JP2011256091A - Dielectric ceramic and laminated ceramic capacitor using the same - Google Patents

Dielectric ceramic and laminated ceramic capacitor using the same Download PDF

Info

Publication number
JP2011256091A
JP2011256091A JP2010134067A JP2010134067A JP2011256091A JP 2011256091 A JP2011256091 A JP 2011256091A JP 2010134067 A JP2010134067 A JP 2010134067A JP 2010134067 A JP2010134067 A JP 2010134067A JP 2011256091 A JP2011256091 A JP 2011256091A
Authority
JP
Japan
Prior art keywords
ceramic
dielectric
component
batio
total concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010134067A
Other languages
Japanese (ja)
Inventor
Kazuo Muto
和夫 武藤
Tomomi Koga
朋美 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010134067A priority Critical patent/JP2011256091A/en
Publication of JP2011256091A publication Critical patent/JP2011256091A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric ceramic capable of giving a laminated ceramic capacitor excellent in life characteristics when used as a dielectric layer, and a laminated ceramic capacitor excellent in reliability (life characteristics) which is obtained by forming a dielectric layer using the dielectric ceramic.SOLUTION: The dielectric ceramic is constituted to comprise a sintered compact containing a BaTiO-based ceramic particle as a main phase particle, the BaTiO-based ceramic particle having a shell part and a core part and containing, as accessory components, R (at least one member selected from Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Y) and M (at least one member selected from Mg, Mn, Ni, Co, Fe, Cr, Cu, Al, Mo, W and V), wherein R and M exist in the shell part of the BaTiO-based ceramic particle, and a total concentration of R and M has a gradient from the grain boundary toward the core part and has a part C2, which is a minimum, and a part C3, which is a maximum.

Description

本発明は誘電体セラミックおよびそれを用いたコンデンサに関し、詳しくは、BaTiO3系の誘電体セラミックおよびそれを誘電体層の構成材料として用いた積層セラミックコンデンサに関する。 The present invention relates to a dielectric ceramic and a capacitor using the dielectric ceramic, and more particularly to a BaTiO 3 based dielectric ceramic and a multilayer ceramic capacitor using the dielectric ceramic as a constituent material of the dielectric layer.

近年、電子機器の小型・軽量化にともない、小型で、大容量を取得することが可能な積層セラミックコンデンサが広く用いられている。この積層セラミックコンデンサは、例えば、図1に示すように、セラミック積層体(積層セラミック素子)10の内部に配設された内部電極12が、誘電体層であるセラミック層(誘電体セラミック層)11を介して積層され、かつ、セラミック積層体10の両端面には、交互に逆側の端面に露出した内部電極12と導通するように一対の外部電極13a,13bが配設された構造を有している。   In recent years, with the reduction in size and weight of electronic devices, multilayer ceramic capacitors that are small in size and capable of acquiring a large capacity are widely used. For example, as shown in FIG. 1, the multilayer ceramic capacitor has a ceramic layer (dielectric ceramic layer) 11 in which an internal electrode 12 disposed in a ceramic multilayer body (multilayer ceramic element) 10 is a dielectric layer. And a pair of external electrodes 13a and 13b are disposed on both end faces of the ceramic laminate 10 so as to be electrically connected to the internal electrodes 12 exposed on the opposite end faces. is doing.

そして、このような積層セラミックコンデンサにおいては、誘電体層として、 高い誘電率を有するBaTiO3系セラミック材料が一般的に用いられている。 In such a multilayer ceramic capacitor, a BaTiO 3 ceramic material having a high dielectric constant is generally used as the dielectric layer.

さらに、BaTiO3系セラミック材料として、温度特性や絶縁性、信頼性(寿命特性)などの特性を向上させる目的で、種々の副成分、例えば、希土類元素やMgなどを添加したものが用いられている。 Furthermore, as a BaTiO 3 ceramic material, materials added with various subcomponents such as rare earth elements and Mg are used for the purpose of improving characteristics such as temperature characteristics, insulating properties, and reliability (life characteristics). Yes.

また、BaTiO3系セラミック材料の温度特性や信頼性(寿命特性)を制御可能に保ちつつ、両立させるために、セラミック粒子(結晶粒子)の表層部に副成分が固溶し、結晶粒子の内部には殆ど副成分が固溶していない、いわゆるコア・シェル構造とよばれる結晶構造とすることも行われている。 Further, in order to achieve both controllability and controllability of temperature characteristics and reliability (life characteristics) of the BaTiO 3 ceramic material, subcomponents are dissolved in the surface layer portion of the ceramic particles (crystal particles), and the inside of the crystal particles In other cases, a crystal structure called a so-called core-shell structure in which almost no subcomponents are dissolved is also used.

たとえば、特許文献1には、誘電体層が、コア部とコア部を囲繞するシェル部とからなるセラミック粒子の焼結体から構成されているとともに、セラミック粒子のシェル部にはMn,V,Cr,Co,Fe,Ni,CuおよびMoから選択された1種又は2種以上のアクセプタ型元素、Mgおよび希土類元素(Ho,Sc,Y,Gd,Dy,Er,Yb,Tb,Tm,Lu)が含まれており、シェル部に含まれている上記アクセプタ型元素の濃度がコア・シェル境界から粒界側に向かって高くなるようにした積層セラミックコンデンサが提案されている(特許文献1参照)。   For example, in Patent Document 1, the dielectric layer is composed of a sintered body of ceramic particles including a core portion and a shell portion surrounding the core portion, and Mn, V, One or more acceptor elements selected from Cr, Co, Fe, Ni, Cu and Mo, Mg and rare earth elements (Ho, Sc, Y, Gd, Dy, Er, Yb, Tb, Tm, Lu And a multilayer ceramic capacitor in which the concentration of the acceptor element contained in the shell portion is increased from the core / shell boundary toward the grain boundary side is proposed (see Patent Document 1). ).

しかしながら、誘電体層に特許文献1に示されているようなセラミック誘電体を用いた積層セラミックコンデンサの場合、例えば、高温や高電界強度の環境下で使用すると、信頼性(寿命特性)が低下するという問題点がある。そのため、さらに寿命特性に優れた積層セラミックコンデンサを構成することが可能な誘電体材料の開発が望まれているのが実情である。   However, in the case of a multilayer ceramic capacitor using a ceramic dielectric as disclosed in Patent Document 1 as a dielectric layer, for example, when used in an environment of high temperature or high electric field strength, reliability (life characteristics) is reduced. There is a problem of doing. For this reason, there is a demand for development of a dielectric material capable of forming a multilayer ceramic capacitor having further excellent life characteristics.

特開2001−230149号公報JP 2001-230149 A

本発明は、上記課題を解決するものであり、積層セラミックコンデンサの誘電体層として用いた場合に、容量温度特性が良好で、かつ、寿命特性に優れた積層セラミックコンデンサを得ることが可能な誘電体セラミック、およびそれを用いて誘電体層を形成した信頼性(寿命特性)に優れた積層セラミックコンデンサを提供することを目的とする。   The present invention solves the above-mentioned problems, and when used as a dielectric layer of a multilayer ceramic capacitor, the dielectric temperature capable of obtaining a multilayer ceramic capacitor having good capacitance-temperature characteristics and excellent life characteristics. It is an object of the present invention to provide a body ceramic and a multilayer ceramic capacitor excellent in reliability (life characteristics) in which a dielectric layer is formed using the body ceramic.

上記課題を解決するため、本発明の誘電体セラミックは、
BaTiO3系セラミック粒子を主相粒子とする焼結体からなり、
前記BaTiO3系セラミック粒子は、表層部であるシェル部と、シェル部の内側のコア部とを備え、
副成分として、R(Rは、希土類元素であって、Nd,Sm,Eu,Gd,Tb,Dy,Ho,ErおよびYからなる群より選ばれる少なくとも1種)、および、M(Mは、Mg,Mn,Ni,Co,Fe,Cr,Cu,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)を含み、
前記BaTiO3系セラミック粒子の前記シェル部が、前記Rおよび前記Mを含むとともに、前記Rおよび前記Mの合計濃度は、粒界から前記コア部に向かって勾配を有し、かつ、極小となる部分と、極大となる部分とを有していること
を特徴としている。
In order to solve the above problems, the dielectric ceramic of the present invention is
It consists of a sintered body with BaTiO 3 ceramic particles as main phase particles,
The BaTiO 3 based ceramic particles include a shell portion that is a surface layer portion and a core portion inside the shell portion,
As subcomponents, R (R is a rare earth element and is at least one selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Y), and M (M is Mg, Mn, Ni, Co, Fe, Cr, Cu, Al, Mo, W, and V).
The shell portion of the BaTiO 3 based ceramic particles includes the R and the M, and the total concentration of the R and the M has a gradient from the grain boundary toward the core portion, and is minimal. It is characterized by having a part and a part that becomes maximum.

本発明の誘電体セラミックにおいては、前記Rおよび前記Mの合計濃度が極小となる部分および極大となる部分の、少なくとも一方を2つ以上有していてもよい。   The dielectric ceramic of the present invention may have two or more of at least one of a portion where the total concentration of R and M is minimized and a portion where the total concentration is maximized.

また、前記Rおよび前記Mの合計濃度が極大となる部分の値である極大値は、粒界における前記Rおよび前記Mの合計濃度の値よりも小さいことが望ましい。   Moreover, it is desirable that the maximum value, which is the value at the portion where the total concentration of R and M becomes maximum, is smaller than the value of the total concentration of R and M at the grain boundary.

また、前記BaTiO3系セラミック粒子において、Baの一部がCaおよび/またはSrで置換されていてもよく、Tiの一部がZrおよび/またはHfで置換されていてもよい。
すなわち、Baの一部がCaおよび/またはSrで置換され、かつ、Tiの一部がZrおよび/またはHfで置換されていてもよく、また、BaとTiのいずれか一方だけが上述の成分で置換されていてもよい。
In the BaTiO 3 ceramic particles, a part of Ba may be substituted with Ca and / or Sr, and a part of Ti may be substituted with Zr and / or Hf.
That is, a part of Ba may be substituted with Ca and / or Sr, and a part of Ti may be substituted with Zr and / or Hf, and only one of Ba and Ti is the above-described component. May be substituted.

本発明の積層セラミックコンデンサは、
複数の誘電体層と複数の内部電極とが一体的に積層された構造を有する積層セラミックコンデンサであって、
前記誘電体層が、本発明にかかる誘電体セラミックから形成されていること
を特徴としている。
The multilayer ceramic capacitor of the present invention is
A multilayer ceramic capacitor having a structure in which a plurality of dielectric layers and a plurality of internal electrodes are integrally laminated,
The dielectric layer is formed of a dielectric ceramic according to the present invention.

本発明の誘電体セラミックは、BaTiO3系セラミック粒子を主相粒子とする焼結体からなり、BaTiO3系セラミック粒子は、シェル部とコア部とを備え、副成分として、R(Rは、希土類元素であって、Nd,Sm,Eu,Gd,Tb,Dy,Ho,ErおよびYからなる群より選ばれる少なくとも1種)、および、M(Mは、Mg,Mn,Ni,Co,Fe,Cr,Cu,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)を含み、RおよびMが、BaTiO3系セラミック粒子のシェル部に存在するとともに、RおよびMの合計濃度は、粒界からコア部に向かって勾配を有し、かつ、極小となる部分と、極大となる部分とを有するように構成されているので、温度特性や絶縁性、信頼性(寿命特性)などに優れた誘電体セラミックを得ることが可能になる。そして、本発明の誘電体セラミックを用いて誘電体層を形成することにより、容量温度特性に優れ、高温や高電界強度の環境下でも、良好な信頼性(寿命特性)を有する積層セラミックコンデンサを得ることができる。
なお、このような作用効果が得られるのは、RおよびMの合計濃度が、粒界からコア部に向かって勾配を有し、かつ、極小となる部分と、極大となる部分とを有することで、キャリアとなる導電電子や酸素空孔などの移動を抑制できることによる。
The dielectric ceramic of the present invention is composed of a sintered body having BaTiO 3 ceramic particles as main phase particles, and the BaTiO 3 ceramic particles include a shell portion and a core portion, and R (R is A rare earth element, at least one selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Y, and M (M is Mg, Mn, Ni, Co, Fe) , Cr, Cu, Al, Mo, W and V), and R and M are present in the shell portion of the BaTiO 3 ceramic particles, and the total concentration of R and M is Since it has a gradient from the grain boundary toward the core and has a minimum part and a maximum part, temperature characteristics, insulation properties, reliability (life characteristics), etc. Excellent invitation to It is possible to obtain a body ceramic. Then, by forming a dielectric layer using the dielectric ceramic of the present invention, a multilayer ceramic capacitor having excellent capacitance temperature characteristics and good reliability (lifetime characteristics) even in an environment of high temperature and high electric field strength. Obtainable.
In addition, such an effect is obtained because the total concentration of R and M has a gradient from the grain boundary toward the core, and has a minimum portion and a maximum portion. Thus, the movement of conductive electrons or oxygen vacancies as carriers can be suppressed.

また、本発明の誘電体セラミックにおいて、上述の極小となる部分および極大となる部分は、1つである場合に限らず、少なくとも一方を2つ以上有していてもよく、その場合にも、温度特性や絶縁性、寿命特性などに優れた誘電体セラミックが得られ、この誘電体セラミックを誘電体層として用いることにより、容量温度特性に優れ、高温や高電界強度の環境下でも、良好な寿命特性を有する積層セラミックコンデンサを得ることができる。   Further, in the dielectric ceramic of the present invention, the minimum portion and the maximum portion described above are not limited to one, and may have at least one of two or more. Dielectric ceramics with excellent temperature characteristics, insulation properties, life characteristics, etc. can be obtained, and by using this dielectric ceramic as a dielectric layer, it has excellent capacity-temperature characteristics and is good even in high temperature and high electric field strength environments. A multilayer ceramic capacitor having life characteristics can be obtained.

また、RおよびMの合計濃度の極大値を、粒界におけるRおよびMの合計濃度の値よりも小さくなるようにした場合、良好なバイアス特性を得る(DC電圧を印加したときの静電容量の変化率を小さくする)ことが可能になり好ましい。   Further, when the maximum value of the total concentration of R and M is made smaller than the value of the total concentration of R and M at the grain boundary, good bias characteristics are obtained (capacitance when a DC voltage is applied). It is possible to reduce the rate of change of

また、本発明において、BaTiO3系セラミック粒子のBaの一部をCaおよび/またはSrで置換したり、Tiの一部をZrおよび/またはHfで置換したりすることにより、特性を制御して、所望の特性を備えた誘電体セラミックを得ることが可能になる。 In the present invention, the BaTiO 3 ceramic particles may be partially replaced with Ca and / or Sr, or Ti may be replaced with Zr and / or Hf to control the characteristics. Thus, it becomes possible to obtain a dielectric ceramic having desired characteristics.

本発明の積層セラミックコンデンサは、誘電体層が、本発明の誘電体セラミックから形成されているので、高温や高電界強度の環境のもとでも、良好な寿命特性を実現することができる。   In the multilayer ceramic capacitor of the present invention, since the dielectric layer is formed of the dielectric ceramic of the present invention, good life characteristics can be realized even under high temperature and high electric field strength environments.

本発明の実施例にかかる積層セラミックコンデンサの構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer ceramic capacitor concerning the Example of this invention. 本発明の実施例にかかるBaTiO3セラミック粒子の透過電子顕微鏡像(TEM像)を示す図である。It is a figure which shows the transmission electron microscope image (TEM image) of BaTiO3 type ceramic particle concerning the Example of this invention. 本発明の実施例にかかるBaTiO3系セラミック粒子(試料番号1の試料)中のR成分とM成分の合計濃度の分布状態を示す線図である。Is a diagram showing the distribution of the total concentration of R component and M component in the embodiment according to Example BaTiO 3 based ceramic particles (sintered sample 1) of the present invention. 本発明の実施例にかかるBaTiO3系セラミック粒子(試料番号1の試料)の構成を、シェル部におけるR成分とM成分の合計濃度の分布状態とともに示す図である。The configuration of the BaTiO 3 based ceramic particles to an embodiment of the present invention (sample of the sample No. 1), showing with the distribution of the total concentration of R component and M component in the shell portion.

以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Examples of the present invention will be described below to describe the features of the present invention in more detail.

(A)誘電体セラミック原料の作製
まず、出発原料として主成分原料であるBaTiO3粉末を準備した。
なお、主成分原料であるBaTiO3粉末は、その製造方法に特別の制約はなく、固相合成法、水熱合成法、加水分解法など、公知の種々の方法で作製されたものを使用することが可能である。さらに、BaTiO3を作製する際に用いる素材や、添加成分の化合物形態は、酸化物、炭酸物に限らず、塩化物、金属有機化合物など種々の形態のものを用いることができる。
(A) Production of Dielectric Ceramic Raw Material First, BaTiO 3 powder as a main component raw material was prepared as a starting raw material.
The BaTiO 3 powder, which is the main component raw material, is not particularly limited in its production method, and those produced by various known methods such as a solid phase synthesis method, a hydrothermal synthesis method, and a hydrolysis method are used. It is possible. Furthermore, the raw materials used when producing BaTiO 3 and the compound forms of the additive components are not limited to oxides and carbonates, and various forms such as chlorides and metal organic compounds can be used.

それから、このBaTiO3粉末に対し、表1に記載のM成分の酸化物粉末を添加し、純水を媒体として、ボールミルにより12時間混合した後、乾燥することにより混合粉末を得た。 Then, the M component oxide powders listed in Table 1 were added to the BaTiO 3 powder, mixed for 12 hours by a ball mill using pure water as a medium, and then dried to obtain a mixed powder.

この混合粉末を1000℃で仮焼することにより仮焼体(組成物)を得た。そして、この仮焼体(組成物)を1次粒子にまで解砕することにより、仮焼済みの原料粉末を得た。   The mixed powder was calcined at 1000 ° C. to obtain a calcined body (composition). And the calcined raw material powder was obtained by crushing this calcined body (composition) to primary particles.

次に、得られた仮焼済みの原料粉末に、表1に記載のR成分の酸化物粉末およびガラス成分であるSiO2を配合した。なお、表1におけるR成分、M成分、ガラス成分のmol部は、主成分(BaTiO3系粉末)100mol部に対する割合である。 Next, the obtained calcined raw material powder was blended with the R component oxide powder and the glass component SiO 2 shown in Table 1. In Table 1, the mol parts of the R component, M component, and glass component are ratios relative to 100 mol parts of the main component (BaTiO 3 -based powder).

それから、上述のようにSiO2を配合した原料粉末に対し、アンモニア水を0.2wt%添加し、水を媒体として、ボールミルにより24時間混合することにより、原料粉末粒子の表面改質処理を行った。 Then, 0.2 wt% of ammonia water is added to the raw material powder blended with SiO 2 as described above, and the raw powder particles are subjected to surface modification treatment by mixing with water as a medium by a ball mill for 24 hours. It was.

次に、24時間混合して表面改質処理を行った後のスラリーを蒸発乾燥し、400℃で熱処理して残留アンモニウムを除去することにより、表1の試料番号1〜19の誘電体配合原料粉末を得た。   Next, the slurry after the surface modification treatment by mixing for 24 hours is evaporated to dryness, and the residual ammonium is removed by heat treatment at 400 ° C. A powder was obtained.

なお、この誘電体配合原料粉末において、M成分、R成分、およびガラス成分(SiO2)は、通常、主成分原料であるBaTiO3粉末100mol部に対して、以下の範囲で配合することが望ましい。
M成分 :0.2〜4.0mol部
R成分 :0.1〜4.0mol部
ガラス成分:0.05〜3.0mol部
In this dielectric compounding raw material powder, it is desirable that the M component, R component, and glass component (SiO 2 ) are usually blended in the following range with respect to 100 mol parts of BaTiO 3 powder as the main component raw material. .
M component: 0.2-4.0 mol part R component: 0.1-4.0 mol part Glass component: 0.05-3.0 mol part

また、表1の試料番号20の誘電体配合原料粉末は、BaTiO3粉末に、R成分の酸化物粉末、M成分の酸化物粉末およびSiO2粉末を配合し、アンモニア水を添加することなく、純水を媒体として、ボールミルにて混合した後、乾燥することにより得た、比較例としての誘電体配合原料粉末である。なお、この試料番号20の誘電体配合原料粉末については、特に熱処理も行わなかった。 In addition, the dielectric compounding raw material powder of Sample No. 20 in Table 1 is compounded with the BaTiO 3 powder, the R component oxide powder, the M component oxide powder and the SiO 2 powder, without adding ammonia water, This is a dielectric compound raw material powder as a comparative example obtained by mixing with a ball mill using pure water as a medium and then drying. The dielectric compound raw material powder of Sample No. 20 was not particularly heat treated.

(B)積層セラミックコンデンサの作製
上記(A)で作製した、表1の試料番号1〜20の誘電体セラミック原料に、ポリビニルブチラール系バインダーおよび有機溶媒(この実施例1ではエタノール)を加えて、ボールミルにより所定の時間、湿式混合し、セラミックスラリーを作製した。
(B) Production of Multilayer Ceramic Capacitor A polyvinyl butyral binder and an organic solvent (ethanol in this Example 1) were added to the dielectric ceramic raw materials of sample numbers 1 to 20 in Table 1 produced in (A) above. Wet mixing was performed for a predetermined time with a ball mill to produce a ceramic slurry.

このセラミックスラリーをドクターブレード法によりシート成形し、矩形で、焼成後の誘電体セラミック層厚が1μmになるようなセラミックグリーンシートを作製した。   This ceramic slurry was formed into a sheet by a doctor blade method to produce a ceramic green sheet having a rectangular shape and a dielectric ceramic layer thickness of 1 μm after firing.

次に、上記セラミックグリーンシート上に、ニッケル粉末を導電成分とする導電ペーストをスクリーン印刷し、焼成後に内部電極となる導電ペースト層(内部電極パターン)を形成した。   Next, a conductive paste containing nickel powder as a conductive component was screen-printed on the ceramic green sheet to form a conductive paste layer (internal electrode pattern) that became an internal electrode after firing.

それから、内部電極パターンが形成されたセラミックグリーンシートを、内部電極パターンが交互に逆側に引き出されるような態様で所定枚数積層し、さらに、上下両面側に、導電ペーストパターンが形成されていないセラミックグリーンシートを外層として積層することにより、積層ブロックを作製した。   Then, a predetermined number of ceramic green sheets on which internal electrode patterns are formed are stacked in such a manner that the internal electrode patterns are alternately drawn to the opposite side, and further, a ceramic in which no conductive paste pattern is formed on both upper and lower sides A laminated block was produced by laminating green sheets as outer layers.

なお、この実施例では、内部電極パターンが形成されたセラミックグリーンシートを、有効誘電体層(コンデンサ形成層)の層数が100層となるように積層した。   In this example, the ceramic green sheets on which the internal electrode patterns were formed were laminated so that the number of effective dielectric layers (capacitor forming layers) was 100.

次ぎに、この積層ブロックを所定の寸法となるようにカットすることにより得た未焼成の積層体を、大気中で300℃に加熱してバインダーを燃焼させた後、酸素分圧10-10MPaのH2−N2−H2Oガスからなる還元性雰囲気中で、1200℃、2時間の条件で焼成し、焼成済みの積層体(セラミック積層体)を得た。 Next, an unfired laminated body obtained by cutting the laminated block to a predetermined size is heated to 300 ° C. in the air to burn the binder, and then the oxygen partial pressure is 10 −10 MPa. Was fired at 1200 ° C. for 2 hours in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas to obtain a fired laminate (ceramic laminate).

それから、焼成済みのセラミック積層体の、内部電極が引き出された両端面に、導電成分である銅粉末と、B23−Li2O−SiO2−BaO系のガラスフリットとを含有する導電ペーストを塗布した後、800℃で焼き付けることにより、内部電極と電気的に接続された外部電極を形成した。 Then, conductive materials containing copper powder as a conductive component and glass frit of B 2 O 3 —Li 2 O—SiO 2 —BaO are formed on both end faces of the fired ceramic laminate from which internal electrodes are drawn. After applying the paste, an external electrode electrically connected to the internal electrode was formed by baking at 800 ° C.

これにより、図1に模式的に示すように、積層セラミック素子(焼成済みのセラミック積層体)10の内部に配設された内部電極12が、誘電体層(誘電体セラミック層)11を介して積層され、かつ、積層セラミック素子10の両端面には、交互に逆側の端面に露出した内部電極12と導通するように一対の外部電極13a,13bが配設された構造を有する積層セラミックコンデンサを得た。   Thereby, as schematically shown in FIG. 1, the internal electrode 12 disposed inside the multilayer ceramic element (fired ceramic multilayer body) 10 passes through the dielectric layer (dielectric ceramic layer) 11. A laminated ceramic capacitor having a structure in which a pair of external electrodes 13a and 13b are arranged on both end faces of the laminated ceramic element 10 so as to be electrically connected to the internal electrodes 12 exposed on the opposite end faces alternately. Got.

なお、得られた積層セラミックコンデンサの外形寸法は、長さ:1.6mm、幅:0.8mm、厚さ:0.8mmであり、内部電極12間に介在する誘電体層(誘電体セラミック層)11の厚みは1.0μmであった。   The outer dimensions of the obtained multilayer ceramic capacitor are length: 1.6 mm, width: 0.8 mm, thickness: 0.8 mm, and a dielectric layer (dielectric ceramic layer) interposed between the internal electrodes 12. ) 11 had a thickness of 1.0 μm.

(C)特性の測定、誘電体セラミック層の構造分析、および評価
(1)特性の測定
上述のようにして作製した試料番号1〜20の各試料(積層セラミックコンデンサ)について、室温での比誘電率、温度変化に対する静電容量の変化率(容量変化率)、寿命特性(高温負荷寿命)、およびバイアス特性を調べた。
(C) Measurement of characteristics, structural analysis of dielectric ceramic layer, and evaluation
(1) Measurement of characteristics For each of the samples Nos. 1 to 20 (multilayer ceramic capacitors) manufactured as described above, the relative permittivity at room temperature, the rate of change in capacitance with respect to temperature change (capacitance change rate), Life characteristics (high temperature load life) and bias characteristics were examined.

比誘電率は、温度25℃,1kHz,0.5Vrmsの条件下で静電容量を測定し、得られた静電容量の値から計算した。各試料について調べた比誘電率の値を表2に示す。   The dielectric constant was calculated from the capacitance value obtained by measuring the capacitance under conditions of a temperature of 25 ° C., 1 kHz, and 0.5 Vrms. Table 2 shows the value of the relative dielectric constant examined for each sample.

また、温度変化に対する静電容量の変化率(容量変化率)は、25℃での静電容量を基準とした−55℃から125℃の温度範囲における変化率の最大値を示した。各試料について測定した静電容量の変化率を表2に併せて示す。
なお、−55℃から125℃の範囲での変化率が±15%以内であれば、EIA規格のX7R特性を満足することになる。
Moreover, the change rate of capacitance with respect to temperature change (capacitance change rate) showed the maximum value of the change rate in the temperature range of −55 ° C. to 125 ° C. based on the capacitance at 25 ° C. Table 2 also shows the rate of change in capacitance measured for each sample.
If the rate of change in the range of −55 ° C. to 125 ° C. is within ± 15%, the X7R characteristic of the EIA standard is satisfied.

また,寿命特性(高温負荷寿命)は、それぞれ100個の試料について、温度150℃で20Vの電圧(20kV/mm)を印加する高温負荷寿命試験を行い、2000時間経過時点および3000時間経過時点における絶縁抵抗値を調べ、絶縁抵抗値が200kΩ以下になった試料を不良と判定した。なお、表2には、試験に供した100個の試料のうち不良の発生した試料の個数の割合を示している。   Moreover, the life characteristics (high temperature load life) were obtained by conducting a high temperature load life test in which a voltage of 20 V (20 kV / mm) was applied at a temperature of 150 ° C. with respect to 100 samples, respectively, after 2000 hours and 3000 hours. The insulation resistance value was examined, and a sample having an insulation resistance value of 200 kΩ or less was determined to be defective. Table 2 shows the ratio of the number of defective samples among the 100 samples used for the test.

また、バイアス特性は、上述のようにして作製した試料番号1〜20の各試料(積層セラミックコンデンサ)について、DCバイアスを印加しない場合における静電容量と、DCバイアス(DC4V)を印加した場合における静電容量を測定し、DCバイアスの印加により静電容量が低下した割合を調べた。そして、静電容量が低下した割合をバイアス特性として表2に示した。   The bias characteristics of the samples Nos. 1 to 20 (multilayer ceramic capacitors) manufactured as described above are those obtained when a DC bias is not applied and when a DC bias (DC 4 V) is applied. The capacitance was measured, and the rate at which the capacitance decreased due to the application of a DC bias was examined. Table 2 shows the ratio of decrease in capacitance as bias characteristics.

(2)誘電体セラミック層の構造分析
上述のようにして作製した試料番号1〜20の各試料(積層セラミックコンデンサ)を構成する誘電体セラミック層について、エネルギー分散型X線分光法(TEM−EDX)により、2nmのプローブを用いてR成分およびM成分を定量し、それぞれの濃度分布を観察した。
(2) Structural analysis of dielectric ceramic layer For the dielectric ceramic layers constituting each sample (multilayer ceramic capacitor) of sample numbers 1 to 20 produced as described above, energy dispersive X-ray spectroscopy (TEM-EDX) ), The R component and the M component were quantified using a 2 nm probe, and the respective concentration distributions were observed.

なお、R成分およびM成分の定量(濃度の測定)は、図2に示すようにセラミック粒子の粒界から粒子中心までを10等分し、各区分領域の両端側のポイントで行った。したがって、測定ポイントは11ポイントとなる。   The R component and M component were quantitatively determined (concentration measurement) by dividing the ceramic particle from the grain boundary to the particle center into 10 equal parts as shown in FIG. Therefore, the measurement points are 11 points.

図3に、試料番号1の試料について上述の方法で測定した、濃度分布(各測定ポイントにおけるR成分とM成分の合計濃度の関係)を示す。   FIG. 3 shows the concentration distribution (relationship between the total concentration of the R component and M component at each measurement point) measured for the sample of sample number 1 by the method described above.

(3)評価
表2に示すように、試料番号1〜19の試料はいずれも本発明の実施例にかかる試料であり、比誘電率が3500以上と高く、容量温度特性がX7R特性を満足するものであることが確認された。
なお、表1の試料番号20の比較例の試料も比誘電率および容量温度特性については、特に問題となるようなものではないことが確認された。
(3) Evaluation As shown in Table 2, all of the samples Nos. 1 to 19 are samples according to the examples of the present invention, the dielectric constant is as high as 3500 or more, and the capacity-temperature characteristic satisfies the X7R characteristic. It was confirmed to be a thing.
It was confirmed that the sample of Comparative Example No. 20 in Table 1 was not particularly problematic with respect to the relative dielectric constant and the capacity-temperature characteristic.

また、試料番号1〜19の試料はいずれも、高温負荷寿命試験の2000時間経過時点および3000時間経過時点において絶縁抵抗値が200kΩ以下になったものはなく(不良数がいずれも0個)、寿命特性は高水準であることが確認された。   In addition, none of the samples Nos. 1 to 19 had an insulation resistance value of 200 kΩ or less after 2000 hours and 3000 hours of the high temperature load life test (the number of defects was 0). It was confirmed that the life characteristics are at a high level.

また、試料番号1〜19の試料はいずれも、エネルギー分散型X線分光法(TEM−EDX)によるR成分およびM成分の定量結果より、図3,図4,表3に示すように、誘電体セラミック層に、R成分とM成分の合計濃度の極小(極小値C2)となる部分と、極大(極大値C3)となる部分が存在することが確認された。なお、表3におけるC1,C2およびC3のmol部は、主成分(BaTiO3系粉末)100mol部に対する割合である。 Moreover, as for the sample of sample numbers 1-19, as shown in FIG. 3, FIG. 4, Table 3 from the fixed_quantity | quantitative_assay result of R component and M component by energy dispersive X-ray spectroscopy (TEM-EDX), as shown in FIG. It was confirmed that the body ceramic layer has a portion where the total concentration of the R component and the M component is minimized (minimum value C2) and a portion where the concentration is maximum (maximum value C3). In Table 3, the mol parts of C1, C2, and C3 are ratios relative to 100 mol parts of the main component (BaTiO 3 -based powder).

なお、図4は、本発明の実施例にかかる誘電体セラミック粒子(試料番号1の試料)の構成と、シェル部におけるR成分とM成分の合計濃度の分布状態を示す図である。そして、図4に示すように、誘電体セラミック粒子20は、シェル部22においてR成分とM成分が検出され、粒界25からコア部21に向かって、R成分とM成分の合計濃度に勾配があり、かつ、シェル部22に、R成分とM成分の合計濃度の極小値C2と極大値C3が存在するとともに、極大値C3が、粒界25におけるR成分とM成分の合計濃度の値C1より小さいという、本発明の特徴的な構成を備えている。   FIG. 4 is a diagram showing the configuration of the dielectric ceramic particles (sample No. 1) according to the example of the present invention and the distribution state of the total concentration of the R component and the M component in the shell portion. As shown in FIG. 4, the dielectric ceramic particle 20 has an R component and an M component detected in the shell portion 22, and a gradient of the total concentration of the R component and the M component from the grain boundary 25 toward the core portion 21. In addition, the shell portion 22 has the minimum value C2 and the maximum value C3 of the total concentration of the R component and the M component, and the maximum value C3 is the value of the total concentration of the R component and the M component at the grain boundary 25. It has a characteristic configuration of the present invention that is smaller than C1.

一方、試料番号20の試料の誘電体層(誘電体セラミック層)は、BaTiO3粉末に、R成分の酸化物粉末、M成分の酸化物粉末およびSiO2粉末を配合し、混合、乾燥することにより製造された誘電体配合原料粉末を用いてなるセラミックグリーンシートを積層、焼成することにより形成されたものであって、コアシェル構造粒子からなる誘電体材料であるが、表3に示すように、R成分とM成分の合計濃度の極小となる部分および極大となる部分を備えていない材料であることから、高温負荷寿命試験において、2000時間以上の信頼性(寿命)レベルは満足できたが、3000時間経過時点では、100個の試料中14個の試料に不良が発生し、寿命特性には改善の余地があることが確認された。 On the other hand, the dielectric layer (dielectric ceramic layer) of the sample of sample number 20 is a mixture of BaTiO 3 powder, R component oxide powder, M component oxide powder and SiO 2 powder, mixed and dried. It is formed by laminating and firing a ceramic green sheet using a dielectric compound raw material powder produced by the above, and is a dielectric material composed of core-shell structured particles, but as shown in Table 3, Since it is a material that does not have the minimum and maximum portions of the total concentration of the R component and the M component, the reliability (life) level of 2000 hours or more was satisfied in the high temperature load life test, When 3000 hours passed, defects occurred in 14 samples out of 100 samples, and it was confirmed that there was room for improvement in life characteristics.

また、試料番号1〜8,10,12〜19については、R成分とM成分の合計濃度が極大となる部分の値である極大値C3が、粒界におけるR成分とM成分の合計濃度の値C1よりも小さくなっており、良好なバイアス特性が得られる(DC4Vを印加したときの静電容量の変化率が小さい)ことが確認された。   For sample numbers 1 to 8, 10, 12 to 19, the maximum value C3, which is the value of the portion where the total concentration of the R component and the M component is maximum, is the total concentration of the R component and the M component at the grain boundary. It was smaller than the value C1, and it was confirmed that good bias characteristics can be obtained (the rate of change in capacitance when DC4V is applied is small).

また、この実施例の試料番号1〜19の試料では、表3に示すようにR成分とM成分の合計濃度が極小となる部分の値である極小値C2と、極大となる部分の値である極大値C3の比率C2/C3の値が0.24〜0.74の範囲にあるが、極小値C2と、極大値C3の比率C2/C3は、通常、0.60以下の範囲にあることが望ましい。   Further, in the samples of sample numbers 1 to 19 of this example, as shown in Table 3, a minimum value C2 which is a value where the total concentration of the R component and the M component becomes a minimum, and a value where the maximum value is obtained. The ratio C2 / C3 of a certain maximum value C3 is in the range of 0.24 to 0.74, but the ratio C2 / C3 of the minimum value C2 and the maximum value C3 is usually in the range of 0.60 or less. It is desirable.

また、この実施例では、シェル部に、R成分とM成分の合計濃度が極小となる部分および極大となる部分がそれぞれ1つずつである場合を例にとって説明したが、極小となる部分と極大となる部分の少なくとも一方を2つ以上存在するようにしてもよい。   Further, in this embodiment, the case where the shell portion has one portion where the total concentration of the R component and the M component is minimized and one portion where the concentration is maximized is described as an example. There may be two or more of at least one of the parts.

また、本発明においては、BaTiO3系セラミック粒子を構成するBaの一部をCaおよび/またはSrで置換したり、Tiの一部をZrおよび/またはHfで置換したりすることも可能であり、その場合には、特性を制御して、所望の特性を備えた誘電体セラミックを得ることができる。 In the present invention, part of Ba constituting the BaTiO 3 ceramic particles can be replaced with Ca and / or Sr, or part of Ti can be replaced with Zr and / or Hf. In that case, it is possible to obtain a dielectric ceramic having desired characteristics by controlling the characteristics.

また、この実施例では、本発明の誘電体セラミックを、積層セラミックコンデンサの誘電体層として用いる場合を例にとって説明したが、本発明にかかる誘電体セラミックは、積層セラミックコンデンサに限らず、LC複合部品などにも適用することが可能である。   Further, in this embodiment, the case where the dielectric ceramic of the present invention is used as a dielectric layer of a multilayer ceramic capacitor has been described as an example. However, the dielectric ceramic according to the present invention is not limited to a multilayer ceramic capacitor, and is an LC composite. It can also be applied to parts.

本発明はさらにその他の点においても上記実施例に限定されるものではなく、本発明の誘電体セラミックを製造する場合の各原料の種類、製造工程の具体的な条件、R成分、M成分などの具体的な配合割合などに関し、発明の範囲内において種々の応用、変形を加えることが可能である。   The present invention is not limited to the above-described embodiments in other points. Kinds of raw materials, specific conditions of the manufacturing process, R component, M component, etc. when the dielectric ceramic of the present invention is manufactured. Various applications and modifications can be made within the scope of the invention with respect to the specific blending ratio of the above.

10 積層セラミック素子
11 セラミック層
12 内部電極層
13a,13b 外部電極
20 セラミック粒子
21 コア部
22 シェル部
25 粒界
C1 粒界におけるR成分とM成分の合計濃度
C2 R成分とM成分の合計濃度の極小となる部分(極小値)
C3 R成分とM成分の合計濃度の極大となる部分(極大値)
DESCRIPTION OF SYMBOLS 10 Multilayer ceramic element 11 Ceramic layer 12 Internal electrode layer 13a, 13b External electrode 20 Ceramic particle 21 Core part 22 Shell part 25 Grain boundary C1 Total density | concentration of R component and M component in a grain boundary C2 Sum total density | concentration of R component and M component Minimal part (minimum value)
C3 Maximum portion of the total concentration of R and M components (maximum value)

Claims (5)

BaTiO3系セラミック粒子を主相粒子とする焼結体からなり、
前記BaTiO3系セラミック粒子は、表層部であるシェル部と、シェル部の内側のコア部とを備え、
副成分として、R(Rは、希土類元素であって、Nd,Sm,Eu,Gd,Tb,Dy,Ho,ErおよびYからなる群より選ばれる少なくとも1種)、および、M(Mは、Mg,Mn,Ni,Co,Fe,Cr,Cu,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)を含み、
前記BaTiO3系セラミック粒子の前記シェル部が、前記Rおよび前記Mを含むとともに、前記Rおよび前記Mの合計濃度は、粒界から前記コア部に向かって勾配を有し、かつ、極小となる部分と、極大となる部分とを有していること
を特徴とする誘電体セラミック。
It consists of a sintered body with BaTiO 3 ceramic particles as main phase particles,
The BaTiO 3 based ceramic particles include a shell portion that is a surface layer portion and a core portion inside the shell portion,
As subcomponents, R (R is a rare earth element and is at least one selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Y), and M (M is Mg, Mn, Ni, Co, Fe, Cr, Cu, Al, Mo, W, and V).
The shell portion of the BaTiO 3 based ceramic particles includes the R and the M, and the total concentration of the R and the M has a gradient from the grain boundary toward the core portion, and is minimal. A dielectric ceramic characterized by having a portion and a maximum portion.
前記Rおよび前記Mの合計濃度が極小となる部分および極大となる部分の、少なくとも一方を2つ以上有していることを特徴とする請求項1記載の誘電体セラミック。   2. The dielectric ceramic according to claim 1, comprising at least one of a portion where the total concentration of R and M becomes a minimum and a portion where the total concentration becomes a maximum. 前記Rおよび前記Mの合計濃度が極大となる部分の値である極大値が、粒界における前記Rおよび前記Mの合計濃度の値よりも小さいことを特徴とする請求項1または2記載の誘電体セラミック。   3. The dielectric according to claim 1, wherein a maximum value, which is a value at a portion where the total concentration of R and M is maximum, is smaller than a value of the total concentration of R and M at a grain boundary. Body ceramic. 前記BaTiO3系セラミック粒子において、Baの一部がCaおよび/またはSrで置換されていること、および/または、Tiの一部がZrおよび/またはHfで置換されていること
を特徴とする請求項1記載の誘電体セラミック。
In the BaTiO 3 ceramic particles, a part of Ba is substituted with Ca and / or Sr, and / or a part of Ti is substituted with Zr and / or Hf. Item 2. The dielectric ceramic according to Item 1.
複数の誘電体層と複数の内部電極とが一体的に積層された構造を有する積層セラミックコンデンサであって、
前記誘電体層が、請求項1〜4のいずれかに記載の誘電体セラミックから形成されていること
を特徴とする積層セラミックコンデンサ。
A multilayer ceramic capacitor having a structure in which a plurality of dielectric layers and a plurality of internal electrodes are integrally laminated,
A multilayer ceramic capacitor, wherein the dielectric layer is formed of the dielectric ceramic according to any one of claims 1 to 4.
JP2010134067A 2010-06-11 2010-06-11 Dielectric ceramic and laminated ceramic capacitor using the same Pending JP2011256091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134067A JP2011256091A (en) 2010-06-11 2010-06-11 Dielectric ceramic and laminated ceramic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134067A JP2011256091A (en) 2010-06-11 2010-06-11 Dielectric ceramic and laminated ceramic capacitor using the same

Publications (1)

Publication Number Publication Date
JP2011256091A true JP2011256091A (en) 2011-12-22

Family

ID=45472703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134067A Pending JP2011256091A (en) 2010-06-11 2010-06-11 Dielectric ceramic and laminated ceramic capacitor using the same

Country Status (1)

Country Link
JP (1) JP2011256091A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151380A (en) * 2012-01-24 2013-08-08 Tdk Corp Dielectric ceramic composition and ceramic electronic component
KR20160079630A (en) 2014-12-26 2016-07-06 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
KR20160092906A (en) 2015-01-28 2016-08-05 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
KR20170013826A (en) 2015-07-28 2017-02-07 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
KR20170013825A (en) 2015-07-28 2017-02-07 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
KR20170064490A (en) 2015-12-01 2017-06-09 다이요 유덴 가부시키가이샤 Dielectric material for multilayer ceramic capacitor, and multilayer ceramic capacitor
JP2017178684A (en) * 2016-03-30 2017-10-05 Tdk株式会社 Dielectric ceramic composition and multilayer ceramic capacitor
KR20170127647A (en) 2016-05-12 2017-11-22 삼성전기주식회사 Multilayered Capacitor and Manufacturing Method the Same
KR20180001463A (en) 2016-06-24 2018-01-04 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor, ceramic powder, manufacturing method of multilayer ceramic capacitor and manufacturing method of ceramic powder
US9919970B2 (en) 2015-12-01 2018-03-20 Taiyo Yuden Co., Ltd. Dielectric material for multilayer ceramic capacitor, and multilayer ceramic capacitor
US10074480B2 (en) 2016-03-30 2018-09-11 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
KR20190121143A (en) 2018-08-09 2019-10-25 삼성전기주식회사 Multi-layered ceramic capacitor
KR20190121134A (en) 2018-08-03 2019-10-25 삼성전기주식회사 Multi-layered ceramic capacitor
KR20190121142A (en) 2018-08-09 2019-10-25 삼성전기주식회사 Multi-layered ceramic capacitor
US10614957B2 (en) 2018-01-31 2020-04-07 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
US10804033B2 (en) 2018-01-31 2020-10-13 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
US10872725B2 (en) 2017-12-19 2020-12-22 Samsung Electronics Co., Ltd. Ceramic dielectric, method of manufacturing the same, ceramic electronic component, and electronic device
CN112151268A (en) * 2019-06-28 2020-12-29 株式会社村田制作所 Laminated electronic component
US11101073B2 (en) 2019-02-13 2021-08-24 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
US20220135485A1 (en) * 2018-12-12 2022-05-05 Taiyo Yuden Co., Ltd. Ceramic raw material powder, multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
US11967464B2 (en) 2017-02-16 2024-04-23 Taiyo Yuden Co., Ltd. Method for selecting multilayer ceramic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277393A (en) * 2004-02-25 2005-10-06 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2008222521A (en) * 2007-03-14 2008-09-25 Tdk Corp Dielectric porcelain composition and electronic component
JP2008222520A (en) * 2007-03-14 2008-09-25 Tdk Corp Dielectric porcelain composition and electronic component
JP2009161417A (en) * 2008-01-10 2009-07-23 Tdk Corp Dielectric porcelain composition and electronic component
WO2009119444A1 (en) * 2008-03-24 2009-10-01 京セラ株式会社 Laminated ceramic capacitor
WO2011125543A1 (en) * 2010-04-02 2011-10-13 株式会社村田製作所 Dielectric ceramic and multilayered ceramic capacitor including same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277393A (en) * 2004-02-25 2005-10-06 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2008222521A (en) * 2007-03-14 2008-09-25 Tdk Corp Dielectric porcelain composition and electronic component
JP2008222520A (en) * 2007-03-14 2008-09-25 Tdk Corp Dielectric porcelain composition and electronic component
JP2009161417A (en) * 2008-01-10 2009-07-23 Tdk Corp Dielectric porcelain composition and electronic component
WO2009119444A1 (en) * 2008-03-24 2009-10-01 京セラ株式会社 Laminated ceramic capacitor
WO2011125543A1 (en) * 2010-04-02 2011-10-13 株式会社村田製作所 Dielectric ceramic and multilayered ceramic capacitor including same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151380A (en) * 2012-01-24 2013-08-08 Tdk Corp Dielectric ceramic composition and ceramic electronic component
US9721727B2 (en) 2014-12-26 2017-08-01 Taiyo Yuden Co., Ltd Multilayer ceramic capacitor
KR20160079630A (en) 2014-12-26 2016-07-06 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
KR20160092906A (en) 2015-01-28 2016-08-05 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
US9666371B2 (en) 2015-01-28 2017-05-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
KR20170013826A (en) 2015-07-28 2017-02-07 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
KR20170013825A (en) 2015-07-28 2017-02-07 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
CN106409504A (en) * 2015-07-28 2017-02-15 太阳诱电株式会社 Multilayer ceramic capacitor
CN106409505A (en) * 2015-07-28 2017-02-15 太阳诱电株式会社 Multilayer ceramic capacitor
US10096425B2 (en) 2015-07-28 2018-10-09 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor having dielectric layers containing ceramic grains constituted by primarily BaTiO3 and additionally Mo, Mn, R, and V/W
JP2017108128A (en) * 2015-12-01 2017-06-15 太陽誘電株式会社 Dielectric material for multilayer ceramic capacitor, and multilayer ceramic capacitor
US9919970B2 (en) 2015-12-01 2018-03-20 Taiyo Yuden Co., Ltd. Dielectric material for multilayer ceramic capacitor, and multilayer ceramic capacitor
KR20170064490A (en) 2015-12-01 2017-06-09 다이요 유덴 가부시키가이샤 Dielectric material for multilayer ceramic capacitor, and multilayer ceramic capacitor
CN107266070B (en) * 2016-03-30 2021-01-26 Tdk株式会社 Dielectric ceramic composition and laminated ceramic capacitor
CN107266070A (en) * 2016-03-30 2017-10-20 Tdk株式会社 Dielectric ceramic composition and laminated ceramic capacitor
JP2017178684A (en) * 2016-03-30 2017-10-05 Tdk株式会社 Dielectric ceramic composition and multilayer ceramic capacitor
US9966190B2 (en) 2016-03-30 2018-05-08 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
US10074480B2 (en) 2016-03-30 2018-09-11 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
KR20170127647A (en) 2016-05-12 2017-11-22 삼성전기주식회사 Multilayered Capacitor and Manufacturing Method the Same
KR20180001463A (en) 2016-06-24 2018-01-04 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor, ceramic powder, manufacturing method of multilayer ceramic capacitor and manufacturing method of ceramic powder
US11756736B2 (en) 2016-06-24 2023-09-12 Taiyo Yuden Co., Ltd. Manufacturing method of ceramic powder
US11177073B2 (en) 2016-06-24 2021-11-16 Taiyo Yuden Co., Ltd. Manufacturing method of ceramic powder
US11967464B2 (en) 2017-02-16 2024-04-23 Taiyo Yuden Co., Ltd. Method for selecting multilayer ceramic capacitor
US10872725B2 (en) 2017-12-19 2020-12-22 Samsung Electronics Co., Ltd. Ceramic dielectric, method of manufacturing the same, ceramic electronic component, and electronic device
US10614957B2 (en) 2018-01-31 2020-04-07 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
US10804033B2 (en) 2018-01-31 2020-10-13 Tdk Corporation Dielectric ceramic composition and multilayer ceramic capacitor
US10541087B1 (en) 2018-08-03 2020-01-21 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers with different regions having different concentrations of dysprosium
US10535465B1 (en) 2018-08-03 2020-01-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers with different regions having different concentrations of dysprosium
KR20190121134A (en) 2018-08-03 2019-10-25 삼성전기주식회사 Multi-layered ceramic capacitor
KR20190121143A (en) 2018-08-09 2019-10-25 삼성전기주식회사 Multi-layered ceramic capacitor
US10872727B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability
US10872726B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability
US10748709B2 (en) 2018-08-09 2020-08-18 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor with dielectric layers including dielectric grains having a core-shell structure
US10515760B1 (en) 2018-08-09 2019-12-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor with dielectric layers including dielectric grains having a core-shell structure
KR20190121142A (en) 2018-08-09 2019-10-25 삼성전기주식회사 Multi-layered ceramic capacitor
US20220135485A1 (en) * 2018-12-12 2022-05-05 Taiyo Yuden Co., Ltd. Ceramic raw material powder, multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
US11834379B2 (en) * 2018-12-12 2023-12-05 Taiyo Yuden Co., Ltd. Ceramic raw material powder, multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
US11101073B2 (en) 2019-02-13 2021-08-24 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN112151268A (en) * 2019-06-28 2020-12-29 株式会社村田制作所 Laminated electronic component

Similar Documents

Publication Publication Date Title
JP2011256091A (en) Dielectric ceramic and laminated ceramic capacitor using the same
WO2011125543A1 (en) Dielectric ceramic and multilayered ceramic capacitor including same
JP4626892B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4525680B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP4720193B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP4883110B2 (en) Multilayer ceramic capacitor
JP4992918B2 (en) Dielectric ceramic and multilayer ceramic capacitors
WO2012111520A1 (en) Laminated ceramic capacitor, and process for manufacture of laminated ceramic capacitor
JP5234035B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4100173B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5409443B2 (en) Multilayer ceramic capacitor
JP2010024086A (en) Dielectric ceramic and laminated ceramic capacitor
JP5018839B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP2011079717A (en) Dielectric ceramic and laminated ceramic capacitor
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP5454294B2 (en) Manufacturing method of multilayer ceramic capacitor
WO2014010273A1 (en) Laminate ceramic capacitor and method for producing same
JPWO2006025205A1 (en) Dielectric ceramic composition, manufacturing method thereof, and multilayer ceramic capacitor
JP5939300B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2012035935A1 (en) Dielectric ceramic, multilayer ceramic capacitor, method for producing the dielectric ceramic, and method for manufacturing the multilayer ceramic capacitor
JP2014112730A (en) Laminated ceramic capacitor
JP2018104210A (en) Dielectric ceramic composition and laminate capacitor
JP5159682B2 (en) Multilayer ceramic capacitor
JP5500368B2 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP2011026148A (en) Dielectric ceramic and laminated ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701