ceramic constituting the dielectric layer 5 of the multilayer ceramic capacitor of the present invention is as described above, and is dissolved in calcium barium, vanadium, and magnesium in barium titanate. , manganese, and at least one rare earth element selected from lanthanum, cerium, lanthanum and cerium, and lanthanum. Therefore, despite the diffraction of the (2 〇〇) plane of the barium titanate which shows cubic crystal in the X-ray diffraction pattern The crystal structure having a strength greater than the diffraction intensity of the (〇〇2) plane of the tetragonal barium titanate, but having a Curie temperature of 95 to 1 〇 5 ° C and having a property of being biased toward the room temperature side is generally considered to be In addition to the addition of components such as vanadium, magnesium, manganese, and rare earth elements, a small amount of cerium is solid-dissolved, whereby the added component diffuses in a specific state inside the dielectric ceramic, so that the Curie temperature can be 95 to 105. 098109473 13 201007788 For example, in the laminated ceramic capacitor constituting the present invention In the dielectric ceramic of the device, the concentration difference between the first crystal grain 9 a and the second crystal grain 9 b in the surface layer portion minus the manganese concentration at a depth of 1 〇 nm is 〇 3 atom%. In the following, the concentration difference of the rare earth element concentration in the surface layer portion minus the rare earth element concentration at a depth of 1 〇 nm is atomic % or more. Specifically, as shown in Figs. 5(a) to 5(c). 5(a) is a graph showing a change in concentration of rare earth elements and manganese contained in crystal grains of a dielectric ceramic constituting the multilayer ceramic capacitor of the sample N〇3 in the later-described embodiment. The dielectric ceramic is the present invention. Fig. 5(b) is a graph showing changes in the concentration of rare earth elements and manganese contained in crystal grains of a dielectric ceramic constituting the multilayer ceramic capacitor of the sample N〇1 in the later-described embodiment. The electroceramic ceramic is obtained by solid-solving such an additive component of magnesium, manganese, and a rare earth element in barium titanate as a main component, and has a core-shell structure having a Curie temperature of 125. (: Fig. 5(c) A crystal grain of a dielectric ceramic constituting a multilayer ceramic capacitor of the sample N〇6 in the later-described embodiment A graph showing changes in the concentration of rare earth elements and manganese contained in the medium. The dielectric_money is obtained by adding magnesium, manganese, and a rare earth element to a barium titanate as a main component and adding a ruthenium in excess. Further, in ϋ 5 (a) to (c), the rare earth element is yttrium (7). In Fig. 5 (a), the rare earth element (γ) shows a large concentration change near the surface of the crystal grain 9 'relative to this The concentration of manganese (Μη) in the vicinity of the surface changes little. 098109473 201007788 On the other hand, in Figure 5(b), the two components of rare earth element (Y) and manganese (Μη) are displayed near the surface of the crystal grain 9. The concentration of the large concentration changes. In Fig. 5(c), the concentrations of the rare earth element (Υ) and manganese (Μη) in the vicinity of the surface of the crystal grain 9 are small. As described above, the multilayer ceramic capacitor of the present invention has a large change in the concentration of the rare earth element (Υ) in the vicinity of the surface of the crystal grain 9 constituting the dielectric ceramic, and the change in the concentration of manganese (Μη) is small. There is an intermediate structure between sample No. 1 and sample No. 6 ❿. Therefore, even if the crystal structure is similar to the core-shell structure, the Curie temperature is also 95 to 105 °C. Therefore, in the multilayer ceramic capacitor of the present invention, the element of diffusion compensates for the oxygen deficiency in the crystal grain, whereby the dielectric properties of the dielectric ceramic are improved, and the life in the high temperature load test can be improved. In other words, when the amount of solid solution of manganese and rare earth elements in the crystal grains 9 is small, the proportion of the core portion containing defects such as a large number of oxygen vacancies increases. Therefore, it is considered that, in the case where a DC voltage is applied, the oxygen vacancies or the like inside the crystal grains 9 constituting the dielectric material are likely to be carriers for carrying charges, and the dielectric properties of the dielectric ceramics are lowered. Vanadium and money are added to the dielectric ceramic constituting the dielectric layer 5 in the laminated ceramic capacitor of the present invention, and the solid solution state of the rare earth element including the additive component of the above lanthanum and cerium is different. Thus, the Curie temperature is in the range of 95 to 105 °C. Therefore, it is generally considered that the carrier density of the oxygen vacancies or the like in the crystal grains 9 can be reduced by 'containing a large amount of rare earth elements and magnesium' and the oxygen vacancies inside the crystal grains 9 are made less, so that a higher insulation can be obtained. 098109473 15 201007788 The concentration of the rare earth element and manganese contained in the granule 9 was measured using a transmission electron microscope with an elemental analyzer (EDS).隹Use the sample of the coagulation to electrolyze the laminated ceramic by ion milling in the direction of the lamination; the knife is deposited to the extent that it can be observed, and the selected calcium concentration is selected on the ground dielectric layer. The measured first particles and second crystals 9b are measured. 9a

對於選取之各晶粒9a、9b,係分別利用圖像處理根據其 輪廓而求出各粒子之面積,計算出替換為具有相同面積之圓 時之直徑,將各晶粒9a、9b設定為處於藉由後述測定方法 求出之平均粒徑之±30%之範圍的晶粒,而分別選取1〇個處 於該範圍之第1晶粒9a及第2晶粒9b。 進行元素分析時之電子束之光點尺寸係設為 1〜3 nm。另For each of the selected crystal grains 9a and 9b, the area of each particle is obtained from the contour by image processing, and the diameter when replacing the circle having the same area is calculated, and the respective crystal grains 9a and 9b are set to be at The first crystal grains 9a and the second crystal grains 9b in the range are selected from the crystal grains in the range of ±30% of the average particle diameter by the measurement method described later. The spot size of the electron beam when performing elemental analysis is set to 1 to 3 nm. another

外’分析部位至少係設為晶粒9之表層部以及距離表層部之 深度為5 nm、1〇 nm及20 nm之位置。再者,本發明中, 所謂晶粒9之表層部,係指距離晶粒9之剖面之晶界為3 nm 以内的區域。 然後,對於第1晶粒9a及第2晶粒9b,分別求出各晶粒 9a、9b之表層部的稀土元素及錳之濃度,並且求出距離表 層部之深度為lOnm之位置的稀土元素及锰之濃度。圖5(a) 〜(c)中,箭頭所表示之位置為距離表層部之深度為10 nm 之位置。 098109473 16 201007788 接著’根據所求出之各晶粒9a、9b之表層部及距離表層 部之深度為1〇 nm之位置的稀土元素及猛之各濃度,而分別 求出各晶粒9a、9b之表層部的錳濃度減去深度為1〇 nm2 位置的锰濃度而得之濃度差、以及各晶粒9a、9b之表層部 的稀土元素濃度減去深度為1〇 nm之位置的稀土元素濃度 而得之濃度差。具體而言,各對10個晶粒進行該作業,對 根據各晶粒9a、9b求出之總計20個值計算晶粒9之平均值 (· 而使用。 再者,雖未圖示,但鎂、釩及铽與錳相同,各自之表層部 之濃度減去各自之深度為1〇 nm之位置的濃度而得之濃度 差為0.3原子%以下。 於構成本發明之積層陶瓷電容器中之介電質層5的介電 質陶瓷中,就維持高介電係數化並且減小介電損失之方面而 言’包括第1晶粒9a及第2晶粒9b之晶粒9之平均粒徑只 ’要為0.1 //m以上即可,若要減小靜電電容之不均一,則設 為0.3 /zm以下之範圍即可,較佳為〇14〜〇28以瓜即可。 若晶粒9之平均粒徑為〇14〜〇 28 "瓜,則存在如下優 點·可使介電常數為3500以上,使介電損失為12 5%以下, 介電常數之溫度特性滿足X6S,將AC電壓設為】v時之介 電常數為將AC電壓設為〇.〇1 v時之介電常數的i 9倍以 下,並且滿足南溫負載試驗中之可靠性(於1〇5π、額定電 壓之1.5倍、1000小時以上之條件下無不良)。 098109473 17 201007788 對於晶粒9之平均粒徑,首先,對由緞燒後之電容器本體 1所構成之樣品之斷裂面進行研磨,然後使用掃描式電子顯 微鏡拍攝内部組織之照片(倍率:2〇 〇〇〇〜1〇〇 〇〇〇倍)。 然後,於該照片上繪製包圍2〇〜3〇個晶粒9之圓,選擇 圓内及圓周上之晶粒9。接著’對各晶粒9之輪廓進行圖像 處理’求出各粒子之面積,計算出替換為具有相同面積之圓 時之直徑,並根據其平均值求出上述平均粒徑。 另一方面,為了獲得可使高溫負載試驗中之壽命特性進一 步提高之制料電容H,作為介電質喊之其他較佳組 成,較佳為相對於構成鈦酸鋇之鈦1〇〇莫耳而含有以V2〇 換算計為0·05〜01莫耳之飢,以MgO換算計為〇 2〜〇 8 莫耳之鎂,以Mn〇換算計為〇·2〜〇.3莫耳之錳,以re2〇3 換算計為0.4〜0.6莫耳之自釔、鏑、鈥及铒中選擇之至少^ 種稀土元素,以及以Tb4〇7換算計為0.05〜〇3莫耳之轼, 且較佳為第1晶粒及第2晶粒之平均粒徑為0.14〜〇 19 陶瓷可獲得即 之條件下亦於 具有此種組成及晶粒之平均粒徑之介電質 便於將兩溫負載試驗之溫度提高至125 1000小時以上無不良之積層陶瓷電容器。 再者,本發明之介電質陶瓷中,只要為可維持所需介_ 特性之範圍,則亦可含有玻璃成分作為用以提高燒電質 劑(燒結助劑)。 °之助 098109473 18 201007788 、然後對製1^本發明之積層陶瓷電容器之方法加以說明。 首先,料射4財,準備純度為 99%以上之鈦酸鋇粉末(以 下稱=BT务末)以及鍊酸鋇中固溶有妈之粉末(以下稱為 私末)另外’準備V205粉末與MgO粉末,進而準備 自Y2〇3 &末、Dy2〇3粉末、H〇办粉末及价办粉末中選擇 之至少 1種蘇+ > 疋素之氧化物粉末以及Tb407粉末及The outer portion of the analysis portion is at least the surface layer portion of the crystal grain 9 and the depth from the surface layer portion at positions of 5 nm, 1 〇 nm, and 20 nm. Further, in the present invention, the surface layer portion of the crystal grain 9 means a region within 3 nm from the grain boundary of the cross section of the crystal grain 9. Then, the concentration of the rare earth element and the manganese in the surface layer portion of each of the crystal grains 9a and 9b is obtained for each of the first crystal grains 9a and the second crystal grains 9b, and a rare earth element having a depth of 1 nm from the surface layer portion is obtained. And the concentration of manganese. In Figs. 5(a) to 5(c), the position indicated by the arrow is a position at a depth of 10 nm from the surface layer portion. 098109473 16 201007788 Next, the respective crystal grains 9a and 9b are obtained from the rare earth elements at the position of the surface layer portion of each of the crystal grains 9a and 9b and the depth of the surface layer portion at a position of 1 〇 nm. The concentration of manganese in the surface layer portion minus the concentration of manganese at a depth of 1 〇 nm 2 and the concentration of rare earth elements in the surface layer portion of each of the crystal grains 9a and 9b minus the concentration of rare earth elements at a depth of 1 〇 nm And the concentration is poor. Specifically, this operation is performed for each of ten pairs of crystal grains, and the average value of the crystal grains 9 is calculated for a total of 20 values obtained from the respective crystal grains 9a and 9b. Further, although not shown, Magnesium, vanadium, and niobium are the same as manganese, and the concentration of each surface layer portion minus the concentration at a position where the depth is 1 〇 nm is 0.3 atom% or less. The composition of the multilayer ceramic capacitor constituting the present invention is In the dielectric ceramic of the electric layer 5, the average particle diameter of the crystal grains 9 including the first crystal grains 9a and the second crystal grains 9b is maintained only in terms of maintaining high dielectric constant and reducing dielectric loss. 'To be 0.1 / m or more, if you want to reduce the unevenness of the electrostatic capacitance, it can be set to 0.3 / zm or less, preferably 〇 14 ~ 〇 28 can be melon. If the grain 9 The average particle diameter is 〇14~〇28 " melon, and the following advantages are obtained: the dielectric constant is 3500 or more, the dielectric loss is 125% or less, the dielectric constant of the dielectric constant satisfies X6S, and the AC voltage is used. The dielectric constant at the time of v is equal to or less than 9 times the dielectric constant when the AC voltage is set to 〇.〇1 v, and satisfies the south temperature negative. Reliability in the test (no defect at 1〇5π, 1.5 times the rated voltage, 1000 hours or more) 098109473 17 201007788 For the average particle size of the grain 9, first, the capacitor body after the satin burning The fracture surface of the sample consisting of 1 was ground, and then a photograph of the internal tissue was taken using a scanning electron microscope (magnification: 2 〇〇〇〇 to 1 〇〇〇〇〇). Then, the image was drawn on the photo 2〇 ~3 〇 a circle of 9 grains, select the grains 9 in the circle and on the circumference. Then 'image the outline of each grain 9' to find the area of each particle, and calculate to replace it with the same area. The diameter of the circle is obtained, and the average particle diameter is obtained from the average value. On the other hand, in order to obtain the material capacitance H which can further improve the life characteristics in the high-temperature load test, it is another preferable composition as the dielectric material. Preferably, it is a hunger of 0.05 to 01 mol in terms of V2 相对 with respect to the titanium ruthenium constituting barium titanate, and is 〇2 to 〇8 mol of magnesium in terms of MgO. In terms of Mn〇, it is 〇·2~〇.3 Manganese, in terms of re2〇3, is at least 2 kinds of rare earth elements selected from 钇, 镝, 鈥, and 0.4 in terms of re2〇3, and 0.05 to 〇3 moles in terms of Tb4〇7, Preferably, the average grain size of the first crystal grain and the second crystal grain is 0.14 to 〇19, and the dielectric material having the composition and the average grain size of the crystal grain is obtained in a convenient condition. The temperature of the load test is increased to 125 1000 hours or more without any defective multilayer ceramic capacitor. Further, the dielectric ceramic of the present invention may contain a glass component as long as it maintains a desired range of properties. Improve the burning charge (sintering aid). ° help 098109473 18 201007788, and then the method of manufacturing the multilayer ceramic capacitor of the present invention will be described. First, it is expected to prepare a V205 powder with a powder of barium titanate powder (hereinafter referred to as = BT) and a powder of glutamic acid in the stearate (hereinafter referred to as private). MgO powder, and further prepared from Y2〇3 &, Dy2〇3 powder, H〇 powder and price powder, at least one type of su+> alizarin oxide powder and Tb407 powder and

MnC〇3粉末。 P BCT粉末係將A㈣之—部分㈣㈣置換之欽酸鎖作 為主成刀之IU溶體,係以(β〜—χ⑷τ办所表示。該化合物 中,Α位置中之Ca +MnC〇3 powder. P BCT powder is the IU solution of the substitution of A (four) - part (4) (four) as the main IU solution, which is represented by (β~-χ(4)τ. In this compound, Ca + in the Α position

La之置換量較佳為x=0.01〜0.2。若Ca 之置換量為該範圍内,則藉由與第1晶粒9a之共存構造, 可形成晶粒成長受到抑制之結晶組織。藉此,於將所得之介 電質陶曼用作積層陶竟電容器之情況下,可於使用溫度範圍 中獲得優異之靜電電容之溫度特性。再者,第2晶粒9b中 V 所含之Ca係以分散於第2晶粒9b中之狀態而固溶。 另外,所使用之BT粉末及BCT粉末之比表面積較佳為2 〜6m2/g〇若BT粉末及BCT粉末之比表面積為2〜6m2/g, 則容易使第1晶粒9a及第2晶粒9b維持近似於核咬構生 之結晶構造,並且容易使添加成分固溶於該等晶粒中而使居 里溫度偏向低溫側。另外,可實現介電常數之提高,並且可 提高介電質陶瓷之絕緣性’藉此可提高於高溫負栽試驗中之 可靠性。 098109473 19 201007788 另外’關於作為添加劑之自Υ203粉末、Dy203粉末、Ho2〇3 泰末及Εγ2〇3粉末中選擇之至少1種稀土元素之氧化物粉 末、Tb4〇?粉末、V2〇5粉末、MgO粉末以及MnC03粉末, #乂佳為使用粒徑(或比表面積)與介電質粉末相同者。 然後’相對於BT粉末及BCT粉末之總量1〇〇莫耳,以 0.02 莫耳之V2〇5粉末、〇.2〜〇.8莫耳之MgO粉末、 〇.3〜〇·8莫耳之稀土元素之氧化物粉末、0.1〜0.5莫耳之 MnC〇3粉末、以及0.02〜0.2莫耳之Tb407粉末之比例來調 參 配該等原料粉末,進而,視需要以可維持所需介電特性之範 圍添加作為燒結助劑之玻璃粉末,而獲得原材料粉末。當將 作為主要原料粉末之BT粉末及BCT粉末之總量設為1〇〇 質量份時’破璃粉末之添加量較佳為0.5〜2質量份。 接著’於上述原材料粉末中加入專用之有機媒劑來製備陶 充衆料’使用刮刀成形法或狹縫擠壓式塗佈法等之片材成形 法开>成陶竞生片。於該情況下,就維持用以實現介電質層5 ❹ 之局電容化的薄層化、高絕緣性之方面而言,陶瓷生片之厚 度較佳為0.5〜3 am。 之後’於所得陶瓷生片之主面上,印刷形成矩形狀之内部 電極圖案。成為内部電極圖案之導電膏較佳為Ni、Cu或者 其等之合金粉末。 然後’將所需片數之形成有内部電極圖案之陶瓷生片重 疊’以上下層為相同片數之方式於其上下重疊數片未形成内 098109473 20 201007788 部電極圖案之陶瓷生片,而形成片材積層體。於該情況下, 片材積層體中之内部電極圖案係於長度方向上分別錯開半 個圖案。 接著,將所得片材積層體切斷為格子狀,以内部電極圖案 之端部露出之方式形成電容器本體成形體。藉由此種積層方 法’能夠以内部電極圖案於切斷後之電容器本體成形體之端 面交替露出之方式形成。 ^ 然後,將所得之電容器本體成形體脫脂後,進行煅燒。就 控制添加劑於BT粉末及BCT粉末中之固溶以及晶粒之粒 子成長的理由而言,煅燒溫度較佳為1100〜1200X:。 為了獲得本發明之介電質陶瓷,使用比表面積為2〜6 m2/g之BT粉末及BCT粉末,於其等中如上述般添加既定 量之鎂、链、鈒及铖之各氧化物以及自紀、鏑、鈥及斜中選 擇之至少1種上述稀土元素之各種氧化物粉末作為添加 ’ 劑,於上述溫度進行煅燒。藉此,使將BT粉末及BCT粉 末作為主原料而獲得之晶粒中含有各種添加劑,該晶粒所顯 不之結晶構造成為近似於核_殼構造之構造,並且居里溫度 ,到低於習知之顯示核省構造之介電質喊之居里溫度的 軌圍。於炮燒後’藉由以使居里溫度達到低於習知之顯示核 -殼構造之介電質喊之居里溫度之範_方式進行锻燒, 第1曰曰粒9a及第2晶粒9b中添加劑之固溶提昇,其結果可 獲得絕緣性較高且於高溫負載試驗中之壽命佳之介電質陶 ⑽8109473 21 201007788 瓷。再者,本發明中,為了使構成介電質陶瓷之晶粒9之平 均粒徑為0.19以m以下,較理想為選擇比表面積大於5 m2/g 之粉末。 另外,於煅燒後,再次於弱還原環境下進行熱處理。進行 該熱處理係為了將還原環境中之煅燒時被還原之介電質陶 瓷再氧化’使烺燒時被還原而下降之絕緣電阻恢復。就抑制 第1晶粒9a及第2晶粒9b之進一步之晶粒成長並且提高再 氧化量的理由而言,該熱處理之溫度較佳為9〇〇〜u〇(rc。 ❹ 以上述方式可製作第i晶粒9a及第2晶粒卯高絕緣性化、 且顯示95〜105C之居里溫度之積層陶瓷電容器。 然後’於進行上述熱處理而獲得之電容器本體i之相對向 的端部上,塗佈外部電極膏並進行燒製,而形成外部電極 3。另外’亦可於該外部電極3之表面上形成鍍膜以提高安 裝性。以上述方式可獲得本㈣之積層喊電容器。 乂下舉出實施例進—步對本發明加以詳細說明但本發❹ 明並不限定於以下實施例。 [實施例] <積層陶瓷電容器之製作> 首先,作為原料粉末,準備Βτ粉末、bct粉末(組成為 xCax)Ti〇3,X =⑽5)、Mg〇 粉末、γ2〇3 粉末、d成 粉末、η〇2〇3粉末、ΕΓ2〇3粉末、Tb4〇7粉末、施叫粉末 以及V2〇5粉末。 098109473 22 201007788 然後,以表1〜3所示之比例將該等各種粉末混合。表1 〜3中,對BT粉末及BCT粉末示出兩種粉末之調配比例。 另外,Mg〇粉末、Y2〇3粉末、Dy2〇3粉末、H0203粉末、 Er203粉末、Tb407粉末、MnC03粉末以及v2〇5粉末之比例 係將BT粉末與BCT粉末之總量設為100莫耳時之比例。 該等原料粉末之純度均為99.9%。BT粉末及BCT粉末係 於樣品No· 1〜80中使用比表面積為4 m2/g者,於樣品No.81 , 〜11〇中使用比表面積為6 m2/g者。MgO粉末、γ2〇3粉末、The substitution amount of La is preferably x = 0.01 to 0.2. When the substitution amount of Ca is within this range, a crystal structure in which grain growth is suppressed can be formed by the coexistence structure with the first crystal grains 9a. Thereby, in the case where the obtained dielectric 陶曼 is used as a laminated ceramic capacitor, excellent temperature characteristics of the electrostatic capacitance can be obtained in the use temperature range. Further, Ca contained in V in the second crystal grains 9b is solid-dissolved in a state of being dispersed in the second crystal grains 9b. Further, the specific surface area of the BT powder and the BCT powder to be used is preferably 2 to 6 m 2 /g. If the specific surface area of the BT powder and the BCT powder is 2 to 6 m 2 /g, the first crystal grains 9 a and the second crystal are easily formed. The granule 9b maintains a crystal structure similar to that of the nucleus, and it is easy to dissolve the additive component in the crystal grains to bias the Curie temperature toward the low temperature side. In addition, the dielectric constant can be improved and the dielectric properties of the dielectric ceramic can be improved, thereby improving the reliability in the high temperature load test. 098109473 19 201007788 In addition, as for the additive, at least one rare earth element oxide powder, Tb4〇 powder, V2〇5 powder, MgO selected from the group consisting of 203 powder, Dy203 powder, Ho2〇3 taiwan and Εγ2〇3 powder. The powder and the MnC03 powder are preferably the same as the dielectric powder using the particle size (or specific surface area). Then 'relative to the total amount of BT powder and BCT powder 1 〇〇 mol, to 0.02 m of V2 〇 5 powder, 〇. 2 ~ 〇. 8 mol of MgO powder, 〇. 3 ~ 〇 · 8 m The rare earth element oxide powder, 0.1 to 0.5 mole of MnC〇3 powder, and 0.02 to 0.2 mole of Tb407 powder are used to adjust the raw material powder, and further, if necessary, to maintain the desired dielectric A range of characteristics is added as a glass powder of a sintering aid to obtain a raw material powder. When the total amount of the BT powder and the BCT powder as the main raw material powder is 1 part by mass, the amount of the glass frit powder added is preferably 0.5 to 2 parts by mass. Then, a special organic vehicle is added to the raw material powder to prepare a ceramic material. A sheet forming method such as a doctor blade forming method or a slit extrusion coating method is used to open a ceramic sheet. In this case, the thickness of the ceramic green sheet is preferably 0.5 to 3 am in terms of thinning and high insulation for realizing the capacitance of the dielectric layer 5 。. Thereafter, a rectangular internal electrode pattern was formed on the main surface of the obtained ceramic green sheet. The conductive paste to be the internal electrode pattern is preferably an alloy powder of Ni, Cu or the like. Then, 'the desired number of sheets of the ceramic green sheets in which the internal electrode patterns are formed are overlapped'. The upper and lower layers are the same number of sheets, and a plurality of ceramic green sheets having no internal 098109473 20 201007788 electrode patterns are formed thereon to form a sheet. Laminates. In this case, the internal electrode patterns in the sheet laminate are shifted by a half pattern in the longitudinal direction. Then, the obtained sheet laminated body was cut into a lattice shape, and the capacitor body molded body was formed so that the end portions of the internal electrode patterns were exposed. Such a lamination method can be formed by alternately exposing the end faces of the capacitor body molded body after the cutting by the internal electrode pattern. Then, the obtained capacitor body formed body is degreased and then calcined. The calcination temperature is preferably from 1100 to 1200X: for the purpose of controlling the solid solution of the additive in the BT powder and the BCT powder and the grain growth of the crystal grains. In order to obtain the dielectric ceramic of the present invention, BT powder and BCT powder having a specific surface area of 2 to 6 m 2 /g are used, and in each case, a predetermined amount of each of oxides of magnesium, chain, lanthanum and cerium is added as described above. Each of the oxide powders of at least one of the above rare earth elements selected from the group consisting of ruthenium, osmium, iridium and iridium is calcined at the above temperature as an additive. Thereby, the crystal grains obtained by using the BT powder and the BCT powder as main raw materials contain various additives, and the crystal structure which the crystal grains exhibit is similar to the structure of the core-shell structure, and the Curie temperature is lower than The well-known shows the circumference of the Curie temperature of the dielectric structure of the nuclear province. After calcination, the calcination is carried out by the method of making the Curie temperature lower than the Curie temperature of the dielectric core-shell structure of the conventional display, the first niobium 9a and the second crystal grain. The solid solution of the additive in 9b is improved, and as a result, a dielectric ceramic (10) 8109473 21 201007788 porcelain having high insulation and good life in a high temperature load test can be obtained. Further, in the present invention, in order to make the average grain size of the crystal grains 9 constituting the dielectric ceramic to be 0.19 or less, it is preferable to select a powder having a specific surface area of more than 5 m2/g. Further, after calcination, heat treatment was again performed in a weakly reducing atmosphere. This heat treatment is carried out in order to reoxidize the dielectric ceramic which is reduced during calcination in the reduction environment, and to restore the insulation resistance which is reduced by reduction during the calcination. In order to suppress further grain growth of the first crystal grains 9a and the second crystal grains 9b and increase the amount of reoxidation, the temperature of the heat treatment is preferably 9 〇〇 to u 〇 (rc. ❹ in the above manner A multilayer ceramic capacitor in which the i-th grain 9a and the second crystal grain are highly insulated and exhibits a Curie temperature of 95 to 105 C. Then, the opposite ends of the capacitor body i obtained by performing the above heat treatment are formed. The external electrode paste is applied and fired to form the external electrode 3. Further, a plating film may be formed on the surface of the external electrode 3 to improve mountability. The laminated capacitor of the present invention can be obtained in the above manner. The present invention will be described in detail with reference to the accompanying Examples. However, the present invention is not limited to the following examples. [Examples] <Production of laminated ceramic capacitors> First, as a raw material powder, Βτ powder and bct powder were prepared. (composition: xCax) Ti〇3, X = (10) 5), Mg 〇 powder, γ 2 〇 3 powder, d powder, η 〇 2 〇 3 powder, ΕΓ 2 〇 3 powder, Tb 4 〇 7 powder, squeezing powder, and V 2 〇 5 powder. 098109473 22 201007788 Then, the various powders were mixed at a ratio shown in Tables 1 to 3. In Tables 1 to 3, the blending ratios of the two powders are shown for the BT powder and the BCT powder. In addition, the ratio of the Mg powder, the Y2〇3 powder, the Dy2〇3 powder, the H0203 powder, the Er203 powder, the Tb407 powder, the MnC03 powder, and the v2〇5 powder is set to 100 mol per BT powder and BCT powder. The ratio. The purity of the raw material powders was 99.9%. The BT powder and the BCT powder were used in the sample Nos. 1 to 80, and the specific surface area was 4 m2/g, and the sample No. 81 and -11 were used in the sample No. 81 and -11 Å. MgO powder, γ2〇3 powder,

Dy2〇3 粉末、Ηο2〇3 粉末、Er203 粉末、Tb407 粉末、MnC03 粉末以及νζ〇5粉末係使用平均粒徑為0.1 者。燒結助 劑係使用 Si〇2= 55、BaO = 20、CaO = 15、Li20 = 1〇(莫耳 %)組成之玻璃粉末。玻璃粉末之添加量係相對於Βτ粉末與 BCT粉末之總量1〇〇質量份而設為1質量份。 接著,使用直徑為5 mm之氧化鍅球,添加作為溶劑之由 曱苯與乙醇所構成之混合溶劑,對該等原料粉末進行濕式混 合。 然後,將經濕式混合之粉末與聚乙烯丁醛樹脂一併投入至 甲苯及乙醇之混合溶劑中,使用直徑為5mm之氧化鍅球進 打濕式混合來製備陶瓷漿料。使用該陶瓷漿料,藉由刮刀成 形法製作厚度為1.5 及2.5 /zm之陶瓷生片。 接著’於厚度為1.5 /zm及2.5 //m之陶瓷生片之上表面 上,形成數個將Ni作為主成分之矩形狀之内部電極圖案。 098109473 23 201007788 用以形成内部電極圖案之導電膏係使用相對於平均粒徑為 0.3 /zm之Ni粉末1〇〇質量份而添加有15質量份之BT粉 末者。 然後,積層200片之印刷有内部電極圖案之陶瓷生片,於 其上下表面上分別積層20片未印刷内部電極圖案之陶瓷生 片,使用壓製機,於溫度為60°C、壓力為1〇7 Pa、時間為 10分鐘之條件下使其等密接,而製作出使用了厚度為1.5 // Γ m之陶瓷生片之片材積層體、以及使用了厚度為2.5 之 ® 陶瓷生片之片材積層體。之後,將各片材積層體切斷成既定 尺寸’而形成電容器本體成形體。 接著,於大氣中對該電容器本體成形體進行脫黏合劑處理 後,於氫氣-氮氣中於1120〜1135°C煅燒2小時而製作電容 器本體。另外’所製作之電容器本體係繼續於氮環境中於 1000°C用4小時進行再氧化處理。該電容器本體之大小為 、0.95x0.48x0·48 mm3,介電質層之厚度為i 或2 , ❹ 1層内部電極層之有效面積為〇 3 mm2。再者,所謂有效面 積’係指以分別露出於電容器本體之不同端面上之方式於積 層方向上交替形成之内部電極層彼此重疊之部分的面積。 之後,對經煅燒之電容器本體進行滾筒研磨後,於電容器 本體之兩端部上塗佈含有Cu粉末及玻璃之外部電極膏,於 850 C進彳τ燒製而形成外部電極。其後,使用電解滾筒機, 於該外部電極之表面上依序進行鑛Ni及鑛錫(sn),而製作 098109473 24 201007788 積層陶瓷電容器(表1〜3中之樣SNoj — UO)。 <評價> 然後,對所得之積層陶瓷電容器進行以下評價。 (介電常數及介電損失)Dy2〇3 powder, Ηο2〇3 powder, Er203 powder, Tb407 powder, MnC03 powder, and νζ〇5 powder are used with an average particle diameter of 0.1. The sintering aid used was a glass powder composed of Si〇2 = 55, BaO = 20, CaO = 15, and Li20 = 1 〇 (mole %). The amount of the glass powder added is 1 part by mass based on 1 part by mass of the total amount of the barium powder and the BCT powder. Next, a mixed solvent of toluene and ethanol as a solvent was added using a cerium oxide ball having a diameter of 5 mm, and the raw material powders were wet-mixed. Then, the wet-mixed powder was placed together with a polyvinyl butyral resin in a mixed solvent of toluene and ethanol, and a ceramic slurry was prepared by wet-mixing using a cerium oxide ball having a diameter of 5 mm. Using this ceramic slurry, a ceramic green sheet having a thickness of 1.5 and 2.5 /zm was produced by a doctor blade forming method. Then, on the upper surface of the ceramic green sheets having thicknesses of 1.5 / zm and 2.5 / m, a plurality of rectangular internal electrode patterns containing Ni as a main component were formed. 098109473 23 201007788 The conductive paste for forming the internal electrode pattern is used by adding 15 parts by mass of BT powder to 1 part by mass of Ni powder having an average particle diameter of 0.3 /zm. Then, 200 pieces of ceramic green sheets printed with internal electrode patterns were laminated, and 20 pieces of ceramic green sheets having unprinted internal electrode patterns were laminated on the upper and lower surfaces thereof, and a press was used at a temperature of 60 ° C and a pressure of 1 Torr. 7 Pa, the time was 10 minutes, and the like, and a sheet laminate using a ceramic green sheet having a thickness of 1.5 // Γ m and a sheet using a ceramic green sheet having a thickness of 2.5 were produced. Laminates. Thereafter, each of the sheet laminates is cut into a predetermined size' to form a capacitor body molded body. Then, the capacitor body molded body was subjected to a debonding treatment in the air, and then calcined at 1,120 to 1,135 °C for 2 hours in a hydrogen-nitrogen gas to prepare a capacitor body. Further, the fabricated capacitor system was further subjected to reoxidation treatment at 1000 ° C for 4 hours in a nitrogen atmosphere. The size of the capacitor body is 0.95x0.48x0·48 mm3, the thickness of the dielectric layer is i or 2, and the effective area of the inner electrode layer of the ❹1 layer is 〇3 mm2. In addition, the "effective area" refers to an area of a portion where the internal electrode layers alternately formed in the lamination direction so as to be exposed on different end faces of the capacitor body, respectively. Thereafter, the calcined capacitor body was subjected to barrel polishing, and then an external electrode paste containing Cu powder and glass was applied to both end portions of the capacitor body, and baked at 850 C to form an external electrode. Thereafter, mineral Ni and ore (sn) were sequentially applied to the surface of the external electrode using an electrolytic roller machine to prepare a multilayer ceramic capacitor of 098109473 24 201007788 (SNoj - UO in Tables 1 to 3). <Evaluation> Then, the obtained multilayer ceramic capacitor was subjected to the following evaluation. (dielectric constant and dielectric loss)

對於介電常數及介電損失,係於溫度為25七、頻 kHz、將測定電壓設為〇 〇1Vrms或1 ν_之條件下^馬1.0 電電容’並根據介電質層之厚度及内部電極層^有定靜 出。該介電常數及介電損失之評價係將樣品數設為2^求 根據其平均值而求出。另外,於介電常數之評價中求出= 準偏差σ,並根據上述平均值x求出變異係數(σ/χ)。 (介電常數之溫度特性) 介電常數之溫度特性係於溫度為_ 5 5〜丨5 〇它之範圍中測 疋靜電電容。將介電常數之溫度特性滿足X6S(於 C之範圍中,以25C為基準時為±22%以内)之情況評價為 〇,將不滿足之情況評價為x。該介電常數之溫度特性之評 價係將樣品數設為10個並根據其平均值而求出。 (居里溫度) 居里溫度係作為於測定介電常數之溫度特性之範圍内介 電常數達到最大之溫度而求出。 (高溫負載試驗) 尚溫負載試驗係於溫度為1〇5。(:或125°C、施加電壓為6 V//z m、1〇〇〇小時之條件下進行。高溫負載試驗中之樣品數 098109473 25 201007788 係設為各樣品20個,將至1〇〇〇 品》再者,關於上述溫度,對於樣為良 進行,對於樣品版81〜110係於】25t進,係於崎 (平均粒徑) # ° 構成介電質層之晶粒之平均粒徑係以" 先’對作為炮燒後之電容器本體的樣品之:°百 然後使用掃描式電子顯微鏡拍攝㈣ ❹ =rr於該照…包圍2°〜3。:二: 選擇圓内及圓周上之晶粒。接著,對各⑽之輪廓進行圖像 :理::出各粒子之面積’計算出替換為具有相同面積之圓 夺之直k,根據其平均值求出上述平均粒押。 再者’上述研磨係以如下方式實施:首先使用鑽石板對上 述斷裂面進行粗研磨,然後使賴_之砂紙進行研磨。然 後’使用塗於硬質拋光輪上之鑽石液進行研磨,進而將粒徑 ❿ 為〇·3 _之氧化㉟研磨粒塗於軟懸光輪上,進行精研 磨。 (弼濃度· C2/(C1 + C2)) 關於晶粒中之鈣濃度,係使用附設有元素分析設備之穿透 式電子顯微鏡’對藉由離子研磨將構成積層陶瓷電容器之介 電質層之剖面研磨至可進行觀察之程度為止的研磨面上所 存在之晶粒進行元素分析而求出。 此時’電子束之光點尺寸係設為5 nrn。分析部位係於自 098109473 26 201007788 晶粒之晶界附近朝中心繪製之直線上自晶界起大致等間隔 地设定4〜5點。然後,求出將自各測定點檢測出之Ba、Ti、For the dielectric constant and dielectric loss, the temperature is 25 VII, the frequency kHz, and the measured voltage is set to 〇〇1Vrms or 1 ν_ under the condition of ^Ma 1.0 capacitance> and according to the thickness and interior of the dielectric layer The electrode layer ^ has a static discharge. The dielectric constant and the dielectric loss were evaluated by setting the number of samples to 2^ based on the average value. Further, in the evaluation of the dielectric constant, the quasi-deviation σ is obtained, and the coefficient of variation (σ/χ) is obtained from the average value x. (Temperature characteristics of dielectric constant) The temperature characteristic of the dielectric constant is measured by the electrostatic capacitance in the range of _ 5 5 to 丨 5 〇. When the temperature characteristic of the dielectric constant satisfies X6S (in the range of C, within ±22% based on 25C), it is evaluated as 〇, and the case where it is not satisfied is evaluated as x. The evaluation of the temperature characteristics of the dielectric constant was carried out by setting the number of samples to 10 and calculating the average value. (Curie temperature) The Curie temperature is obtained as the temperature at which the dielectric constant reaches the maximum in the range in which the temperature characteristic of the dielectric constant is measured. (High temperature load test) The temperature load test is based on a temperature of 1〇5. (: or 125 ° C, the applied voltage is 6 V / / zm, 1 〇〇〇 hours. The number of samples in the high temperature load test 098109473 25 201007788 is set to 20 samples, will be 1 〇〇〇 In addition, regarding the above temperature, for the sample to be good, for the sample plate 81~110 is based on 25t, and is the average particle size of the crystal grains constituting the dielectric layer. Take "first' to the sample of the capacitor body after the shot: °100 and then use a scanning electron microscope to shoot (4) ❹ = rr in the photo ... surrounded by 2 ° ~ 3.. Two: select inside the circle and on the circumference Then, the image of each (10) is imaged: the area: the area of each particle is calculated and replaced with a straight k with the same area, and the average grain is obtained from the average value. 'The above-mentioned grinding system is carried out by first rough grinding the fracture surface using a diamond plate, and then grinding the sandpaper of the Lai. Then, 'grinding the diamond liquid coated on the hard polishing wheel, and then grinding the particle size For 〇·3 _ oxidized 35 abrasive particles coated on soft suspension On the light wheel, fine grinding is carried out. (弼 concentration · C2 / (C1 + C2)) Regarding the calcium concentration in the grain, a transmission electron microscope with elemental analysis equipment is used to form a laminated ceramic by ion milling. The crystal grain of the dielectric layer of the capacitor was polished to an elemental analysis of the crystal grains present on the polished surface until the extent of observation. The spot size of the electron beam was set to 5 nrn. From 098109473 26 201007788, the line drawn toward the center near the grain boundary of the grain is set at 4 to 5 points at substantially equal intervals from the grain boundary. Then, Ba, Ti, which are detected from each measurement point, are obtained.

Ca、V、Mg、RE(稀土元素)及Μη之總量設為1〇0%時之鈣 的比例,求出自各測定點所求出之鈣比例之平均值作為鈣濃 度。 - 狀㉟濃度之晶粒係以如下方式選^。首先,使用穿透式 電子顯微鏡’拍攝對構成積層陶究電容器的介電質層之剖面 (•加以研磨所得的研磨面之照片。然後,於該照片上緣製包圍 20 30個曰曰粒之圓’利用圖像處理根據位於該圓内及圓周 上之各晶粒之輪廓求出各粒子之面積,計算出替換為具有相 同面積之8]時之直;^。接著,將晶粒之直徑處於上述平均粒 徑之±30%之範圍者作為上述晶粒。 另外,求出自位於該圓内及圓周上之各晶粒中選擇並測定 之第1晶粒及第2晶粒各自之總面積,計算出C2/(C1 + C2) 〔•之值。 再者,如上所述,晶粒之中心係該晶粒之内㈣之中心, 並且’所謂晶粒之晶界附近係指自該晶粒之晶界起至5麵 内側為止之區域。而且’晶粒之内接圓係將藉由穿透式電子 顯微鏡映出之圖像取入至電腦中,於其晝面上對晶粒緣製内 接圓’並決定晶粒之中心。 (X射線繞射:XRD) 顯示立方晶之鈦酸鋇之(200)面的繞射強度、與顯示正方 098109473 27 201007788 晶之鈦酸鎖之(002)面的繞射強度之比的測定係使用具備 Cuk-α:之管球之x射線繞射裝置,以角度26>二44〜46之 範圍進行測定’根據波峰強度之比而求出。 (稀土元素、猛之》辰度差) 晶粒中所含之稀土元素及錳之濃度的測定係使用附設有 元素分析儀(EDS)之穿透式電子顯微鏡來進行。對於分析之 樣品,藉由離子研磨於積層方向上將積層陶瓷電容器研磨至 可進行觀察之程度為止,於其經研磨之介電質層之表面上’ 分別選取利用上述鈣濃度之測定而判定的第1晶粒及第2 對於選取之第1晶粒及第2晶粒,係分別利用圖像處理根 據其輪廓求出各粒子之面積,計算出替換為具有相同面積之 圓時之直徑,將各晶粒設定為處於藉由上述測定方法而求出 之平均粒徑之±3〇%之範圍的晶粒。分別選取1〇個處於該範 圍内之第1晶粒及第2晶粒。 外,分析部位係晶粒之表層部(距離The ratio of calcium when the total amount of Ca, V, Mg, RE (rare earth element) and Μη is 1% to 0%, and the average value of the calcium ratio determined from each measurement point is determined as the calcium concentration. - The grain size of the 35-concentration is selected as follows. First, a cross-section of a dielectric layer constituting a laminated ceramic capacitor was taken using a transmission electron microscope (a photograph of a polished surface obtained by grinding). Then, 20 30 enamel granules were formed on the upper edge of the photograph. Circle 'Using image processing to determine the area of each particle based on the contour of each grain located in the circle and on the circumference, and calculating the straightness when replaced with 8] of the same area; ^. Next, the diameter of the grain The crystal grains are in the range of ±30% of the average particle diameter as the crystal grains. Further, the total of the first crystal grains and the second crystal grains selected and measured from the respective crystal grains located in the circle and the circumference are obtained. The area is calculated as the value of C2/(C1 + C2) [•. Further, as described above, the center of the grain is the center of the grain (4), and the vicinity of the grain boundary of the so-called grain refers to The grain boundary of the grain rises to the inner side of the 5th surface. And the 'inscribed circle of the grain is taken into the computer by the image reflected by the transmission electron microscope, and the grain is formed on the surface of the grain. The edge of the circle is 'into the circle' and determines the center of the grain. (X-ray diffraction: XRD) The ratio of the diffraction intensity of the (200) plane of the barium titanate to the diffraction intensity of the (002) plane showing the titanate of the square 098109473 27 201007788 is determined by using a tube having a Cuk-α: The x-ray diffraction device is measured in the range of angle 26 > two 44 to 46 'determined by the ratio of peak intensities. (Rare earth element, Mengzhi) difference in rare earth elements and manganese contained in crystal grains. The concentration was measured using a transmission electron microscope with an elemental analyzer (EDS). For the sample to be analyzed, the multilayer ceramic capacitor was ground to a level that can be observed by ion milling in the lamination direction. The first crystal grain determined by the measurement of the calcium concentration and the second first crystal grain and the second crystal grain selected by the measurement of the calcium concentration are respectively selected on the surface of the polished dielectric layer, and are respectively subjected to image processing according to the image The area of each particle was obtained from the profile, and the diameter when replacing the circle having the same area was calculated, and each crystal grain was set to be in the range of ±3〇% of the average particle diameter determined by the above-described measurement method. Select 1 place separately The first and second crystal grains within the range. In addition, the grain-based portion of the surface layer portion of the analysis (from

的稀土元素及錳之濃度,並且求出! nm之位置的稀土元素及錳之濃度。 根據以上述方式求出之各個第b 進行元素分料之電子束之枝尺寸係設為 1〜3nm。另 晶粒之剖面之晶界為3 nm之位置。 第2晶粒之表層部 距離表層部之深度為1〇 '第2 晶粒的稀土元素及 098109473 201007788 猛之濃度,分別求出各晶粒之表層部的猛濃度減去深度為 10腿之位置雜濃度而得之濃度差、以及各晶粒之表層部 的稀土元素濃度減去賴為1G nm之位置的稀土元素濃度 而得之濃度差。具體而言,各對10個晶粒進行該作業,對 根據各晶粒所求出之總計20個值計算晶粒之平均值而使 用。 再者’表卜2、4、5及7〜1G所示之樣品中,本發明之 (©樣品的構成積層陶兗電容器之介電質陶究之晶粒中所含之 稀土元素及锰㈣的濃度變化均顯示出與樣品n〇3相同之 傾向。 (組成分析) 作為所得燒結體之樣品的組成分析係感應耦合電聚 (ICP,Inductively CoupledPlasma)分析或原子吸光分析來進 行。於該情訂’使賴得介電質喊_酸及魏納混合 並加赠融而得者溶解於鹽酸中,首先利用原子吸光分析進 行介電質喊中所含之元素之定性分析。然後,對於特定之 各元素,將稀釋標準液而得者作為標準樣品,利用ICP發光 分光分析進行定量。另外,將各元素之價數設為元素週期表 中所示之價數而求出氧量。 分別將調配組成及煅燒溫度示於表1〜3,將燒結體中之 各元素之以氧化物換算計的組成示於表4〜6,將煅燒後之 介電質層之厚度、晶粒之比率(C2/(C1 + C2))、平均粒徑、 098109473 29 201007788 利用x射線繞射測定之立方晶與正方晶之波峰強度比、居 里溫度、晶粒之表層部及距離表層部之深度為10 nm之位置 的稀土元素及錳之濃度差、特性(介電常數、介電損失、介 電常數(根據靜電電容之溫度特性而求出)之溫度特性、高溫 負載試驗中之壽命)之結果示於表7〜12。 098109473 30 201007788 [表i]The concentration of rare earth elements and manganese, and the concentration of rare earth elements and manganese at the position of nm! The branch size of the electron beam based on the element b obtained by each of the above-described methods is set to 1 to 3 nm. The grain boundary of the other grain profile is 3 nm. The depth of the surface layer portion of the second crystal grain is 1 〇' the rare earth element of the second crystal grain and the concentration of 098109473 201007788, and the sharp concentration of the surface layer of each crystal grain is subtracted from the depth of 10 legs. The concentration difference obtained by the impurity concentration and the rare earth element concentration in the surface layer portion of each crystal grain are subtracted from the concentration of the rare earth element at a position of 1 G nm. Specifically, this operation is performed for each of 10 pairs of crystal grains, and the average value of the crystal grains is calculated for a total of 20 values obtained from the respective crystal grains. Further, in the samples shown in Tables 2, 4, 5, and 7 to 1G, the rare earth element and manganese contained in the crystal grains of the dielectric ceramics constituting the laminated ceramic capacitor of the present invention (4) The change in concentration showed the same tendency as the sample n 〇 3. (Composition analysis) The composition analysis of the sample of the obtained sintered body was performed by inductively coupled ICP (ICP) analysis or atomic absorption spectroscopy. Ordering 'Led's dielectric screaming _ acid and Weiner mixed and added to the melt dissolved in hydrochloric acid, first using atomic absorption analysis for qualitative analysis of the elements contained in the dielectric shout. Then, for specific Each element is diluted with a standard solution and quantified by ICP emission spectrometry, and the amount of oxygen is determined by setting the valence of each element to the valence shown in the periodic table. The composition of the formulation and the calcination temperature are shown in Tables 1 to 3, and the composition of each element in the sintered body in terms of oxide is shown in Tables 4 to 6, and the thickness of the dielectric layer after calcination and the ratio of crystal grains ( C2/(C1 + C2)), average particle size 098109473 29 201007788 The difference between the peak intensity ratio of the cubic crystal and the tetragonal crystal, the Curie temperature, the surface portion of the crystal grain and the depth of the surface layer at a depth of 10 nm by x-ray diffraction, The results (temperature characteristics, dielectric loss, dielectric constant (determined from the temperature characteristics of the electrostatic capacitance), and the lifetime in the high-temperature load test) are shown in Tables 7 to 12. 098109473 30 201007788 [Table i ]

樣品No. BT粉末 BCT粉末 v2〇f ΜβΟ MnCO, RE ΤΤ)4〇7 煅燒溫度 莫耳 莫耳 莫耳 莫耳 莫耳 元素 莫耳 莫耳 °c *1 50 50 0.1 0.5 0.3 Y 0.5 0 1130 2 50 50 0.1 0.5 0.3 Y 0.5 0.05 1130 3 50 50 0.1 0.5 0.3 Y 0.5 0.1 1130 4 50 50 0.1 0.5 0.3 Y 0.5 0.15 1130 5 50 50 0.1 0.5 0.3 Y 0.5 0.2 1130 *6 50 50 0.1 0.5 0.3 Y 0.5 0.3 1130 *7 50 50 0 0.5 0.3 Y 0.5 0.1 1130 8 50 50 0.02 0.5 0.3 Y 0.5 0.1 1130 9 50 50 0.05 0.5 0.3 Y 0.5 0.1 1130 10 50 50 0.08 0.5 0.3 Y 0.5 0.1 1130 11 50 50 0.12 0.5 0.3 Y 0.5 0.1 1130 12 50 50 0.15 0.5 0.3 Y 0.5 0.1 1130 13 50 50 0.2 0.5 0.3 Y 0.5 0.1 1130 *14 50 50 0.3 0.5 0.3 Y 0.5 0.1 1130 *15 50 50 0.1 0.1 0.3 Y 0.5 0.1 1130 16 50 50 0.1 0.2 0.3 Y 0.5 0.1 1130 17 50 50 0.1 0.3 0.3 Y 0.5 0.1 1130 18 50 50 0.1 0.6 0.3 Y 0.5 0.1 1130 19 50 50 0.1 0.8 0.3 Y 0.5 0.1 1130 *20 50 50 0.1 1 0.3 Y 0.5 0.1 1130 *21 50 50 0.1 0.5 0 Y 0.5 0.1 1130 22 50 50 0.1 0.5 0.1 Y 0.5 0.1 1130 23 50 50 0.1 0.5 0.2 Y 0.5 0.1 1130 24 50 50 0.1 0.5 0.4 Y 0.5 0.1 1130 25 50 50 0.1 0.5 0.5 Y 0.5 0.1 1130 *26 50 50 0.1 0.5 0.6 Y 0.5 0.1 1130 *27 50 50 0.1 0.5 0.3 Y 0.1 0.1 1130 28 50 50 0.1 0.5 0.3 Y 0.3 0.1 1130 29 50 50 0.1 0.5 0.3 Y 0.4 0.1 1130 30 50 50 0.1 0.5 0.3 Y 0.6 0.1 1130 31 50 50 0.1 0.5 0.3 Y 0.8 0.1 1130 *32 50 50 0.1 0.5 0.3 Y 1 0.1 1130 33 50 50 0.1 0.5 0.3 Dy 0.5 0.1 1130 34 50 50 0.1 0.5 0.3 Ho 0.5 0.1 1130 35 50 50 0.1 0.5 0.3 Er 0.5 0.1 1130 *36 90 10 0.1 0.5 0.3 Y 0.5 0.1 1130 37 80 20 0.1 0.5 0.3 Υ 0.5 0.1 1130 38 70 30 0.1 0.5 0.3 Υ 0.5 0.1 1130 39 55 45 0.1 0.5 0.3 Υ 0.5 0.1 1130 *40 40 60 0.1 0.5 0.3 Υ 0.5 0.1 1130 *記號表示本發明之範圍外之樣品。 098109473 31 201007788 [表2] 樣品 BT粉末 BCT粉末 V2〇5 MgO MnC〇3 RE2O3 Tb4〇7 煅燒溫度 No. 莫耳 莫耳 莫耳 莫耳 莫耳 元素 莫耳 莫耳 °c 41 80 20 0.02 0.5 0.3 Y 0.5 0.1 1130 42 70 30 0.02 0.5 0.3 Y 0.5 0.1 1130 43 55 45 0.02 0.5 0.3 Y 0.5 0.1 1130 44 80 20 0.05 0.5 0.3 Y 0.5 0.1 1130 45 70 30 0.05 0.5 0.3 Y 0.5 0.1 1130 46 55 45 0.05 0.5 0.3 Y 0.5 0.1 1130 47 80 20 0.08 0.5 0.3 Y 0.5 0.1 1130 48 70 30 0.08 0.5 0.3 Y 0.5 0.1 1130 49 55 45 0.08 0.5 0.3 Y 0.5 0.1 1130 50 80 20 0.05 0.5 0.3 Y 0.5 0.02 1130 51 70 30 0.05 0.5 0.3 Y 0.5 0.02 1130 52 55 45 0.05 0.5 0.3 Y 0.5 0.02 1130 53 80 20 0.05 0.5 0.3 Y 0.5 0.05 1130 54 70 30 0.05 0.5 0.3 Y 0.5 0.05 1130 55 55 45 0.05 0.5 0.3 Y 0.5 0.05 1130 56 80 20 0.05 0.5 0.3 Y 0.5 0.08 1130 57 70 30 0.05 0.5 0.3 Y 0.5 0.08 1130 58 55 45 0.05 0.5 0.3 Y 0.5 0.08 1130 59 70 30 0.05 0.3 0.3 Y 0.5 0.05 1130 60 70 30 0.05 0.6 0.3 Y 0.5 0.05 1130 61 70 30 0.05 0.5 0.2 Y 0.5 0.05 1130 62 70 30 0.05 0.5 0.4 Y 0.5 0.05 1130 63 70 30 0.05 0.5 0.3 Y 0.4 0.05 1130 64 70 30 0.05 0.5 0.3 Y 0.6 0.05 1130 65 50 50 0.05 0.5 0.3 Dy 0.5 0.05 1130 66 50 50 0.05 0.5 0.3 Ho 0.5 0.05 1130 67 50 50 0.05 0.5 0.3 Er 0.5 0.05 1130 68 80 20 0.05 0.5 0.3 Y 0.5 0.02 1130 69 70 30 0.05 0.5 0.3 Υ 0.5 0.02 1130 70 55 45 0.05 0.5 0.3 Υ 0.5 0.02 1130 71 80 20 0.05 0.5 0.3 Υ 0.5 0.05 1130 72 70 30 0.05 0.5 0.3 Υ 0.5 0,05 1130 73 55 45 0.05 0.5 0.3 Υ 0.5 0.05 1130 74 80 20 0.05 0.5 0.3 Υ 0.5 0.08 1130 75 70 30 0.05 0.5 0.3 Υ 0.5 0.08 1130 76 55 45 0.05 0.5 0.3 Υ 0.5 0.08 1130 77 50 50 0.05 0.5 0.3 Υ 0.5 0.05 1130 78 70 30 0.05 0.5 0.3 Υ 0.5 0.05 1120 79 70 30 0.05 0.5 0.3 Υ 0.5 0.05 1130 80 70 30 0.05 0.5 0.3 Υ 0.5 0.05 1135 *記號表示本發明之範圍外之樣品。 32 098109473 201007788 [表3]Sample No. BT powder BCT powder v2〇f ΜβΟ MnCO, RE ΤΤ) 4〇7 Calcination temperature Molmers Moramole element Moermol °c *1 50 50 0.1 0.5 0.3 Y 0.5 0 1130 2 50 50 0.1 0.5 0.3 Y 0.5 0.05 1130 3 50 50 0.1 0.5 0.3 Y 0.5 0.1 1130 4 50 50 0.1 0.5 0.3 Y 0.5 0.15 1130 5 50 50 0.1 0.5 0.3 Y 0.5 0.2 1130 *6 50 50 0.1 0.5 0.3 Y 0.5 0.3 1130 *7 50 50 0 0.5 0.3 Y 0.5 0.1 1130 8 50 50 0.02 0.5 0.3 Y 0.5 0.1 1130 9 50 50 0.05 0.5 0.3 Y 0.5 0.1 1130 10 50 50 0.08 0.5 0.3 Y 0.5 0.1 1130 11 50 50 0.12 0.5 0.3 Y 0.5 0.1 1130 12 50 50 0.15 0.5 0.3 Y 0.5 0.1 1130 13 50 50 0.2 0.5 0.3 Y 0.5 0.1 1130 *14 50 50 0.3 0.5 0.3 Y 0.5 0.1 1130 *15 50 50 0.1 0.1 0.3 Y 0.5 0.1 1130 16 50 50 0.1 0.2 0.3 Y 0.5 0.1 1130 17 50 50 0.1 0.3 0.3 Y 0.5 0.1 1130 18 50 50 0.1 0.6 0.3 Y 0.5 0.1 1130 19 50 50 0.1 0.8 0.3 Y 0.5 0.1 1130 *20 50 50 0.1 1 0.3 Y 0.5 0.1 1130 *21 50 50 0.1 0.5 0 Y 0.5 0.1 1130 22 50 50 0.1 0.5 0.1 Y 0.5 0.1 1130 23 50 50 0.1 0.5 0.2 Y 0.5 0.1 1130 24 50 50 0.1 0.5 0.4 Y 0.5 0.1 1130 25 50 50 0.1 0.5 0.5 Y 0.5 0.1 1130 *26 50 50 0.1 0.5 0.6 Y 0.5 0.1 1130 *27 50 50 0.1 0.5 0.3 Y 0.1 0.1 1130 28 50 50 0.1 0.5 0.3 Y 0.3 0.1 1130 29 50 50 0.1 0.5 0.3 Y 0.4 0.1 1130 30 50 50 0.1 0.5 0.3 Y 0.6 0.1 1130 31 50 50 0.1 0.5 0.3 Y 0.8 0.1 1130 *32 50 50 0.1 0.5 0.3 Y 1 0.1 1130 33 50 50 0.1 0.5 0.3 Dy 0.5 0.1 1130 34 50 50 0.1 0.5 0.3 Ho 0.5 0.1 1130 35 50 50 0.1 0.5 0.3 Er 0.5 0.1 1130 *36 90 10 0.1 0.5 0.3 Y 0.5 0.1 1130 37 80 20 0.1 0.5 0.3 Υ 0.5 0.1 1130 38 70 30 0.1 0.5 0.3 Υ 0.5 0.1 1130 39 55 45 0.1 0.5 0.3 Υ 0.5 0.1 1130 * 40 40 60 0.1 0.5 0.3 Υ 0.5 0.1 1130 * The mark indicates a sample outside the scope of the present invention. 098109473 31 201007788 [Table 2] Sample BT powder BCT powder V2〇5 MgO MnC〇3 RE2O3 Tb4〇7 Calcination temperature No. Molmole Moramole element Moermol °c 41 80 20 0.02 0.5 0.3 Y 0.5 0.1 1130 42 70 30 0.02 0.5 0.3 Y 0.5 0.1 1130 43 55 45 0.02 0.5 0.3 Y 0.5 0.1 1130 44 80 20 0.05 0.5 0.3 Y 0.5 0.1 1130 45 70 30 0.05 0.5 0.3 Y 0.5 0.1 1130 46 55 45 0.05 0.5 0.3 Y 0.5 0.1 1130 47 80 20 0.08 0.5 0.3 Y 0.5 0.1 1130 48 70 30 0.08 0.5 0.3 Y 0.5 0.1 1130 49 55 45 0.08 0.5 0.3 Y 0.5 0.1 1130 50 80 20 0.05 0.5 0.3 Y 0.5 0.02 1130 51 70 30 0.05 0.5 0.3 Y 0.5 0.02 1130 52 55 45 0.05 0.5 0.3 Y 0.5 0.02 1130 53 80 20 0.05 0.5 0.3 Y 0.5 0.05 1130 54 70 30 0.05 0.5 0.3 Y 0.5 0.05 1130 55 55 45 0.05 0.5 0.3 Y 0.5 0.05 1130 56 80 20 0.05 0.5 0.3 Y 0.5 0.08 1130 57 70 30 0.05 0.5 0.3 Y 0.5 0.08 1130 58 55 45 0.05 0.5 0.3 Y 0.5 0.08 1130 59 70 30 0.05 0.3 0.3 Y 0.5 0.05 1130 60 70 30 0.05 0.6 0.3 Y 0.5 0.05 1130 61 70 30 0.05 0.5 0.2 Y 0.5 0.05 1130 62 70 30 0.05 0.5 0.4 Y 0.5 0.05 1130 63 70 30 0.05 0.5 0.3 Y 0.4 0.05 1130 64 70 30 0.05 0.5 0.3 Y 0.6 0.05 1130 65 50 50 0.05 0.5 0.3 Dy 0.5 0.05 1130 66 50 50 0.05 0.5 0.3 Ho 0.5 0.05 1130 67 50 50 0.05 0.5 0.3 Er 0.5 0.05 1130 68 80 20 0.05 0.5 0.3 Y 0.5 0.02 1130 69 70 30 0.05 0.5 0.3 Υ 0.5 0.02 1130 70 55 45 0.05 0.5 0.3 Υ 0.5 0.02 1130 71 80 20 0.05 0.5 0.3 Υ 0.5 0.05 1130 72 70 30 0.05 0.5 0.3 Υ 0.5 0,05 1130 73 55 45 0.05 0.5 0.3 Υ 0.5 0.05 1130 74 80 20 0.05 0.5 0.3 Υ 0.5 0.08 1130 75 70 30 0.05 0.5 0.3 Υ 0.5 0.08 1130 76 55 45 0.05 0.5 0.3 Υ 0.5 0.08 1130 77 50 50 0.05 0.5 0.3 Υ 0.5 0.05 1130 78 70 30 0.05 0.5 0.3 Υ 0.5 0.05 1120 79 70 30 0.05 0.5 0.3 Υ 0.5 0.05 1130 80 70 30 0.05 0.5 0.3 Υ 0.5 0.05 1135 * The mark indicates a sample outside the scope of the present invention. 32 098109473 201007788 [Table 3]

樣品No. BT粉末 BCT粉末 V2〇5 MgO MnC03 RE2〇3 Tb4〇7 煅燒溫度 莫耳 莫耳 莫耳 莫耳 莫耳 元素 莫耳 莫耳 °c *81 50 50 0.1 0.5 0.3 Y 0.5 0 1130 82 50 50 0.1 0.5 0.3 Y 0.5 0.05 1130 83 50 50 0.1 0.5 0.3 Y 0.5 0.1 1130 *84 50 50 0.1 0.5 0.3 Y 0.5 0.3 1130 *85 50 50 0 0.5 0.3 Y 0.5 0.1 1130 86 50 50 0.05 0.5 0.3 Y 0.5 0.1 1130 87 50 50 0.08 0.5 0.3 Y 0.5 0.1 1130 88 50 50 0.2 0.5 0.3 Y 0.5 0.1 1130 *89 50 50 0.3 0.5 0.3 Y 0.5 0.1 1130 *90 50 50 0.1 0.1 0.3 Y 0.5 0.1 1130 91 50 50 0.1 0.2 0.3 Y 0.5 0.1 1130 92 50 50 0.1 0.3 0.3 Y 0.5 0.1 1130 93 50 50 0.1 0.6 0.3 Y 0.5 0.1 1130 94 50 50 0.1 0.8 0.3 Y 0.5 0.1 1130 *95 50 50 0.1 1 0.3 Y 0.5 0.1 1130 *96 50 50 0.1 0.5 0 Y 0.5 0.1 1130 97 50 50 0.1 0.5 0.2 Y 0.5 0.1 1130 *98 50 50 0.1 0.5 0.6 Y 0.5 0.1 1130 *99 50 50 0.1 0.5 0.3 Y 0.1 0.1 1130 100 50 50 0.1 0.5 0.3 Y 0,4 0.1 1130 101 50 50 0.1 0.5 0.3 Y 0.6 0.1 1130 *102 50 50 0.1 0.5 0.3 Y 1 0.1 1130 103 50 50 0.1 0.5 0,3 Dy 0.5 0.1 1130 104 50 50 0.1 0.5 0.3 Ho 0.5 0.1 1130 105 50 50 0.1 0.5 0.3 Er 0.5 0.1 1130 *106 90 10 0.1 0.5 0.3 Y 0.5 0.1 1130 107 80 20 0.1 0.5 0.3 Υ 0.5 0.1 1130 108 70 30 0.1 0.5 0.3 Υ 0.5 0.1 1130 109 55 45 0.1 0.5 0.3 Υ 0.5 0.1 1130 *110 40 60 0.1 0.5 0.3 Υ 0.5 0.1 1130 *記號表示本發明之範圍外之樣品。 098109473 33 201007788 [表4] ^ σ χτΛ V2〇s MgO MnO RE2〇i Tb4〇7 保 〇口 IN Ο. 莫耳 莫耳 莫耳 元素 莫耳 莫耳 *1 0.1 0.5 0.3 Y 0.5 0 2 0.1 0.5 0.3 Υ 0.5 0.05 3 0.1 0.5 0.3 Υ 0.5 0.1 4 0.1 0.5 0.3 Υ 0.5 0.15 5 0.1 0.5 0.3 Υ 0.5 0.2 *6 0.1 0.5 0.3 Υ 0,5 0.3 *7 0 0.5 0.3 Υ 0.5 0.1 8 0.02 0.5 0.3 Υ 0.5 0.1 9 0.05 0.5 0.3 Υ 0.5 0.1 10 0.08 0.5 0.3 Υ 0.5 0.1 11 0.12 0.5 0.3 Υ 0.5 0.1 12 0.15 0.5 0.3 Υ 0.5 0.1 13 0.2 0.5 0.3 Υ 0.5 0.1 *14 0.3 0.5 0.3 Υ 0.5 0.1 *15 0.1 0.1 0.3 Υ 0.5 0.1 16 0.1 0.2 0.3 Υ 0.5 0.1 17 0.1 0.3 0.3 Υ 0.5 0.1 18 0.1 0.6 0.3 Υ 0.5 0.1 19 0.1 0.8 0.3 Υ 0.5 0.1 *20 0.1 1 0.3 Υ 0.5 0.1 *21 0.1 0.5 0 Υ 0.5 0.1 22 0.1 0.5 0.1 Υ 0.5 0.1 23 0.1 0.5 0.2 Υ 0.5 0.1 24 0.1 0.5 0.4 Υ 0.5 0.1 25 0.1 0.5 0.5 Υ 0.5 0.1 *26 0.1 0.5 0.6 Υ 0.5 0.1 *27 0.1 0.5 0.3 Υ 0.1 0.1 28 0.1 0.5 0.3 Υ 0.3 0.1 29 0.1 0.5 0.3 Υ 0.4 0.1 30 0.1 0.5 0.3 Υ 0.6 0.1 31 0.1 0.5 0.3 Υ 0.8 0.1 *32 0.1 0.5 0.3 Υ 1 0.1 33 0.1 0.5 0.3 Dy 0.5 0.1 34 0.1 0.5 0.3 Ho 0.5 0.1 35 0.1 0.5 0.3 Er 0.5 0.1 *36 0.1 0.5 0.3 Υ 0.5 0.1 37 0.1 0.5 0.3 Υ 0.5 0.1 38 0.1 0.5 0.3 Υ 0.5 0.1 39 0.1 0.5 0.3 Υ 0.5 0.1 *40 0.1 0.5 0.3 Υ 0.5 0.1 *記號表示本發明之範圍外之樣品。 34 098109473 201007788 [表5]Sample No. BT powder BCT powder V2〇5 MgO MnC03 RE2〇3 Tb4〇7 Calcination temperature Molmers Moramole element Moermol °c *81 50 50 0.1 0.5 0.3 Y 0.5 0 1130 82 50 50 0.1 0.5 0.3 Y 0.5 0.05 1130 83 50 50 0.1 0.5 0.3 Y 0.5 0.1 1130 *84 50 50 0.1 0.5 0.3 Y 0.5 0.3 1130 *85 50 50 0 0.5 0.3 Y 0.5 0.1 1130 86 50 50 0.05 0.5 0.3 Y 0.5 0.1 1130 87 50 50 0.08 0.5 0.3 Y 0.5 0.1 1130 88 50 50 0.2 0.5 0.3 Y 0.5 0.1 1130 *89 50 50 0.3 0.5 0.3 Y 0.5 0.1 1130 *90 50 50 0.1 0.1 0.3 Y 0.5 0.1 1130 91 50 50 0.1 0.2 0.3 Y 0.5 0.1 1130 92 50 50 0.1 0.3 0.3 Y 0.5 0.1 1130 93 50 50 0.1 0.6 0.3 Y 0.5 0.1 1130 94 50 50 0.1 0.8 0.3 Y 0.5 0.1 1130 *95 50 50 0.1 1 0.3 Y 0.5 0.1 1130 *96 50 50 0.1 0.5 0 Y 0.5 0.1 1130 97 50 50 0.1 0.5 0.2 Y 0.5 0.1 1130 *98 50 50 0.1 0.5 0.6 Y 0.5 0.1 1130 *99 50 50 0.1 0.5 0.3 Y 0.1 0.1 1130 100 50 50 0.1 0.5 0.3 Y 0,4 0.1 1130 101 50 50 0.1 0.5 0.3 Y 0.6 0.1 1130 *102 50 50 0.1 0.5 0.3 Y 1 0.1 1130 103 50 50 0.1 0.5 0,3 Dy 0.5 0.1 1130 104 50 50 0.1 0.5 0.3 Ho 0.5 0.1 1130 105 50 50 0.1 0.5 0.3 Er 0.5 0.1 1130 *106 90 10 0.1 0.5 0.3 Y 0.5 0.1 1130 107 80 20 0.1 0.5 0.3 Υ 0.5 0.1 1130 108 70 30 0.1 0.5 0.3 Υ 0.5 0.1 1130 109 55 45 0.1 0.5 0.3 Υ 0.5 0.1 1130 * 110 40 60 0.1 0.5 0.3 Υ 0.5 0.1 1130 * The mark indicates a sample outside the scope of the present invention. 098109473 33 201007788 [Table 4] ^ σ χτΛ V2〇s MgO MnO RE2〇i Tb4〇7 〇 IN IN Ο. Mo Mo Mo Mo Mo Mo Mo *1 0.1 0.5 0.3 Y 0.5 0 2 0.1 0.5 0.3 Υ 0.5 0.05 3 0.1 0.5 0.3 Υ 0.5 0.1 4 0.1 0.5 0.3 Υ 0.5 0.15 5 0.1 0.5 0.3 Υ 0.5 0.2 *6 0.1 0.5 0.3 Υ 0,5 0.3 *7 0 0.5 0.3 Υ 0.5 0.1 8 0.02 0.5 0.3 Υ 0.5 0.1 9 0.05 0.5 0.3 Υ 0.5 0.1 10 0.08 0.5 0.3 Υ 0.5 0.1 11 0.12 0.5 0.3 Υ 0.5 0.1 12 0.15 0.5 0.3 Υ 0.5 0.1 13 0.2 0.5 0.3 Υ 0.5 0.1 * 14 0.3 0.5 0.3 Υ 0.5 0.1 * 15 0.1 0.1 0.3 Υ 0.5 0.1 16 0.1 0.2 0.3 Υ 0.5 0.1 17 0.1 0.3 0.3 Υ 0.5 0.1 18 0.1 0.6 0.3 Υ 0.5 0.1 19 0.1 0.8 0.3 Υ 0.5 0.1 * 20 0.1 1 0.3 Υ 0.5 0.1 * 21 0.1 0.5 0 Υ 0.5 0.1 22 0.1 0.5 0.1 Υ 0.5 0.1 23 0.1 0.5 0.2 Υ 0.5 0.1 24 0.1 0.5 0.4 Υ 0.5 0.1 25 0.1 0.5 0.5 Υ 0.5 0.1 * 26 0.1 0.5 0.6 Υ 0.5 0.1 * 27 0.1 0.5 0.3 Υ 0.1 0.1 28 0.1 0.5 0.3 Υ 0.3 0.1 29 0.1 0.5 0.3 Υ 0.4 0.1 30 0.1 0.5 0.3 Υ 0.6 0.1 31 0.1 0.5 0.3 Υ 0.8 0.1 *32 0.1 0.5 0.3 Υ 1 0.1 33 0 .1 0.5 0.3 Dy 0.5 0.1 34 0.1 0.5 0.3 Ho 0.5 0.1 35 0.1 0.5 0.3 Er 0.5 0.1 * 36 0.1 0.5 0.3 Υ 0.5 0.1 37 0.1 0.5 0.3 Υ 0.5 0.1 38 0.1 0.5 0.3 Υ 0.5 0.1 39 0.1 0.5 0.3 Υ 0.5 0.1 *40 0.1 0.5 0.3 Υ 0.5 0.1 * The mark indicates a sample outside the scope of the present invention. 34 098109473 201007788 [Table 5]

樣品No. ν2〇5 MgO ΜηΟ RE2O3 Τ1>4〇7 莫耳 莫耳 莫耳 元素 莫耳 莫耳 41 0.02 0.5 0.3 Υ 0.5 0.1 42 0.02 0.5 0.3 Υ 0.5 0.1 43 0.02 0.5 0.3 Υ 0.5 0.1 44 0.05 0.5 0.3 Υ 0.5 0.1 45 0.05 0.5 0.3 Υ 0.5 0.1 46 0.05 0.5 0.3 Υ 0.5 0.1 47 0.08 0.5 0.3 Υ 0.5 0.1 48 0.08 0.5 0.3 Υ 0.5 0.1 49 0.08 0.5 0.3 Υ 0.5 0.1 50 0.05 0.5 0.3 Υ 0.5 0.02 51 0.05 0.5 0.3 Υ 0.5 0.02 52 0.05 0.5 0.3 Υ 0.5 0.02 53 0.05 0.5 0.3 Υ 0.5 0.05 54 0.05 0.5 0.3 Υ 0.5 0.05 55 0.05 0.5 0.3 Υ 0.5 0.05 56 0.05 0.5 0.3 Υ 0.5 0.08 57 0.05 0.5 0.3 Υ 0.5 0.08 58 0.05 0.5 0.3 Υ 0.5 0.08 59 0.05 0.3 0.3 Υ 0.5 0.05 60 0.05 0.6 0.3 Υ 0.5 0.05 61 0.05 0.5 0.2 Υ 0.5 0.05 62 0.05 0.5 0.4 Υ 0.5 0.05 63 0.05 0.5 0.3 Υ 0.4 0.05 64 0.05 0.5 0.3 Υ 0.6 0.05 65 0.05 0.5 0.3 Dy 0.5 0.05 66 0.05 0.5 0.3 Ho 0.5 0.05 67 0.05 0.5 0.3 Er 0.5 0.05 68 0.05 0.5 0.3 Υ 0.5 0.02 69 0.05 0.5 0.3 Υ 0.5 0.02 70 0.05 0.5 0.3 Υ 0.5 0.02 71 0.05 0·5 0.3 Υ 0.5 0.05 72 0,05 0.5 0.3 Υ 0.5 0.05 73 0.05 0.5 0.3 Υ 0.5 0.05 74 0.05 0.5 0.3 Υ 0.5 0.08 75 0.05 0.5 0.3 Υ 0.5 0.08 76 0.05 0.5 0.3 Υ 0.5 0.08 77 0.05 0.5 0.3 Υ 0.5 0.05 78 0.05 0.5 0.3 Υ 0.5 0.05 79 0.05 0.5 0.3 Υ 0.5 0.05 80 0.05 0.5 0.3 Υ 0.5 0.05 *記號表示本發明之範圍外之樣品。 098109473 35 201007788 [表6] 樣品No. V2〇5 MgO MnO RE2O3 Tb4〇7 莫耳 莫耳 莫耳 元素 莫耳 莫耳 *81 0.1 0.5 0.3 Y 0.5 0 82 0.1 0.5 0.3 Y 0.5 0.05 83 0.1 0.5 0.3 Y 0.5 0.1 *84 0.1 0.5 0.3 Y 0.5 0.3 *85 0 0.5 0.3 Y 0.5 0.1 86 0.05 0.5 0.3 Y 0.5 0.1 87 0.08 0.5 0.3 Y 0.5 0.1 88 0.2 0.5 0.3 Y 0.5 0.1 *89 0.3 0.5 0.3 Y 0.5 0.1 *90 0.1 0.1 0.3 Y 0.5 0.1 91 0.1 0.2 0.3 Y 0.5 0.1 92 0.1 0.3 0.3 Y 0.5 0.1 93 0.1 0.6 0.3 Y 0.5 0.1 94 0.1 0.8 0.3 Y 0.5 0.1 *95 0.1 1 0.3 Y 0.5 0.1 *96 0.1 0.5 0 Y 0.5 0.1 97 0.1 0.5 0.2 Y 0.5 0.1 *98 0.1 0.5 0.6 Y 0.5 0.1 *99 0.1 0.5 0.3 Y 0.1 0.1 100 0.1 0.5 0.3 Y 0.4 0.1 101 0.1 0.5 0.3 Y 0.6 0.1 *102 0.1 0.5 0.3 Y 1 0.1 103 0.1 0.5 0.3 Dy 0.5 0.1 104 0.1 0.5 0.3 Ho 0.5 0.1 105 0.1 0.5 0.3 Er 0.5 0.1 *106 0.1 0.5 0.3 Υ 0.5 0.1 107 0.1 0.5 0.3 Υ 0.5 0.1 108 0.5 0.3 Υ 0.5 0.1 109 0.1 0.5 0.3 Υ 0.5 0.1 *110 0.1 0.5 0.3 Υ 0.5 0.1 *記號表示本發明之範圍外之樣品。 36 098109473 201007788Sample No. ν2〇5 MgO ΜηΟ RE2O3 Τ1>4〇7 Moramole element Moermol 41 0.02 0.5 0.3 Υ 0.5 0.1 42 0.02 0.5 0.3 Υ 0.5 0.1 43 0.02 0.5 0.3 Υ 0.5 0.1 44 0.05 0.5 0.3 Υ 0.5 0.1 45 0.05 0.5 0.3 Υ 0.5 0.1 46 0.05 0.5 0.3 Υ 0.5 0.1 47 0.08 0.5 0.3 Υ 0.5 0.1 48 0.08 0.5 0.3 Υ 0.5 0.1 49 0.08 0.5 0.3 Υ 0.5 0.1 50 0.05 0.5 0.3 Υ 0.5 0.02 51 0.05 0.5 0.3 Υ 0.5 0.02 52 0.05 0.5 0.3 Υ 0.5 0.02 53 0.05 0.5 0.3 Υ 0.5 0.05 54 0.05 0.5 0.3 Υ 0.5 0.05 55 0.05 0.5 0.3 Υ 0.5 0.05 56 0.05 0.5 0.3 Υ 0.5 0.08 57 0.05 0.5 0.3 Υ 0.5 0.08 58 0.05 0.5 0.3 Υ 0.5 0.08 59 0.05 0.3 0.3 Υ 0.5 0.05 60 0.05 0.6 0.3 Υ 0.5 0.05 61 0.05 0.5 0.2 Υ 0.5 0.05 62 0.05 0.5 0.4 Υ 0.5 0.05 63 0.05 0.5 0.3 Υ 0.4 0.05 64 0.05 0.5 0.3 Υ 0.6 0.05 65 0.05 0.5 0.3 Dy 0.5 0.05 66 0.05 0.5 0.3 Ho 0.5 0.05 67 0.05 0.5 0.3 Er 0.5 0.05 68 0.05 0.5 0.3 Υ 0.5 0.02 69 0.05 0.5 0.3 Υ 0.5 0.02 70 0.05 0.5 0.3 Υ 0.5 0.02 71 0.05 0·5 0.3 Υ 0.5 0.05 72 0,05 0.5 0.30.5 0.05 73 0.05 0.5 0.3 Υ 0.5 0.05 74 0.05 0.5 0.3 Υ 0.5 0.08 75 0.05 0.5 0.3 Υ 0.5 0.08 76 0.05 0.5 0.3 Υ 0.5 0.08 77 0.05 0.5 0.3 Υ 0.5 0.05 78 0.05 0.5 0.3 Υ 0.5 0.05 79 0.05 0.5 0.3 Υ 0.5 0.05 80 0.05 0.5 0.3 Υ 0.5 0.05 * marks indicate samples outside the scope of the present invention. 098109473 35 201007788 [Table 6] Sample No. V2〇5 MgO MnO RE2O3 Tb4〇7 Moramole Element Moermol*81 0.1 0.5 0.3 Y 0.5 0 82 0.1 0.5 0.3 Y 0.5 0.05 83 0.1 0.5 0.3 Y 0.5 0.1 *84 0.1 0.5 0.3 Y 0.5 0.3 *85 0 0.5 0.3 Y 0.5 0.1 86 0.05 0.5 0.3 Y 0.5 0.1 87 0.08 0.5 0.3 Y 0.5 0.1 88 0.2 0.5 0.3 Y 0.5 0.1 *89 0.3 0.5 0.3 Y 0.5 0.1 *90 0.1 0.1 0.3 Y 0.5 0.1 91 0.1 0.2 0.3 Y 0.5 0.1 92 0.1 0.3 0.3 Y 0.5 0.1 93 0.1 0.6 0.3 Y 0.5 0.1 94 0.1 0.8 0.3 Y 0.5 0.1 *95 0.1 1 0.3 Y 0.5 0.1 *96 0.1 0.5 0 Y 0.5 0.1 97 0.1 0.5 0.2 Y 0.5 0.1 *98 0.1 0.5 0.6 Y 0.5 0.1 *99 0.1 0.5 0.3 Y 0.1 0.1 100 0.1 0.5 0.3 Y 0.4 0.1 101 0.1 0.5 0.3 Y 0.6 0.1 *102 0.1 0.5 0.3 Y 1 0.1 103 0.1 0.5 0.3 Dy 0.5 0.1 104 0.1 0.5 0.3 Ho 0.5 0.1 105 0.1 0.5 0.3 Er 0.5 0.1 * 106 0.1 0.5 0.3 Υ 0.5 0.1 107 0.1 0.5 0.3 Υ 0.5 0.1 108 0.5 0.3 Υ 0.5 0.1 109 0.1 0.5 0.3 Υ 0.5 0.1 * 110 0.1 0.5 0.3 Υ 0.5 The 0.1* mark indicates a sample outside the scope of the present invention. 36 098109473 201007788

【卜<〕[卜<]

高溫負載 試驗#5 X 〇 X 〇 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 鮮)妨 I 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 介電損失 % I Vrms ο « 4 <N o 1__12^_1 ϊ-Η 介電常數 變異係數 τ—< 00 o fS r—< r-H in o r<i (N (N <s CN CS <N CN 1—4 CN <s (N *—H 4 介電常數之比#3 ^Τ) «-Η I> oo 〇\ (N cs 卜 卜 卜 卜 00 CS OO c4 00 Γ-; 00 卜 I Vrms 3400 | 3700 3720 | 3740 | 3800 3900 3820 | 3800 1 3740 3730 | 3680 1 3610 | 3510 1 3430 3800 | 3750 I 3740 3660 | 3580 ] 3420 稀土元素之 濃度差#7 原子% 寸· <N o F—H 〇\ o r- d >n 〇 ΓΟ q o r«H On d 卜 o m o <N t—< o t·^ ON d oo d 卜 o 錳之濃 度差#6 原子% in ο rn o o »-H o o o 寸 d ΓΛ 〇 CS d ^«4 o d o o o O o 寸 o ΓΛ CS d o o o o o 居里 溫度 P w-> <Ν s 100 OS U-i On 5: m cs 1—H S s rH s s r-H s o o w-> ON o s o ON w> On m 00 XRD #2 I 〇 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 晶粒之平 均粒徑 βΤΏ. 0.26 | 0.25 0.25 I 0.25 I 0.25 0.25 0.21 Γ 0.22 ] 0.22 0.23 0.25 0.27 m o 0.32 0.25 | 0.25 I | 0.25 I | 0.25 I | 0.25 I 0.25 晶粒比率 #C2/(Cl+C2) I 卜 c> 卜 o 卜 o 卜 o 卜 o d 卜 o 卜 o 卜 o 卜 d r** o 卜 d 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 介電質層 之厚度 “m r"H »—H »-H T-H 樣品 No. (N ro 寸 in 00 ON o rM CS 1-H 1-H * »r> 餐 v〇 00 ON o <N w?nr?*te«!!l?^«BH^w EH 2 嫦«!!枨 囑靶軼!!|«诠«?^-:?4吨:9# χ :^#ι->«!ί«κ--〇:!^*->當'『、000了 Λ9 ,pslDi;1f:s# X :^-ww^«K--〇:!^ife.w S9xe«: 3lt46-^^w*i> 50%-wa,ov/«i轵一.^wta —Λ I^s^uv : ε# X - - ο - 。寒&:4^«/某赛驽甚>:阳买羿牵-0*^择定:3# ^«W4no»wji^0\o^·,^ 2 Mu ,φ ΰ««w4°>sWJ.Kt/0 屮®?ro 嫦 inr^D 'Ϊ3:牝High temperature load test #5 X 〇X 〇〇〇〇〇X 〇〇〇〇〇〇〇〇〇〇〇〇〇X)) I 〇〇〇〇〇〇〇〇〇〇〇〇〇〇X 〇〇〇〇 〇 Dielectric loss% I Vrms ο « 4 <N o 1__12^_1 ϊ-Η Dielectric constant coefficient of variation τ—< 00 o fS r—< rH in o r<i (N (N <s CN CS <N CN 1-4 CN <s (N *-H 4 ratio of dielectric constant #3 ^Τ) «-Η I> oo 〇\ (N cs 卜卜卜00 00 CS OO c4 00 Γ- ; 00 卜 I Vrms 3400 | 3700 3720 | 3740 | 3800 3900 3820 | 3800 1 3740 3730 | 3680 1 3610 | 3510 1 3430 3800 | 3750 I 3740 3660 | 3580 ] 3420 Concentration difference of rare earth elements #7 Atomic % inch · &lt ;N o F—H 〇\ o r- d >n 〇ΓΟ qor«H On d 卜 om <N t—< ot·^ ON d oo d 卜 o Mn concentration difference #6 Atomic % in ο Rn oo »-H ooo inch d ΓΛ 〇CS d ^«4 odooo O o inch o ΓΛ CS dooooo Curie temperature P w-><Ν s 100 OS Ui On 5: m cs 1—HS s rH ss rH Soo w-> ON oso ON w&gt ; On m 00 XRD #2 I 〇〇〇〇〇X 〇〇〇〇〇〇〇X 平均 average grain size of the grain βΤΏ. 0.26 | 0.25 0.25 I 0.25 I 0.25 0.25 0.21 Γ 0.22 ] 0.22 0.23 0.25 0.27 mo 0.32 0.25 | 0.25 I | 0.25 I | 0.25 I | 0.25 I 0.25 Grain ratio #C2/(Cl+C2) I Bu C> Bu o Bu o Bu o Bu od Bu o Bu o Bu o Bu dr ** o 卜d b o 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o thickness of the dielectric layer "m r "H »-H »-H TH sample No. (N ro inch in 00 ON o rM CS 1-H 1-H * »r> Meal v〇00 ON o <N w?nr?*te«!!l?^«BH^w EH 2 嫦«!!枨嘱 Target轶!!| «名«?^-:?4 tons: 9# χ :^#ι->«!ί«κ--〇:!^*->When '『,000了Λ9,pslDi;1f:s# X :^-ww^«K--〇:!^ife.w S9xe«: 3lt46-^^w*i> 50%-wa, ov/«i轵一.^wta —Λ I^s^uv : ε# X - - ο - .寒&:4^«/A certain match &:: 阳买羿牵-0*^Select: 3# ^«W4no»wji^0\o^·,^ 2 Mu ,φ ΰ««w4° >sWJ.Kt/0 屮®?ro 嫦inr^D 'Ϊ3:牝

Llp寸 620060 201007788 【8<】 高溫負載 試驗#5 X 〇 X 〇 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X M 2i %e- # 伊_ I 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 介電損失 % I Vrms τ-^ <Ν τ—^ »-Η τ*Η ♦Η τ-Η τ-Η ι < r—4 i-H f-H <N CN l-H 介電常數 變異係數 CN 1·^ (Ν (Ν CN »*·Η <Ν τ_Η cs ι-Η (Ν Η (Ν CN (Ν CN cs »—H (N (N 介電常數之比#3 οο ^-Η 卜 r-H 卜 卜 卜 r-H 卜 00 卜 卜 »-Η r-; »-Η ι> Γ-; 卜 卜 f-H 卜 i-H in 卜 卜 00 T""4 (J) I Vrms 3800 3750 1 3750 1 3600 3500 3100 3750 1 3740 1 1 3740 1 1 3610 1 1 3510 1 1 3200 1 3710 1 3710 1 3710 3300 3780 ! 4100 4200 3690 稀土元素 之濃度差#7 原子% ο ο τ—^ ο ο τ-Η ρ ο ρ ο ο r—< ο Η ο ο ο »—Η ο y—* o 1-H p ρ O o r-H 〇 錳之濃 度差#6 原子% Ο 1—Η Ο Ο ί-Η Ο Ο Ο τ—Η Ο ^-Η Ο »-Η Ο ^Η Ο Ο ο τ-Η Ο o T*H o o o o o o 居里 溫度 P ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο »-Η o o o o o o o o o o o o XRD ! #2 I 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 晶粒之平 均粒徑 μτη 0.25 0.25 1 0.25 1 1 0.25 1 0.25 0.25 0.25 0.25 1 0.25 1 0.25 1 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 晶粒比率 #C2/(Cl+C2) I 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 c> 卜 ο 卜 ο 卜 o 卜 o tN 〇 o 寸 o Ό d 00 d 介電質層 之厚度 βτα r-H 1—^ 1-Η 1—^ Τ-Η 1~Η 1—^ 樣品 No. CN <Ν <S ΓΛ <S yn (S νο <Ν 卜 <Ν οο rsj σν CN m 箐 ΓΛ ΓΛ rn VO fp P; oo ΓΛ m o 箐 •es^W^H«wstfe-4*<:* 蜊ϊ1ίΓ?ίί:€ϊπϋ!?(§)*·¥^業«斛匀4 EU2 礴剜崁-^锭«?<#靼-45宠制拽^業 s^lr<w4««:卜# *ll)?nr^ft:€tt!il?域sBH^wuluol finrirslfa!'^#®!屮窠靶拽埭^菝^^荽吨:。# χ : Tiilfc-wirifK--〇:Ti?*w*,r、sol, >9 ,οΐηοι^ίι: s# x :^*->^1fK·-〇:Ti?*-W S9x0y1f: 5 搞鉍:i^w^iA Ι0Ό^¾).¾ ov/w^l.'li-w^s— I 嫦^铗3<: £# X :^¾¾农七-〇:^ifc.w(ett!i·娥啩絮晡柃一?-农Y(3I)«S娥脊刼晡柃抖 。ϊϊιν-ΰτίϊ/^赛璲5?XEf-n# - §x 筠茫:S 2 d 0 ΰ «ew^nlswH-x-fo/oH'^Γ0 嫦ttsif? eu«G:牝 0^0 —oi 201007788 χ ό 〇 ο ο ο ο 〇 ο 〇 ο 〇 ο 〇 ο ο 〇 ο 〇 〇 〇 0 〇 〇 ο ο 〇 ο 〇 〇 ο Ο 〇 〇 ο 〇 ο ο 〇 ο 〇 ο 圉ΛΙLlp inch 620060 201007788 [8<] High temperature load test #5 X 〇X 〇〇〇〇〇X 〇〇〇〇〇〇〇〇〇〇〇〇XM 2i %e- #伊_ I 〇〇〇〇〇〇〇 〇〇〇〇〇〇〇〇〇〇〇〇〇 Dielectric loss% I Vrms τ-^ <Ν τ—^ »-Η τ*Η ♦Η τ-Η τ-Η ι < r—4 iH fH <N CN lH Dielectric constant coefficient of variation CN 1·^ (Ν ( » CN »*·Η <Ν τ_Η cs ι-Η (Ν Ν (Ν CN cs »—H (N (N dielectric Ratio of constants #3 οο ^-Η 卜rH 卜卜rrH 00 卜卜»-Η r-; »-Η ι>Γ-; 卜卜fH 卜iH in 卜卜00 T""4 (J) I Vrms 3800 3750 1 3750 1 3600 3500 3100 3750 1 3740 1 1 3740 1 1 3610 1 1 3510 1 1 3200 1 3710 1 3710 1 3710 3300 3780 ! 4100 4200 3690 Concentration difference of rare earth elements #7 Atomic % ο ο τ — ^ ο ο τ-Η ρ ο ρ ο ο r—< ο Η ο ο ο »—Η ο y—* o 1-H p ρ O o rH 浓度Manganese concentration difference #6 Atomic % Ο 1—Η Ο Ο ί-Η Ο Ο Ο τ—Η Ο ^-Η Ο »-Η Ο ^Η Ο ο ο τ-Η Ο o T*H oooooo Curie temperature P ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο The average grain size of the grain μ μτη 0.25 0.25 1 0.25 1 1 0.25 1 0.25 0.25 0.25 0.25 1 0.25 1 0.25 1 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Grain ratio #C2/(Cl+C2) I Bu ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο 00 d The thickness of the dielectric layer βτα rH 1—^ 1-Η 1—^ Τ-Η 1~Η 1—^ Sample No. CN <Ν <S ΓΛ <S yn (S νο <Ν卜<Ν οο rsj σν CN m 箐ΓΛ ΓΛ rn VO fp P; oo ΓΛ mo 箐•es^W^H«wstfe-4*<:* 蜊ϊ1ίΓ?ίί:€ϊπϋ!?(§)*·¥ ^业«斛匀4 EU2 礴剜崁-^ ingot«?<#靼-45 拽制拽^业s^lr<w4««:卜# *ll)?nr^ft:€tt!il? sBH^wuluol finrirslfa!'^#®!屮窠 Target拽埭^菝^^荽 tons:. # χ : Tiilfc-wirifK--〇:Ti?*w*,r,sol, >9 ,οΐηοι^ίι: s# x :^*->^1fK·-〇:Ti?*-W S9x0y1f: 5 messed up: i^w^iA Ι0Ό^3⁄4).3⁄4 ov/w^l.'li-w^s- I 嫦^铗3<: £# X :^3⁄43⁄4农七-〇:^ifc.w (ett!i·娥啩絮晡柃一--Nong Y(3I)«S娥娥刼晡柃刼晡柃.ϊϊιν-ΰτίϊ/^赛璲5?XEf-n# - §x 筠茫:S 2 d 0 ΰ «ew^nlswH-x-fo/oH'^Γ0 嫦ttsif? eu«G:牝0^0 —oi 201007788 χ 〇 〇ο ο ο ο 〇ο 〇ο 〇ο 〇ο ο 〇ο 〇〇〇0 〇〇ο ο 〇ο 〇〇ο Ο 〇〇ο 〇ο ο 〇ο 〇ο 圉ΛΙ

II - -II - -

II π πII π π

U 31 π 11 31 -U 31 π 11 31 -

II π ζιII π ζι

II 31 ζι π π $ί ΓΙ ιII 31 ζι π π $ί ΓΙ ι

II

•I Γϊ ΓΙ •ι•I Γϊ ΓΙ •ι

•I•I

•I •ι•I •ι

•I ΓΙ ° 60 ·0 ·0 ·0 ·0 8Ό 卜Ό (« ο、 1--16¾•I ΓΙ ° 60 ·0 ·0 ·0 ·0 8Ό Ό (« ο, 1--163⁄4

•I 9·Ι 9Ί 9·Ι 9·ι 9·1 9·Ι 9·Ι 9.1• I 9·Ι 9Ί 9·Ι 9·ι 9·1 9·Ι 9·Ι 9.1

•I•I

•I•I

•I•I

•I •ι •ι •一 •一 sn 9#甽刼 Ϊ Z# §x (ΰ+ 13)/2 圉ΛΙ ο-ε 0卜I寸 0Ι°°ε 0SI寸 0S寸 〇6卜ε 011寸 0-寸 2ε 080寸 §寸 000卜 ε 0Η寸 0SI寸 —e οει寸 i寸 091寸 0-寸 0/0屮咚 0/0屮噼 ρ S7/ S7/•I •ι •ι •一•一sn 9#甽刼Ϊ Z# §x (ΰ+ 13)/2 圉ΛΙ ο-ε 0 Bu I inch 0Ι°°ε 0SI inch 0S inch 〇6 ε 011 inch 0-inch 2ε 080 inch § inch 000 ε ε 0 inch inch 0SI inch -e οει inch i inch 091 inch 0-inch 0/0屮咚0/0屮噼ρ S7/ S7/

.ΟΜ S οι ΙΌ 001 〇 9Γ0 2 I寸 s ΙΌ 001 ο 9-0 寸Ό 0·ι 0.1 s σι σι σι 0.1 ο.ι 0.1 σι σι σι 0Ί οι 0.1 ΟΙ σι 6Ό ΙΌ ΙΌ Γ0 ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ °οι οοι 001 οοι οοι οοι 00Ϊ οοι 02 02 οοι οοι 001 οοι 02 001ΟΜ S οι ΙΌ 001 〇9Γ0 2 I inch s ΙΌ 001 ο 9-0 inch Ό 0·ι 0.1 s σι σι σι 0.1 ο.ι 0.1 σι σι σι 0Ί οι 0.1 ΟΙ σι 6Ό ΙΌ ΙΌ Γ0 ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ ΙΌ °οι οοι 001 οοι οοι οοι 00Ϊ οοι 02 02 οοι οοι 001 οοι 02 001

SI °°6 〇 ο 〇 〇 〇 〇 〇 ο ο ο ο 〇 〇 ο ο ο ο 〇 93Ό 9-0 9-0 9Γ0 9Γ0SI ° 〇 ο 〇 〇 〇 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο

9S 9Γ09S 9Γ0

9S9S

9S 9-0 9-0 9-0 9-09S 9-0 9-0 9-0 9-0

9S9S

9S 9-0 9-0 9-0 9·0 2 寸·0 9Ό 2 寸Ό 9Ό ·0 "•ο 90 ·0 寸Ό 9Ό 2 寸Ό 90 寸Ό 寸Ό ε寸 寸寸 9寸 00寸 6寸9S 9-0 9-0 9-0 9·0 2 inch · 0 9Ό 2 inch Ό 9Ό ·0 "•ο 90 ·0 inch Ό 9Ό 2 inch Ό 90 inch Ό inch Ό ε inch inch 9 inch 00 inch 6 Inch

0S -0S -

9S9S

IS °°sIS °°s

6S 09 甽^^4眛电?ηίκ§)^^τ 篥sM"WUIU0I 嫦靶枨 w-^^窠 IriKa^^^^^^^^^w408:^# 甽^栲> 味疟靶锈域^M^WUIUOI 嫦甸挺 ν-^^31^-?-鷲^^"^slf^^w408:。# X :^*W^«K* 〇:民靼 W 哲七 002, Λ9 ,Ρ8ΙΘ统:" X :"怒 蠖Κ -〇:"*w S9XW後:5 碱鉍铗令ΙΟΌ 嫦 wa-uv/^^l-^w 岔 ΙΛ 1 嫦 iriuv : S X - , ο " -iH^W-9r?F^^^^xK-^'#-§XMtt:M# *ew4吨WTX1。/。屮噼寸Ό嫦刼榷举Z3 赛^屮咚·0 嫦靶1^3牵13: # 。吨^^-女囫埔^诨诤4^^:* 6ε -162-0 201007788 m % Ο 〇 〇 〇 〇 〇 〇 〇 b, Μ οι° Μ b, lol° br M 〇 Μ Μ Μ Μ Μ d— b— M M M M M M M M M M M d, 。/0¥弊1仁 II II ~Π 31 ~ζΓ ΖΙ —ΛΙ II -TI II Π II Π ul「 II Π ΙΪΙΓ '•ο W τ^~ ΜΜ ΜΜ Τ5" l00d ΤΓ 7T MM T5" MM ΤΓ MM MM ΤΓ ΤΓ ΤΓ •ιΤΓ ΤΓ ΤΓ ΤΓ ττ ΤΓ '•I ΤΓ ΤΓ ΤΓ ΤΓ ΤΓ ΤΓ ΤΓ TT* ΤΓ ΤΓ ΤΓ ΤΓ 001寸 Q0I寸 §寸osiiTlsls「 09I「 QSZ寸 |0,01「 000「 '-卜「 lglm -一叫 ^0pl §对 011「 os卜ε 01 0-'「 ΟΙ 0.1 —οι 0.1 ΟΙ ΟΊ ΟΊ %屮噼 0.1 MM "5T ΤΓ "FT ΤΓ 151 lsl "5Τ MM Μ ΤΓ ΤΓ ΙΌ ΙΌ ΙΌ Ι·ο 1.0 ΙΌ ΙΌ 。/0屮噼 1.0 τ^~ ΜΜ ττ ι21 ΜΜ ι51 ΤΓ Τ5" Τ5~ ΤΓ ΤΓ Τ5" Ϊ 001 QQl 001 02 Η 02 Ι8ΙΙ 001 Τοι lgll ι8ιΐ ~^Γ οοι οοι οοι οοι "5^Γ S §x b— Μ Μ Μ Μ Μ d— b— Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ d, 鄣4趸 ^w4">g 9S 9S TS 9Γ0 9Ζ·0 lvols τ151 mri6S 09 甽^^4眛? Ίίκ§)^^τ 篥sM"WUIU0I 嫦 target 枨w-^^窠IriKa^^^^^^^^^w408:^# 甽^栲> Flavor target rust domain ^M^WUIUOI 嫦甸挺ν -^^31^-?-鹫^^"^slf^^w408:. # X :^*W^«K* 〇: 民靼 W 哲七002, Λ9, Ρ8ΙΘ:" X :"蠖Κ蠖Κ-〇:"*w After S9XW: 5 铋铗 铋铗 ΙΟΌ 嫦 嫦Wa-uv/^^l-^w 岔ΙΛ 1 嫦iriuv : SX - , ο "-iH^W-9r?F^^^^xK-^'#-§XMtt:M# *ew4 tons WTX1. /.屮噼 inch Ό嫦刼榷 Z Z3 match ^ 屮咚 · 0 嫦 target 1 ^ 3 lead 13: # 。.吨^^-女囫埔^诨诤4^^:* 6ε -162-0 201007788 m % Ο 〇〇〇〇〇〇〇b, Μ οι° Μ b, lol° br M 〇Μ Μ Μ Μ Μ d — b — MMMMMMMMMMM d, . /0¥ 11仁II II ~Π 31 ~ζΓ ΖΙ—ΛΙ II -TI II Π II Π ul " II Π ΙΪΙΓ '•ο W τ^~ ΜΜ Τ &5" l00d ΤΓ 7T MM T5" MM ΤΓ MM MM ΤΓ 001 ΤΓ ΤΓ • • • TT TT TT TT TT 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 os os os os os os os os os os os os os os os os lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg lg One is called ^0pl § to 011 "os ε ε 01 0-'" ΟΙ 0.1 - οι 0.1 ΟΙ ΟΊ ΟΊ %屮噼0.1 MM "5T ΤΓ "FT ΤΓ 151 lsl "5Τ MM Μ ΤΓ ΤΓ ΙΌ ΙΌ ΙΌ Ι · ο 1.0 ΙΌ 。 ./0屮噼1.0 τ^~ ΜΜ ττ ι21 ΜΜ ι51 ΤΓ Τ5" Τ5~ ΤΓ Τ &5" Ϊ 001 QQl 001 02 Η 02 Ι8ΙΙ 001 Τοι lgll ι8ιΐ ~^Γ οοι οοι οοι οοι "5 Γ , , , , , , w w , , , 趸 趸 w w Μ d, 鄣4趸^w4">g 9S 9S TS 9Γ0 9Ζ·0 lvols τ151 mri

SS es s so 9S 9Γ0 9S 9S 9Γ0 19s 9S 9S 9S (zoiu)?5u# 齋玉4吨 寸Ό ΤΓ ΜΜ ΜΜ ΜΜ ΜΜ Τ5" 9.0 MM 7T MM T5~ MM T^~ MM "?T w ETy 【old .0^ as L9 Μ Μ Μ Μ ΜSS es s so 9S 9Γ0 9S 9S 9Γ0 19s 9S 9S 9S (zoiu)?5u# 斋玉 4吨寸Ό ΜΜ ΜΜ ΜΜ ΜΜ Τ &5" 9.0 MM 7T MM T5~ MM T^~ MM "?T w ETy Old .0^ as L9 Μ Μ Μ Μ Μ

01°° MM M 7Γ M ~rrΤΓ ΊΓ ΤΓ M "5Γ N 蜊 ΪΊ^ν^€^^(δ)^^τ#δΝ"Μ um 01 嫦靶挺ν-錐豳吨策铡軼(H·^*^^^®-^^》408 χ :^ΙΓ^β後κ -〇:技靼>^,'000了 Λ9 ,psle搜 X :^#|々^浅"·-〇:民靼 w S9X^« 碱耜 _^suu> SO %·1^υν/碱鉍蜒^w* —Λ I 嫦一^3V X : Έ?搫 W^-Γ 〇:χιι,νοι)^绡#^fflstelrfeY(-)靶掘 #^BS^T? 。i-r^^教某赛璲某 χκ-羿举 * ΟΗΧ55^: 3# 廉ew4fflsWT3yo 屮咚寸.0嫦¥1^ 扣3傘 33 ««w4晻 >卜30/0屮啤-0嫦靶1二3牵13:妆 0寸 ° L·* 9# S 5 e# α寸601860 20 % ❹ 〔11^】 南溫負載、 試驗#5 、 X 〇 X 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 X 〇 i4 si ¥ Φ _ ttjl 迤朗 1 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 介電損失 1 Vnns 〇0 〇\ 〇\ ΙΛ ο σ\ 〇\ νη ο r-H »n o 〇\ o r*H 1-H CN 〇\ 介電常數 變異係數 VO 00 〇 (Ν r-^ ο CN CN »—η <Ν »—η (Ν r*H <Ν ^-Η fS T"H CS fS <N ψ^4 CS fS <N (N CS 介電常數之比#3 »·«Η (Ν <Ν 卜 *«Η 卜 «-Η Ο) *-Η 00 CS 00 卜 00 卜 卜 r-^ 00 <Τ*·Η 卜 < 00 l> 1 Vrms 3400 3700 3720 3900 3820 1 3740 1 1 3730 1 3510 3430 3800 3750 | 3740 1 | 3660 1 | 3580 1 3420 3800 3750 1 3100 ! 3750 3740 稀土元素之 濃度差#7 原子% 1-H «Ν ρ 1—Η to ο cn ^Η τΉ ο 卜 ο d CN T"H 1·^ o r-H a\ o 〇〇 o 卜 o o p o T*H p r™H q r*H 錳之濃 度差#6 原子% 〇 ΓΟ Ο Ο ο 寸 Ο CS ο Ο ο ο ο ο 寸 o ro d <N d r-H o o o o o r—^ d o d o o 居里 溫度 P in CS ιπ ο ο 5: W-1 ts S ο *"Η u^i ON o S o 〇\ 〇\ W-) 00 o o o »—H o o Is 1 〇 〇 〇 X 〇 〇 〇 〇 X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 晶粒之平 均粒徑 6 1 0.168 ν〇 ο 〇\ C) ν〇 Ο CO ο ο νη ο 00 ο 2 d VO d v〇 d d v〇 o o o v〇 〇 Os o Os o GTs o OS d 晶粒比率 #C2/(C1+C2) 1 卜 d 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 ο 卜 d 卜 o 卜 d 卜 d 卜 o 卜 o 卜 o 卜 〇 卜 o 卜 o 卜 o 卜 o 介電質層 之厚度 6 卜 〇 卜 ο 卜 ο 卜 ο 卜 ο Γ-; 卜 ο 卜 ο 卜 d 卜 d 卜 d 卜 d 卜 d 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 〇S 〇 00 CN 00 ΓΛ 00 普 00 箐 ν〇 00 00 00 〇\ 00 * o Os CN ON ΓΟ ON V% On # VO 〇\ # 〇\ 00 Os * ON a\ 餐 o 甽 ^窠 ^W ευ 2 _tt!i^wdf«*?^摄路-?嘱^拽(3^^^^槳《诤1«?<44<:卜# x : Tiiifcw^tlK--〇:Ti?lis.w*'f' 0001 , Λ9 , psI^il:>η# x : T<?ite-W^«K·-〇:民-ww S9xeif: s 碱鉍 a^w*suu> 100嫦 _ 铗uv/«i鉍一.<^w*i> I 嫦l^ov :$ X " - o - •*HrlwJfclEir^^iifxKf*ii?#-§xi5^:ts# *«-:?4<°sWTY3。/。屮噼寸 Ό 嫦1ΡΪ二υ#3υ ««v4nB®w^^0\=^,^ 2 «υ φΰ.·# 。>>5蟑4女0填4签珈-4长4:* I寸 p寸 60— 201007788 【(ΝΙ^】 高溫負載 試驗#5 X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 姊si 核> _: & Θ 1 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 介電損失 1 Vrms On a\ 〇\ Os T-H Os o 〇 fS 介電常數 變異係數 (N <N fs 04 fS w-^ r-H <N <N r—< 介電常數之比#3 l> r-; r«H r-; Γ-; >n 卜 Γ-; 00 〇s 1 Vrms 3610 3200 3710 3710 3710 3300 3600 4000 4010 3690 稀土元素之 濃度差#7 原子% o p o o p o p o p o r-H 錳之濃 度差#6 |原子% | O’ o o r—^ o o o o o o o 居里 溫度 P o 100 o o o o o o o o o XRD #2 1 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 晶粒之平 均粒徑 μνα 0.19 0.19 0.19 0.19 1 〇^9___] 0.19 0.19 0.19 0.19 0.19 晶粒比率 ! #C2/(C1 + C2) 1 卜 o 卜 d 卜 o 卜 o 卜 d fS o ΓΟ 〇 寸 d v〇 o 00 o 介電質層 之厚度 βτη 卜 d 卜 d 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 樣品 No. 1-H | *102 s F—4 寸 o S | *106 s 〇〇 〇 s I *110 1 蜊?nj?w*€tt!if?域 SM^WUIUOI 嫦靶蜒-^致«»嵴摄辟斗囑¥1?域«dfa?<w4»>s:9# X:^1454^後± -〇:^ll-w世七 0001 , Λ9 , piqllrif'.Ts X : τίί*-·^04;«κ·-〇:民靼·:? S9x04f«: S «;鉍一.4:w*suu>IOo嫦 lfa,uv/«;鉍一.^W^SUUA 一 嫦¾¾ DV :2 X: Έ?ΐ5-Ν矣七-〇:^靼-?«)靶嫌#刼晡柃-1-衾¥(31)靶雄#螭吨柃爿 。寒5!rw-H-«/^赛竣某 X 昍某羿牵-§χ 择t:cs# «ew4OTrtyo 屮®?寸.0 嫦 ϋπι^υ'# ζυ *ew4mn«wh^0\0^,^ 2 Λυ ,φΰ.·# •t>s^wte1f>s:^-4'li·^:* #3 0 io— 201007788 根據表1〜12之結果可明確,本發明之樣品N〇 2〜5、8〜 13、16〜19、22〜25、28〜31、33〜35、37〜39、41 〜80、82、 83 ' 86〜88 ' 91 〜94、97、1〇〇、ιοί、1〇3〜105 及 107〜109 係室溫(25C)之介電常數為35〇〇以上,介電損失為125%以 下’介電常數之溫度特性滿足X6S,並且將Ac電壓設為1 V 時之介電常數為將AC電壓設為〇 〇1 v時之介電常數之2倍以 下,進而,於高溫負载試驗中無不良。 (· #外’將由飼漢度為0.2原、子%以下之晶粒所組成的第1晶 粒以及由妈濃度為0.4原子%以上之晶粒所組成的第2晶粒之 面積比 C2/(C1 + C2)設為 〇·4〜〇.6 之樣品 No.38、39、42、43、 45、46、48、49、5卜 S2、54、55、57〜67、69、70、72、73、 75、76、78〜80、1〇8以及1〇9係室溫(25。〇之介電常數為4000 以上。 另外’作為構成介電質層之介電質陶瓷之組成,相對於構成 (® 鈦酸鋇之鈦100莫耳,將釩設為以V205換算計為〇·〇2〜0.08 莫耳,將鎮设為以MgO換其计為0.3〜0.6莫耳,.將鍾設為以 *01°° MM M 7Γ M ~rrΤΓ ΊΓ ΤΓ M "5Γ N 蜊ΪΊ^ν^€^^(δ)^^τ#δΝ"Μ um 01 嫦 target quite ν-cone 豳 铡轶 铡轶 (H· ^*^^^®-^^》408 χ :^ΙΓ^β After κ -〇:Technology>^, '000 Λ9, psle search X:^#|々^浅"·-〇:民靼w S9X^« Alkali 耜_^suu> SO %·1^υν/alkali 铋蜒^w* —Λ I 嫦一^3V X : Έ?搫W^-Γ 〇:χιι,νοι)^绡#^ fflstelrfeY (-) target digging #^BS^T? Ir^^ teach a certain game 璲 χ χ 羿 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 3 traction 13: makeup 0 inch ° L·* 9# S 5 e# α inch 601860 20 % ❹ 〔11^】 South temperature load, test #5, X 〇X 〇〇〇X 〇〇〇〇〇〇〇〇 〇〇X 〇〇X 〇i4 si ¥ Φ _ ttjl 迤 1 1 〇〇〇〇〇〇〇〇〇X 〇〇〇〇〇〇〇〇〇〇 Dielectric loss 1 Vnns 〇0 〇\ 〇\ ΙΛ ο σ \ 〇\ νη ο rH »no 〇\ or*H 1-H CN 〇\ Dielectric constant coefficient of variation VO 00 〇(Ν r-^ ο CN CN »—η <Ν »—η (Ν r*H &lt ;Ν ^-Η fS T"H CS fS <N ψ^4 CS fS <N (N CS ratio of dielectric constant #3 »·«Η (Ν <Ν卜*«Η卜«-Η Ο *-Η 00 CS 00 00 00 卜 r-^ 00 <Τ*·Η 卜< 00 l> 1 Vrms 3400 3700 3720 3900 3820 1 3740 1 1 3730 1 3510 3430 3800 3750 | 3740 1 | 3660 1 3580 1 3420 3800 3750 1 3100 ! 3750 3740 Concentration difference of rare earth elements #7 Atomic % 1-H «Ν ρ 1—Η to ο cn ^Η τΉ ο οο d CN T"H 1·^ o rH a\ o 〇〇o oopo T*H prTMH qr*H Mn concentration difference #6 Atomic % 〇ΓΟ Ο ο ο Ο Ο CS ο Ο ο ο ο ο inch o ro d <N d rH ooooor—^ dodoo Curie temperature P in CS ιπ ο ο 5: W-1 ts S ο *"Η u^i ON o S o 〇\ 〇\ W-) 00 ooo »—H oo Is 1 〇〇〇X 〇〇〇〇X 〇〇〇〇〇〇〇〇〇〇〇Average grain size 6 1 0.168 ν〇ο 〇\ C) ν〇Ο CO ο ο Ηη ο 00 ο 2 d VO dv〇ddv〇ooov〇〇Os o Os o GTs o OS d grain ratio #C2/(C1+C2) 1 卜d 卜 ο ο ο ο ο ο ο ο ο ο ο卜d 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o卜d 卜d, d, d, d, d, b, b, b, b, b, b, b, b, b, 00, 00, 00, 00, 00 On # VO 〇\ # 〇\ 00 Os * ON a\ Meal o 甽^窠^W ευ 2 _tt! i^wdf«*?^路路-?嘱^拽(3^^^^ Paddle "诤1«?<44<:卜# x : Tiiifcw^tlK--〇:Ti?lis.w*'f ' 0001 , Λ9 , psI^il:>η# x : T<?ite-W^«K·-〇:民-ww S9xeif: s Alkali 铋a^w*suu> 100嫦_ 铗uv/«i铋一.<^w*i> I 嫦l^ov :$ X " - o - •*HrlwJfclEir^^iifxKf*ii?#-§xi5^:ts# *«-:?4<°sWTY3. /.屮噼 inch Ό 嫦1ΡΪ二υ#3υ ««v4nB®w^^0\=^,^ 2 «υ φΰ.·#. >>5蟑4 female 0 fill 4 sign 珈-4 long 4:* I inch p inch 60— 201007788 【(ΝΙ^) High temperature load test #5 X 〇〇〇〇〇〇〇〇〇〇X 姊si Nuclear > _: & Θ 1 〇〇〇〇〇〇〇〇〇〇 Dielectric loss 1 Vrms On a\ 〇\ Os TH Os o 〇fS Dielectric constant coefficient of variation (N <N fs 04 fS w- ^ rH <N <N r -< ratio of dielectric constant #3 l>r-; r«H r-; Γ-; >n Γ-- 00 〇s 1 Vrms 3610 3200 3710 3710 3710 3300 3600 4000 4010 3690 Concentration difference of rare earth elements #7 Atomic % opoopopopo rH Concentration difference of manganese #6 | Atomic % | O' oor-^ ooooooo Curie temperature P o 100 ooooooooo XRD #2 1 〇〇〇〇〇〇〇 The average grain size of 〇〇〇 crystal grain μνα 0.19 0.19 0.19 0.19 1 〇^9___] 0.19 0.19 0.19 0.19 0.19 Grain ratio! #C2/(C1 + C2) 1 卜o 卜d b o 卜o 卜d fS o ΓΟ 〇 inch dv〇o 00 o thickness of the dielectric layer βτη 卜 d 卜 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o 卜 o sample No. 1-H | * 102 s F - 4 inch o S | * 106 s 〇〇〇s I *110 1 蜊?nj?w*€tt!if? Domain SM^WUIUOI 嫦 蜒-^致 «»嵴 辟 嘱 1 1 1 1 1 1 1 « « « « « « « « « « « « « « « « « « « « « « « « « « « « ;s:9# X:^1454^ After ±-〇:^ll-w世七0001, Λ9, piqllrif'.Ts X : τίί*-·^04;«κ·-〇: 民靼::? S9x04f «: S «;铋一.4:w*suu>IOo嫦lfa,uv/«;铋一.^W^SUUA 一嫦3⁄43⁄4 DV :2 X: Έ?ΐ5-Ν矣七-〇:^靼- ?«) Target suspect #刼晡柃-1-衾¥(31) Target male #螭吨柃爿.寒5!rw-H-«/^赛赛X X昍昍羿-§χ Select t:cs # «ew4OTrtyo 屮®? inch.0 嫦ϋπι^υ'# ζυ *ew4mn«wh^0\0^,^ 2 Λυ ,φΰ.·# •t>s^wte1f>s:^-4'li·^ : * #3 0 io - 201007788 According to the results of Tables 1 to 12, the samples of the present invention are N〇2~5, 8~13, 16~19, 22~25, 28~31, 33~35, 37~ 39, 41 ~ 80, 82, 83 '86~88 '91 ~ 94, 97, 1 〇〇, ιοί, 1〇3~105 and 107~109 The room temperature (25C) has a dielectric constant of 35〇〇 or more. The dielectric loss is 125% or less. The temperature characteristic of the dielectric constant satisfies X6S, and the dielectric constant when the Ac voltage is set to 1 V is when the AC voltage is set to 〇〇1 v. The dielectric constant was twice or less, and further, there was no defect in the high-temperature load test. (· #外' is the first grain composed of grains of 0.2 or less and the area of the second grain composed of grains having a mother concentration of 0.4 atom% or more and C2/ (C1 + C2) is set to sample No. 38, 39, 42, 43, 45, 46, 48, 49, 5, S2, 54, 55, 57 to 67, 69, 70 of 〇·4~〇.6, 72, 73, 75, 76, 78 to 80, 1〇8, and 1〇9 are room temperature (25. The dielectric constant of 〇 is 4000 or more. In addition, 'as a composition of dielectric ceramics constituting the dielectric layer, With respect to the composition (® titanium barium titanate 100 m, the vanadium is set to 〇·〇2 to 0.08 mol in terms of V205, and the town is set to 0.3 to 0.6 m in terms of MgO, Clock set to *

MnO換算計為0.2〜0.4莫耳,將自紀、鏑、鈥及斜中選擇之 至少1種稀土元素設為以RE2〇3換算計為〇 4〜0.6莫耳,以及 將铽設為以Tb407換算計為〇.〇2〜〇.〇8莫耳之樣品N〇 5〇〜80 係將AC電壓設為1 V時之介電常數為將AC電壓設為〇.〇1 V 時之介電常數之1.5倍以下。 另外,將構成介電質層之晶粒之平均粒徑設為0.14〜0.28 098109473 43 201007788 /zm之範圍的樣品n〇.2〜5、8〜12、16〜19、22〜25、28〜 31、33〜35、37〜39、41 〜77、79、80、82、83 ' 86〜88、91 〜94、97、100、1〇1、103〜1〇5及1〇7〜1〇9係介電常數為35〇〇 以上’介電損失為12.5%以下,介電常數之溫度特性滿足X6S, 將AC電壓設為1 v時之介電常數為將AC電壓設為謹v時 之介電常數之1.9倍以下。 進而’作為構成介電質層之介電質陶竟之組成,將轼設為以 Tb407換算計為0.05〜〇 〇8莫耳之樣品N〇 2、53〜67、71〜肋籲 及82係介電常數之變異係數為〇 9以下,不均一較小。 再者,根據圖5(a)可知,構成樣品N〇 3之積層陶瓷電容器 中之電質層的第1晶粒及第2晶粒中’表層部之猛_)濃度 減去深度為10 nm之位置雜(Mn)濃度崎之濃度差為〇 3原 子/〇以下,並且表層部之稀土元素(γ)濃度減去深度為 之位置的稀土元素(γ)濃度*得之濃度絲⑽原子。/。以上。另 外關於本發明之其他樣品(樣品N〇 2、4、5、8〜13、16〜19、 Θ 22〜25、28〜3 卜 33〜35、37〜39、41 〜80、82、83、86〜88、 91 〜94、97、1〇〇、101、1〇3〜1〇5 及 1〇7〜1〇9),亦與樣品 No.3同樣地具有如下濃度差:表層部德_濃度減去深度 為10 nm之位置的錳(Mn)濃度而得之濃度差為原子%以 下’並且表層部之稀土元素濃度減去深度為10 nm之位置的稀 土兀素濃度而得之濃度差為0.7原子%以上。 另外,作為構成介電質層之介電質喊之組成,相對於構成 098109473 44 201007788 鈦酸鋇之鈦100莫耳’將釩設為以V2〇5換算計為0 05〜〇J莫 耳,將鎂設為以MgO換算計為0.2〜0.8莫耳,將錳設為以 MnO換算計為仏2〜〇.3莫耳,將自釔、鏑、鈥及铒中選擇之 至少1種稀土元素設為以RE2〇3換算計為〇 4〜〇 6莫耳,以及 將錢設為以Tb4〇7換算計為0.05〜〇.1莫耳,並且將第j晶粒 及第2晶粒之平均粒徑設為0.14〜0.19 之樣品No.82、 83、86〜88、91 〜94、97、1〇〇、1(U、103〜1〇5 及 1〇7〜1〇9, ^其於將咼溫負載試驗之溫度設為125°C、將電壓設為6 V之條 件下均係於1000小時以上無不良。 相對於此’本發明之範圍外之樣品N〇 i、6、7、14、15、 20、2卜 26、27、32、36、40、81、84、85、89、90、95、96、 98 99 102、1〇6及110不滿足如下任一特性:室溫 下之介電常數為3500以上,介電損失為125%以下,介電常 數之溫度特性滿足X6S,將AC電壓設為i V時之介電常數為 ,將AC電壓設為〇.〇1 v時之介電常數之2倍以下,以及高溫負 載試驗中之壽命。 另外,對將結晶構造為核-殼構造、居里溫度顯示丨乃它之 介電質陶㈣為介電質層之樣品Να1之織稀土元素⑺的濃 度進行觀察’則由圖5(b)可知,表層部之鐘濃度減去深度為 10 nm之位置的鐘濃度而得之濃度差為〇 $原子%,並且表層 部之稀土元素⑺濃度減去深度4 1〇nm之位置的稀土元素⑺ 濃度而得之濃度差為0.8原子〇/〇。 098109473 45 201007788 另外’對立方晶波峰強度小於正方晶波峰強度、且居里溫度 為91°C之樣品No.6之猛及稀土元素⑺的濃度進行觀察,則由 圖5(c)可知,表層部之猛濃度減去深度為nm之位置的猛濃 度而彳寸之遭度差、以及表層部之稀土元素(γ)濃度減去深度為 10 nm之位置的稀土元素(Y)濃度而得之濃度差均小於〇 2原子 %。 再者,構成所製作之積層陶瓷電容器之介電質層的晶粒中, ( 第2晶粒之約濃度於分析範圍内均為0.5〜1.5原子%。 【圖式簡單說明】 圖1係表示本發明之積層陶瓷電容器之一例之概略剖面圖。 圖2係構成圖1所示之積層陶瓷電容器之介電質層之放大 圖’且係表示晶粒與晶界相之示意圖。 圖3係實施例中之樣品No.3之X射線繞射圖。 圖4係表示實施例中之樣品No.3之靜電電容之溫度特性的 V. 圖表。 圖5(a)係表不構成實施例中之樣品n〇.3之積層陶究電容器 的介電質陶瓷之晶粒中所含之稀土元素及錳之濃度變化的圖 表’圖5(b)係表示構成實施例中之樣品No.1之積層陶竟電容 器的介電質陶瓷之晶粒中所含之稀土元素及錳之濃度變化的 圖表’圖5(c)係表示構成實施例中之樣品n〇.6之積層陶兗電 容器的介電質陶瓷之晶粒中所含之稀土元素及錳之濃度變化 的圖表。 098109473 46 201007788 【主要元件符號說明】 1 電容器本體 3 外部電極 5 介電質層 7 内部電極層 9 晶粒 9a 第1晶粒 9b 第2晶粒 11 晶界相MnO conversion is 0.2 to 0.4 m, and at least one rare earth element selected from the group consisting of 自, 镝, 鈥, and 斜 is set to 〇4 to 0.6 mol in terms of RE2〇3, and 铽 is set to Tb407. The conversion is 〇.〇2~〇.〇8mole sample N〇5〇~80 The dielectric constant when the AC voltage is set to 1 V is the dielectric when the AC voltage is set to 〇.〇1 V 1.5 times or less of the constant. Further, the average particle diameter of the crystal grains constituting the dielectric layer is set to be in the range of 0.14 to 0.28 098109473 43 201007788 /zm, and samples n〇.2 to 5, 8 to 12, 16 to 19, 22 to 25, 28 to 31, 33~35, 37~39, 41~77, 79, 80, 82, 83' 86~88, 91~94, 97, 100, 1〇1, 103~1〇5 and 1〇7~1〇 The dielectric constant of the 9-series is 35 〇〇 or more, the dielectric loss is 12.5% or less, the temperature characteristic of the dielectric constant satisfies X6S, and the dielectric constant when the AC voltage is set to 1 v is when the AC voltage is set to v. The dielectric constant is 1.9 times or less. Further, 'as a composition of a dielectric ceramic constituting a dielectric layer, 轼 is a sample of 0.05 to 〇〇8 mol in terms of Tb407 N〇2, 53~67, 71~ ribs and 82 series The coefficient of variation of the dielectric constant is 〇9 or less, and the unevenness is small. Further, as is clear from Fig. 5(a), the concentration of the 'surface layer' in the first crystal grain and the second crystal grain of the electric layer in the multilayer ceramic capacitor constituting the sample N〇3 is reduced by 10 nm. The concentration difference of the positional (Mn) concentration is 〇3 atoms/〇, and the concentration of the rare earth element (γ) in the surface layer is subtracted from the concentration of the rare earth element (γ) at the position of the concentration of the wire (10) atom. /. the above. Further, other samples of the present invention (samples N〇2, 4, 5, 8 to 13, 16 to 19, Θ 22 to 25, 28 to 3, 33 to 35, 37 to 39, 41 to 80, 82, 83, 86 to 88, 91 to 94, 97, 1 〇〇, 101, 1 〇 3 to 1 〇 5 and 1 〇 7 to 1 〇 9), and also have the following concentration difference similarly to sample No. 3: surface layer _ Concentration difference obtained by subtracting the concentration of manganese (Mn) at a depth of 10 nm from the concentration of manganese (Mn) at a depth of 10 nm or less and the concentration of rare earth elements in the surface layer minus the concentration of rare earth element at a depth of 10 nm It is 0.7 atom% or more. In addition, as a composition of the dielectric material constituting the dielectric layer, the vanadium of the titanium silicate which constitutes 098109473 44 201007788 barium titanate is set to 0 05 to 〇J Mo in the range of V2 〇 5 , Magnesium is 0.2 to 0.8 mol in terms of MgO, and manganese is at least 1 rare earth element selected from lanthanum, cerium, lanthanum and cerium in terms of MnO. It is set to 〇4 to 〇6 mol in terms of RE2〇3, and the money is set to 0.05~〇.1 mol in terms of Tb4〇7, and the average of the jth die and the second die Sample No. 82, 83, 86 to 88, 91 to 94, 97, 1 〇〇, 1 (U, 103 to 1 〇 5 and 1 〇 7 to 1 〇 9) having a particle diameter of 0.14 to 0.19, The temperature of the temperature-temperature load test was set to 125 ° C, and the voltage was set to 6 V, which was not more than 1000 hours. The samples N〇i, 6, and 7, which are outside the scope of the present invention. 14, 15, 20, 2, 26, 27, 32, 36, 40, 81, 84, 85, 89, 90, 95, 96, 98 99 102, 1〇6 and 110 do not satisfy any of the following characteristics: room temperature The dielectric constant is more than 3500, and the dielectric loss is 125%. The temperature characteristic of the dielectric constant satisfies X6S, the dielectric constant when the AC voltage is set to i V is, the AC voltage is set to 2 times or less of the dielectric constant at 〇.〇1 v, and the high-temperature load test In addition, the concentration of the woven rare earth element (7) of the sample Να1 in which the crystal structure is a core-shell structure, the Curie temperature is 丨, and the dielectric ceramic (4) is the dielectric layer is observed. b) It can be seen that the concentration of the surface layer minus the concentration of the clock at a depth of 10 nm gives a concentration difference of 〇$ atom%, and the rare earth element (7) concentration in the surface layer is subtracted from the depth of 4 1 〇 nm. The difference in concentration of element (7) is 0.8 atomic 〇/〇. 098109473 45 201007788 In addition, the sample No. 6 and the rare earth element (7) whose intensity is smaller than the square wave peak intensity and the Curie temperature is 91 °C. When the concentration is observed, it can be seen from Fig. 5(c) that the sharp concentration of the surface layer is subtracted from the sharp concentration at the position of the depth of nm, and the difference in the density of the rare earth element (γ) in the surface layer is subtracted from the depth. It is obtained from the concentration of rare earth element (Y) at a position of 10 nm. The degree difference is less than 〇 2 atom%. Further, in the crystal grains constituting the dielectric layer of the fabricated ceramic capacitor, (the concentration of the second crystal grains is 0.5 to 1.5 atom% in the analysis range. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an example of a multilayer ceramic capacitor of the present invention. Fig. 2 is an enlarged view of a dielectric layer constituting the multilayer ceramic capacitor shown in Fig. 1 and showing crystal grains and crystals. Schematic diagram of the boundary. Figure 3 is an X-ray diffraction pattern of sample No. 3 in the examples. Fig. 4 is a V. graph showing the temperature characteristics of the electrostatic capacitance of the sample No. 3 in the example. Fig. 5(a) is a graph showing changes in the concentration of rare earth elements and manganese contained in the crystal grains of the dielectric ceramics of the laminated ceramic capacitor of the sample n〇.3 in the example 'Fig. 5(b) The graph showing the change in the concentration of rare earth elements and manganese contained in the crystal grains of the dielectric ceramic constituting the laminated ceramic capacitor of the sample No. 1 in the example is shown in Fig. 5(c). A graph showing changes in the concentration of rare earth elements and manganese contained in the grains of the dielectric ceramic of the multilayer ceramic capacitor of the sample n〇.6. 098109473 46 201007788 [Description of main components] 1 Capacitor body 3 External electrode 5 Dielectric layer 7 Internal electrode layer 9 Grain 9a First grain 9b Second grain 11 Grain boundary phase

098109473 47098109473 47

Claims (1)

201007788 七、申請專利範圍: 1.-種積層陶兗電容器,其係將介電f層與内部電極層交替 積層而形成者,上述介電制係由將鈦酸㈣為域分,且含 有mμ、錢以及自纪、鏑、鈥及铒中選擇之至少! 種稀土 7〇素之介電質喊所構成,上述積層陶究電容器之特徵 在於, Θ 上述介電質陶究中’相對於構成上述鈦酸銷之鈦100莫耳, 係含有: ' 以v205換算計為〇 〇2〜〇 2莫耳之上述叙, 以MgO換算計為〇 2〜〇 8莫耳之上述鎖, 以Mn0換算計為W〜〇.5莫耳之上述鐘, 鈥及餌中選 以RE2〇3換异計為〇3〜〇8莫耳之自纪、鏑 擇之至少1種上述稀土元素,以及 以Tb4〇7換算計為〇 〇2〜〇 2莫耳之上述錢;並且, ❹ 構成上述介電質陶究之結晶係具有··第1結晶群組’其係由 將上述^酸鋇作為主成分,且上躺之濃度為 0.2原子二以ητ 作為Φ ^成、、U及第2結晶群組,其係由將上述鈦酸鋇 ㈣”且上述句之濃度為0·4原子%以上之第2晶粒所 組成, 將於上述介電 的面積設為C1、 + C2)為 〇.3 〜〇.7 質陶秃之研磨面上所觀察到之上述第1晶粒 將上述第2晶粒之面積設為C2時,C2/(C1 098109473 48 201007788 於上述介電質陶究之x射線繞射圖中,顯示立方晶之欽酸 鎖之(獨_繞料度敍於—正方晶之鈦酸鋇之(〇〇2)面 的繞射強度,且居里溫度為95〜1〇5艺。 2. 如申請專利範圍第1頂 弟項之積層陶瓷電容器,其中,上述第 1晶粒及上述第2晶粒之平均粒徑為0.M〜㈣㈣。 3. 如申請專利範圍第1項之積層陶Μ”,其中,上述 C2/(C1 + C2)為 0.4〜〇 6。 (· …4·如帽專利範圍第1或3項之積層㈣電容器,其中,上 迷介電質㈣巾,㈣於構成上述鈦酸鋇之鈦⑽料,係含 有: 、 以V2〇5換算計為〇 〇2〜〇 〇8莫耳之上述飢, 以顺換算計為〇.3〜〇 6莫耳之上賴, 以0換算計㈣〜Μ莫耳之上述猛, (❹ 以導3換异叶為〇4〜〇ό莫耳之自紀、鋪、欽 擇之至少1種上述稀土元素’以及 以Tb4〇7換算計為〇 〇2〜〇 〇8莫耳之上述錢。 5.如申请專利範圍笙 電質陶竟中,相對積層随電容器,其中,上述介 ΤΗ 〇拖置斗A 、構成上述鈦酸鋇之鈦100莫耳,係含有以 Tb4o7換料為α〇5〜_莫耳之上賴。 6·如申:專利範圍第1項之積層陶竟電容器,其中,上述介 電質陶瓷中,相對於椹 、肀 述;丨 以⑽換算計為^述鈦酸鋇之鈦刚莫耳,係含有: 為0.05〜0.1莫耳之上述釩, 098109473 49 201007788 以MgO換算計為0.2〜0.8莫耳之上述鎂, 以MnO換算計為0.2〜0.3莫耳之上述錳, 以RE203換算計為0.4〜0.6莫耳之自釔、鏑、鈥及餌中選 擇之至少1種上述稀土元素,以及 以Tb407換算計為0.05〜0.1莫耳之上述铽;並且, 上述第1晶粒及上述第2晶粒之平均粒徑為0.14〜0.19 // m ° 098109473 50201007788 VII. Patent application scope: 1.- Multilayer ceramic capacitors, which are formed by alternately laminating a dielectric f layer and an internal electrode layer. The dielectric system is composed of titanic acid (four) and contains mμ. At least the choice of money, self-discipline, 镝, 鈥 and !! The above-mentioned laminated ceramic capacitor is characterized in that: Θ the above dielectric ceramics is 'relative to the titanium 100 mer which constitutes the titanic acid pin, and contains: ' to v205 The above calculation is 〇〇2 to 〇2 莫, and the above lock is 〇2 to 〇8 摩尔 in terms of MgO, and the above-mentioned clock of W~〇.5 莫 in Mn0 conversion, 鈥 and bait The above-mentioned selection of RE2〇3 for the difference is 〇3~〇8 Moer's self-discipline, at least one of the above-mentioned rare earth elements, and the above-mentioned money in the range of Tb4〇7 is 〇〇2~〇2 Further, 结晶 the crystal system constituting the above-mentioned dielectric ceramics has a first crystal group which has the above-mentioned acid strontium as a main component, and the concentration of the upper lying is 0.2 atom two and ητ is taken as Φ ^ And U and the second crystal group are composed of the second crystal grains having the above-mentioned barium titanate (tetra) and the concentration of the above sentence is 0.4 atom% or more, and the area of the dielectric is set to C1. , + C2) is 〇.3 〇.7 The first crystal grain observed on the polished surface of the terracotta terracotta has the area of the second crystal grain At C2, C2/(C1 098109473 48 201007788 is shown in the x-ray diffraction diagram of the above-mentioned dielectric ceramics, showing the cubic crystal of the acidity lock (independently, the degree of winding is described in the square-square barium titanate) 〇〇 2) the diffraction intensity of the surface, and the Curie temperature is 95 to 1 〇 5 art. 2. The multilayer ceramic capacitor of the first application of the patent application, wherein the first crystal grain and the second crystal The average particle diameter of the granules is 0.M~(4)(4). 3. The laminated terracotta according to item 1 of the patent application, wherein the above C2/(C1 + C2) is 0.4 to 〇6. (· ... 4·如帽The laminated (four) capacitor of the first or third aspect of the patent, wherein the upper dielectric (four) towel, (4) the titanium (10) material constituting the barium titanate, comprises: 〇〇2~〇 in V2〇5 conversion 〇8 Moer's above hunger, in terms of shun conversion, 〇.3~〇6莫耳上赖, in terms of 0 (four) ~ Μ 耳 上述 上述 猛 猛 猛 猛 猛 猛 猛 猛 猛 猛 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 At least one of the above-mentioned rare earth elements' of the self-discipline, shop, and choice of 〇ό莫耳, and the above-mentioned money of 〇〇2~〇〇8mol in the conversion of Tb4〇7. In the electric ceramics, the relative layer is filled with the capacitor. Among them, the above-mentioned dielectric 〇 〇 hopper A and the titanium silicate constituting the above-mentioned barium titanate contain the Tb4o7 refueling as α〇5~_莫耳上6·如申: The laminated ceramic capacitor of the first item of the patent scope, wherein the dielectric ceramic is compared with 椹 and 肀, and 丨 is converted to titanium titanate of barium titanate by (10). The above-mentioned manganese is contained in an amount of 0.2 to 0.8 mol, and the above-mentioned magnesium is 0.2 to 0.3 mol in terms of MnO, which is 0.4 in terms of RE203, in the range of 0.05 to 0.1 mol of the above vanadium, 098109473 49 201007788. At least one of the above rare earth elements selected from the group consisting of ruthenium, osmium, iridium and bait, and the above-mentioned ruthenium of 0.05 to 0.1 mol in terms of Tb407; and the first crystal grain and the second crystal The average particle size of the particles is 0.14~0.19 // m ° 098109473 50
TW98109473A 2008-03-24 2009-03-24 Laminated ceramic capacitors TWI412045B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008075829 2008-03-24
JP2008139430 2008-05-28
JP2008326984 2008-12-24

Publications (2)

Publication Number Publication Date
TW201007788A true TW201007788A (en) 2010-02-16
TWI412045B TWI412045B (en) 2013-10-11

Family

ID=41113639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109473A TWI412045B (en) 2008-03-24 2009-03-24 Laminated ceramic capacitors

Country Status (4)

Country Link
JP (1) JP4999987B2 (en)
CN (1) CN102007557B (en)
TW (1) TWI412045B (en)
WO (1) WO2009119444A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471884B (en) * 2012-10-09 2015-02-01 Murata Manufacturing Co Laminated ceramic electronic parts and manufacturing method thereof
TWI748483B (en) * 2019-04-25 2021-12-01 禾伸堂企業股份有限公司 The composition of dielectric ceramic materials used in capacitors
TWI755594B (en) * 2018-04-20 2022-02-21 日商宇部興產股份有限公司 Polyimide, laminate, electric device containing the same and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109872B2 (en) * 2008-08-27 2012-12-26 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
JP2011256091A (en) * 2010-06-11 2011-12-22 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor using the same
JP5321848B2 (en) * 2010-09-30 2013-10-23 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
JP6034145B2 (en) * 2012-07-30 2016-11-30 京セラ株式会社 Capacitor
JP6034111B2 (en) * 2012-09-27 2016-11-30 京セラ株式会社 Capacitor
JP6034136B2 (en) * 2012-10-31 2016-11-30 京セラ株式会社 Capacitor
US10395828B2 (en) 2015-10-28 2019-08-27 Kyocera Corporation Capacitor
JP7429516B2 (en) * 2018-12-20 2024-02-08 株式会社日本触媒 Ceramic sheet and its manufacturing method
KR20220059823A (en) * 2020-11-03 2022-05-10 삼성전기주식회사 Dielectric composition and multilayered capacitor comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024536B2 (en) * 1995-12-20 2000-03-21 株式会社村田製作所 Multilayer ceramic capacitors
JP3091192B2 (en) * 1998-07-29 2000-09-25 ティーディーケイ株式会社 Dielectric porcelain composition and electronic component
JP3760364B2 (en) * 1999-07-21 2006-03-29 Tdk株式会社 Dielectric porcelain composition and electronic component
JP2001135544A (en) * 1999-11-01 2001-05-18 Tdk Corp Dielectric porcelain composition and electric component
JP3934352B2 (en) * 2000-03-31 2007-06-20 Tdk株式会社 Multilayer ceramic chip capacitor and manufacturing method thereof
JP4502740B2 (en) * 2004-07-29 2010-07-14 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4511323B2 (en) * 2004-11-25 2010-07-28 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4809152B2 (en) * 2005-09-28 2011-11-09 京セラ株式会社 Multilayer ceramic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471884B (en) * 2012-10-09 2015-02-01 Murata Manufacturing Co Laminated ceramic electronic parts and manufacturing method thereof
US9620290B2 (en) 2012-10-09 2017-04-11 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same
US9831037B2 (en) 2012-10-09 2017-11-28 Murata Manufaturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same
TWI755594B (en) * 2018-04-20 2022-02-21 日商宇部興產股份有限公司 Polyimide, laminate, electric device containing the same and manufacturing method thereof
TWI748483B (en) * 2019-04-25 2021-12-01 禾伸堂企業股份有限公司 The composition of dielectric ceramic materials used in capacitors

Also Published As

Publication number Publication date
TWI412045B (en) 2013-10-11
JP4999987B2 (en) 2012-08-15
CN102007557B (en) 2012-04-04
WO2009119444A1 (en) 2009-10-01
CN102007557A (en) 2011-04-06
JPWO2009119444A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
TW201007788A (en) Laminated ceramic capacitor
JP6502092B2 (en) Multilayer ceramic capacitor
TWI399766B (en) Multilayer ceramic capacitor and production method of the same
TWI401235B (en) Dielectric ceramics and laminated ceramic capacitors
JP4809152B2 (en) Multilayer ceramic capacitor
JP4937068B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5535402B2 (en) Capacitor
WO2009119158A1 (en) Laminated ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
TWI416559B (en) Laminated ceramic capacitors
JP5094283B2 (en) Dielectric porcelain and multilayer ceramic capacitor
TWI416560B (en) Laminated ceramic capacitors
TWI406310B (en) Dielectric ceramics and laminated ceramic capacitors
JP2011176186A (en) Multilayer ceramic capacitor
JP2007063114A (en) Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP6034136B2 (en) Capacitor
JP2011176184A (en) Multilayer ceramic capacitor
JP6034145B2 (en) Capacitor
JP5354185B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
TWI416561B (en) Dielectric ceramics and laminated ceramic capacitors
JP2010080676A (en) Laminated ceramic capacitor
JP6034111B2 (en) Capacitor