JP5235211B2 - Laminate for flexible substrate and thermally conductive polyimide film - Google Patents

Laminate for flexible substrate and thermally conductive polyimide film Download PDF

Info

Publication number
JP5235211B2
JP5235211B2 JP2010501876A JP2010501876A JP5235211B2 JP 5235211 B2 JP5235211 B2 JP 5235211B2 JP 2010501876 A JP2010501876 A JP 2010501876A JP 2010501876 A JP2010501876 A JP 2010501876A JP 5235211 B2 JP5235211 B2 JP 5235211B2
Authority
JP
Japan
Prior art keywords
polyimide resin
resin layer
layer
polyimide
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010501876A
Other languages
Japanese (ja)
Other versions
JPWO2009110387A1 (en
Inventor
秀和 三瓶
栄次郎 青▲柳▼
宏遠 王
正彦 竹内
浩信 川里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2010501876A priority Critical patent/JP5235211B2/en
Publication of JPWO2009110387A1 publication Critical patent/JPWO2009110387A1/en
Application granted granted Critical
Publication of JP5235211B2 publication Critical patent/JP5235211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、熱伝導特性に優れる絶縁層を有し、フレキシブル回路基板に好適に使用されるフレキシブル基板用積層体及び熱伝導性ポリイミドフィルムに関するものである。   The present invention relates to a laminate for a flexible substrate and a thermally conductive polyimide film that have an insulating layer excellent in heat conduction characteristics and are suitably used for a flexible circuit board.

近年、携帯電話に代表される電子機器の小型化、軽量化に対する要求は高まってきており、それに伴い機器の小型化、軽量化に有利なフレキシブル回路基板は電子技術分野において広く使用されるようになってきている。そして、その中でもポリイミド樹脂を絶縁層とするフレキシブル回路基板は、その耐熱性、耐薬品性などが良好なことから従来から広く用いられている。最近の電子機器の小型化により、回路の集積度は上がってきており、情報処理の高速化とも相まって、機器内に生じる熱の放熱手段が注目されている。   In recent years, there has been an increasing demand for downsizing and weight reduction of electronic devices typified by mobile phones. Accordingly, flexible circuit boards that are advantageous for downsizing and weight reduction of devices are widely used in the field of electronic technology. It has become to. Among them, a flexible circuit board using a polyimide resin as an insulating layer has been widely used since its heat resistance and chemical resistance are good. With the recent miniaturization of electronic equipment, the degree of circuit integration has increased, and in conjunction with the speeding up of information processing, heat dissipation means for heat generated in the equipment has attracted attention.

そこで、放熱性に優れたフレキシブル回路基板を提供するために、絶縁層を構成するポリイミドフィルムに関し、厚み方向の熱伝導率を0.1W/m以上とする検討がなされている(特許文献1)。また、熱伝導性フィラーを含有する熱伝導性ポリイミドフィルムに関して、シロキサンジアミンから誘導されるポリイミドに熱伝導性フィラーが分散されたポリイミドフィルム複合材料が特許文献2に記載されている。   Then, in order to provide the flexible circuit board excellent in heat dissipation, about the polyimide film which comprises an insulating layer, examination which makes the heat conductivity of thickness direction 0.1 W / m or more is made | formed (patent document 1). . Patent Document 2 describes a polyimide film composite material in which a thermally conductive filler is dispersed in a polyimide derived from siloxane diamine with respect to a thermally conductive polyimide film containing a thermally conductive filler.

しかし、これらのポリイミドフィルムを銅箔などの導体層に積層してフレキシブル基板用積層体としようとする場合、通常、エポキシ系接着剤や熱可塑性樹脂を接着剤として用いる必要がある。この接着層の介在は、導体層に生じる熱の放熱を阻害する要因になるばかりでなく、フレキシブル基板として求められる耐熱性、屈曲性などの諸特性の低下を招く。そこで、導体層と絶縁層との実用的接着強度を有し、かつ絶縁層の熱伝導率低下を抑制するフレキシブル基板用積層体やこれらに用いられる熱伝導性ポリイミドフィルムの提供が望まれていた。   However, when these polyimide films are laminated on a conductor layer such as copper foil to obtain a laminate for a flexible substrate, it is usually necessary to use an epoxy-based adhesive or a thermoplastic resin as an adhesive. The interposition of the adhesive layer not only becomes a factor that hinders heat radiation generated in the conductor layer, but also causes deterioration in various characteristics such as heat resistance and flexibility required for a flexible substrate. Therefore, it has been desired to provide a laminate for a flexible substrate having a practical adhesive strength between the conductor layer and the insulating layer and suppressing a decrease in the thermal conductivity of the insulating layer, and a heat conductive polyimide film used in these. .

特開2006−274040号公報JP 2006-274040 A 特開2006−169533号公報JP 2006-169533 A

本発明は、熱伝導特性に優れる絶縁層を有し、導体層と絶縁層との実用的接着強度を有し、更にフレキシブル配線基板として要求される耐熱性、耐屈曲性、寸法安定性の良好なフレキシブル基板用積層体及び熱伝導性ポリイミドフィルムを提供することを目的とする。   The present invention has an insulating layer with excellent heat conduction characteristics, has a practical adhesive strength between the conductor layer and the insulating layer, and also has good heat resistance, flex resistance, and dimensional stability required as a flexible wiring board An object of the present invention is to provide a laminate for a flexible substrate and a thermally conductive polyimide film.

本発明者等は、上記課題を解決するために検討を重ねた結果、複数層のポリイミド樹脂層を有するフレキシブル基板用積層体のポリイミド樹脂層又は熱伝導性ポリイミドフィルムを構成するポリイミド樹脂層の少なくとも1層を特定の高熱伝導のポリイミド樹脂層とし、更に他の樹脂層を設けることで上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of repeated studies to solve the above problems, the present inventors have at least a polyimide resin layer or a polyimide resin layer constituting a thermally conductive polyimide film of a laminate for a flexible substrate having a plurality of polyimide resin layers. It has been found that the above problem can be solved by forming one layer of a specific high thermal conductivity polyimide resin layer and further providing another resin layer, and the present invention has been completed.

すなわち、本発明は、ポリイミド樹脂層(A1)の片面又は両面に金属層を有し可撓性を有する積層体において、該ポリイミド樹脂層(A1)は2層以上の異なる樹脂層を有し、該樹脂層の少なくとも一層が下記一般式(1)で表される構造単位を50〜95モル%含有するポリイミド樹脂に熱伝導性フィラーが30〜75wt%の範囲で含有されたポリイミド樹脂層(i)であり、少なくとも一層がポリイミド樹脂層(i)よりもガラス転移温度が20℃以上低く、200℃以上のガラス転移温度を有するポリイミド樹脂層(ii)であり、ポリイミド樹脂層(ii)の少なくとも一層は金属層とポリイミド樹脂層(i)との間に介在し、金属層に接する層がポリイミド樹脂層(ii)であり、また、ポリイミド樹脂層(i)の厚みは、ポリイミド樹脂層(A1)の全体厚みの50%以上であることを特徴とするフレキシブル基板用積層体に関する。

Figure 0005235211
(式中、Ar1ピロメリット酸二無水物の残基であり、Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。)
That is, the present invention provides a flexible laminate having a metal layer on one or both sides of a polyimide resin layer (A1), and the polyimide resin layer (A1) has two or more different resin layers, A polyimide resin layer (i) in which a thermally conductive filler is contained in a range of 30 to 75 wt% in a polyimide resin in which at least one layer of the resin layer contains 50 to 95 mol% of a structural unit represented by the following general formula (1) And at least one layer is a polyimide resin layer (ii) having a glass transition temperature lower than that of the polyimide resin layer (i) by 20 ° C. or more and a glass transition temperature of 200 ° C. or more , and at least of the polyimide resin layer (ii) more is interposed between the metal layer and the polyimide resin layer (i), the layer in contact with the metal layer is a polyimide resin layer (ii), the thickness of the polyimide resin layer (i) is a polyimide trees A laminate for a flexible substrate, wherein at least 50% of the total thickness of the layer (A1).
Figure 0005235211
(In the formula, Ar 1 is a residue of pyromellitic dianhydride , and R is a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen.)

また、他の観点からの本発明は、可撓性を有するポリイミド樹脂層(A2)からなるフィルムにおいて、該ポリイミド樹脂層(A2)は2層以上の異なる樹脂層を有し、該樹脂層の少なくとも一層が上記一般式(1)で表される構造単位を10〜95モル%含有するポリイミド樹脂に熱伝導性フィラーが30〜75wt%の範囲で含有されたポリイミド樹脂層(i)であり、少なくとも一層がポリイミド樹脂層(i)よりもガラス転移温度が低いポリイミド樹脂層(ii)であり、ポリイミド樹脂層(i)の厚みは、ポリイミド樹脂層(A2)の全体厚みの50%以上であることを特徴とする熱伝導性ポリイミドフィルムに関する。   In another aspect, the present invention provides a film composed of a flexible polyimide resin layer (A2), wherein the polyimide resin layer (A2) has two or more different resin layers, At least one layer is a polyimide resin layer (i) in which a thermally conductive filler is contained in a range of 30 to 75 wt% in a polyimide resin containing 10 to 95 mol% of the structural unit represented by the general formula (1), At least one layer is a polyimide resin layer (ii) having a glass transition temperature lower than that of the polyimide resin layer (i), and the thickness of the polyimide resin layer (i) is 50% or more of the total thickness of the polyimide resin layer (A2). The present invention relates to a thermally conductive polyimide film.

本発明の好ましい実施の態様を次に示す。
1) ポリイミド樹脂層(i)の厚みがポリイミド樹脂層(全体)の厚みの70〜95%である上記のフレキシブル基板用積層体、又は上記の熱伝導性ポリイミドフィルム。
2) ポリイミド樹脂層(A1)の線膨張係数が30ppm/K以下、熱伝導率がポリイミド樹脂層の厚み方向λzで0.3W/mK以上、平面方向λxyで0.7W/mK以上であり、ポリイミド樹脂層と金属層とのピール強度が0.8kN/m以上である上記のフレキシブル基板用積層体。
3) ポリイミド樹脂層(A2)の線膨張係数が30ppm/K以下、熱伝導率が厚み方向λzで0.3W/mK以上、平面方向λxyで0.7W/mK以上である上記の熱伝導性ポリイミドフィルム。
4) ポリイミド樹脂層(A1)又は(A2)の引裂き伝播抵抗が1.5〜8kN/mにある上記のフレキシブル基板用積層体又は上記の熱伝導性ポリイミドフィルム。
5) ポリイミド樹脂層(i)のガラス転移温度が310℃以上である上記のフレキシブル基板用積層体又は上記の熱伝導性ポリイミドフィルム。
6) 熱伝導性フィラーがシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類以上のフィラーであり、平均粒子径が0.01〜25μmの範囲にある上記のフレキシブル基板用積層体又は上記の熱伝導性ポリイミドフィルム。
A preferred embodiment of the present invention will be described below.
1) Said laminated body for flexible substrates whose thickness of polyimide resin layer (i) is 70 to 95% of the thickness of a polyimide resin layer (whole), or said heat conductive polyimide film.
2) The linear expansion coefficient of the polyimide resin layer (A1) is 30 ppm / K or less, the thermal conductivity is 0.3 W / mK or more in the thickness direction λz of the polyimide resin layer, and 0.7 W / mK or more in the planar direction λxy, Said laminated body for flexible substrates whose peel strength of a polyimide resin layer and a metal layer is 0.8 kN / m or more.
3) The thermal conductivity of the polyimide resin layer (A2) is 30 ppm / K or less, the thermal conductivity is 0.3 W / mK or more in the thickness direction λz, and 0.7 W / mK or more in the planar direction λxy. Polyimide film.
4) Said laminated body for flexible substrates, or said heat conductive polyimide film whose tear propagation resistance of a polyimide resin layer (A1) or (A2) is 1.5-8 kN / m.
5) Said laminated body for flexible substrates or said heat conductive polyimide film whose glass transition temperature of a polyimide resin layer (i) is 310 degreeC or more.
6) The above flexible substrate, wherein the thermally conductive filler is at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride and magnesia, and has an average particle diameter in the range of 0.01 to 25 μm. Laminated body or the above-mentioned heat conductive polyimide film.

以下に、本発明フレキシブル基板用積層体及び熱伝導性ポリイミドフィルムについて詳細に説明する。   Below, the laminated body for flexible substrates of this invention and a heat conductive polyimide film are demonstrated in detail.

本発明のフレキシブル基板用積層体は、ポリイミド樹脂層の片面又は両面に、金属層を有し、ポリイミド樹脂層は複数層によって構成されている。また、本発明の熱伝導性ポリイミドフィルムは、配線形成のための金属層を有しないが、同様に、ポリイミド樹脂層は複数層によって構成されている。そして、フレキシブル基板用積層体を構成するポリイミド樹脂層(A1)と熱伝導性ポリイミドフィルムを構成するポリイミド樹脂層(A2)の説明の多くは共通する。以下、共通する箇所は合わせて説明する。また、ポリイミド樹脂層(A1)と(A2)に共通するポリイミド樹脂層の説明は、両方のポリイミド樹脂層の説明と理解される。この場合、ポリイミド樹脂層(A)は、ポリイミド樹脂層(A1)と(A2)の両方を代表する意味と理解される。   The laminate for a flexible substrate of the present invention has a metal layer on one or both sides of a polyimide resin layer, and the polyimide resin layer is composed of a plurality of layers. Moreover, although the heat conductive polyimide film of this invention does not have a metal layer for wiring formation, the polyimide resin layer is similarly comprised by multiple layers. And much description of the polyimide resin layer (A1) which comprises the laminated body for flexible substrates, and the polyimide resin layer (A2) which comprises a heat conductive polyimide film is common. Hereinafter, common portions will be described together. The description of the polyimide resin layer common to the polyimide resin layers (A1) and (A2) is understood as the description of both polyimide resin layers. In this case, the polyimide resin layer (A) is understood to represent both the polyimide resin layers (A1) and (A2).

複数層のポリイミド樹脂層の内、少なくとも一層がポリイミド樹脂層(i)であり、少なくとも一層がポリイミド樹脂層(ii)である。複数の各ポリイミド樹脂層と、これから構成されるポリイミド樹脂層全体を区別する必要がある場合は、後者をポリイミド樹脂層(A)又はポリイミド樹脂層の全体というが、文言上明らかな場合は、ポリイミド樹脂層という。   Among the plurality of polyimide resin layers, at least one layer is the polyimide resin layer (i), and at least one layer is the polyimide resin layer (ii). When it is necessary to distinguish between each polyimide resin layer and the entire polyimide resin layer composed of the polyimide resin layer, the latter is referred to as the polyimide resin layer (A) or the entire polyimide resin layer. It is called a resin layer.

フレキシブル基板用積層体において導体層となる金属層としては、銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、亜鉛及びそれらの合金等の導電性金属箔を挙げることができ、これらの中でも銅箔又は銅を90%以上含む合金銅箔が好ましく用いられる。導体層の好ましい厚み範囲は、5〜50μmであり、8〜35μmの範囲がより好ましい。   Examples of the metal layer serving as the conductor layer in the laminate for a flexible substrate include conductive metal foils such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc, and alloys thereof. Among these, a copper foil or an alloy copper foil containing 90% or more of copper is preferably used. The preferable thickness range of the conductor layer is 5 to 50 μm, and more preferably 8 to 35 μm.

上記ポリイミド樹脂層(A)は、2層以上の異なる樹脂層を有し、該樹脂層の少なくとも一層が一般式(1)で表される構造単位を10〜95モル%含有するポリイミド樹脂に熱伝導性フィラーが30〜75wt%の範囲で含有されたポリイミド樹脂層(i)であり、該樹脂層の少なくとも一層がポリイミド樹脂層(i)よりもガラス転移温度が低いポリイミド樹脂層(ii)からなる。   The polyimide resin layer (A) has two or more different resin layers, and at least one of the resin layers is heated to a polyimide resin containing 10 to 95 mol% of the structural unit represented by the general formula (1). From the polyimide resin layer (ii) in which the conductive filler is contained in the range of 30 to 75 wt%, and at least one of the resin layers has a glass transition temperature lower than that of the polyimide resin layer (i). Become.

ポリイミド樹脂層(i)中の熱伝導性フィラーの含有割合は、30〜75wt%の範囲であることが必要であり、40〜70wt%の範囲が好ましい。熱伝導性フィラーの含有割合が30wt%に満たないと、フレキシブル回路基板等の電子部品とした際の放熱特性が十分でなく、75wt%を超えると本発明の積層体の特徴である屈曲性の低下が顕著となり、また、ポリイミド樹脂層の強度も低下する。熱伝導性フィラーとしては、高熱伝導性のフィラーが好ましく、具体的には、アルミニウム、銅、ニッケル、シリカ、ダイヤモンド、アルミナ、マグネシア、ベリリア、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられる。これらの中でも、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類のフィラーが好ましい。ポリイミド樹脂層は絶縁層として作用するので、その観点からはポリイミド樹脂層(i)に配合されるフィラーは絶縁性であるものが適する。フィラー形状は、特に制限されるものではなく板状、針状、棒状のいずれでも良い。熱伝導性フィラーの含有量を高め、熱伝導性などの特性とのバランスを考慮すると球状フィラーと板状フィラーを併用することも好ましい。   The content ratio of the heat conductive filler in the polyimide resin layer (i) needs to be in the range of 30 to 75 wt%, and preferably in the range of 40 to 70 wt%. If the content of the heat conductive filler is less than 30 wt%, the heat dissipation characteristics when the electronic component such as a flexible circuit board is not sufficient, and if it exceeds 75 wt%, the flexibility of the laminate of the present invention is characteristic. The decrease is remarkable, and the strength of the polyimide resin layer is also decreased. The thermally conductive filler is preferably a highly thermally conductive filler, and specifically includes aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, and silicon carbide. . Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable. Since the polyimide resin layer acts as an insulating layer, the filler blended in the polyimide resin layer (i) is suitable from that viewpoint. The filler shape is not particularly limited, and may be a plate shape, a needle shape, or a rod shape. It is also preferable to use a spherical filler and a plate-like filler in combination when the content of the heat conductive filler is increased and the balance with characteristics such as heat conductivity is taken into consideration.

熱伝導性フィラーの粒子サイズは、ポリイミド樹脂層の厚み方向にフィラーを均一に分散させる観点から、平均粒子径が0.01〜25μmの範囲にあることが好ましく、1〜8μmの範囲にあることがより好ましい。熱伝導性フィラーの平均粒子径が0.01μmに満たないと、個々のフィラー内部での熱伝導が小さくなり、結果としてポリイミド樹脂層の熱伝導率が向上しないばかりでなく、粒子同士が凝集を起こしやすくなり、均一に分散させることが困難となる恐れがある。一方、25μmを超えると、ポリイミド樹脂層への可能な充填率が低下し、かつフィラー界面によりポリイミド樹脂層が脆くなる傾向にある。   From the viewpoint of uniformly dispersing the filler in the thickness direction of the polyimide resin layer, the particle size of the thermally conductive filler is preferably in the range of 0.01 to 25 μm and preferably in the range of 1 to 8 μm. Is more preferable. If the average particle diameter of the heat conductive filler is less than 0.01 μm, the heat conduction inside each filler is reduced, and as a result, the heat conductivity of the polyimide resin layer is not improved and the particles are aggregated. It tends to occur and it may be difficult to disperse uniformly. On the other hand, if it exceeds 25 μm, the possible filling rate of the polyimide resin layer is lowered, and the polyimide resin layer tends to become brittle due to the filler interface.

なお、熱伝導フィラーとして、フィラー形状が板状や燐片状の板状フィラーを用いる場合、本発明では、その粒子サイズは平均長径DLで表される。板状フィラーを用いる場合、平均長径DLの好ましい範囲は0.1〜15μmの範囲であり、特に好ましくは0.5〜10μmの範囲である。板状フィラーとしては窒化ホウ素が好ましく使用される。平均長径DLが0.1μmに満たないと、熱伝導率が低くなり、板状の効果が小さくなってしまう。また、15μmを超えると製膜時に配向させることは困難となる。ここで、平均長径DLとは板状フィラーの長手直径の平均値を意味する。平均径はメディアン径を意味し、モード径は上記範囲内で1つのピークであることがよく、これは球状フィラーについても同様である。また、熱伝導性フィラーの粒子サイズは、ポリイミド樹脂層(i)の厚みにも関係する。熱伝導性フィラーの平均粒子径又は平均長径は、ポリイミド樹脂層(i)の厚みの70%以下、好ましくは50%以下とすることがよい。Incidentally, as the heat conduction filler, if the filler shape using a plate-like or scale-shaped plate-like filler, in the present invention, the particle size is expressed by an average long diameter D L. When using the plate-like filler, the preferred range of the average long diameter D L is in the range of 0.1-15, particularly preferably from 0.5 to 10 [mu] m. As the plate filler, boron nitride is preferably used. If the average major axis D L is less than 0.1 μm, the thermal conductivity is lowered and the plate-like effect is reduced. On the other hand, if it exceeds 15 μm, it is difficult to orient at the time of film formation. Here, the average major axis D L means the average value of the longitudinal diameters of the plate-like fillers. The average diameter means the median diameter, and the mode diameter is preferably one peak within the above range, and this is the same for the spherical filler. The particle size of the heat conductive filler is also related to the thickness of the polyimide resin layer (i). The average particle diameter or average major axis of the thermally conductive filler is 70% or less, preferably 50% or less of the thickness of the polyimide resin layer (i).

ポリイミド樹脂層(i)を構成するポリイミド樹脂は、一般式(1)で表される構造単位を10〜95モル%、好ましくは50〜95モル%含有する。   The polyimide resin which comprises a polyimide resin layer (i) contains 10-95 mol% of the structural unit represented by General formula (1), Preferably it contains 50-95 mol%.

一般式(1)中、Ar1は芳香環を1個以上有する4価の有機基であり、Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。Ar1は、ポリイミド原料である芳香族テトラカルボン酸の残基と見ることができるので、芳香族テトラカルボン酸の具体例を示すことにより、Ar1が理解される。また、Rはポリイミド原料である芳香族ジアミンの残基の一部と見ることができる。In General Formula (1), Ar 1 is a tetravalent organic group having one or more aromatic rings, and R is a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen. . Since Ar 1 can be regarded as a residue of an aromatic tetracarboxylic acid that is a polyimide raw material, Ar 1 is understood by showing a specific example of an aromatic tetracarboxylic acid. R can be regarded as a part of the residue of aromatic diamine which is a polyimide raw material.

芳香族テトラカルボン酸の具体例としては、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11-テトラカルボン酸二無水物、ペリレン-5,6,11,12-テトラカルボン酸二無水物、フェナンスレン-1,2,7,8-テトラカルボン酸二無水物、フェナンスレン-1, 2,6,7-テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物などが挙げられる。   Specific examples of aromatic tetracarboxylic acids include pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2', 3,3'-benzophenone Tetracarboxylic dianhydride, 2,3,3 ', 4'-benzophenonetetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride (NTCDA), naphthalene-1,2 , 5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1, 2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5, 8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid Anhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7- Tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,3, 3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3``, 4,4' '-p-terphenyltetracarboxylic dianhydride, 2,2``, 3,3' '-p -Terphenyltetracarboxylic dianhydride, 2,3,3``, 4 ''-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane Anhydride, 2,2-bis (3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane Anhydride, bis (3.4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) Hong dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-di Carboxyphenyl) ethane dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10, 11-tetracarboxylic dianhydride, perylene-5,6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1, 2,6 , 7-tetracarboxylic dianhydride, phenanthrene-1,2,9,10-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3 , 5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4 ' -Oxydiphthalic dianhydride It is.

一般式(1)で表される構造単位以外の構造単位としては、ポリイミド原料である芳香族テトラカルボン酸の残基と芳香族ジアミンの残基とに分けて説明すると、芳香族テトラカルボン酸の残基としては、上記Ar1で説明したと同様な芳香族テトラカルボン酸の残基を挙げることができる。As the structural unit other than the structural unit represented by the general formula (1), the aromatic tetracarboxylic acid residue which is a polyimide raw material and the aromatic diamine residue will be described separately. Examples of the residue include the same aromatic tetracarboxylic acid residues as those described above for Ar 1 .

芳香族ジアミンの残基としては、次に示すような芳香族ジアミンの残基が挙げられる。例えば、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,7-ジアミノジベンゾフラン、1,5-ジアミノフルオレン、ジベンゾ-p-ジオキシン-2,7-ジアミン、4,4 ’-ジアミノベンジルなどが挙げられる。   Examples of the aromatic diamine residue include the following aromatic diamine residues. For example, 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2 , 6-Xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'- Diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,2-bis [4- (4-amino Phenoxy) phenyl] propane 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3 , 3-Diaminodiphenyl ether, 1 , 3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3'-diaminobiphenyl, 3, 3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4'-diamino-p-terphenyl, 3,3'-diamino-p-terphenyl, bis (p-amino (Cyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p -Bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4- Diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diamino Lysine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,7-diaminodibenzofuran, 1 , 5-diaminofluorene, dibenzo-p-dioxin-2,7-diamine, 4,4'-diaminobenzyl and the like.

ポリイミド樹脂層(i)を構成するポリイミド樹脂を合成する場合、ジアミン、酸無水物はそれぞれその1種のみを使用してもよく、2種以上を併用することもできるが、ジアミン及び酸無水物の少なくとも一方は2種以上を使用する。有利には、ジアミンとして2,2'-ジメチル-4,4'-ジアミノビフェニルのような一般式(1)で表わされる構造単位を与えるジアミンを使用し、その他に一般式(1)では表わされない構造単位を与える他のジアミンを併用することがよい。   When synthesizing the polyimide resin constituting the polyimide resin layer (i), each of the diamine and acid anhydride may be used alone or in combination of two or more. At least one of these uses 2 or more types. Preference is given to using diamines which give structural units of the general formula (1) such as 2,2′-dimethyl-4,4′-diaminobiphenyl as diamines and in addition to those represented by the general formula (1). It is better to use other diamines that give structural units that are not.

本発明では、ポリイミド樹脂層(i)に熱伝導性フィラーを含有するため、ポリイミド樹脂の優れた耐熱性や寸法安定性を維持しながら、その機械的強度を保持させる必要がある。そのような観点から、上記他のジアミンとしては、一般式(1)で表わされる構造単位を与えるジアミンより剛直性の少ない構造を有する芳香族ジアミンが適する。有利には、ジアミン成分に2,2'-ジメチル-4,4'-ジアミノビフェニルを主成分とし、これに1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,4'-ジアミノジフェニルエーテル及び4,4'-ジアミノジフェニルエーテルから選択される少なくとも1種のジアミンを他のジアミンとして併用し、酸無水物にピロメリット酸二無水物を主成分として用いることがよい。他のジアミンの使用割合は5〜50モル%の範囲が好ましい。   In the present invention, since the polyimide resin layer (i) contains a thermally conductive filler, it is necessary to maintain the mechanical strength while maintaining the excellent heat resistance and dimensional stability of the polyimide resin. From such a viewpoint, as the other diamine, an aromatic diamine having a structure having less rigidity than the diamine that gives the structural unit represented by the general formula (1) is suitable. Advantageously, the diamine component contains 2,2'-dimethyl-4,4'-diaminobiphenyl as the main component, which includes 1,3-bis (3-aminophenoxy) benzene and 1,3-bis (4-amino). At least one diamine selected from phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether as another diamine, It is preferable to use pyromellitic dianhydride as the main component for the anhydride. The proportion of other diamine used is preferably in the range of 5 to 50 mol%.

ポリイミド樹脂層(ii)は、ポリイミド樹脂層(i)よりもガラス転移温度(Tg)が低い必要があるが、200℃以上のTgを有する熱可塑性のポリイミド樹脂の層が好ましい。より好ましくは、Tgが200〜350℃の範囲にある熱可塑性樹脂であって、ポリイミド樹脂層(i)、すなわちポリイミド樹脂層(i)を構成するポリイミド樹脂より20℃以上Tgが低い層であることがよい。一方、ポリイミド樹脂層(i)は、ポリイミド層の50%以上の厚みを有するベース層となるためTgも高いことが好ましく、310℃以上であることが好ましく、350〜450℃の範囲にあることがより好ましい。ポリイミド樹脂層(ii)を構成するポリイミド樹脂は、上記物性を満足する限り、公知のポリイミド樹脂を用いることができ、上記した酸二無水物成分とジアミン成分から得ることができる。   The polyimide resin layer (ii) needs to have a glass transition temperature (Tg) lower than that of the polyimide resin layer (i), but a thermoplastic polyimide resin layer having a Tg of 200 ° C. or higher is preferable. More preferably, it is a thermoplastic resin having a Tg in the range of 200 to 350 ° C., and is a layer having a Tg lower by 20 ° C. or more than the polyimide resin layer (i), that is, the polyimide resin constituting the polyimide resin layer (i). It is good. On the other hand, since the polyimide resin layer (i) becomes a base layer having a thickness of 50% or more of the polyimide layer, the Tg is also preferably high, preferably 310 ° C. or higher, and in the range of 350 to 450 ° C. Is more preferable. As the polyimide resin constituting the polyimide resin layer (ii), a known polyimide resin can be used as long as the above physical properties are satisfied, and it can be obtained from the acid dianhydride component and the diamine component described above.

ポリイミド樹脂層(ii)を製造するために用いられる酸二無水物成分としては、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-オキシジフタル酸二無水物(ODPA)などの芳香族酸二無水物が例示される。また、ジアミン成分としては、2,2-ビス(4-アミノフェノキシフェニル)プロパン(BAPP)、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン(BAPS)、3,4'-ジアミノジフェニルエーテル(3,4’-DAPE)、4,4'-ジアミノジフェニルエーテル(4,4’-DAPE)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、4,4'-ビス(4-アミノフェノキシ)ビフェニル(BAPB)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1, 3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン(DANPG)などの芳香族ジアミンが好ましいものとして例示される。   Acid dianhydride components used to produce the polyimide resin layer (ii) include pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) ), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride (DSDA), 4,4'- Aromatic dianhydrides such as oxydiphthalic dianhydride (ODPA) are exemplified. Examples of the diamine component include 2,2-bis (4-aminophenoxyphenyl) propane (BAPP), bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 3,4′-diaminodiphenyl ether (3 , 4'-DAPE), 4,4'-diaminodiphenyl ether (4,4'-DAPE), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), 4,4'-bis (4- Aminophenoxy) biphenyl (BAPB), 1,3-bis (3-aminophenoxy) benzene (APB), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (4- Aromatic diamines such as aminophenoxy) -2,2-dimethylpropane (DANPG) are preferred.

ポリイミド樹脂層(ii)は、フィラーを含有しないことが好ましいが、必要に応じて熱伝導性フィラーを一定割合で含有しても良い。ポリイミド樹脂層(ii)は主に金属層との接着力を高めるために設けられるため、その厚みは薄いことが好ましく、3μm以下であることがよい。   Although it is preferable that a polyimide resin layer (ii) does not contain a filler, you may contain a heat conductive filler in a fixed ratio as needed. Since the polyimide resin layer (ii) is provided mainly to increase the adhesive force with the metal layer, the thickness is preferably thin, and is preferably 3 μm or less.

ポリイミド樹脂層(ii)に熱伝導性フィラーを含有する場合、ポリイミド樹脂層(i)の熱伝導フィラーの含有割合よりも小さいことが好ましい。また、その含有割合は1〜50wt%の範囲であることが好ましく、10〜40wt%の範囲がより好ましい。熱伝導性フィラーの含有割合が50wt%を超えると、接着性が劣り、また、ポリイミド樹脂層の強度も低下する。なお、熱伝導性フィラーを含有する場合、そのサイズは小さいことが好ましく、その好ましい平均粒子径は3μm以下であり、0.01〜1.0μmの範囲がより好ましい。熱伝導性フィラーの平均粒子径が3μmを超えると、フィラーが均一に分散できず、かつ表面が粗くなることにより、金属層との接着性が落ちる恐れがあり、一方、0.01μmに満たない場合、粒子同士が凝集を起こしやすくなり、均一に分散させることが困難となる。   When the polyimide resin layer (ii) contains a heat conductive filler, it is preferably smaller than the content of the heat conductive filler in the polyimide resin layer (i). Moreover, it is preferable that the content rate is the range of 1-50 wt%, and the range of 10-40 wt% is more preferable. When the content rate of a heat conductive filler exceeds 50 wt%, adhesiveness will be inferior and the intensity | strength of a polyimide resin layer will also fall. In addition, when containing a heat conductive filler, it is preferable that the size is small, The preferable average particle diameter is 3 micrometers or less, and the range of 0.01-1.0 micrometer is more preferable. If the average particle size of the thermally conductive filler exceeds 3 μm, the filler cannot be uniformly dispersed and the surface becomes rough, which may reduce the adhesion to the metal layer, but less than 0.01 μm. In this case, the particles tend to aggregate and it is difficult to uniformly disperse the particles.

ポリイミド樹脂層(A)の全体厚みに対するポリイミド樹脂層(i)の厚みは50%以上であることが必要であり、好ましくは70〜95%の範囲とすることがよい。ポリイミド樹脂層(i)の厚みが50%未満であると、放熱性が十分でないばかりでなく、フレキシブル基板として使用する場合に寸法安定性が十分でなく、耐熱性も低いものとなる。ポリイミド樹脂層(A)の全体厚みは10〜50μmの範囲が好ましく、15〜40μmの範囲がより好ましい。ポリイミド樹脂層の厚みが10μmに満たないと、脆く破れ易くなり、一方で50μmを超えると耐屈曲性が低下する傾向にある。   The thickness of the polyimide resin layer (i) with respect to the total thickness of the polyimide resin layer (A) needs to be 50% or more, and preferably in the range of 70 to 95%. When the thickness of the polyimide resin layer (i) is less than 50%, not only the heat dissipation is not sufficient, but also when used as a flexible substrate, the dimensional stability is not sufficient and the heat resistance is low. The total thickness of the polyimide resin layer (A) is preferably in the range of 10 to 50 μm, and more preferably in the range of 15 to 40 μm. If the thickness of the polyimide resin layer is less than 10 μm, it is brittle and easily broken, while if it exceeds 50 μm, the bending resistance tends to decrease.

本発明のフレキシブル基板用積層体又は熱伝導ポリイミドフィルムのポリイミド樹脂層(A)は、線膨張係数が30ppm/K以下、有利には1〜25ppm/Kであり、熱伝導率がポリイミド樹脂層の厚み方向λzで、0.3W/mK以上、有利には0.5〜0.8W/mK以上、平面方向λxyで、0.7W/mK以上、有利には1.0〜2.0W/mK以上であることが好ましい。   The polyimide resin layer (A) of the laminate for a flexible substrate or the heat conductive polyimide film of the present invention has a linear expansion coefficient of 30 ppm / K or less, preferably 1 to 25 ppm / K, and a thermal conductivity of the polyimide resin layer. In the thickness direction λz, 0.3 W / mK or more, preferably 0.5 to 0.8 W / mK or more, and in the plane direction λxy, 0.7 W / mK or more, preferably 1.0 to 2.0 W / mK. The above is preferable.

本発明のフレキシブル基板用積層体において、ポリイミド樹脂層(A1)と金属層とのピール強度を0.8kN/m以上、有利には1.0〜1.8kN/mとすることが好ましい。   In the laminate for a flexible substrate of the present invention, the peel strength between the polyimide resin layer (A1) and the metal layer is preferably 0.8 kN / m or more, more preferably 1.0 to 1.8 kN / m.

このような、フレキシブル基板用積層体や熱伝導ポリイミドフィルムを得るためには、ポリイミド樹脂層(i)とポリイミド樹脂層(ii)の厚み範囲、熱伝導性フィラーの種類や含有量を適正範囲にし、また、使用するポリイミド原料を選択することで可能となる。ポリイミド樹脂層(A)の線膨張係数が30ppm/Kを超えると、カールが発生したり、ポリイミド樹脂層(A)の収縮が大きすぎてうまく加工できないなどの諸問題が発生しやすく、また、熱伝導率が0.5W/mK未満であると放熱特性が低下する。   In order to obtain such a laminate for a flexible substrate and a heat conductive polyimide film, the thickness range of the polyimide resin layer (i) and the polyimide resin layer (ii) and the type and content of the heat conductive filler are set within an appropriate range. It is also possible by selecting the polyimide raw material to be used. When the linear expansion coefficient of the polyimide resin layer (A) exceeds 30 ppm / K, various problems such as curling and the shrinkage of the polyimide resin layer (A) being too large to be processed well can occur. If the thermal conductivity is less than 0.5 W / mK, the heat dissipation characteristics are degraded.

また、本発明のフレキシブル基板用積層体又は本発明の熱伝導ポリイミドフィルムのポリイミド樹脂層(A)、は、引裂き伝播抵抗は1.5〜8kN/mにあることが好ましい。引裂き伝播抵抗が1.5kN/mに満たないとフレキシブル回路基板とする際の加工時に裂けたり、破断を生じる恐れがある。ポリイミド樹脂層(A)の引裂き伝播抵抗が8kN/mを超えるとポリイミド樹脂層(A)の熱膨張係数が大きくなり、寸法安定性が悪化する傾向にある。ポリイミド樹脂層(A)の引裂き伝播抵抗を1.5〜8kN/mにするためには、ポリイミド樹脂層(i)の厚みを全厚みの50%以上とし、一般式(1)で表される構造単位を50モル%以上含有させることがよい。更に、ポリイミド樹脂層(i)のガラス転移温度は310℃以上とすることが好ましいが、その場合も、ポリイミド樹脂層(i)の厚みを50%以上とし、一般式(1)で表される構造単位を50モル%以上含有させることで制御可能となる。   The laminate for flexible substrate of the present invention or the polyimide resin layer (A) of the heat conductive polyimide film of the present invention preferably has a tear propagation resistance of 1.5 to 8 kN / m. If the tear propagation resistance is less than 1.5 kN / m, the flexible circuit board may be torn during processing or breakage. If the tear propagation resistance of the polyimide resin layer (A) exceeds 8 kN / m, the thermal expansion coefficient of the polyimide resin layer (A) increases and the dimensional stability tends to deteriorate. In order to set the tear propagation resistance of the polyimide resin layer (A) to 1.5 to 8 kN / m, the thickness of the polyimide resin layer (i) is set to 50% or more of the total thickness and represented by the general formula (1). It is preferable to contain 50 mol% or more of structural units. Furthermore, it is preferable that the glass transition temperature of the polyimide resin layer (i) is 310 ° C. or higher, but in this case as well, the thickness of the polyimide resin layer (i) is 50% or more and is represented by the general formula (1). It becomes controllable by containing 50 mol% or more of structural units.

本発明のフレキシブル基板用積層体は、ポリイミド樹脂層(A1)の少なくとも1層をポリイミド樹脂に熱伝導性フィラーを含有するポリイミド樹脂層(i)によって形成し、更に金属層とポリイミド樹脂層(i)との間に介在する層に金属層と接着層の良いポリイミド樹脂層(ii)を設けたものである。そして、ポリイミド樹脂層(i)及びポリイミド樹脂層(ii)は、ポリイミド樹脂層(A)中に各1層を設けてもよく、いずれか又は両方を2層以上設けてもよい。しかし、層を増やすことは工程が増えるなどの問題があるので、ポリイミド樹脂層(i)は1層とし、ポリイミド樹脂層(ii)は1層又は2層とし、金属層に接する層をポリイミド樹脂層(ii)とすることがよい。両面に金属層を設ける場合は、金属層に接する2つの層をポリイミド樹脂層(ii)とすることがよい。   In the laminate for a flexible substrate of the present invention, at least one layer of the polyimide resin layer (A1) is formed by a polyimide resin layer (i) containing a thermally conductive filler in a polyimide resin, and further a metal layer and a polyimide resin layer (i ) Is provided with a polyimide resin layer (ii) having a good metal layer and adhesive layer. The polyimide resin layer (i) and the polyimide resin layer (ii) may each be provided in the polyimide resin layer (A), or one or both may be provided in two or more layers. However, increasing the number of layers causes problems such as an increase in the number of processes, so the polyimide resin layer (i) is one layer, the polyimide resin layer (ii) is one or two layers, and the layer in contact with the metal layer is polyimide resin. Layer (ii) is preferred. When providing a metal layer on both surfaces, it is good to make two layers which touch a metal layer into a polyimide resin layer (ii).

本発明の熱伝導性ポリイミドフィルムは金属層を有しないが、ポリイミド樹脂層(A2)をポリイミド樹脂層(A1)と同様な層構成とすることにより、金属層に積層して使用するために適したフィルムとなる。   Although the heat conductive polyimide film of the present invention does not have a metal layer, the polyimide resin layer (A2) has a layer structure similar to that of the polyimide resin layer (A1), and is suitable for use by being laminated on the metal layer. Film.

更に、ポリイミド樹脂層(A)は、ポリイミド樹脂層(i)及びポリイミド樹脂層(ii)の他に、その他のポリイミド樹脂層を設けることも可能である。しかし、その他のポリイミド樹脂層を設けることは合成工程が増えるなどの不利がある。ポリイミド樹脂層(A)に対するポリイミド樹脂層(i)、ポリイミド樹脂層(ii)及びその他のポリイミド樹脂層(いずれも複数層の場合はその合計)の厚みの割合は次の範囲とすることが好ましい。ポリイミド樹脂層(i)は50〜95%、有利には70〜95%である。ポリイミド樹脂層(ii)は5〜50%、有利には5〜30%である。その他のポリイミド樹脂層は0〜30%、有利には0〜10%である。   Furthermore, the polyimide resin layer (A) can be provided with other polyimide resin layers in addition to the polyimide resin layer (i) and the polyimide resin layer (ii). However, providing other polyimide resin layers has disadvantages such as an increased number of synthesis steps. It is preferable that the ratio of the thickness of the polyimide resin layer (i), the polyimide resin layer (ii), and other polyimide resin layers (the total in the case of multiple layers) to the polyimide resin layer (A) is in the following range. . The polyimide resin layer (i) is 50 to 95%, preferably 70 to 95%. The polyimide resin layer (ii) is 5 to 50%, preferably 5 to 30%. The other polyimide resin layer is 0 to 30%, preferably 0 to 10%.

2層以上の樹脂層を有するポリイミド樹脂層(A)は、ポリイミド樹脂層の前駆体であるポリアミック酸(正式名;ポリアミド酸、以下同じ。)溶液を、適当な支持体上に複数回、直接塗布し、乾燥及び硬化することによって形成することができる。ここで、支持体に配線基板の導体層として上記した銅箔等の金属箔を用いれば、フレキシブル基板用積層体とすることができる。また、支持体としてガラス板、金属箔等を使用して積層体を形成し、ポリイミド樹脂層を剥離等の手段で支持体から除去すれば熱伝導性ポリイミドフィルムとすることができる。
The polyimide resin layer (A) having two or more resin layers is prepared by directly applying a polyamic acid (formal name; polyamic acid, the same shall apply hereinafter) solution , which is a precursor of the polyimide resin layer, onto an appropriate support a plurality of times. It can be formed by applying, drying and curing. Here, if metal foils, such as copper foil mentioned above, are used for a support body as a conductor layer of a wiring board, it can be set as the laminated body for flexible substrates. Moreover, if a laminated body is formed using a glass plate, metal foil, etc. as a support body and a polyimide resin layer is removed from a support body by means, such as peeling, it can be set as a heat conductive polyimide film.

本発明では、ポリイミド樹脂層を複数層とすることから、ポリアミック酸溶液には、2種以上を使用し、少なくとも1種は熱伝導フィラーを含有したものとする。ポリアミック酸溶液の塗布は、公知の方法で行うことができ、例えば、バーコード方式、グラビアコート方式、ロールコート方式、ダイコート方式等から適宜選択して採用することができる。   In this invention, since a polyimide resin layer is made into multiple layers, 2 or more types are used for a polyamic acid solution, and at least 1 type shall contain a heat conductive filler. The polyamic acid solution can be applied by a known method, for example, by appropriately selecting from a bar code method, a gravure coating method, a roll coating method, a die coating method and the like.

本発明をよりわかりやすく説明するために、ポリイミド樹脂層の両面に金属層を有するフレキシブル基板用積層体を例にとってその製造例を示す。まず、フレキシブル基板用積層体の金属層を構成する銅箔などの金属箔を準備し、この金属箔上にポリイミド樹脂層(ii)を形成するポリアミック酸溶液を塗布、140℃以下の温度で乾燥し一定量の溶媒を除去した後、フィラー入りのポリイミド樹脂層(i)を形成するポリアミック酸溶液を塗布、乾燥する。次に、その上に再度、ポリイミド樹脂層(ii)を形成するポリアミック酸溶液を塗布、乾燥し、複数層のポリアミック酸層を形成する。その後、更に高温で熱処理してポリアミック酸をイミド化し、ポリイミド樹脂層の片面に金属層を有する積層体とする。ここで、イミド化のための熱処理条件は150〜360℃で、段階的に15〜20分程度行うことが好ましい。そして、このようにして得られた片面に金属層を有する積層体のポリイミド樹脂層側に銅箔などの金属箔を加熱圧着により積層することで金属箔を両面に有する両面フレキシブル基板用積層体は、得ることができる。   In order to explain the present invention more clearly, an example of its production will be shown by taking as an example a laminate for a flexible substrate having metal layers on both sides of a polyimide resin layer. First, a metal foil such as a copper foil constituting the metal layer of the laminate for a flexible substrate is prepared, and a polyamic acid solution for forming a polyimide resin layer (ii) is applied on the metal foil and dried at a temperature of 140 ° C. or lower. After removing a certain amount of solvent, a polyamic acid solution for forming the polyimide resin layer (i) containing filler is applied and dried. Next, a polyamic acid solution for forming the polyimide resin layer (ii) is again applied thereon and dried to form a plurality of polyamic acid layers. Thereafter, the polyamic acid is imidized by heat treatment at a higher temperature to obtain a laminate having a metal layer on one side of the polyimide resin layer. Here, the heat treatment conditions for imidization are preferably 150 to 360 ° C. and stepwise for about 15 to 20 minutes. And the laminated body for double-sided flexible substrates which has metal foil on both surfaces by laminating | stacking metal foil, such as copper foil, on the polyimide resin layer side of the laminated body which has a metal layer on one side obtained in this way by thermocompression bonding is Can get.

上記加熱圧着時の熱プレス温度については、特に限定されるものではないが、使用されるポリイミド樹脂のガラス転移温度以上であることが望ましい。また、熱プレス圧力については、使用するプレス機器の種類にもよるが、1〜500kg/cm2の範囲であることが望ましい。この際用いられる金属箔は、上記した金属箔と同様のものを用いることができる。本発明のフレキシブル基板用積層体は導体層を片面のみに有する片面フレキシブル基板用積層体であっても、金属箔を両面に有する両面フレキシブル基板用積層体であってもよい。Although it does not specifically limit about the hot press temperature at the time of the said thermocompression bonding, It is desirable that it is more than the glass transition temperature of the polyimide resin to be used. The hot press pressure is preferably in the range of 1 to 500 kg / cm 2 , although it depends on the type of press equipment used. The metal foil used at this time can be the same as the metal foil described above. The laminate for a flexible substrate of the present invention may be a laminate for a single-sided flexible substrate having a conductor layer only on one side, or a laminate for a double-sided flexible substrate having a metal foil on both sides.

なお、片面フレキシブル基板用積層体は、金属箔上にポリイミド樹脂層(ii)を形成するポリアミック酸溶液を塗布、140℃以下の温度で乾燥し一定量の溶媒を除去した後、フィラー入りのポリイミド樹脂層(i)を形成するポリアミック酸溶液を塗布、乾燥したものを高温で熱処理してイミド化することなどの方法により得ることができる。   In addition, the laminate for a single-sided flexible substrate is coated with a polyamic acid solution for forming a polyimide resin layer (ii) on a metal foil, dried at a temperature of 140 ° C. or less to remove a certain amount of solvent, and then filled with polyimide. The polyamic acid solution for forming the resin layer (i) can be obtained by a method such as imidization by heat treatment at a high temperature after being applied and dried.

本発明で用いる熱伝導性フィラーを含有するポリアミック酸溶液は、例えば、予め重合して得られた溶媒を含むポリアミック酸溶液に熱伝導性フィラーを一定量添加し、攪拌装置などで分散させることで調製する方法や、溶媒中に熱伝導性フィラーを分散させながらジアミンと酸無水物を添加し重合を行い調製する方法が挙げられる。   The polyamic acid solution containing the thermally conductive filler used in the present invention can be obtained by, for example, adding a certain amount of thermally conductive filler to a polyamic acid solution containing a solvent obtained by polymerization in advance and dispersing with a stirrer or the like. Examples thereof include a preparation method and a method in which a diamine and an acid anhydride are added and polymerized while dispersing a thermally conductive filler in a solvent.

ポリアミック酸は、芳香族ジアミン成分と芳香族テトラカルボン酸二無水物成分とを実質的に等モル使用し、溶媒中で重合する公知の方法によって製造することができる。すなわち、窒素気流下N,N−ジメチルアセトアミドなどの溶媒に上記ジアミンを溶解させた後、芳香族テトラカルボン酸二無水物を加えて、室温で3時間程度反応させることにより得られる。ポリイミド樹脂層を形成するに適したポリアミック酸の好ましい重合度は、その粘度範囲で表したとき、溶液粘度が5〜2,000Pの範囲であり、10〜300Pの範囲がより好ましい。溶液粘度の測定は、恒温水槽付のコーンプレート式粘度計によって行うことができる。なお、上記溶媒には、N,N−ジメチルアセトアミドの他、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらを1種若しくは2種以上併用して使用することもできる。   The polyamic acid can be produced by a known method in which an aromatic diamine component and an aromatic tetracarboxylic dianhydride component are used in substantially equimolar amounts and polymerized in a solvent. That is, it can be obtained by dissolving the diamine in a solvent such as N, N-dimethylacetamide under a nitrogen stream, adding aromatic tetracarboxylic dianhydride, and reacting at room temperature for about 3 hours. The preferable degree of polymerization of the polyamic acid suitable for forming the polyimide resin layer is, when expressed in the viscosity range, the solution viscosity is in the range of 5 to 2,000 P, and more preferably in the range of 10 to 300 P. The solution viscosity can be measured with a cone plate viscometer with a thermostatic water bath. Examples of the solvent include N, N-dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and these can be used alone or in combination of two or more.

以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although the content of this invention is demonstrated concretely based on an Example, this invention is not limited to the range of these Examples.

本実施例に用いた略号は以下の化合物を示す。
m−TB:2,2’−ジメチル−4,4’−ジアミノビフェニル
4,4'‐DAPE:4,4'‐ジアミノジフェニルエーテル
TPE‐R:1,3−ビス(4−アミノフェノキシ)ベンゼン
BAPP:2,2-ビス(4-アミノフェノキシフェニル)プロパン
PMDA:ピロメリット酸二無水物
BPDA:3,3’4,4’−ビフェニルテトラカルボン酸
ODPA:4,4’−オキシジフタル酸ニ無水物
DMAc:N,N−ジメチルアセトアミド
The abbreviations used in the examples represent the following compounds.
m-TB: 2,2′-dimethyl-4,4′-diaminobiphenyl 4,4′-DAPE: 4,4′-diaminodiphenyl ether TPE-R: 1,3-bis (4-aminophenoxy) benzene BAPP: 2,2-bis (4-aminophenoxyphenyl) propane PMDA: pyromellitic dianhydride BPDA: 3,3′4,4′-biphenyltetracarboxylic acid ODPA: 4,4′-oxydiphthalic acid dianhydride DMAc: N, N-dimethylacetamide

また、実施例において評価した各特性については、下記評価方法に従った。   Moreover, the following evaluation method was followed about each characteristic evaluated in the Example.

[粘度の測定]
ポリアミック酸溶液の粘度は、恒温水槽付のコーンプレート式粘度計(トキメック社製)にて、25℃で測定した。
[Measurement of viscosity]
The viscosity of the polyamic acid solution was measured at 25 ° C. with a cone plate viscometer (manufactured by Tokimec Co., Ltd.) equipped with a constant temperature water bath.

[銅箔引剥し強度(ピール強度)]
積層体の銅箔層を幅1.0mm、長さ180mmの長矩形にパターンエッチングし、そのパターンが中央になるように、幅20mm、長さ200mmに試験片を切り抜き、IPC−TM−650.2.4.19により180°引剥し試験を行った。なお、表中ピール強度が測定限界を超え、正確な値が得られなかったものを>1.6と表記した。
[Copper foil peel strength (peel strength)]
The copper foil layer of the laminate was pattern-etched into a long rectangle having a width of 1.0 mm and a length of 180 mm, and a test piece was cut out to a width of 20 mm and a length of 200 mm so that the pattern was in the center, and IPC-TM-650. A 180 ° peel test was conducted according to 2.4.19. In the table, those where the peel strength exceeded the measurement limit and an accurate value was not obtained were expressed as> 1.6.

[厚み方向熱伝導率(λzTC)]
ポリイミド樹脂フィルムを30mm×30mmのサイズに切り出し、周期加熱法による厚み方向の熱拡散率(アルバック理工製FTC-1装置)、DSCによる比熱、水中置換法による密度をそれぞれ測定し、これらの結果をもとに熱伝導率(W/m・K)を算出した。
[Thickness direction thermal conductivity (λzTC)]
The polyimide resin film was cut into a size of 30 mm x 30 mm, and the thermal diffusivity in the thickness direction by the periodic heating method (FTC-1 apparatus made by ULVAC-RIKO), the specific heat by DSC, and the density by the underwater substitution method were measured. Based on this, the thermal conductivity (W / m · K) was calculated.

[面方向熱伝導率(λxyTC)]
ポリイミド樹脂フィルムを30mm×30mmのサイズに切り出し、光交流法による面方向の熱拡散率(アルバック理工製Laser PIT装置)、DSCによる比熱、水中置換法による密度をそれぞれ測定し、これらの結果をもとに熱伝導率(W/m・K)を算出した。
[Surface direction thermal conductivity (λxyTC)]
A polyimide resin film is cut into a size of 30 mm × 30 mm, and the thermal diffusivity in the surface direction by the optical alternating current method (Laser PIT device manufactured by ULVAC-RIKO), the specific heat by DSC, and the density by the underwater substitution method are measured, respectively. And thermal conductivity (W / m · K) was calculated.

[熱膨張係数(CTE)]
3mm×15mmのサイズのポリイミド樹脂フィルムを、熱機械分析(TMA)装置にて5gの荷重を加えながら一定の昇温速度(20℃/min)で30℃から260℃の温度範囲で引張り試験を行い、温度に対するポリイミドフィルムの伸び量から線膨張係数(ppm/K)を測定した。
[Coefficient of thermal expansion (CTE)]
A tensile test is performed on a polyimide resin film of 3 mm × 15 mm in a temperature range from 30 ° C. to 260 ° C. at a constant heating rate (20 ° C./min) while applying a 5 g load with a thermomechanical analysis (TMA) apparatus. The linear expansion coefficient (ppm / K) was measured from the elongation amount of the polyimide film with respect to temperature.

[ガラス転移温度(Tg)]
ポリイミド樹脂フィルム(10mm×22.6mm)を動的熱器械分析装置(正式名;動的粘弾性測定装置(DMA))にて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度(tanδ極大値:℃)を求めた。
[Glass transition temperature (Tg)]
When a polyimide resin film (10 mm × 22.6 mm) is heated at a rate of 5 ° C./min from 20 ° C. to 500 ° C. with a dynamic thermal instrument analyzer (official name; dynamic viscoelasticity measuring device (DMA)) The dynamic viscoelasticity was measured to determine the glass transition temperature (tan δ maximum value: ° C.).

[引裂き伝播抵抗(TPR)]
63.5mm×50mmのポリイミド樹脂フィルムを試験片とし、試験片に長さ12.7mmの切り込みを入れ、東洋精機製の軽荷重引裂き試験機を用い測定した。
[Tear Propagation Resistance (TPR)]
A 63.5 mm × 50 mm polyimide resin film was used as a test piece, a 12.7 mm length cut was made in the test piece, and measurement was performed using a light load tear tester manufactured by Toyo Seiki.

[フィルムMIT]
(株)東洋精機製作所製のMIT耐揉疲労試験機DA型を用い、幅10mm、長さ140mmの短冊状にカットしたポリイミド樹脂フィルムを試験片として準備し、荷重500g、屈曲角度135°、屈曲速度175rpm、屈曲半径R=0.38mmの測定条件で、フィルムが破断するまでの屈曲回数を求めた。評価基準は屈曲回数に応じて以下のように判定した。
フィルム ○:屈曲回数 5,000回以上
△:屈曲回数 1,000回以上5,000回未満
×:屈曲回数 1,000回未満、又は測定不能
[Film MIT]
Using a MIT fatigue resistance tester DA type manufactured by Toyo Seiki Seisakusho Co., Ltd., a polyimide resin film cut into a strip shape having a width of 10 mm and a length of 140 mm was prepared as a test piece, load 500 g, bending angle 135 °, bending Under the measurement conditions of a speed of 175 rpm and a bending radius R = 0.38 mm, the number of bendings until the film broke was determined. Evaluation criteria were determined as follows according to the number of flexing.
Film ○: More than 5,000 times of bending
Δ: Number of flexion 1,000 times or more and less than 5,000 times
×: Number of bendings is less than 1,000 or measurement is impossible

[積層体MIT]
片面に銅箔を有する積層体を回路加工して、回路が形成された面に12.5μm厚のポリイミドフィルムに25μmのエポキシ系接着剤層とが向かい合わさるようにし、18.3kgf/cmの圧力、170℃、30分間の条件で高温真空プレス機を用いて熱圧着させて試験片を得た。(株)東洋精機製作所製のMIT耐揉疲労試験機DA型を用い、幅10mm、長さ150mmの短冊状にカットした金属積層体MIT試験片を試験片として準備し、荷重500g、屈曲角度135°、屈曲速度175rpm、屈曲半径R=0.38mmの測定条件で、回路が断線するまでの屈曲回数を求めた。評価基準は屈曲回数に応じて以下のように判定した。
積層体 ○:屈曲回数 1, 000回以上
△:屈曲回数 100回以上1,000回未満
×:屈曲回数 100回未満、又は測定不能
[Laminate MIT]
A laminated body having a copper foil on one side is subjected to circuit processing so that a 12.5 μm-thick polyimide film faces a 25 μm epoxy adhesive layer on the surface on which the circuit is formed, and 18.3 kgf / cm 2 A test piece was obtained by thermocompression bonding using a high-temperature vacuum press under conditions of pressure and 170 ° C. for 30 minutes. Using a MIT fatigue resistance tester DA type manufactured by Toyo Seiki Seisakusho Co., Ltd., a metal laminate MIT test piece cut into a strip shape having a width of 10 mm and a length of 150 mm was prepared as a test piece, and the load was 500 g and the bending angle was 135. The number of bendings until the circuit was disconnected was determined under the measurement conditions of °, bending speed 175 rpm, bending radius R = 0.38 mm. Evaluation criteria were determined as follows according to the number of flexing.
Laminate ○: Number of flexion 1,000 times or more
△: Number of bendings 100 times or more and less than 1,000 times
×: Number of bending times is less than 100 times or measurement is not possible

合成例1〜10
ポリアミック酸A〜Jを合成するため、攪拌装置を備えた500mlセパラブルフラスコを超音波装置の水浴に浸し、窒素気流下で、高熱伝導性の球状アルミナフィラー(最大粒子径15μm、平均粒子径が0.6μmのフィラー20wt%の混合フィラー、比表面積0.65m/g)とDMAcを加えて、超音波を照射しながら約2時間攪拌した。次に、表1に示したジアミンを攪拌しながら加え溶解させた後、攪拌を維持したまま、表1に示したテトラカルボン酸二無水物を加えた。その後、室温で3.5時間攪拌を続けて重合反応を行い、ポリイミド前駆体となるポリアミック酸A〜Jの粘稠な溶液を得た。なお、表1〜2中のジアミン、テトラカルボン酸二無水物及びフィラーの数値は、各成分の重量部を表す。また、アルミナフィラーの含有率を併せて示すが、合成例10ではアルミナフィラーを使用していない。
Synthesis Examples 1-10
In order to synthesize polyamic acids A to J, a 500 ml separable flask equipped with a stirrer was immersed in a water bath of an ultrasonic device, and a highly thermally conductive spherical alumina filler (with a maximum particle size of 15 μm, an average particle size of 0.6 μm filler 20 wt% mixed filler, specific surface area 0.65 m 2 / g) and DMAc were added and stirred for about 2 hours while irradiating with ultrasonic waves. Next, the diamine shown in Table 1 was added and dissolved while stirring, and then the tetracarboxylic dianhydride shown in Table 1 was added while maintaining stirring. Then, the polymerization reaction was continued for 3.5 hours at room temperature to obtain a viscous solution of polyamic acids A to J as polyimide precursors. In addition, the numerical value of the diamine in Tables 1-2, tetracarboxylic dianhydride, and a filler represents the weight part of each component. Moreover, although the content rate of an alumina filler is shown collectively, in the synthesis example 10, the alumina filler is not used.

合成例11
球状アルミナフィラーとして、最大粒径4.0μm、平均粒子径0.3μmのフィラーを用い、そして表2に示したジアミンとテトラカルボン酸二無水物を使用して、合成例1〜9と同様にしてポリイミド前駆体となるポリアミック酸Kの粘稠な溶液を得た。
Synthesis Example 11
As the spherical alumina filler, a filler having a maximum particle size of 4.0 μm and an average particle size of 0.3 μm was used, and the diamine and tetracarboxylic dianhydride shown in Table 2 were used in the same manner as in Synthesis Examples 1 to 9. Thus, a viscous solution of polyamic acid K serving as a polyimide precursor was obtained.

合成例12
ポリアミック酸Lを合成するため、攪拌装置を備えた500mlセパラブルフラスコを窒素気流下で、表2に示したジアミンを攪拌しながら加え溶解させた後、攪拌を維持したまま、表2に示したテトラカルボン酸二無水物を加えた。その後、室温で3.5時間攪拌を続けて重合反応を行い、ポリイミド前駆体となるポリアミック酸の粘稠な溶液を得た。このポリアミック酸に板状窒化ホウ素フィラーとして平均長径4.5μmのフィラーを配合し、均一になるまで遠心攪拌機で混合し、フィラー30wt%を含有するポリアミック酸溶液Lを得た。
Synthesis Example 12
In order to synthesize polyamic acid L, a 500 ml separable flask equipped with a stirrer was added and dissolved with stirring with the diamine shown in Table 2 under a nitrogen stream. Tetracarboxylic dianhydride was added. Thereafter, the polymerization reaction was continued for 3.5 hours at room temperature to obtain a viscous solution of polyamic acid serving as a polyimide precursor. The polyamic acid was mixed with a filler having an average major axis of 4.5 μm as a plate-like boron nitride filler, and mixed with a centrifugal stirrer until uniform to obtain a polyamic acid solution L containing 30 wt% filler.

合成例13
ポリアミック酸に配合する板状窒化ホウ素フィラーの配合割合を50wt%としたこと以外は合成例12と同様に行いポリアミック酸溶液Mを得た。
Synthesis Example 13
A polyamic acid solution M was obtained in the same manner as in Synthesis Example 12 except that the blending ratio of the plate-like boron nitride filler to be blended with the polyamic acid was 50 wt%.

合成例14
表2に示したモノマー原料を用い重合反応を行い粘稠なポリアミック酸溶液を得た。このポリアミック酸に平均長径4.5μmの板状窒化ホウ素フィラーと平均粒径3μmの球状アルミナフィラーを配合し、均一になるまで遠心攪拌機で混合し、フィラーを50wt%含有するポリアミック酸溶液Nを得た。ここで、板状窒化ホウ素フィラーと球状アルミナフィラーとの比率は、各50wt%とした。
Synthesis Example 14
A polymerization reaction was performed using the monomer raw materials shown in Table 2 to obtain a viscous polyamic acid solution. This polyamic acid is mixed with a plate-like boron nitride filler having an average major axis of 4.5 μm and a spherical alumina filler having an average particle size of 3 μm, and mixed with a centrifugal stirrer until uniform, to obtain a polyamic acid solution N containing 50 wt% filler. It was. Here, the ratio between the plate-like boron nitride filler and the spherical alumina filler was 50 wt%.

合成例15
表2に示したモノマー原料を用い重合反応を行い粘稠なポリアミック酸溶液を得た。このポリアミック酸に平均長径4.5μmの板状窒化ホウ素フィラーと平均粒径3μmの球状アルミナフィラーとを配合し、均一になるまで遠心攪拌機で混合し、フィラーを50wt%含有するポリアミック酸溶液Oを得た。この際、板状窒化ホウ素フィラーと球状アルミナフィラーとの比率は、各50wt%とした。
Synthesis Example 15
A polymerization reaction was performed using the monomer raw materials shown in Table 2 to obtain a viscous polyamic acid solution. This polyamic acid is mixed with a plate-like boron nitride filler having an average major axis of 4.5 μm and a spherical alumina filler having an average particle size of 3 μm, and mixed with a centrifugal stirrer until uniform, and a polyamic acid solution O containing 50 wt% filler is added. Obtained. At this time, the ratio between the plate-like boron nitride filler and the spherical alumina filler was 50 wt%.

合成例1〜15で得られたポリアミック酸A〜Oの溶液を、それぞれ銅箔上にアプリケータを用いて塗布し、硬化後の厚みが約25μmとなるように塗布し、140℃未満で5分間乾燥し、130〜360℃の温度範囲で、段階的に30分かけて昇温加熱して積層体を形成した。この積層体について、銅箔を塩化第二鉄水溶液を用いてエッチング除去してポリイミドフィルムとした。このようにして得られたポリイミドフィルムのガラス転移温度(Tg)、線膨張係数(CTE)を測定した結果を表1〜2に示す。   Each of the solutions of polyamic acids A to O obtained in Synthesis Examples 1 to 15 is applied onto a copper foil using an applicator, and is applied so that the thickness after curing is about 25 μm. The laminate was dried for 30 minutes and heated in a stepwise manner in the temperature range of 130 to 360 ° C. over 30 minutes to form a laminate. About this laminated body, the copper foil was etched away using the ferric chloride aqueous solution, and it was set as the polyimide film. The results of measuring the glass transition temperature (Tg) and the linear expansion coefficient (CTE) of the polyimide film thus obtained are shown in Tables 1-2.

Figure 0005235211
Figure 0005235211

Figure 0005235211
Figure 0005235211

実施例1
厚み18μmの銅箔(圧延銅箔、Rz=0.7μm)上に、合成例10で得たポリアミック酸樹脂Jの溶液を硬化後の厚みが2μmとなるように塗布し、120〜140℃で加熱乾燥し溶剤を除去した。次に、その上に合成例2で得たポリアミック酸樹脂Bの溶液を硬化後の厚みが23μmとなるように塗布し、120℃で加熱乾燥し溶剤を除去した。その後、130〜360℃の温度範囲で、段階的に30分かけて昇温加熱して、銅箔上に2層のポリイミド層からなるフレキシブル基板用積層体M1を作製した。銅箔上のポリイミド層の厚みは、銅箔側からJ/Bの順に2/23μmである。フレキシブル基板用積層体におけるポリイミド樹脂層の特性を評価するために上記と同様に銅箔をエッチング除去してポリイミド樹脂フィルムM1を作製し、CTE、熱伝導率、引裂き伝播抵抗(TPR)、MITをそれぞれ評価した。また、フレキシブル基板用積層体の屈曲性やポリイミド樹脂層と銅箔とのピール強度を評価した。なお、積層体M1から得られるポリイミド樹脂フィルムをフィルムM1とし、以下同様とする。
Example 1
On a copper foil having a thickness of 18 μm (rolled copper foil, Rz = 0.7 μm), the solution of the polyamic acid resin J obtained in Synthesis Example 10 was applied so that the thickness after curing was 2 μm, at 120 to 140 ° C. The solvent was removed by heating and drying. Next, the solution of polyamic acid resin B obtained in Synthesis Example 2 was applied thereon so that the thickness after curing was 23 μm, and dried by heating at 120 ° C. to remove the solvent. Then, it heated up in steps over 30 minutes in the temperature range of 130-360 degreeC, and produced the laminated body M1 for flexible substrates which consists of two polyimide layers on copper foil. The thickness of the polyimide layer on the copper foil is 2/23 μm in the order of J / B from the copper foil side. In order to evaluate the characteristics of the polyimide resin layer in the laminate for a flexible substrate, the copper foil was etched away in the same manner as described above to produce a polyimide resin film M1, and CTE, thermal conductivity, tear propagation resistance (TPR), and MIT were determined. Each was evaluated. Further, the flexibility of the laminate for a flexible substrate and the peel strength between the polyimide resin layer and the copper foil were evaluated. The polyimide resin film obtained from the laminate M1 is referred to as film M1, and the same shall apply hereinafter.

実施例2
ポリアミック酸樹脂Bの替わりに、合成例7によって得られたポリアミック酸樹脂Gを用いる以外は実施例1と同様にして、積層体M2及びフィルムM2を得た。
Example 2
A laminate M2 and a film M2 were obtained in the same manner as in Example 1 except that the polyamic acid resin G obtained in Synthesis Example 7 was used instead of the polyamic acid resin B.

比較例1、2
ポリアミック酸樹脂Bに代えて、球状アルミナフィラーの含有率それぞれ20wt%、80wt%としたポリアミック酸樹脂D及びEを使用した以外は、実施例1と同様にして、積層体M3、M4及びフィルムM3、M4を得た。なお、フィルムM4は、脆く加圧で容易に亀裂を生じるため厚み方向の熱伝導率が測定不能であった。
Comparative Examples 1 and 2
In place of the polyamic acid resin B, the laminates M3 and M4 and the film M3 were obtained in the same manner as in Example 1, except that the polyamic acid resins D and E having a spherical alumina filler content of 20 wt% and 80 wt%, respectively, were used. , M4 was obtained. In addition, since the film M4 was brittle and easily cracked under pressure, the thermal conductivity in the thickness direction could not be measured.

比較例3、4、5
実施例1と同様にして、合成例6、8、9から得られたポリアミック酸樹脂F、H、Iを用いて積層体M5、M6、M7及びフィルムM5、M6、M7をそれぞれ得た。なお、フィルムM5は、脆く加圧で容易に亀裂を生じるため厚み方向の熱伝導率が測定不能であった。
Comparative Examples 3, 4, 5
In the same manner as in Example 1, laminates M5, M6, and M7 and films M5, M6, and M7 were obtained using the polyamic acid resins F, H, and I obtained from Synthesis Examples 6, 8, and 9, respectively. In addition, since the film M5 was brittle and easily cracked under pressure, the thermal conductivity in the thickness direction could not be measured.

実施例3
実施例1で用いたと同じ銅箔上に、ポリアミック酸樹脂Jの溶液を硬化後の厚み2μmとなるように塗布し、120℃で加熱乾燥し溶剤を除去した。次に、その上に合成例1によって得られたポリアミック酸樹脂Aの溶液を硬化後の厚みが21μmとなるように塗布し、120℃で加熱乾燥し溶剤を除去した。更に、その上にポリアミック酸樹脂Jの溶液を硬化後の厚みが2μmとなるように塗布し、120℃で加熱乾燥し溶剤を除去した。この後、130〜360℃の温度範囲で、段階的に30分かけて昇温加熱して、銅箔上に3層のポリイミド層からなる配線基板用積層体M8を作成した。銅箔上のポリイミド層の厚みは、銅箔側からJ/A/Jの順に2/19/2μmである。実施例1と同様に、積層体M8からフィルムM8を得て、同様に評価した。
Example 3
On the same copper foil as used in Example 1, a solution of polyamic acid resin J was applied to a thickness of 2 μm after curing, and dried by heating at 120 ° C. to remove the solvent. Next, the solution of polyamic acid resin A obtained in Synthesis Example 1 was applied thereon so that the thickness after curing was 21 μm, and dried by heating at 120 ° C. to remove the solvent. Further, a solution of polyamic acid resin J was applied thereon so that the thickness after curing was 2 μm, and dried by heating at 120 ° C. to remove the solvent. Then, it heated up in steps over 30 minutes in the temperature range of 130-360 degreeC, and produced the laminated body M8 for wiring boards which consists of a three-layer polyimide layer on copper foil. The thickness of the polyimide layer on the copper foil is 2/19/2 μm in the order of J / A / J from the copper foil side. In the same manner as in Example 1, a film M8 was obtained from the laminate M8 and evaluated in the same manner.

実施例4〜10、比較例6
使用するポリアミック酸樹脂の種類を変更し、ポリイミド樹脂層の構成を変えた以外は実施例3と同様にして積層体M9〜M16と、フィルムM9〜M16を得て、同様に評価した。
Examples 4 to 10, Comparative Example 6
Laminated bodies M9 to M16 and films M9 to M16 were obtained and evaluated in the same manner as in Example 3 except that the type of polyamic acid resin used was changed and the configuration of the polyimide resin layer was changed.

積層体の評価結果と層構成を表3に、ポリイミド樹脂フィルムの評価結果を表4に示す。表3において厚みは、フィルム層を構成する各樹脂層の厚みを示す。   Table 3 shows the evaluation results and layer structure of the laminate, and Table 4 shows the evaluation results of the polyimide resin film. In Table 3, the thickness indicates the thickness of each resin layer constituting the film layer.

Figure 0005235211
Figure 0005235211

Figure 0005235211
Figure 0005235211

産業上の利用の可能性Industrial applicability

本発明によれば、放熱性に優れ、フレキシブル回路基板に好適に用いられるフレキシブル基板用積層体及び熱伝導性ポリイミドフィルムを提供することができる。このフレキシブル基板用積層体や熱伝導性ポリイミドフィルムは、良好な放熱性を示し、金属層との接着性にも優れることから、これらの特性が求められる携帯電話や、ノートパソコンなどの小型電子機器に好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in heat dissipation and the laminated body for flexible substrates and heat conductive polyimide film which are used suitably for a flexible circuit board can be provided. These flexible substrate laminates and thermally conductive polyimide films exhibit good heat dissipation and excellent adhesion to metal layers, so small electronic devices such as mobile phones and notebook computers that require these characteristics. Can be suitably used.

Claims (12)

ポリイミド樹脂層の片面又は両面に金属層を有する可撓性の積層体において、該ポリイミド樹脂層は2層以上の異なる樹脂層を有し、該樹脂層の少なくとも一層が下記一般式(1)で表される構造単位を50〜95モル%含有するポリイミド樹脂に熱伝導性フィラーが30〜75wt%の範囲で含有されたポリイミド樹脂層(i)であり、少なくとも一層がポリイミド樹脂層(i)よりもガラス転移温度が20℃以上低く、200℃以上のガラス転移温度を有する熱可塑性のポリイミド樹脂(ii)であり、ポリイミド樹脂層(ii)の少なくとも一層は、金属層とポリイミド樹脂層(i)との間に介在し、金属層に接する層がポリイミド樹脂層(ii)であり、また、ポリイミド樹脂層(i)の厚みは、ポリイミド樹脂層の全体厚みの50%以上であることを特徴とするフレキシブル基板用積層体。
Figure 0005235211
ここで、Ar1ピロメリット酸二無水物の残基であり、Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。
In a flexible laminate having a metal layer on one or both sides of a polyimide resin layer, the polyimide resin layer has two or more different resin layers, and at least one of the resin layers is represented by the following general formula (1). A polyimide resin layer (i) in which a thermally conductive filler is contained in a range of 30 to 75 wt% in a polyimide resin containing 50 to 95 mol% of the structural unit represented, at least one layer being from the polyimide resin layer (i). Is a thermoplastic polyimide resin (ii) having a glass transition temperature of 20 ° C. or higher and a glass transition temperature of 200 ° C. or higher. At least one of the polyimide resin layers (ii) is composed of a metal layer and a polyimide resin layer (i). The polyimide resin layer (ii) is a layer in contact with the metal layer, and the thickness of the polyimide resin layer (i) is 50 times the total thickness of the polyimide resin layer. Laminate for a flexible substrate, characterized in that at least.
Figure 0005235211
Here, Ar 1 is a residue of pyromellitic dianhydride , and R is a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen.
ポリイミド樹脂層(i)の厚みがポリイミド樹脂層の全体厚みの70〜95%である請求項1に記載のフレキシブル基板用積層体。   The laminate for a flexible substrate according to claim 1, wherein the thickness of the polyimide resin layer (i) is 70 to 95% of the total thickness of the polyimide resin layer. ポリイミド樹脂層の線膨張係数が30ppm/K以下、熱伝導率がポリイミド樹脂層の厚み方向λzで0.3W/mK以上、平面方向λxyで0.7W/mK以上であり、ポリイミド樹脂層と金属層とのピール強度が0.6kN/m以上である請求項1又は2に記載のフレキシブル基板用積層体。 The linear expansion coefficient of the polyimide resin layer is 30 ppm / K or less, the thermal conductivity is 0.3 W / mK or more in the thickness direction λz of the polyimide resin layer, and 0.7 W / mK or more in the planar direction λxy. The laminate for a flexible substrate according to claim 1 or 2 , wherein a peel strength with the layer is 0.6 kN / m or more. ポリイミド樹脂層の引裂き伝播抵抗が1.5〜8kN/mにある請求項1〜3のいずれかに記載のフレキシブル基板用積層体。 The laminate for a flexible substrate according to any one of claims 1 to 3, wherein the tear propagation resistance of the polyimide resin layer is 1.5 to 8 kN / m. ポリイミド樹脂層(i)のガラス転移温度が310℃以上である請求項1〜4のいずれかに記載のフレキシブル基板用積層体。 The laminate for a flexible substrate according to any one of claims 1 to 4, wherein the glass transition temperature of the polyimide resin layer (i) is 310 ° C or higher. 熱伝導性フィラーがシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類以上のフィラーであり、平均粒子径が0.01〜25μmの範囲にある請求項1〜5のいずれかに記載のフレキシブル基板用積層体。 The heat conductive filler is at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia, and has an average particle diameter in the range of 0.01 to 25 µm . The laminated body for flexible substrates in any one . ポリイミド樹脂層からなる可撓性のフィルムにおいて、該ポリイミド樹脂層は2層以上の異なる樹脂層を有し、該樹脂層の少なくとも一層が下記一般式(1)で表される構造単位を50〜95モル%含有するポリイミド樹脂に熱伝導性フィラーが30〜75wt%の範囲で含有されたポリイミド樹脂層(i)であり、少なくとも一層がポリイミド樹脂層(i)よりもガラス転移温度が20℃以上低く、200℃以上のガラス転移温度を有する熱可塑性のポリイミド樹脂層(ii)であり、ポリイミド樹脂層(i)の厚みは、ポリイミド樹脂層の全体厚みの50%以上であることを特徴とする熱伝導性ポリイミドフィルム。
Figure 0005235211
ここで、Ar1ピロメリット酸二無水物の残基であり、Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。
In the flexible film which consists of a polyimide resin layer, this polyimide resin layer has two or more different resin layers, and at least one layer of the resin layer contains 50 to 50 structural units represented by the following general formula (1). A polyimide resin layer (i) containing 95 mol% of a polyimide resin containing a heat conductive filler in a range of 30 to 75 wt%, and at least one layer has a glass transition temperature of 20 ° C. or higher than that of the polyimide resin layer (i). It is a low-temperature thermoplastic polyimide resin layer (ii) having a glass transition temperature of 200 ° C. or higher, and the thickness of the polyimide resin layer (i) is 50% or more of the total thickness of the polyimide resin layer. Thermally conductive polyimide film.
Figure 0005235211
Here, Ar 1 is a residue of pyromellitic dianhydride , and R is a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen.
ポリイミド樹脂層(i)の厚みがポリイミド樹脂層の全体厚みの70〜95%である請求項7に記載の熱伝導性ポリイミドフィルム。   The thermally conductive polyimide film according to claim 7, wherein the thickness of the polyimide resin layer (i) is 70 to 95% of the total thickness of the polyimide resin layer. ポリイミド樹脂層の線膨張係数が30ppm/K以下、熱伝導率が厚み方向λzで0.3W/mK以上、平面方向λxyで0.7W/mK以上である請求項7又は8に記載の熱伝導性ポリイミドフィルム。 The thermal conductivity according to claim 7 or 8 , wherein the linear expansion coefficient of the polyimide resin layer is 30 ppm / K or less, the thermal conductivity is 0.3 W / mK or more in the thickness direction λz, and 0.7 W / mK or more in the planar direction λxy. Conductive polyimide film. ポリイミド樹脂層の引裂き伝播抵抗が1.5〜8kN/mにある請求項7〜9のいずれかに記載の熱伝導性ポリイミドフィルム。 The thermally conductive polyimide film according to any one of claims 7 to 9, wherein the tear propagation resistance of the polyimide resin layer is 1.5 to 8 kN / m. ポリイミド樹脂層(i)のガラス転移温度が310℃以上である請求項7〜10のいずれかに記載の熱伝導性ポリイミドフィルム。 The thermally conductive polyimide film according to any one of claims 7 to 10, wherein the glass transition temperature of the polyimide resin layer (i) is 310 ° C or higher. 熱伝導性フィラーがシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種のフィラーであり、平均粒子径が0.01〜25μmの範囲にある請求項7〜11のいずれかに記載の熱伝導性ポリイミドフィルム。 Thermally conductive filler is silica, alumina, aluminum nitride, boron nitride, at least one filler selected from silicon nitride and magnesia, any claim 7 to 11 having an average particle diameter in the range of 0.01~25μm The heat conductive polyimide film of crab .
JP2010501876A 2008-03-06 2009-02-27 Laminate for flexible substrate and thermally conductive polyimide film Active JP5235211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010501876A JP5235211B2 (en) 2008-03-06 2009-02-27 Laminate for flexible substrate and thermally conductive polyimide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008056321 2008-03-06
JP2008056321 2008-03-06
PCT/JP2009/053724 WO2009110387A1 (en) 2008-03-06 2009-02-27 Laminate for flexible board and heat conductive polyimide film
JP2010501876A JP5235211B2 (en) 2008-03-06 2009-02-27 Laminate for flexible substrate and thermally conductive polyimide film

Publications (2)

Publication Number Publication Date
JPWO2009110387A1 JPWO2009110387A1 (en) 2011-07-14
JP5235211B2 true JP5235211B2 (en) 2013-07-10

Family

ID=41055947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010501876A Active JP5235211B2 (en) 2008-03-06 2009-02-27 Laminate for flexible substrate and thermally conductive polyimide film

Country Status (5)

Country Link
JP (1) JP5235211B2 (en)
KR (1) KR101370559B1 (en)
CN (1) CN101960929B (en)
TW (1) TWI454375B (en)
WO (1) WO2009110387A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49929E1 (en) 2017-08-08 2024-04-16 Sumitomo Electric Industries, Ltd. Substrate for high-frequency printed wiring board

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201625A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Laminate for flexible substrate and thermally conductive polyimide film
JP5665846B2 (en) * 2010-03-10 2015-02-04 新日鉄住金化学株式会社 Thermally conductive polyimide film and thermal conductive laminate using the same
JP5643536B2 (en) * 2010-04-16 2014-12-17 三井化学株式会社 Thermally conductive adhesive resin composition, laminate comprising the same, and semiconductor device
CN103261277B (en) 2010-12-17 2015-12-02 积水化学工业株式会社 The manufacture method of polyamic acid particle, the manufacture method of polyimide particle, polyimide particle and electronic component-use grafting material
CN103502006B (en) * 2011-03-30 2016-02-10 宇部兴产株式会社 Polyimide film and the metal laminate using it
CN102951873B (en) * 2011-08-31 2015-07-15 深圳光启高等理工研究院 Metamaterial dielectric substrate material and preparation method thereof
KR101545430B1 (en) 2011-12-26 2015-08-18 미쯔이가가꾸가부시끼가이샤 Multilayer molded body and method for producing same, electromagnetic shield member, and heat-dissipating member
KR101567645B1 (en) 2013-12-17 2015-11-23 현대자동차주식회사 Fuel cell system and driving control method thereof
KR102362019B1 (en) * 2014-10-10 2022-02-10 닛산 가가쿠 가부시키가이샤 Composition for forming thin resin film, and thin resin film
CN106928705B (en) * 2015-12-30 2020-05-19 广东生益科技股份有限公司 Polyimide composite material containing filler, sheet and circuit substrate containing polyimide composite material
KR102069709B1 (en) * 2018-01-22 2020-01-23 에스케이씨코오롱피아이 주식회사 High Thermal Conductive Polyimide Film Comprising At Least Two Kinds of Fillers
KR102119752B1 (en) * 2018-10-02 2020-06-05 주식회사 이엠따블유 Flexible printed circuit board module and manufacturing method for thereof
JP2022058252A (en) * 2020-09-30 2022-04-11 日鉄ケミカル&マテリアル株式会社 Resin composition, resin film, laminate, cover lay film, copper foil with resin, metal-clad laminate and circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169533A (en) * 2004-12-15 2006-06-29 E I Du Pont De Nemours & Co Heat conductive polyimide film composite material having large mechanical strength and useful as heat conductive part of electronic device
WO2007037192A1 (en) * 2005-09-29 2007-04-05 Kaneka Corporation Polyimide resin laminate film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243120A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Flexible printed base board and production thereof
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits
JPH01245586A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Flexible printed board
JP2001185853A (en) 1999-12-27 2001-07-06 Matsushita Electric Ind Co Ltd Base board for circuit board and printed circuit board using the same
JP4508441B2 (en) * 2001-02-16 2010-07-21 新日鐵化学株式会社 Laminated body and method for producing the same
JP4876396B2 (en) * 2005-01-05 2012-02-15 東洋紡績株式会社 Printed wiring board
JP2006274040A (en) * 2005-03-29 2006-10-12 Du Pont Toray Co Ltd Polyimide film and flexible circuit board using the same
JP4692139B2 (en) 2005-08-10 2011-06-01 宇部興産株式会社 Single-sided or double-sided metal foil laminated polyimide films and methods for producing them
JP2007055165A (en) * 2005-08-26 2007-03-08 Shin Etsu Chem Co Ltd Flexible copper-clad laminated sheet and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169533A (en) * 2004-12-15 2006-06-29 E I Du Pont De Nemours & Co Heat conductive polyimide film composite material having large mechanical strength and useful as heat conductive part of electronic device
WO2007037192A1 (en) * 2005-09-29 2007-04-05 Kaneka Corporation Polyimide resin laminate film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49929E1 (en) 2017-08-08 2024-04-16 Sumitomo Electric Industries, Ltd. Substrate for high-frequency printed wiring board

Also Published As

Publication number Publication date
WO2009110387A1 (en) 2009-09-11
KR20100125324A (en) 2010-11-30
TWI454375B (en) 2014-10-01
KR101370559B1 (en) 2014-03-06
CN101960929B (en) 2012-10-03
TW201000306A (en) 2010-01-01
JPWO2009110387A1 (en) 2011-07-14
CN101960929A (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP5235211B2 (en) Laminate for flexible substrate and thermally conductive polyimide film
JP4757575B2 (en) Laminate for wiring board
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP2010201625A (en) Laminate for flexible substrate and thermally conductive polyimide film
JP2010155360A (en) Laminate for wiring board, having transparent insulating resin layer
KR101170201B1 (en) Laminate for wiring board
JP2012213899A (en) Heat conductive polyimide-metal substrate
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP2012213900A (en) Heat conductive polyimide-metal substrate
KR101077405B1 (en) Laminate for wiring board
JPWO2020022129A5 (en)
JP2015193117A (en) metal-clad laminate and circuit board
JP2009028993A (en) Laminate for wiring substrate
JP4642664B2 (en) Laminate for wiring board
JP2015127118A (en) Metal-clad laminate and circuit board
JP2021106248A (en) Metal-clad laminated plate and circuit board
JP5665449B2 (en) Metal-clad laminate and thermally conductive polyimide film
JP2008251900A (en) Laminate used for flexible substrate and its manufacturing method
JP2008159896A (en) Laminate for wiring board
JP2024022280A (en) Resin film, metal-clad laminate, and circuit board
JP2023023679A (en) Resin film, metal-clad laminate, circuit board, and laminated structure
JP2022101201A (en) Polyamide acid composition, polyimide composition, metal-clad laminate sheet, and circuit board
TW202405055A (en) Polyamic acid, polyimide, metal-clad laminate and circuit board
JP2007273767A (en) Laminate for wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5235211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250