TW201007401A - Substrate expansion and contraction conditions display device, method for displaying substrate expansion and contraction conditions, and information recording medium - Google Patents

Substrate expansion and contraction conditions display device, method for displaying substrate expansion and contraction conditions, and information recording medium Download PDF

Info

Publication number
TW201007401A
TW201007401A TW098113646A TW98113646A TW201007401A TW 201007401 A TW201007401 A TW 201007401A TW 098113646 A TW098113646 A TW 098113646A TW 98113646 A TW98113646 A TW 98113646A TW 201007401 A TW201007401 A TW 201007401A
Authority
TW
Taiwan
Prior art keywords
substrate
data
deformation
computer
target
Prior art date
Application number
TW098113646A
Other languages
Chinese (zh)
Inventor
Taku Asuka
Takeshi Tokairin
Original Assignee
Seiko Precision Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Kk filed Critical Seiko Precision Kk
Publication of TW201007401A publication Critical patent/TW201007401A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0002Apparatus or processes for manufacturing printed circuits for manufacturing artworks for printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B47/00Constructional features of components specially designed for boring or drilling machines; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2471Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of workpieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Abstract

To provide a substrate deformation recognition method, a substrate deformation recognition device, and a substrate deformation recognition program, can more readily grasp the deformation mode of the substrate as a whole. A deformation characteristic of the substrate is recognized through: the first process (steps S11-S13) for moving successively the substrate to each target position relative to a plurality of target positions set beforehand on the substrate, and detecting the substrate position after movement relative to each target position; the second process (steps S14-S15) for storing in a storage device, position data, wherein the target position is correlated with the substrate position after movement relative to each target position; and the third process for inputting the position data stored in the storage device into a computer, allowing the computer to generate graphic data, based on the position data and to display graphically the graphic data visibly on a screen of a display, and recognizing substrate deformation, based on the graphic display on the screen.

Description

201007401 六、發明說明 【發明所屬之技術領域】 本發明係關於用以更 板之變形態樣之基板變形 基板變形辨識程式。 【先前技術】 φ 例如,爲了在印刷配 配線板本身等,具有在印 座標)鑽孔之鑽孔裝置。 刷配線板之孔的位置,事 所裝備之可視光攝影機或 且藉由處理其畫像,可以 鑽頭等之鑽孔加工具,在 孔,在應鑽孔之位置,即 ❹ 孔。 但是,可視光攝影機 其攝影範圍之中心附近所 之畫像則有畫像變形之缺 是,在上述鑽孔裝置中, 中心附近攝影上述標記而 攝影而進行畫像處理之時 可以更高精度算出標記位 影之時,比起在中心附近 容易掌握例如印刷配線板等之基 辨識方法及基板變形辨識裝置及 線板安裝電子零件,或定位印刷 刷配線板之特定目標位置(目標 如此之鑽孔裝置中,在應鑽孔印 先印刷標記,使用鑽孔裝置本身 X線攝影機等,攝影其標記,並 算出其標記之中心。因此,使用 根據其畫像處理所算出之位置鑽 是上述標記之中心,能夠正確鑽 或X線攝影機之特性上,比起在 攝影之畫像,在周邊附近所攝影 點。而且,其變形並不均勻。即 當比較因如此之變形所引起,在 進行畫像處理之時,和在周邊部 ,則以在中心附近攝影標記之時 置。相反的,於在周邊部附近攝 攝影之時,算出精度降低,實際 -5- 201007401 之位置和所算出之位置的偏移變大。因此,於欲以高精度 在標記之中心鑽孔之時,儘可能在靠近攝影機之中心位置 攝影標記爲佳。 接著,針對使用具備基板載置台、基板把持部及基板 移動用致動部之自動鑽孔裝置,在印刷配線板等之基板進 行鑽孔之時的看法。此種之自動鑽孔裝置於將基板投入至 基板載置台之方向設爲?,將與此正交之方向設爲Y,將 與XY平面垂直之方向設爲Z之時,一面藉由基板把持部 @ 把持基板,一面藉由基板移動用致動器部,在XY平面上 移動,依此可以在基板之任意位置鑽孔。於鑽孔之時,例 如將基板定位於基板載置台之特定位置,並將例如基板之 左上端部設爲原點,根據基板之設計値(數値資料)控制 以後之基板的移動。 例如,於使基板從基板原點位置移動至標記之中心與 攝影機中心一致之位置之時,若如同設計値製作基板時, 於完成移動之時,標記之中心應與攝影機之中心一致。但 @ 是,當由於外氣溫度等之影響而使基板伸縮,並且標記之 位置從設計値偏離之時,標記之中心則無法與攝影機之中 心一致。如此一來,於數値控制基板之移動之時,因基板 之伸縮等,而使得標記自攝影機之中心偏離很遠,有鑽孔 精度降低之問題。 爲了避免如此之問題,執行鑽孔作業之技術者通常嘗 試相抵(取消)因如此基板之伸縮所引起之位置偏移之量 (座標偏移量)。具體而言,估計因基板之伸縮所產生之 -6- 201007401 標記的位置偏移,於基板之移動前,進行在設計値掺入其 位置偏移量的修正。此時之修正値雖然以對每一片基板測 量位置偏移量根據其測量値來決定爲佳,但實際上,在複 雜性或時間性上,要對每一片基板設定修正値,係極爲困 難。因此,通常測量標記之位置偏移傾向,根據其位置偏 移之平均値等,決定針對各基板之修正値。 如此一來,根據標記之位置偏移傾向來決定修正値之 • 時,正確把握標記之位置偏移傾向則爲重要。例如,於標 記之位置偏移傾向經過1天安定於一定範圍內之時,和位 置偏移傾向在某特定時間變化之時,應採用之修正値也隨 之改變。具體而言,於位置偏移傾向安定於一定範圍內之 時,雖然僅以設定一種類之修正値則足夠,但是於位置偏 移傾向變化之時,必須配合其變化之傾向,設定修正値和 適用其修正値之時段的雙方。並且,如此之情報,對於改 善生產基板之環境也爲重要。 # 〔專利文獻1〕日本特開平9-1 23 〇4〇號公報 【發明內容】 (發明所欲解決之課題) 於製造基板之時,製造現場之溫度的安定性對其生產 性造成極大影響。可想像例如於位置偏移傾向經過1天安 定於一定之範圍內之時,即使加工基板之現場氣溫安定在 一定溫度之時,也在生產基板階段之任一階段被施加使基 板伸縮的熱。再者,可想像即使在特定時間位置偏移傾向 201007401 變化時,例如加工基板之現場之氣溫的管理也不充分,溫 度不安定(產生變化)。 即是,藉由重新認識現場之溫度管理,來提升基板之 生產性。具體而言,因若因應基板之位置偏移量調整現場 溫度時,可以抑制基板之伸縮,故能夠相抵(取消)其位 置偏移量。但是,在上述專利文獻1所記載之方法中,於 對每基板測量標記之位置時,僅可以測量針對一個標記的 位置偏移量,再者於測量標記之位置偏移傾向之時,則必 須對每基板另外繪圖位置偏移量,來求出位置偏移之傾向 。因此,並非容易檢測出基板全體,持有如何之傾向是否 位置偏移,且並非容易檢測出基板全體持有如何之傾向是 否變形。 本發明係鑑於上述情形而所硏究出,其目的主要在於 提供可以更容易掌握作爲基板全體之變形態樣的基板變形 辨識方法及基板變形辨識裝置及基板變形辨識程式。 (用以解決課題之手段) 以下,針對用以解決上述課題之手段以及其作用效果 予以記載。 在本發明之第1觀點所涉及之基板變形辨識方法中, 其特徵爲:具備針對事先設定在基板上之多數目標位置, 逐次使上述基板移動至各目標位置,在每目標位置檢測出 移動後之基板的位置的第1工程;針對上述各目標位置, 使該目標位置和上述移動後之基板之位置賦予關聯性的位 -8- 201007401 置資料記憶於記憶裝置的第2工程;和根據被記憶於上述 記億裝置之位置資料,辨識上述基板之變形的第3工程。 上述第3工程即使將被記憶於上述記憶裝置之位置資 料之至少一部分輸入至電腦,使該電腦作成根據其位置資 料之圖形資料,並且使其圖形資料能夠辨識地圖形顯示於 顯示裝置之畫面,並根據該畫面上之圖形顯示,辨識上述 基板之變形亦可。 ❿ 上述第3工程即使令被設定在上述基板上之所有目標 位置所涉及之位置資料同時顯示於上述顯示裝置,根據該 些被顯示之位置資料,辨識上述基板之變形亦可。 爲針對多數基板辨識變形之方法,在上述第3工程中 ,即使將藉由上述電腦針對特定數量的上述基板所涉及之 位置資料予以統計處理之結果,顯示於上述顯示裝置亦可 〇 爲針對多數基板辨識變形之方法,在上述第3工程中 Φ ,即使將藉由上述電腦針對特定數量的上述基板所涉及之 位置資料在事先設定之每一個至多數時段予以統計處理之 結果,顯示於上述顯示裝置亦可。 爲針對多數基板辨識變形之方法,上述第3工程即使 在上述顯示裝置順序顯示各基板之位置資料,依序辨識每 基板之變形亦可。 即使作爲上述多數目標位置,係在上述基板之所有角 部的附近設定至少一個目標位置亦可。 即使在上述第1工程中,於移動後攝影基板,根據其 201007401 攝影中心,檢測出上述移動後之基板之位置亦可。 在本發明之第2觀點所涉及之基板變形辨識方法中, 其特徵爲:具備針對事先設定在基板上之多數目標位置, 逐次使上述基板移動至各目標位置,在每目標位置檢測出 移動後之基板的位置的第1手段;和針對上述各目標位置 ,使該目標位置和上述移動後之基板之位置賦予關聯性的 第2手段。 即使具備使能夠記憶藉由上述第2手段被賦予關連性 之位置資料的記憶裝置;輸入被記憶於上述記憶裝置之位 置資料,作成根據其位置資料之圖形資料的電腦;和顯示 藉由上述電腦所作成之圖形資料的顯示裝置亦可。 上述電腦即使作成將上述位置資料繪圖顯示成特定座 標系的圖形資料,具備根據使用者之操作,放大及縮小上 述座標系之尺度的手段亦可。 上述電腦即使作成圖形資料亦可,該圖形資料係用以 圖形顯示將針對特定數量的上述基板所涉及之位置資料予 以統計處理的結果。 上述電腦即使作成圖形資料亦可,該圖形資料係用以 圖形顯示將針對特定數量的上述基板所涉及之位置資料在 事先設定的每一個至多數的時段予以統計處理的結果。 上述電腦即使作成圖形資料亦可,該圖形資料係用以 同時顯示被設定在上述基板上的所有目標位置所涉及的位 置資料。 即使具有攝影上述基板之攝影手段,上述第1手段於 -10- 201007401 上述基板移動後藉由上述攝影手段攝影該基板,根據其攝 影中心,檢測出上述移動後之基板之位置亦可。 在本發明之第1觀點所涉及之基板變形辨識程式,其 特徵爲:以下述手段使電腦發揮功能,針對事先設定在基 板上之多數目標位置,逐次使上述基板移動至各目標位置 ,在每目標位置檢測出移動後之基板的位置的第1手段; 針對上述各目標位置,使該目標位置和上述移動後之基板 之位置賦予關聯性的第2手段;使該電腦之記憶裝置記憶 藉由上述第2手段被賦予關連性之位置資料的第3手段; 生成根據被記憶於上述記憶裝置之位置資料的圖形資料的 第4手段;和使上述圖形資料能夠辨識地圖形顯示於該電 腦之顯示裝置的第5手段。 〔發明效果〕 提供可以更容易掌握作爲基板全體之變形態樣的基板 〇 變形辨識方法及基板變形辨識裝置及基板變形辨識程式。 【實施方式】 以下,參照第1圖〜第6圖,說明將本發明所涉及之 基板變形辨識方法及基板變形辨識裝置及基板變形辨識程 式予以具體化之一實施型態。並且,在本實施型態中,以 藉由自動鑽孔裝置,在基板100 (例如多層配線構造之印 刷基板)鑽孔之時爲例,辨識其變形之方法予以說明。 本實施型態之自動鑽孔裝置大致如第1圖所示般由被 -11 - 201007401 設置在工場內之特定場所之裝置本體10、被固定於該裝置 本體10之X射線產生裝置11及X射線攝影機12、在與 該些X射線產生裝置11及X射線攝影機12對向之位置 具有貫通孔13a之基板載置台13、在該基板載置台13上 挾持基板1〇〇而予以固定的固定治具13b、被支撐於上述 裝置本體10,可抵接及間隔開在基板100來回移動之鑽孔 用鑽頭14、使被固定於基板載置台13之基板100在每基 板載置台13移動之基板移動用致動器部15,和控制該鑽 孔裝置所含之各種致動器(上述鑽頭14及致動器部15等 )而在基板100之特定位置鑽孔,並且取得特定資料(X 射線攝影機12之攝影資料等)的控制解析部16所構成。 在此,基板100係例如第2圖所示般,在事先設計之 鑽孔位置(目標位置)具有特定標記100a〜100d (標記之 形狀爲任意)。在本實施型態中,在矩形狀之基板100之 4個角部(所有之角部)之附近,各配置有一個圓形狀之 標記100a〜100d。該些標記100a〜100d係被印刷至例如 該基板100之內部,可以藉由X射線產生裝置11及X射 線攝影機12來辨識。X射線產生裝置11及X射線攝影機 12係被設置成互相對向,藉由控制解析部16被控制,在 其設置位置攝影上述基板100。 基板移動用致動器部15具備藉由無圖式之XY移動 機構能夠在XY方向移動之台座151。該台座151又具備 X平台152及Y平台153,經X平台152及Y平台153連 結於基板載置台13,在每該基板載置台13,能夠在圖中 -12- 201007401 x軸方向及Y軸方向各移動基板100。此時,X平台152 及Υ平台153也與台座151 —起移動。X平台152及Υ平 台153係藉由被控制解析部16控制,可以使基板載置台 13和台座151之相對性位置關係各偏移於X方向或Υ方 向。即是,即使台座151在靜止之狀態,亦藉由該些X平 台152及Υ平台153,可以使基板載置台13各在圖中X 軸方向及Υ軸方向移動。 % 鑽孔用鑽頭14係藉由控制解析部16被控制,成爲在 Ζ軸方向(例如相當於垂直方向)來回移動,在鑽孔時, 接近基板100,其他之時則自基板100間隔開。藉由基板 移動用致動器部15,使基板100移動,依此可以藉由該鑽 頭14,在基板100之ΧΥ平面上之任意位置鑽孔。 控制解析部16除電腦本體161之外,具備當作輸出 機構之顯示器(顯示裝置)162、鍵盤及滑鼠等之輸入機 構163等。其中,在電腦本體161,除內藏有無圖式之 CPU ( Central Processing Unit ) 、ROM ( Read OnlyBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate deformation substrate deformation recognizing program for changing a shape of a board. [Prior Art] φ For example, in order to print a wiring board itself or the like, there is a drilling device for drilling a hole in a printing frame. The position of the hole of the wiring board, the visible light camera equipped with the device, or by processing the image thereof, can be drilled with a drill bit or the like, at the hole, at the position where the hole should be drilled, that is, the hole. However, in the image forming apparatus, the image of the visible light camera has a shape distortion. In the above-described drilling apparatus, when the image is photographed and photographed in the vicinity of the center, the marking position can be calculated with higher precision. In this case, it is easier to grasp a base identification method such as a printed wiring board, a substrate deformation recognition device, and a board mounting electronic component, or to position a specific target position of the printing brush wiring board in the vicinity of the center. The mark is printed first, and the X-ray camera of the drilling device itself is used to photograph the mark and calculate the center of the mark. Therefore, it is correct to use the position calculated by the image processing to be the center of the mark. The characteristics of the drill or X-ray camera are similar to those in the portrait of the photography, and the deformation is not uniform. That is, when the comparison is caused by such deformation, when the image processing is performed, The peripheral part is placed at the time of photographing the mark near the center. Conversely, taking pictures near the surrounding part When the calculation accuracy is lowered, the offset between the actual position of -5 - 201007401 and the calculated position becomes larger. Therefore, when drilling the center of the mark with high precision, the mark is photographed as close as possible to the center of the camera. In the following, an automatic drilling device including a substrate mounting table, a substrate holding portion, and an actuator for moving the substrate is used to drill a substrate such as a printed wiring board. The direction in which the substrate is placed on the substrate stage is set to ?, and the direction orthogonal thereto is Y, and when the direction perpendicular to the XY plane is Z, the substrate is held by the substrate holding portion@ The actuator portion for moving the substrate moves in the XY plane, whereby the hole can be drilled at any position of the substrate. At the time of drilling, for example, the substrate is positioned at a specific position of the substrate stage, and for example, the upper left side of the substrate The end is set as the origin, and the movement of the substrate is controlled according to the design of the substrate (for example, data). For example, moving the substrate from the origin position of the substrate to the center of the mark and the camera When the position of the heart is the same, if the substrate is designed to be finished, the center of the mark should coincide with the center of the camera when the movement is completed. However, @ is, when the substrate is stretched due to the influence of the temperature of the outside air, etc., and the mark When the position deviates from the design, the center of the mark cannot match the center of the camera. As a result, when the number of control substrates moves, the mark deviates far from the center of the camera due to the expansion and contraction of the substrate. In order to avoid such problems, the technician performing the drilling operation usually tries to offset (cancel) the amount of positional deviation (coordinate offset) caused by the expansion and contraction of the substrate. In other words, it is estimated that the positional deviation of the mark -6-201007401 due to the expansion and contraction of the substrate is corrected before the movement of the substrate, and the offset of the position is incorporated in the design. The measurement position offset of the substrate is preferably determined according to the measurement 値, but actually, in terms of complexity or time, it is necessary to set a correction 每一 for each substrate. Extremely difficult. Therefore, the positional deviation tendency of the mark is usually measured, and the correction 针对 for each substrate is determined based on the average value of the positional deviation or the like. In this case, when the correction is made based on the positional deviation tendency of the mark, it is important to correctly grasp the positional deviation tendency of the mark. For example, when the positional deviation of the mark is stabilized within a certain range after one day, and the positional deviation tends to change at a certain time, the correction should be changed accordingly. Specifically, when the positional deviation tends to be within a certain range, it is sufficient to set only one type of correction. However, when the positional deviation tends to change, it is necessary to set the correction 配合 and the tendency to change. Both sides of the time period for which the correction is applied. Moreover, such information is also important for improving the environment in which substrates are produced. [Patent Document 1] Japanese Patent Laid-Open No. Hei 9-1 23 〇 4〇 No. [Invention] [Problems to be Solved by the Invention] When manufacturing a substrate, the stability of the temperature at the manufacturing site greatly affects the productivity. . It is conceivable that, for example, when the positional deviation tends to be within a certain range for one day, even if the temperature of the surface of the processed substrate is stabilized at a certain temperature, heat for stretching the substrate is applied at any stage of the production substrate stage. Further, it is conceivable that even when the deviation tendency 201007401 changes at a specific time position, for example, the management of the temperature of the site where the substrate is processed is insufficient, and the temperature is unstable (change occurs). That is, by re-recognizing the temperature management of the site, the productivity of the substrate is improved. Specifically, when the field temperature is adjusted in accordance with the positional shift amount of the substrate, the expansion and contraction of the substrate can be suppressed, so that the positional shift amount can be offset (cancelled). However, in the method described in Patent Document 1, when the position of the mark is measured for each substrate, only the positional shift amount for one mark can be measured, and when the position of the measurement mark is shifted, it is necessary to A positional shift amount is additionally plotted for each substrate to determine the tendency of the positional shift. Therefore, it is not easy to detect whether or not the entire substrate is tilted, and it is not easy to detect whether or not the substrate is entirely deformed. The present invention has been made in view of the above circumstances, and an object thereof is to provide a substrate deformation recognizing method, a substrate deformation recognizing device, and a substrate deformation recognizing program which can more easily grasp a modified form of the entire substrate. (Means for Solving the Problems) Hereinafter, means for solving the above problems and effects thereof will be described. In the substrate deformation recognizing method according to the first aspect of the present invention, the method includes: moving a plurality of target positions set on a substrate in advance, sequentially moving the substrate to each target position, and detecting movement after each target position The first item of the position of the substrate; the position of the target position and the position of the substrate after the movement is set to be related to the position of the substrate - -8 - 201007401, and the data is stored in the second item of the memory device; The third item of the deformation of the substrate is identified by the location data of the above-mentioned device. In the third item, even if at least a part of the location data stored in the memory device is input to the computer, the computer creates the graphic data according to the location data, and displays the graphic data on the display device in a recognizable manner. According to the graphic display on the screen, the deformation of the substrate may be recognized. ❿ The third item is displayed on the display device at the same time as the position data relating to all the target positions set on the substrate, and the deformation of the substrate may be recognized based on the displayed position data. In the third project, even if the position data relating to a specific number of the substrates is statistically processed by the computer, the display device can be displayed for the majority in the third project. The method for discriminating and deforming the substrate, in the third project, Φ, even if the position data related to the specific number of the substrates by the computer is statistically processed in each of the preset time periods, the result is displayed on the display The device is also available. In order to recognize the deformation of the plurality of substrates, in the third item, even if the positional data of each of the substrates is sequentially displayed on the display device, the deformation of each of the substrates may be sequentially identified. Even as the plurality of target positions, at least one target position may be set in the vicinity of all the corners of the substrate. Even in the first project described above, the position of the substrate after the movement is detected based on the 201007401 photography center after moving the photographed substrate. In the substrate deformation recognizing method according to the second aspect of the present invention, the method further includes moving the substrate to each target position for a plurality of target positions set on the substrate in advance, and detecting the movement after each target position. The first means of the position of the substrate; and the second means for associating the target position with the position of the substrate after the movement for each of the target positions. Providing a memory device capable of memorizing location data to which connection is provided by the second means; inputting a location data stored in the memory device to create a graphic data based on the location data; and displaying the computer by the computer The display device for the graphic data made can also be used. The above-described computer may be configured to display the above-mentioned position data as graphic data of a specific coordinate system, and may have means for enlarging and reducing the scale of the coordinate system according to the user's operation. Even if the computer is made into graphic data, the graphic data is used to graphically display the result of statistical processing for the positional data involved in a specific number of the substrates. Even if the computer is made into graphic data, the graphic data is used to graphically display the result of statistical processing of the position data related to a specific number of the substrates in each of the preset time periods. The above computer can be used to create graphic data for simultaneously displaying the positional data of all the target positions set on the substrate. Even if the image pickup means for photographing the substrate is used, the first means moves the substrate after the substrate is moved to -10-201007401, and the substrate is photographed by the photographing means, and the position of the substrate after the movement is detected based on the center of the photograph. A substrate deformation recognition program according to a first aspect of the present invention is characterized in that the computer is functioned by the following means, and the substrate is sequentially moved to each target position for a plurality of target positions set on the substrate in advance. a first means for detecting a position of the moved substrate at the target position; a second means for associating the target position with the position of the moved substrate for each of the target positions; and causing the memory device of the computer to memorize The third means for providing the location information of the related means; the fourth means for generating the graphic data based on the location data stored in the memory device; and the display for displaying the graphic data in the display of the computer The fifth means of the device. [Effect of the Invention] It is possible to provide a substrate 〇 deformation recognizing method, a substrate deformation recognizing device, and a substrate deformation recognizing program which can more easily grasp a modified form of the entire substrate. [Embodiment] Hereinafter, an embodiment of a substrate deformation recognizing method, a substrate deformation recognizing device, and a substrate deformation recognizing method according to the present invention will be described with reference to Figs. 1 to 6 . Further, in the present embodiment, a method of recognizing the deformation of the substrate 100 (e.g., the printed substrate of the multilayer wiring structure) by the automatic drilling device will be described as an example. The automatic drilling apparatus according to the present embodiment is substantially the apparatus main body 10 installed at a specific place in the factory by -11 - 201007401 as shown in Fig. 1, and the X-ray generating apparatus 11 and X fixed to the apparatus main body 10. The radiographic camera 12 has a substrate mounting table 13 having a through hole 13a at a position facing the X-ray generating device 11 and the X-ray camera 12, and a substrate 1 is fixed on the substrate mounting table 13 to fix it. The drill 13 for supporting the apparatus main body 10, the drill bit 14 that can be moved back and forth between the substrate 100, and the substrate 100 that is fixed to the substrate mounting table 13 are moved by the substrate moving on each of the substrate mounting tables 13 The actuator unit 15 and the various actuators (the drill 14 and the actuator unit 15 and the like) included in the drilling device are controlled to drill holes at specific positions of the substrate 100, and specific data (X-ray camera) is obtained. The control analysis unit 16 of the photographic data of 12) is configured. Here, as shown in Fig. 2, the substrate 100 has specific marks 100a to 100d (the shape of the mark is arbitrary) at a drilling position (target position) designed in advance. In the present embodiment, a circular shape mark 100a to 100d is disposed in the vicinity of the four corner portions (all the corner portions) of the rectangular substrate 100. The marks 100a to 100d are printed, for example, inside the substrate 100, and can be recognized by the X-ray generating device 11 and the X-ray camera 12. The X-ray generating device 11 and the X-ray camera 12 are disposed to face each other, and are controlled by the control analyzing unit 16, and the substrate 100 is photographed at the installation position. The substrate moving actuator unit 15 includes a pedestal 151 that is movable in the XY direction by an XY moving mechanism without a pattern. The pedestal 151 further includes an X platform 152 and a Y platform 153, and is coupled to the substrate stage 13 via the X stage 152 and the Y stage 153. Each of the substrate stages 13 can be in the x-axis direction and the Y-axis of the -12-201007401 in the figure. The substrate 100 is moved in the direction. At this time, the X stage 152 and the cymbal platform 153 also move together with the pedestal 151. The X stage 152 and the platform 153 are controlled by the control analyzing unit 16, so that the relative positional relationship between the substrate stage 13 and the pedestal 151 can be shifted in the X direction or the Υ direction. That is, even if the pedestal 151 is in a stationary state, the substrate stage 13 can be moved in the X-axis direction and the Υ-axis direction in the drawing by the X stages 152 and the Υ table 153. The drill bit 14 is controlled by the control analyzing unit 16 to move back and forth in the z-axis direction (e.g., corresponding to the vertical direction), to approach the substrate 100 during drilling, and to be spaced apart from the substrate 100 at other times. The substrate 100 is moved by the substrate moving actuator unit 15, whereby the drill 14 can be drilled at any position on the plane of the substrate 100. The control analysis unit 16 includes a display (display device) 162 as an output mechanism, an input device 163 such as a keyboard and a mouse, and the like in addition to the computer main body 161. Among them, in the computer body 161, in addition to the built-in CPU (Central Processing Unit), ROM (Read Only

Memory ) 、RAM ( Randam Access Memory )及通訊機器 (數據機等)等之外,內藏有由硬碟所構成之非發揮性之 記憶裝置1 6 1 a。 記憶裝置1 6 1 a記憶有用以實行以下說明之解析處理 之程式。 CPU解釋、實行程式,實行以下說明之解析處理。 ROM記憶CPU動作用之基板的程式或固定資料。 RAM係當作電腦之主記憶體而發揮功能,傳送、展開 -13- 201007401 實行對象之程式。再者,當作CPU之工作記憶體使用。 該些各部經內部匯流排等而互相連接。 作爲該控制解析部1 6可以使用例如市販的一般電腦 等。 接著,針對藉由上述第1圖所示之自動鑽孔裝置鑽孔 基板100之工程,及辨識基板100之變形之工程之一例予 以說明。在該例中,於基板載置台13固定基板100(以固 定治具13b等固定)之後,藉由第3圖所示之程序,在基 板1〇〇鑽孔,並且取得基板100之資料,並藉由第4圖所 示之程序,根據其資料辨識基板100之變形。 該些如第3圖及第4圖所示之各步驟,係在控制解析 部16中,CPU實行程式,依此控制各部而被實行。 於基板100之鑽孔時,如第3圖所示般,首先在欲加 工之基板100標示基板識別號碼(步驟S11)。基板識別 號碼係例如若其日開始加工之基板則以號碼1等表示。除 此之外,即使賦予與批量號碼有關聯性等亦可。 接著,藉由基板移動用致動器部15,使基板100移動 至特定目標位置(由數値資料等所構成之設計値)。此時 ,例如第2圖所示般,將移動前中之基板100之特定位置 (例如基板100之左上角)設爲原點OG (〇,〇),依此 可以掌握移動至各座標軸(X軸及Y軸)之移動量。 以在標記1 〇 〇 a之中心鑽孔之時爲例予以說明。首先 ,以原點OG爲基準之標記l〇〇a之設計上之座標和X射 線攝影機12之中心(詳細攝影中心)重疊之方式’藉由 -14- 201007401 台座151使基板100移動(步驟S12)。 接著,以X射線攝影機12攝影標記100a,取得攝影 資料(步驟S13 )。此時,通常標記l〇〇a之中心和X射 線攝影機12之中心不一致。其理由之一係由於基板100 變形之故。 在此,控制解析部16係根據攝影資料,藉由眾知的 畫像處理手法,算出X射線攝影機12之中心和標記100a φ 之中心偏移多少。然後,互相使欲加工之標記號碼(此時 標記l〇〇a),和所算出之偏移量(XY座標)’和基板辨 識號碼賦予關連性(所謂的執行連結),記憶於記憶裝置 161a(步驟 S15)。 接著,根據所算出之偏移量,以鑽孔用鑽頭14之旋 轉中心和標記100a之中心爲一致之方式,藉由X平台 152及Y平台153,於使基板100移動之後,使鑽孔鑽頭 14上下移動,在標記i〇〇a之中心鑽孔(步驟S16 )。 Φ 並且,該裝置中之X線攝影機12之中心和鑽孔用鑽 頭14之旋轉中心,係事先調整成特定之位置關係。再者 ,X平台152及Y平台153係持有較台座151之XY移動 機構更高精度之移動機構。 在本實施型態中,即使於在標記10 0b〜d實施鑽孔加 工之時,也實行相同工程。並且,針對相同種類之多數基 板’每次執行鑽孔加工之時實行上數第3圖之各步驟’在 記憶裝置161a蓄積其種類之基板1〇〇中之各標記之位置 偏移標記。然後,藉由第4圖所示之各步驟’根據該些位 -15- 201007401 置偏移資料,辨識該基板100之變形及其傾向。 於該基板變形之辨識時,首先在步驟S21中,藉由上 述第3圖之處理,根據被記憶於記憶裝置1 6 1 a之位置資 料,電腦本體161作成圖形資料。接著,電腦本體161係 在下一個步驟S22中,將在該步驟S21中所作成之圖形資 料,圖形顯示於顯示器162之畫面。然後,在接著的步驟 S23中,根據其畫面上之顯示,辨識每基板之變形特性。 在此,在上述步驟S22中,例如第5圖所示般,電腦 @ 本體161係將成爲可以辨識目標位置(標記中心)和移動 後之基板位置(攝影中心)之位置偏移量的圖形資料顯示 於顯示器162。在第5圖之例中,經過上述第3圖之處理 所取得之特定基板100所涉及之位置資料繪圖成特定座標 系(XY座標系),圖形顯示(繪圖顯示)於顯示器162 之畫面上之資料顯示部50。 在資料顯示部50之周圍,顯示有:由表示資料顯示 部50之強調率之値的顯示盒51a及用以變更其強調率之 @ » 調整滑軌51b所構成之強調率部51;由顯示資料顯示部 50之座標系之標度(尺度)之値的顯示箱5 2a及用以變更 其標度之調整滑軌52b所構成之標度調整部52;顯示或輸 入資料顯示部50之關連資料(攝影中心和標記中心之偏 移量、資料取得時刻等)之關連資料部53:由顯示被顯示 於資料顯示部50之位置資料所涉及之基板100之識別號 碼的顯示盒54a及變更其識別號碼(多數基板100中,欲 在資料顯示部50顯示位置資料之特定基板100之識別號 -16- 201007401 碼)之調整滑軌5 4b所構成之基板選擇部54。以上述位置 資料之圖形資料爲首,該些資料所有同時被顯示在一畫面 上。 在資料顯示部50如圖中所示般,顯示被配置在基板 100上之所有標記。詳細而言,同時顯示設計上之標記 501a〜501d之中心座標(例如以〇表示),和實際上攝影 標記501a〜501d而所出之各標記之心座標502a〜502d( φ 例如以□表示)。藉由設爲如此之顯示態樣,在視覺上能 夠辨識地顯示出在其基板1〇〇中整體上標記偏移成如何程 度,使用者容易直接(進而在直覺地)掌握基板100全體 變形成如何。 再者,資料顯示部50之顯示資料及其顯示態樣,係 因應調整滑軌51b、52b、54b之位置而變化。詳細而言, 資料顯示部50之強調率或標度,成爲特定基準値乘上因 應調整滑軌51b、52b之位置的係數的値。此時,強調率 9 或是標度之變更所涉及之係數,係使用者可以經上述輸入 機器163(例如鍵盤)設定任意値(可變設定)。再者, 被顯示於資料顯示部50之基板100係藉由調整滑軌54b 之位置對應於識別號碼,因應調整滑軌5 4b之位置而唯一 地被決定。 即是,使用者係經上述輸入機器163 (例如滑鼠)滑 動操作各調整滑軌511>、521?、541),依此可以調整資料顯 示部50之強調率或是標度,或選擇應確認位置之基板100 。具體而言,例如位置偏移量一般相對於基板100全體成 -17- 201007401 爲極小之値。基板之標記間之距離’相對於「數1 〇mm〜 數100mm」等級,位置偏移量爲# (微米)等級。因此, 即使繪圖,亦例如第6圖(a )所示般,標記中心50 la〜 501d和攝影中心502a〜502d之偏移量小,有非常難以瞭 解位置偏移之情形。在此,於視覺上如此難以掌握兩者偏 移之時,例如使用者滑動操作調整滑軌52b (第5圖), 並且如第6圖(b)所示般,令使用者能夠辨識之程度強 調偏移量而予以顯示則有效果。如此一來,容易直接性( 0 直覺地)掌握基板之變形程度。再者,藉由使用者滑動操 作調整滑軌54b (第5圖),亦可以順序顯示於每基板上 ,如此一來使用者容易掌握在相同種類之多數基板上橫跨 偏移之傾向。 再者,在第5圖中,攝影中心502a〜502d所有都進 入於標記中心501a〜501d之內側。該係表示基板100收 縮。對此,於基板1〇〇膨脹之時,攝影中心502a〜502d 位於標記中心501a〜501d之外側(位置偏移)之可能性 0 高。然後,於強調此而予以顯示之時,也有位於基板1〇〇 之外側的情形。 此時,依據顯示基板100之標度,有攝影中心502a〜 502d不被顯示在畫面上之情形。這時若將調整滑軌52予 以調整縮小基板1〇〇之顯示標度而顯示出攝影中心5 02 a〜 5 0 2 d即可。 若依據如此基板變形辨識方法時,則容易掌握作爲基 板1 00全體之變形態樣。因此,執行鑽孔作業之技術者根 -18 - 201007401 據多數基板100之變形態樣,進而根據標記之位置偏移之 傾向,預測因基板1 00之伸縮所引起之標記之位置偏移, 於基板100之加工時,容易進行於設計値掺入其位置偏移 量(例如在第3圖之步驟S11中修正設計値)。藉由該修 正,因可以縮小標記中心和攝影中心之偏移量,故提高算 出標記之中心的精度。藉此,可以提高鑽孔加工之精度。 再者,根據相同位置偏移之傾向,重新評估生產現場之溫 φ 度管理,依此因可以縮小基板100之變形量,故亦可以提 高生產性等。 如上述說明般,若藉由本實施型態所涉及之基板變形 辨識方法及基板變形辨識裝置以及基板變形辨識程式時, 則可以取得下述般之優良效果。 (1)本實施型態所涉及之基板變形辨識方法具備: 針對事先設定在基板100上之多數目標位置(標記中心 501a〜501d),逐漸使上述基板100移動至各目標位置, • 在每目標位置檢測出移動後之基板的位置的第1工程(第 3圖之步驟S11〜S13);針對各目標位置,使該目標位置 和移動後之基板之位置賦予關聯性的位置資料記憶於記憶 裝置161a的第2工程(第3圖之步驟S14〜S15)和根據 被記億於記憶裝置161a之位置資料,辨識基板100之變 形的第3工程(第4圖)。如此一來,於每目標位置使移 動後之位置賦予關聯性,依此能夠容易掌握如何的基板具 有如何程度之位置偏移,或是在基板上之任何位置具有如 何程度之位置偏移(基板全體之位置偏移狀況)等之位置 -19- 201007401 偏移資訊,進而可以更容易且更正確測量作爲基板全體的 變形態樣。 (2 )在第4圖之步驟S21〜S23中,係將被記憶於記 憶裝置161a之位置資料輸入至電腦(電腦本體161),使 該電腦1 6 1作成根據其位置資料之圖形資料,並且使其圖 形資料能夠辨識地圖形顯示於顯示裝置(顯示器162)之 畫面,並根據該畫面上之顯示,辨識基板100之變形。如 此一來,可以透過視覺直接(直覺地)掌握基板之位置偏 移傾向或基板之變形態樣。 (3) 在第4圖之步驟S22中,在顯示器162同時顯 示被設定在基板100上之所有目標位置所涉及之位置資料 (第5圖)。如此一來,使用者容易直接性(直覺地)掌 握基板全體變形成如何程度。 (4) 在第4圖之步驟S23中,使用者滑動操作調整 滑軌5 2b (第5圖),依此任意強調位置偏移量而予以顯 示。如此一來,使用者可以容易掌握位置偏移之傾向。 (5) 本實施型態所涉及之基板變形辨識裝置具備有 根據使用者之操作,放大及縮小位置資料之座標系的尺度 (標度)之手段(調整滑軌52d)。依此,可以藉由適當 之標度顯示出位置資料,容易直接性(直覺地)掌握基板 之變形程度。 (6) 在第3圖之步驟S13中,於基板100移動後藉 由X射線攝影機12(攝影手段)攝影同基板,根據其攝 影中心,檢測出其移動後之基板之位置。如此一來,可以 -20- 201007401 更容易且更正確測量基板之位置。 並且,上述實施型態及使變更成下述般亦可。 即使藉由電腦本體161,將針對特定數量之位置資料 進行統計處理之結果顯示於顯示器1 62亦可。例如,第7 圖所示般,即使取多數資料之平均,同時圖形顯示與多數 之攝影中心502a,與相當於其平均値之位置資料602a亦 可。再者,例如第8圖所示般,即使將偏移量予以統計處 Φ 理,同時圖形顯示相當於中央値之位置資料602a,及3 〇· (標準偏差)之範圍R1亦可。 如此之統計處理即使在任意時段分段執行亦可。例如 ,即使藉由將開始時刻及結束時刻(時段)輸入至關連資 料部53(第5圖),將針對其時段中之資料進行統計處理 之結果,顯示於顯示器162亦可。 即使組合圖形顯示和數値顯示,顯示位置資料亦可。 例如’第9圖所示般,即使圖形顯示3σ之範圍R1,並且 Φ 將其値予以數値顯示亦可。 在上述實施型態中,將每一個基板100之位置資料予 以顯示。但是,並不限定於此,即使在一畫面上同時顯示 多數基板100之位置資料(例如分割畫面而予以顯示)亦 可。 在上述實施型態中,使用者滑動操作調整滑軌54b ( 第5圖),依此顯示出任意基板100之位置資料。但是, 並不限定於此,即使依特定時間之經過程度,自動性切換 位置資料,順序顯示各基板1〇〇之位置資料,順序辨識每 -21 - 201007401 基板之變形亦可。再者,即使針對其他夠成或設定,可以 因應所需,執行適當程式化(自動化)。 在上述實施型態中,可以以實際孔加工之標記的中心 座標爲基準辨識基板100之變形。但是並不限定於此,即 使例如另外設置用以辨識變形之標記亦可。標記即使在基 板100之所有角部附近設置至少一個標記亦可,例如第10 圖所示般,即使僅在位於對角之一對角部設定目標位置亦 可。再者,例如第11圖所示般,即使集中性設置在尤其 φ 欲檢測出變形之部位(同第11圖之例中基板100之中央 部)亦可。 在上述實施型態中,雖然提及矩形狀之基板,但是即 使基板之形狀爲任意,例如其他之多角形狀或圓形狀亦可 〇 在上述實施型態中,雖然藉由二次元座標顯示位置資 料,但是即使藉由3次元座標顯示位置資料亦可。In addition to Memory, RAM (Randam Access Memory), and communication devices (data machines, etc.), there are built-in non-functional memory devices 1 1 1 a composed of hard disks. The memory device 1 1 1 a memory is used to execute the program of the analysis processing described below. The CPU interprets and executes the program, and performs the analysis processing described below. The ROM memorizes the program or fixed data of the substrate for CPU operation. The RAM functions as the main memory of the computer, and is transmitted and expanded. -13- 201007401 The program to be executed. Furthermore, it is used as the working memory of the CPU. The parts are connected to each other via an internal bus bar or the like. As the control analysis unit 16, for example, a general-purpose computer or the like can be used. Next, an example of a process of drilling the substrate 100 by the automatic drilling apparatus shown in Fig. 1 and an example of identifying the deformation of the substrate 100 will be described. In this example, after the substrate 100 is fixed to the substrate mounting table 13 (fixed by the fixing jig 13b or the like), the substrate 1 is drilled by the procedure shown in FIG. 3, and the data of the substrate 100 is obtained. The deformation of the substrate 100 is identified based on the data by the procedure shown in FIG. The steps shown in Figs. 3 and 4 are controlled by the control analyzing unit 16, and the CPU executes the program and controls each unit accordingly. When drilling the substrate 100, as shown in Fig. 3, first, the substrate identification number is indicated on the substrate 100 to be processed (step S11). The substrate identification number is expressed by, for example, the number 1 or the like if the substrate is processed on the day. In addition to this, even if it is associated with a lot number, it may be. Then, the substrate moving actuator portion 15 moves the substrate 100 to a specific target position (designed by a number of data or the like). At this time, for example, as shown in FIG. 2, the specific position of the substrate 100 before the movement (for example, the upper left corner of the substrate 100) is set as the origin OG (〇, 〇), whereby the movement to each coordinate axis (X) can be grasped. The amount of movement of the axis and the Y axis). This is illustrated as an example of drilling at the center of the mark 1 〇 〇 a. First, the coordinate of the design of the mark l〇〇a based on the origin OG and the center of the X-ray camera 12 (detailed photographing center) are overlapped by the pedestal 151 by the -14-201007401 pedestal 151 (step S12) ). Next, the marker 100a is photographed by the X-ray camera 12, and the photographic data is acquired (step S13). At this time, usually the center of the mark l〇〇a does not coincide with the center of the X-ray camera 12. One of the reasons is due to the deformation of the substrate 100. Here, the control analysis unit 16 calculates how much the center of the X-ray camera 12 and the center of the mark 100a φ are shifted by the known image processing method based on the image data. Then, the mark number to be processed (in this case, the mark l〇〇a) and the calculated offset amount (XY coordinate) and the substrate identification number are given relevance (so-called execution connection), and are memorized in the memory device 161a. (Step S15). Then, based on the calculated offset amount, the drilling center is moved by the X platform 152 and the Y platform 153 so that the center of rotation of the drill bit 14 and the center of the mark 100a are aligned. 14 moves up and down, drilling at the center of the mark i〇〇a (step S16). Φ Also, the center of the X-ray camera 12 and the center of rotation of the drill bit 14 in the apparatus are adjusted in advance to a specific positional relationship. Furthermore, the X platform 152 and the Y platform 153 hold a higher precision moving mechanism than the XY moving mechanism of the pedestal 151. In the present embodiment, the same process is carried out even when the drilling is performed at the marks 10 0b to d. Further, each of the plurality of substrates of the same type is subjected to each step of the third drawing at the time of performing the drilling process, and the positional offset marks of the respective marks in the substrate 1 of the type are accumulated in the memory device 161a. Then, the deformation of the substrate 100 and its tendency are identified by the offsets of the bits -15-201007401 by the steps ’ shown in Fig. 4. In the identification of the deformation of the substrate, first, in step S21, the computer body 161 creates graphic data based on the position information stored in the memory device 16 1 a by the processing of the above FIG. Next, the computer main body 161 displays the graphic data created in the step S21 on the screen of the display 162 in the next step S22. Then, in the next step S23, the deformation characteristics of each substrate are identified based on the display on the screen. Here, in the above-described step S22, for example, as shown in FIG. 5, the computer@body 161 is a graphic material capable of recognizing the positional shift amount of the target position (marking center) and the moved substrate position (photographing center). Displayed on display 162. In the example of FIG. 5, the positional data relating to the specific substrate 100 obtained by the processing of the third embodiment is plotted as a specific coordinate system (XY coordinate system), and the graphic display (drawing display) is displayed on the screen of the display 162. Data display unit 50. Around the data display unit 50, a display box 51a indicating the emphasis ratio of the data display unit 50 and an emphasis ratio unit 51 including the @»adjustment slide 51b for changing the emphasis ratio are displayed; The display box 52a of the coordinate system (the scale) of the coordinate display unit 50 and the scale adjustment unit 52 formed by the adjustment rail 52b for changing the scale; the display or input data display unit 50 The connection data unit 53 of the data (the offset of the photographing center and the mark center, the data acquisition time, and the like): the display box 54a that displays the identification number of the substrate 100 related to the position data displayed on the data display unit 50, and the change thereof The substrate selection unit 54 composed of the adjustment rails 54b of the identification number (the identification number of the specific substrate 100 of the plurality of substrates 100 to be displayed on the data display unit 50) is adjusted by the slide rails 54b. Headed by the graphic data of the above location data, all of the data are displayed on one screen at the same time. In the data display portion 50, as shown in the figure, all the marks placed on the substrate 100 are displayed. Specifically, the center coordinates (for example, indicated by 〇) of the design marks 501a to 501d and the heart coordinates 502a to 502d of the respective marks (the φ is represented by □) which are actually taken by the photographic marks 501a to 501d are simultaneously displayed. . By setting such a display aspect, it is visually identifiable to show how much the mark is offset in the entire substrate 1 ,, and the user can easily (and intuitively) grasp the entire formation of the substrate 100. how is it. Further, the display data of the data display unit 50 and its display state are changed in response to the positions of the slide rails 51b, 52b, and 54b. Specifically, the emphasis rate or the scale of the data display unit 50 is the specific reference 値 multiplied by the coefficient of the position of the slide rails 51b and 52b. At this time, the emphasis rate 9 or the coefficient involved in the change of the scale is that the user can set any 値 (variable setting) via the input device 163 (for example, a keyboard). Further, the substrate 100 displayed on the data display unit 50 is uniquely determined by adjusting the position of the slide rail 54b by adjusting the position of the slide rail 54b corresponding to the identification number. That is, the user slides the adjustment rails 511 >, 521, 541) via the input device 163 (for example, a mouse), thereby adjusting the emphasis rate or scale of the data display unit 50, or selecting the response. Confirm the position of the substrate 100. Specifically, for example, the positional shift amount is generally extremely small with respect to the entire substrate 100 of -17-201007401. The distance between the marks of the substrate is 'relative to the number of "1 〇 mm to 100 mm", and the positional shift amount is # (micron). Therefore, even if the drawing is performed, for example, as shown in Fig. 6(a), the offset amounts of the mark centers 50la to 501d and the photographing centers 502a to 502d are small, and it is extremely difficult to understand the positional shift. Here, when it is visually difficult to grasp the offset between the two, for example, the user slides the adjustment rail 52b (Fig. 5), and as shown in Fig. 6(b), the degree that the user can recognize It is effective to emphasize the offset and display it. In this way, it is easy to directly (0 intuitively) grasp the degree of deformation of the substrate. Further, the slide rail 54b (Fig. 5) can be sequentially displayed on the substrate by the user's sliding operation, so that the user can easily grasp the tendency of the shift across the substrate of the same type. Further, in Fig. 5, all of the photographing centers 502a to 502d enter the inside of the mark centers 501a to 501d. This means that the substrate 100 is shrunk. On the other hand, when the substrate 1 is expanded, the possibility that the photographing centers 502a to 502d are located outside the mark centers 501a to 501d (positional shift) is high. Then, when it is emphasized by this, there is a case where it is located outside the substrate 1A. At this time, depending on the scale of the display substrate 100, there are cases where the photographing centers 502a to 502d are not displayed on the screen. At this time, the adjustment rail 52 is adjusted to reduce the display scale of the substrate 1 to display the photographing center 5 02 a to 5 0 2 d. According to the substrate deformation identification method as described above, it is easy to grasp the modification of the entire substrate 100. Therefore, the technician performing the drilling operation -18 - 201007401 according to the variation pattern of the plurality of substrates 100, and further predicting the positional deviation of the mark caused by the expansion and contraction of the substrate 100 according to the tendency of the positional deviation of the mark, When the substrate 100 is processed, it is easy to carry out the design and incorporate the positional shift amount (for example, the design design is corrected in step S11 of Fig. 3). With this correction, since the offset between the mark center and the photographing center can be reduced, the accuracy of the center of the mark is improved. Thereby, the precision of the drilling process can be improved. Further, the temperature φ degree management at the production site is re-evaluated based on the tendency of the same positional deviation, whereby the amount of deformation of the substrate 100 can be reduced, so that productivity can be improved. As described above, according to the substrate deformation recognizing method, the substrate deformation recognizing device, and the substrate deformation recognizing program according to the present embodiment, the following excellent effects can be obtained. (1) The substrate deformation recognizing method according to the present embodiment includes: gradually moving the substrate 100 to each target position for a plurality of target positions (marking centers 501a to 501d) set in advance on the substrate 100, and • at each target The first project for detecting the position of the substrate after the movement (steps S11 to S13 in FIG. 3); and the position data for associating the target position with the position of the moved substrate in each target position is stored in the memory device The second project of 161a (steps S14 to S15 of Fig. 3) and the third project (Fig. 4) for identifying the deformation of the substrate 100 based on the position data of the memory device 161a. In this way, the position after the movement is given relevance at each target position, so that it is easy to grasp how the substrate has a degree of positional shift or how much positional displacement is present at any position on the substrate (substrate Position -19-201007401 offset information, which makes it easier and more accurate to measure the entire shape of the substrate. (2) In steps S21 to S23 of FIG. 4, the location data stored in the memory device 161a is input to the computer (computer body 161), and the computer 161 is made into graphic data according to the location data thereof, and The graphic data is identifiably displayed on the screen of the display device (display 162), and the deformation of the substrate 100 is recognized based on the display on the screen. As a result, the positional deviation tendency of the substrate or the deformation pattern of the substrate can be grasped directly (intuitively) by vision. (3) In step S22 of Fig. 4, the position data relating to all the target positions set on the substrate 100 are simultaneously displayed on the display 162 (Fig. 5). In this way, it is easy for the user to directly (intuitively) grasp how much the entire substrate is deformed. (4) In step S23 of Fig. 4, the user slides the adjustment rail 5 2b (Fig. 5) and displays the position shift amount arbitrarily. In this way, the user can easily grasp the tendency of the positional shift. (5) The substrate deformation recognizing device according to the present embodiment is provided with means (adjustment slide 52d) for enlarging and reducing the scale (scale) of the coordinate system of the position data in accordance with the user's operation. Accordingly, the positional data can be displayed by an appropriate scale, and the degree of deformation of the substrate can be easily grasped intuitively (intuitively). (6) In step S13 of Fig. 3, after the substrate 100 is moved, the same substrate is photographed by the X-ray camera 12 (photographing means), and the position of the substrate after the movement is detected based on the center of the image. In this way, it is easier and more accurate to measure the position of the substrate -20- 201007401. Further, the above-described embodiments and modifications may be made as follows. Even if the computer body 161 is used, the result of performing statistical processing on a specific number of location data is displayed on the display 1 62. For example, as shown in Fig. 7, even if the average of the majority of the data is taken, the graphic display and the majority of the photographing centers 502a and the position data 602a corresponding to the average number of them are also available. Further, for example, as shown in Fig. 8, even if the offset amount is counted, the pattern display corresponds to the position data 602a of the center , and the range R1 of 3 〇· (standard deviation). Such statistical processing can be performed even in segments at any time. For example, even if the start time and the end time (period) are input to the related information portion 53 (Fig. 5), the result of statistical processing for the data in the time period thereof may be displayed on the display 162. Even if the graphic display and the digital display are combined, the position data can be displayed. For example, as shown in Fig. 9, even if the graph shows the range R1 of 3σ, and Φ displays the number of 値, it may be displayed. In the above embodiment, the positional information of each of the substrates 100 is displayed. However, the present invention is not limited to this, and it is also possible to simultaneously display the position data of a plurality of substrates 100 (for example, to divide and display the screen) on one screen. In the above embodiment, the user slides the adjustment rail 54b (Fig. 5), thereby displaying the positional data of any of the substrates 100. However, the present invention is not limited to this. Even if the position data is automatically switched according to the degree of passage of the specific time, the position data of each substrate is sequentially displayed, and the deformation of the substrate per -21 - 201007401 can be sequentially recognized. Furthermore, even if it is sufficient for other settings or settings, appropriate stylization (automation) can be performed as needed. In the above embodiment, the deformation of the substrate 100 can be identified based on the center coordinates of the mark of the actual hole processing. However, it is not limited thereto, and for example, a mark for recognizing deformation may be additionally provided. The mark may be provided with at least one mark in the vicinity of all the corners of the substrate 100, for example, as shown in Fig. 10, even if the target position is set only at one diagonal portion of the diagonal. Further, for example, as shown in Fig. 11, it is possible to provide a concentrated portion, particularly a portion where φ is to be detected (the same as the central portion of the substrate 100 in the example of Fig. 11). In the above embodiment, although a rectangular substrate is mentioned, even if the shape of the substrate is arbitrary, for example, other polygonal shapes or circular shapes may be used in the above embodiment, although the positional data is displayed by the quadratic coordinates. However, even if the position data is displayed by the 3 dimensional coordinates.

在上述實施型態中,雖然將目標移動位置(設計値) Q 和移動後之基板100之位置的位置資料繪圖於特定座標系 (XY座標系),藉由兩者間之距離’將位置偏移量圖形 顯示成可辨識,但是即使藉由線(line )或標記之粗度或 大小,或者顏色等,將位置偏移量予以圖形顯不成可辨識 亦可。 在上述實施型態中,雖然提及使用者根據位置資料之 圖形顯示,辨識基板100之變形之情形’但是即使藉由使 電腦本體161運算,並使電腦本體161辨識基板100之變 -22- 201007401 形亦可。然後,作成圖形資料’例如第12圖所示般’即 使將基板1 〇〇之變形態樣予以圖形顯示亦可。 第1圖所示之構成可適當變更。例如,在上述實施型 態中,雖然使用X攝影機,但是即使攝影用之攝影機爲任 意,例如使用可視光攝影機等亦可。並且,用途也不限定 於鑽孔。 Φ 【圖式簡單說明】 第1圖爲表示針對本發明所涉及之基板變形辨識方法 及基板變形辨識裝置及基板變形辨識程式一實施型態,表 示該裝置之槪要的圖式。 第2圖爲表示印刷基板之標記之配置之一例的圖式。 第3圖爲表示用以在基板鑽孔之處理程序之一例的流 程圖。 第4圖爲表示用以辨識基板變形之處理程序之一例的 • 流程圖。 第5圖爲表示圖形資料之顯示態樣之一例的圖式。 第6圖爲針對圖形資料之顯示標度調整態樣,(a) 表示放大前之顯示’ (b)表示放大後之顯示之圖式。 第7圖爲表示圖形資料之顯示態樣之一例的圖式。 第8圖爲表示圖形資料之顯示態樣之另一例的圖式。 第9圖爲表示圖形資料之顯示態樣之另一例的圖式。 第10圖爲表示印刷基板之標記之配置之另一例的圖 式。 -23- 201007401 第11圖爲表示印刷基板之標記之配置之另一例的圖 式。 第12圖爲表示圖形資料之顯示態樣之另一例的圖式 【主要元件符號說明】 12: X射線攝影機(攝影手段) 1 4 :鑽孔用鑽頭 15:基板移動用致動器 1 6 :控制解析部 5 0 :資料顯示部 5 lb、52b、54b :調整滑軌 100 :基板 1 6 1 :電腦本體 1 6 1 a :記憶裝置 162:顯示器(顯示裝置) -24-In the above embodiment, although the positional data of the target moving position (design 値) Q and the position of the moved substrate 100 are plotted on a specific coordinate system (XY coordinate system), the position is shifted by the distance between the two. The shift pattern is displayed as identifiable, but even if the line offset or the size or size of the mark, or color, etc., the position offset is not identifiable. In the above embodiment, although the user is referred to the graphic display of the position data, the deformation of the substrate 100 is recognized, but even if the computer body 161 is operated, the computer body 161 is recognized as the change of the substrate 100- 201007401 Shape is also available. Then, the pattern data is created, for example, as shown in Fig. 12, and the pattern of the substrate 1 may be graphically displayed. The configuration shown in Fig. 1 can be changed as appropriate. For example, in the above embodiment, an X camera is used. However, even if the camera for photography is arbitrary, for example, a visible light camera or the like may be used. Also, the use is not limited to drilling. Φ [Brief Description of the Drawings] Fig. 1 is a view showing an embodiment of the substrate deformation recognition method, the substrate deformation recognition device, and the substrate deformation recognition program according to the present invention, and shows a schematic diagram of the device. Fig. 2 is a view showing an example of the arrangement of marks on a printed circuit board. Fig. 3 is a flow chart showing an example of a processing procedure for drilling a substrate. Fig. 4 is a flow chart showing an example of a processing procedure for identifying the deformation of the substrate. Fig. 5 is a view showing an example of a display form of graphic data. Fig. 6 is a display scale adjustment pattern for graphic data, (a) shows the display before enlargement' (b) shows the enlarged display. Fig. 7 is a view showing an example of a display form of graphic data. Fig. 8 is a view showing another example of the display aspect of the graphic data. Fig. 9 is a view showing another example of the display aspect of the graphic data. Fig. 10 is a view showing another example of the arrangement of marks on a printed circuit board. -23- 201007401 Fig. 11 is a view showing another example of the arrangement of the marks of the printed circuit board. Fig. 12 is a view showing another example of the display aspect of the graphic data [Description of main components] 12: X-ray camera (photographic means) 1 4: Drill bit 15: Substrate moving actuator 16: Control analysis unit 50: data display unit 5 lb, 52b, 54b: adjustment slide 100: substrate 1 6 1 : computer main body 1 6 1 a : memory device 162: display (display device) -24-

Claims (1)

201007401 七、申請專利範圍 1· 一種基板變形辨識方法,其特徵爲:具備 第1工程,針對事先設定在基板上之多數目標位置, 逐次使上述基板移動至各目標位置,在每目標位置檢測出 移動後之基板的位置; 第2工程,針對上述各目標位置,使該目標位置和上 述移動後之基板之位置賦予關聯性的位置資料記憶於記憶 裝置;和 第3工程,根據被記憶於上述記憶裝置之位置資料, 辨識上述基板之變形。 2. 如申請專利範圍第1項所記載之基板變形辨識方 法,其中, 上述第3工程係將被記憶於上述記憶裝置之位置資料 之至少一部分輸入至電腦,使該電腦作成根據其位置資料 之圖形資料,並且使其圖形資料能夠辨識地圖形顯示於顯 • 示裝置之畫面,並根據該畫面上之圖形顯示,辨識上述基 板之變形。 3. 如申請專利範圍第2項所記載之基板變形辨識方 法,其中, 上述第3工程係使被設定在上述基板上之所有目標位 置所涉及之位置資料同時顯示於上述顯示裝置,根據該些 被顯示之位置資料,辨識上述基板之變形。 4. 如申請專利範圍第2項所記載之基板變形辨識方 法,其中, -25- 201007401 爲針對多數基板辨識變形之方法, 在上述第3工程中,係將藉由上述電腦針對特定數量 的上述基板所涉及之位置資料予以統計處理之結果,顯示 於上述顯示裝置。 5. 如申請專利範圍第4項所記載之基板變形辨識方 法,其中, 爲針對多數基板辨識變形之方法, 在上述第3工程中,係將藉由上述電腦針對特定數量 的上述基板所涉及之位置資料,在事先設定的每一個至多 數的時段予以統計處理之結果,顯示於上述顯示裝置。 6. 如申請專利範圍第2項所記載之基板變形辨識方 法,其中, 爲針對多數基板辨識變形之方法, 上述第3工程係在上述顯示裝置順序顯示各基板之位 置資料,依序辨識每基板之變形。 7. 如申請專利範圍第1項所記載之基板變形辨識方 法,其中, 作爲上述多數目標位置,係在上述基板之所有角部的 附·近設定至少一個目標位置。 8 .如申請專利範圍第1項所記載之基板變形辨識方 法,其中, 在上述第1工程中,於移動後攝影基板,根據其攝影 中心,檢測出上述移動後之基板之位置。 9. 一種基板變形辨識裝置,其特徵爲··具備 -26- 201007401 第1手段,針對事先設定在基板上之多數目標位置, 逐次使上述基板移動至各目標位置,在每目標位置檢測出 移動後之基板的位置;和 第2.手段,針對上述各目標位置,使該目標位置和上 述移動後之基板之位置賦予關聯性。 10.如申請專利範圍第9項所記載之基板變形辨識裝 置,其中,具備 φ 使能夠記憶藉由上述第2手段被賦予關連性之位置資 料的記憶裝置; 輸入被記憶於上述記憶裝置之位置資料,作成根據其 位置資料之圖形資料的電腦;和 顯示藉由上述電腦所作成之圖形資料的顯示裝置。 11·如申請專利範圍第1 〇項所記載之基板變形辨識 裝置,其中, 上述電腦作成將上述位置資料繪圖顯示成特定座標系 Φ 的圖形資料, 具備根據使用者之操作,放大及縮小上述座標系之尺 度的手段。 12. 如申請專利範圍第ίο項所記載之基板變形辨識 裝置,其中, 上述電腦作成圖形資料,該圖形資料係用以圖形顯示 將針對特定數量的上述基板所涉及之位置資料予以統計處 理的結果。 13. 如申請專利範圍第12項所記載之基板變形辨識 -27- 201007401 裝置,其中, 上述電腦作成圖形資料’該圖形資料係用以圖形顯示 將針對特定數量的上述基板所涉及之位置資料在事先設定 的每一個至多數的時段予以統計處理的結果。 14. 如申請專利範圍第10項所記載之基板變形辨識 裝置,其中, 上述電腦作成圖形資料,該圖形資料係用以同時顯示 被設定在上述基板上的所有目標位置所涉及的位置資料。 15. 如申請專利範圍第9項所記載之基板變形辨識裝 置,其中, 具有攝影上述基板之攝影手段, 上述第1手段係於上述基板移動後藉由上述攝影手段 攝影該基板,根據其攝影中心,檢測出上述移動後之基板 之位置。 16. —種基板變形辨識程式,其特徵爲: 以下述手段使電腦發揮功能, 第1手段,針對事先設定在基板上之多數目標位置, 逐次使上述基板移動至各目標位置,在每目標位置檢測出 移動後之基板的位置; 第2手段’針對上述各目標位置,使該目標位置和上 述移動後之基板之位置賦予關聯性; 第3手段,使該電腦之記憶裝置記憶藉由上述第2手 段被賦予關連性之位置資料; 第4手段’生成根據被記憶於上述記憶裝置之位置資 -28- 201007401 料的圖形資料;和 第5手段,使上述圖形資料能夠辨識地圖形顯示於該 電腦之顯示裝置。201007401 VII. Patent Application No. 1 A method for identifying a substrate deformation characterized by comprising a first project for sequentially moving the substrate to each target position for a plurality of target positions set on a substrate in advance, and detecting each target position The position of the substrate after the movement; in the second project, the position data for associating the target position with the position of the moved substrate is stored in the memory device; and the third item is stored in the above The position data of the memory device identifies the deformation of the substrate. 2. The substrate deformation identification method according to the first aspect of the invention, wherein the third engineering system inputs at least a part of the location data stored in the memory device to a computer, and the computer is made based on the location data. The graphic data is displayed on the screen of the display device in an identifiable manner, and the deformation of the substrate is recognized according to the graphic display on the screen. 3. The method for identifying a substrate according to claim 2, wherein the third engineering system simultaneously displays position data relating to all target positions set on the substrate on the display device, according to the display device. The position data displayed is used to identify the deformation of the substrate. 4. The method for identifying a substrate deformation according to the second aspect of the patent application, wherein -25-201007401 is a method for recognizing deformation of a plurality of substrates, and in the third project, the computer is targeted to a specific number of the above The result of statistical processing of the positional data of the substrate is displayed on the display device. 5. The method for identifying a substrate deformation according to the fourth aspect of the invention, wherein the method for recognizing deformation of a plurality of substrates is the third project, wherein the computer is used for a specific number of the substrates. The position data is displayed on the display device as a result of statistical processing for each of the predetermined time periods. 6. The substrate deformation identification method according to claim 2, wherein the third engineering system sequentially displays the position data of each substrate in the display device, and sequentially identifies each substrate. The deformation. 7. The substrate deformation recognizing method according to claim 1, wherein the plurality of target positions are at least one target position in the vicinity of all corners of the substrate. The substrate deformation recognizing method according to the first aspect of the invention, wherein in the first project, the position of the substrate after the movement is detected based on the photographing center of the photographing substrate after the movement. 9. A substrate deformation recognizing device comprising: -26-201007401, the first means for sequentially moving the substrate to each target position for a plurality of target positions set on the substrate in advance, and detecting movement at each target position The position of the subsequent substrate; and the second means, the target position and the position of the substrate after the movement are correlated with each of the target positions. 10. The substrate deformation recognizing device according to claim 9, wherein the φ is provided with a memory device capable of storing the positional data to which the second means is provided with the correlation; and the input is stored in the memory device. Data, a computer that creates graphical data based on its location data; and a display device that displays graphical data made by the computer. The substrate deformation recognizing device according to the first aspect of the invention, wherein the computer creates a graphic data in which the position data is displayed as a specific coordinate system Φ, and the zooming and reducing the coordinates are performed according to a user operation. The means of the scale. 12. The substrate deformation recognizing device according to claim 255, wherein the computer creates graphic data for graphically displaying results of statistical processing of positional data relating to a specific number of the substrates. . 13. The apparatus for identifying a substrate deformation identification -27-201007401 according to claim 12, wherein the computer generates graphic data 'the graphic data is used for graphically displaying location information related to a specific number of the substrates The result of statistical processing is set for each of the most-period time periods set in advance. 14. The substrate deformation recognizing device according to claim 10, wherein the computer creates graphic data for simultaneously displaying positional information relating to all target positions set on the substrate. The substrate deformation recognizing device according to claim 9, wherein the first means is to photograph the substrate by the photographing means after the substrate is moved, and according to the photographing center The position of the substrate after the movement is detected. 16. A substrate deformation recognition program characterized by: causing a computer to function by the following means, and the first means sequentially moving the substrate to each target position for a plurality of target positions set on the substrate in advance, at each target position Detecting the position of the substrate after the movement; the second means 'associating the target position with the position of the moved substrate for each of the target positions; and the third means, storing the memory device of the computer by the above 2 means is provided with location information of relevance; the fourth means 'generates graphic data according to the position of the memory device -28-201007401; and the fifth means, the graphic data is identifiable and displayed on the graphic Display device for computers. -29--29-
TW098113646A 2008-05-12 2009-04-24 Substrate expansion and contraction conditions display device, method for displaying substrate expansion and contraction conditions, and information recording medium TW201007401A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125257A JP2009276096A (en) 2008-05-12 2008-05-12 Substrate deformation recognition method, substrate deformation recognition device, and substrate deformation recognition program

Publications (1)

Publication Number Publication Date
TW201007401A true TW201007401A (en) 2010-02-16

Family

ID=41362139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098113646A TW201007401A (en) 2008-05-12 2009-04-24 Substrate expansion and contraction conditions display device, method for displaying substrate expansion and contraction conditions, and information recording medium

Country Status (4)

Country Link
JP (1) JP2009276096A (en)
KR (1) KR20090117992A (en)
CN (1) CN101579753A (en)
TW (1) TW201007401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555605B (en) * 2013-06-14 2016-11-01 Ap系統股份有限公司 Method of correcting stage scale

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343507A (en) * 2010-07-30 2012-02-08 信义汽车玻璃(深圳)有限公司 Method for mounting and positioning automobile glass accessory
JP5350350B2 (en) * 2010-10-19 2013-11-27 セイコープレシジョン株式会社 X-ray position measurement apparatus, position measurement method for X-ray position measurement apparatus, and position measurement program for X-ray position measurement apparatus
JP5674523B2 (en) * 2011-03-28 2015-02-25 富士機械製造株式会社 Mounting method of electronic parts
CN102699733B (en) * 2012-06-12 2014-06-25 大连理工大学 Method and device for measuring movement locus of automatic tool changing mechanical arm
CN103034146B (en) * 2012-12-31 2014-08-13 广州杰赛科技股份有限公司 Method for controlling X-Ray punch
KR101516087B1 (en) * 2013-11-08 2015-05-04 삼성전기주식회사 Pcb scale monitoring device and method
CN103997852B (en) * 2014-04-23 2017-02-22 奥士康精密电路(惠州)有限公司 Expandable-shrinkable plate pile-dividing method
CN106604576B (en) * 2016-12-30 2019-04-12 广州兴森快捷电路科技有限公司 Wiring board laminating method and system
CN111867252B (en) * 2020-06-02 2021-10-22 江西一诺新材料有限公司 High-precision covering film laminating method
CN113352397B (en) * 2021-06-29 2023-07-07 江苏艾诺信电路技术有限公司 Drilling method, system, device, equipment and storage medium for multilayer board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857780A (en) * 1981-10-01 1983-04-06 株式会社日立製作所 Method and device for inspecting printed board
JPH0738519B2 (en) * 1985-12-27 1995-04-26 松下電器産業株式会社 Electronic component mounting method
JPH02267134A (en) * 1989-04-06 1990-10-31 Furukawa Electric Co Ltd:The Method for monitoring the change in outer diameter of optical fiber in the optical fiber-drawing process
US5506793A (en) * 1994-01-14 1996-04-09 Gerber Systems Corporation Method and apparatus for distortion compensation in an automatic optical inspection system
JPH11195054A (en) * 1998-01-06 1999-07-21 Toray Ind Inc Method and device for displaying deformation extent of article shape, manufacture of molding, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555605B (en) * 2013-06-14 2016-11-01 Ap系統股份有限公司 Method of correcting stage scale

Also Published As

Publication number Publication date
KR20090117992A (en) 2009-11-17
CN101579753A (en) 2009-11-18
JP2009276096A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
TW201007401A (en) Substrate expansion and contraction conditions display device, method for displaying substrate expansion and contraction conditions, and information recording medium
JP4542046B2 (en) Drilling method and drilling device
TWI464827B (en) Apparatus and method of wafer alignment
TW595281B (en) Method and apparatus for registration control in production by imaging
JP6235664B2 (en) Measuring device used to calibrate mechanism parameters of robot
US20030208740A1 (en) System and method for monitoring and improving dimensional stability and registration accuracy of multi-layer PCB manufacture
JP2012240174A (en) Calibration device and calibration method
JP2007309808A (en) Method and system for detecting position of object
TW506028B (en) Wire bonding device and wire bonding method
TW504418B (en) Machining device for work
JP2008211009A (en) Method of preparing component library data
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
JP2007218846A (en) Dimensional measurement method, imaging device, controller, and dimensional measuring device
JP6643171B2 (en) Robot point position adjustment control method and system
JP2008166410A (en) Positioning calibration method, and mounting device applying the same
TW200419286A (en) A method of detecting a pattern and an apparatus thereof
JP2000028336A (en) Device for measuring shape and method therefor
JP3853658B2 (en) Image measuring apparatus and image measuring program
JP2005229111A (en) Method of presuming at least one part arrangement position on substrate, and equipment executing the method
CN113379692A (en) Method and device for calibrating OM and SEM coordinate relation, equipment and storage medium
JP2008224497A (en) Measurement position display method and measurement device
JP2009302154A (en) Exposure apparatus and method for manufacturing device
JPH0829458B2 (en) How to mount parts automatically
JP2008256500A (en) Measuring method and measuring device
JP3005515B2 (en) Centering method of drilling machine