TW201000306A - Laminate for flexible board and heat conductive polyimide film - Google Patents

Laminate for flexible board and heat conductive polyimide film Download PDF

Info

Publication number
TW201000306A
TW201000306A TW98104971A TW98104971A TW201000306A TW 201000306 A TW201000306 A TW 201000306A TW 98104971 A TW98104971 A TW 98104971A TW 98104971 A TW98104971 A TW 98104971A TW 201000306 A TW201000306 A TW 201000306A
Authority
TW
Taiwan
Prior art keywords
layer
resin layer
polyimide
laminate
polyimine
Prior art date
Application number
TW98104971A
Other languages
Chinese (zh)
Other versions
TWI454375B (en
Inventor
Hidekazu Sanpei
Eijiro Aoyagi
Hong-Yuan Wang
Masahiko Takeuchi
Hironobu Kawasato
Original Assignee
Nippon Steel Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co filed Critical Nippon Steel Chemical Co
Publication of TW201000306A publication Critical patent/TW201000306A/en
Application granted granted Critical
Publication of TWI454375B publication Critical patent/TWI454375B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Disclosed is a laminate for flexible boards having excellent heat dissipation performance, wherein a polyimide resin layer containing a heat conductive filler is formed on a conductor layer. Also disclosed is a heat conductive polyimide film composed of a polyimide resin layer containing a heat conductive filler. The laminate for flexible boards or the heat conductive polyimide film has a polyimide resin layer which is composed of two or more different resin layers. At least one of the different resin layers is a polyimide resin layer (i) wherein 30-75 wt% of a heat conductive filler is blended in a polyimide resin containing 10-95% by mole of a structural unit represented by general formula (1), while at least another one of the different resin layers is a polyimide resin layer (ii) which has a glass transition temperature lower than that of the polyimide resin layer (i). (1)

Description

201000306 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有導熱特性優異之絕緣層之適用 於撓性電路基板之撓性基板用層合體及導熱性聚醯亞胺薄 膜。 【先前技術】 近年來,對於以行動電話爲代表之電子機器的小型化 、輕量化的要求日益增高,伴隨於此,有利於機器之小型 化、輕量化之撓性電路基板,廣泛使用於電子技術領域。 而其中,將聚醯亞胺樹脂作爲絕緣層之撓性電路基板,由 於其之耐熱性、耐藥品性等良好,故自以往即被廣泛使用 。由於最近之電子機器之小型化,電路之聚集度提昇,隨 著資訊處理之高速化,機器內所產生之熱的散熱手段受到 注目。 因此,爲了提供散熱性優異之撓性電路基板,關於構 成絕緣層之聚醯亞胺薄膜,探討厚度方向之導熱率爲 0· 1 W/m以上者(專利文獻1 )。又,關於含有導熱性塡 料之導熱性聚醯亞胺薄膜,於專利文獻2記載有於由矽氧 烷二胺所衍生之聚醯亞胺分散導熱性塡料之聚醯亞胺薄膜 複合材料。 然而,將該等聚醯亞胺薄膜層合於銅箔等導體層以作 成撓性基板用層合體時,通常必須將環氧系接著劑或熱塑 性樹脂作爲接著劑使用。該接著層的存在,不僅爲阻礙導 -5- 201000306 體層所產生之熱之散熱的要因,且亦導致作爲撓性基板所 要求之耐熱性、彎曲性等諸特性的降低。因此,期盼提供 一種具有導體層與絕緣層之實用上之接著強度,且可抑制 絕緣層之導熱率降低之撓性基板用層合體、及使用於該等 之導熱性聚醯亞胺薄膜。 專利文獻1 :日本特開2006-274040號公報 專利文獻2:日本特開2006-169533號公報 【發明內容】 [發明欲解決之課題] 本發明之目的在於,提供一種具有優異之導熱特性、 具有導體層與絕緣層之實用上之接著強度,且作爲撓性配 線基板所要求之耐熱性、抗彎曲性、尺寸安定性良好之撓 性基板用層合體及導熱性聚醯亞胺薄膜。 [解決課題之手段] 本發明人等’爲了解決上述課題努力探討的結果發現 ’藉由使具有複數層之聚醯亞胺樹脂層之撓性基板用層合 體之聚醯亞胺樹脂層、或構成導熱性聚醯亞胺薄膜之聚醯 亞胺樹脂層之至少一層爲特定之高導熱之聚醯亞胺樹脂層 ’並設置其他之樹脂層,藉此可解決上述課題,而完成本 發明。 亦即’本發明係關於一種撓性基板用層合體,其係於 聚醯亞胺樹脂層(A1)之單面或兩面具有金屬層之具可 -6- 201000306 撓性之層合體’其特徵在於,該聚醯亞胺樹脂層(Al) 係具有2層以上相異之樹脂層,該樹脂層之至少一層係於 含有10〜95莫耳%之下述通式(1)所表示之構造單位的 聚醯亞胺樹脂中,以30〜75wt%之範圍含有導熱性塡料 的聚醯亞胺樹脂層(i),至少一層係玻璃轉移溫度較聚 醯亞胺樹脂層(i )低之聚醯亞胺樹脂層(ii ),而聚醯亞 胺樹脂層(Π )之至少一層,係存在於金屬層與聚醯亞胺 樹脂層(i )之間,又,聚醯亞胺樹脂層(i )之厚度,爲 聚醯亞胺樹脂層(A1)整體厚度之50%以上。 【化1】[Technical Field] The present invention relates to a laminate for a flexible substrate and a thermally conductive polyimide film suitable for a flexible circuit board, which have an insulating layer excellent in thermal conductivity. [Prior Art] In recent years, the demand for miniaturization and weight reduction of electronic devices represented by mobile phones has increased. In addition, flexible circuit boards that are advantageous for miniaturization and weight reduction of devices are widely used in electronics. Technical field. Among them, the flexible circuit board having the polyimide layer as the insulating layer is widely used since it is excellent in heat resistance and chemical resistance. Due to the recent miniaturization of electronic devices, the degree of convergence of circuits has increased, and with the speed of information processing, heat-dissipating means generated in the machine has been attracting attention. Therefore, in order to provide a flexible circuit board having excellent heat dissipation properties, the polyimine film constituting the insulating layer is considered to have a thermal conductivity of 0·1 W/m or more in the thickness direction (Patent Document 1). Further, in the thermally conductive polyimide film containing a thermal conductive material, Patent Document 2 discloses a polyimine film composite material in which a polyfluorene-derived thermally conductive material derived from a siloxane derivative is dispersed. . However, when the polyimide film is laminated on a conductor layer such as a copper foil to form a laminate for a flexible substrate, it is usually necessary to use an epoxy-based adhesive or a thermoplastic resin as an adhesive. The presence of the adhesive layer is not only a factor that hinders the heat dissipation of the heat generated by the body layer of the -5 - 201000306, but also causes deterioration in properties such as heat resistance and flexibility required for the flexible substrate. Therefore, it is desired to provide a laminate for a flexible substrate having a practical adhesive strength of a conductor layer and an insulating layer, and which can suppress a decrease in thermal conductivity of the insulating layer, and a thermally conductive polyimide film for use in the above. [Problem to be Solved by the Invention] [Problem to be Solved by the Invention] An object of the present invention is to provide an excellent heat conduction property, which is provided in the prior art. A laminate for a flexible substrate and a thermally conductive polyimide film which are excellent in heat resistance, bending resistance, and dimensional stability which are required for a flexible wiring board, and which are excellent in adhesion strength between the conductor layer and the insulating layer. [Means for Solving the Problems] The inventors of the present invention have found that the polyimine resin layer of a laminate for a flexible substrate having a plurality of layers of a polyimide layer of a polyimide layer has been found in an effort to solve the above problems. The present invention can be attained by solving at least one of the polyimine resin layers constituting the thermally conductive polyimide film as a specific highly thermally conductive polyimide resin layer and providing another resin layer. That is, the present invention relates to a laminate for a flexible substrate which is characterized in that it has a metal layer of a polyimide layer (A1) on one side or both sides and has a flexible layer of -6-201000306. The polyimine resin layer (Al) has two or more different resin layers, and at least one layer of the resin layer is a structure represented by the following formula (1) containing 10 to 95% by mole. In the polyimine resin of the unit, the polyimine resin layer (i) containing the thermal conductive material in a range of 30 to 75 wt%, at least one layer of glass transition temperature is lower than that of the polyiminoimide resin layer (i) The polyimide layer (ii) and the at least one layer of the polyimide resin layer (Π) are present between the metal layer and the polyimide layer (i), and the polyimide layer The thickness of (i) is 50% or more of the entire thickness of the polyimine resin layer (A1). 【化1】

(式中,ΑΓι係具有1個以上芳香環之4價之有機基,R 係碳數1〜6之低級烷基、低級烷氧基、苯基、苯氧基或 鹵素。) 又’由其他觀點,本發明係關於一種導熱性聚醯亞胺 薄膜’其係由具可撓性之聚醯亞胺樹脂層(Α2 )所構成 薄膜’其特徵在於,該聚醯亞胺樹脂層(Α2)具有2層 以上之相異樹脂層,該樹脂層之至少一層係於含有10〜 95莫耳%之上述通式(1)所表示之構造單位的聚醯亞胺 樹脂’以30〜75wt%之範圍含有導熱性塡料的聚醯亞胺 樹脂層(i),且至少一層係玻璃轉移溫度較聚醯亞胺樹 201000306 脂層(i )低之聚醯亞胺樹脂層(ii ),聚醯亞胺樹脂層( Ο之厚度,爲聚醯亞胺樹脂層(A2)整體厚度之50%以 上。 本發明之較佳實施樣態係顯示如下。 1) 聚醯亞胺樹脂層(i)之厚度,爲聚醯亞胺樹脂層 (整體)厚度之70〜95 %之上述撓性基板用層合體、或 上述導熱性聚醯亞胺薄膜。 2) 聚醯亞胺樹脂層(A1)之線膨脹係數爲30PPm/K 以下,導熱率於聚醯亞胺樹脂層之厚度方向λζ爲 0.3 W/mK以上、於平面方向Λ xy爲0.7 W/mK以上,聚醯 亞胺樹脂層與金屬層之剝離強度爲〇.8kN/m以上之上述撓 性基板用層合體。 3) 聚醯亞胺樹脂層(A2)之線膨脹係數爲30ppm/K 以下,導熱率於厚度方向λζ爲0.3 W/mK以上、於平面方 向λ xy爲0·7 W/mK以上之上述導熱性聚醯亞胺薄膜。 4 )聚醯亞胺樹脂層(A1 )或(A2 )之抗撕裂性( tear propagation resistance)爲 1.5 〜8kN/m 之上述燒性基 板用層合體或上述導熱性聚醯亞胺薄膜。 5 )聚醯亞胺樹脂層(i )之玻璃轉移溫度爲3 1 0 °C以 上之上述撓性基板用層合體或上述導熱性聚醯亞胺薄膜。 6 )導熱性塡料係選自氧化矽、氧化鋁、氮化鋁、氮 化硼、氮化矽及氧化鎂中之至少一種以上之塡料,其平均 粒徑爲〇.〇1〜25 // m之範圍之上述撓性基板用層合體或上 述導熱性聚醯亞胺薄膜。 -8- 201000306 【實施方式】 以下,詳細說明本發明之撓性基板用層合體及導熱性 聚醯亞胺薄膜。 本發明之撓性基板用層合體,係於聚醯亞胺樹脂層之 單面或兩面,具有金屬層,聚醯亞胺樹脂層係由複數層所 構成。又,本發明之導熱性聚醯亞胺薄膜,雖不具有用以 形成配線之金屬層,但同樣地,聚醯亞胺樹脂層係由複數 層所構成。而構成撓性基板用層合體之聚醯亞胺樹脂層( A1)與構成導熱性聚醯亞胺薄膜之聚醯亞胺樹脂層(A2 )之說明,有許多共通之處。以下’合倂說明共通的部分 。又,聚醯亞胺樹脂層(A1)與(A2)所共通之聚醯亞 胺樹脂層之說明,可理解爲兩者之聚醯亞胺樹脂層之說明 。於該場合,聚醯亞胺樹脂層(A) ’可理解爲代表聚醯 亞胺樹脂層(A1)與(A2)兩者之意。 複數層之聚醯亞胺樹脂層之內’至少一層爲聚醯亞胺 樹脂層(i)、至少一層爲聚醯亞胺樹脂層(ϋ)。當需要 區別複數之各聚醯亞胺樹脂層、與其所構成之聚醯亞胺樹 脂層整體時,將後者稱爲聚醯亞胺樹脂層(A)或聚酿亞 胺樹脂層整體,文字上可明白時’稱爲聚醯亞胺樹脂層。 撓性基板用層合體中作爲導體層之金屬層’可舉例如 銅、鋁、鐵、銀、鈀、鎳、鉻、鉬、鎢、鋅及該等之合金 等導電性金屬箔,該等之中較佳爲使用銅培或含有銅90 %以上之合金銅箔。導體層之較佳厚度範圍爲5〜50 -9 * 201000306 、更佳爲8〜35ym。 上述聚醯亞胺樹脂層(A) ’係具有2層以上相異之 樹脂層,該樹脂層之至少一層係於含有10〜95莫耳%之 下述通式(1)所表示之構造單位的聚醯亞胺樹脂中,以 3 0〜7 5 wt %之範圍含有導熱性塡料的聚醯亞胺樹脂層(i ),該樹脂層之至少一層,係玻璃轉移溫度較聚醯亞胺樹 脂層(i )低之聚醯亞胺樹脂層(Π )所構成。 聚醯亞胺樹脂層(i )中之導熱性塡料之含有比例, 必須爲30〜75 wt%之範圍,較佳爲40〜70wt%之範圍。 導熱性塡料之含有比例若未達3 0 wt %,則作爲撓性電路 基板等之電子零件時放熱特性不足,若超過 75 wt%,則 本發明之層合體之特徵之彎曲性顯著降低,又,聚醯亞胺 樹脂層之強度亦降低。導熱性塡料,較佳爲高導熱性之塡 料,具體而言,可舉例如鋁、銅、鎳、氧化矽、鑽石、氧 化鋁、氧化鎂、氧化鈹、氮化硼、氮化鋁、氮化矽、碳化 矽。該等之中,較佳爲選自氧化矽、氧化鋁、氮化鋁、氮 化硼、氮化矽及氧化鎂中之至少1種塡料。由於聚醯亞胺 樹脂層係作爲絕緣層之作用,故由該觀點考量,配合於聚 醯亞胺樹脂層(i )之塡料亦可爲絕緣性。塡料形狀,並 無特別限制,可爲板狀、針狀、棒狀之任一者。若提高導 熱性塡料之含量、考量與導熱性等特性之平衡性,亦可併 用球狀塡料與板狀塡料。 導熱性塡料之粒子尺寸,由可於聚醯亞胺樹脂層之厚 度方向均勻分散的觀點考量,平均粒徑較佳爲0.01〜25 -10- 201000306 之範圍’更佳爲1〜8//m之範圍。導熱性塡料之平 均粒徑若未達〇. 0 1 /z m,則各個塡料內部之熱傳導減小, 結果不僅無法提昇聚醯亞胺樹脂層之導熱率,並容易引起 粒子彼此的凝集,而有難以均勻分散之虞。另一方面,若 超過25//m’則可塡充於聚醯亞胺樹脂層之塡充率降低, 且有由於塡料界面使聚醯亞胺樹脂層變脆的傾向。 又,導熱塡料,當塡料形狀係使用板狀、或鱗片狀之 板狀塡料時,於本發明,其之粒子尺寸係以平均長徑 表示。當使用板狀塡料時,平均長徑DL之較佳範圍爲0.1 〜15//m之範圍,特佳爲0.5〜lO/zm之範圍。板狀塡料 較佳爲使用氮化硼。若平均長徑Dl未達則導熱 率降低、板狀的效果減小。又,若超過1 5 y m,則製膜時 難以配向。此處,平均長徑DL係指板狀塡料之長邊直徑 的平均値。平均直徑係中位直徑之意,眾數直徑(mode diameter)可爲上述範圍內之1個峰値,其於球狀塡料亦 相同。又,導熱性塡料之粒子尺寸,與聚醯亞胺樹脂層( i)之厚度亦有關。導熱性塡料之平均粒徑或平均長徑, 可爲聚醯亞胺樹脂層(〇之厚度之70%以下、較佳爲50 %以下。 構成聚醯亞胺樹脂層(i )之聚醯亞胺樹脂,係含有 10〜95莫耳% (較佳爲50〜95莫耳%)之通式(1)所 表示之構造單位。 通式(1)中,An係具有1個以上芳香環之4價之有 機基,R係碳數1〜6之低級烷基、低級烷氧基、苯基、 -11 - 201000306 苯氧基或鹵素。Ar,可視爲聚醯亞胺原料之芳香族四殘酸 之殘基,故藉由顯示芳香族四羧酸之具體例’可理解Ar> 。又,R可視爲聚醯亞胺原料之芳香族二胺之殘基的一部 分。 芳香族四羧酸之具體例,可舉例如焦蜜石酸二酐( PMDA) 、3,3’4,4’-苯甲酮四羧酸二酐、2,2’,3,3’-苯甲酮 四羧酸二酐、2,3,3’,4’-苯甲酮四羧酸二酐、萘-2,3,6,7-四 羧酸二酐(NTCDA)、萘-1,2,5,6-四羧酸二酐、萘-1,2,4,5-四羧酸二酐、萘-1,4,5,8-四羧酸二酐、萘-1,2,6,7-四羧酸二酐、4,8·二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧 酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-2,3,6,7-四羧酸二 酐、2,6-二氯萘-1,4,5,8-四羧酸二酐、2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-四氯萘-1,4,5,8 -四羧酸二酐、 1,4,5,8-四氯萘-2,3,6,7-四羧酸二酐、3,3’,4,4’-聯苯四羧 酸二酐(BPDA) 、2,2’,3,3’-聯苯四羧酸二酐、2,3,3’,4’-聯苯四羧酸二酐、3,3”,4,4”-對聯三苯四羧酸二酐、 2,2”,3,3”-對聯三苯四羧酸二酐、2,3,3”,4” _對聯三苯四羧 酸二酐、2,2-雙(2,3-二羧基苯基)-丙烷二酐、2,2-雙( 3,4-二羧基苯基)-丙烷二酐、雙(2,3-二羧基苯基)醚二 酐、雙(2,3-二羧基苯基)甲烷二酐、雙(3,4·二羧基苯 基)甲烷二酐、雙(2,3-二羧基苯基)颯二酐、雙(3,4-二羧基苯基)颯二酐、1,1-雙(2,3 -二羧基苯基)乙烷二 酐、1,1-雙(3,4-二羧基苯基)乙烷二酐、茈-2,3,8,9-四 羧酸二酐、茈-3,4,9,10-四羧酸二酐、茈-4,5,10,11-四羧酸 -12- 201000306 菲-1,2,7,8-四羧酸 二酐、茈-5,6,11,12-四羧酸二酐 、菲-1,2,6,7-四羧酸二酐、菲-1,2,9,10-四竣酸 烷-1,2,3,4 -四羧酸二酐、吡嗪-2,3,5,6 -四竣酸 烷-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四殘酸 氧雙鄰苯二甲酸二酐等。 通式(1 )所表示之構造單位以外之構造單位 開說明聚醯亞胺原料之芳香族四羧酸之殘基與芳香族二胺 之殘基,則芳香族四羧酸之殘基’可舉例如與上述所 說明之同樣之芳香族四羧酸之殘基。 芳香族二胺之殘基,可舉例如以卞 所示之芳香 之殘基。可舉例如,4,6-二甲基-間伸笨 基-對伸苯二胺、2,4-二胺基均三甲笨、 甲苯胺、4,4’-亞甲基二-2,6-二甲苯胺、 二乙苯胺、2,4-甲苯二胺、間伸苯〜 4,4,-二胺基二苯基丙烷、3,3’-二胺甚 酐 酐 酐 環戊 吡啶 4,4,-若分 二胺 胺、2,5 -二甲 4,4’-亞甲基二-鄰 4,4’-亞甲基 _2,6-歧、對伸苯二胺、 苯基丙烷、4 4,_ 二胺基二苯基乙烷、3,3’-二胺基二笨基 , 基二苯基甲烷、3,3’-二胺基二苯基申棱 基苯氧基)苯基]丙烷、4,4’-二胺 基二苯基硫、4,4’ -二胺基二苯基颯、 二胺基二苯某 颯、4,4,-二胺基二苯醚、3,3,-二胺基〜 S 楚〜苯醚、1,3-雙(3_ 胺基苯氧基)苯、1,3 -雙(4·胺基笨 —基)苯、1,4·雙( 4-胺基苯氧基)苯、聯苯胺、3,3’-〜胳_ ^ H女基聯苯、3,3,_~甲 基_4,4,·二胺基聯苯、3,3,-二甲氧基聯 —中 本胺、4,4,-二胺基_ 對聯三苯、3,3 ’ -二胺基-對聯三苯、_ ® X (對胺基環己基) 乙垸、4,4,·二胺 2,2_ 雙[4· ( 4-胺 苯基硫、3,3,·二胺 3,3 ’ -- -13- 201000306 甲烷、雙(對-θ -胺基-三級丁基苯基)醚、雙(對-^ -甲 基-6-胺基戊基)苯、對-雙(2-甲基-4-胺基戊基)苯、 對-雙(1,1-二甲基-5-胺基戊基)苯、1,5-二胺基萘、2,6-二胺基萘、2,4-雙(沒-胺基-三級丁基)甲苯、2,4-二胺 基甲苯、間二甲苯-2,5-二胺、對二甲苯-2,5-二胺、間苯 二甲基二胺、對苯二甲基二胺、2,6-二胺基吡啶、2,5-二 胺基吡啶、2,5-二胺基-1,3,4-噁二唑、哌嗪、2,2’-二甲 基-4,4’-二胺基聯苯、3,7-二胺基二苯并呋喃、1,5_二胺基 蕗、二苯并-對二噁英-2,7-二胺、4,4’-二胺基苄基等。 當合成構成聚醯亞胺樹脂層(i)之聚醯亞胺樹脂時 ,二胺、酸酐可分別僅使用其之一種、亦可倂用2種以上 ,但二胺及酸酐之至少一者係使用2種以上。較佳爲,使 用如2,2’-二甲基-4,4’-二胺基聯苯般之可賦予通式(1) 所表示之構造單位之二胺作爲二胺,可倂用可賦予其他之 通式(1)未表示之構造單位之其他二胺。 於本發明’由於於聚醯亞胺樹脂層(i)含有導熱性 塡料,故必須於維持聚醯亞胺樹脂之優異耐熱性或尺寸安 定性之下’保持其之機械強度。由該觀點考量,上述之二 胺,以具有較可賦予通式(1)所表示構造單位之二胺之 剛直性少之構造之芳香族二胺爲佳。較佳爲,於二胺成分 中,以2,2’-二甲基- 4,4’-二胺基聯苯爲主成分,並倂用選 自1,3-雙(3-胺基苯氧基)苯、ι,3-雙(4 -胺基苯氧基) 苯、1,4 -雙(4-胺基苯氧基)苯、3,4,_二胺基二苯醚及 4,4’-二胺基二苯醚之至少1種二胺作爲其他二胺,而於酸 -14- 201000306 酐,可使用焦蜜石酸二酐作爲主成分。其他二胺之使用比 例較佳爲5〜50莫耳%之範圍。 聚醯亞胺樹脂層(Π ),其玻璃轉移溫度(Tg )必須 較聚醯亞胺樹脂層(i )低,而較佳爲具有200 °c以上之 Tg之熱塑性之聚醯亞胺樹脂之層。更佳爲,Tg爲200〜 3 5 0 °C之範圍之熱塑性樹脂,而Tg較聚醯亞胺樹脂層(i )、亦即構成聚醯亞胺樹脂層(i )之聚醯亞胺樹脂低20 t以上之層。另一方面,聚醯亞胺樹脂層(i),係成爲 具有聚醯亞胺層之50%以上之厚度之基層,故Tg亦以高 爲佳,較佳爲3 1 0 °C以上、更佳爲3 5 0〜4 5 0 °C之範圍。聚 醯亞胺樹脂層(Π )之聚醯亞胺樹脂,只要滿足上述物性 ,可使用周知之聚醯亞胺樹脂,亦可由上述之酸二酐成分 與二胺成分製得。 用以製造聚醯亞胺樹脂層(ii)所使用之酸二酐成分 ,可例示如焦蜜石酸二酐(PMDA) 、3,3’,4,4,-聯苯四羧 酸二酐(BPDA) 、3,3’4,4’-苯甲酮四羧酸二酐(BTDA ) 、3,3’4,4’-二苯颯四羧酸二酐(080八)、4,4,-氧雙鄰苯 二甲酸二酐(ODPA)等芳香族酸二酐。又,二胺成分, 較佳可例示如2,2-雙(4-胺基苯氧基苯基)丙烷(BAPP )、雙[4- (4-胺基苯氧基)苯基]颯(BAPS) 、3,4,-二胺 基二苯醚(3,4’-DAPE ) 、4,4’-二胺基二苯醚(4,4,- DAPE ) 、:I,4-雙(4-胺基苯氧基)苯(tpE_q ) 、4,4,-雙 (4-胺基苯氧基)聯苯(BAPB ) 、1,3-雙(3-胺基苯氧基 )苯(APB ) 、1,3-雙(4·胺基苯氧基)苯(TPE-R )、 -15- 201000306 1,3-雙(4-胺基苯氧基)-2,2-二甲基丙烷 香族二胺。 聚醯亞胺樹脂層(Η ) ’較佳爲未含 視需要含有一定比例之導熱性塡料。由於 (Π)主要係用以提高與金屬層之接著力 度以薄爲佳,以3 # m以下爲佳。 當於聚醯亞胺樹脂層(Π)含有導熱 爲,較聚醯亞胺樹脂層(i)之導熱性塡 又,其之含有比例較佳爲1〜50wt%之範| 4〇wt%之範圍。若導熱性塡料之含有比佐 則接著性差、且聚醯亞胺樹脂層之強度亦 有導熱性塡料時,其之尺寸以小爲佳,其 爲3/zm以下、更佳爲0.01〜Ι.Ομηι之範 之平均粒徑若超過3#m,則塡料無法均 變粗,而使與金屬層之接著性有下降之虞 未達0.01/ζιη時,容易引起粒子彼此的凝 地分散。 相對於聚醯亞胺樹脂層(A )之整體 樹脂層(i )之厚度必須爲5 0 %以上,較1 範圍。聚醯亞胺樹脂層(i)之厚度若未差 散熱性不足,作爲撓性基板使用時之尺寸 耐熱性亦降低。聚醯亞胺樹脂層(A )之 爲10〜50//m之範圍、更佳爲 15〜40μ 醯亞胺樹脂層之厚度未達ΙΟμιη,則容易 (DANPG)等芳 有塡料,但亦可 聚醯亞胺樹脂層 而設置,故其厚 性塡料時,較佳 料含有比例小。 菌、更佳爲1 0〜 [J 超過 50wt%, 降低。又,當含 之較佳平均粒徑 圍。導熱性塡料 勻分散、且表面 ,另一方面,當 集,而難以均勻 厚度之聚醯亞胺 圭爲70〜95 %之 I 5 0 %,則不僅 安定性亦不足, 整體厚度,較佳 m之範圍。若聚 變脆破裂,另一 -16 - 201000306 方面,若超過5 0 /z m則耐彎曲性有降低的傾向。 本發明之撓性基板用層合體及導熱性聚醯亞胺薄膜之 聚酿亞胺樹脂層(A) ’線膨腹係數爲30ppm/K以下·,@ 佳爲1〜25PPm/K,導熱率於聚醯亞胺樹脂層之厚度方向 λζ爲〇.3W/mK以上、較佳爲0.5〜0.8W/mK以上,於平 面方向Axy爲0.7 W/mK以上、較佳爲1.0〜2.0W/mK以 上。 於本發明之撓性基板用層合體,較佳爲使聚醯亞胺樹 脂層(A1 )與金屬層之剝離強度爲0.8kN/m以上、較佳 爲 1_0 〜1.8kN/m。 如此,爲了製得撓性基板用層合體及導熱性聚醯亞胺 薄膜,可藉由使聚醯亞胺樹脂層(i)與聚醯亞胺樹脂層 (ii)之厚度範圍、導熱性塡料之種類及含量爲適當範圍 ’並選擇所使用之聚醯亞胺原料來達成。若聚醯亞胺樹脂 層(A )之線膨脹係數超過30ppm/K,則容易產生發生捲 曲、聚醯亞胺樹脂層(A)之收縮過大而無法進行加工等 諸問題,又,若導熱率未達0.5 W/mK則散熱特性降低。 又’本發明之撓性基板用層合體及本發明之導熱性聚 醯亞胺薄膜之聚醯亞胺樹脂層(A),抗撕裂性較佳爲 1 - 5〜8kN/m。若抗撕裂性未達1.5kN/m則作成撓性電路基 板之際之加工時,有產生破裂、斷裂之虞。若聚醯亞胺樹 脂層(A )之抗撕裂性超過8kN/m,則聚醯亞胺樹脂層( A)之熱膨脹係數變大,尺寸安定性有變差的傾向。爲了 使若聚醯亞胺樹脂層(A )之抗撕裂性爲1 .5〜8 kN/m,可 -17- 201000306 使聚醯亞胺樹脂層(i )之厚度爲總厚度之5 0 %以上、並 使含有50莫耳%以上之通式(1)所表示之構造單位。再 者,較佳爲使聚醯亞胺樹脂層(i )之玻璃轉移溫度爲3 1 0 。(:以上,而於該場合’亦可藉由使聚醯亞胺樹脂層 之厚度爲總厚度之50%以上、並使含有50莫耳%以上之 通式(1 )所表示之構造單位來控制。 本發明之撓性基板用層合體’係藉由使聚醯亞胺樹脂 層(A 1 )之至少一層,以於聚醯亞胺樹脂含有導熱性塡 料之聚醯亞胺樹脂層(i)來形成’並於存在於金屬層與 聚醯亞胺樹脂層(i )之間之層,設置與金屬層之接著性 佳之聚醯亞胺樹脂層(π)。而聚醯亞胺樹脂層(Π及聚 醯亞胺樹脂層(ii),可於聚醯亞胺樹脂層(A)中各設1 層,亦可將任一者或兩者設置2層以上。然而’增加層會 有增加步驟等問題,故較佳爲,設置1層聚醯亞胺樹脂層 (i)、設置1層或2層之聚醯亞胺樹脂層(ii) ’而將與 金屬層相接之層作爲聚醯亞胺樹脂層(Π)。於兩面設置 金屬層時,可將與金屬層相接之2層作爲聚醯亞胺樹脂層 (Π)。 本發明之導熱性聚醯亞胺薄膜不具有金屬層,藉由使 聚醯亞胺樹脂層(A2)爲與聚醯亞胺樹脂層(A1)同樣 之層構成,可成爲適於使用於層合於金屬層之薄膜。 再者,聚醯亞胺樹脂層(A),除聚醯亞胺樹脂層(i )及聚醯亞胺樹脂層(ii)之外,亦可設置其他之聚醯亞 胺樹脂層。然而,設置其他之聚酿亞胺樹脂層,有使合成 -18- 201000306 步驟增加等缺點。相對於聚醯亞胺樹脂層 胺樹脂層(i )、聚醯亞胺樹脂層(ii )及 樹脂層(於複數層時皆爲其之合計)之厚 以下之範圍。聚醯亞胺樹脂層(i )爲50 70〜95%。聚醯亞胺樹脂層(ii)爲5〜 〜30%。其他聚醯亞胺樹脂層爲0〜30% %。 具有2層以上之樹脂層之聚醯亞胺棱 將聚醯亞胺樹脂層之前驅物之聚醯胺酸溶 適當之支持體上複數次,並進行乾燥及硬 。此處,於支持體若使用上述之銅箔等金 板之導體層,則可作成撓性基板用層合體 玻璃板、金屬箔等作爲支持體以形成層合 樹脂層以剝離等手段由支持體除去則可作 胺薄膜。 於本發明,由於使聚醯亞胺樹脂層爲 醯胺酸溶液,係使用2種以上,而至少1 塡料者。聚醯胺酸溶液之塗佈,可以周知 如可由棒塗方式、凹版塗佈方式、輥塗方 式等適當選擇採用。 爲了以更容易地了解的方式說明本發 胺樹脂層之兩面具有金屬層之撓性基板用 示其之製造例。首先,準備構成撓性基板 層之銅箔等金屬箔,於該金屬箔上塗佈形 :(A )之聚醯亞 其他之聚醯亞胺 度比例,較佳爲 〜9 5 %、較佳爲 5 0 %、較佳爲5 、較佳爲〇〜1 0 f脂層(A ),可 液,直接塗佈於 化,藉此來形成 屬箔作爲配線基 。又,亦可使用 體,將聚醯亞胺 成導熱性聚醯亞 複數層,故於聚 種爲含有導熱性 之方法進行,例 式、模口塗佈方 明,以於聚醯亞 層合體爲例,顯 用層合體之金屬 成聚醯亞胺樹脂 -19- 201000306 層(ii )之聚醯胺酸溶液,以1 40 °C以下之溫度乾燥除去 一定量之溶劑後,塗佈用以形成含塡料之聚醯亞胺樹脂層 (i)之聚醯胺酸溶液,並乾燥。接著,於其之上’再度 塗佈用以形成含塡料之聚醯亞胺樹脂層(ii )之聚醯胺酸 溶液,並乾燥,以形成複數層之聚醯胺酸層。之後’以更 高溫進行熱處理以將聚醯胺酸醯亞胺化,而作成於聚醯亞 胺樹脂層之單面具有金屬層之層合體。此處,用以醯亞胺 化之熱處理條件,係以150〜3 60 °C、階段地進行15〜20 分鐘左右。而於如此所得之於單面具有金屬層之層合體之 聚醯亞胺樹脂層側,以加熱壓接將銅箔等金屬箔層合’藉 此可製得於兩面具有金屬箔之兩面撓性基板用層合體。 上述加熱壓接時之熱壓溫度,並無特別限定,但較佳 爲所使用之聚醯亞胺樹脂之玻璃轉移溫度以上。又,熱壓 壓力,係視所使用之加壓機器,而較佳爲1〜5〇〇kg/crn2 之範圍。此時所使用之金屬箔,可使用與上述之金屬箔相 同者。本發明之撓性基板用層合體,可爲僅於單面具有導 體層之單面撓性基板用層合體,亦可爲於兩面具有金屬箔 之兩面撓性基板用層合體。 又,單面撓性基板用層合體,可藉下述方法製得:於 金屬箔上塗佈形成聚醯亞胺樹脂層(ii )之聚醯胺酸溶液 ,以l4〇°C以下之溫度乾燥除去一定量之溶劑後,塗佈用 以形成含塡料之聚醯亞胺樹脂層(i )之聚醯胺酸溶液, 並乾燥,將其以高溫進行熱處理以將聚醯胺酸醯亞胺化等 -20- 201000306 本發明所使用之含有導熱性塡料之聚醯胺酸溶液,可 舉例如,於事先聚合所得之含溶劑之聚醯胺酸溶液,添加 一定量之導熱性塡料,藉攪拌裝置等使其分散之調製方法 •,或邊於溶劑中分散導熱性塡料,邊添加二胺與酸酐以進 行聚合之調製方法。 聚醯胺酸,可藉由使用實質上等莫耳之芳香族二胺成 分與芳香族四羧酸二酐成分,於溶劑中聚合之周知方法來 製造。亦即,可藉由於氮氣氣流下於N,N-二甲基乙醯胺 等溶劑溶解上述二胺後,加入芳香族四羧酸二酐,於室溫 下反應3小時左右來製得。適於形成聚醯亞胺樹脂層之聚 醯胺酸之較佳聚合度,當以其之黏度範圍來表示時,溶液 黏度爲5〜2000P之範圍、較佳爲1〇〜300P之範圍。溶液 黏度之測定’可藉附恆溫水槽之錐板式黏度計來進行。又 ,上述溶劑’除N,N-二甲基乙醯胺之外,可舉例如正甲 基吡咯烷酮、2 -丁酮、二甘醇二甲醚(diglyme)、二甲 苯等,該等可使用1種或倂用2種以上。 [實施例] 以下’根據實施例以具體說明本發明之內容,但本發 明並不限於該等實施例之範圍。 本發明所使用之簡寫係表示以下之化合物。 m-TB: 2,2’-二甲基_4,4,_二胺基聯苯 4,4’-DAPE: 4,4’-二胺基二苯醚 TPE-R: 1,3-雙(4-胺基苯氧基)苯 -21 - 201000306 BAPP: 2,2-雙(4_胺基苯氧基苯基)丙院 PMDA:焦蜜石酸二酐 BPDA: 3,3’,4,4’-聯苯四羧酸二酐 ODPA : 4,4’-氧雙鄰苯二甲酸二酐 DMAc : N,N-二甲基乙醯胺 又,實施例中所評價之各特性,係根據下述評價方法 [黏度之測定] 聚醯胺酸溶液之黏度,係以附恆溫水槽之錐板式黏度 計(多奇麥克公司製),以2 5 t:測定。 [銅箔剝離強度] 將層合體之銅箔層圖案蝕刻爲寬度i.0mm、長度 180mm之長矩形,以使該圖案位於中央的方式,切取寬 度 20mm、長度 200mm之試驗片,根據ipc-TM- 650_2.4_19進行180°剝離試驗。又’表中之剝離強度超 過測定界限、無法得正確數値者係標記爲> 1 . 6。 [厚度方向導熱率(λ zTC )] 將聚醯亞胺樹脂薄膜裁切成30mmx30mm之尺寸,分 別以週期加熱法測定厚度方向之熱擴散率(ULVAC理工 製FTC-1裝置)、以DSC測定比熱、以水中取代法測定 密度,以該等之結果計算出導熱率(W/m*K )。 -22- 201000306 [面方向導熱率(λ xyTC)] 將聚醯亞胺樹脂薄膜裁切成30mmx30mm之尺寸,分 別以光交流法測定面方向之熱擴散率(ULVAC理工製 Laser PIT裝置)、以DSC測定比熱、以水中取代法測定 密度,以該等之結果計算出導熱率(W/m*K)。 [熱膨脹係數(CTE)] 將3mmxl5mm尺寸之聚醯亞胺樹脂薄膜,於以熱機 械分析(TMA )裝置施加5g之荷重下,以一定之昇溫速 度(20°C/min)以30°C至260 °C之溫度範圍進行拉伸試驗 ,由相對於溫度之聚醯亞胺薄膜之伸長量測定線膨脹係數 (ppm/K)。 [玻璃轉移溫度(Tg )] 將聚醯亞胺樹脂薄膜(10mmx22.6mm )以動態熱機械 分析裝置,測定以5°C /分自2(TC昇溫至5 00 °C時之動態黏 彈性,並求出玻璃轉移溫度(tan6極大値:°C )。 [抗撕裂性(TPR)] 將63.5mmx50mm之聚醯亞胺樹脂薄膜作爲試驗片’ 於試驗片刻入長度12.7mm之痕跡,使用東洋精機製之輕 荷重撕裂試驗機進行測定。 -23- 201000306 [薄膜MIT] 使用(股)東洋精機製作所製之MIT耐揉疲勞試驗 機DA型,準備裁切成寬度10mm、長度14〇111111之長方形 之聚醯亞胺樹脂薄膜作爲試驗片’以荷重5〇〇g、彎曲角 度135。、彎曲速度175rpm、彎曲半徑R=〇.38mm之測 定條件,求出薄膜斷裂爲止之彎曲次數。評價基準係根據 如下判定。 薄膜〇:彎曲次數 5000次以上 △:彎曲次數 1〇〇〇次以上未達5000次 X:彎曲次數未達1〇〇〇次、或無法測定 [層合體MIT] 將於單面具有銅箔之層合體電路加工’於形成電路之 面上,以使於12.5/im厚之聚醯亞胺薄膜與25#m之環 氧系接著劑層相向的方式,使用高溫真空壓力機以 18.3kgf/cm2之壓力、170°C、30分鐘之條件熱壓接製得試 驗片。使用(股)東洋精機製作所製之MIT耐揉疲勞試 驗機DA型,準備裁切成寬度l〇mm、長度150mm之長方 形之金屬層合體MIT試驗片作爲試驗片,以荷重5 00g、 彎曲角度 135° 、彎曲速度 175rpm、彎曲半徑 R = 〇.3 8mm之測定條件,求出電路斷線爲止之彎曲次數。評 價基準係根據如下判定。 層合體 〇:彎曲次數 1000次以上 △:彎曲次數 100次以上未達1000次 -24- 201000306 x :彎曲次數未達1 00次、或無法測定 合成例1〜1 0 爲了合成聚醯胺酸A〜J,將具備攪拌裝置之5〇〇ml 之分離式燒瓶浸漬於超音波裝置之水浴,於氮氣氣流下, 加入高導熱性之球狀氧化鋁塡料(最大粒徑1 5以m、平均 粒徑爲0.6 /z m之塡料2Owt %之混合塡料、比表面積 0.65m2/g )與DMAc ’於照射超音波之下攪拌約2小時。 接著,將表1所示之二胺於攪拌之下加入使其溶解後,於 維持攪拌下’加入表1所示之四羧酸二酐。之後,以室溫 持續攪拌3 · 5小時以進行聚合反應,製得聚酿亞胺前驅物 之聚醯胺酸A〜J之黏稠溶液。又,表1〜2中之二胺、四 殘酸二酐及填料之數値’係表示各成分之重量份。又,一 併表示氧化鋁塡料之含有率’但於合成例1 〇未使用氧化 鋁塡料。 合成例1 1 球狀氧化鋁塡料,係使用最大粒徑4 · 〇 # m、平均粒 徑爲〇.3ym之塡料’使用表2所示之二胺與四羧酸二酐 ’而與合成例1〜9以同樣方式製得聚醯亞胺前驅物之聚 醯0女酸K之黏稠溶液。 合成例1 2 爲了合成聚醯胺酸L,將具備攪拌裝置之500ml之分 -25- 201000306 離式燒瓶於氮氣氣流下,將表2所示之二胺於攪拌之下加 入使其溶解後,於維持攪拌下,加入表2所示之四羧酸二 酐。之後,以室溫持續攪拌3 _ 5小時以進行聚合反應’製 得聚醯亞胺前驅物之聚醯胺酸之黏稠溶液。於該聚醯胺酸 配合板狀氮化硼塡料之平均長徑4.5#m之塡料’以離心 攪拌機混合致均勻爲止,製得含有塡料30wt%之聚醯胺 酸溶液L。 合成例1 3 除將配合於該聚醯胺酸之板狀氮化硼塡料之配合比例 改成5 0 wt %以外,與合成例1 2同樣地製得聚醯胺酸溶液 Μ。 合成例1 4 使用表2所示之單體原料進行聚合反應製得黏稠之聚 醯胺酸溶液。於該聚醯胺酸配合平均長徑4.5//m之板狀 氮化硼塡料、與平均粒徑3 · 0 // m之球狀氧化鋁塡料,以 離心攪拌機混合致均勻爲止,製得含有50wt%聚醯胺酸 溶液N。此處,板狀氮化硼塡料、與球狀氧化鋁塡料之比 率,爲各5 0 wt %。 合成例1 5 使用表2所示之單體原料進行聚合反應製得黏稠之聚 醯胺酸溶液。於該聚醯胺酸配合平均長徑4.5 /i m之板狀 -26- 201000306 氮化硼塡料、與平均粒徑3 # m之球狀氧化鋁塡料’以離 心擾梓機混合致均勻爲止,製得含有5〇wt%聚醯胺酸溶 液〇 °此時’板狀氮化硼塡料、與球狀氧化鋁塡料之比率 ,爲各 5 Owt %。 將合成例1〜1 5所得之聚醯胺酸a〜Ο之溶液,分別 使用塗佈器塗佈於銅箔上’以使硬化後之厚度爲約2 5 # m 之方式塗佈,以未達140 °C乾燥5分鐘,以130〜360 °C之 溫度範圍’階段地以3 0分鐘昇溫加熱而形成層合體。該 層合體,使用氯化鐵(ΙΠ )水溶液將銅箔蝕刻除去作成 聚醯亞胺薄膜。將如此所得之聚醯亞胺薄膜之玻璃轉移溫 度(Tg )、線膨脹係數(CTE )之測定結果示於表1〜2。 -27- 201000306 [表1] 合成例 1 2 3 4 5 6 7 8 聚醯胺酸 A B C D E F G H m-TB 28.9 27.7 26.0 30.7 19.9 36.1 25.0 TPE-R 4.4 4.2 4.0 4.7 3.0 8.6 41.9 BAPP PMDA 26 24.9 23.4 27.6 17.9 36.5 31.6 30.8 BPDA 8.8 8.4 7.9 9.3 6.0 ODPA 4,4,-DAPE DMAc 386.4 369.6 346.9 409.6 265.6 354.7 369.6 354.7 塡料 45.5 65.2 91.8 18.1 187.5 72.6 65.2 72.6 塡料含有率 (w t % ) 40 50 60 20 80 50 50 50 黏度(p) 107 99 81 307 500 350 125 120 CTE(ppm/K) 25.5 28.4 31.6 23.0 *1 22.0 26.6 42.2 Tg(°c ) 356 356 354 356 354 405 367 458 * 1無法測定 -28- 201000306 [表2] 合成例 9 10 11 12 13 14 15 聚醯胺酸 I J K L Μ N 0 m-TB 19.0 18.0 27.7 18 TPE-R 35.5 4.2 BAPP 48.9 47.2 PMDA 24.3 23.5 35.2 33.3 24.9 33.3 BPDA 1.7 1.7 8.4 ODPA 37.1 4,4,-DAPE 14.7 13.9 13.9 DMAc 354.7 425.0 409.6 389.9 369.6 369.57 369.6 塡料 72.6 18.1 41.3 65.2 65.2 65.2 塡料含有率 (w t %) 50 0 20 30 50 50 50 黏度(p) 12 17 29 290 408 360 183 CTE(ppm/K) 48.0 50.1 45.7 7.9 4.9 20.7 13.4 Tg(°C ) 218 315 315 417 413 354 404 實施例1 於厚度18/zm之銅箔(壓延銅箔,Rz=0.7/zm)上 ,以使硬化後之厚度爲2 μ m之方式塗佈合成例1 0所得 之聚醯胺酸樹脂J之溶液,以120〜140 °C加熱乾燥除去 溶劑。接著,於其上以使硬化後之厚度爲23以m之方式 塗佈合成例2所得之聚醯胺酸樹脂B之溶液,以1 20 °C加 熱乾燥除去溶劑。之後,以1 3 0〜3 6 0 °C之溫度範圍,階 段地以30分鐘昇溫加熱,製作成於銅箔上有2層聚醯亞 胺層所構成之撓性基板用層合體Μ 1。銅箔上之聚醯亞胺 層之厚度,由銅箔側起之J/B之順序爲2/23 // m。爲了評 價撓性基板用層合體中之聚醯亞胺樹脂層之特性’與上述 -29- 201000306 同樣地將銅箔蝕刻除去製作成聚醯亞胺樹脂薄膜Μ 1,並 分別評價CTE、導熱率、抗撕裂性(TPR ) 、ΜΙΤ。又, 評價撓性基板用層合體之彎曲性、及聚醯亞胺樹脂層與銅 箔之剝離強度。又,將由層合體Μ 1所得之聚醯亞胺樹脂 薄膜視爲薄膜Μ1,以下相同。 實施例2 使用合成例7所得之聚醯胺酸樹脂G取代聚醯胺酸 樹脂Β,除此之外,與實施例1以同樣方式製得層合體 M2及薄膜M2。 比較例I、2 使用球狀氧化鋁塡料之含有率分別爲20wt%、80wt %之聚醯胺酸樹脂D及E,取代聚醯胺酸樹脂B,除此之 外,與實施例1以同樣方式製得層合體M3、Μ4及薄膜 M3、Μ4。又,薄膜Μ4,脆而容易因加壓而產生龜裂故無 法測定厚度方向之導熱率。 比較例3、4、5 與實施例1以同樣方式,使用合成例6、8、9所得之 聚醯胺酸樹脂F、Η、I ’分別製得層合體Μ5、Μ6、Μ7及 薄膜Μ5、Μ6、Μ7。又,薄膜Μ5,因輕輕地加壓容易產 生龜裂之故,無法測定厚度方向之導熱率。 -30- 201000306 實施例3 於與實施例1所使用之相同之銅箔上,以使硬化後之 厚度爲之方式塗佈聚醯胺酸樹脂J之溶液,以120 °C加熱乾燥除去溶劑。接著,於其上以使硬化後之厚度爲 21 之方式塗佈合成例1所得之聚醯胺酸樹脂A之溶液 ’以120°C加熱乾燥除去溶劑。再者,於其上以使硬化後 之厚度爲之方式塗佈聚醯胺酸樹脂J之溶液,以 1 2 0 °c加熱乾燥除去溶劑。之後,以1 3 0〜3 6 0 °c之溫度範 圍,階段地以30分鐘昇溫加熱,製作成於銅箔上有3層 聚醯亞胺層所構成之配線基板用層合體M8。銅箔上之聚 醯亞胺層之厚度,由銅箔側起之J/A/J之順序爲2/1 9/2 /zm。與實施例1同樣地,由層合體M8製得薄膜M8,同 樣地進行評價。 實施例4〜1 0、比較例6 改變所使用之聚酸胺酸樹脂之種類、改變聚酿亞|安_ 脂之構成,除此之外,與實施例3以同樣方式製得層合體 M9〜M16、薄膜M9〜M16’同樣地進行評價。 將層合體之評價結果與層構成不於表3,將聚醯亞月安 樹脂薄膜之評價結果示於表4。表3中之厚度,係表示構 成薄膜層之各樹脂層之厚度。 -31 - 201000306 [表3] 層合體 薄膜層構成 厚度構成 (β m) 剝離強度 (kN/m) MIT 實施例1 Ml J/B 2/23 >1.6 Δ 實施例2 M2 J/G 2/23 >1.6 Δ 比較例1 M3 J/D 2/23 >1.6 Δ 比較例2 M4 J/E 2/23 >1.6 X 比較例3 M5 J/F 2/23 >1.6 X 比較例4 M6 J/H 2/24 >1.6 X 比較例5 M7 J/I 2/24 >1.6 X 實施例3 M8 J/A/J 2/17/2 1.3 〇 實施例4 M9 J/A/K 2/20/2 1.6 Δ 實施例5 M10 K/A/K 2/19/2 1.1 Δ 實施例6 Mil J/C/J 2/19/2 >1.6 Δ 比較例ό M12 J/E/J 2/21/2 >1.6 X 實施例7 M13 J/L/J 2/21/2 1.0 〇 實施例8 M14 J/M/J 2/21/2 0.8 Δ 實施例9 M15 J/N/J 2/21/2 1.0 Δ 實施例10 M16 J/0/J 2/21/2 1.0 Δ -32 - 201000306 [表4] 薄膜 CTE (ppm/K) XzTC (W/mK) XxyTC (W/mK) TPR (kN/m) MIT 實施例1 Ml 26.3 0.5 1.4 2.0 〇 實施例2 M2 27.0 0.5 1.4 2.1 Δ 比較例1 M3 23.0 0.22 0.7 3.6 〇 比較例2 M4 氺1 0.9 1.6 0.9 X 比較例3 M5 氺1 0.5 1.4 1.0 X 比較例4 M6 42.5 0.5 1.4 0.9 X 比較例5 M7 49.6 0.5 1.6 2.8 〇 實施例3 M8 29.8 0.35 0.8 3.1 〇 實施例4 M9 23.2 0.35 0.8 2.5 〇 實施例5 M10 24.8 0.45 1.0 2.4 〇 實施例6 Mil 34.0 0.5 1.1 1.5 〇 比較例ό M12 氺1 0.7 1.4 0.8 X 實施例7 M13 10.3 0.35 3.4 2.6 〇 實施例8 M14 7.5 0.35 7.7 1.8 〇 實施例9 M15 13.1 0.7 3.5 1.8 Δ 實施例10 M16 15.8 0.7 3.7 2.3 〇 * 1無法測定 藉由本發明,可提供散熱性優異、可適用於撓性電路 基板之撓性基板用層合體及導熱性聚醯亞胺薄膜。該性基 板用層合體及導熱性聚醯亞胺薄膜,顯示良好之散熱性、 與金屬層之接著性亦優異,故可適用於要求該等特性之行 動電話、筆記型電腦等小型電子機器。 -33-(In the formula, ΑΓι is a tetravalent organic group having one or more aromatic rings, and R is a lower alkyl group having a carbon number of 1 to 6, a lower alkoxy group, a phenyl group, a phenoxy group or a halogen.) In view of the above, the present invention relates to a thermally conductive polyimide film which is composed of a flexible polyimide layer (Α2), which is characterized in that the polyimide layer (Α2) The resin layer having two or more layers, at least one layer of the resin layer is 30 to 75 wt% of the polyimine resin containing 10 to 95 mol% of the structural unit represented by the above formula (1) a polyimide resin layer (i) containing a thermally conductive tantalum, and at least one layer of a polyimide resin layer (ii) having a lower glass transition temperature than the polyimide layer 201000306 lipid layer (i), polyfluorene The imide resin layer (the thickness of the crucible is 50% or more of the entire thickness of the polyimine resin layer (A2). The preferred embodiment of the present invention is shown below. 1) Polyimine resin layer (i) The thickness is 70% to 95% of the thickness of the polyimine resin layer (overall) of the above laminate for a flexible substrate, or the above heat conduction Polyimide film. 2) The linear expansion coefficient of the polyimine resin layer (A1) is 30 ppm/K or less, and the thermal conductivity is λ ζ in the thickness direction of the polyimide layer. 3 W/mK or more, Λ xy is 0 in the plane direction. Above 7 W/mK, the peel strength of the polyimide and the metal layer is 〇. The above laminate for a flexible substrate of 8 kN/m or more. 3) The linear expansion coefficient of the polyimine resin layer (A2) is 30 ppm/K or less, and the thermal conductivity is 0 in the thickness direction λζ. The above thermally conductive polyimide film having a W/mK or more and a plane direction λ xy of 0·7 W/mK or more. 4) The tear propagation resistance of the polyimine resin layer (A1) or (A2) is 1. The above-mentioned laminate for an insulating substrate or the above thermally conductive polyimide film of 5 to 8 kN/m. 5) The above-mentioned flexible substrate laminate or the above thermally conductive polyimide film having a glass transition temperature of the polyimine resin layer (i) of 30 ° C or higher. 6) The thermal conductivity coating is selected from the group consisting of at least one of cerium oxide, aluminum oxide, aluminum nitride, boron nitride, tantalum nitride and magnesium oxide, and the average particle size is 〇. The above-mentioned flexible substrate laminate or the above-mentioned thermally conductive polyimide film in the range of 1 to 25 // m. -8-201000306 [Embodiment] Hereinafter, a laminate for a flexible substrate and a thermally conductive polyimide film of the present invention will be described in detail. The laminate for a flexible substrate of the present invention has a metal layer on one side or both sides of the polyimide layer, and the polyimide layer is composed of a plurality of layers. Further, the thermally conductive polyimide film of the present invention does not have a metal layer for forming wiring, but similarly, the polyimide layer is composed of a plurality of layers. The description of the polyimine resin layer (A1) constituting the laminate for a flexible substrate and the polyimide film (A2) constituting the thermally conductive polyimide film have many in common. The following 'partitions' explain the common parts. Further, the description of the polyimine resin layer common to the polyimine resin layer (A1) and (A2) can be understood as a description of the polyimine resin layers of both. In this case, the polyimine resin layer (A)' is understood to mean both the polyimide resin layers (A1) and (A2). At least one layer of the polyimine resin layer (i) and at least one layer of a polyimide resin layer (ϋ). When it is necessary to distinguish the plural polyimine resin layers and the polyimine resin layer formed integrally therewith, the latter is referred to as a polyimine resin layer (A) or a polyanilin resin layer as a whole, in text It can be understood that it is called a polyimine resin layer. The metal layer as the conductor layer in the laminate for a flexible substrate may, for example, be a conductive metal foil such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc or the like, or the like. It is preferable to use copper or copper alloy foil containing 90% or more of copper. The preferred thickness of the conductor layer ranges from 5 to 50 -9 * 201000306, more preferably from 8 to 35 ym. The polyimine resin layer (A)' has two or more different resin layers, and at least one layer of the resin layer is a structural unit represented by the following general formula (1) containing 10 to 95% by mole. The polyimide resin layer (i) containing a thermally conductive tantalum in a range of from 30 to 7 5 wt%, at least one layer of the resin layer having a glass transition temperature higher than that of the polyimide The resin layer (i) is composed of a low polyimine resin layer (Π). The content of the thermally conductive crucible in the polyimine resin layer (i) must be in the range of 30 to 75 wt%, preferably 40 to 70 wt%. When the content of the thermal conductive material is less than 30% by weight, the heat dissipation characteristics are insufficient when used as an electronic component such as a flexible circuit board, and if it exceeds 75 wt%, the flexibility of the laminate of the present invention is remarkably lowered. Further, the strength of the polyimide resin layer is also lowered. The thermal conductive material is preferably a material having high thermal conductivity, and specifically, for example, aluminum, copper, nickel, cerium oxide, diamond, aluminum oxide, magnesium oxide, cerium oxide, boron nitride, aluminum nitride, Tantalum nitride, tantalum carbide. Among these, at least one selected from the group consisting of cerium oxide, aluminum oxide, aluminum nitride, boron nitride, cerium nitride, and magnesium oxide is preferred. Since the polyimine resin layer functions as an insulating layer, it is considered that the coating of the polyimine resin layer (i) may be insulating. The shape of the material is not particularly limited, and may be any of a plate shape, a needle shape, and a rod shape. If the balance between the content of the heat-conductive material, the consideration and the thermal conductivity is improved, a spherical material and a plate-like material can be used in combination. The particle size of the thermally conductive material is considered to be uniformly dispersed in the thickness direction of the polyimide layer, and the average particle diameter is preferably 0. The range of 01 to 25 -10- 201000306 is more preferably in the range of 1 to 8//m. If the average particle size of the thermal conductivity material is less than 〇.  When 0 1 /z m, the heat conduction inside each of the dices is reduced, and as a result, the thermal conductivity of the polyimine resin layer is not improved, and the aggregation of the particles is liable to occur, and it is difficult to uniformly disperse. On the other hand, when it exceeds 25 / / m', the charge rate of the polyimide resin layer is lowered, and the polyimide film layer tends to be brittle due to the interface of the material. Further, in the case of the heat transfer material, when the shape of the material is a plate-like or scaly plate-like material, in the present invention, the particle size is expressed by the average long diameter. When a plate-like material is used, the average length DL is preferably in the range of 0. 1 ~ 15 / / m range, especially good 0. 5~lO/zm range. The plate-like material is preferably boron nitride. If the average long diameter Dl is not reached, the thermal conductivity is lowered and the effect of the plate shape is reduced. Further, when it exceeds 15 μm, it is difficult to align at the time of film formation. Here, the average long diameter DL means the average 値 of the long side diameter of the platy material. The average diameter is the median diameter, and the mode diameter can be one peak within the above range, which is also the same for the spherical material. Further, the particle size of the thermal conductive material is also related to the thickness of the polyimide layer (i). The average particle diameter or the average major axis of the thermal conductive material may be a polyimine resin layer (70% or less, preferably 50% or less of the thickness of the crucible). Condensation of the polyimine resin layer (i) The imine resin is a structural unit represented by the formula (1) in an amount of 10 to 95 mol % (preferably 50 to 95 mol %). In the formula (1), the An system has one or more aromatic rings. a tetravalent organic group, R is a lower alkyl group having a carbon number of 1 to 6, a lower alkoxy group, a phenyl group, a -11 - 201000306 phenoxy group or a halogen. Ar, which can be regarded as an aromatic four of a polyimine raw material Since the residue of the residual acid is a specific example of the aromatic tetracarboxylic acid, it can be understood as Ar> Further, R can be regarded as a part of the residue of the aromatic diamine of the polyimine raw material. Specific examples thereof include pyromellitic dianhydride (PMDA), 3,3'4,4'-benzophenonetetracarboxylic dianhydride, and 2,2',3,3'-benzophenonetetracarboxylic acid. Acid dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride (NTCDA), naphthalene-1,2,5, 6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2 6,7-tetracarboxylic dianhydride, 4,8. dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4 ,8-Dimethyl-1,2,3,5,6,7-hexahydronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5 , 8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8 -tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,2',3,3'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,3",4,4"- Co-triphenyltetracarboxylic dianhydride, 2,2",3,3"-para-triphenyltetracarboxylic dianhydride, 2,3,3",4" _para-triphenyltetracarboxylic dianhydride, 2,2 -bis(2,3-dicarboxyphenyl)-propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3-dicarboxyphenyl)ether Anhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4.dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)ruthenic anhydride, bis (3) , 4-dicarboxyphenyl)ruthenic anhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane Anhydride, indole-2,3,8,9-tetracarboxylic dianhydride, indole-3,4,9,10-tetracarboxylic dianhydride, indole-4,5,10,11-tetracarboxylic acid-12- 201000306 phenanthrene-1,2,7,8-tetracarboxylic dianhydride, indole-5,6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene -1,2,9,10-tetradecanoic acid-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetradecanoic acid-2,3,4, 5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetraresidic acid oxydiphthalic dianhydride, and the like. Where the structural unit other than the structural unit represented by the general formula (1) indicates the residue of the aromatic tetracarboxylic acid of the polyimine raw material and the residue of the aromatic diamine, the residue of the aromatic tetracarboxylic acid may be The residue of the aromatic tetracarboxylic acid is as exemplified as described above. The residue of the aromatic diamine may, for example, be an aromatic residue represented by 卞. For example, 4,6-dimethyl-m-phenylene-p-phenylenediamine, 2,4-diaminos-trimethylphenyl, toluidine, 4,4'-methylene-2,6 -zylylenediamine, diethylaniline, 2,4-toluenediamine, m-phenylene-4,4,-diaminodiphenylpropane, 3,3'-diamine phthalic anhydride, cyclopentylpyridine 4, 4,- If diamine, 2,5-dimethyl 4,4'-methylene di-o- 4,4'-methylene-2,6-, p-phenylenediamine, phenylpropane , 4 4,-diaminodiphenylethane, 3,3'-diaminodiphenyl, phenyldiphenylmethane, 3,3'-diaminodiphenyl stilbene phenoxy) Phenyl]propane, 4,4'-diaminodiphenyl sulphide, 4,4'-diaminodiphenyl hydrazine, diaminodiphenyl hydrazine, 4,4,-diaminodiphenyl ether , 3,3,-diamino~ S Chu~phenyl ether, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4.aminophenyl)benzene, 1,4 · bis(4-aminophenoxy)benzene, benzidine, 3,3'-~ _ ^ H phenylbiphenyl, 3,3, _~methyl _4,4, · diaminobiphenyl , 3,3,-dimethoxy-benzamine, 4,4,-diamino _ bis-triphenyl, 3,3 '-diamino-pair Biphenyl, _ ® X (p-aminocyclohexyl) acetamidine, 4,4, diamine 2,2_ bis [4· ( 4-aminophenyl sulphide, 3,3, diamine 3,3 ' -- -13- 201000306 Methane, bis(p-θ-amino-tris-butylphenyl) ether, bis(p-^-methyl-6-aminopentyl)benzene, p-bis(2- Methyl-4-aminopentyl)benzene, p-bis(1,1-dimethyl-5-aminopentyl)benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene , 2,4-bis(non-amino-tributyl)toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, Meta-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadi Azole, piperazine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,7-diaminodibenzofuran, 1,5-diaminopurine, dibenzo- Dioxin-2,7-diamine, 4,4'-diaminobenzyl, etc. When synthesizing the polyimine resin constituting the polyimine resin layer (i), the diamine and the acid anhydride may be respectively Two or more types may be used alone or in combination of two or more kinds of diamines and acid anhydrides. Using a diamine such as 2,2'-dimethyl-4,4'-diaminobiphenyl to give a structural unit represented by the formula (1) as a diamine, which can be used for other purposes. The other diamine of the structural unit not represented by the formula (1). In the present invention, since the polyimide layer (i) contains a thermal conductive material, it is necessary to maintain excellent heat resistance of the polyimide resin or Under the dimensional stability, 'maintain its mechanical strength. From the viewpoint of the above, the above-mentioned diamine is preferably an aromatic diamine having a structure having less rigidity than a diamine which can impart a structural unit represented by the formula (1). Preferably, the diamine component is mainly composed of 2,2'-dimethyl-4,4'-diaminobiphenyl, and is selected from the group consisting of 1,3-bis(3-aminobenzene). Oxy)benzene, iota, bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 3,4,-diaminodiphenyl ether and 4 At least one diamine of 4'-diaminodiphenyl ether is used as the other diamine, and pyrogate dianhydride is used as the main component in the acid-14-201000306 anhydride. The use ratio of the other diamine is preferably in the range of 5 to 50 mol%. The polyimide resin layer (Π) has a glass transition temperature (Tg) lower than that of the polyimine resin layer (i), and is preferably a thermoplastic polyimide resin having a Tg of 200 ° C or more. Floor. More preferably, the Tg is a thermoplastic resin in the range of 200 to 350 ° C, and the Tg is more than the polyimine resin layer (i), that is, the polyimine resin constituting the polyimide layer (i). Layers lower than 20 t. On the other hand, since the polyimine resin layer (i) is a base layer having a thickness of 50% or more of the polyimide layer, the Tg is preferably high, preferably 3 to 10 ° C or more. Good range of 3 5 0~4 5 0 °C. The polyimine resin of the polyimine resin layer (Π) can be obtained by using a known polyimine resin or the above-mentioned acid dianhydride component and diamine component as long as the above physical properties are satisfied. The acid dianhydride component used for producing the polyimide layer (ii) can be exemplified by, for example, pyromellitic dianhydride (PMDA), 3,3', 4,4,-biphenyltetracarboxylic dianhydride. (BPDA), 3,3'4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 3,3'4,4'-diphenylphosphonium tetracarboxylic dianhydride (0808), 4,4 An aromatic acid dianhydride such as -oxydiphthalic dianhydride (ODPA). Further, the diamine component is preferably exemplified by 2,2-bis(4-aminophenoxyphenyl)propane (BAPP) or bis[4-(4-aminophenoxy)phenyl]anthracene ( BAPS), 3,4,-diaminodiphenyl ether (3,4'-DAPE), 4,4'-diaminodiphenyl ether (4,4,- DAPE),: I,4-double ( 4-aminophenoxy)benzene (tpE_q), 4,4,-bis(4-aminophenoxy)biphenyl (BAPB), 1,3-bis(3-aminophenoxy)benzene ( APB), 1,3-bis(4.aminophenoxy)benzene (TPE-R), -15- 201000306 1,3-bis(4-aminophenoxy)-2,2-dimethyl Propane aromatic diamine. The polyimine resin layer (Η) ‘ is preferably not contained in a certain proportion of thermal conductivity. Since (Π) is mainly used to increase the adhesion to the metal layer, it is preferable to use thinner than 3 #m. When the polyimide layer contains a heat conductivity, the thermal conductivity of the polyimide layer (i) is preferably 1 to 50% by weight. range. When the content of the thermal conductive material is poor in adhesion, and the strength of the polyimide film layer is also thermally conductive, the size thereof is preferably small, and is 3/zm or less, more preferably 0. 01~Ι. If the average particle size of Ομηι is more than 3#m, the material cannot be coarsened uniformly, and the adhesion to the metal layer is reduced. When 01/ζιη, it is easy to cause the particles to disperse in each other. The thickness of the entire resin layer (i) with respect to the polyimide layer (A) must be 50% or more, which is in the range of 1. If the thickness of the polyimine resin layer (i) is not poor, the heat dissipation property is insufficient, and the dimensional heat resistance when used as a flexible substrate is also lowered. The polyimine resin layer (A) has a range of 10 to 50/m, more preferably 15 to 40 μ, and the thickness of the yttrium imide resin layer is less than ΙΟμιη, which is easy (DANPG) and the like, but also It can be provided by a polyimine resin layer, so when it is thick, it is preferable that the content of the material is small. More preferably, the bacteria are 1 0~ [J more than 50% by weight, lower. Also, it contains a preferred average particle size. The thermal conductivity material is uniformly dispersed and the surface, on the other hand, when it is difficult to obtain a uniform thickness of the polyimine, which is 70 to 95% of I 50%, not only the stability is insufficient, but also the overall thickness. The range of m. If the fusion is brittle and fractured, in the case of another -16 - 201000306, if it exceeds 50 / z m, the bending resistance tends to decrease. The laminate for a flexible substrate of the present invention and the polyaniline resin layer of the thermally conductive polyimide film (A) have a line expansion coefficient of 30 ppm/K or less, @佳为1 to 25 ppm/K, and thermal conductivity. In the thickness direction of the polyimide layer, λζ is 〇. 3W/mK or more, preferably 0. 5~0. Above 8W/mK, Axy is 0 in the plane direction. 7 W/mK or more, preferably 1. 0~2. Above 0W/mK. In the laminate for a flexible substrate of the present invention, it is preferred that the peeling strength of the polyimide layer (A1) and the metal layer is 0. 8kN/m or more, preferably 1_0~1. 8kN/m. Thus, in order to obtain a laminate for a flexible substrate and a thermally conductive polyimide film, the thickness range and thermal conductivity of the polyimide layer (i) and the polyimide layer (ii) can be made 塡The type and content of the material are in the appropriate range' and the polyimine material used is selected. When the linear expansion coefficient of the polyimine resin layer (A) exceeds 30 ppm/K, curling occurs, the shrinkage of the polyimide film (A) is excessively large, and processing cannot be performed, and the thermal conductivity is also obtained. Not up to 0. 5 W/mK reduces heat dissipation. Further, the laminate for a flexible substrate of the present invention and the polyimine resin layer (A) of the thermally conductive polyimide film of the present invention preferably have a tear resistance of from 1 to 5 to 8 kN/m. If the tear resistance is less than 1. When 5kN/m is processed as a flexible circuit board, cracks and cracks may occur. When the tear resistance of the polyimine resin layer (A) exceeds 8 kN/m, the thermal expansion coefficient of the polyimine resin layer (A) increases, and the dimensional stability tends to be deteriorated. In order to make the tear resistance of the polyimide layer (A) to be 1. 5 to 8 kN/m, -17-201000306 The thickness of the polyimine resin layer (i) is 50% or more of the total thickness, and is expressed by the formula (1) containing 50 mol% or more. Construction unit. Further, it is preferred that the glass transition temperature of the polyimine resin layer (i) is 3 1 0 . (In the above case, the thickness of the polyimide film layer may be 50% or more of the total thickness, and the structural unit represented by the formula (1) containing 50 mol% or more may be used. The laminate for a flexible substrate of the present invention is obtained by using at least one layer of a polyimide resin layer (A 1 ) for a polyimide resin layer containing a thermally conductive coating of a polyimide resin ( i) to form a layer which exists between the metal layer and the polyimide layer (i), and provides a polyimide layer (π) which is excellent in adhesion to the metal layer. The polyimide resin The layer (the yttrium and the polyimide resin layer (ii) may be provided in the polyimine resin layer (A) in one layer, or may be provided in two or more layers. There is a problem such as an increase step, and it is preferable to provide a layer of a polyimide layer (i), a layer of one or two layers of a polyimide resin layer (ii) and a layer to be bonded to the metal layer. As a polyimine resin layer (Π), when a metal layer is provided on both sides, two layers which are in contact with the metal layer can be used as a polyimide layer (Π). The thermal polyimide film does not have a metal layer, and the polyimine resin layer (A2) is formed into a layer similar to that of the polyimide resin layer (A1), and is suitable for use in lamination to a metal layer. Further, the polyimide layer (A) may be provided with other polyimide layers in addition to the polyimide layer (i) and the polyimide layer (ii). However, setting other layers of the polyimide resin layer has disadvantages such as increasing the number of steps -18-201000306. Compared with the polyimide layer of the polyimide resin layer (i), the polyimide layer (ii) and The thickness of the resin layer (which is the total of the plurality of layers) is less than or equal to the range of the polyimine resin layer (i) of 50 70 to 95%. The polyimine resin layer (ii) is 5 to 30%. The other polyimide resin layer is 0 to 30% by weight. The polyimine edge having two or more resin layers dissolves the polyamidene resin layer precursor polyphosphonate on the support. In the case of using a conductor layer of a gold plate such as a copper foil as described above, a laminate for a flexible substrate can be used as the support. A glass plate, a metal foil, or the like is used as a support to form a layered resin layer, and is removed from the support by peeling or the like to form an amine film. In the present invention, since the polyimide layer is made of a lysine solution, 2 is used. The coating of the polyaminic acid solution can be suitably selected, for example, by a bar coating method, a gravure coating method, a roll coating method, etc., in order to explain the present invention in a more easily understandable manner. A flexible substrate having a metal layer on both sides of the amine resin layer is shown as a production example. First, a metal foil such as a copper foil constituting the flexible substrate layer is prepared, and a shape of the (A) is coated on the metal foil. The ratio of the other polyamidene is preferably ~9.5 %, preferably 50%, preferably 5, preferably 〇~1 0 f lipid layer (A), liquid, direct coating In order to form a genus foil as a wiring base. Further, the polyimine may be used as a thermally conductive polypyrylene sublayer, so that the polycondensation is carried out by a method containing thermal conductivity, and the method and the die coating are applied to the polylayer sublayer. For example, the metal of the laminate is formed into a polyamidene resin -19-201000306 layer (ii) poly-proline solution, dried at a temperature below 1 40 ° C to remove a certain amount of solvent, and then coated A polyamic acid solution of the pigmented polyimine resin layer (i) is formed and dried. Next, a polyphthalic acid solution for forming a pigment-containing polyimine resin layer (ii) is again applied thereon and dried to form a plurality of layers of polyamic acid. Thereafter, heat treatment is carried out at a higher temperature to imidize the polyphosphonium phthalate to form a laminate having a metal layer on one side of the polyimide layer. Here, the heat treatment conditions for the ruthenium imidization are carried out at a temperature of 150 to 3 60 ° C for about 15 to 20 minutes. On the side of the polyimine resin layer of the laminate having the metal layer on one side, the metal foil such as copper foil is laminated by heating and crimping, whereby the two-sided flexibility of the metal foil on both sides can be obtained. A laminate for a substrate. The hot pressing temperature at the time of the above-mentioned thermocompression bonding is not particularly limited, but is preferably at least the glass transition temperature of the polyimide resin to be used. Further, the hot pressing pressure is preferably in the range of 1 to 5 〇〇 kg / crn 2 depending on the press machine used. The metal foil used at this time can be the same as the above-mentioned metal foil. The laminate for a flexible substrate of the present invention may be a laminate for a single-sided flexible substrate having a conductor layer on only one side, or a laminate for a double-sided flexible substrate having a metal foil on both sides. Further, the laminate for a single-sided flexible substrate can be obtained by coating a metal foil with a polyaminic acid solution forming a polyimine resin layer (ii) at a temperature of not higher than 14 ° C. After drying to remove a certain amount of solvent, coating a polyamic acid solution for forming a polyimide-containing polyimine resin layer (i), and drying it, and heat-treating it at a high temperature to obtain a polyamidite Amination, etc. -20-201000306 The polyamic acid solution containing the thermal conductive material used in the present invention may, for example, be a solvent-containing polyamic acid solution obtained by polymerization in advance, and a certain amount of thermal conductive material may be added. A method of preparing a dispersion by a stirring device or the like, or dispersing a thermally conductive material in a solvent, and adding a diamine and an acid anhydride to carry out polymerization. Polylysine can be produced by a known method of polymerizing in a solvent using an aromatic diamine component substantially in the form of a molar amount and an aromatic tetracarboxylic dianhydride component. Namely, it can be obtained by dissolving the above diamine in a solvent such as N,N-dimethylacetamide under a nitrogen gas stream, adding an aromatic tetracarboxylic dianhydride, and reacting at room temperature for about 3 hours. The preferred degree of polymerization of the polyamic acid suitable for forming the polyimide film layer is in the range of 5 to 2000 P, preferably 1 to 300 P, in terms of the viscosity range thereof. The determination of the viscosity of the solution can be carried out by means of a cone-and-plate viscometer with a constant temperature water bath. Further, the solvent 'except N,N-dimethylacetamide may, for example, be n-methylpyrrolidone, 2-butanone, diglyme, xylene or the like, and these may be used. One type or two types can be used. [Examples] The following is a detailed description of the present invention based on the examples, but the present invention is not limited to the scope of the embodiments. The abbreviations used in the present invention denote the following compounds. m-TB: 2,2'-dimethyl-4,4,-diaminobiphenyl 4,4'-DAPE: 4,4'-diaminodiphenyl ether TPE-R: 1,3-double (4-Aminophenoxy)benzene-21 - 201000306 BAPP: 2,2-bis(4-aminophenoxyphenyl)propylamine PMDA: pyrethic acid dianhydride BPDA: 3,3',4 , 4'-biphenyltetracarboxylic acid dianhydride ODPA: 4,4'-oxydiphthalic dianhydride DMAc: N,N-dimethylacetamide, in addition, the characteristics evaluated in the examples, According to the following evaluation method [measurement of viscosity], the viscosity of the polyaminic acid solution was measured by a cone-plate viscometer (manufactured by Dodgema Co., Ltd.) equipped with a constant temperature water bath at 25 t:. [Copper peel strength] The copper foil layer pattern of the laminate is etched to a width i. A long rectangle of 0 mm and a length of 180 mm is cut into a test piece having a width of 20 mm and a length of 200 mm in such a manner that the pattern is located at the center, according to ipc-TM-650_2. 4_19 was subjected to a 180° peel test. In addition, the peel strength in the table exceeds the measurement limit, and the correct number cannot be obtained.  6. [Thermal Conductivity in Thickness Direction (λ zTC )] The polyimide film of the polyimide film was cut into a size of 30 mm x 30 mm, and the thermal diffusivity in the thickness direction was measured by a periodic heating method (FTC-1 device manufactured by ULVAC), and the specific heat was measured by DSC. The density was measured by the water substitution method, and the thermal conductivity (W/m*K) was calculated from the results. -22- 201000306 [thermal conductivity in the direction of the surface (λ xyTC)] The polyimide film was cut into a size of 30 mm x 30 mm, and the thermal diffusivity of the surface direction (the Laser PIT device manufactured by ULVAC) was measured by the optical communication method. The DSC measures the specific heat and the density by the water substitution method, and the thermal conductivity (W/m*K) is calculated from the results. [Coefficient of Thermal Expansion (CTE)] A film of a polyimide film of 3 mm x 15 mm in size was applied at a temperature increase rate (20 ° C/min) at 30 ° C under a load of 5 g applied by a thermomechanical analysis (TMA) apparatus. The tensile test was carried out at a temperature range of 260 ° C, and the coefficient of linear expansion (ppm/K) was determined from the elongation of the polyimide film with respect to temperature. [Glass transfer temperature (Tg)] Polyimide resin film (10mmx22. 6mm) Using a dynamic thermomechanical analyzer, measure the dynamic viscoelasticity at 2 °C from 2 °C to 500 °C and determine the glass transition temperature (tan6 max 値: °C). Crack (TPR)] will be 63. A 5 mm x 50 mm polyimine resin film was used as a test piece'. The trace of 7 mm was measured using a Toyo Seiki's light load tear tester. -23- 201000306 [Thin Film MIT] The DA type of the MIT tensile fatigue tester manufactured by Toyo Seiki Co., Ltd. was prepared, and a rectangular polyimide film of a width of 10 mm and a length of 14〇111111 was prepared as a test piece. The load is 5〇〇g and the bending angle is 135. , bending speed 175rpm, bending radius R = 〇. The measurement condition of 38 mm was used to determine the number of bends until the film was broken. The evaluation criteria are determined as follows. Film 〇: bending times 5000 times or more △: bending times 1 〇〇〇 or more and less than 5000 times X: bending times less than 1 、, or unable to measure [Layer MIT] will have copper foil on one side The laminated circuit is processed 'on the surface of the circuit to make it 12. 18. Using a high-temperature vacuum press in a manner that the 5/im thick polyimine film is in the opposite direction to the 25#m ring oxygen-based adhesive layer. A test piece was prepared by hot pressing at a pressure of 3 kgf/cm 2 at 170 ° C for 30 minutes. The MIT tensile fatigue tester DA type manufactured by Toyo Seiki Co., Ltd. was used to prepare a rectangular metal laminate MIT test piece having a width of l〇mm and a length of 150 mm as a test piece with a load of 500 g and a bending angle of 135. °, bending speed 175 rpm, bending radius R = 〇. 3 8mm measurement conditions, the number of bends until the circuit is broken. The evaluation basis is based on the following judgment. Laminated body 〇: The number of bending times is more than 1000 times △: The number of bending times is 100 times or more and less than 1000 times -24 - 201000306 x : The number of bending times is less than 100 times, or the synthesis example 1 to 1 0 cannot be measured. In order to synthesize polyamic acid A ~J, a 5 〇〇 ml separable flask equipped with a stirring device was immersed in a water bath of an ultrasonic device, and a spherical alumina crucible having a high thermal conductivity was added under a nitrogen gas flow (maximum particle diameter of 15 m, average The particle size is 0. 6 / z m of the feed 2Owt% of mixed feed, specific surface area 0. 65 m2/g) and DMAc' were stirred under irradiation of ultrasonic waves for about 2 hours. Next, the diamine shown in Table 1 was added under stirring to dissolve, and then the tetracarboxylic dianhydride shown in Table 1 was added while maintaining stirring. Thereafter, the mixture was continuously stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain a viscous solution of polyamic acid A to J of the polyimide intermediate precursor. Further, the number of the diamine, the tetra-residual dianhydride, and the filler in Tables 1 to 2 indicates the parts by weight of each component. Further, the content of the alumina crucible was collectively shown, but in the synthesis example 1, the alumina crucible was not used. Synthesis Example 1 1 Spherical alumina crucible, using a maximum particle size of 4 · 〇 # m, and an average particle diameter of 〇. A viscous solution of poly-imine precursor K of the polyimine precursor was prepared in the same manner as in Synthesis Examples 1 to 9 by using the diamine and tetracarboxylic dianhydride shown in Table 2 below. Synthesis Example 1 2 In order to synthesize polyglycolic acid L, 500 ml of a 25-201000306 leaving flask equipped with a stirring device was placed under a nitrogen stream, and the diamine shown in Table 2 was added under stirring to dissolve it. The tetracarboxylic dianhydride shown in Table 2 was added while maintaining stirring. Thereafter, stirring was continued for 3 to 5 hours at room temperature to carry out a polymerization reaction to obtain a viscous solution of a polyamidene precursor of a polyamidene precursor. The average length of the polyamic acid in combination with the plate-shaped boron nitride crucible is 4. The 5#m crucible was mixed by a centrifugal mixer to obtain a polyglycolic acid solution L containing 30% by weight of the dip. In the same manner as in Synthesis Example 1, except that the mixing ratio of the plate-form boron nitride crucible to be added to the polyamic acid was changed to 50% by weight, a polylysine solution was obtained in the same manner as in Synthesis Example 1. Synthesis Example 1 4 A viscous poly-proline solution was prepared by carrying out polymerization using the monomer starting materials shown in Table 2. The polyamine is combined with an average long diameter of 4. 5//m plate-shaped boron nitride crucible, and spherical alumina crucible having an average particle diameter of 3 · 0 / m, mixed with a centrifugal mixer to obtain a 50 wt% polyproline solution N . Here, the ratio of the plate-shaped boron nitride crucible to the spherical alumina crucible is 50% by weight. Synthesis Example 1 5 A viscous poly-proline solution was prepared by carrying out polymerization using the monomer starting materials shown in Table 2. The polyamine is combined with an average long diameter of 4. 5 /im plate -26- 201000306 Boron nitride material, and spherical alumina crucible with an average particle size of 3 # m' is mixed by a centrifugal scrambler to obtain a uniform concentration of 5〇wt% The ratio of the plate-shaped boron nitride crucible to the spherical alumina crucible in the case of the amine acid solution 为° is 5% by weight. The solutions of polyacrylic acid a to ruthenium obtained in Synthesis Examples 1 to 15 were applied onto a copper foil using an applicator, respectively, so as to have a thickness of about 2 5 # m after hardening, The mixture was dried at 140 ° C for 5 minutes, and heated at a temperature of 130 to 360 ° C for a period of 30 minutes to form a laminate. In the laminate, the copper foil was etched away using an aqueous solution of ferric chloride (ΙΠ) to form a polyimide film. The measurement results of the glass transition temperature (Tg) and the coefficient of linear expansion (CTE) of the thus obtained polyimide film are shown in Tables 1 to 2. -27- 201000306 [Table 1] Synthesis Example 1 2 3 4 5 6 7 8 Polyamide A B C D E F G H m-TB 28. 9 27. 7 26. 0 30. 7 19. 9 36. 1 25. 0 TPE-R 4. 4 4. twenty four. 0 4. 7 3. 0 8. 6 41. 9 BAPP PMDA 26 24. 9 23. 4 27. 6 17. 9 36. 5 31. 6 30. 8 BPDA 8. 8 8. 4 7. 9 9. 3 6. 0 ODPA 4,4,-DAPE DMAc 386. 4 369. 6 346. 9 409. 6 265. 6 354. 7 369. 6 354. 7 Details 45. 5 65. 2 91. 8 18. 1 187. 5 72. 6 65. 2 72. 6 Feed content (w t % ) 40 50 60 20 80 50 50 50 Viscosity (p) 107 99 81 307 500 350 125 120 CTE (ppm / K) 25. 5 28. 4 31. 6 23. 0 *1 22. 0 26. 6 42. 2 Tg(°c) 356 356 354 356 354 405 367 458 * 1 Unable to measure -28- 201000306 [Table 2] Synthesis Example 9 10 11 12 13 14 15 Polyamide I J K L Μ N 0 m-TB 19. 0 18. 0 27. 7 18 TPE-R 35. 5 4. 2 BAPP 48. 9 47. 2 PMDA 24. 3 23. 5 35. 2 33. 3 24. 9 33. 3 BPDA 1. 7 1. 7 8. 4 ODPA 37. 1 4,4,-DAPE 14. 7 13. 9 13. 9 DMAc 354. 7 425. 0 409. 6 389. 9 369. 6 369. 57 369. 6 dips 72. 6 18. 1 41. 3 65. 2 65. 2 65. 2 Feed content (w t %) 50 0 20 30 50 50 50 Viscosity (p) 12 17 29 290 408 360 183 CTE (ppm / K) 48. 0 50. 1 45. 7 7. 9 4. 9 20. 7 13. 4 Tg(°C) 218 315 315 417 413 354 404 Example 1 Copper foil with a thickness of 18/zm (rolled copper foil, Rz=0. 7/zm) A solution of the polyamic acid resin J obtained in Synthesis Example 10 was applied so as to have a thickness of 2 μm after hardening, and dried by heating at 120 to 140 ° C to remove the solvent. Next, a solution of the polyamic acid resin B obtained in Synthesis Example 2 was applied thereto so that the thickness after hardening was 23 m, and the solvent was removed by heating at 1200 °C. Thereafter, the film was heated at a temperature of 130 ° C for a period of 30 minutes in a temperature range of 1 3 0 to 3 60 ° C to prepare a laminate Μ 1 for a flexible substrate comprising a layer of two polyimide layers on a copper foil. The thickness of the polyimide layer on the copper foil is 2/23 // m in the order of J/B from the side of the copper foil. In order to evaluate the properties of the polyimide film in the laminate for a flexible substrate, the copper foil was etched and removed to form a polyimide film Μ 1 in the same manner as in the above-mentioned -29-201000306, and the CTE and the thermal conductivity were respectively evaluated. , tear resistance (TPR), sputum. Further, the flexibility of the laminate for a flexible substrate and the peel strength of the polyimide film and the copper foil were evaluated. Further, the polyimine resin film obtained from the laminate Μ 1 was regarded as the film Μ1, and the same applies hereinafter. (Example 2) A laminate M2 and a film M2 were obtained in the same manner as in Example 1 except that the polyphthalic acid resin G obtained in Synthesis Example 7 was used instead of the polyamidite resin. Comparative Examples I and 2, except that the polyamic acid resins D and E having a spherical alumina crucible content of 20% by weight and 80% by weight, respectively, were substituted for the polyaminic acid resin B, except that in the same manner as in Example 1, Laminates M3, Μ4, and films M3, Μ4 were obtained in the same manner. Further, the film crucible 4 was brittle and easily cracked due to pressurization, so that the thermal conductivity in the thickness direction could not be measured. Comparative Examples 3, 4, and 5 In the same manner as in Example 1, the laminates Μ5, Μ6, Μ7, and Μ5 were obtained by using the polyaminic acid resins F, Η, and I' obtained in Synthesis Examples 6, 8, and 9, respectively. Μ 6, Μ 7. Further, the film crucible 5 was liable to be cracked by gentle pressing, and the thermal conductivity in the thickness direction could not be measured. -30-201000306 Example 3 On the same copper foil as used in Example 1, a solution of polyamic acid resin J was applied so as to have a thickness after hardening, and dried by heating at 120 ° C to remove the solvent. Then, a solution of the polyamic acid resin A obtained in Synthesis Example 1 was applied thereto so as to have a thickness of 21 after hardening, and dried by heating at 120 ° C to remove the solvent. Further, a solution of the polyaminic acid resin J was applied thereto so as to have a thickness after hardening, and the solvent was removed by heating and drying at 120 ° C. Then, it was heated at a temperature of 30 minutes in a temperature range of 1300 to 370 ° C to prepare a wiring board laminate M8 having three layers of a polyimide layer on a copper foil. The thickness of the polyimide layer on the copper foil is 2/1 9/2 /zm in the order of J/A/J from the side of the copper foil. In the same manner as in Example 1, a film M8 was obtained from the laminate M8, and the evaluation was carried out in the same manner. Examples 4 to 10, Comparative Example 6 A laminate M9 was produced in the same manner as in Example 3 except that the type of the polyamic acid resin to be used was changed, and the composition of the polymerized resin was changed. ~M16 and films M9 to M16' were evaluated in the same manner. The evaluation results of the laminate and the layer constitution were not shown in Table 3. The evaluation results of the polyfluorene resin film are shown in Table 4. The thickness in Table 3 indicates the thickness of each resin layer constituting the film layer. -31 - 201000306 [Table 3] Laminate Thin film layer thickness composition (β m) Peel strength (kN/m) MIT Example 1 Ml J/B 2/23 > 6 Δ Example 2 M2 J/G 2/23 >1. 6 Δ Comparative Example 1 M3 J/D 2/23 >1. 6 Δ Comparative Example 2 M4 J/E 2/23 >1. 6 X Comparative Example 3 M5 J/F 2/23 >1. 6 X Comparative Example 4 M6 J/H 2/24 >1. 6 X Comparative Example 5 M7 J/I 2/24 >1. 6 X Example 3 M8 J/A/J 2/17/2 1. 3 实施 Example 4 M9 J/A/K 2/20/2 1. 6 Δ Example 5 M10 K/A/K 2/19/2 1. 1 Δ Example 6 Mil J/C/J 2/19/2 >1. 6 Δ Comparative Example ό M12 J/E/J 2/21/2 >1. 6 X Example 7 M13 J/L/J 2/21/2 1. 0 〇 Example 8 M14 J/M/J 2/21/2 0. 8 Δ Example 9 M15 J/N/J 2/21/2 1. 0 Δ Example 10 M16 J/0/J 2/21/2 1. 0 Δ -32 - 201000306 [Table 4] Film CTE (ppm/K) XzTC (W/mK) XxyTC (W/mK) TPR (kN/m) MIT Example 1 Ml 26. 3 0. 5 1. 4 2. 0 〇 Example 2 M2 27. 0 0. 5 1. 4 2. 1 Δ Comparative Example 1 M3 23. 0 0. 22 0. 7 3. 6 〇 Comparative Example 2 M4 氺1 0. 9 1. 6 0. 9 X Comparative Example 3 M5 氺1 0. 5 1. 4 1. 0 X Comparative Example 4 M6 42. 5 0. 5 1. 4 0. 9 X Comparative Example 5 M7 49. 6 0. 5 1. 6 2. 8 实施 Example 3 M8 29. 8 0. 35 0. 8 3. 1 实施 Example 4 M9 23. 2 0. 35 0. 8 2. 5 实施 Example 5 M10 24. 8 0. 45 1. 0 2. 4 实施 Example 6 Mil 34. 0 0. 5 1. 1 1. 5 〇 Comparative example ό M12 氺 1 0. 7 1. 4 0. 8 X Example 7 M13 10. 3 0. 35 3. 4 2. 6 实施 Example 8 M14 7. 5 0. 35 7. 7 1. 8 实施 Example 9 M15 13. 1 0. 7 3. 5 1. 8 Δ Example 10 M16 15. 8 0. 7 3. 7 2. 3 〇 * 1 Unmeasured By the present invention, it is possible to provide a laminate for a flexible substrate and a thermally conductive polyimide film which are excellent in heat dissipation and can be applied to a flexible circuit board. The laminate for a substrate and the thermally conductive polyimide film exhibit excellent heat dissipation properties and excellent adhesion to a metal layer, and are therefore applicable to small electronic devices such as mobile phones and notebook computers that require such characteristics. -33-

Claims (1)

201000306 七、申請專利範圍: 1. 一種撓性基板用層合體,其係於聚醯亞胺樹脂層 之單面或兩面具有金屬層之可撓性之層合體,其特徵在於 ,該聚醯亞胺樹脂層係具有2層以上相異之樹脂層,該樹 脂層之至少一層係於含有10〜95莫耳%之下述通式(1) 所表示之構造單位的聚醯亞胺樹脂中,以30〜75wt %之 範圍含有導熱性塡料的聚醯亞胺樹脂層(i ),又,樹脂 層之至少一層係玻璃轉移溫度較聚醯亞胺樹脂層(i )低 之聚醯亞胺樹脂層(ii ),而聚醯亞胺樹脂層(ϋ )之至 少一層,係存在於金屬層與聚醯亞胺樹脂層(i )之間, 又,聚醯亞胺樹脂層(i)之厚度,爲聚醯亞胺樹脂層整 體厚度之5〇%以上; 【化1】201000306 VII. Patent application scope: 1. A laminate for a flexible substrate, which is a flexible laminate having a metal layer on one side or both sides of a polyimide layer, characterized in that the poly The amine resin layer has two or more different resin layers, and at least one layer of the resin layer is contained in a polyimine resin containing 10 to 95% by mole of a structural unit represented by the following formula (1). The polyimine resin layer (i) containing a thermally conductive tantalum in a range of 30 to 75 wt%, and at least one layer of the resin layer having a lower glass transition temperature than the polyimine resin layer (i) The resin layer (ii) and at least one layer of the polyimide layer (ϋ) are present between the metal layer and the polyimide layer (i), and the polyimide layer (i) The thickness is more than 5% by weight of the entire thickness of the polyimide resin layer; 此處,An係具有1個以上芳香環之4價之有機基, R係碳數1〜6之低級烷基、低級烷氧基、苯基、苯氧基 或鹵素。 2 .如申請專利範圍第1項之撓性基板用層合體,其 中,聚醯亞胺樹脂層(i)之厚度爲聚醯亞胺樹脂層整體 厚度之70〜95%。 3 .如申請專利範圍第1項之撓性基板用層合體,其 中,聚醯亞胺樹脂層之線膨脹係數爲30ppm/K以下,導 -34- 201000306 熱率於聚醯亞胺樹脂層之厚度方向;lz爲0.3 W/mK以上、 於平面方向λ xy爲0.7 W/mK以上,聚醯亞胺樹脂層與金 屬層之剝離強度爲〇.6kN/m以上。 4. 如申請專利範圍第1項之撓性基板用層合體,其 中,聚醯亞胺樹脂層之抗撕裂性(tear propagation resistance )爲 1.5 〜8kN/m。 5. 如申請專利範圍第1項之撓性基板用層合體,其 中,聚醯亞胺樹脂層(i )之玻璃轉移溫度爲3 1 0 °C以上。 6. 如申請專利範圍第1項之撓性基板用層合體,其 中,導熱性塡料係選自氧化矽、氧化鋁、氮化鋁、氮化硼 、氮化矽及氧化鎂中之至少一種以上之塡料,其平均粒徑 爲0.01〜25vm之範圍。 7_ —種導熱性聚醯亞胺薄膜,其係由聚醯亞胺樹脂 層所構成之可撓性之薄膜,其特徵在於,該聚醯亞胺樹脂 層具有2層以上之相異樹脂層,該樹脂層之至少一層係於 含有10〜95莫耳%之下述通式(1)所表示之構造單位的 聚醯亞胺樹脂中,以30〜75wt%之範圍含有導熱性塡料 的聚醯亞胺樹脂層(i ),且至少一層係玻璃轉移溫度較 聚醯亞胺樹脂層(i)低之聚醯亞胺樹脂層(ii),聚醯亞 胺樹脂層(i)之厚度,爲聚醯亞胺樹脂層整體厚度之50 %以上; -35- 201000306 【化2】Here, An has a tetravalent organic group having one or more aromatic rings, and R is a lower alkyl group having a carbon number of 1 to 6, a lower alkoxy group, a phenyl group, a phenoxy group or a halogen. 2. The laminate for a flexible substrate according to the first aspect of the invention, wherein the polyimine resin layer (i) has a thickness of 70 to 95% of the entire thickness of the polyimide resin layer. 3. The laminate for a flexible substrate according to claim 1, wherein the polyimine resin layer has a coefficient of linear expansion of 30 ppm/K or less, and a heat conductivity of -34 to 201000306 is at the polyimine resin layer. The thickness direction; lz is 0.3 W/mK or more, and the plane direction λ xy is 0.7 W/mK or more, and the peeling strength of the polyimide layer and the metal layer is 〇6 kN/m or more. 4. The laminate for a flexible substrate according to the first aspect of the invention, wherein the polyimide transport layer has a tear propagation resistance of 1.5 to 8 kN/m. 5. The laminate for a flexible substrate according to the first aspect of the invention, wherein the glass transition temperature of the polyimide layer (i) is 301 °C or higher. 6. The laminate for a flexible substrate according to claim 1, wherein the thermal conductive material is at least one selected from the group consisting of cerium oxide, aluminum oxide, aluminum nitride, boron nitride, tantalum nitride, and magnesium oxide. The above materials have an average particle diameter of 0.01 to 25 vm. 7— a thermally conductive polyimide film which is a flexible film composed of a polyimide film layer, wherein the polyimide layer has two or more layers of a different resin layer. At least one layer of the resin layer is contained in a polyimine resin having a structural unit represented by the following general formula (1) in an amount of 10 to 95 mol%, and contains a thermally conductive crucible in a range of 30 to 75 wt% The yttrium imide resin layer (i), and at least one layer of the polyimine resin layer (ii) having a lower glass transition temperature than the polyimine resin layer (i), and the thickness of the polyimide layer (i), More than 50% of the overall thickness of the polyimide resin layer; -35- 201000306 [Chemical 2] 此處,An係具有1個以上芳香環之4價之有機基’ R係碳數1〜6之低級院基、低級院氧基、苯基、本氧基 或鹵素。 8. 如申請專利範圍第7項之導熱性聚醯亞胺薄膜, 其中,聚醯亞胺樹脂層(i)之厚度爲聚醯亞胺樹脂層整 體厚度之70〜95%。 9. 如申請專利範圍第7項之導熱性聚醯亞胺薄膜, 其中,聚醯亞胺樹脂層之線膨脹係數爲30ppm/K以下, 導熱率於聚醯亞胺樹脂層之厚度方向λζ爲0.3W/mK以上 、於平面方向Axy爲0.7 W/mK以上。 1 0 ·如申請專利範圍第7項之導熱性聚醯亞胺薄膜, 其中’聚醯亞胺樹脂層之抗撕裂性爲1.5〜8kN/m。 1 1 ·如申請專利範圍第7項之導熱性聚醯亞胺薄膜, 其中’聚酸亞胺樹脂層(i )之玻璃轉移溫度爲3丨(TC以上 〇 1 2 ·如申請專利範圍第7項之導熱性聚醯亞胺薄膜, 其中’導熱性塡料係選自氧化砂、氧化錦、氮化銘、氮化 硼、氮化砂及氧化鎂中之至少一種以上之塡料,其平均粒 徑爲〇·〇1〜25/zm之範圍。 -36- 201000306 四、指定代表圖: (一) 、本案指定代表圖為:無 (二) 、本代表圖之元件符號簡單說明:無 201000306 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無Here, An is a tetravalent organic group R having one or more aromatic rings, R is a lower-grade group having a carbon number of 1 to 6, a lower-grade aristoyl group, a phenyl group, a oxy group or a halogen. 8. The thermally conductive polyimide film according to claim 7, wherein the polyimide layer (i) has a thickness of 70 to 95% of the entire thickness of the polyimide resin layer. 9. The thermally conductive polyimide film according to claim 7, wherein the polyimine resin layer has a linear expansion coefficient of 30 ppm/K or less, and the thermal conductivity is in the thickness direction of the polyimide layer. 0.3 W/mK or more and 0.7 W/mK or more in the plane direction Axy. A thermally conductive polyimide film according to item 7 of the patent application, wherein the polyimpylene imide resin layer has a tear resistance of 1.5 to 8 kN/m. 1 1 · A thermally conductive polyimide film according to item 7 of the patent application, wherein the glass transition temperature of the 'polyacid imide resin layer (i) is 3 丨 (TC above 〇1 2 ) as claimed in claim 7 The thermally conductive polyimide film, wherein the 'thermal conductivity coating material is selected from the group consisting of at least one of oxidized sand, oxidized bromine, nitriding, boron nitride, nitriding sand and magnesium oxide, the average of which is The particle size is in the range of 〇·〇1~25/zm. -36- 201000306 IV. Designated representative map: (1) The designated representative figure of this case is: None (2), the symbol of the representative figure is simple: 201000306 If there are chemical formulas in the five cases, please reveal the chemical formula that best shows the characteristics of the invention: none
TW98104971A 2008-03-06 2009-02-17 Laminates for flexible substrates and wireless conductive polyimide films TWI454375B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056321 2008-03-06

Publications (2)

Publication Number Publication Date
TW201000306A true TW201000306A (en) 2010-01-01
TWI454375B TWI454375B (en) 2014-10-01

Family

ID=41055947

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98104971A TWI454375B (en) 2008-03-06 2009-02-17 Laminates for flexible substrates and wireless conductive polyimide films

Country Status (5)

Country Link
JP (1) JP5235211B2 (en)
KR (1) KR101370559B1 (en)
CN (1) CN101960929B (en)
TW (1) TWI454375B (en)
WO (1) WO2009110387A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513575B (en) * 2010-03-10 2015-12-21 Nippon Steel & Sumikin Chem Co Thermally conductive polyimide film and a thermally conductive laminate using such thermally conductive polyimide film
US9228118B2 (en) 2010-12-17 2016-01-05 Sekisui Chemical Co., Ltd. Production method for polyamide acid particles, production method for polyimide particles, polyimide particles and bonding material for electronic component
TWI690563B (en) * 2014-10-10 2020-04-11 日商日產化學工業股份有限公司 Resin film forming composition and resin film

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201625A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Laminate for flexible substrate and thermally conductive polyimide film
JP5643536B2 (en) * 2010-04-16 2014-12-17 三井化学株式会社 Thermally conductive adhesive resin composition, laminate comprising the same, and semiconductor device
CN103502006B (en) * 2011-03-30 2016-02-10 宇部兴产株式会社 Polyimide film and the metal laminate using it
CN102951873B (en) * 2011-08-31 2015-07-15 深圳光启高等理工研究院 Metamaterial dielectric substrate material and preparation method thereof
WO2013099173A1 (en) * 2011-12-26 2013-07-04 三井化学株式会社 Multilayer molded body and method for producing same, electromagnetic shield member, and heat-dissipating member
KR101567645B1 (en) 2013-12-17 2015-11-23 현대자동차주식회사 Fuel cell system and driving control method thereof
CN106928705B (en) * 2015-12-30 2020-05-19 广东生益科技股份有限公司 Polyimide composite material containing filler, sheet and circuit substrate containing polyimide composite material
WO2019031071A1 (en) 2017-08-08 2019-02-14 住友電気工業株式会社 High-frequency printed circuit board base material
KR102069709B1 (en) * 2018-01-22 2020-01-23 에스케이씨코오롱피아이 주식회사 High Thermal Conductive Polyimide Film Comprising At Least Two Kinds of Fillers
KR102119752B1 (en) * 2018-10-02 2020-06-05 주식회사 이엠따블유 Flexible printed circuit board module and manufacturing method for thereof
KR20220044233A (en) * 2020-09-30 2022-04-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Resin composition, adhesive film, laminate, coverlay film, copper foil with resin, metal-crad laminate and circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243120A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Flexible printed base board and production thereof
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits
JPH01245586A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Flexible printed board
JP2001185853A (en) * 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Base board for circuit board and printed circuit board using the same
JP4508441B2 (en) * 2001-02-16 2010-07-21 新日鐵化学株式会社 Laminated body and method for producing the same
US20060124693A1 (en) * 2004-12-15 2006-06-15 Meloni Paul A Thermally conductive polyimide film composites having high mechanical elongation useful as a heat conducting portion of an electronic device
JP4876396B2 (en) * 2005-01-05 2012-02-15 東洋紡績株式会社 Printed wiring board
JP2006274040A (en) * 2005-03-29 2006-10-12 Du Pont Toray Co Ltd Polyimide film and flexible circuit board using the same
JP4692139B2 (en) * 2005-08-10 2011-06-01 宇部興産株式会社 Single-sided or double-sided metal foil laminated polyimide films and methods for producing them
JP2007055165A (en) * 2005-08-26 2007-03-08 Shin Etsu Chem Co Ltd Flexible copper-clad laminated sheet and its manufacturing method
WO2007037192A1 (en) * 2005-09-29 2007-04-05 Kaneka Corporation Polyimide resin laminate film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513575B (en) * 2010-03-10 2015-12-21 Nippon Steel & Sumikin Chem Co Thermally conductive polyimide film and a thermally conductive laminate using such thermally conductive polyimide film
US9228118B2 (en) 2010-12-17 2016-01-05 Sekisui Chemical Co., Ltd. Production method for polyamide acid particles, production method for polyimide particles, polyimide particles and bonding material for electronic component
TWI690563B (en) * 2014-10-10 2020-04-11 日商日產化學工業股份有限公司 Resin film forming composition and resin film

Also Published As

Publication number Publication date
JPWO2009110387A1 (en) 2011-07-14
KR101370559B1 (en) 2014-03-06
CN101960929B (en) 2012-10-03
WO2009110387A1 (en) 2009-09-11
KR20100125324A (en) 2010-11-30
CN101960929A (en) 2011-01-26
JP5235211B2 (en) 2013-07-10
TWI454375B (en) 2014-10-01

Similar Documents

Publication Publication Date Title
TWI454375B (en) Laminates for flexible substrates and wireless conductive polyimide films
TWI716524B (en) Copper clad laminate and printed circuit board
JP5665846B2 (en) Thermally conductive polyimide film and thermal conductive laminate using the same
JP2006169533A (en) Heat conductive polyimide film composite material having large mechanical strength and useful as heat conductive part of electronic device
JP5297740B2 (en) Laminate for heat conductive flexible substrate
TWI715700B (en) Polyimide adhesive
KR20110051263A (en) Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
TWI385198B (en) Double-sided metal clad laminate and fabrication method thereof
JP5650084B2 (en) Thermally conductive substrate and thermally conductive polyimide film
CN114651036B (en) Polyimide film with improved dimensional stability and method for preparing same
JP2003253125A (en) Insulating resin composition, insulating resin sheet and printed wiring board
WO2012172972A1 (en) Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film
JP2012213900A (en) Heat conductive polyimide-metal substrate
TWI380744B (en)
CN101670697B (en) Double-sided metal foil layer laminated board and manufacture method thereof
JP2012213899A (en) Heat conductive polyimide-metal substrate
CN107079593B (en) Cover film metal foil laminate and multi-layer flexible printed circuit substrate not comprising cover film
JP5665449B2 (en) Metal-clad laminate and thermally conductive polyimide film
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
JP7441029B2 (en) Resin film and metal clad laminate
JP2008251900A (en) Laminate used for flexible substrate and its manufacturing method
JP3819057B2 (en) Resin composition for printing
TW202024224A (en) Resin composition including an epoxy resin, a curing agent and a polyimide resin
JP2022099779A (en) Metal-clad laminated sheet and method for manufacturing the same
JP4923678B2 (en) Flexible substrate with metal foil and flexible printed wiring board