TW201005758A - Copper powder for conductive paste, and conductive paste - Google Patents

Copper powder for conductive paste, and conductive paste Download PDF

Info

Publication number
TW201005758A
TW201005758A TW098121454A TW98121454A TW201005758A TW 201005758 A TW201005758 A TW 201005758A TW 098121454 A TW098121454 A TW 098121454A TW 98121454 A TW98121454 A TW 98121454A TW 201005758 A TW201005758 A TW 201005758A
Authority
TW
Taiwan
Prior art keywords
copper powder
atm
conductive paste
copper
particle
Prior art date
Application number
TW098121454A
Other languages
Chinese (zh)
Inventor
Koyu Ota
Toru Kurimoto
Yoshiaki Uwazumi
Koichi Miyake
Katsuhiko Yoshimaru
Original Assignee
Mitsui Mining & Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co Ltd filed Critical Mitsui Mining & Smelting Co Ltd
Publication of TW201005758A publication Critical patent/TW201005758A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

A copper powder for a conductive paste contains 0.1 atm%-10 atm% of Si (silicon) and 0.1 atm%-10 atm% of In in the particle. It is preferable that the copper powder for a conductive paste contains 0.1 atm%-10 atm% of Ag (silver) in the particle. It is also preferable that the copper powder for a conductive paste contains 0.01 atm%-0.5 atm% of P (phosphorus). The ratio of Si/In (atm ratio) is preferably 0.5-5. The copper powder for a conductive paste is preferably manufactured by an atomization method.

Description

201005758 六、發明說明: 【發明所屬之技術領域】 本發明係關於種導電膏用銅粉及使用其之導電膏。本 發明尤其係關於-種針對絲網印刷加成法中之導體電路 用或者積層陶兗電容器之外部電極形成用等之各種電接 點構件形成用之導電膏所適合的銅粉,及使用該銅粉之導 電膏。 【先前技術】 成:t 口二#作之♦易性’故而—直以來作為絲網印刷加 >之導體電路用、或者積層陶Ή容器之外部電極形 =等之各種電接點構件形成用之導電膏的導電材料等而 被廣泛利作。 上迷導電f例如可藉由在銅粉中調配環氧樹脂等樹脂及 2硬化劑等各種添加劑並混練而獲得。所❹之銅粉可藉 下述方法而製造:利用還原劑自包含銅鹽之溶液等中析 式還原法;使銅鹽加熱氣化並在氣相中還 還或者利用惰性氣體或水等冷媒使已料之銅 心速冷卻而粉末化之霧化法等。 濕造方法*,霧化法相較-般廣泛利用之 較小的有可使所獲得之銅粉中之雜質之殘留濃度 至内部之一”亦具有可使所獲得之銅粉粒子之自表面 使用有由霧化Γ之優點。因此,在導電膏之導電材❹ 體產生量造之銅粉時,具有可使膏硬化時之氣 里父V、且可大幅抑制氧化進行之優點。 141244.doc 201005758 a銅粉因其導電性高,因而適合於導電膏之導電材料 疋,存在如下缺點,即,伴隨粒度變微細,其耐氧化性劣 化。為了改善該缺點而採用下述對策:利用具有耐氧化性 Z來塗佈粒子表面(專利文獻1),或者利用無機氧化物來 土佈粒子表面(專利文獻2)等。 專利文獻1:日本專利特開平HM52630號公報 專利文獻2 :曰本專利特開2〇〇5_】29424號公報 【發明内容】 近來’於使用有導雷客笙 頁導電之電路形成時,要求電路進一 m必然地,對於導電膏用之導電粉之粒度亦要求 而”此㈣’在確保膏特性之敎性及可靠性方 電粉必須細彡狀及粒度之不均較小、且不會損及導 = 生者。並且,若僅著眼於耐氧化性改善,則可利用專利 文獻1及2等之技術來應對。 專刮 要的:利文獻1及2等之技術依賴於被覆技術,因而需 ΓΓΓ銅以外之成分、即損及導電性之成分。不僅: 會產生被覆物自作為芯材之銅粒子剝離之問題。 同樣地均質,且所含有之:=,亦期望所構成之粒子 未發現可滿足者。 -度較低’而上述鋼粉中尚 本七明之目的在於提供一種不會損及導電性 Γ粒度但耐氧純優異之導電膏用銅粉。又,本發= =於提供一種形狀及粒度之不均較小、且所含 之/辰度較低的導電膏用鋼粉。 141244.doc 201005758 +本毛月者等為了解決上述課題而潛心研究之結果發現, 若在銅粉之粒子内部人—θ I5 3有特疋莖之Si及In,則可解決上述 課題,從而完成本發明。 本發明之導電膏用銅粉之特徵在於:在粒子内部含 atm%〜10 atm%之Si’且含有atm%〜i〇伽%之 即 有0.1 η又本务明之另一態樣係一種含有上述導電膏用銅粉 之導電膏。 發明之效果201005758 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a copper powder for a conductive paste and a conductive paste using the same. In particular, the present invention relates to a copper powder suitable for a conductive paste for forming various electrical contact members for forming a conductor circuit for a screen circuit or a multilayer electrode of a ceramic capacitor, and the like. Conductive paste for copper powder. [Prior Art] Cheng: t 口二# ♦ 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易It is widely used as a conductive material of a conductive paste or the like. The conductive f can be obtained, for example, by mixing various additives such as a resin such as an epoxy resin and a curing agent in copper powder. The copper powder can be produced by the following method: a precipitation reduction method from a solution containing a copper salt by using a reducing agent, heating and gasification of a copper salt, and further using a refrigerant such as an inert gas or water in the gas phase. An atomization method in which the molten copper is cooled and powdered, and the like. Wet-making method*, the atomization method is relatively widely used, and the residual concentration of the impurities in the copper powder obtained can be one of the internal ones”, and the self-surface use of the obtained copper powder particles can also be used. There is an advantage of atomizing enamel. Therefore, when the amount of the copper powder produced by the conductive material of the conductive paste is generated, it has the advantage that the gas can be cured when the paste is cured, and the oxidation can be greatly suppressed. 141244.doc 201005758 a copper powder is suitable for a conductive material of a conductive paste because of its high conductivity, and has a drawback that the oxidation resistance is deteriorated as the particle size becomes fine. In order to improve the disadvantage, the following countermeasures are adopted: The surface of the particle is coated by the oxidizing property Z (Patent Document 1), or the surface of the particle is coated with an inorganic oxide (Patent Document 2), etc. Patent Document 1: Japanese Patent Laid-Open No. HM52630 Patent Document 2: Open 2〇〇5_]29424号 [Summary of the Invention] Recently, when a circuit using a conductive guide page is formed, it is necessary to make the circuit enter a certain degree, and the grain size of the conductive powder for the conductive paste is also required. And "this (four)" in order to ensure the properties of the paste and the reliability of the electric powder must be fine and the unevenness of the particle size is small, and will not damage the lead. In addition, if attention is paid to improvement of oxidation resistance, it can be dealt with by techniques such as Patent Documents 1 and 2. Specially required: The technologies of the literatures 1 and 2 depend on the coating technique, and therefore require components other than copper, that is, components that are damaged and conductive. Not only: There is a problem that the coating material is peeled off from the copper particles as the core material. It is homogeneous and contains: =, and it is also expected that the constituent particles are not found to be satisfactory. The purpose of the above-mentioned steel powder is to provide a copper powder for a conductive paste which does not impair the conductivity Γ particle size but is excellent in oxygen resistance. Further, the present invention provides a steel powder for a conductive paste having a small unevenness in shape and particle size and a low degree of inclusion/minus. 141244.doc 201005758 + The results of the research conducted by the Maoyue and others in order to solve the above problems have found that if the inside of the copper powder particles - θ I5 3 has special stems of Si and In, the above problems can be solved and completed. this invention. The copper powder for conductive paste of the present invention is characterized in that it contains atm% to 10 atm% of Si' in the inside of the particle and contains 0.1% of atm%~i gamma%, and another aspect of the present invention is one type The above conductive paste is a conductive paste of copper powder. Effect of invention

本發明之導電膏用銅粉係藉由在粒子内部包含除銅以外 之特定之成分種從而不會損及導電性、且儘f為微細粒度 仁耐氧化性非常優異者。並且,由於粒子之形狀及粒度之 不均較小,且所含有之氧之濃度較低,因而本發明之導電 用用銅粉可極其良好地用作絲網印刷加成法中之導體電路 用、或者積層陶竟電容器之外部電極形成用等各種電接點 構件形成用之導電膏之導電材料等。 【實施方式】 就本發明之導電貧用銅粉之實施形態加以說明。但是, 本發明之範圍並非係限定於以下實施形態者。 本發明之導電膏用銅粉之特徵在於:在粒子内部含有 0.1 atm%〜10 atm%2Si,且含有 G」atm%〜1〇 伽%之^。 此處,重要的是,並非僅含有8丨及In,而是在粒子内部 含有特定量之Si及In。所謂「粒子内部」,係指比粒子表面 更靠内側之部位。 以上述專利文獻為首之代表性的先前技術所揭示之銅 141244.doc 201005758 =亦p有導电性比銅差的各種物質或者化合物被覆或附 著於作為騎之鋼粉粒子之表面的銅粉,在对氧化性之改 口面有效但疋,此種銅粉並非係具有本發明所要求之 f性者’即’亚非係具有不會損及導電性、粒度微細、耐 氧化性優異之特性者。 本發明之導電膏用銅粉令所包含之Si及In成分分布於粒 子内部之金屬相中。特別好的是該等成分存在於粒子之内 部\且不露出於粒子之表面’濃密存在於粒子表面之附 k右Sj In成分為上述分布狀態,則除了改善耐氧化性 之外’還會起到可維持優異之導電性之有利效果。 ί上述刀布狀加以詳細描述,上述的「漠密存在於粒 子表面之附近」係指⑴及化成分並不存在於粒子之表面, :偏:於自粒子表面起的特定深度之區域中。於該情形 右Si及In成分遭密存在於粒子表面之附近,則益需使 Si成分之分布狀態與㈣分之分布狀態一致。尤並:似 ^分不僅不存在於粒子表面,且實質上亦不存在 粒子 之中心區域之情形時,從進一步改善耐氧化性及進一步維 之觀點而言較佳。粒子令之Mb成分之分布狀 Μ糟由下述方法而測定:以氨離子賤鑛等來對粒子表面 進行刮削,並對制後所生成之面進行元素 斷粒子,進行切斷面之元素分析。 戈者刀 八=:之導電膏用鋼粉般’在粒子内部同時含有^ /、二 尤其可使辦〜戰時之耐氧化性大幅提 间。例如’以後述之△(職以)即耐氧化性指標表示,可 I41244.doc 201005758 實現600°C之溫度水平下之△為20%/m2/cm3以下。此種有利 之效果對於個別含有Si成分或In成分之銅粉而言無法獲 得。 於本發明之導電膏用銅粉中,Si之含量為0.1 atm°/〇〜10 atm%,較好的是0.5 atm%〜5 atm%,更好的是1 atm%~3 atm%。當Si之含量未滿0.1 atm%時,無法期待本發明所要 求之效果。當Si之含量超過10 atm%時,不僅損及導電 性,而且無法獲得添加所帶來之效果。The copper powder for a conductive paste of the present invention contains a specific component other than copper in the inside of the particles, so that the conductivity is not impaired, and the fine particle size is excellent. Further, since the shape and particle size of the particles are small and the concentration of oxygen contained therein is low, the copper powder for electric conduction of the present invention can be used extremely well as a conductor circuit in a screen printing additive method. Or a conductive material such as a conductive paste for forming various electrical contact members for forming an external electrode of a ceramic capacitor. [Embodiment] An embodiment of the conductive poor copper powder of the present invention will be described. However, the scope of the present invention is not limited to the following embodiments. The copper powder for a conductive paste of the present invention is characterized in that it contains 0.1 atm% to 10 atm% 2Si in the inside of the particles and contains G"atm% to 1 〇%. Here, it is important that not only 8 Å and In are contained, but a specific amount of Si and In are contained inside the particles. The term "inside the particle" means a portion located further inside than the surface of the particle. Copper 141244.doc 201005758, which is a representative of the prior art, which is represented by the above-mentioned patent documents, also has various substances or compounds which are less conductive than copper and are coated or adhered to the copper powder which is the surface of the steel powder particles. It is effective in the modification of the oxidizing property, but such a copper powder is not the one having the f-type required by the present invention, that is, the 'Asian-African system' has characteristics that do not impair conductivity, fine particle size, and excellent oxidation resistance. . The copper powder for the conductive paste of the present invention distributes the Si and In components contained in the metal phase inside the particles. It is particularly preferable that the components are present in the interior of the particles and are not exposed on the surface of the particles. The concentration of the right Sj In component present on the surface of the particle is in the above-described distribution state, and in addition to improving oxidation resistance, To the advantage of maintaining excellent electrical conductivity. The above-mentioned knives are described in detail. The above-mentioned "intimacy exists in the vicinity of the surface of the particles" means that (1) and the chemical components do not exist on the surface of the particles, and are: in a region of a specific depth from the surface of the particles. In this case, the right Si and In components are densely present in the vicinity of the particle surface, and it is desirable to make the distribution state of the Si component coincide with the distribution state of the (four) points. In particular, when the fraction does not exist on the surface of the particle and substantially does not have a central region of the particle, it is preferable from the viewpoint of further improving oxidation resistance and further improving. The particle causes the distribution of the Mb component to be measured by the following method: the surface of the particle is scraped with an ammonia ion ore, and the element formed by the process is broken, and elemental analysis of the cut surface is performed. . Goer's knife Eight=: The conductive paste is made of steel powder. ‘In the interior of the particle, it also contains ^ /, II. In particular, it can make the oxidation resistance of wartime wartime greatly increase. For example, Δ (employment), which is described later, is an oxidation resistance index, and I41244.doc 201005758 can achieve a temperature level of 600 ° C of Δ of 20%/m 2 /cm 3 or less. Such an advantageous effect cannot be obtained for a copper powder containing a Si component or an In component individually. In the copper powder for conductive paste of the present invention, the content of Si is 0.1 atm ° / 〇 10 10 atm%, preferably 0.5 atm% to 5 atm%, more preferably 1 atm% to 3 atm%. When the content of Si is less than 0.1 atm%, the effects required by the present invention cannot be expected. When the content of Si exceeds 10 atm%, not only the conductivity is impaired, but also the effect of the addition cannot be obtained.

In之含量為0.1 atm%〜10 atm%,較好的是0.5 atm°/〇〜5 atm%,更好的是1 atm%〜3 atm%。當In之含量未滿0· 1 atm%時,無法期待本發明所要求之效果。當In之含量超過 1 0 atm%時,不僅損及導電性,而且無法獲得添加所帶來 之效果,於製造經費方面亦不經濟。 本發明之導電膏用銅粉除含有Si及In之外,於粒子内部 還含有較佳為0.1 atm %〜1 0 atm%之Ag,更佳為0.5 atm%〜5 atm%之Ag,最佳為1 atm%~3 atm%之Ag。若含有該特定 量範圍之Ag,則可在維持導電膏用銅粉之耐氧化性之狀態 下,進一步提高導電性。而且製造經費亦得以抑制。特別 好的是Ag存在於粒子之内部,且濃密存在於粒子表面之附 近而並不露出於粒子之表面。尤其當Ag不僅不存在於粒子 之表面,且實質上亦不存在於粒子之中心域之情形時,從 進一步改善耐氧化性及進一步維持導電性之觀點而言較 佳。粒子中之Ag之分布狀態可藉由與先前所述之Si及In成 分之分布狀態之測定法相同的方法而測定。再者,Ag之分 141244.doc 201005758 布狀悲無需與S i及ιη之分布狀態一致。 本毛月之‘電賞用銅粉除含有Si及In之外,於粒子内部 還含有較佳為0.01 atm%〜〇5 atm%之?(磷),更佳為〇別 atm%〜0.3 atm%之p(磷)。若含有該特定量範圍之p,則成 為儘管粒度微細但耐氧化性非常優異、且導電性亦優異之 導電用用鋼私。進而,粒子之形狀及粒度之不均較小、且 所含有之氧之濃度較低的特徵有所提高。尤其藉由使Si與 '、子攸而即使p之濃度較高,亦不會阻礙耐氧化性之 改善效果’因而較佳。特別好的是p存在於粒子之内部, 且艰狁存在於粒子表面之附近而不露出於粒子之表面。尤 其^不僅不存在於粒子之表面,且實質上亦不存在於粒 子之中心域之情形時,從進一步改善耐氧化性及進一步維 持導電性之觀點而言較佳。粒子中之p之分布狀態可藉由 與先別所述之^及化成分之分布狀態之測定法相同的方法 而測足。再者,P之分布狀態無需與Si及In之分布狀鲅— 致。 〜、 八:本發明之導電膏用銅粉含有Si、ίη、八…之所有成 刀忪,儘皆粒度微細,但粒子之形狀及粒度之不均較小, 且耐氧化性非常優異,此外導電性有進一步提高。 對於本發明之導電膏用銅粉,其中所含有之以、化、 及?之比例可藉由後述之實施例中記載之方法而測定。 本發明之導電膏用銅粉中,Si/In(atm比)較好的是 〇.5:,更好的是!〜4。若Si/In之比為上述範圍,則不會使 導電性降低或提高製造經費,而可均衡地维持下述特徵·· 141244.doc 201005758 可使粒度微細,可接古β > 之不妁^ “耐乳化性,可使粒子之形狀及粒度 之不均較小,且可降低所含有之氧之濃度。The content of In is 0.1 atm% to 10 atm%, preferably 0.5 atm ° / 〇 〜 5 atm%, more preferably 1 atm% 〜 3 atm%. When the content of In is less than 0·1 atm%, the effects required by the present invention cannot be expected. When the content of In exceeds 10 atm%, not only the conductivity is impaired, but also the effect of the addition is not obtained, and the manufacturing cost is also uneconomical. The copper powder for conductive paste of the present invention contains, in addition to Si and In, an Ag of preferably 0.1 atm % to 10 0 atm%, more preferably 0.5 atm% to 5 atm% of Ag, preferably. It is 1 atm%~3 atm% of Ag. When the specific amount of Ag is contained, the conductivity can be further improved while maintaining the oxidation resistance of the copper powder for the conductive paste. Moreover, manufacturing expenses have also been suppressed. It is particularly preferable that Ag exists inside the particles and is densely present near the surface of the particles and is not exposed on the surface of the particles. In particular, when Ag is not present on the surface of the particles and does not substantially exist in the central region of the particles, it is preferable from the viewpoint of further improving oxidation resistance and further maintaining conductivity. The distribution state of Ag in the particles can be measured by the same method as the measurement of the distribution state of the Si and In components described previously. Furthermore, the division of Ag 141244.doc 201005758 does not need to be consistent with the distribution of S i and ιη. In addition to Si and In, the copper powder for the month of Maoyue also contains 0.01 atm% to 〇5 atm% inside the particles. (Phosphorus), better for screening atm%~0.3 atm% p (phosphorus). When p is contained in the specific amount range, it is a steel for electrical conduction which is excellent in oxidation resistance and excellent in electrical conductivity even though the particle size is fine. Further, the characteristics of the particle shape and the particle size are small, and the concentration of the oxygen contained therein is low. In particular, it is preferable to make Si and ', 攸, even if the concentration of p is high, and the effect of improving oxidation resistance is not hindered. It is particularly preferable that p exists inside the particle and hardly exists in the vicinity of the particle surface without being exposed on the surface of the particle. In particular, when it is not present on the surface of the particles and does not substantially exist in the central region of the particles, it is preferable from the viewpoint of further improving oxidation resistance and further maintaining conductivity. The distribution state of p in the particles can be measured by the same method as the measurement of the distribution state of the components described above. Furthermore, the distribution state of P does not need to be related to the distribution of Si and In. 〜8: The copper powder for conductive paste of the present invention contains all the knives of Si, ίη, 八..., all of which are fine in particle size, but the shape and particle size of the particles are small, and the oxidation resistance is excellent. The conductivity is further improved. For the copper powder for conductive paste of the present invention, what is contained therein? The ratio can be measured by the method described in the examples below. In the copper powder for a conductive paste of the present invention, Si/In (atm ratio) is preferably 〇.5:, more preferably! ~4. When the ratio of Si/In is in the above range, the conductivity is not lowered or the manufacturing cost is increased, and the following characteristics can be maintained in a balanced manner. 141244.doc 201005758 The particle size can be made fine and can be connected to the ancient β > ^ "Emulsification resistance can make the shape and particle size of the particles less uneven, and can reduce the concentration of oxygen contained.

當本發明之導雷I 是4 2ηη φ 用銅私含有ρ時,Si/P(atm比)較好的 疋4〜200,更好的是1〇〜1〇〇。若 一 容易使下述特徵均衡 ’、'、“圍,則 可楹古 吏粒度倣細,可提高耐氧化性, ^…性’可使粒子之形狀及粒 降低所含有之氧之濃度。 了 同樣地,當本發明之導_帝 貧用鋼粉含有P時,In/P(atm 比)較好的疋4〜200,更好的θ 1 _ 更好的疋10〜100。若Ιη/Ρ之比為上述 乾圍,則谷易使下述特徵均 氧化性,可提高導電性,可使J拉度试細,可提高耐 川 生了使拉子之形狀及粒度之不均較 小,且可降低所含有之氧之濃度。 ^㈣式還原法製造出本發明之導電膏用銅粉時,亦 ^私度地期待上述有利之效果。但是,若考慮到粒子 :狀勾稱’且用作導電膏時氣體之產生較少等之優點,則 本發明之導電膏用銅純好的是藉由霧化法所製造者。、 霧化法中’有氣體霧化法與水霧化法。若謀求粒子形狀 之勾稱化,射選擇氣料化法。若謀求粒子之微細化, 則可選擇水霧化法。又,對於本發明之導電膏用鋼粉,較 好的是錯由霧化法中之高壓霧化法所製造者。經高壓霧化 法所獲得之銅粉之粒子更加句稱、或者更加微細,因而較 佳。所謂高壓霧化法’係指於水霧化法中以5QMpai5〇 MPa左右之水壓力進行霧化之方法,於氣體霧化法中以Μ MPa〜3 MPa左右之氣體壓力進行霧化之方法 141244.doc 201005758 c。本:明:導電膏用銅粉進而亦可含有Ni、Ai、Ti、Fe、 z B::g、Mn、M°、W、Ta、Zr,、B、Ge、Sn、When the guided lightning I of the present invention is 4 2ηη φ and contains ρ privately, the Si/P (atm ratio) is preferably 疋4 to 200, more preferably 1 〇1 to 〇〇. If it is easy to balance the following features ', ', or "circumference, the grain size of the ruthenium can be reduced, and the oxidation resistance can be improved, and the shape and the particle size of the particles can be lowered by the concentration of oxygen contained in the particle. Similarly, when the steel powder of the present invention contains P, the In/P (atm ratio) is preferably 疋4 to 200, more preferably θ 1 _ is more preferably 〜10 to 100. When the ratio of Ρ is the above-mentioned dry circumference, the valley is easy to oxidize, and the conductivity can be improved, and the J-pull can be thinned, and the shape and particle size unevenness of the puller can be improved. Further, the concentration of oxygen contained in the mixture can be lowered. When the copper powder for conductive paste of the present invention is produced by the method of the reduction method (IV), the above advantageous effects are also expected privately. However, if the particle: Moreover, the copper for the conductive paste of the present invention is purely produced by the atomization method, and the gas atomization method and the water mist are used in the atomization method. If you want to make a particle shape, you can choose the gasification method. If you want to refine the particle, you can choose the water atomization method. Further, it is preferable that the steel powder for a conductive paste of the present invention is produced by a high-pressure atomization method in an atomization method. The particles of the copper powder obtained by the high-pressure atomization method are more pronounced or more fine. Therefore, the so-called high-pressure atomization method refers to a method of atomizing in a water atomization method at a water pressure of about 5 MPa to about 5 MPa, and a gas pressure of about MPa MPa to about 3 MPa in a gas atomization method. Method of atomization 141244.doc 201005758 c. Ben: Ming: Copper powder for conductive paste may further contain Ni, Ai, Ti, Fe, z B::g, Mn, M°, W, Ta, Zr, B , Ge, Sn,

Bi寻尹之至少一種以上之元素赤八^ 素成分而可謀求提高對導電膏要含=等元 :性嘯例如使—降::: : = 等元素相對於銅之添加量,可 凡、、。法專。亥 據/、所添加之元素之種類 導電特性或者其他各種特性等而進行適當設定。 添加量通常為0.001質量%〜2質量%左右。 導電膏用銅粉之粒子形狀並無特 用:選擇。例如可採用粒狀、板狀、薄片狀、樹枝 ::::等形狀。通常…謀求於膏成分中之分 ==電嘗用銅粉較好的是呈粒狀。尤其呈球狀時 得之值)v i粒狀係.曰縱橫比(平均長經除以平均短徑所 ” ·工右之一致的形狀。尤其將縱橫比為 二右之—致的形狀稱為球狀。形狀不-致的狀態稱 因㈣狀。形成粒狀之銅粉中’粒子相互之纏繞較少。 ☆將形成粒狀之鋼粉使用於導電膏之導電材料等 ’則可提高於膏中之分散性,因而非常好。 D對:ί發明之導電膏用銅粉而言,若根據體積累積粒徑 〇 2 ‘準偏差值SD所求出的變動係數(SD/D5〇)為 之真·6’㈣度分布之不均較少’從而可使得用於導電膏 好導電材料等情形時的於膏中之分散性提高,因而非常 SO及D50例如彳藉由雷射繞射散射式粒度分布測定裝 置等進行測定。 141244.doc -10- 201005758 除變動係數sn/r» 默5^/Dso之值為上述範圍之外,關於si^d 之值之本身,赫杜 季乂好的是,SD為10〜20 μηι,尤其為13〜18 μΐη,D5〇為 20〜3〇 μηι。 、對於本發明之導電f用銅粉,使—次粒子個數平均粒徑 為0.01 urn〜5Π丨丨 从 ; μηι,猎此而成為微細導體電路形成用之導 、▲導電材料等所適合的銅粉。—次粒子個數平均粒徑 ==藉由對掃描型電子顯微鏡觀察照片進行圖像解析等 …十;本《明之導電貧用銅粉,使初始之(剛製造後之)含 氧》辰度為30 ppm〜25ηη η。 ^ ρρ 500 ppm,藉此而成為可確實確保導電 性:且適合於導電膏之導電材料等之銅粉。含氧濃度可藉 由後述之實施例中所記載之方法進行測定。 a 對於本發明之導電膏用銅粉,由熱重量示差熱分㈣ 置所測定之靴及崎時之[重量變化率(tg(%))/比表面 積(SSA)]之差(以下稱為△(则SA))較好的是1%/mW〜 60%/mVcW,£ 好的是 1%/m2/cm3 〜25%/m2w。重量變化 率係以贼時之銅粉之重量為基準的值。 △(TG/SSA)定義為(TG/SSA)8〇〇_(Tg/ssa)25〇。重量變化率 TG及比表面積SSA係藉由後述之實施例中所記載之方法而 測定。 可根據該△(蘭SA)之特性值而評價銅粉之耐氧化性。 又’ 25〇。〇綱。C之溫度區域’例如係指在使用以陶竟電 容器之外部電極锻燒用導電膏為首之主要的導電膏時之加Bi Xing Yin, at least one of the elements of the red eight element, can be improved to the conductive paste to contain = equal elements: sexual squeak, for example, - drop::: : = and other elements relative to the amount of copper added, ,. Legal profession. The data is appropriately set according to the type of the element to be added, the conductivity characteristics, or other various characteristics. The amount of addition is usually about 0.001% by mass to about 2% by mass. There is no special shape for the particle shape of copper powder for conductive paste: choice. For example, a shape such as a granular shape, a plate shape, a flake shape, or a branch:::: may be employed. Usually... seeking to be part of the cream composition == The copper powder for electric taste is preferably granular. Especially in the case of a spherical shape) vi granular system. The aspect ratio (average longitude divided by the average short diameter) · the shape of the right side of the work. Especially the shape with the aspect ratio of two right is called Spherical shape. The shape of the shape is not (4). In the case of the granular copper powder, the particles are less entangled with each other. ☆ The granular steel powder is used for the conductive material of the conductive paste, etc. The dispersibility in the paste is very good. For the copper powder for the conductive paste of the invention, the coefficient of variation (SD/D5〇) obtained from the volume cumulative particle size 〇2' quasi-deviation value SD is The true 6·(four) degree distribution is less unevenly', so that the dispersibility in the paste when the conductive paste is used for a conductive material or the like is improved, so that SO and D50 are very scattered by laser diffraction, for example. The particle size distribution measuring apparatus and the like are measured. 141244.doc -10- 201005758 In addition to the variation coefficient sn/r» The value of the silent 5^/Dso is outside the above range, regarding the value of si^d itself, Herdu The SD is 10~20 μηι, especially 13~18 μΐη, and D5〇 is 20~3〇μηι. The conductive powder f is made of copper powder, so that the average particle diameter of the secondary particles is 0.01 urn~5Π丨丨 from; μηι, which is a copper powder suitable for the formation of a fine conductor circuit, ▲ a conductive material, etc. The average particle size of the sub-particles == Image analysis by observing the photo by scanning electron microscopy, etc. Ten; This "Electrical Lean Copper Powder of Ming Dynasty makes the initial (after manufacturing) oxygen" 30 ppm~25ηη η. ^ ρρ 500 ppm, whereby it is possible to ensure conductivity: copper powder suitable for a conductive material such as a conductive paste. The oxygen concentration can be carried out by the method described in the examples below. Measurement of the difference between the [weight change rate (tg (%)) / specific surface area (SSA)] of the shoe and the shovel when the copper powder for conductive paste of the present invention is measured by the thermogravimetric differential heat (4) It is preferably 1%/mW to 60%/mVcW, and preferably 1%/m2/cm3 to 25%/m2w. The weight change rate is the weight of the copper powder in the case of a thief. The value of the reference is △ (TG / SSA) is defined as (TG / SSA) 8 〇〇 _ (Tg / ssa) 25 〇. Weight change rate TG and specific surface area SSA system It is measured by the method described in the examples described later. The oxidation resistance of the copper powder can be evaluated based on the characteristic value of Δ (lan SA). Further, the temperature region of C is referred to as When using the main conductive paste including the conductive paste for external electrode calcination of ceramic capacitors

熱溫度區域。因此,非常重要的H 承H的疋於該區域中銅粉具有耐 J41244.doc 201005758 氧化性。若該△(TG/SSA)為上述較佳之範圍,則可充分發 揮銅粉之耐氧化性’且亦可確保較高之導電性。本發明 中,將粒子内部含有之Si及卜之量設定於上述範圍内,藉 此可使銅粉之V)之值為上述較佳之範圍。尤其使 粒子内部含有上述量之範圍之?,藉此可更容易使銅粉之 △ (TG/SSA)的值為上述較佳之範圍。 其次,就本發明之導電膏用銅粉之較佳的具體製造方法 加以說明。 本發明之導電膏用銅粉可藉由 j稽田下述方式而製造:向已熔 融之銅中,以母合金或化合物等之形態而添加特定量之^ 成分之後,或者以鑄旋或彈丸合金等之形態而添加特定量 之In成分之後’藉由特定之霧化法而粉體化。 根據上述製造方法,可梦生 、 J表坆出儘官粒度微細但耐氧化性 ”導電之平衡不會受損之銅粉。又’可製造出粒子之形 狀及粒度,不均較小、Μ含有之氧之遭度較低的銅粉。 其理由不確定,/日接 朴 仁推測其原因在於··在不損及銅粒子 之導電性之範圍内,、禾 〜σ ;已炼融之銅或銅合金中之Si及 化可捕捉到銅粒子中之氧,從而抑制氧化。 在本發明之導電奢用加i ^ 飼如之袅造中’除添加Si及In成分 之外’還添加Ag成分,茲 精此可一方面確保銅粉之耐氧化 性,一方面進一步提高導電性。 在除添加Si及In成分夕1^、^Hot temperature zone. Therefore, it is very important that the copper powder in this region has resistance to J41244.doc 201005758 oxidation. When Δ(TG/SSA) is in the above preferred range, the oxidation resistance of the copper powder can be sufficiently promoted and high conductivity can be ensured. In the present invention, the amount of Si and Bu contained in the particles is set within the above range, whereby the value of V) of the copper powder can be set to the above preferred range. In particular, the inside of the particle contains the above range of amounts? Thereby, it is easier to make the value of Δ (TG/SSA) of the copper powder to the above preferred range. Next, a preferred specific manufacturing method of the copper powder for a conductive paste of the present invention will be described. The copper powder for a conductive paste of the present invention can be produced by the following method: by adding a specific amount of the component to the molten copper in the form of a mother alloy or a compound, or by casting or projecting a pellet After adding a specific amount of the In component in the form of an alloy or the like, it is powdered by a specific atomization method. According to the above-mentioned manufacturing method, it is possible to produce a copper powder which has a fine particle size but is resistant to oxidation and which does not impair the balance of conductivity. It can also produce a shape and a particle size of the particles, and the unevenness is small. Copper powder containing a low degree of oxygen. The reason is uncertain, / Japanese Pui Ren speculated that the reason is that ... in the range that does not damage the conductivity of copper particles, Wo ~ σ; has been condensed The Si and the copper in the copper alloy can capture the oxygen in the copper particles, thereby suppressing the oxidation. In the conductive luxury of the present invention, the addition of Si and In components is added. The Ag component, on the one hand, can ensure the oxidation resistance of the copper powder on the one hand, and further improve the conductivity on the one hand. In addition to the addition of Si and In components, 1^, ^

之外還添加p成分之後,推測可降 低霧化時馆·液之表面带A 張力,A而可有效地進行粒子形狀之 勻稱化或熔液中之脫4t 取乳化。與Si成分同樣地,P成分之添 141244.doc 201005758 加係可向已熔融之銅中以母合金或化合物之形態而添加特 定量之p成分。 根據先前所說明之理由’上述製造方法中較好的是採用 高壓霧化法。但是,與氣體霧化法相比,在採用水霧化法 時’會有Si、In及p之含量之良率較低之情形,因而相對 於目標銅粉中之淨量,Si&In需要添加丨〜⑺倍量,p需要 添加1〜100倍量。 於霧化法中’例如藉由適切控制熔液之溫度、用以使溶 液霧化噴射之喷嘴之直徑、霧化噴射之壓力 '氣體或水之 溫度等,而可成功地製造出目標銅粉。 於上述製造方法中,亦可對由霧化法所獲得之銅粉進行 還原處理。藉由該還原處理,可進一步降低易進行氧化之 銅粉之表面的氧濃度。從作業性之觀點而言,還原處理較 好的是氣體之還原。還原處理用之氣體並無特別限制。例 如可使用氫氣、氨氣、丁烷氣等具有還原性之氣體。 上述還原處理較好的是在15(rc〜30(rc之溫度下進行, 1其在17(TC〜210。(:之溫度下進行時更佳。其理由在於, 若還原處理之溫度在上述範圍内,則可防止由還原速度變 又斤&致的還原處理降低,且可抑制引起銅粉之凝聚或燒 結。若還原處理之溫度為HC〜2UTC,則可一方面有效 地降低氧濃度,-方面確實抑制銅粉之凝聚或燒結,因而 更佳。 、於上述製造方法中’較好的是對由霧化法所獲得之銅粉 進行分類。分類可藉由下述方式容易地實施:U目標之粒 141244.doc 201005758 度為中〜之方式,使 .^ Μ ^ 裝置,自銅粉中將粗粒 /、使先則所說明之變動係數 5〇)為〇·2〜〇.6之方式進行分類時較為理想。 獲得之銅粉中,例如將環氧樹脂等樹脂及其硬 別寺各種添加劑進行調配、混料之操作,藉此可製造 出含有本發明之導電膏用銅粉之導電膏。此種導電膏之址 成於該技術領域中已眾所⑽’無需特料行詳述。對於 此種導電膏’纟中所含有之銅粉儘管為微細粒度,但耐氧 化性與導電性平衡,絲子形狀之不均較少,而且所含有 之氧之濃度較低。因此’該導電膏極其適用於絲網印刷加 成法之導體電路之形成、或者積層陶瓷電容器之外部電極 之形成等各種電接點構件之形成。除此之外,本發明之導 電膏用銅粉亦可使用於積層陶瓷電容器之内部電極、電感 為或暫存器等之晶片零件、單板電容器電極、钽電容器電 極、樹脂多層基板、陶莞(LTCC,L〇w c〇_ fired Ceramic’低溫共熱陶竟)多層基板、軟性印刷電路板 (FPC ’ Flexible Printed Circuits)、天線開關模組、 PA(P〇Wer Amplifier ’功率放大器)模組或高頻主動爐波器 等之模組、PDP(Plasma Display Panel,電漿顯示器)前面 板及背面板或PDP彩色濾光器用電磁屏蔽薄膜、結晶型太 陽電池表面電極及背面引出電極、導電性接著劑、 EMI(Electromagnetic Interference,電磁干擾)遮罩、Rp ID(Radio Frequency Identification,無線射頻識別系統)、 pc鍵盤等之膜片開關、異向性導電膜(ACF/ACp, 141244.doc •14- 201005758In addition to the addition of the p component, it is presumed that the surface tension of the surface of the pavilion/liquid at the time of atomization can be reduced, and A can be effectively averaging the particle shape or emulsification in the melt. Similarly to the Si component, the addition of the P component 141244.doc 201005758 adds a specific amount of the p component to the molten copper in the form of a master alloy or a compound. For the reasons explained above, it is preferred to employ a high pressure atomization method in the above production method. However, compared with the gas atomization method, when the water atomization method is used, the yield of Si, In, and p is low, so Si&In needs to be added with respect to the net amount of the target copper powder.丨 ~ (7) times the amount, p needs to add 1 to 100 times the amount. In the atomization method, the target copper powder can be successfully produced, for example, by appropriately controlling the temperature of the melt, the diameter of the nozzle for atomizing the solution, the pressure of the atomization spray, the temperature of the gas or water, and the like. . In the above production method, the copper powder obtained by the atomization method can also be subjected to reduction treatment. By this reduction treatment, the oxygen concentration on the surface of the copper powder which is easily oxidized can be further reduced. From the viewpoint of workability, the reduction treatment is preferably a reduction of gas. The gas for the reduction treatment is not particularly limited. For example, a reducing gas such as hydrogen, ammonia or butane gas can be used. The above reduction treatment is preferably carried out at 15 (rc to 30 (at a temperature of rc, 1 which is preferably carried out at a temperature of 17 (TC to 210%). The reason is that if the temperature of the reduction treatment is as described above Within the range, it is possible to prevent the reduction treatment from being reduced by the reduction rate and to reduce the aggregation or sintering of the copper powder. If the temperature of the reduction treatment is HC~2UTC, the oxygen concentration can be effectively reduced on the one hand. It is preferable to suppress the aggregation or sintering of the copper powder. In the above manufacturing method, it is preferable to classify the copper powder obtained by the atomization method. The classification can be easily carried out by the following means. :U target grain 141244.doc 201005758 degrees is medium ~ way, so that .^ Μ ^ device, from the copper powder will be coarse grain /, let the first explained the coefficient of variation 5 〇) 〇 · 2 ~ 〇. In the case of the classification of the copper powder, for example, an epoxy resin or the like and a hardener of various additives are blended and mixed, whereby copper for the conductive paste of the present invention can be produced. Powder conductive paste. The location of this conductive paste is In the technical field, there is no need to elaborate on the details. For the conductive paste, the copper powder contained in the crucible has a fine particle size, but the oxidation resistance and the conductivity are balanced, and the shape of the filament is less uneven. Moreover, the concentration of oxygen contained therein is low. Therefore, the conductive paste is extremely suitable for formation of various electrical contact members such as formation of a conductor circuit of a screen printing addition method or formation of an external electrode of a laminated ceramic capacitor. In addition, the copper powder for conductive paste of the present invention can also be used for internal electrodes of laminated ceramic capacitors, wafer parts such as inductors or registers, single-plate capacitor electrodes, tantalum capacitor electrodes, resin multilayer substrates, and ceramics ( LTCC, L〇wc〇_ fired Ceramic 'low temperature common heat ceramics') multilayer substrate, flexible printed circuit board (FPC 'Flexible Printed Circuits), antenna switch module, PA (P〇Wer Amplifier 'power amplifier) module or high Modules such as frequency active furnace wave, PDP (Plasma Display Panel) front panel and back panel or electromagnetic shielding film for PDP color filter, crystalline solar power Surface electrode and back surface extraction electrode, conductive adhesive, EMI (Electromagnetic Interference) mask, Rp ID (Radio Frequency Identification), pc keyboard, etc., diaphragm switch, anisotropic conductive film ( ACF/ACp, 141244.doc •14- 201005758

Anisotropic Conductive Film/Anisotropic Conductive Paste) 等。 以下,依照下述實施例及比較例來進一步詳細說明本發 明。 (實施例1)Anisotropic Conductive Film/Anisotropic Conductive Paste). Hereinafter, the present invention will be described in further detail based on the following examples and comparative examples. (Example 1)

以氮氣填充於氣體霧化裝置(日新技研(股)製造,Neva_ GP2型)之腔室及原料溶解室内之後,使原料在設置於溶解 室内之碳坩堝中加熱溶解’製成熔融物。具體而言,在溶 解有電解銅之熔液中,添加金屬矽(日本金屬化學工業(股) 製造NIKSIL)1.77 g及金屬銦7‘20 g,製成_ g之炼液,並 進行充分攪拌混合。其後,自σ徑0.5咖之喷嘴於 125(TC、3_G MPaT使熔液純切,獲得在粒子内部含 有石夕及銦之銅粉。其後’利用53 _測試_來篩選所獲得 之銅知W師下品作為最終之銅粉。所獲得之銅粉之特徵 不於表2。該銅粉中,咖並未露出於粒子之表面,且偏 存於粒子表面之附近。 (實施例2〜14) 、金屬銦 除此之外進行與實施m相同之操 如表1所示添加金屬矽 合金(攝成色15質量。/。), 作,獲得銅粉。 (比較例1〜8) 以及銀素材及銅-磷母 至屬銦、以及鋼磷母合金(磷 除此之外進行與實施例1相同之 如表1所示添加金屬矽 成色15質量%)之添加量, 操作’獲得鋼粉。 141244.doc •15- 201005758 [表l] Si添加量 (g) In添加量 (S) Ag添加量 (g) Cu-P母合金添加量 (R) 實施例1 1.77 7.20 - - 實施例2 7.09 14.40 - - 實施例3 7.09 28.79 - - 實施例4 10.64 28.79 - - 實施例5 31.50 121.29 - - 實施例6 7.09 28.79 27.06 - 實施例7 1.77 7.20 - 1.30 實施例8 3.55 14.40 - 1.30 實施例9 7.09 28.79 - 1.30 實施例10 10.64 28.79 - 1.30 實施例11 31.50 121.29 - 1.30 實施例12 7.09 28.79 - 0.26 實施例13 7.09 14.40 - 13.03 實施例14 7.09 28.79 27.06 1.30 比較例1 7.09 - - - 比較例2 - 28.79 - - 比較例3 0.28 1.01 - - 比較例4 7.09 - - 1.30 比較例5 - 28.79 - 1.30 比較例6 0.28 1.01 - 1.30 比較例7 43.44 152.10 - 1.30 比較例8 - - - - 關於實施例及比較例中所獲得之銅粉,利用以下所示之 方法評價諸特性。其結果示於表2〜6。 (1) 石夕、銦、填之含量 用酸溶解樣品,藉由 ICP(Inductively Coupled Plasma, 電感耦合等離子體)來分析溶液。其結果示於表2。 (2) 氧濃度 利用氧·氮分析裝置(堀場製作所股份有限公司製造 「EMGA-520(型號)」)進行分析。其結果示於表2。又,為 了評價耐氧化性之經時劣化,使用山陽精工製造之SK- 141244.doc -16- 201005758 8000,以氣體流量8 L/分鐘、升溫速度i〇°C/分鐘而升溫至 200 C,其後對以相同溫度而保持1小時之樣品之氧濃度亦 進行測定。其結果示於表5。 (3) A(TG/SSA) 利用示差熱熱重量同時測定裝置(TG/DTA,Thermo Gravimetric/Differential Thermal Analyzer)(SII 製造, TG/DTA 6300高溫型)(升溫速度·· i〇°C/分鐘,氣體流量: 200 mL/分鐘),對40°C〜800°C下之Tg(%)進行測定。另一方 面,比表面積可根據由粒度測定裝置(曰機裝製造, MICRO-TRACK MT-3000型)所測定之粒度分布而求得。根 據兩者之測定值,算術求出TG/SSA。其結果示於表3。同 表中,亦記載有250°C下之TG/SSA與800。(:下之TG/SSA之 差即A(TG/SSA)之值。進而,亦求出各溫度下之TG/SSA除 以比較例8之純銅粉之TG/SSA(表4中記載為[TG/SSA]Cu)所 得之值。其結果示於表4。 (4) 粒子形狀 利用掃描型電子顯微鏡進行觀察。其結果示於表2。 (5) D50、SD、SD/D50 將0·2 g之樣品投入至100 ml之純水中,照射3分鐘超音 波而使其分散後,利用粒度分布測定裝置(日機裝股份有 限公司製造「MICRO-TRACK(商品名)FRA(型號)」)分別 求出體積累積粒徑D5〇及標準偏差值SD以及變動係數 (SD/D5〇)。其結果示於表2。 (6) 體積電阻率 141244.doc 17 201005758 將樣品15 g投入至筒狀容器中,形成以壓製壓40χΙΟ6 Pa(408 kgf/cm2)進行壓縮成形後之測定樣品,對於該測定 樣品,使用Loresta AP及Loresta PD-41型(均為三菱化學 (股)公司製造)進行測定。其結果示於表6。 141244.doc 18- 201005758After filling in a chamber of a gas atomizing device (manufactured by Nisshin Kasei Co., Ltd., Neva_GP2 type) and a raw material dissolution chamber with nitrogen gas, the raw material is heated and dissolved in a carbon crucible provided in a dissolution chamber to form a melt. Specifically, in the melt in which electrolytic copper is dissolved, 1.77 g of metal ruthenium (NIKSIL manufactured by Nippon Metal Chemical Industry Co., Ltd.) and 7'20 g of metal indium are added to prepare a refining liquid of _g, and the mixture is thoroughly stirred. mixing. Thereafter, the melt was cut at 125 (TC, 3_G MPaT from the nozzle of σ diameter 0.5 coffee to obtain copper powder containing Shi Xi and indium inside the particle. Thereafter, the copper obtained was screened by using 53 _ test _ Known as the final copper powder, the copper powder obtained is not characterized by Table 2. In the copper powder, the coffee is not exposed on the surface of the particles and is located in the vicinity of the surface of the particles. (Example 2~ 14) In addition to the metal indium, the same operation as that of the implementation of m was carried out as shown in Table 1. The metal ruthenium alloy was added (the color was 15 mass%), and copper powder was obtained (Comparative Examples 1 to 8) and silver. Material and copper-phosphorus to indium, and steel phosphorus master alloy (phosphorus other than the same as in Example 1 as shown in Table 1 added metal bismuth 15% by mass), the amount of operation to obtain steel powder 141244.doc •15- 201005758 [Table 1] Si addition amount (g) In addition amount (S) Ag addition amount (g) Cu-P mother alloy addition amount (R) Example 1 1.77 7.20 - - Example 2 7.09 14.40 - - Example 3 7.09 28.79 - - Example 4 10.64 28.79 - - Example 5 31.50 121.29 - - Example 6 7.09 28.79 27.06 - Example 7 1.77 7.20 - 1.30 Example 8 3.55 14.40 - 1.30 Example 9 7.09 28.79 - 1.30 Example 10 10.64 28.79 - 1.30 Example 11 31.50 121.29 - 1.30 Example 12 7.09 28.79 - 0.26 Example 13 7.09 14.40 - 13.03 Implementation Example 14 7.09 28.79 27.06 1.30 Comparative Example 1 7.09 - - - Comparative Example 2 - 28.79 - - Comparative Example 3 0.28 1.01 - - Comparative Example 4 7.09 - - 1.30 Comparative Example 5 - 28.79 - 1.30 Comparative Example 6 0.28 1.01 - 1.30 Comparative Example 7 43.44 152.10 - 1.30 Comparative Example 8 - The copper powders obtained in the examples and the comparative examples were evaluated by the following methods. The results are shown in Tables 2 to 6. (1) Shi Xi, The indium and the content of the solution were dissolved in an acid, and the solution was analyzed by ICP (Inductively Coupled Plasma). The results are shown in Table 2. (2) Oxygen concentration using oxygen and nitrogen analyzer (Minchang Manufacturing Co., Ltd. limited The company manufactures "EMGA-520 (model)" for analysis. The results are shown in Table 2. Further, in order to evaluate the deterioration of oxidation resistance over time, SK-141244.doc -16-201005758 8000 manufactured by Sanyo Seiko Co., Ltd. was used, and the temperature was raised to 200 C at a gas flow rate of 8 L/min and a temperature increase rate of i〇°C/min. Thereafter, the oxygen concentration of the sample held at the same temperature for 1 hour was also measured. The results are shown in Table 5. (3) A (TG/SSA) Using a differential thermogravimetric simultaneous measurement device (TG/DTA, Thermo Gravimetric/Differential Thermal Analyzer) (manufactured by SII, TG/DTA 6300 high temperature type) (heating rate··i〇°C/ Minute, gas flow rate: 200 mL/min), and Tg (%) at 40 ° C to 800 ° C was measured. On the other hand, the specific surface area can be determined from the particle size distribution measured by a particle size measuring device (manufactured by Kyocera Corporation, MICRO-TRACK MT-3000 type). The TG/SSA is calculated arithmetically based on the measured values of the two. The results are shown in Table 3. In the same table, TG/SSA and 800 at 250 °C are also recorded. (: The difference between TG/SSA is the value of A(TG/SSA). Further, TG/SSA at each temperature is divided by TG/SSA of pure copper powder of Comparative Example 8 (described in Table 4 as [ The value obtained by TG/SSA]Cu) is shown in Table 4. (4) The particle shape was observed by a scanning electron microscope. The results are shown in Table 2. (5) D50, SD, SD/D50 will be 0· 2 g of the sample was put into 100 ml of pure water, and after being irradiated for 3 minutes, the ultrasonic wave was dispersed, and the particle size distribution measuring apparatus ("MICRO-TRACK (trade name) FRA (model)" manufactured by Nikkiso Co., Ltd. was used. The volume cumulative particle diameter D5 〇 and the standard deviation value SD and the coefficient of variation SD (SD/D5 〇) were respectively obtained. The results are shown in Table 2. (6) Volume resistivity 141244.doc 17 201005758 Sample 15 g was put into the tube In the container, a measurement sample obtained by compression molding at a pressing pressure of 40 χΙΟ 6 Pa (408 kgf/cm 2 ) was formed, and for the measurement sample, Loresta AP and Loresta PD-41 type (all manufactured by Mitsubishi Chemical Corporation) were used. The results are shown in Table 6. 141244.doc 18- 201005758

Q <N \D S (Ν \〇 (Ν ψ-^ cn IT) 00 Ο § (N in GC to 00 m Ον 3 Q 〇 Ο ο Ο 〇 〇 d ο d ο d Ο Ο ο d o 〇 ο 〇 〇 Ο d Q 〇〇 CN δ ίο T—^ tr> s 00 ι—Η S <N i〇 o 卜 g On v〇 cn S 00 cn d. iri ι〇 τ· Η <d rn 1—^ ΓΠ r~H ^6 寸· rn νο r-H 寸 r~H (N 〇 (N cn 00 00 τ~Ή m ιη 00 ^T) yr) On m 沄 m 汔 (N ι〇 (Ν \ό (Ν (Ν (Ν iri (N 00 (N CN 00 (Ν ν〇 CN ι〇 CN m m od (N Ο; (Ν (N od (N rn ro 坡 1 \ i h \k 屮 卷 铼 § 121.6 91.7 101.4 84.2 133.2 103.0 107.1 93.0 102.5 111.3 168.6 87.6 99.4 109.1 93.0 83.7 98.0 85.3 97.9 92.5 181.3 113.4 P -( 寸 Ο 〇〇 Ο 1 194.5 1 1-Η »-Η ίΤι Ο »—Η (N a Ο 00 m cK m oi (Ν r—Η 寸 1 I 1 I σ< m (N CN PU 10.0 寸 1 193.3 ΓΠ ΓΛ 00 v〇 rn ύ 5 1 ι 1 〇< m od IT) 寸 r—Η 1 1 I οό m 1 r—Η CN in g r-H Ο σ\ os Ό ΟΝ ΟΟ ΟΝ 沄 〇s ο m α\ 〇\ α\ 寸 τ—Η 寸 00 Os a D Ο ί—Η r—^ ^-H ο Ο Ο (Ν ο r~H o Ph I 1 1 I 1 ο S 0.049 _1 (Ν ^Τ) Ο s ί〇 ο 寸 τ—Η 寸 吞 ο 1 1 1 f-H s 0.052 ι—Η s (N S ο Ο o ο Ο Ο ο o ο o a 1 1 1 1 1 1.99 I 1 I 1 I I I 〇5 τ·_ Η 1 1 1 1 1 I 1 ν〇 S ON 〇\ s (Ν On ON (Ν ΙΤ) 1.03 g o OS CN Ον F-H Ο S 〇\ 〇\ s Ο »' Η (Ν οό i—Η Ο (Ν T-^ 〇6 1-Η 1-^ ο <N Ο •Λ 吞 〇\ α\ s 00 〇\ ON 00 Os 沄 S S G\ ON ν〇 00 S ΟΟ ΟΝ s g 00 OS 0.08 cn Ο τ—Η (N (Ν 00 T-H Ο (Ν <Ν ri 00 (Ν τ-Η r瞧蜱 (Ν Ο ^H (Ν rn 寸 们 Γ- ΟΟ Ον o (Ν m 寸 < κ (N m 寸 卜 00 5 4.·£) 雀 •ώ •ώ Λ5) 崧 (K m 弹< -iJ Jj -Ο 〇J -Ο JU Jj £ 141244.doc -19- 201005758 【εί A(TG/SSA) 55.656 46.391 12.759 9.191 5.852 12.705 58.888 22.093 10.904 10.128 7.078 25.722 18.726 10.772 78.148 67.057 •-- 77.262 60.635 62.57 73.708 10.379 82.791 οο ΙΤϊ ο Η 800°C 56.287 46.783 12.976 9.502 6.013 12.930 1 59.280 22.476 ' 11.217 | 10.466 1 7.243 26.066 19.013 11.123 78.928 67.490 78.489 60.963 1 63.140 75.087 10.568 T84.041 700°C 丄 33.706 11.395 4.432 3.662 2.583 4.554 28.994 1 7.555 | 3.871 4.048 | 2.968 | 8.748 5.773 I 4.518 48.934 34.175 56.930 37.780 32.953 48.988 3.581 64.125 600°C 15.133 3.361 1.874 1.543 0.974 1.970 13.494 2.822 1.831 1.751| 1.150 2.893 2.459 1.842 22.645 21.557 36.910 12.356 16.853 31.582 1.380 40.462 500°C 5.218 1.450 0.951 0.864 0.471 0.984 3.259 1.300 1.109 1.036 0.545 1.181 ! 1.120 0.893 5.888 7.207 20.576 2.638 6.041 12.185 0.655 28.211 400°C 2.734 0.995 0.625 0.649 0.295 0.773 1.561 0.897 0.771 0.784 i 0.324 0.840 0.881 0.624 2.161 3.163 13.117 0.880 2.973 4.983 0.412 15.831 300°C 1 1.000 0.618 0.362 0.411 0.205 0.403 0.654 0.493 0.412 0.464 1 0.215 0.502 0.489 0.456 1.024 0.866 3.659 0.483 0.928 2.290 0.235 1 4.334 250〇C 1 0.631 0.392 0.217 0.311 0.161 0.225 0.392 0.383 0.313 0.338 0.165 I 0.344 0.287 0.351 0.780 0.433 1.227 0.328 0.570 1.379 0.189 1.25 200°C 0.405 0.308 0.160 0.247 0.113 0.165 0.211 0.267 丨 0.235 0.267 1 0.121 0.248 0.184 0.265 0.654 0.275 0.390 0.253 0.398 0.613 0.153 0.238 1 150°C I 0.243 0.116 0.101 0.157 0.082 0.136 0.111 0.162 0.135 0.183 0.078 0.134 0.102 0.176 0.438 0.147 厂).273 0.144 0.237 0.203 0.108 0.101 一 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 實施例1 實施例2 1實施例3 實施例4 141244.doc -20- 201005758 [表4] [TG/SSAl/[TG/SSAlcu 150°C 200°C 250。。 300°C 400°C 500°C 600°C 700°C 800°C 實施例1 2.399 1.700 0.504 0.230 0.172 0.185 0.379 0.527 0.670 實施例2 1.145 1.292 0.313 0.142 0.063 0.051 0.084 0.178 0.557 實施例3 0.998 0.672 0.174 0.083 0.039 0.033 0.047 0.069 0.154 實施例4 1.554 1.035 0.249 0.095 0.041 0.031 0.039 0.057 0.113 實施例5 0.812 0.473 0.129 0.047 0.019 0.017 0.024 0.040 0.072 實施例6 1.360 0.697 0.180 0.093 0.049 0.035 0.049 0.071 0.154 實施例7 1.102 0.884 0.313 0.151 0.098 0.115 0.338 0.453 0.705 實施例8 1.602 1.121 0.306 0.113 0.057 0.046 0.071 0.118 0.267 實施例9 1.338 0.984 0.250 0.095 0.049 0.039 0.046 0.060 0.133 實施例10 1.811 1.119 0.270 0.107 0.049 0.037 0.044 0.063 0.125 實施例11 0.772 0.506 0.132 0.050 0.020 0.019 0.029 0.046 0.086 實施例12 1.323 1.040 0.275 0.116 0.053 0.042 0.072 0.137 0.310 實施例13 1.020 0.782 0.230 0.114 0.056 0.040 0.061 0.090 0.227 實施例14 1.764 1.108 0.280 0.105 0.040 0.032 0.046 0.070 0.131 比較例1 4.352 2.741 0.624 0.236 0.136 0.208 0.564 0.764 0.939 比較例2 1.465 1.176 0.349 0.200 0.199 0.255 0.540 0.534 0.803 比較例3 2.703 1.632 0.981 0.846 0.828 0.730 0.675 0.890 0.934 比較例4 1.428 1.059 0.262 0.111 0.056 0.094 0.310 0.592 0.725 比較例5 2.367 1.683 0.461 0.217 0.188 0.215 0.422 0.516 0.753 比較例6 2.010 2.565 1.102 0.530 0.315 0.433 0.792 0.766 0.893 比較例7 1.069 0.640 0.151 0.054 0.026 0.023 0.035 0.056 0.126 比較例8 1 1 1 1 1 1 1 1 1 根據表3及表4可明確瞭解,實施例之銅粉在250〜800°C 之溫度區域内耐氧化性優異。尤其在600〜800°C之溫度區 域内,實施例之銅粉(在粒子内部同時含有Si及In之銅粉) 與比較例之銅粉(在粒子内部僅含有Si或In中之任一者之銅 粉)相比,时氧化性顯著優異。 又,如表5所示,實施例之銅粉在易氧化之環境下已長 時間保持之情形時,與比較例之銅粉相比,可顯著抑制耐 氧化性之經時劣化。尤其可判定,雖然比較例1、2、4及5 之銅粉中Si及In之總和含量為2 atm%左右而相對較多,與 141244.doc -21 - 201005758 此相比,實施例之銅粉中Si及In之總和含量為1 atm%左右 而相對較少,但仍可抑制耐氧化性之經時劣化。 [表5] 含量(atm%〕 粉末氧量(ppm) Si In P 升溫前 保持1小時後 實施例1 0.48 0.51 - 121.6 429.3 實施例7 0.50 0.52 0.050 107.1 511.2 比較例1 2.03 - - 93.0 755.7 比較例2 - 1.97 - 83.7 909.7 比較例3 0.08 0.07 - 98.0 2781.1 比較例4 1.98 - 0.051 85.3 694.3 比較例5 - 2.03 0.052 97.9 663.6 比較例6 0.08 0.07 0.051 92.5 2611.4 又,如表6所示可確認,含有Ag成分之實施例之銅粉之 體積電阻率與並未添加任何成分之銅粉相比,絲毫不遜 色0 [表6] 含量(atm%) 體積電阻率(Ω·οώ) Si In Ag P 實施例6 1.95 1.97 1.99 - 2.1χ ΙΟ'3 實施例14 1.98 1.99 1.97 0.048 2·3χ10-3 比較例8 - - - 響 0.9χ10'3 14I244.doc -22-Q <N \DS (Ν \〇(Ν ψ-^ cn IT) 00 Ο § (N in GC to 00 m Ον 3 Q 〇Ο ο Ο 〇〇d ο d ο d Ο Ο ο do 〇ο 〇〇 Ο d Q 〇〇CN δ ίο T—^ tr> s 00 ι—Η S <N i〇o 卜g On v〇cn S 00 cn d. iri ι〇τ· Η <d rn 1—^ ΓΠ r~H ^6 inch · rn νο rH inch r~H (N 〇(N cn 00 00 τ~Ή m ιη 00 ^T) yr) On m 沄m 汔(N ι〇(Ν ό ό (Ν (Ν (Ν iri (N 00 (N 00 (N 00 N 〇 〇 N N N N N N N N N N 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 93.0 102.5 111.3 168.6 87.6 99.4 109.1 93.0 83.7 98.0 85.3 97.9 92.5 181.3 113.4 P -( inch Ο 〇〇Ο 1 194.5 1 1-Η »-Η ίΤι Ο »—Η (N a Ο 00 m cK m Oi (Ν r—Η inch 1 I 1 I σ< m (N CN PU 10.0 inch 1 193.3 ΓΠ ΓΛ 00 v〇rn ύ 5 1 ι 1 〇< m od IT) inch r—Η 1 1 I οό m 1 r—Η CN in g rH Ο σ\ os Ό ΟΟ ΟΟ 沄〇 沄〇 s ο m α 〇 α α α α α α α α 00 00 00 00 00 00 00 00 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — ο r~H o Ph I 1 1 I 1 ο S 0.049 _1 (Ν ^Τ) Ο s ί 〇 寸 τ Η 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ο o ο oa 1 1 1 1 1 1.99 I 1 I 1 III 〇5 τ·_ Η 1 1 1 1 1 I 1 ν〇S ON 〇\ s (Ν On ON (Ν ΙΤ) 1.03 go OS CN Ον FH Ο S 〇\ 〇\ s Ο »' Η (Ν οό i-Η Ο (Ν T-^ 〇6 1-Η 1-^ ο <N Ο •Λ 〇〇\α\ s 00 〇\ ON 00 Os 沄SSG\ ON ν〇00 S ΟΟ ΟΝ sg 00 OS 0.08 cn Ο τ—Η (N (Ν 00 TH Ο (Ν <Ν ri 00 (Ν τ-Η r瞧蜱(Ν Ο ^H (Ν rn 寸 寸Γ- ΟΟ Ον o (Ν m inch < κ (N m inch 00 5 4.·£) 雀•ώ •ώ Λ5) 嵩 (K m bomb < -iJ Jj -Ο 〇J -Ο JU Jj £ 141244.doc -19- 201005758 [εί A(TG/SSA) 55.656 46.391 12.759 9.191 5.852 12.705 58.888 22.093 10.904 10.128 7.078 25.722 18.726 10.772 78.148 67.057 •-- 77.262 60.635 62.57 73.708 10.379 82.791 οο ΙΤϊ ο Η 800°C 56.287 46.783 12.976 9.502 6.013 12.930 1 59.280 22.476 ' 11.217 | 10.466 1 7.243 26.066 19.013 11.123 78.928 67.490 78.489 60.963 1 63.140 75.087 10.568 T84.041 700°C丄33.706 11.395 4.432 3.662 2.583 4.554 28.994 1 7.555 | 3.871 4.048 | 2.968 | 8.748 5.773 I 4.518 48.934 34.175 56.930 37.780 32.953 48.988 3.581 64.125 600°C 15.133 3.361 1.874 1.543 0.974 1.970 13.494 2.822 1.831 1.751| 1.150 2.893 2.459 1.842 22.645 21.557 36.910 12.356 16.853 31.582 1.380 40.462 500°C 5.218 1.450 0.951 0.864 0.471 0.984 3.259 1.300 1.109 1.036 0.545 1.181 ! 1.120 0.893 5.888 7.207 20.576 2.638 6.041 12.185 0.655 28.211 400°C 2.734 0.995 0.625 0.649 0.295 0.773 1.561 0.897 0.771 0.784 i 0.324 0.8 40 0.881 0.624 2.161 3.163 13.117 0.880 2.973 4.983 0.412 15.831 300°C 1 1.000 0.618 0.362 0.411 0.205 0.403 0.654 0.493 0.412 0.464 1 0.215 0.502 0.489 0.456 1.024 0.866 3.659 0.483 0.928 2.290 0.235 1 4.334 250〇C 1 0.631 0.392 0.217 0.311 0.161 0.225 0.392 0.383 0.313 0.338 0.165 I 0.344 0.287 0.351 0.780 0.433 1.227 0.328 0.570 1.379 0.189 1.25 200°C 0.405 0.308 0.160 0.247 0.113 0.165 0.211 0.267 丨0.235 0.267 1 0.121 0.248 0.184 0.265 0.654 0.275 0.390 0.253 0.398 0.613 0.153 0.238 1 150°CI 0.243 0.116 0.101 0.157 0.082 0.136 0.111 0.162 0.135 0.183 0.078 0.134 0.102 0.176 0.438 0.147 plant).273 0.144 0.237 0.203 0.108 0.101 A fifth embodiment Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Example 1 Example 2 1 Example 3 Example 4 141244.doc -20- 201005758 [Table 4 ] [TG/SSAl/[TG/SSAlcu 150°C 200°C 250. . 300 ° C 400 ° C 500 ° C 600 ° C 700 ° C 800 ° C Example 1 2.399 1.700 0.504 0.230 0.172 0.185 0.379 0.527 0.670 Example 2 1.145 1.292 0.313 0.142 0.063 0.051 0.084 0.178 0.557 Example 3 0.998 0.672 0.174 0.083 0.039 0.033 0.047 0.069 0.154 Example 4 1.554 1.035 0.249 0.095 0.041 0.031 0.039 0.057 0.113 Example 5 0.812 0.473 0.129 0.047 0.019 0.017 0.024 0.040 0.072 Example 6 1.360 0.697 0.180 0.093 0.049 0.035 0.049 0.071 0.154 Example 7 1.102 0.884 0.313 0.151 0.098 0.115 0.338 0.453 0.705 Example 8 1.602 1.121 0.306 0.113 0.057 0.046 0.071 0.118 0.267 Example 9 1.338 0.984 0.250 0.095 0.049 0.039 0.046 0.060 0.133 Example 10 1.811 1.119 0.270 0.107 0.049 0.037 0.044 0.063 0.125 Example 11 0.772 0.506 0.132 0.050 0.020 0.019 0.029 0.046 0.086 Example 12 1.323 1.040 0.275 0.116 0.053 0.042 0.072 0.137 0.310 Example 13 1.020 0.782 0.230 0.114 0.056 0.040 0.061 0.090 0.227 Example 14 1.764 1.108 0.280 0.105 0.040 0.032 0.046 0.070 0.131 Comparative Example 1 4.352 2.741 0.624 0.236 0.136 0.208 0.564 0.764 0.939 Comparative Example 2 1.465 1.176 0.349 0.200 0.199 0.255 0.540 0.534 0.803 Comparative Example 3 2.703 1.632 0.981 0.846 0.828 0.730 0.675 0.890 0.934 Comparative Example 4 1.428 1.059 0.262 0.111 0.056 0.094 0.310 0.592 0.725 Comparative Example 5 2.367 1.683 0.461 0.217 0.188 0.215 0.422 0.516 0.753 Comparative Example 6 2.010 2.565 1.102 0.530 0.315 0.433 0.792 0.766 0.893 Comparative Example 7 1.069 0.640 0.151 0.054 0.026 0.023 0.035 0.056 0.126 Comparative Example 8 1 1 1 1 1 1 1 1 1 According to Tables 3 and 4, it is clear that The copper powder of the example is excellent in oxidation resistance in a temperature range of 250 to 800 °C. Particularly, in the temperature range of 600 to 800 ° C, the copper powder of the example (copper powder containing both Si and In in the inside of the particle) and the copper powder of the comparative example (containing only Si or In inside the particle) Compared with copper powder), the oxidation property is remarkably excellent. Further, as shown in Table 5, when the copper powder of the example was kept in an oxidizing atmosphere for a long period of time, the deterioration of the oxidation resistance over time was remarkably suppressed as compared with the copper powder of the comparative example. In particular, it can be judged that although the total content of Si and In in the copper powders of Comparative Examples 1, 2, 4 and 5 is about 2 atm% and relatively large, the copper of the example is compared with 141244.doc -21 - 201005758. The total content of Si and In in the powder is about 1 atm% and relatively small, but the deterioration of oxidation resistance over time can be suppressed. [Table 5] Content (atm%) Powder oxygen amount (ppm) Si In P After maintaining for 1 hour before heating, Example 1 0.48 0.51 - 121.6 429.3 Example 7 0.50 0.52 0.050 107.1 511.2 Comparative Example 1 2.03 - - 93.0 755.7 Comparative Example 2 - 1.97 - 83.7 909.7 Comparative Example 3 0.08 0.07 - 98.0 2781.1 Comparative Example 4 1.98 - 0.051 85.3 694.3 Comparative Example 5 - 2.03 0.052 97.9 663.6 Comparative Example 6 0.08 0.07 0.051 92.5 2611.4 Further, as shown in Table 6, it was confirmed that Ag was contained. The volume resistivity of the copper powder of the composition of the composition is not inferior to that of the copper powder to which no component is added. [Table 6] Content (atm%) Volume resistivity (Ω·οώ) Si In Ag P Example 6 1.95 1.97 1.99 - 2.1χ ΙΟ'3 Example 14 1.98 1.99 1.97 0.048 2·3χ10-3 Comparative Example 8 - - - 响 0.9χ10'3 14I244.doc -22-

Claims (1)

201005758 七、申請專利範圍: 1. 一種導電膏用銅粉,其特徵在於:在粒子内部含有〇. 1 0 1〇 atm% 之 Si(石夕)’且含有 〇.1 atm%〜1 0 atm% 之 In(銦)。 士 °月求項1之導電膏用銅粉,其中在粒子内部含有0.1 atm%〜1〇 atm%之 Ag(銀)。 士明求項1之導電膏用銅粉,其中Si/In(atm比)為0.5〜5。 4 士口古青. f s 員1之導電貧用銅粉,其中在粒子内部含有0.0 1 : atm%〜〇 ς 一 0/ υ·5 atm%之 ρ(磷)。 5. 如睛求項4之墓逾 导電膏用銅粉’其中Si/p(atm比)為4〜200。 6 ·如晴求項4之莫带t _ L 電月用銅粉,其中In/P(atm比)為4〜200。 7 ·如請求項丨之邋 者。 電g用銅粉’其係藉由霧化法而製造 8. 一種導電膏,复 ^ ”特徵在於:其含有如請求項1中記載之 甲兒T用鋼粉。 141244.doc 201005758 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 141244.doc -2-201005758 VII. Patent application scope: 1. A copper powder for conductive paste, characterized in that it contains 〇.1 0 1〇atm% of Si (石夕)' and contains 〇.1 atm%~1 0 atm % of In (indium). The copper powder for the conductive paste of the item 1 is contained in the particle containing 0.1 atm% to 1 〇 atm% of Ag (silver). The copper powder for conductive paste of claim 1 wherein Si/In (atm ratio) is 0.5 to 5. 4 Shikou Guqing. f s member 1 of conductive poor copper powder, which contains 0.01 in the particle: atm% ~ 〇 ς 0 / υ · 5 atm% of ρ (phosphorus). 5. If the tomb of item 4 exceeds the copper powder for conductive paste, the Si/p (atm ratio) is 4 to 200. 6 · For example, the molybdenum of the item 4 is t _ L copper powder for electric moon, wherein the In/P (atm ratio) is 4 to 200. 7 · If you request an item. A copper powder for electric g is produced by an atomization method. 8. A conductive paste, which is characterized in that it contains steel powder for a baby T as described in claim 1. 141244.doc 201005758 IV. Designation Representative diagram: (1) The representative representative of the case is: (none) (2) The symbol of the symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: (none) 141244. Doc -2-
TW098121454A 2008-07-11 2009-06-25 Copper powder for conductive paste, and conductive paste TW201005758A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008181149 2008-07-11
JP2008263668 2008-10-10

Publications (1)

Publication Number Publication Date
TW201005758A true TW201005758A (en) 2010-02-01

Family

ID=41506972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098121454A TW201005758A (en) 2008-07-11 2009-06-25 Copper powder for conductive paste, and conductive paste

Country Status (5)

Country Link
JP (1) JPWO2010004852A1 (en)
KR (1) KR20110041432A (en)
CN (1) CN102015164B (en)
TW (1) TW201005758A (en)
WO (1) WO2010004852A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037653A (en) * 2008-07-11 2010-02-18 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
JP5932638B2 (en) * 2010-05-19 2016-06-08 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP5243510B2 (en) 2010-10-01 2013-07-24 富士フイルム株式会社 Wiring material, wiring manufacturing method, and nanoparticle dispersion
JP5652369B2 (en) * 2010-10-20 2015-01-14 日立金属株式会社 Solar cell conductor
JP5785433B2 (en) * 2011-04-28 2015-09-30 三井金属鉱業株式会社 Low carbon copper particles
KR20130027784A (en) * 2011-09-08 2013-03-18 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
JP2016176133A (en) * 2015-03-23 2016-10-06 株式会社村田製作所 Copper powder and conductive paste using the copper powder
JP7039126B2 (en) * 2016-12-28 2022-03-22 Dowaエレクトロニクス株式会社 Copper powder and its manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104970A (en) * 1981-12-16 1983-06-22 Matsushita Electric Ind Co Ltd Electrically conductive paint
JP2702796B2 (en) * 1990-02-23 1998-01-26 旭化成工業株式会社 Silver alloy conductive paste
CN1051862C (en) * 1991-04-20 2000-04-26 旭化成工业株式会社 Paste for high temperature sintering
JPH0773730A (en) * 1993-06-29 1995-03-17 Asahi Chem Ind Co Ltd Conductive powder
DE69637333T2 (en) * 1995-06-27 2008-10-02 International Business Machines Corp. Copper alloys for chip connections and manufacturing processes
JP2000273506A (en) * 1999-03-19 2000-10-03 Asahi Chem Ind Co Ltd New copper alloy powder, and its manufacture
JP2003064433A (en) * 2001-08-20 2003-03-05 Hohoemi Brains Inc Decorative copper alloy
JP3984534B2 (en) * 2002-11-19 2007-10-03 三井金属鉱業株式会社 Copper powder for conductive paste and method for producing the same
JP4914065B2 (en) * 2005-12-21 2012-04-11 大研化学工業株式会社 Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor
JP5405814B2 (en) * 2007-12-28 2014-02-05 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP5155743B2 (en) * 2008-03-04 2013-03-06 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP2010013730A (en) * 2008-06-05 2010-01-21 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
JP2010037653A (en) * 2008-07-11 2010-02-18 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
JP2010196105A (en) * 2009-02-24 2010-09-09 Mitsui Mining & Smelting Co Ltd Copper powder for electroconductive paste, and electroconductive paste

Also Published As

Publication number Publication date
CN102015164B (en) 2013-06-12
KR20110041432A (en) 2011-04-21
JPWO2010004852A1 (en) 2011-12-22
WO2010004852A1 (en) 2010-01-14
CN102015164A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
TW201005758A (en) Copper powder for conductive paste, and conductive paste
TWI442984B (en) Copper powder for conductive paste and conductive paste
US10214656B2 (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
WO2017033911A1 (en) Metal paste having excellent low-temperature sinterability and method for producing the metal paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP5402350B2 (en) Method for producing conductive paste and conductive paste
CN106795375A (en) Conductive composition and the electronic unit using the conductive composition
JP2009235556A (en) Copper powder for conductive pastes, and conductive paste
JP2008084620A (en) Silver particle powder and its manufacturing method
JP2008081789A (en) Composite powder of silver particle and production method therefor
WO2012147945A1 (en) Tabular silver particle, manufacturing method therefor, paste using same, and printed circuit using paste
JP2011006740A (en) Copper powder for conductive paste, and conductive paste
TW201202447A (en) Copper powder for conductive paste and conductive paste
TWI432588B (en) Copper powder for conductive paste, and conductive paste
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
KR101616703B1 (en) Composite nanoparticle and process for producing same
JPWO2015122430A1 (en) Method for producing metal nanoparticles
JP2011026631A (en) Copper powder, conductive paste, and conductive connection structure
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JP2010037653A (en) Copper powder for conductive paste, and conductive paste
JP2011006739A (en) Copper powder for conductive paste, and conductive paste
JP2007095525A (en) Conductive paste
JP2007095527A (en) Conductive paste and method of manufacturing same
TW201209850A (en) Copper powder for conductive paste and conductive paste