WO2012172972A1 - Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film - Google Patents

Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film Download PDF

Info

Publication number
WO2012172972A1
WO2012172972A1 PCT/JP2012/063859 JP2012063859W WO2012172972A1 WO 2012172972 A1 WO2012172972 A1 WO 2012172972A1 JP 2012063859 W JP2012063859 W JP 2012063859W WO 2012172972 A1 WO2012172972 A1 WO 2012172972A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
group
polyimide resin
range
filler
Prior art date
Application number
PCT/JP2012/063859
Other languages
French (fr)
Japanese (ja)
Inventor
亮 森
芳樹 須藤
王 宏遠
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011132111A external-priority patent/JP5784993B2/en
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201280026149.6A priority Critical patent/CN103649174B/en
Priority to KR1020137029319A priority patent/KR101757023B1/en
Publication of WO2012172972A1 publication Critical patent/WO2012172972A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil

Definitions

  • the present invention relates to a crosslinked polyimide resin useful as an adhesive in a circuit board such as a flexible printed wiring board, a production method thereof, and use thereof.
  • FPCs flexible printed wiring boards
  • HDDs hard disk drives
  • DVDs digital versatile disks
  • mobile phones mobile phones
  • parts such as cables and connectors
  • a coverlay film is used for the purpose of protecting the wiring part.
  • the coverlay film is formed by laminating a coverlay film material made of a synthetic resin such as a polyimide resin and an adhesive layer.
  • a coverlay film material is attached to a circuit board through an adhesive layer by using a method such as hot pressing.
  • the adhesive layer is required to have high adhesion to both the circuit wiring pattern such as copper wiring and the film material for coverlay.
  • an adhesive for such a coverlay film it can be processed under relatively low temperature thermocompression bonding conditions, and it has excellent heat resistance and other characteristics, and it can be used as a mixed resin of polyimide resin and epoxy resin having a siloxane unit.
  • an adhesive resin composition for printed circuit boards has been proposed which comprises one or more plasticizers selected from phosphoric acid esters, phthalic acid esters, polyesters and fatty acid esters (for example, Japanese (Kaihei 10-212468).
  • bis (3,4-dicarboxyphenyl) ether dianhydride and a specific structure are used for the purpose of improving the low-temperature sticking property, low moisture absorption, heat adhesion, and PCT resistance of polyimide resin used for adhesive films.
  • a method for producing a polyimide resin in which another acid anhydride and / or another diamine is reacted after reacting with another siloxane diamine has been proposed (for example, Japanese Patent Application Laid-Open No. 2006-117945).
  • silicone-based diamine and silicone-based acid dianhydride are mixed in a specific molar ratio range, and heat dehydration condensation is performed.
  • a method for producing a polyimide resin in which an aromatic diamine is added to a reaction solution at a predetermined molar ratio and reacted after the reaction until no longer increases, and the molecular weight is controlled for example, Japanese Patent Application Laid-Open No. 2004-2004). 359874).
  • the adhesive used for the coverlay film is required to have high solder heat resistance.
  • polyimide resin with relatively excellent heat resistance is a material suitable as an adhesive for the coverlay film, but if the solder heat resistance can be further improved, the function as an adhesive for the coverlay film will be improved. Can be increased.
  • in-vehicle electronic devices for automobiles using FPC are repeatedly placed in a high temperature environment of about 150 ° C., the adhesive strength between the FPC coverlay film and the wiring is lowered over a long period of use, and the wiring protection function is provided.
  • the adhesive strength between the FPC coverlay film and the wiring is lowered over a long period of use, and the wiring protection function is provided.
  • FPC applications it is expected that the number of scenes where FPC is used not only in in-vehicle electronic devices but also in severe temperature environments will continue to increase. For this reason, in an FPC used in a high temperature environment, it is strongly required to take measures against a decrease in the adhesive strength of the coverlay film.
  • an object of the present invention is to form a cross-linked polyimide capable of forming a cross-linked structure capable of exhibiting moisture-resistant solder heat resistance in a short time and capable of forming an adhesive layer that does not reduce adhesive strength even in a use environment that is repeatedly exposed to high temperatures. It is to provide a resin.
  • the inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems.
  • a functional group capable of hydrogen bonding hereinafter referred to as “hydrogen bond-forming group”
  • the main chains of the polyimidesiloxane are interlinked.
  • a hydrogen bond is formed and the ketone group of the adjacent polyimide siloxane chain is brought into a close state, so that the formation of a cross-link between the ketone group of the polyimide siloxane and the amino compound is promoted.
  • the crosslinked polyimide resin of the present invention comprises the following components (A) and (B), (A) a polyimidesiloxane having a ketone group, and (B) an amino compound having at least two primary amino groups as functional groups, A cross-linked polyimide resin obtained by reacting The amino group of the amino compound of the component (B) reacts with at least a part of the ketone group in the polyimide siloxane of the component (A) to form a C ⁇ N bond, so that the polyimide siloxane is formed by the amino compound. It has a cross-linked structure.
  • the polyimidesiloxane may be a polyimidesiloxane having structural units represented by the following general formulas (1) and (2).
  • the molar ratio m of the structural unit is in the range of 0.75 to 1.0, and n is in the range of 0 to 0.25.
  • Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride
  • R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane
  • R 2 is derived from a diamine compound.
  • Each represents a divalent diamine residue
  • Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group
  • m and n represent the molar ratio of each constituent unit
  • m is 0.35 to 1 In the range of 0, n is in the range of 0 to 0.65
  • the polyimidesiloxane may be a polyimidesiloxane having structural units represented by the following general formulas (1) and (2).
  • the molar ratio m of the structural unit is in the range of 0.75 or more and less than 1.0, and n is in the range of more than 0 and 0.25 or less.
  • Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride
  • R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane
  • R 2 is derived from a diamine compound.
  • Each represents a divalent diamine residue
  • Ar contains a ketone group
  • R 2 contains a hydrogen bond-forming group
  • m and n represent the molar ratio of each constituent unit
  • m is 0.35 or more and 1
  • the hydrogen bond-forming group in the polyimidesiloxane may be —NHCO—.
  • the crosslinked polyimide resin of the present invention may be one in which the polyimide siloxane is synthesized using a dihydrazide compound as a raw material.
  • the amino compound may be a dihydrazide compound.
  • the plate-like inorganic filler having an average particle size in the range of 2 to 25 ⁇ m is further added in an amount of 5 to 200 wt. It may be contained within the range of parts.
  • the adhesive resin composition of the present invention comprises the following components (A) and (B): (A) a polyimidesiloxane having a weight average molecular weight of 20,000 to 150,000 having a ketone group and a hydrogen bond-forming group, and (B) an amino compound having at least two primary amino groups as functional groups, Including
  • the component (B) is contained so that the total amount of the primary amino group is within the range of 0.004 mol to 1.5 mol with respect to 1 mol of the ketone group in the component (A). .
  • the component (A) may be a polyimide siloxane having structural units represented by the following general formulas (1) and (2).
  • the molar ratio m of the structural unit is in the range of 0.75 to 1.0, and n is in the range of 0 to 0.25.
  • Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride
  • R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane
  • R 2 is derived from a diamine compound.
  • Each represents a divalent diamine residue
  • Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group
  • m and n represent the molar ratio of each constituent unit
  • m is 0.35 to 1 In the range of 0, n is in the range of 0 to 0.65
  • the component (A) may be a polyimide siloxane having structural units represented by the following general formulas (1) and (2).
  • the molar ratio m of the structural unit is in the range of 0.75 or more and less than 1.0, and n is in the range of more than 0 and 0.25 or less.
  • Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride
  • R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane
  • R 2 is derived from a diamine compound.
  • Each represents a divalent diamine residue
  • Ar contains a ketone group
  • R 2 contains a hydrogen bond-forming group
  • m and n represent the molar ratio of each constituent unit
  • m is 0.35 or more and 1
  • the hydrogen bond forming group in the component (A) may be —NHCO—.
  • the component (A) may be synthesized using a dihydrazide compound as a raw material.
  • the component (B) may be a dihydrazide compound.
  • the adhesive resin composition of the present invention further comprises (C) a plate-like inorganic filler having an average particle size in the range of 2 to 25 ⁇ m with respect to a total of 100 parts by weight of the components (A) and (B). It may contain 5 to 200 parts by weight.
  • the cured product of the present invention is obtained by curing the adhesive resin composition described above.
  • the coverlay film of the present invention is a coverlay film in which an adhesive layer and a film material layer for coverlay are laminated,
  • the adhesive layer is formed using the adhesive resin composition according to any one of the above.
  • the circuit board of the present invention includes a base material, a wiring layer formed on the base material, and the cover lay film covering the wiring layer.
  • the process of It has.
  • the thermally conductive substrate of the present invention is a thermally conductive substrate having a metal layer on one or both sides of an insulating layer having at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin.
  • the filler-containing polyimide resin layer has a heat conductive filler content of 5 to 80 wt% (% by weight; the same applies hereinafter), and the polyimide resin in the filler-containing polyimide resin layer has the following general formula:
  • the ketone group in the polyimidesiloxane having the structural units represented by (1) and (2) reacts with an amino group of an amino compound having at least two primary amino groups as functional groups to form a C ⁇ N bond.
  • the polyimide siloxane is a crosslinked polyimide resin having a structure crosslinked by the amino compound. And wherein the Rukoto.
  • Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride
  • R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane
  • R 2 is an aromatic diamine and / or Each represents a divalent diamine residue derived from an aliphatic diamine
  • Ar and / or R 2 contains a ketone group
  • m and n represent the molar ratio of each constituent unit, and m is 0.4 In the range of -1.0 and n is in the range of 0-0.6
  • the thermally conductive polyimide film of the present invention is a thermally conductive polyimide film comprising a filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin,
  • the content of the heat conductive filler in the filler-containing polyimide resin layer is in the range of 5 to 80 wt%
  • the polyimide resin in the filler-containing polyimide resin layer is represented by the following general formulas (1) and (2).
  • the polyimide siloxane having a structural unit reacts with the amino group of an amino compound having at least two primary amino groups as a functional group to form a C ⁇ N bond with the ketone group in the polyimide siloxane having a structural unit. It is a crosslinked polyimide resin having a structure crosslinked by the amino compound.
  • Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride
  • R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane
  • R 2 is an aromatic diamine and / or Each represents a divalent diamine residue derived from an aliphatic diamine
  • Ar and / or R 2 contains a ketone group
  • m and n represent the molar ratio of each constituent unit, and m is 0.4 In the range of -1.0 and n is in the range of 0-0.6
  • the crosslinked polyimide resin of the present invention has a structure in which an amino group of an amino compound reacts with at least a part of a ketone group in polyimidesiloxane to form a C ⁇ N bond, and at least a part of the polyimidesiloxane is crosslinked with an amino compound. For this reason, while being excellent in solder heat resistance, the adhesive bond layer which does not reduce the adhesive force with a metal wiring layer can be formed even if it is repeatedly placed in a high temperature environment. Therefore, the peel strength of the coverlay film formed with the adhesive layer using the crosslinked polyimide resin of the present invention can be increased, and the reliability of the circuit board using the coverlay film can be improved.
  • polyimide siloxane having a ketone group and a hydrogen bond-forming group is used, so that not only the curing by crosslinking formation is complete, but also excellent moisture-resistant soldering heat resistance at the intermediate stage. Can be expressed. Therefore, it is possible to achieve both excellent adhesion and solder heat resistance, and it is useful as an adhesive for coverlay films and the like.
  • the method for producing a crosslinked polyimide resin of the present invention uses a polyimide siloxane having a ketone group and a hydrogen bond-forming group, so that even in the state of the composition before heating, the adjacent polyimide siloxane main chains are close to each other by hydrogen bonding. Become. Therefore, the ketone groups of polyimide siloxane come close to each other, and the cross-linking with the amino group of the amino compound can be promoted. Accordingly, it is possible to form a cross-link in a short time, and it is possible to shorten the heat treatment time required for curing.
  • the crosslinked polyimide resin of the present invention comprises the following components (A) and (B), (A) a polyimidesiloxane having a ketone group, and (B) an amino compound having at least two primary amino groups as functional groups, Is a crosslinked polyimide resin obtained by reacting
  • the polyimide siloxane has a structure crosslinked with the amino compound.
  • the group Ar in the general formulas (1) and (2) is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride
  • the group R 1 is It is a divalent diaminosiloxane residue derived from diaminosiloxane
  • the group R 2 is a divalent diamine residue derived from a diamine compound.
  • Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group, and m indicating the molar ratio of the constituent units is in the range of 0.35 to 1.0, preferably 0.75 to 1.
  • n is in the range of 0 to 0.65, preferably in the range of 0 to 0.25.
  • the group Ar in the general formulas (1) and (2) may contain a ketone group, and the group R 2 may contain a hydrogen bond forming group.
  • m indicating the molar ratio of the constituent units is in the range of 0.35 or more and less than 1.0, more preferably in the range of 0.75 or more and less than 1.0, and most preferably 0.75 or more and 0.99.
  • n indicating the molar ratio of the constituent units is in the range of more than 0 to 0.65 or less, more preferably in the range of more than 0 to 0.25 or less, most preferably in the range of 0.01 to 0.25. Is within.
  • the crosslinking formation rate (degree of curing) of the crosslinked polyimide resin does not have to be a state in which the curing of the polyimide resin by the crosslinking formation is completed, and may be any level that can ensure practically sufficient moisture-resistant soldering heat resistance. Whether the crosslinked polyimide resin has practically sufficient moisture-resistant soldering heat resistance can be determined using viscosity as an index, as will be described later.
  • the component (A) includes, for example, a polyimide siloxane having structural units represented by the general formulas (1) and (2), the group Ar and / or the group R 2 , preferably a ketone group in the group Ar, This ketone group is involved in the reaction with the amino compound.
  • a polyimide siloxane having structural units represented by the general formulas (1) and (2), the group Ar and / or the group R 2 , preferably a ketone group in the group Ar, This ketone group is involved in the reaction with the amino compound.
  • examples of the aromatic tetracarboxylic acid for forming the group Ar containing a ketone group include 3,3 represented by the following formula (3): Mention may be made of '4,4'-benzophenone tetracarboxylic dianhydride (BTDA).
  • examples of the aromatic tetracarboxylic acid used as a raw material for forming the group Ar include, in addition to those having the ketone group, for example, 3, 3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride (DSDA), pyromellitic dianhydride (PMDA) Etc. can be used. These can be used alone or in combination of two or more.
  • BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • DSDA 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • examples of the “hydrogen bond forming group” include —NHCO—.
  • a hydrogen bond is generated between adjacent polyimide siloxane chains, and the ketone groups that are the reaction points of the crosslinking reaction with the amino compound can be brought close to each other. The reaction is accelerated and the heating time until sufficient moisture-resistant soldering heat resistance is generated can be shortened.
  • the hydrogen bond forming group may be contained in either one of the general formulas (1) and (2), or may be contained in both.
  • the hydrogen bond-forming group may be contained in either the acid anhydride component represented by the group Ar or the diamine component represented by the group R 1 or R 2.
  • the molar ratio of hydrogen bond-forming groups to all diamines is in the range of more than 0 and less than or equal to 1.3, more preferably more than 0 and less than 0 in order to efficiently form hydrogen bonds between the main chains of adjacent polyimidesiloxanes. .5 or less, and most preferably 0.02 or more and 0.5 or less.
  • examples of the group R 1 in the structural unit represented by the general formula (1) include a diaminosiloxane residue derived from a diaminosiloxane represented by the following formula (4).
  • R 3 and R 4 each represents a divalent organic group which may contain an oxygen atom
  • R 5 to R 8 each represents a hydrocarbon group having 1 to 6 carbon atoms, The average number of repetitions m 1 is 1 to 20
  • R 1 , R 3 and R 4 in the formula (4) are each a divalent hydrocarbon group for imparting polyimide solubility, and R 5 to R 8 each have 1 to 6 having a mean repeating number of m 1 of 5 to 15 is preferable.
  • the diaminosiloxane residue is a group having a siloxane bond (Si—O—Si) obtained by removing an amino group from diaminosiloxane.
  • a plasticizer By increasing the ratio of the siloxane bond, a plasticizer can be added. Sufficient flexibility is imparted to the adhesive layer, and warping of the coverlay film can be suppressed.
  • an adhesive using polyimidesiloxane having the structural units represented by the general formulas (1) and (2) It is mentioned that the amount of polar groups contained in the resin composition can be suppressed.
  • the value of m in Formula (1) shall be 0.35 or more, Preferably it is 0.75 or more. If the value of m is less than 0.35, the warp suppressing effect cannot be sufficiently obtained. In addition, it is considered that increasing the siloxane bond also has an effect of reducing curing shrinkage due to a decrease in the imide bond site of polyimidesiloxane.
  • the resulting polyimidesiloxane is given fluidity at the time of thermocompression bonding, and on the printed circuit wiring. Fillability can be improved.
  • diaminosiloxane represented by the general formula (4) diaminosiloxanes represented by the following formulas (5) to (9) are preferable, and among these, the formula (5) or the formula (6) The aliphatic diaminosiloxane represented is more preferred. These diaminosiloxanes can be blended in combination of two or more.
  • the average repeat number m 1 is in the range of 1 to 20, and preferably in the range of 5 to 15. When m 1 is smaller than 1, the filling property when an adhesive is used is lowered, and when it exceeds 20, the adhesive property is lowered.
  • examples of the group R 2 containing a ketone group include those represented by the following formulas (10) and (11). And aromatic diamines. These can be used alone or in combination of two or more.
  • R 9 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, X represents CO, and n 1 independently represents an integer of 0 to 4]
  • Examples of the aromatic diamine for forming the group R 2 represented by the above formulas (10) and (11) include 4,4′-bis (3-aminophenoxy) benzophenone (BABP), 1,3- And bis [4- (3-aminophenoxy) benzoyl] benzene (BABB).
  • BABP 4,4′-bis (3-aminophenoxy) benzophenone
  • BABB 1,3- And bis [4- (3-aminophenoxy) benzoyl] benzene
  • the diamine compound that is a raw material for forming the group R 2 having a hydrogen bond-forming group for example, when the hydrogen bond-forming group is a —NHCO— group
  • the dihydrazide compound include dodecanedioic acid dihydrazide and adipic acid dihydrazide, which are aliphatic dihydrazides, and isophthalic acid dihydrazide, which is an aromatic dihydrazide.
  • dodecanedioic acid dihydrazide and adipic acid dihydrazide which are aliphatic dihydrazides are preferable.
  • diamine compound that is a raw material for forming the group R 2 for example, 2,2-bis (4-aminophenoxyphenyl) propane (BAPP ) 2,2′-divinyl-4,4′-diaminobiphenyl (VAB), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), 2,2′-diethyl-4,4 '-Diaminobiphenyl, 2,2', 6,6'-tetramethyl-4,4'-diaminobiphenyl, 2,2'-diphenyl-4,4'-diaminobiphenyl, 9,9-bis (4-amino And aromatic diamines such as phenyl) fluorene.
  • aromatic diamines can be used alone or in combination of two or more.
  • acid anhydride and diamine which are the raw materials for polyimide siloxane, only one kind of each may be used, or two or more kinds may be used in combination.
  • acid anhydrides and diamines other than those described above can be used in combination.
  • the polyimidesiloxane of a component can be manufactured by making the said aromatic tetracarboxylic anhydride, diaminosiloxane, and diamine react in a solvent, producing
  • it is a polyimide precursor by dissolving an acid anhydride component and a diamine component in an organic solvent in approximately equimolar amounts and stirring them at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours for polymerization reaction. A polyamic acid is obtained.
  • the reaction components are dissolved so that the precursor to be produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent.
  • the organic solvent used in the polymerization reaction include N, N-dimethylformamide, N, N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, aromatic hydrocarbons such as xylene and toluene can be used in combination.
  • the synthesized precursor is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted or replaced with another organic solvent if necessary. Moreover, since a precursor is generally excellent in solvent solubility, it is advantageously used.
  • the method for imidizing the precursor is not particularly limited, and for example, heat treatment in which heating is performed in the above-mentioned solvent under a temperature condition in the range of 80 to 300 ° C. for 1 to 24 hours is suitably employed.
  • the blending ratio of the acid anhydride component and the diamine component as raw materials is not particularly limited, for example, the terminal substituent of the polyimide siloxane is an amino group, That is, from the viewpoint of sealing the acid anhydride group with diamine and suppressing the polarity of the crosslinked polyimide resin, the molar ratio of acid anhydride component: diamine component is 1.000: 1.001 to 1.0: 1. .2 is preferred.
  • component polyimide siloxane has an imide structure obtained by reaction with aromatic tetracarboxylic anhydride, diaminosiloxane and diamine compound, for example, when used as an adhesive for coverlay film, A completely imidized structure is most preferred to suppress copper diffusion.
  • a part of the polyimide may be amic acid.
  • the imidization ratio was measured at about 1015 cm ⁇ 1 by measuring the infrared absorption spectrum of the polyimide thin film by a single reflection ATR method using a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO Corporation). And the absorbance of C ⁇ O stretching derived from an imide group of 1780 cm ⁇ 1 , based on the benzene ring absorber.
  • amino compound in the crosslinked polyimide resin of the present invention, as the amino compound having at least two primary amino groups as functional groups, which is the other component (B) to be reacted with the ketone group of the polyimide siloxane of the component (A),
  • Examples include (I) aromatic diamine, (II) diaminosiloxane, (III) aliphatic amine, (IV) dihydrazide compound, and the like.
  • Aromatic diamine examples of the aromatic diamine include those represented by the following formulas (12) and (13).
  • R 10 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and Z represents a single bond or a divalent hydrocarbon group having 1 to 15 carbon atoms, O, S, CO , SO, SO 2 , NH or CONH represents a divalent group, and n 2 independently represents an integer of 0 to 4]
  • aromatic diamines examples include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dihydroxy- Preferred examples include 4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide, bisaniline fluorene and the like.
  • aromatic diamines include 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3 -Aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) biphenyl, bis [1- (4-aminophenoxy)] biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether Bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, [4- (3-A
  • Diaminosiloxane As the diaminosiloxane, diaminosiloxane represented by the following general formula (14) or an oligomer thereof is preferably exemplified.
  • R 11 and R 12 represent a divalent hydrocarbon group
  • R 13 to R 16 represent a hydrocarbon group having 1 to 6 carbon atoms
  • m 1 represents a number of 1 to 20, preferably 1 to Indicates a number of 10.
  • diaminosiloxanes examples include diaminopropyltetramethyldisiloxane and diaminosiloxanes represented by the above general formulas (5) to (9).
  • the above diaminosiloxanes may be used alone or in combination of two or more.
  • Aliphatic amines examples include 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 2-methyl-1,5-diaminopentane, 1,7-diaminoheptane, and 1,8.
  • Diaminooctane 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12- Diaminoalkanes such as diaminododecane, 4,4′-methylenebiscyclohexylamine, tris (2-aminoethyl) amine, N, N′-bis (2-aminoethyl) -1,3-propanediamine, bis (3 -Aminopropyl) ethylenediamine, 1,4-bis (3-aminopropyl) piperazine, diethylenetriamine, N-methyl-2,2'-dia Nodiethylamine, amines containing nitrogen atoms such as 3,3′-diaminodipropylamine, N, N-bis (3-aminoprop
  • dihydrazide compound examples include those represented by the following general formula (15).
  • examples of R 17 include a single bond, an aliphatic group, and an aromatic group. What is preferable as R 17 is described with reference to examples of dihydrazide compounds.
  • dihydrazide compounds oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide dihydrazide, maleic acid dihydrazide Diglycolic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 2,6-naphthodioic acid dihydrazide, 4,4-bisbenzene dihydrazide,
  • dihydrazide compounds are most preferable.
  • the curing time of the adhesive resin composition can be shortened as compared with the case where another amino compound is used. This is because the product obtained by reacting the primary amino group of the dihydrazide compound with the ketone group has a semicarbazone-like molecular structure, and forms a dimer structure by hydrogen bonding between NHs between molecules.
  • the equilibrium of the reaction is biased toward the product side, and the reverse reaction in the direction of generating the ketone group of the polyimidesiloxane that is the raw material and the amino group of the dihydrazide compound is less likely to occur. It is considered a thing.
  • amino compounds such as (I) aromatic diamine, (II) diaminosiloxane, (III) aliphatic amine, and (IV) dihydrazide compound are, for example, combinations of (I) and (II), (I) and ( It can also be used in combination of two or more types across categories, such as combinations with (III), combinations of (I), (II) and (III), and combinations of (I) to (IV).
  • the amino compound used in the present invention has a molecular weight (weight average molecular weight when the amino compound is an oligomer) of 5,000 or less. It is preferably 90 to 2,000, more preferably 100 to 1,500. Of these, amino compounds having a molecular weight of 100 to 1,000 are particularly preferred.
  • the method for producing a crosslinked polyimide resin of the present invention comprises mixing the acid anhydride component having a ketone group, the diamine compound having a hydrogen bond-forming group and a diamine component containing diaminosiloxane, which is the component (A), A step of imidizing by heating to form a polyimide siloxane having a ketone group and a hydrogen bond-forming group; Forming hydrogen bonds between adjacent main chains in the polyimidesiloxane; By reacting at least a part of the ketone group of the polyimidesiloxane with the amino group of the amino compound having at least two primary amino groups as the functional group as the component (B), a C ⁇ N bond is formed, and the polyimidesiloxane is formed.
  • the total amount of primary amino groups is 0.004 mol to 1.5 mol, preferably 0.005 mol to 1.2 mol, more preferably 0.03 mol to 0.00 mol per mol of the ketone group. It is preferable to add the amino compound so as to be 9 mol, particularly preferably 0.04 mol to 0.5 mol.
  • the addition amount of the amino compound in which the primary amino group is less than 0.004 mol in total with respect to 1 mol of the ketone group is not sufficient for crosslinking of the polyimide siloxane with the amino compound.
  • Solder heat resistance tends to be difficult to develop in the cured product after curing, and when the added amount of amino compound exceeds 1.5 mol, the unreacted amino compound acts as a thermoplastic agent, and solder heat resistance in the cured product. There is a tendency to lower the long-term heat resistance at high temperatures.
  • the curing by the condensation reaction is not particularly limited as long as the conditions allow the ketone group in the polyimidesiloxane and the primary amino group of the amino compound to react to form an imine bond (C ⁇ N bond).
  • an imine bond C ⁇ N bond
  • the type of amino compound for example, when an aliphatic amine is used, it can be condensed with a ketone group in polyimide siloxane even at room temperature, but it is preferable to promote the condensation reaction by heating.
  • an aliphatic amine is used as the amino compound, it is preferable to perform heat condensation within the range of 60 to 200 ° C., for example.
  • an aromatic amine is used, the heat condensation is performed within the range of 120 to 220 ° C., for example.
  • the temperature of the heat condensation is, for example, 120 for the purpose of releasing water generated by the condensation out of the system or simplifying the condensation step when the heat condensation reaction is subsequently performed after the synthesis of the polyimidesiloxane. It is preferably in the range of -220 ° C, more preferably in the range of 140-200 ° C.
  • the reaction time is preferably about 0.5 to 24 hours. From the viewpoint of obtaining practically sufficient moisture-resistant soldering heat resistance by a short heat treatment, it is preferable to heat at 160 ° C. or higher for 0.5 hour or longer. Then, from the viewpoint of obtaining practically sufficient moisture-resistant soldering heat resistance by a lower temperature heat treatment, it is desirable to heat at 150 ° C. or higher for 1 hour or longer.
  • the end point of the condensation reaction is derived from the ketone group in polyimidesiloxane near 1670 cm ⁇ 1 by measuring the infrared absorption spectrum using, for example, a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO). It can be confirmed by the decrease or disappearance of the absorption peak and the appearance of an absorption peak derived from an imine group near 1635 cm ⁇ 1 , or by using a Raman spectrophotometer (commercial product: NRS-3100 manufactured by JASCO Corporation) By measuring the spectrum, it can be confirmed by the appearance of a peak derived from an imine group near 1567 cm ⁇ 1 .
  • the viscosity of the formed crosslinked polyimide resin is preferably 1 ⁇ 10 5 Pa ⁇ s or more. If the viscosity of the cross-linked polyimide resin at a temperature of 260 ° C.
  • the cross-linking is formed to such an extent that practically sufficient moisture-resistant soldering heat resistance can be obtained.
  • the reason why the viscosity of the cross-linked polyimide resin is employed as the threshold value is that it is difficult to directly measure the cross-linking formation rate due to C ⁇ N bonds.
  • the cross-linking formation rate ketoone group consumption rate
  • the viscosity of the crosslinked polyimide resin at a temperature of 260 ° C. is 1 ⁇ 10 5 Pa ⁇ s or more, it is considered that the practically sufficient moisture-resistant soldering heat resistance has been obtained.
  • the viscosity at this time is adopted as a standard for judging the end point of the curing by the condensation reaction. Therefore, the end point of the condensation reaction does not necessarily mean that all of the ketone groups are consumed and further curing does not proceed, but a cured product having practically sufficient properties (especially moisture solder heat resistance) ( It means the time when a semi-cured product is obtained.
  • the heat condensation of the ketone group of polyimidesiloxane and the primary amino group of the amino compound is, for example, (A) Following the synthesis (imidation) of polyimide siloxane, adding an amino compound and heating, (B) charging an excess amount of an amino compound in advance as a diamine component and heating the polyimide siloxane together with the remaining amino compound not involved in imidization (or amidation) following the synthesis (imidation) of the polyimide siloxane; Or (C) heating after processing the polyimidesiloxane composition to which the amino compound has been added into a predetermined shape (for example, after being applied to an arbitrary base material or after being formed into a film), Etc.
  • the excess amino compound is consumed in the reaction of sealing the acid anhydride group as a terminal substituent during the production of polyimidesiloxane, and the molecular weight of the resulting polyimidesiloxane may be extremely reduced. Therefore, it tends to be difficult to obtain sufficient heat resistance in the cured product. Therefore, it is preferable to use the method [the above (b)] in which an excess amount of an amino compound is previously charged as long as the effect of the present invention is not impaired.
  • the amino compound is synthesized from polyimide siloxane as in (a) or (c) above.
  • the heat condensation is performed by, for example, the heat of heat treatment performed when the adhesive layer of the coverlay film is formed from a composition in which an amino compound and polyimide siloxane are mixed, or the adhesive layer is formed. After that, it can also be performed by using heat at the time of thermocompression bonding to the circuit board having the wiring layer.
  • the cross-linked polyimide resin of the present invention can contain a plate-like inorganic filler having an average particle size in the range of 2 to 25 ⁇ m as an optional component (C).
  • C By blending the component inorganic filler, when the crosslinked polyimide resin is used for, for example, the adhesive layer of the coverlay film, the permeation of oxygen in the atmosphere is blocked by the inorganic filler having gas barrier properties. In addition, oxidation of copper wiring and copper diffusion are suppressed, and long-term heat resistance can be improved.
  • the inorganic filler of component (C) it is preferable to use a plate-like material in order to impart sufficient gas barrier properties to the adhesive layer.
  • the “plate shape” is used to mean, for example, a flat shape, a flat plate shape, a flake shape, a scale shape, etc., and the thickness of the inorganic filler is sufficiently smaller than the major axis or minor axis of the plane portion (preferably 1/2 or less).
  • the scale-like inorganic filler is preferable to use a scale-like inorganic filler.
  • “plate-like” means that the ratio of the major axis to the thickness (major axis / thickness) of the filler particles is preferably 5 or more, more preferably 10 or more, and still more preferably 15 or more.
  • the relationship between the long diameter and the average particle diameter is preferably long diameter ⁇ average particle diameter> 0.4 ⁇ long diameter, more preferably long diameter ⁇ average particle diameter ⁇ 0.5 ⁇ . It is good that it is a long diameter.
  • the major axis (or minor axis) and thickness of the filler particles, and the ratio of the major axis to the thickness are the average values when ten arbitrary fillers are measured with a stereomicroscope. If the shape of the inorganic filler is not plate-like, for example, it is spherical, the gas barrier property of the adhesive layer is lowered, the oxidation of the wiring layer proceeds, and the adhesive strength of the coverlay film may be reduced. It does not preclude blending inorganic fillers having a shape other than the plate shape as long as the effect of blending the plate filler is not impaired.
  • an insulating inorganic filler such as talc, mica, sericite, clay, kaolin and the like.
  • the inorganic filler preferably has an average particle diameter calculated by a laser diffraction method in the range of 2 to 25 ⁇ m, and more preferably in the range of 5 to 20 ⁇ m.
  • the particle size of the inorganic filler is based on the average value of the longitudinal diameters of the particles.
  • the average particle diameter exceeds the upper limit, the surface roughness of the adhesive layer of the coverlay film tends to occur.
  • the average particle diameter is less than the lower limit, it is difficult to obtain the effect of suppressing oxygen transmission.
  • the particle size distribution of the inorganic filler is preferably 60% or more, more preferably 65% or more, and preferably the particle size of 20 ⁇ m or more is 10% or less on a number basis.
  • the inorganic filler having a particle diameter of 10 ⁇ m or less is less than 60%
  • the adhesive resin composition is formed into a film
  • the fillers are arranged in layers, and protrusions appear on the film surface, which causes the film surface to become rough.
  • the inorganic filler having a particle size of 20 ⁇ m or more exceeds 10%, protrusions appear on the film surface, causing the surface of the film to become rough. For example, when a thin film of 15 ⁇ m or less is produced, the surface tends to be rough.
  • the frequency distribution of the particle size of the inorganic filler is preferably from 0.1 to 100 ⁇ m, more preferably from 0.5 to 70 ⁇ m. If the frequency distribution exceeds the upper limit, the surface of the adhesive layer tends to be rough, and if the frequency distribution is lower than the lower limit, it is difficult to obtain the effect of suppressing oxygen transmission.
  • the compounding amount of the inorganic filler of component (C) is 5 to 200 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the total of component (A) and component (B).
  • the amount is preferably 30 to 100 parts by weight, and desirably 40 to 80 parts by weight.
  • an adhesive bond layer will become weak, As a result, cohesive failure in an adhesive bond layer As a result, the apparent adhesiveness is significantly reduced.
  • a plate-like inorganic filler is used, but it is also possible to use a non-plate-like inorganic filler in combination.
  • the total amount of the inorganic filler exceeds 200 parts by weight with respect to 100 parts by weight of the total of component (A) and component (B). It is preferable not to do so.
  • a hydrogen bond-forming group in the polyimide siloxane of the component (A) a hydrogen bond is generated between adjacent polyimide siloxane chains prior to the crosslinking reaction, and the reaction point of the crosslinking reaction with the amino compound.
  • the amino compound used in the present invention must have at least two amino groups, and the number of amino groups is preferably 2 to 5, more preferably 2 to 3.
  • the cross-linked structure after the two amino groups form a C ⁇ N bond becomes three-dimensionally bulky, so that the remaining unreacted amino group is a ketone group. It is particularly preferable that the number of amino groups is 2.
  • the adhesive resin composition of the present invention contains the polyimidesiloxane [(A) component] and an amino compound [(B) component] having at least two primary amino groups as functional groups as essential components. To do.
  • This adhesive resin composition is obtained by mixing or kneading the component (A) and the component (B) and / or heating in a state containing the component (A) and the component (B). And the primary amino group of the amino compound undergo a condensation reaction to form a C ⁇ N bond. That is, the adhesive resin composition of the present invention changes to the cured product of the present invention by a condensation reaction between polyimide siloxane and an amino compound.
  • the “cured product” of the present invention is not only a state in which the crosslinking reaction between the ketone group of the polyimide siloxane and the primary amino group of the amino compound does not proceed any further, Including the semi-cured state leaving room.
  • the weight average molecular weight of the component (A) is preferably in the range of 30,000 to 200,000, for example. From the viewpoint of obtaining properties, it is more preferably within the range of 70,000 to 140,000.
  • the weight average molecular weight of the component (A) is less than 70,000, it becomes difficult to control the fluidity when the adhesive resin composition is made into a solution, and the heat resistance of the cured product tends to decrease. .
  • the weight average molecular weight exceeds 140,000, the solubility in the solvent tends to be impaired.
  • the adhesive resin composition has a total of primary amino groups of 0.004 mol to 1.5 mol, preferably 0.005 mol to 1.2 mol, more preferably 0.03 mol per mol of ketone groups.
  • the amino compound is contained in an amount of from mol to 0.9 mol, particularly preferably from 0.04 mol to 0.5 mol.
  • the adhesive resin composition of the present invention preferably contains the inorganic filler of the component (C) as an optional component together with the polyimide siloxane of the component (A) and the amino compound of the component (B).
  • other resin components such as an epoxy resin, a curing accelerator, a coupling agent, a filler, a pigment, a solvent, a flame retardant and the like can be appropriately blended.
  • some plasticizers contain a large number of polar groups, and there is a concern that this may promote the diffusion of copper from the copper wiring. Therefore, it is preferable not to use the plasticizer as much as possible.
  • the blending amount of 1 to 10 parts by weight in total of the optional component is 100 parts by weight of the crosslinked polyimide resin
  • the blending amount is preferably 2 to 7 parts by weight.
  • the adhesive resin composition of the present invention obtained as described above has excellent flexibility and thermoplasticity when it is used to form an adhesive layer, such as FPC, rigid flex circuit board, etc. It has preferable characteristics as an adhesive for a coverlay film that protects the wiring part.
  • the adhesive resin composition of the present invention is applied in the form of a solution (for example, a varnish containing a solvent) to one side of a cover lay film material.
  • a solution for example, a varnish containing a solvent
  • thermocompression bonding it is possible to heat-condense the ketone group of the polyimide siloxane and the primary amino group of the amino compound using heat at the time of thermocompression bonding. Moreover, even when heat condensation at the time of thermocompression bonding is not sufficient, heat treatment can be further performed after thermocompression bonding for heat condensation.
  • the heat treatment temperature is preferably 60 to 220 ° C, for example, and more preferably 80 to 200 ° C.
  • the adhesive resin composition of the present invention is applied on an arbitrary substrate in a solution state (for example, a varnish containing a solvent), dried at a temperature of, for example, 80 to 180 ° C., and then peeled off.
  • the film having the coverlay film material layer and the adhesive layer can also be formed by thermocompression bonding the adhesive film with the coverlay film material at a temperature of 60 to 220 ° C., for example.
  • the coverlay film of the invention can be formed.
  • the ketone group of the polyimide siloxane and the primary amino group of the amino compound can be heat-condensed using the heat during thermocompression bonding.
  • the adhesive resin composition of the present invention can be used after being processed into various forms in a state where the ketone group of polyimidesiloxane and the primary amino group of the amino compound are unreacted.
  • the adhesive resin composition of the present invention can be used by forming a coating film in the form of a solution by screen printing on an arbitrary substrate and drying it at a temperature of 80 to 180 ° C., for example.
  • a cured product can be formed by further heat-treating at a temperature of 130 to 220 ° C. for a predetermined time to completely cure the coating film.
  • the coverlay film of the present invention includes a coverlay film material and an adhesive layer composed of the adhesive resin composition laminated on the coverlay film material.
  • the film material for the coverlay in the coverlay film of the present invention is not limited, but, for example, a polyimide resin film such as a polyimide resin, a polyetherimide resin, a polyamideimide resin, a polyamide resin film, or a polyester resin. A film or the like can be used. Among these, it is preferable to use a polyimide resin film having excellent heat resistance.
  • the thickness of the coverlay film material layer is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, for example.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 10 ⁇ m or more and 50 ⁇ m or less, for example.
  • what formed the adhesive resin composition of this invention in the film form can be utilized also as a bonding sheet of multilayer FPC, for example.
  • a bonding sheet an adhesive film obtained by coating the adhesive resin composition of the present invention in the form of a solution on an arbitrary base film, drying at a temperature of, for example, 80 to 180 ° C., and then peeling. May be used as a bonding sheet as it is, or may be used in a state where this adhesive film is laminated with an arbitrary substrate film.
  • the heat of thermocompression bonding can be used to heat-condense the polyimidesiloxane ketone group and the primary amino group of the amino compound. Heat condensation can also be performed.
  • the coverlay film and the bonding sheet may have a release material layer by bonding a release material to the adhesive surface.
  • the material of the release material is not particularly limited as long as it can be peeled without impairing the form of the coverlay film or the bonding sheet.
  • resin films such as polyethylene terephthalate, polyethylene, and polypropylene, and these resin films And the like laminated on paper can be used.
  • the coverlay film or bonding sheet obtained by molding using the adhesive resin composition of the present invention and causing the heat condensation reaction by heat treatment is a cross-linked polyimide resin obtained by reaction of polyimidesiloxane and an amino compound. Therefore, it has excellent solder heat resistance. More specifically, as shown in Examples below, the solder heat resistance (drying) is 260 ° C. or higher, preferably 280 ° C. or higher, more preferably 300 ° C. or higher, and the solder heat resistance (humidity resistance) is 200 ° C. or higher.
  • the temperature is preferably 260 ° C. or higher, more preferably 280 ° C. or higher.
  • the circuit board of this invention is provided with the coverlay film and bonding sheet which are obtained as mentioned above, there is no restriction
  • the preferred form of the circuit board of the present invention is at least a base material, a wiring layer made of a metal such as copper formed in a predetermined pattern on the base material, and the cover lay film of the present invention covering the wiring layer And has.
  • the base material of the circuit board is not particularly limited, but in the case of FPC, it is preferable to use the same material as the coverlay film material, and it is preferable to use a polyimide resin base material.
  • the circuit board of the present invention is filled with an adhesive layer having excellent flexibility and thermoplasticity between the wirings, and high adhesion between the cover lay film and the wiring layer is obtained. It is done.
  • an adhesive layer containing a cross-linked polyimide resin obtained by the reaction of polyimide siloxane and amino compound copper diffusion from the copper wiring is suppressed, even if repeated use in a high temperature environment, Excellent adhesion can be maintained over a long period of time. More specifically, after a long-term heat resistance test at 150 ° C.
  • the measurement of the energy dispersive X-ray (EDX) analyzer shows that the copper on the adhesive layer The amount of diffusion can be suppressed to 2.5% or less.
  • EDX energy dispersive X-ray
  • the group Ar, the group R 1 and the group R 2 in the general formulas (1) and (2) it is possible to obtain an extremely high peel strength of 0.4 kN / m or more.
  • the blending ratio of diaminosiloxane to the total diamine component of the raw material to 35 mol% or more, it is possible to obtain excellent solubility and prevent warping of the coverlay film without blending a plasticizer. it can.
  • the circuit board of the present invention may be configured as a multilayer circuit board.
  • the adhesive film obtained from the adhesive resin composition of the present invention can be used not only for the coverlay film but also for the bonding sheet.
  • the production of the circuit board of the present invention is not particularly limited.
  • the circuit is produced.
  • a method of laminating a cover lay film on the necessary portion above and performing thermocompression bonding using, for example, a hot press apparatus can be used.
  • the pressure bonding conditions are not particularly limited.
  • the pressure bonding temperature is preferably 130 ° C. or higher and 220 ° C. or lower, more preferably 140 ° C. or higher and 200 ° C. or lower, and the pressure is 0.1 MPa or higher and 4 MPa or lower. It is preferable.
  • condensation is performed using heat when the cover lay film is thermocompression bonded to the circuit wiring.
  • a reaction can be caused. That is, it arrange
  • the thermal conductivity in the thickness direction of the conventional polyimide film is insufficient in performance as a heat radiating substrate and needs to be improved.
  • an adhesive layer made of an epoxy adhesive or a thermoplastic resin is usually provided between the metal layer and the resin layer.
  • the interposition of the adhesive layer not only causes a further decrease in the heat dissipation generated in the metal layer, but also causes a decrease in various properties such as heat resistance and flexibility required for use as a practical substrate.
  • a substrate material and a film material in which a heat conductive filler is mixed with a polyimide resin are known in this way, when a heat-resistant polyimide resin is to be thermocompression-bonded with another member, it is performed under a high pressure condition. This is necessary, and there is a concern that it may cause a lack of wiring, damage to parts, and the like.
  • a thermally conductive filler is blended with siloxane polyimide, the above-mentioned conditions of high-temperature pressurization are relaxed, but sufficient heat resistance, particularly long-term heat resistance cannot be ensured, and heat dissipation used in a high-temperature environment. It is considered unsuitable for application as a main resin layer of a substrate.
  • an adhesive layer it has practical adhesive strength between the insulating layer and the metal layer, ceramic substrate, Si substrate, and other base materials, and the thermal conductivity of the insulating layer, (long-term) heat resistance It has been desired to provide a heat conductive substrate excellent in heat resistance, and a heat conductive polyimide film that can give the above-mentioned characteristics to the heat conductive substrate and has thermocompression bonding properties in a relatively low temperature region.
  • a conductive substrate, and a thermally conductive polyimide film having thermocompression bonding properties in a relatively low temperature region in addition to this property.
  • the thermally conductive substrate of one embodiment of the present invention has at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin.
  • the insulating layer only needs to have at least one filler-containing polyimide resin layer.
  • the insulating layer has a metal layer on one side or both sides.
  • the filler-containing polyimide resin layer contains a thermally conductive filler in the above-mentioned crosslinked polyimide resin.
  • the polyimide resin constituting the filler-containing polyimide resin layer has a cross-linked structure by a C ⁇ N bond with an amino compound.
  • a resin layer having an insulating layer made of a filler-containing polyimide resin layer in which the crosslinking formation rate (degree of curing) of this crosslinked structure is controlled can be provided with adhesiveness to the resin layer. It can be used as an attached copper foil, that is, as a copper foil with a heat conductive resin, adhered to another substrate.
  • the insulating layer only needs to have at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a cross-linked polyimide resin.
  • other polyimide resins laminated thereon A layer may be provided.
  • the crosslinked polyimide resin constituting the filler-containing polyimide resin layer and the polyimide resin constituting the other polyimide resin layer in the insulating layer may be the same type of polyimide resin or different types of polyimide resins.
  • the kind of polyimide resin in the case of using different types of polyimide resins as other polyimide resin layers other than the filler-containing polyimide resin layer is not particularly limited.
  • the entire insulating layer is preferably formed of a filler-containing polyimide resin layer.
  • the filler-containing polyimide resin layer is not limited to a single layer, and may be a laminate of a plurality of layers.
  • the content ratio of the thermally conductive filler in the filler-containing polyimide resin layer needs to be in the range of 5 to 80 wt%, and preferably in the range of 10 to 60 wt%. If the content of the heat conductive filler is less than 5 wt%, the heat dissipation characteristics when the electronic component such as a circuit board is not sufficient, and if it exceeds 80 wt%, the decrease in folding resistance and bending resistance becomes significant. Moreover, the intensity
  • thermally conductive filler a highly thermally conductive filler is preferable, and specifically, for example, aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, silicon carbide, etc. Can be mentioned. Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable. Since the filler-containing polyimide resin layer acts as an insulating layer, from that point of view, an insulating filler is suitable for the polyimide resin layer.
  • the filler shape is not particularly limited, and may be, for example, a plate shape (including a flake shape), a spherical shape, a needle shape, or a rod shape. Moreover, considering the balance with characteristics such as thermal conductivity by increasing the content of the thermal conductive filler, fillers having different shapes (for example, plate-like and spherical, plate-like and needle-like) can be used in combination. .
  • the size of the thermally conductive filler is, for example, in the range of an average particle diameter of 0.5 to 10 ⁇ m from the viewpoint of improving the thermal conductivity by uniformly dispersing the filler in the thickness direction of the filler-containing polyimide resin layer. Is more preferable, and is more preferably within a range of 0.8 to 5 ⁇ m. If the average particle diameter of the thermally conductive filler is less than 0.5 ⁇ m, the heat conduction inside each filler is reduced, and as a result, the thermal conductivity of the filler-containing polyimide resin layer is not improved, and the particles are Aggregation tends to occur, and it may be difficult to uniformly disperse. On the other hand, when it exceeds 10 ⁇ m, the filling rate into the filler-containing polyimide resin layer is lowered, and the filler-containing polyimide resin layer tends to be brittle at the filler interface.
  • the polyimide resin for forming the filler-containing polyimide resin layer is the cross-linked polyimide resin, preferably a group Ar and / or group in polyimide siloxane having the structural units represented by the general formulas (1) and (2).
  • a structure in which polyimide siloxane is crosslinked by an amino compound by reacting the ketone group in R 2 with an amino compound having at least two primary amino groups as functional groups to form a C ⁇ N bond. Is.
  • the abundance of the structural unit represented by the formula (1) in the resin is in the range of 40 mol% to 100 mol%, preferably in the range of 80 mol% to 100 mol%.
  • a hydrogen bond forming group can be contained in the general formulas (1) and (2).
  • the crosslinking formation rate (degree of curing) of the polyimide resin may not be a state in which the curing of the polyimide resin by the crosslinking formation is completed, and may be a level that can ensure practically sufficient heat resistance.
  • the polyimide resin may be in a cured state where the crosslinking reaction has been completed, or may be in a semi-cured state in which room for crosslinking is left.
  • the resin layer can be provided with adhesiveness and can be made suitable for the use of the resin-coated copper foil.
  • Whether or not the cross-linked polyimide resin has practically sufficient heat resistance can be determined using, for example, viscosity as an index.
  • the adhesiveness is relatively high when the crosslinking formation rate of the crosslinked polyimide resin is low, and relatively high when the crosslinking formation rate of the crosslinking polyimide resin is high. There is a tendency for adhesion to be low. Therefore, it is also possible to determine the crosslinking formation rate of the crosslinked polyimide resin using, for example, the peel strength (bonding surface adhesion strength) with the copper foil after thermocompression bonding as an index.
  • the filler content is 80 wt% and the peel strength is 0.4 [kN / m] or more, it is set as a semi-cured state in which the crosslinking is not completed (a state in which room for crosslinking is left)
  • the “cured state in which the cross-linking has been completed” is a state in which the cross-linking rate is 100% (a state in which the ketone group in the group Ar and / or the group R 2 in the polyimidesiloxane completely forms a C ⁇ N bond). ), And means that the crosslinking reaction does not proceed any more even when the heat treatment is performed under the pressing conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours.
  • examples of the group R 1 in the structural unit represented by the general formula (1) include a diaminosiloxane residue derived from the diaminosiloxane represented by the above formula (4).
  • the diaminosiloxane residue is a group having a siloxane bond (Si—O—Si) obtained by removing an amino group from diaminosiloxane.
  • a plasticizer By increasing the ratio of the siloxane bond, a plasticizer can be added. Sufficient flexibility is imparted to the insulating layer.
  • a polyimide resin using a polyimide siloxane having structural units represented by the general formulas (1) and (2) The amount of polar groups contained therein can be suppressed.
  • the value of m in Formula (1) shall be 0.4 or more, Preferably it is 0.8 or more.
  • the value of n in the formula (2) is set in the range of 0 to 0.6, preferably 0 to 0.2.
  • the resulting polyimidesiloxane is given fluidity at the time of thermocompression bonding and adhered to a metal layer or the like. Can be improved.
  • the filler-containing polyimide resin is obtained by mixing and uniformly dispersing a heat conductive filler in a resin solution containing polyimide siloxane having the structural units represented by the general formulas (1) and (2). It is produced by adding an amino compound having a primary amino group as a functional group and causing a condensation reaction between the ketone group of polyimidesiloxane and the primary amino group of the amino compound. By this condensation reaction, a cross-linked structure is formed in the polyimide siloxane and cured to a cured product.
  • the addition amount of the amino compound is 0.004 mol to 1.5 mol, preferably 0.005 mol to 1.2 mol, and more preferably a total of primary amino groups with respect to 1 mol of the ketone group. It is 0.03 mol to 0.9 mol, particularly preferably 0.04 mol to 0.5 mol.
  • the addition amount of the amino compound in which the primary amino group is less than 0.004 mol in total with respect to 1 mol of the ketone group is not sufficient to crosslink the polyimide siloxane with the amino compound.
  • Solder heat resistance tends to be difficult to develop in a cured product after curing a resin composition containing a filler, and when the added amount of the amino compound exceeds 1.5 mol, the unreacted amino compound acts as a thermoplastic agent. However, the cured product tends to reduce solder heat resistance or to reduce long-term heat resistance at high temperatures.
  • the conditions for the condensation reaction are not particularly limited as long as the ketone group in the polyimidesiloxane and the primary amino group of the amino compound react to form an imine bond (C ⁇ N bond).
  • the type of amino compound for example, when an aliphatic amine is used, it can be condensed with a ketone group in polyimide siloxane even at room temperature, but it is preferable to promote the condensation reaction by heating.
  • an aliphatic amine it is preferable to perform heat condensation within a range of 60 to 200 ° C., for example, and when an aromatic amine is used, heat condensation is performed within a range of 120 to 220 ° C., for example. preferable.
  • the temperature of the heat condensation is, for example, 120 for the purpose of releasing water generated by the condensation out of the system or simplifying the condensation step when the heat condensation reaction is subsequently performed after the synthesis of the polyimidesiloxane. It is preferably in the range of -220 ° C, more preferably in the range of 140-200 ° C.
  • the reaction time varies depending on the heat treatment temperature, but can be, for example, in the range of 3 minutes to 30 hours.
  • the reaction time is, for example, more than 1 hour to about 24 hours in the above temperature range, and when it is desired to keep the crosslinking rate low, the above temperature range.
  • the reaction time is preferably in the range of 3 to 60 minutes, for example, and more preferably in the range of 5 to 30 minutes.
  • the end point of the condensation reaction is derived from the ketone group in polyimidesiloxane near 1670 cm ⁇ 1 by measuring the infrared absorption spectrum using, for example, a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO).
  • the polyimide resin solution containing the above heat conductive filler is prepared, for example, by adding a predetermined amount of each of the heat conductive filler and the amino compound for cross-linking to a polyimide resin solution containing a solvent, and dispersing with a stirrer or the like. And a method of adding an amino compound for cross-linking after adding a diamine and an acid anhydride to form a polyimide resin solution while dispersing a thermally conductive filler in a solvent.
  • the solvent include N, N-dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. These may be used alone or in combination of two or more.
  • the heat condensation of the ketone group of the polyimide siloxane and the primary amino group of the amino compound is, for example, (A) Subsequent to the synthesis (imidization) of polyimide siloxane, adding an amino compound and a thermally conductive filler and heating, (B) An excess amount of an amino compound is charged in advance as a diamine component, and after the synthesis (imidation) of polyimide siloxane, a thermally conductive filler is added, and then the remaining amino acid not involved in imidization (or amidation) Heating the polyimide siloxane with the compound, or (C) heating after processing the composition of polyimide siloxane to which an amino compound and a thermally conductive filler are added into a predetermined shape (for example, after being applied to an arbitrary substrate or after being formed into a film), Etc.
  • A Subsequent to the synthesis (imidization) of polyimide siloxane, adding an amino compound and a thermally conductive fill
  • the excess amino compound is consumed in the reaction of sealing the acid anhydride group as a terminal substituent during the production of polyimidesiloxane, and the molecular weight of the resulting polyimidesiloxane may be extremely reduced. Therefore, it tends to be difficult to obtain sufficient heat resistance in the cured product. Therefore, when an excess amount of an amino compound is charged in advance [the above (b)], it is preferably used as long as the effects of the present invention are not impaired.
  • the amino compound is synthesized from polyimide siloxane as in (a) or (c) above.
  • the heat condensation can also be performed by, for example, a heat treatment after forming a composition in which an amino compound and polyimide siloxane are mixed on a support substrate.
  • Metal layer examples of the metal layer in the thermally conductive substrate of the present invention include conductive metal foils such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc, and alloys thereof. Among them, copper foil or alloy copper foil or aluminum foil containing 90% or more of copper is preferably used.
  • the preferred thickness range of the metal layer can be set according to the use of the thermally conductive substrate, but when used as a substrate material for electronic equipment, lighting equipment, etc., it is preferably in the range of 5 to 2000 ⁇ m, for example. If the thickness of the metal layer is less than 5 ⁇ m, problems such as wrinkles may occur during conveyance in the manufacturing process. Conversely, if the thickness exceeds 2000 ⁇ m, workability may be reduced.
  • the conductive metal foil used as the metal layer has a surface roughness (Ra) of the surface to be bonded to the insulating layer of, for example, 0.05 in order to achieve both the adhesion to the insulating layer and the fine circuit processability. It is preferably in the range of -1.0 ⁇ m. If the surface roughness (Ra) of the surface that adheres to the insulating layer is less than 0.05 ⁇ m, the metal layer and the insulating layer may be easily peeled off depending on the use of the thermally conductive substrate, while the surface of the surface that adheres to the insulating layer.
  • Thermally conductive substrate is a polyimide-siloxane solution in which a thermally conductive filler is uniformly dispersed and a solution of a filler-containing polyimide resin in which an amino compound is mixed is directly applied onto a metal substrate to be a metal layer and then dried and applied.
  • the filler-containing polyimide resin layer may be further laminated on the filler-containing polyimide resin layer by the same method, or another polyimide resin layer may be laminated.
  • a metal base material metal foils, such as above-mentioned copper foil used as the conductor layer of a thermal radiation board
  • the filler-containing polyimide resin layer may be in a cured state in which cross-linking is completed or in a semi-cured state in which cross-linking is not completed.
  • filler-containing polyimide resin solution on the metal substrate can be performed by a known method, for example, appropriately selected from a barcode method, a gravure coating method, a roll coating method, a die coating method, and the like. Can do.
  • thermally conductive substrate single-sided metal thermally conductive substrate
  • a thermally conductive substrate double-sided metal having a metal layer on both sides of the insulating layer
  • Production examples are shown separately for the thermally conductive substrate.
  • the insulating layer is constituted by only one filler-containing polyimide resin layer will be described as an example.
  • a metal foil such as a copper foil constituting the metal layer of the thermally conductive substrate is prepared.
  • a polyimide resin solution containing a thermally conductive filler and an amino compound is applied and dried at a temperature of 120 ° C. or less, for example, to remove a certain amount of solvent. Thereafter, it is further heat-treated at a high temperature to cause a crosslinking reaction with an amino compound. Thereby, it can be set as the heat conductive board
  • the heat treatment time for forming a cross-link with the amino compound can be set according to the target cross-link formation rate.
  • the crosslink formation rate is lowered on the assumption that, for example, a metal foil, a ceramic substrate, or another material member will be bonded to the filler-containing polyimide resin layer later. Therefore, the heat treatment time in that case is preferably in the range of 3 to 60 minutes, for example, and more preferably in the range of 5 to 30 minutes in the above temperature range.
  • the double-sided metal thermally conductive substrate can be produced by thermocompression bonding a metal foil to the filler-containing polyimide resin layer of the single-sided metal thermally conductive substrate obtained by the above method.
  • the conditions for thermocompression bonding of the metal foil are preferably, for example, that the heating temperature is in the range of 120 to 180 ° C., the pressure is in the range of 2 to 4 MPa, and the pressing time is in the range of 0.1 to 24 hours.
  • the content of the thermally conductive filler is adjusted to an appropriate range in addition to the crosslinked structure of the amino compound.
  • the insulating layer has sufficient heat resistance, the metal layer and the insulating layer can be bonded at a relatively low temperature without interposing an adhesive layer, and has excellent thermal conductivity.
  • the thermally conductive substrate of the present embodiment can be widely used industrially as a substrate material for electronic devices and lighting devices that require high heat dissipation, such as a heat dissipation substrate for power semiconductor mounting. It is particularly suitable for use in applications such as a heat dissipation board and a circuit board typified by a flexible board.
  • the thermally conductive polyimide film of the present embodiment is a thermally conductive polyimide film provided with a filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin.
  • the content of the heat conductive filler in the filler-containing polyimide resin layer is in the range of 5 to 80 wt%, and the polyimide resin in the filler-containing polyimide resin layer is represented by the above general formulas (1) and (2)
  • the polyimide resin may be in a cured state where the crosslinking reaction has been completed, or in a semi-cured state in which room for crosslinking is left.
  • the filler-containing polyimide resin layer has the same configuration as the filler-containing polyimide resin layer that constitutes a part or all of the insulating layer in the thermally conductive substrate. What was demonstrated in said heat conductive board
  • substrate can be used for the polyimide resin and heat conductive filler which comprise the filler containing polyimide resin layer of this Embodiment.
  • the entirety of the thermally conductive polyimide film of the present embodiment may be constituted by a filler-containing polyimide resin layer, and other than the filler-containing polyimide resin layer, other than the insulating layer of the thermally conductive substrate, although the polyimide resin layer may be provided, it is preferable that the whole is formed of the filler-containing polyimide resin layer from the viewpoint of enhancing the heat dissipation characteristics.
  • the filler-containing polyimide resin layer is not limited to a single layer, and may be a laminate of a plurality of layers.
  • the thermally conductive polyimide film of the present embodiment has the same structure and physical properties as the insulating layer of the thermally conductive substrate, except that it is not bonded to the metal layer.
  • a heat conductive polyimide film is producible by removing the metal layer by etching, for example after producing the said heat conductive board
  • a coating solution in which an amino compound having a primary amino group is mixed with a polyimide resin solution after imidization containing a thermally conductive filler is applied to an arbitrary substrate, dried, and then peeled off from the substrate. It can also be set as a heat conductive polyimide film.
  • it may be peeled off from the base material after it is heated on the base material to complete the crosslinking reaction, or it is peeled off from the base material in a state prior to curing just dried, and then heated to depend on the cross-linking reaction. Curing may be completed.
  • the thermally conductive polyimide film of the present embodiment has practical adhesive strength to metal foil (metal plate), ceramic substrate, Si substrate, etc., and is excellent in thermal conductivity.
  • This thermally conductive polyimide film can be bonded to a metal foil (metal plate), a ceramic substrate, a Si substrate or the like without an adhesive layer. That is, the heat conductive polyimide film has a property that can be directly bonded to a bonding target base material such as a metal foil (metal plate) or a ceramic substrate on one or both sides without requiring an adhesive layer.
  • the thermally conductive polyimide film of the present embodiment is a film suitable for being used by being laminated on a base material such as a metal layer or a ceramic layer in applications such as a heat dissipation board or a circuit board.
  • thermally conductive polyimide film of the present embodiment Since other configurations and effects of the thermally conductive polyimide film of the present embodiment are the same as those of the insulating layer in the thermally conductive substrate, description thereof is omitted.
  • the thermally conductive substrate and the thermally conductive polyimide film of the present embodiment include the filler-containing polyimide resin layer containing a specific polyimide resin in the insulating layer, thermocompression bonding at a relatively low temperature.
  • the thermally conductive substrate and the thermally conductive polyimide film of the present embodiment include the filler-containing polyimide resin layer containing a specific polyimide resin in the insulating layer, thermocompression bonding at a relatively low temperature.
  • it is excellent in heat conduction characteristics without deteriorating the adhesive force with the metal wiring layer even when repeatedly placed in a high temperature environment. Therefore, by using the heat conductive substrate and the heat conductive polyimide film of the present embodiment, it is possible to improve the reliability of a circuit board, a heat dissipation board, a copper foil with a heat conductive resin, etc. used in a high temperature environment. it can.
  • the adhesive strength was 10 mm in width and 100 mm in length, and the adhesive surface of the test piece was placed on a glossy surface of copper foil (thickness of 35 ⁇ m) (with rust-proof metal removed), temperature 160 ° C., pressure 2 MPa, After pressing for 2 hours, the tensile strength (strength-M1 manufactured by Toyo Seiki Co., Ltd.) is used to determine the force at the time of peeling at a speed of 50 mm / min in the 180 ° direction as the adhesive strength.
  • the weight average molecular weight was measured by gel permeation chromatography (manufactured by Tosoh Corporation, using HLC-8220GPC). Polystyrene was used as a standard substance, and N, N-dimethylacetamide was used as a developing solvent.
  • the warpage was evaluated by the following method. A polyimide adhesive was applied onto a 25 ⁇ m thick Kapton film so that the thickness after drying was 35 ⁇ m. In this state, the Kapton film was placed on the lower surface, and the average of the heights of warping of the four corners of the film was measured.
  • a printed circuit board is prepared, and the adhesive surface of the test piece is placed on the wiring of the printed circuit board and pressed under conditions of a temperature of 170 ° C., a pressure of 1 MPa, and an hour of 1 minute, and then an oven at 150 ° C. for 24 hours Heated under conditions.
  • This test piece with copper foil was left at 105 ° C.
  • the heat resistance is expressed by an upper limit temperature at which no defect occurs. For example, “320 ° C.” means that no defect is recognized when evaluated in a solder bath at 320 ° C.
  • a printed circuit board is prepared, and the adhesive surface of the test piece is placed on the wiring of the printed circuit board and pressed under conditions of a temperature of 170 ° C., a pressure of 1 MPa, and an hour of 1 minute, and then an oven at 150 ° C. for 24 hours Heated under conditions.
  • the test piece with the copper foil was allowed to stand at 85 ° C.
  • the heat resistance is expressed by an upper limit temperature at which no defect occurs. For example, “270 ° C.” means that no defect is recognized when evaluated in a solder bath at 270 ° C.
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • BPDA 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride
  • BAPP 2,2-bis (4-aminophenoxy) Phenyl propane
  • BAFL bisaniline fluorene
  • PSX diaminosiloxane (weight average molecular weight is 740)
  • N-12 dodecanedioic acid dihydrazide
  • ADH adipic acid dihydrazide K-1: talc (manufactured by Nippon Talc Co., Ltd., trade name; MICRO ACE K-1, shape: scaly, average major axis; 7.0 ⁇ m, average minor axis; 5.8 ⁇ m, ratio of major axis to thickness: 15 or more, average particle size: 6.6 ⁇ m, median diameter (D50); 6.9 ⁇ m, maximum particle
  • Drying was performed to obtain a coverlay film having an adhesive layer thickness of 35 ⁇ m.
  • the obtained coverlay film was placed on a copper foil from which the surface
  • Example 1-1 The polyimide solution 1a obtained in Synthesis Example 1-1 was mixed with 5.78 g of N-12 (0.0224 mol) and 57.81 g of K-1 and further stirred for 1 hour to obtain a polyimide solution 1. It was.
  • This cover lay film 1 was placed on a copper foil from which the rust-proof metal layer on the surface was removed, and pressed under the conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours to obtain Evaluation Sample 1.
  • the adhesive strength with the copper foil after curing was 0.65 kN / m. Moreover, the warp of the coverlay film was no problem.
  • the polyimide solution 1 was apply
  • About 10 sheets of this polyimide adhesive film were thermocompression-bonded with a vacuum laminator under conditions of a temperature of 70 ° C., a pressure of 0.85 MPa, and a time of 10 sec, and a sample having a thickness of about 250 ⁇ m was prepared.
  • the viscosity at 11 ° C. was 118,000 Pa ⁇ s.
  • the printed circuit board was placed on the circuit surface and pressed under the conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours to obtain a wiring board 1 provided with a coverlay film.
  • Example 1-2 After obtaining polyimide solution 2 in the same manner as in Example 1-1 except that 57.81 g of K-1 in Example 1-1 was blended, K-1 was not blended. The coverlay film 2 was obtained and the evaluation sample 2 was obtained. When the Raman spectrum of the adhesive layer in the evaluation sample was measured, a peak due to the formation of an imino group was confirmed in the vicinity of 1567 cm ⁇ 1 . From this measurement result, it is presumed that in the evaluation sample, the condensation reaction between the ketone group in the polyimide resin and the amino compound (N-12) occurred simultaneously with the thermocompression bonding of the coverlay film and the copper foil. The adhesive strength with the copper foil after curing was 1.08 kN / m.
  • the film 2 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 2 provided with a coverlay film.
  • Example 1-3 The same procedure as in Example 1-1 except that 3.47 g of N-12 (0.0134 mol) was blended instead of blending 5.78 g of N-12 in Example 1-1. After obtaining the polyimide solution 3, the coverlay film 3 was obtained and the evaluation sample 3 was obtained. The adhesive strength with the copper foil after curing was 0.70 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 3 revealed that the viscosity at 260 ° C. was 35,000 Pa ⁇ s.
  • the film 3 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 3 provided with a coverlay film.
  • Example 1-4 After obtaining the polyimide solution 4 in the same manner as in Example 1-1, except that the polyimide solution 1b obtained in Synthesis Example 1-2 was used instead of the polyimide solution 1a in Example 1-1, A coverlay film 4 was obtained, and an evaluation sample 4 was obtained.
  • the adhesive strength with the cured copper foil was 0.72 kN / m. Moreover, the warp of the coverlay film was no problem.
  • the rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 4 revealed that the viscosity at 260 ° C. was 110,000 Pa ⁇ s.
  • the evaluation sample 4 was heat-treated in the oven at 150 ° C. for 1000 hours in the atmosphere. It was 0.58 kN / m when the copper foil after a process and the adhesive strength of the coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
  • the film 4 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 4 provided with a coverlay film.
  • Example 1-5 instead of the polyimide solution 1a in Example 1-1, the polyimide solution 1b obtained in Synthesis Example 1-2 was used, and instead of 5.78 g of N-12 blended, 3.47 g of Except that N-12 (0.0134 mol) was blended, a polyimide solution 5 was obtained in the same manner as in Example 1-1, then a coverlay film 5 was obtained, and an evaluation sample 5 was obtained.
  • the adhesive strength with the copper foil after curing was 0.80 kN / m. Moreover, the warp of the coverlay film was no problem.
  • the rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 5 revealed that the viscosity at 260 ° C. was 108,000 Pa ⁇ s.
  • the film 5 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 5 provided with a coverlay film.
  • Example 1-6 A polyimide was prepared in the same manner as in Example 1-1 except that 5.78 g of BAPP (0.0141 mol) was added instead of 5.78 g of N-12 in Example 1-1. After obtaining the solution 6, the coverlay film 6 was obtained and the evaluation sample 6 was obtained. The adhesive strength with the cured copper foil was 0.72 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 6 revealed that the viscosity at 260 ° C. was 36,000 Pa ⁇ s.
  • the evaluation sample 6 was heat-treated in an oven at 150 ° C. for 1000 hours in the atmosphere. It was 0.51 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
  • the film 6 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 6 provided with a coverlay film.
  • Example 1-7 A polyimide was prepared in the same manner as in Example 1-1 except that 5.78 g of BAFL (0.0166 mol) was added instead of 5.78 g of N-12 in Example 1-1. After obtaining the solution 7, the coverlay film 7 was obtained and the evaluation sample 7 was obtained. The adhesive strength with the cured copper foil was 0.65 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 7 revealed that the viscosity at 260 ° C. was 28,000 Pa ⁇ s.
  • the film 7 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 7 provided with a coverlay film.
  • Example 1-2 A polyimide solution was obtained in the same manner as in Example 1-1 except that the polyimide solution 1c obtained in Synthesis Example 1-3 was used instead of the polyimide solution 1a in Example 1-1.
  • the coverlay film was evaluated in the same manner as in Example 1-1.
  • Examples 1-1 to 1-7 and Reference Examples 1-1 to 1-2 are collectively shown in Table 2 and Table 3.
  • adhesive strength 1 indicates the adhesive strength between the cured copper foil and coverlay film
  • adhesive strength 2 indicates the copper foil and coverlay film after heat treatment in air at 150 ° C. for 1000 hours.
  • the adhesive strength is shown.
  • the molar ratio in Table 2 and Table 3 means the molar ratio of the sum total of the primary amino group in an amino compound with respect to 1 mol of ketone groups in a polyimidesiloxane.
  • Example 1-8 The polyimide solution 1a obtained in Synthesis Example 1-1 was mixed with 5.78 g of N-12 (0.224 mol) and 11.56 g of K-1 and further stirred for 1 hour to obtain a polyimide solution 8. It was.
  • This cover lay film 8 was placed on a copper foil from which the surface rust-proof metal layer was removed, and pressed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 1 hour to obtain an evaluation sample 8.
  • the evaluation results are shown in Table 4.
  • Example 1-9 In the same manner as in Example 1-8, a polyimide solution 8 was obtained, and then a coverlay film 8 was obtained.
  • Example 1-8 was used except that heating was performed under the conditions of a temperature of 150 ° C., a pressure of 2 MPa, and an hour of 1 hour instead of heating under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and an hour of 1 hour.
  • an evaluation sample 9 was obtained. The evaluation results are shown in Table 4.
  • Example 1 is the same as Example 1-8 except that heating was performed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 1 hour, except that heating was performed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 0.5 hours.
  • an evaluation sample 10 was obtained. The evaluation results are shown in Table 4.
  • Example 1-11 Example 1-8 except that heating was performed under conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 1 hour, except that heating was performed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 0.5 hours. In the same manner as in ⁇ 8, an evaluation sample 11 was obtained. The evaluation results are shown in Table 4.
  • Example 1-8 was used except that heating was performed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and an hour of 1 hour instead of heating under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and an hour of 1 hour in Example 1-8.
  • an evaluation sample 12 was obtained. The evaluation results are shown in Table 4.
  • Example 1-8 to Example 1-12 are summarized in Table 4.
  • solder heat resistance especially moisture solder heat resistance
  • Example 1 The polyimide solution 1 prepared in Example 1-1 was applied to one side of a substrate and dried at 80 ° C. for 15 minutes to produce a polyimide adhesive film having a thickness of 25 ⁇ m. About 10 sheets of this polyimide adhesive film (3 cm ⁇ 3 cm) were laminated and thermocompression bonded under the conditions of 70 ° C./0.85 MPa / 10 sec using a vacuum laminator to obtain an evaluation sample A having a thickness of about 250 ⁇ m. . On the other hand, the polyimide solution prepared in Reference Example 1-2 was treated in the same manner to obtain Evaluation Sample B. A rheometer evaluation was performed on these samples A and B. The results are shown in FIG.
  • the viscosity of sample A rapidly increased from around 160 ° C., and the viscosity at around 260 ° C. was 118,000 Pa ⁇ s.
  • the increase in viscosity of Sample B was slower than that of Sample A, and the viscosity at around 260 ° C. was 45,000 Pa ⁇ s.
  • the difference in the rate of increase in the viscosity of Samples A and B is that polyimide siloxane containing —NHCO— groups is different from Sample B using polyimide siloxane that does not contain —NHCO— groups, which are hydrogen bonding functional groups. It was considered that this was because the cross-linking reaction proceeded more rapidly in the sample A used.
  • Example 1-1 is much superior in terms of moisture solder resistance.
  • the viscosity of the sample A is almost flat at 1 ⁇ 10 5 Pa ⁇ s or more at 200 ° C. or more. From these facts, the viscosity in the vicinity of 260 ° C. being 1 ⁇ 10 5 Pa ⁇ s or more is a practically sufficient moisture-resistant solder heat resistance, that is, the ratio of crosslinking to obtain a solder heat-resistant temperature of 260 ° C. or more. It was thought that it was effective as a threshold value indicating
  • Example 2 The moisture resistance soldering heat resistance test was conducted by changing the molecular weight of the polyimidesiloxane used in Example 1-1. A coverlay film was prepared and evaluated for resistance to moisture soldering in the same manner as in Example 1-1 except that polyimidesiloxane having a different weight average molecular weight was used. The evaluation results are shown in Table 5. When polyimidesiloxane having a weight average molecular weight of about 88,000 to 130,000 was used, the resistance to moisture soldering was 260 ° C. or higher.
  • Example 1-1 Next, rheometer evaluation was carried out by changing the molecular weight of the polyimidesiloxane used in Example 1-1, and a test for increasing viscosity was conducted.
  • a polyimide solution was obtained in the same manner as in Example 1-1 except that polyimidesiloxane having a weight average molecular weight of 130,000 was used. This polyimide solution was applied to one side of the substrate and dried at 80 ° C. for 15 minutes to prepare a polyimide adhesive film having a thickness of 25 ⁇ m.
  • Sample D was also prepared in the same manner as described above from a polyimide solution obtained in the same manner as in Example 1-1 except that polyimidesiloxane having a weight average molecular weight of 67,000 was used.
  • the results of rheometer evaluation for these samples C and D are shown in FIG.
  • the sample C having a weight average molecular weight of 130,000 has a temperature at which the viscosity starts to increase (curing start temperature) slightly higher than that of the sample D having a weight average molecular weight of 67,000 and exceeds 200 ° C.
  • Viscosity was approximately 1 ⁇ 10 5 Pa ⁇ s or more, whereas in Sample D, the temperature at which the viscosity began to rise was low and did not exceed 1 ⁇ 10 5 Pa ⁇ s.
  • the copper foil layer of the heat conductive substrate was pattern-etched into a long rectangle with a width of 1.0 mm and a length of 180 mm, and a test piece was cut out to a width of 20 mm and a length of 200 mm so that the pattern would be in the center, and IPC-TM- A 180 ° peeling test was conducted by 650.2.19 (manufactured by Toyo Seiki).
  • the thermally conductive polyimide film was cut into a size of 5 cm ⁇ 5 cm, and the withstand voltage was measured in insulating oil by a step-up method using a TOS 5101 apparatus manufactured by KIKUSUI based on JIS C2110.
  • the voltage was stepped up in steps of 0.2 kV, held at each voltage for 20 seconds, a leakage current of 8.5 mA, and the value immediately before the broken voltage was the initial withstand voltage.
  • the size of the electrode is 2 cm ⁇ .
  • the weight average molecular weight was measured by gel permeation chromatography (manufactured by Tosoh Corporation, using HLC-8220GPC). Polystyrene was used as a standard substance, and N, N-dimethylacetamide was used as a developing solvent.
  • Circuit processing is carried out by patterning the copper foil layer of the heat conductive substrate into a predetermined shape, dipping in a solder bath at each temperature up to 300 ° C. for 10 seconds, observing the adhesive state, foaming, blistering, peeling, etc. The presence or absence of defects was confirmed.
  • the upper limit temperature at which no defects occur was defined as solder heat resistance. For example, “300 ° C.” means that no defect is observed when evaluated in a solder bath at 300 ° C.
  • CCL curl maximum warpage: Cut the metal / resin laminate into a size of 50 mm x 50 mm, leave it for 24 hours in a constant temperature and humidity environment (23 ⁇ 3 ° C, 50 ⁇ 5% RH), and then measure the amount of warping at the four corners using a caliper. Carried out. At this time, when warping toward the resin surface side or the metal side, the CCL maximum warpage amount was determined at the place with the largest warpage amount. The case where the absolute amount of the maximum warp amount was 5 mm or less was judged as ⁇ (good), and the case where it was 5 mm or more was judged as x (defective).
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • BPDA 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride
  • BAPP 2,2-bis (4-aminophenoxy) Phenyl) propane
  • DAPE 4,4′-diaminodiphenyl ether
  • m-TB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • PSX diaminosiloxane represented by the following general formula (the number average value of m 1 is in the range of 1 to 20 and the weight average molecular weight is 740)
  • NMP N-methyl-2-pyrrolidone
  • DMAc N, N-dimethylacetamide
  • Example 2-1 63.88 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 2.56 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 38.4 g of solvent NMP was weighed into another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side.
  • a conductive substrate was produced.
  • the content of alumina as a heat conductive filler in this insulating layer is 10 wt%.
  • a rolled copper foil having a thickness of 18 ⁇ m is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides.
  • a substrate was obtained.
  • the copper foil was removed by etching to produce a thermally conductive polyimide film (F1), and the withstand voltage and thermal conductivity were evaluated. These results are shown in Table 6. Further, the heat conductive substrate was processed into a predetermined pattern, and the adhesive strength, solder heat resistance and curl were measured. These results are shown in Table 7.
  • Applied surface adhesive strength in Table 7 means the adhesive strength between the coating film and the metal layer at the boundary between the copper foil when the polyimide solution is applied onto the rolled copper foil
  • Adhesion strength means the adhesion strength when the metal layer is later pressure-bonded to the surface side of the coating film when the polyimide solution is applied onto the rolled copper foil (the same applies in Table 9).
  • Example 2-2 47.99 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 17.28 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 28.81 g of solvent NMP was weighed into another container, 0.82 g of N-12 was added, and the mixture was stirred until N-12 was dissolved.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed with a centrifugal stirrer until it became uniform again to obtain a polyimide solution containing a thermally conductive filler.
  • Example 2-3 47.88 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, 17.24 g of aluminum nitride (average particle size 1.1 ⁇ m, manufactured by Tokuyama) was added, and mixed with a centrifugal stirrer until uniform. . Subsequently, 15.6 g of solvent NMP was weighed in another container, 0.82 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the polyimide solution containing the above aluminum nitride, and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • aluminum nitride average particle size 1.1 ⁇ m, manufactured by Tokuyama
  • a conductive substrate was produced.
  • the content of aluminum nitride which is a heat conductive filler in this insulating layer is 50 wt%.
  • a rolled copper foil having a thickness of 18 ⁇ m is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides.
  • a substrate was obtained.
  • evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
  • m value means the presence molar ratio of the structural unit represented by the said General formula (1) contained in the obtained polyimide resin.
  • Example 2-4 400.24 g of the polyimide solution 2b obtained in Synthesis Example 2-2 was weighed, and 16.34 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 97.4 g of solvent NMP was weighed into another container, 4.2 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • a conductive substrate was produced.
  • the content of alumina as a heat conductive filler in this insulating layer is 10 wt%.
  • a rolled copper foil having a thickness of 18 ⁇ m is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides.
  • a substrate was obtained.
  • evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
  • Example 2-5 400 g of the polyimide solution 2b obtained in Synthesis Example 2-2 was weighed, and 147.0 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added uniformly. It mixed with the centrifugal stirrer until it became. Subsequently, 97.3 g of solvent NMP was weighed into another container, 4.2 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • a conductive substrate was produced.
  • the content of alumina which is a heat conductive filler in this insulating layer is 50 wt%.
  • a rolled copper foil having a thickness of 18 ⁇ m is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides.
  • a substrate was obtained.
  • evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
  • Synthesis Example 2-3 To 255 g of DMAc in a 500 ml separable flask equipped with a stirrer, 28.9050 g of BAPP was added with stirring under a nitrogen stream and dissolved, and then 15.0281 g of PMDA was added while maintaining stirring. After 10 minutes, 1.0669 g of BPDA was added. Thereafter, the polymerization reaction was continued for 4 hours at room temperature to obtain a viscous polyamic acid solution 2c to be a polyimide precursor.
  • Comparative Example 2-5 A double-sided metal laminate of Comparative Example 2-5 was obtained in the same manner as in Example 2-1, except that the alumina of Example 2-1 was not added. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
  • the content of the curing agent means the weight percent with respect to the solid content of the polyimide resin
  • the filler content means the weight percent of the filler with respect to the entire thermally conductive polyimide film from which the copper foil has been removed by etching.
  • the heat conductive substrates of Examples 2-1 to 2-5 containing the heat conductive filler in the polyimide resin forming the insulating layer are formed of the polyimide resin not containing the heat conductive filler. It can be seen that the thermal conductivity is greatly improved as compared with the metal-clad laminate of Comparative Example 2-5. Further, from Table 7, the thermally conductive polyimide films of Examples 2-1 to 2-5 using a polyimide resin having a structure in which polyimidesiloxane is crosslinked with an amino compound are polyimide resins having no crosslinked structure. The press workability was better than the heat conductive polyimide films of Comparative Examples 2-1 to 2-4, and practically sufficient adhesiveness was obtained by pressing at a low temperature. In terms of voltage resistance and heat resistance, Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-5 had practically sufficient characteristics. The thermally conductive substrates of Examples 2-1 to 2-5 were small in curling and excellent in usability.
  • Example 2-6 63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 86.56 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side.
  • a conductive substrate was produced.
  • the content of alumina which is a heat conductive filler in this insulating layer is 79 wt%.
  • the copper foil was removed by etching to produce a thermally conductive polyimide film (F6), and the withstand voltage and thermal conductivity were evaluated. Further, the thermally conductive substrate was cut into a 5 cm square size, and the curl was measured. These results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board
  • Example 2-7 63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 53.69 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • Example 2-7 In Example 2-7, in place of heating at 120 ° C. for 5 minutes and 160 ° C. over 10 minutes, except for heating at 120 ° C. for 5 minutes and 160 ° C. over 60 minutes, Example 2-7 Similarly, a thermally conductive substrate having a metal layer on one side was produced. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board
  • Example 2-9 63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 2.56 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • Example 2-10 In Example 2-9, instead of heating at 120 ° C. for 5 minutes and 160 ° C. over 10 minutes, Example 2-9 was repeated except that heating was performed at 120 ° C. for 5 minutes and 160 ° C. over 60 minutes. Similarly, a thermally conductive substrate having a metal layer on one side was produced. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board
  • Example 2-11 63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 23.01 g of alumina (average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved.
  • alumina average particle size 1.5 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5
  • This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler.
  • Example 2-12 In Example 2-11, instead of heating at 120 ° C. for 5 minutes and at 160 ° C. for 10 minutes, except for heating at 120 ° C. for 5 minutes and 160 ° C. for 60 minutes, Example 2-11 Similarly, a thermally conductive substrate having a metal layer on one side was produced. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board
  • Example 2-13 A rolled copper foil having a thickness of 18 ⁇ m was placed on the polyimide insulating layer of the heat conductive substrate having a metal layer on one side produced in Example 2-7, and pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours. A thermally conductive substrate having metal layers on both sides was obtained. The obtained heat conductive substrate was processed into a predetermined pattern, and adhesive strength, solder heat resistance and curl were measured. The results are shown in Table 9.
  • the single-sided metal thermal conductive substrates of Examples 2-6 to 2-12 containing a thermal conductive filler in the polyimide resin forming the insulating layer have high thermal conductivity and small curling. It was excellent in usability. Further, from Table 9, the double-sided metal thermally conductive substrate of Example 2-13 had good press workability, and practically sufficient adhesiveness was obtained by pressing at low temperature. In addition, the single-sided or double-sided metal thermally conductive substrates of Examples 2-6 to 2-13 had practically sufficient characteristics with respect to voltage resistance and heat resistance.
  • the polyimide resin of the present invention has been exemplified by adhesives for circuit board coverlay films and bonding sheets such as FPC, but other uses such as tape automated bonding. (TAB), chip size package (CSP) and the like can be used for forming an adhesive resin.
  • TAB tape automated bonding
  • CSP chip size package

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Disclosed is a cross-linked polyimide resin produced by reacting (A) a polyimide siloxane having a ketone group with (B) an amino compound having at least two primary amino groups as functional groups. Each of the amino groups in the amino compound, i.e., the component (B), is reacted with at least a part of the ketone group in the polyimide siloxane, i.e., the component (A), to form a C=N bond. Thus, the cross-linked polyimide resin has such a structure that the polyimide siloxane is crosslinked through the amino compound. When a hydrogen-bond-forming group is contained in the component (A), the formation of the C=N bond can be promoted.

Description

架橋ポリイミド樹脂、その製造方法、接着剤樹脂組成物、その硬化物、カバーレイフィルム、回路基板、熱伝導性基板及び熱伝導性ポリイミドフィルムCrosslinked polyimide resin, production method thereof, adhesive resin composition, cured product thereof, coverlay film, circuit board, heat conductive substrate, and heat conductive polyimide film
 本発明は、フレキシブルプリント配線板等の回路基板において接着剤として有用な架橋ポリイミド樹脂、その製造方法、及びその利用に関する。 The present invention relates to a crosslinked polyimide resin useful as an adhesive in a circuit board such as a flexible printed wiring board, a production method thereof, and use thereof.
 近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、携帯電話等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。 In recent years, with the progress of miniaturization, weight reduction, and space saving of electronic devices, flexible printed wiring boards (FPCs) that are thin, light, flexible, and have excellent durability even after repeated bending are used. The demand for Circuits) is increasing. FPC can be mounted three-dimensionally and densely in a limited space. For example, it can be used for wiring of movable parts of electronic devices such as HDDs, DVDs, mobile phones, and parts such as cables and connectors. It is expanding.
 FPCには、配線部分を保護する目的でカバーレイフィルムが用いられる。カバーレイフィルムは、ポリイミド樹脂などの合成樹脂製のカバーレイ用フィルム材と接着剤層とを積層して形成されている。FPCの製造においては、例えば熱プレス等の方法を用いて回路基板に接着剤層を介してカバーレイ用フィルム材を貼り付けている。接着剤層は、銅配線などの回路配線パターンとカバーレイ用フィルム材との両方に対して、高い接着性が要求される。このようなカバーレイフィルム用の接着剤として、比較的低温の熱圧着条件で加工が可能で、耐熱性などの特性に優れたものとして、シロキサンユニットを有するポリイミド樹脂とエポキシ樹脂との混合樹脂に、リン酸エステル系、フタル酸エステル系、ポリエステル系及び脂肪酸エステル系から選ばれる1種以上の可塑剤を配合してなるプリント基板用接着剤樹脂組成物が提案されている(例えば、日本国特開平10-212468号公報)。 For FPC, a coverlay film is used for the purpose of protecting the wiring part. The coverlay film is formed by laminating a coverlay film material made of a synthetic resin such as a polyimide resin and an adhesive layer. In manufacturing an FPC, a coverlay film material is attached to a circuit board through an adhesive layer by using a method such as hot pressing. The adhesive layer is required to have high adhesion to both the circuit wiring pattern such as copper wiring and the film material for coverlay. As an adhesive for such a coverlay film, it can be processed under relatively low temperature thermocompression bonding conditions, and it has excellent heat resistance and other characteristics, and it can be used as a mixed resin of polyimide resin and epoxy resin having a siloxane unit. In addition, an adhesive resin composition for printed circuit boards has been proposed which comprises one or more plasticizers selected from phosphoric acid esters, phthalic acid esters, polyesters and fatty acid esters (for example, Japanese (Kaihei 10-212468).
 一方、接着フィルムに用いるポリイミド樹脂の低温貼付性、低吸湿性、熱時における接着力、耐PCT性を改善する目的で、ビス(3,4-ジカルボキシフェニル)エーテル二無水物と、特定構造のシロキサンジアミンとを反応させた後に、他の酸無水物及び/又は他のジアミンを反応させるポリイミド樹脂の製造方法が提案されている(例えば日本国特開2006-117945号公報)。また、シリコーン構造を主鎖に持つ高分子量のポリイミド樹脂を安全安定に製造する目的で、シリコーン系ジアミンとシリコーン系酸二無水物を特定のモル比の範囲で混合して加熱脱水縮合し、分子量が上がらなくなるまで反応させた後、反応液に芳香族ジアミンを所定のモル比で添加して反応させ、分子量を制御するポリイミド樹脂の製造方法も提案されている(例えば、日本国特開2004-359874号公報)。 On the other hand, bis (3,4-dicarboxyphenyl) ether dianhydride and a specific structure are used for the purpose of improving the low-temperature sticking property, low moisture absorption, heat adhesion, and PCT resistance of polyimide resin used for adhesive films. A method for producing a polyimide resin in which another acid anhydride and / or another diamine is reacted after reacting with another siloxane diamine has been proposed (for example, Japanese Patent Application Laid-Open No. 2006-117945). In addition, in order to safely and stably produce a high molecular weight polyimide resin having a silicone structure in the main chain, silicone-based diamine and silicone-based acid dianhydride are mixed in a specific molar ratio range, and heat dehydration condensation is performed. There is also proposed a method for producing a polyimide resin in which an aromatic diamine is added to a reaction solution at a predetermined molar ratio and reacted after the reaction until no longer increases, and the molecular weight is controlled (for example, Japanese Patent Application Laid-Open No. 2004-2004). 359874).
 FPCの加工には、半田工程がほぼ必須に含まれるため、カバーレイフィルムに用いる接着剤には高い半田耐熱性が求められる。この点で、比較的耐熱性に優れたポリイミド樹脂はカバーレイフィルムの接着剤として適した素材であるが、半田耐熱性をさらに向上させることができれば、カバーレイフィルム用接着剤としての機能をより高めることができる。 Since the FPC processing includes a soldering process almost essential, the adhesive used for the coverlay film is required to have high solder heat resistance. In this regard, polyimide resin with relatively excellent heat resistance is a material suitable as an adhesive for the coverlay film, but if the solder heat resistance can be further improved, the function as an adhesive for the coverlay film will be improved. Can be increased.
 また、FPCを使用した自動車の車載用電子機器では、繰り返し150℃程度の高温環境に置かれるため、長期間の使用でFPCのカバーレイフィルムと配線との接着力が低下し、配線保護機能が大幅に低下してしまうという問題が生じている。FPCの用途拡大に伴い、車載用電子機器に限らず、同様に過酷な温度環境でFPCが使用される場面は今後も増加していくものと予想される。このことから、高温環境で使用されるFPCにおいて、カバーレイフィルムの接着力の低下に対して対策を講ずることが強く求められている。 In addition, in-vehicle electronic devices for automobiles using FPC are repeatedly placed in a high temperature environment of about 150 ° C., the adhesive strength between the FPC coverlay film and the wiring is lowered over a long period of use, and the wiring protection function is provided. There has been a problem of a significant drop. With the expansion of FPC applications, it is expected that the number of scenes where FPC is used not only in in-vehicle electronic devices but also in severe temperature environments will continue to increase. For this reason, in an FPC used in a high temperature environment, it is strongly required to take measures against a decrease in the adhesive strength of the coverlay film.
 従って、本発明の課題は、短時間で耐湿半田耐熱性を発現できる程度の架橋構造を形成できるとともに、繰り返し高温にさらされる使用環境でも、接着力を低下させない接着剤層を形成可能な架橋ポリイミド樹脂を提供することである。 Accordingly, an object of the present invention is to form a cross-linked polyimide capable of forming a cross-linked structure capable of exhibiting moisture-resistant solder heat resistance in a short time and capable of forming an adhesive layer that does not reduce adhesive strength even in a use environment that is repeatedly exposed to high temperatures. It is to provide a resin.
 本発明者らは、上記課題を解決するために鋭意研究を行った結果、本発明を完成した。そして、本発明の好ましい態様では、イミド化後ポリイミドシロキサン中に水素結合を可能とする官能基(以下、「水素結合形成基」と記す)を導入しておくことにより、ポリイミドシロキサンの主鎖どうしに水素結合が生じて隣接するポリイミドシロキサン鎖のケトン基が近接した状態となるため、ポリイミドシロキサンのケトン基とアミノ化合物との架橋形成が促進される。 The inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems. In a preferred embodiment of the present invention, by introducing a functional group capable of hydrogen bonding (hereinafter referred to as “hydrogen bond-forming group”) into the polyimidesiloxane after imidization, the main chains of the polyimidesiloxane are interlinked. As a result, a hydrogen bond is formed and the ketone group of the adjacent polyimide siloxane chain is brought into a close state, so that the formation of a cross-link between the ketone group of the polyimide siloxane and the amino compound is promoted.
 本発明の架橋ポリイミド樹脂は、下記の成分(A)及び(B)、
(A)ケトン基を有するポリイミドシロキサン、並びに、
(B)少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物、
を反応させて得られる架橋ポリイミド樹脂であって、
 前記(A)成分のポリイミドシロキサンにおけるケトン基の少なくとも一部分に前記(B)成分のアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有することを特徴とする。
The crosslinked polyimide resin of the present invention comprises the following components (A) and (B),
(A) a polyimidesiloxane having a ketone group, and
(B) an amino compound having at least two primary amino groups as functional groups,
A cross-linked polyimide resin obtained by reacting
The amino group of the amino compound of the component (B) reacts with at least a part of the ketone group in the polyimide siloxane of the component (A) to form a C═N bond, so that the polyimide siloxane is formed by the amino compound. It has a cross-linked structure.
 本発明の架橋ポリイミド樹脂は、前記ポリイミドシロキサンが、下記の一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンであってもよい。この場合、前記構成単位の存在モル比mが、0.75~1.0の範囲内、nが、0~0.25の範囲内であることが好ましい。 In the crosslinked polyimide resin of the present invention, the polyimidesiloxane may be a polyimidesiloxane having structural units represented by the following general formulas (1) and (2). In this case, it is preferable that the molar ratio m of the structural unit is in the range of 0.75 to 1.0, and n is in the range of 0 to 0.25.
Figure JPOXMLDOC01-appb-C000007
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基及び水素結合形成基を含み、m、nは各構成単位の存在モル比を示し、mは0.35~1.0の範囲内、nは0~0.65の範囲内である]
Figure JPOXMLDOC01-appb-C000007
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, and Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 to 1 In the range of 0, n is in the range of 0 to 0.65]
 また、本発明の架橋ポリイミド樹脂は、前記ポリイミドシロキサンが、下記の一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンであってもよい。この場合、前記構成単位の存在モル比mが、0.75以上1.0未満の範囲内、nが、0を超え0.25以下の範囲内であることが好ましい。 Further, in the crosslinked polyimide resin of the present invention, the polyimidesiloxane may be a polyimidesiloxane having structural units represented by the following general formulas (1) and (2). In this case, it is preferable that the molar ratio m of the structural unit is in the range of 0.75 or more and less than 1.0, and n is in the range of more than 0 and 0.25 or less.
Figure JPOXMLDOC01-appb-C000008
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar中にケトン基を、R中に水素結合形成基をそれぞれ含み、m、nは各構成単位の存在モル比を示し、mは0.35以上1.0未満の範囲内、nは0を超え0.65以下の範囲内である]
Figure JPOXMLDOC01-appb-C000008
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, Ar contains a ketone group, R 2 contains a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 or more and 1 Within the range of less than 0, n is in the range of more than 0 and not more than 0.65]
 本発明の架橋ポリイミド樹脂は、前記ポリイミドシロキサンにおける前記水素結合形成基が、-NHCO-であってもよい。 In the crosslinked polyimide resin of the present invention, the hydrogen bond-forming group in the polyimidesiloxane may be —NHCO—.
 本発明の架橋ポリイミド樹脂は、前記ポリイミドシロキサンが、ジヒドラジド化合物を原料として合成されたものであってもよい。 The crosslinked polyimide resin of the present invention may be one in which the polyimide siloxane is synthesized using a dihydrazide compound as a raw material.
 本発明の架橋ポリイミド樹脂は、前記アミノ化合物が、ジヒドラジド化合物であってもよい。 In the crosslinked polyimide resin of the present invention, the amino compound may be a dihydrazide compound.
 本発明の架橋ポリイミド樹脂は、さらに、平均粒径が2~25μmの範囲内の板状の無機フィラーを、前記(A)成分及び(B)成分の合計100重量部に対して5~200重量部の範囲内で含有するものであってもよい。 In the crosslinked polyimide resin of the present invention, the plate-like inorganic filler having an average particle size in the range of 2 to 25 μm is further added in an amount of 5 to 200 wt. It may be contained within the range of parts.
 本発明の接着剤樹脂組成物は、下記(A)成分及び(B)成分、
(A)ケトン基及び水素結合形成基を有する重量平均分子量が20,000~150,000であるポリイミドシロキサン、並びに
(B)少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物、
を含み、
 前記(A)成分中のケトン基1モルに対し、前記第1級アミノ基が合計で0.004モル~1.5モルの範囲内となるように前記(B)成分を含有するものである。
The adhesive resin composition of the present invention comprises the following components (A) and (B):
(A) a polyimidesiloxane having a weight average molecular weight of 20,000 to 150,000 having a ketone group and a hydrogen bond-forming group, and (B) an amino compound having at least two primary amino groups as functional groups,
Including
The component (B) is contained so that the total amount of the primary amino group is within the range of 0.004 mol to 1.5 mol with respect to 1 mol of the ketone group in the component (A). .
 本発明の接着剤樹脂組成物は、前記(A)成分が、下記の一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンであってもよい。この場合、前記構成単位の存在モル比mが、0.75~1.0の範囲内、nが、0~0.25の範囲内であることが好ましい。 In the adhesive resin composition of the present invention, the component (A) may be a polyimide siloxane having structural units represented by the following general formulas (1) and (2). In this case, it is preferable that the molar ratio m of the structural unit is in the range of 0.75 to 1.0, and n is in the range of 0 to 0.25.
Figure JPOXMLDOC01-appb-C000009
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基及び水素結合形成基を含み、m、nは各構成単位の存在モル比を示し、mは0.35~1.0の範囲内、nは0~0.65の範囲内である]
Figure JPOXMLDOC01-appb-C000009
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, and Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 to 1 In the range of 0, n is in the range of 0 to 0.65]
 本発明の接着剤樹脂組成物は、前記(A)成分が、下記の一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンであってもよい。この場合、前記構成単位の存在モル比mが、0.75以上1.0未満の範囲内、nが、0を超え0.25以下の範囲内であることが好ましい。 In the adhesive resin composition of the present invention, the component (A) may be a polyimide siloxane having structural units represented by the following general formulas (1) and (2). In this case, it is preferable that the molar ratio m of the structural unit is in the range of 0.75 or more and less than 1.0, and n is in the range of more than 0 and 0.25 or less.
Figure JPOXMLDOC01-appb-C000010
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar中にケトン基を、R中に水素結合形成基をそれぞれ含み、m、nは各構成単位の存在モル比を示し、mは0.35以上1.0未満の範囲内、nは0を超え0.65以下の範囲内である]
Figure JPOXMLDOC01-appb-C000010
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, Ar contains a ketone group, R 2 contains a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 or more and 1 Within the range of less than 0, n is in the range of more than 0 and not more than 0.65]
 本発明の接着剤樹脂組成物は、前記(A)成分における前記水素結合形成基が、-NHCO-であってもよい。 In the adhesive resin composition of the present invention, the hydrogen bond forming group in the component (A) may be —NHCO—.
 本発明の接着剤樹脂組成物は、前記(A)成分が、ジヒドラジド化合物を原料として合成されたものであってもよい。 In the adhesive resin composition of the present invention, the component (A) may be synthesized using a dihydrazide compound as a raw material.
 本発明の接着剤樹脂組成物は、前記(B)成分が、ジヒドラジド化合物であってもよい。 In the adhesive resin composition of the present invention, the component (B) may be a dihydrazide compound.
 本発明の接着剤樹脂組成物は、前記(A)成分及び(B)成分の合計100重量部に対して、更に(C)平均粒径が2~25μmの範囲内の板状の無機フィラーを5~200重量部含有するものであってもよい。 The adhesive resin composition of the present invention further comprises (C) a plate-like inorganic filler having an average particle size in the range of 2 to 25 μm with respect to a total of 100 parts by weight of the components (A) and (B). It may contain 5 to 200 parts by weight.
 本発明の硬化物は、上記いずれかに記載の接着剤樹脂組成物を硬化して得られるものである。 The cured product of the present invention is obtained by curing the adhesive resin composition described above.
 本発明のカバーレイフィルムは、接着剤層とカバーレイ用フィルム材層とを積層したカバーレイフィルムであって、
 前記接着剤層が、上記いずれかに記載の接着剤樹脂組成物を用いて形成されたものである。
The coverlay film of the present invention is a coverlay film in which an adhesive layer and a film material layer for coverlay are laminated,
The adhesive layer is formed using the adhesive resin composition according to any one of the above.
 本発明の回路基板は、基材と、該基材上に形成された配線層と、該配線層を被覆する上記カバーレイフィルムと、を備えている。 The circuit board of the present invention includes a base material, a wiring layer formed on the base material, and the cover lay film covering the wiring layer.
 本発明の架橋ポリイミド樹脂の製造方法は、ケトン基を有する酸無水物成分と、水素結合形成基を有するジアミン化合物及びジアミノシロキサンを含むジアミン成分と、を混合し、加熱することによりイミド化して、ケトン基及び水素結合形成基を有するポリイミドシロキサンを形成する工程、
 前記ポリイミドシロキサン中の隣接する主鎖の間で水素結合を形成させる工程、並びに、
 前記ポリイミドシロキサンのケトン基の少なくとも一部分に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基を反応させてC=N結合を形成させ、前記ポリイミドシロキサンを前記アミノ化合物によって架橋する工程、
を備えている。
The method for producing a crosslinked polyimide resin of the present invention comprises mixing an acid anhydride component having a ketone group, a diamine compound having a hydrogen bond-forming group and a diamine component containing diaminosiloxane, and imidizing by heating. Forming a polyimidesiloxane having a ketone group and a hydrogen bond-forming group;
Forming hydrogen bonds between adjacent main chains in the polyimidesiloxane; and
At least a part of the ketone group of the polyimide siloxane is reacted with an amino group of an amino compound having at least two primary amino groups as a functional group to form a C = N bond, and the polyimide siloxane is crosslinked with the amino compound. The process of
It has.
 また、本発明の熱伝導性基板は、ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を少なくとも1層有する絶縁層の片面又は両面に金属層を有する熱伝導性基板であって、前記フィラー含有ポリイミド樹脂層の熱伝導性フィラーの含有率が5~80wt%(重量%;以下同様である)の範囲にあり、前記フィラー含有ポリイミド樹脂層におけるポリイミド樹脂が、下記の一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンにおける前記ケトン基に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有する架橋ポリイミド樹脂であることを特徴とする。 The thermally conductive substrate of the present invention is a thermally conductive substrate having a metal layer on one or both sides of an insulating layer having at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin. The filler-containing polyimide resin layer has a heat conductive filler content of 5 to 80 wt% (% by weight; the same applies hereinafter), and the polyimide resin in the filler-containing polyimide resin layer has the following general formula: The ketone group in the polyimidesiloxane having the structural units represented by (1) and (2) reacts with an amino group of an amino compound having at least two primary amino groups as functional groups to form a C═N bond. By forming, the polyimide siloxane is a crosslinked polyimide resin having a structure crosslinked by the amino compound. And wherein the Rukoto.
Figure JPOXMLDOC01-appb-C000011
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rは芳香族ジアミン及び/又は脂肪族ジアミンから誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基を含み、m、nは各構成単位の存在モル比を示し、mは0.4~1.0の範囲内、nは0~0.6の範囲内である]
Figure JPOXMLDOC01-appb-C000011
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, R 2 is an aromatic diamine and / or Each represents a divalent diamine residue derived from an aliphatic diamine, Ar and / or R 2 contains a ketone group, m and n represent the molar ratio of each constituent unit, and m is 0.4 In the range of -1.0 and n is in the range of 0-0.6]
 また、本発明の熱伝導性ポリイミドフィルムは、ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を備えた熱伝導性ポリイミドフィルムであって、
 前記フィラー含有ポリイミド樹脂層における熱伝導性フィラーの含有率が5~80wt%の範囲にあり、前記フィラー含有ポリイミド樹脂層におけるポリイミド樹脂が、下記の一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンにおける前記ケトン基に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有する架橋ポリイミド樹脂であることを特徴とする。
Moreover, the thermally conductive polyimide film of the present invention is a thermally conductive polyimide film comprising a filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin,
The content of the heat conductive filler in the filler-containing polyimide resin layer is in the range of 5 to 80 wt%, and the polyimide resin in the filler-containing polyimide resin layer is represented by the following general formulas (1) and (2). The polyimide siloxane having a structural unit reacts with the amino group of an amino compound having at least two primary amino groups as a functional group to form a C═N bond with the ketone group in the polyimide siloxane having a structural unit. It is a crosslinked polyimide resin having a structure crosslinked by the amino compound.
Figure JPOXMLDOC01-appb-C000012
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rは芳香族ジアミン及び/又は脂肪族ジアミンから誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基を含み、m、nは各構成単位の存在モル比を示し、mは0.4~1.0の範囲内、nは0~0.6の範囲内である]
Figure JPOXMLDOC01-appb-C000012
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, R 2 is an aromatic diamine and / or Each represents a divalent diamine residue derived from an aliphatic diamine, Ar and / or R 2 contains a ketone group, m and n represent the molar ratio of each constituent unit, and m is 0.4 In the range of -1.0 and n is in the range of 0-0.6]
 本発明の架橋ポリイミド樹脂は、ポリイミドシロキサンにおけるケトン基の少なくとも一部分にアミノ化合物のアミノ基が反応してC=N結合を形成し、ポリイミドシロキサンの少なくとも一部分がアミノ化合物によって架橋された構造を有する。このため、半田耐熱性に優れるとともに、繰り返し高温環境に置かれても、金属配線層との接着力を低下させない接着剤層を形成することができる。従って、本発明の架橋ポリイミド樹脂を用いて接着剤層を形成したカバーレイフィルムの剥離強度を高め、該カバーレイフィルムを使用した回路基板の信頼性を向上させることができる。 The crosslinked polyimide resin of the present invention has a structure in which an amino group of an amino compound reacts with at least a part of a ketone group in polyimidesiloxane to form a C═N bond, and at least a part of the polyimidesiloxane is crosslinked with an amino compound. For this reason, while being excellent in solder heat resistance, the adhesive bond layer which does not reduce the adhesive force with a metal wiring layer can be formed even if it is repeatedly placed in a high temperature environment. Therefore, the peel strength of the coverlay film formed with the adhesive layer using the crosslinked polyimide resin of the present invention can be increased, and the reliability of the circuit board using the coverlay film can be improved.
 また、本発明の架橋ポリイミド樹脂の好ましい態様では、ケトン基及び水素結合形成基を有するポリイミドシロキサンを用いるため、架橋形成による硬化が完結した状態だけでなく、その途中段階でも優れた耐湿半田耐熱性を発現することができる。従って、優れた接着性と半田耐熱性とを両立させることが可能であり、カバーレイフィルム等の接着剤として有用である。 In addition, in a preferred embodiment of the crosslinked polyimide resin of the present invention, polyimide siloxane having a ketone group and a hydrogen bond-forming group is used, so that not only the curing by crosslinking formation is complete, but also excellent moisture-resistant soldering heat resistance at the intermediate stage. Can be expressed. Therefore, it is possible to achieve both excellent adhesion and solder heat resistance, and it is useful as an adhesive for coverlay films and the like.
 本発明の架橋ポリイミド樹脂の製造方法は、ケトン基及び水素結合形成基を有するポリイミドシロキサンを用いるため、加熱前の組成物の状態でも隣接するポリイミドシロキサンの主鎖どうしが水素結合によって近接した状態となる。そのため、ポリイミドシロキサンのケトン基どうしが近づき、アミノ化合物のアミノ基との架橋形成を促進することができる。従って、短時間で架橋形成させることが可能になり、硬化に要する熱処理時間の短縮化を図ることができる。 The method for producing a crosslinked polyimide resin of the present invention uses a polyimide siloxane having a ketone group and a hydrogen bond-forming group, so that even in the state of the composition before heating, the adjacent polyimide siloxane main chains are close to each other by hydrogen bonding. Become. Therefore, the ketone groups of polyimide siloxane come close to each other, and the cross-linking with the amino group of the amino compound can be promoted. Accordingly, it is possible to form a cross-link in a short time, and it is possible to shorten the heat treatment time required for curing.
試験例1におけるサンプルのレオメーター評価の結果を示すグラフである。4 is a graph showing the results of rheometer evaluation of samples in Test Example 1. 試験例2におけるサンプルのレオメーター評価の結果を示すグラフである。10 is a graph showing the results of rheometer evaluation of samples in Test Example 2.
[架橋ポリイミド樹脂]
 本発明の架橋ポリイミド樹脂は、下記の成分(A)及び(B)、
 (A)ケトン基を有するポリイミドシロキサン、並びに、
 (B)少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物、
を反応させて得られる架橋ポリイミド樹脂である。そして、本発明の架橋ポリイミド樹脂は、前記(A)成分のポリイミドシロキサンにおけるケトン基の少なくとも一部分に前記(B)成分のアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有している。
[Crosslinked polyimide resin]
The crosslinked polyimide resin of the present invention comprises the following components (A) and (B),
(A) a polyimidesiloxane having a ketone group, and
(B) an amino compound having at least two primary amino groups as functional groups,
Is a crosslinked polyimide resin obtained by reacting In the crosslinked polyimide resin of the present invention, the amino group of the amino compound (B) reacts with at least a part of the ketone group in the polyimide siloxane (A) to form a C = N bond. Thus, the polyimide siloxane has a structure crosslinked with the amino compound.
 本発明の架橋ポリイミド樹脂の好ましい態様では、上記一般式(1)及び(2)中の基Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基であり、基Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基であり、基Rはジアミン化合物から誘導される2価のジアミン残基である。また、Ar及び/又はR中にはケトン基及び水素結合形成基を含み、構成単位の存在モル比を示すmは0.35~1.0の範囲内、好ましくは0.75~1.0の範囲内、nは0~0.65の範囲内、好ましくは0~0.25の範囲内である。本発明の架橋ポリイミド樹脂のさらに好ましい態様では、上記一般式(1)及び(2)中の基Ar中にケトン基を含み、かつ基R中に水素結合形成基を含むことができる。この場合、構成単位の存在モル比を示すmは0.35以上1.0未満の範囲内、より好ましくは0.75以上1.0未満の範囲内、最も好ましくは0.75以上0.99以下の範囲内である。また、構成単位の存在モル比を示すnは0を超え0.65以下の範囲内、より好ましくは0を超え0.25以下の範囲内、最も好ましくは0.01以上0.25以下の範囲内である。 In a preferred embodiment of the crosslinked polyimide resin of the present invention, the group Ar in the general formulas (1) and (2) is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, and the group R 1 is It is a divalent diaminosiloxane residue derived from diaminosiloxane, and the group R 2 is a divalent diamine residue derived from a diamine compound. In addition, Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group, and m indicating the molar ratio of the constituent units is in the range of 0.35 to 1.0, preferably 0.75 to 1. In the range of 0, n is in the range of 0 to 0.65, preferably in the range of 0 to 0.25. In a more preferred embodiment of the crosslinked polyimide resin of the present invention, the group Ar in the general formulas (1) and (2) may contain a ketone group, and the group R 2 may contain a hydrogen bond forming group. In this case, m indicating the molar ratio of the constituent units is in the range of 0.35 or more and less than 1.0, more preferably in the range of 0.75 or more and less than 1.0, and most preferably 0.75 or more and 0.99. Within the following range. Further, n indicating the molar ratio of the constituent units is in the range of more than 0 to 0.65 or less, more preferably in the range of more than 0 to 0.25 or less, most preferably in the range of 0.01 to 0.25. Is within.
 本発明の架橋ポリイミド樹脂においては、前記(A)成分のポリイミドシロキサンにおけるケトン基の少なくとも一部分に前記(B)成分のアミノ化合物のアミノ基が反応してC=N結合を形成していればよい。架橋ポリイミド樹脂の架橋形成率(硬化の度合い)は、架橋形成によるポリイミド樹脂の硬化が完了した状態でなくてもよく、実用上十分な耐湿半田耐熱性を確保できる程度であればよい。架橋ポリイミド樹脂が実用上十分な耐湿半田耐熱性を有するかどうかは、後述するように、粘度を指標として判断することができる。 In the crosslinked polyimide resin of the present invention, it is only necessary that the amino group of the amino compound of the component (B) reacts with at least a part of the ketone group in the polyimide siloxane of the component (A) to form a C = N bond. . The crosslinking formation rate (degree of curing) of the crosslinked polyimide resin does not have to be a state in which the curing of the polyimide resin by the crosslinking formation is completed, and may be any level that can ensure practically sufficient moisture-resistant soldering heat resistance. Whether the crosslinked polyimide resin has practically sufficient moisture-resistant soldering heat resistance can be determined using viscosity as an index, as will be described later.
[ポリイミドシロキサン]
 上記(A)成分は、例えば一般式(1)、(2)で表される構成単位を有するポリイミドシロキサンにおいて、基Ar及び/又は基R中、好ましくは基Ar中にケトン基を含み、このケトン基が、アミノ化合物との反応に関与する。一般式(1)、(2)で表される構成単位において、ケトン基を含む基Arを形成するための芳香族テトラカルボン酸としては、例えば下記の式(3)で表される3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)を挙げることができる。
[Polyimide siloxane]
The component (A) includes, for example, a polyimide siloxane having structural units represented by the general formulas (1) and (2), the group Ar and / or the group R 2 , preferably a ketone group in the group Ar, This ketone group is involved in the reaction with the amino compound. In the structural units represented by the general formulas (1) and (2), examples of the aromatic tetracarboxylic acid for forming the group Ar containing a ketone group include 3,3 represented by the following formula (3): Mention may be made of '4,4'-benzophenone tetracarboxylic dianhydride (BTDA).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 また、一般式(1)及び(2)で表される構成単位において、基Arを形成するための原料となる芳香族テトラカルボン酸としては、上記ケトン基を有するもの以外に、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、ピロメリット酸二無水物(PMDA)等を使用することができる。これらは単独又は2種以上を組み合わせて使用することができる。 In addition, in the structural units represented by the general formulas (1) and (2), examples of the aromatic tetracarboxylic acid used as a raw material for forming the group Ar include, in addition to those having the ketone group, for example, 3, 3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride (DSDA), pyromellitic dianhydride (PMDA) Etc. can be used. These can be used alone or in combination of two or more.
 また、上記一般式(1)、(2)で表される構成単位を有するポリイミドシロキサンにおいて、「水素結合形成基」としては、例えば-NHCO-等を挙げることができる。このような水素結合形成基を含むことにより、隣接するポリイミドシロキサン鎖の間で水素結合が生じ、アミノ化合物との架橋反応の反応点となるケトン基どうしを近づけることができるため、アミノ化合物による架橋反応が促進され、十分な耐湿半田耐熱性を生じさせるまでの加熱時間を短縮できる。水素結合形成基は、一般式(1)及び(2)のどちらか片方に含まれていてもよく、両方に含まれていてもよい。また、水素結合形成基は、基Arで表される酸無水物成分、または基Rもしくは基Rで表されるジアミン成分のいずれかの中に含まれていればよいが、一般式(2)中の基Rに含まれていることが好ましい。全ジアミンに対する水素結合形成基の存在モル比は、隣接するポリイミドシロキサンの主鎖間で水素結合を効率よく形成するために、0を超え1.3以下の範囲内、より好ましくは0を超え0.5以下の範囲内、最も好ましくは0.02以上0.5以下の範囲内とすることができる。 In the polyimidesiloxane having the structural units represented by the general formulas (1) and (2), examples of the “hydrogen bond forming group” include —NHCO—. By including such a hydrogen bond-forming group, a hydrogen bond is generated between adjacent polyimide siloxane chains, and the ketone groups that are the reaction points of the crosslinking reaction with the amino compound can be brought close to each other. The reaction is accelerated and the heating time until sufficient moisture-resistant soldering heat resistance is generated can be shortened. The hydrogen bond forming group may be contained in either one of the general formulas (1) and (2), or may be contained in both. In addition, the hydrogen bond-forming group may be contained in either the acid anhydride component represented by the group Ar or the diamine component represented by the group R 1 or R 2. It is preferably contained in the group R 2 in 2). The molar ratio of hydrogen bond-forming groups to all diamines is in the range of more than 0 and less than or equal to 1.3, more preferably more than 0 and less than 0 in order to efficiently form hydrogen bonds between the main chains of adjacent polyimidesiloxanes. .5 or less, and most preferably 0.02 or more and 0.5 or less.
 また、一般式(1)で表される構成単位において基Rとしては、例えば、下記の式(4)で表されるジアミノシロキサンから誘導されたジアミノシロキサン残基を挙げることができる。 In addition, examples of the group R 1 in the structural unit represented by the general formula (1) include a diaminosiloxane residue derived from a diaminosiloxane represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000014
[ここで、R及びRは、それぞれ、酸素原子を含有していてもよい2価の有機基を示し、R~Rは、それぞれ炭素数1~6の炭化水素基を示し、平均繰り返し数であるmは、1~20である]
Figure JPOXMLDOC01-appb-C000014
[Wherein R 3 and R 4 each represents a divalent organic group which may contain an oxygen atom, R 5 to R 8 each represents a hydrocarbon group having 1 to 6 carbon atoms, The average number of repetitions m 1 is 1 to 20]
 特に、基Rとしては、ポリイミドの可溶性を付与するために、式(4)中のR及びRがそれぞれ2価の炭化水素基であり、R~Rがそれぞれ炭素数1~6の炭化水素基であり、平均繰り返し数であるmが5~15であるものが好ましい。 In particular, as the group R 1 , R 3 and R 4 in the formula (4) are each a divalent hydrocarbon group for imparting polyimide solubility, and R 5 to R 8 each have 1 to 6 having a mean repeating number of m 1 of 5 to 15 is preferable.
 上記ジアミノシロキサン残基は、ジアミノシロキサンからアミノ基を除いたシロキサン結合(Si-O-Si)を有する基であるが、このシロキサン結合の割合を増加させることによって、可塑剤を配合しなくても接着剤層に十分な柔軟性が付与され、カバーレイフィルムの反りを抑制できる。また、可塑剤中には極性基が多く含まれることから、可塑剤を配合しないことの利点として、一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンを用いた接着剤樹脂組成物中に含まれる極性基の量を抑制できることが挙げられる。このため、本実施の形態では、式(1)におけるmの値を0.35以上、好ましくは0.75以上とする。mの値が0.35未満では反りの抑制効果が十分に得られない。また、シロキサン結合を増加させることによって、ポリイミドシロキサンのイミド結合部位の減少による硬化収縮を低減させる効果もあると考えられる。 The diaminosiloxane residue is a group having a siloxane bond (Si—O—Si) obtained by removing an amino group from diaminosiloxane. By increasing the ratio of the siloxane bond, a plasticizer can be added. Sufficient flexibility is imparted to the adhesive layer, and warping of the coverlay film can be suppressed. Moreover, since many plastic groups are contained in the plasticizer, as an advantage of not containing the plasticizer, an adhesive using polyimidesiloxane having the structural units represented by the general formulas (1) and (2) It is mentioned that the amount of polar groups contained in the resin composition can be suppressed. For this reason, in this Embodiment, the value of m in Formula (1) shall be 0.35 or more, Preferably it is 0.75 or more. If the value of m is less than 0.35, the warp suppressing effect cannot be sufficiently obtained. In addition, it is considered that increasing the siloxane bond also has an effect of reducing curing shrinkage due to a decrease in the imide bond site of polyimidesiloxane.
 このように、上記一般式(4)で表されるジアミノシロキサンを用いてポリイミド中にシロキサン骨格を導入することにより、得られるポリイミドシロキサンに加熱圧着時の流動性を与え、プリント回路配線上での充填性を向上させることができる。一般式(4)で表されるジアミノシロキサンの具体例としては、下記の式(5)~式(9)で表されるジアミノシロキサンが好ましく、これらの中でも式(5)又は式(6)で表される脂肪族のジアミノシロキサンがより好ましい。これらのジアミノシロキサンは、2種以上を組み合わせて配合することもできる。また、2種以上のジアミノシロキサンを組み合わせて配合する場合、式(5)又は式(6)で表される脂肪族のジアミノシロキサンを全ジアミノシロキサン100重量部に対し、90重量部以上配合することが好ましい。なお、式(4)~式(9)において、平均繰り返し数であるmは1~20の範囲内であり、好ましくは5~15の範囲内である。mが1より小さいと接着剤とした場合の充填性が低下し、20を超えると接着性が低下する。 Thus, by introducing a siloxane skeleton into the polyimide using the diaminosiloxane represented by the above general formula (4), the resulting polyimidesiloxane is given fluidity at the time of thermocompression bonding, and on the printed circuit wiring. Fillability can be improved. As specific examples of the diaminosiloxane represented by the general formula (4), diaminosiloxanes represented by the following formulas (5) to (9) are preferable, and among these, the formula (5) or the formula (6) The aliphatic diaminosiloxane represented is more preferred. These diaminosiloxanes can be blended in combination of two or more. Moreover, when mix | blending in combination of 2 or more types of diaminosiloxane, 90 weight part or more of aliphatic diaminosiloxane represented by Formula (5) or Formula (6) is mix | blended with respect to 100 weight part of all the diaminosiloxanes. Is preferred. In the formulas (4) to (9), the average repeat number m 1 is in the range of 1 to 20, and preferably in the range of 5 to 15. When m 1 is smaller than 1, the filling property when an adhesive is used is lowered, and when it exceeds 20, the adhesive property is lowered.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(2)で表される構成単位において、ケトン基を含む基R(ジアミン化合物から誘導される2価のジアミン残基)としては、例えば以下の式(10)、(11)で表される芳香族ジアミンを挙げることができる。これらは単独又は2種以上を組み合わせて使用することができる。 In the structural unit represented by the general formula (2), examples of the group R 2 containing a ketone group (a divalent diamine residue derived from a diamine compound) include those represented by the following formulas (10) and (11). And aromatic diamines. These can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000016
[ここで、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、XはCOを示し、nは独立に0~4の整数を示す]
Figure JPOXMLDOC01-appb-C000016
[Wherein R 9 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, X represents CO, and n 1 independently represents an integer of 0 to 4]
 上記式(10)、(11)で表される基Rを形成するための芳香族ジアミンとしては、例えば、4,4’―ビス(3-アミノフェノキシ)ベンゾフェノン(BABP)、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン(BABB)等を挙げることができる。 Examples of the aromatic diamine for forming the group R 2 represented by the above formulas (10) and (11) include 4,4′-bis (3-aminophenoxy) benzophenone (BABP), 1,3- And bis [4- (3-aminophenoxy) benzoyl] benzene (BABB).
 また、一般式(2)で表される構成単位において、水素結合形成基を有する基Rを形成するための原料となるジアミン化合物としては、例えば水素結合形成基が-NHCO-基である場合はジヒドラジド化合物等を挙げることができる。ここで、ジヒドラジド化合物の具体例としては、脂肪族ジヒドラジドであるドデカン二酸ジヒドラジドやアジピン酸ジヒドラジド等、芳香族ジヒドラジドであるイソフタル酸ジヒドラジド等を挙げることができる。これらの中でも脂肪族ジヒドラジドであるドデカン二酸ジヒドラジドやアジピン酸ジヒドラジドが好ましい。 In the structural unit represented by the general formula (2), as the diamine compound that is a raw material for forming the group R 2 having a hydrogen bond-forming group, for example, when the hydrogen bond-forming group is a —NHCO— group Can include dihydrazide compounds. Specific examples of the dihydrazide compound include dodecanedioic acid dihydrazide and adipic acid dihydrazide, which are aliphatic dihydrazides, and isophthalic acid dihydrazide, which is an aromatic dihydrazide. Among these, dodecanedioic acid dihydrazide and adipic acid dihydrazide which are aliphatic dihydrazides are preferable.
 また、一般式(2)で表される構成単位において、基Rを形成するための原料となる他のジアミン化合物としては、例えば、2,2-ビス(4-アミノフェノキシフェニル)プロパン(BAPP)、2,2’-ジビニル-4,4’-ジアミノビフェニル(VAB)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-ジエチル-4,4’-ジアミノビフェニル、2,2’,6,6’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジフェニル-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミンを挙げることができる。これらの芳香族ジアミンは、単独あるいは2種以上を組み合わせて使用することができる。 In addition, in the structural unit represented by the general formula (2), as another diamine compound that is a raw material for forming the group R 2 , for example, 2,2-bis (4-aminophenoxyphenyl) propane (BAPP ) 2,2′-divinyl-4,4′-diaminobiphenyl (VAB), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), 2,2′-diethyl-4,4 '-Diaminobiphenyl, 2,2', 6,6'-tetramethyl-4,4'-diaminobiphenyl, 2,2'-diphenyl-4,4'-diaminobiphenyl, 9,9-bis (4-amino And aromatic diamines such as phenyl) fluorene. These aromatic diamines can be used alone or in combination of two or more.
 ポリイミドシロキサンの原料となる以上の酸無水物及びジアミンは、それぞれ、その1種のみを使用してもよいし、あるいは2種以上を併用することもできる。また、上記以外の酸無水物及びジアミンを併用することもできる。 As for the above-mentioned acid anhydride and diamine, which are the raw materials for polyimide siloxane, only one kind of each may be used, or two or more kinds may be used in combination. In addition, acid anhydrides and diamines other than those described above can be used in combination.
[ポリイミドシロキサンの合成]
 (A)成分のポリイミドシロキサンは、上記芳香族テトラカルボン酸無水物、ジアミノシロキサン及びジアミンを溶媒中で反応させ、前駆体樹脂であるポリアミド酸を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAC)、N-メチル-2-ピロリドン、2-ブタノン、ジメチルスホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。
[Synthesis of polyimide siloxane]
(A) The polyimidesiloxane of a component can be manufactured by making the said aromatic tetracarboxylic anhydride, diaminosiloxane, and diamine react in a solvent, producing | generating the polyamic acid which is precursor resin, and carrying out ring closure by heating. For example, it is a polyimide precursor by dissolving an acid anhydride component and a diamine component in an organic solvent in approximately equimolar amounts and stirring them at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours for polymerization reaction. A polyamic acid is obtained. In the reaction, the reaction components are dissolved so that the precursor to be produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent. Examples of the organic solvent used in the polymerization reaction include N, N-dimethylformamide, N, N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, aromatic hydrocarbons such as xylene and toluene can be used in combination.
 合成された前駆体は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、前駆体は一般に溶媒可溶性に優れるので、有利に使用される。前駆体をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~300℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized precursor is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted or replaced with another organic solvent if necessary. Moreover, since a precursor is generally excellent in solvent solubility, it is advantageously used. The method for imidizing the precursor is not particularly limited, and for example, heat treatment in which heating is performed in the above-mentioned solvent under a temperature condition in the range of 80 to 300 ° C. for 1 to 24 hours is suitably employed.
 (A)成分のポリイミドシロキサンを調製する際に、原料となる酸無水物成分及びジアミン成分の配合比率は、特に限定されるものではないが、例えば、ポリイミドシロキサンの末端置換基をアミノ基とし、すなわち、酸無水物基をジアミンで封止し、架橋ポリイミド樹脂の極性を抑制するという観点から、酸無水物成分:ジアミン成分として、モル比で1.000:1.001~1.0:1.2が好ましい。 (A) When preparing the polyimide siloxane component, the blending ratio of the acid anhydride component and the diamine component as raw materials is not particularly limited, for example, the terminal substituent of the polyimide siloxane is an amino group, That is, from the viewpoint of sealing the acid anhydride group with diamine and suppressing the polarity of the crosslinked polyimide resin, the molar ratio of acid anhydride component: diamine component is 1.000: 1.001 to 1.0: 1. .2 is preferred.
 また、(A)成分のポリイミドシロキサンは、芳香族テトラカルボン酸無水物、ジアミノシロキサン及びジアミン化合物との反応で得られるイミド構造となっており、例えばカバーレイフィルムの接着剤として使用した場合に、銅の拡散を抑制するために完全にイミド化された構造が最も好ましい。但し、ポリイミドの一部がアミド酸となっていてもよい。そのイミド化率は、フーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、1回反射ATR法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1015cm-1付近のベンゼン環吸収体を基準とし、1780cm-1のイミド基に由来するC=O伸縮の吸光度から算出される。 In addition, (A) component polyimide siloxane has an imide structure obtained by reaction with aromatic tetracarboxylic anhydride, diaminosiloxane and diamine compound, for example, when used as an adhesive for coverlay film, A completely imidized structure is most preferred to suppress copper diffusion. However, a part of the polyimide may be amic acid. The imidization ratio was measured at about 1015 cm −1 by measuring the infrared absorption spectrum of the polyimide thin film by a single reflection ATR method using a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO Corporation). And the absorbance of C═O stretching derived from an imide group of 1780 cm −1 , based on the benzene ring absorber.
[水素結合の形成]
 以上のようにして得られるポリイミドシロキサンは、分子構造中に水素結合形成基を有するため、常温でも隣接するポリイミドシロキサンの主鎖どうしの間で水素結合が生じる。例えば、ポリイミドシロキサン中に含まれる水素結合形成基が-NHCO-基である場合、隣接する片方のポリイミドシロキサン鎖のNH基と、もう片方のポリイミドシロキサン鎖のCO基との間に水素結合が生じる。その結果、多数のポリイミドシロキサン鎖をある程度の配向状態に近づけるとともに、隣り合うポリイミドシロキサン鎖の間で、アミノ化合物との架橋反応の反応点となるケトン基どうしを近づけることができる。このような水素結合の形成は、ポリイミドシロキサンを溶媒溶液の状態で保持しておくことにより進行し、イミン架橋反応を促進させるために十分な水素結合を形成できる。
[Hydrogen bond formation]
Since the polyimidesiloxane obtained as described above has a hydrogen bond-forming group in the molecular structure, hydrogen bonds are generated between adjacent main chains of polyimidesiloxane even at room temperature. For example, when the hydrogen bond forming group contained in the polyimide siloxane is a —NHCO— group, a hydrogen bond is generated between the NH group of one adjacent polyimide siloxane chain and the CO group of the other polyimide siloxane chain. . As a result, a large number of polyimidesiloxane chains can be brought close to a certain degree of orientation, and ketone groups serving as reaction points for a crosslinking reaction with an amino compound can be brought closer between adjacent polyimidesiloxane chains. Such hydrogen bond formation proceeds by keeping the polyimidesiloxane in a solvent solution state, and sufficient hydrogen bonds can be formed to promote the imine crosslinking reaction.
[アミノ化合物]
 本発明の架橋ポリイミド樹脂において、上記(A)成分のポリイミドシロキサンのケトン基と反応させる相手方の(B)成分である、少なくとも2つの第1級のアミノ基を官能基として有するアミノ化合物としては、(I)芳香族ジアミン、(II)ジアミノシロキサン、(III)脂肪族アミン、(IV)ジヒドラジド化合物等を例示することができる。
[Amino compound]
In the crosslinked polyimide resin of the present invention, as the amino compound having at least two primary amino groups as functional groups, which is the other component (B) to be reacted with the ketone group of the polyimide siloxane of the component (A), Examples include (I) aromatic diamine, (II) diaminosiloxane, (III) aliphatic amine, (IV) dihydrazide compound, and the like.
 (I)芳香族ジアミン:
 芳香族ジアミンとしては、例えば以下の式(12)、(13)で表されるものを挙げることができる。
(I) Aromatic diamine:
Examples of the aromatic diamine include those represented by the following formulas (12) and (13).
Figure JPOXMLDOC01-appb-C000017
[ここで、R10は独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、Zは単結合又は炭素数1~15の2価の炭化水素基、O、S、CO、SO、SO、NH若しくはCONHから選ばれる2価の基を示し、nは独立に0~4の整数を示す]
Figure JPOXMLDOC01-appb-C000017
[Wherein R 10 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and Z represents a single bond or a divalent hydrocarbon group having 1 to 15 carbon atoms, O, S, CO , SO, SO 2 , NH or CONH represents a divalent group, and n 2 independently represents an integer of 0 to 4]
 このような芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルエーテル、2’-メトキシ-4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノベンズアニリド、ビスアニリンフルオレン等が好ましく挙げられる。 Examples of such aromatic diamines include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dihydroxy- Preferred examples include 4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide, bisaniline fluorene and the like.
 さらに、芳香族ジアミンの他の例として、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(4-アミノフェノキシ)]ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)]ベンゾフェノン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4’-(4-アミノフェノキシ)]ベンズアニリド、ビス[4,4’-(3-アミノフェノキシ)]ベンズアニリド、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、ベンジジン、3,3’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、4,4'’-ジアミノ-p-テルフェニル、3,3'’-ジアミノ-p-テルフェニル、m-フェニレンジアミン、p-フェニレンジアミン、2,6-ジアミノピリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン等を挙げることができる。以上の芳香族ジアミンは、単独でもよいし、2種類以上混合して用いることもできる。 Further, other examples of aromatic diamines include 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3 -Aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) biphenyl, bis [1- (4-aminophenoxy)] biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether Bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, [4- (3-Aminophenoxy)] benzophenone, bis [4,4 ′-(4-aminophenoxy)] benzanilide, bis [4,4 ′-(3-aminophenoxy)] benzanilide, 9,9-bis [ 4- (4-aminophenoxy) phenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) phenyl] fluorene, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4′-methylenedi-o-toluidine, 4,4′-methylenedi-2,6-xylidine, 4,4 ′ -Methylene-2,6-diethylaniline, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diamy Nodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4 '-Diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, benzidine, 3,3'-diaminobiphenyl, 3, 3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxybenzidine, 4,4 ″ -diamino-p-terphenyl, 3,3 ″ -diamino-p-terphenyl, m-phenylene Diamine, p-phenylenediamine, 2,6-diaminopyri 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4 , 4 ′-[1,3-phenylenebis (1-methylethylidene)] bisaniline, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β- Methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2, 6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5- Examples include diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine and the like. it can. The above aromatic diamines may be used alone or in combination of two or more.
 (II)ジアミノシロキサン:
 ジアミノシロキサンとしては、下記一般式(14)で表されるジアミノシロキサン又はそのオリゴマーが好ましく挙げられる。
(II) Diaminosiloxane:
As the diaminosiloxane, diaminosiloxane represented by the following general formula (14) or an oligomer thereof is preferably exemplified.
Figure JPOXMLDOC01-appb-C000018
(ここで、R11及びR12は2価の炭化水素基を示し、R13~R16は炭素数1~6の炭化水素基を示し、mは1~20の数、好ましくは1~10の数を示す。)
Figure JPOXMLDOC01-appb-C000018
(Where R 11 and R 12 represent a divalent hydrocarbon group, R 13 to R 16 represent a hydrocarbon group having 1 to 6 carbon atoms, and m 1 represents a number of 1 to 20, preferably 1 to Indicates a number of 10.)
 このようなジアミノシロキサンとしては、例えばジアミノプロピルテトラメチルジシロキサン、上記一般式(5)~(9)で表されるジアミノシロキサン等を挙げることができる。以上のジアミノシロキサンは、単独でもよいし、2種類以上混合して用いることもできる。 Examples of such diaminosiloxanes include diaminopropyltetramethyldisiloxane and diaminosiloxanes represented by the above general formulas (5) to (9). The above diaminosiloxanes may be used alone or in combination of two or more.
 (III)脂肪族アミン:
 脂肪族アミンとしては、例えば、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、2-メチル-1,5-ジアミノペンタン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、4,4’-メチレンビスシクロヘキシルアミン等のジアミノアルカン類、トリス(2-アミノエチル)アミン、N,N’-ビス(2-アミノエチル)-1,3-プロパンジアミン、ビス(3-アミノプロピル)エチレンジアミン、1,4-ビス(3-アミノプロピル)ピペラジン、ジエチレントリアミン、N-メチル-2,2’-ジアミノジエチルアミン、3,3’-ジアミノジプロピルアミン、N,N-ビス(3-アミノプロピル)メチルアミン等の窒素原子を含有するアミン類、ビス(3-アミノプロピル)エーテル、1,2-ビス(2-アミノエトキシ)エタン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]-ウンデカン等の酸素原子を含有するアミン類、2,2’-チオビス(エチルアミン)等の硫黄原子を有するアミン類等を挙げることができる。以上の脂肪族アミンは、単独でもよいし、2種類以上混合して用いることもできる。
(III) Aliphatic amines:
Examples of the aliphatic amine include 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 2-methyl-1,5-diaminopentane, 1,7-diaminoheptane, and 1,8. Diaminooctane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12- Diaminoalkanes such as diaminododecane, 4,4′-methylenebiscyclohexylamine, tris (2-aminoethyl) amine, N, N′-bis (2-aminoethyl) -1,3-propanediamine, bis (3 -Aminopropyl) ethylenediamine, 1,4-bis (3-aminopropyl) piperazine, diethylenetriamine, N-methyl-2,2'-dia Nodiethylamine, amines containing nitrogen atoms such as 3,3′-diaminodipropylamine, N, N-bis (3-aminopropyl) methylamine, bis (3-aminopropyl) ether, 1,2-bis Amines containing oxygen atoms such as (2-aminoethoxy) ethane, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5.5] -undecane, Examples thereof include amines having a sulfur atom such as 2′-thiobis (ethylamine). The above aliphatic amines may be used alone or in combination of two or more.
 (IV)ジヒドラジド化合物:
 ジヒドラジド化合物としては、下記一般式(15)で表されるものを挙げることができる。
(IV) Dihydrazide compound:
Examples of the dihydrazide compound include those represented by the following general formula (15).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(15)中、R17は、例えば単結合、脂肪族基、芳香族基等を挙げることができる。R17として好ましいものを、ジヒドラジド化合物の例示によって説明すると、次の化合物が挙げられる。例えば、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、ジグリコール酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、2,6-ナフトエ二酸ジヒドラジド、4,4-ビスベンゼンジヒドラジド、1,4-ナフトエ酸ジヒドラジド、2,6-ピリジン二酸ジヒドラジド、イタコン酸ジヒドラジド等が挙げられる。以上のジヒドラジド化合物は、単独でもよいし、2種類以上混合して用いることもできる。 In the general formula (15), examples of R 17 include a single bond, an aliphatic group, and an aromatic group. What is preferable as R 17 is described with reference to examples of dihydrazide compounds. For example, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide dihydrazide, maleic acid dihydrazide Diglycolic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 2,6-naphthodioic acid dihydrazide, 4,4-bisbenzene dihydrazide, 1,4-naphthoic acid dihydrazide, Examples include 2,6-pyridinedioic acid dihydrazide, itaconic acid dihydrazide and the like. The above dihydrazide compounds may be used alone or in combination of two or more.
 上記のような少なくとも2つの第1級のアミノ基を官能基として有するアミノ化合物の中でも、特にジヒドラジド化合物が最も好ましい。ジヒドラジド化合物を使用した場合は、他のアミノ化合物を使用した場合に比べて接着剤樹脂組成物の硬化時間を短縮することができる。これは、ジヒドラジド化合物の第1級のアミノ基がケトン基と反応して得られる生成物が、セミカルバゾン様の分子構造となり、分子間のNH同士の水素結合による2量体構造を形成することによって生成物の安定性が向上するため、反応の平衡が生成物側に偏り、原料であるポリイミドシロキサンのケトン基とジヒドラジド化合物のアミノ基を生成する方向への逆反応が起こりにくくなることに因るものと考えられる。 Among the amino compounds having at least two primary amino groups as functional groups as described above, dihydrazide compounds are most preferable. When the dihydrazide compound is used, the curing time of the adhesive resin composition can be shortened as compared with the case where another amino compound is used. This is because the product obtained by reacting the primary amino group of the dihydrazide compound with the ketone group has a semicarbazone-like molecular structure, and forms a dimer structure by hydrogen bonding between NHs between molecules. Because the stability of the product is improved, the equilibrium of the reaction is biased toward the product side, and the reverse reaction in the direction of generating the ketone group of the polyimidesiloxane that is the raw material and the amino group of the dihydrazide compound is less likely to occur. It is considered a thing.
 また、上記(I)芳香族ジアミン、(II)ジアミノシロキサン、(III)脂肪族アミン、(IV)ジヒドラジド化合物等のアミノ化合物は、例えば(I)と(II)の組み合わせ、(I)と(III)との組み合わせ、(I)と(II)と(III)との組み合わせ、(I)~(IV)の組み合わせのように、カテゴリーを超えて2種以上組み合わせて使用することもできる。特に、(I)、(II)又は(III)のアミノ化合物と、(IV)のジヒドラジド化合物とを所定の配合比率で組み合わせることによって、(I)~(III)のアミノ化合物の特性を生かしながら、(IV)のジヒドラジド化合物の配合比率に応じて硬化時間の短縮効果を得ることが期待される。 In addition, amino compounds such as (I) aromatic diamine, (II) diaminosiloxane, (III) aliphatic amine, and (IV) dihydrazide compound are, for example, combinations of (I) and (II), (I) and ( It can also be used in combination of two or more types across categories, such as combinations with (III), combinations of (I), (II) and (III), and combinations of (I) to (IV). In particular, by combining the amino compound (I), (II) or (III) and the dihydrazide compound (IV) at a predetermined blending ratio, while taking advantage of the properties of the amino compounds (I) to (III) It is expected to obtain an effect of shortening the curing time depending on the blending ratio of the dihydrazide compound (IV).
 また、アミノ化合物の架橋による網目状の構造をより密にするという観点から、本発明で使用するアミノ化合物は、その分子量(アミノ化合物がオリゴマーの場合は重量平均分子量)が5,000以下であることが好ましく、より好ましくは90~2,000、更に好ましくは100~1,500がよい。この中でも、100~1,000の分子量をもつアミノ化合物が特に好ましい。アミノ化合物の分子量が90未満になると、アミノ化合物の1つのアミノ基がポリイミドシロキサンのケトン基をC=N結合を形成するにとどまり、残りのアミノ基の周辺が立体的に嵩高くなるために残りのアミノ基はC=N結合しにくい傾向となる。 Further, from the viewpoint of making the network structure formed by crosslinking of the amino compound more dense, the amino compound used in the present invention has a molecular weight (weight average molecular weight when the amino compound is an oligomer) of 5,000 or less. It is preferably 90 to 2,000, more preferably 100 to 1,500. Of these, amino compounds having a molecular weight of 100 to 1,000 are particularly preferred. When the molecular weight of the amino compound is less than 90, one amino group of the amino compound only forms a C = N bond with the ketone group of the polyimide siloxane, and the remaining amino group is sterically bulky so that it remains. The amino group tends to be difficult to bond C═N.
[架橋ポリイミド樹脂の製造方法]
 本発明の架橋ポリイミド樹脂の製法方法は、上記(A)成分である、ケトン基を有する酸無水物成分と、水素結合形成基を有するジアミン化合物及びジアミノシロキサンを含むジアミン成分と、を混合し、加熱することによりイミド化して、ケトン基及び水素結合形成基を有するポリイミドシロキサンを形成する工程と、
 ポリイミドシロキサン中の隣接する主鎖の間で水素結合を形成させる工程と、
 ポリイミドシロキサンのケトン基の少なくとも一部分に、上記(B)成分である、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基を反応させてC=N結合を形成させ、ポリイミドシロキサンをアミノ化合物によって架橋する工程と、を備えている。具体的には、上記(A)成分のポリイミドシロキサンを含み、主鎖間に水素結合が生じた状態の樹脂溶液に、(B)成分の少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物を加えて、ポリイミドシロキサンのケトン基の一部又は全部とアミノ化合物の第1級アミノ基とを縮合反応させることにより製造される。この縮合反応により、ポリイミドシロキサン鎖間で架橋形成が進行し、架橋の形成度合いに応じて接着剤樹脂組成物が徐々に硬化してゆく。この場合、ケトン基1モルに対し、第1級アミノ基が合計で0.004モル~1.5モル、好ましくは0.005モル~1.2モル、より好ましくは0.03モル~0.9モル、特に好ましくは0.04モル~0.5モルとなるようにアミノ化合物を添加することが好ましい。ケトン基1モルに対して第1級アミノ基が合計で0.004モル未満となるようなアミノ化合物の添加量では、アミノ化合物によるポリイミドシロキサンの架橋が十分ではないため、接着剤樹脂組成物を硬化させた後の硬化物において半田耐熱性が発現しにくい傾向となり、アミノ化合物の添加量が1.5モルを超えると未反応のアミノ化合物が熱可塑剤として作用し、同硬化物において半田耐熱性を低下させたり、高温での長期耐熱性を低下させたりする傾向がある。
[Method for producing crosslinked polyimide resin]
The method for producing a crosslinked polyimide resin of the present invention comprises mixing the acid anhydride component having a ketone group, the diamine compound having a hydrogen bond-forming group and a diamine component containing diaminosiloxane, which is the component (A), A step of imidizing by heating to form a polyimide siloxane having a ketone group and a hydrogen bond-forming group;
Forming hydrogen bonds between adjacent main chains in the polyimidesiloxane;
By reacting at least a part of the ketone group of the polyimidesiloxane with the amino group of the amino compound having at least two primary amino groups as the functional group as the component (B), a C═N bond is formed, and the polyimidesiloxane is formed. And crosslinking with an amino compound. Specifically, an amino acid containing at least two primary amino groups of component (B) as a functional group in a resin solution containing polyimide siloxane of component (A) and having hydrogen bonds formed between the main chains. It is produced by adding a compound and subjecting some or all of the ketone groups of polyimidesiloxane to a condensation reaction with the primary amino group of the amino compound. By this condensation reaction, the crosslink formation proceeds between the polyimidesiloxane chains, and the adhesive resin composition is gradually cured according to the degree of crosslink formation. In this case, the total amount of primary amino groups is 0.004 mol to 1.5 mol, preferably 0.005 mol to 1.2 mol, more preferably 0.03 mol to 0.00 mol per mol of the ketone group. It is preferable to add the amino compound so as to be 9 mol, particularly preferably 0.04 mol to 0.5 mol. The addition amount of the amino compound in which the primary amino group is less than 0.004 mol in total with respect to 1 mol of the ketone group is not sufficient for crosslinking of the polyimide siloxane with the amino compound. Solder heat resistance tends to be difficult to develop in the cured product after curing, and when the added amount of amino compound exceeds 1.5 mol, the unreacted amino compound acts as a thermoplastic agent, and solder heat resistance in the cured product. There is a tendency to lower the long-term heat resistance at high temperatures.
 また、縮合反応による硬化は、ポリイミドシロキサンにおけるケトン基とアミノ化合物の第1級アミノ基が反応してイミン結合(C=N結合)を形成できる条件であれば、特に制限されない。アミノ化合物の種類にもよるが、例えば脂肪族アミンを使用する場合は、常温においてもポリイミドシロキサンにおけるケトン基と縮合させることが可能であるが、加熱によって縮合反応を促進することが好ましい。アミノ化合物として、脂肪族アミンを使用する場合は、例えば60~200℃の範囲内で加熱縮合を行うことが好ましく、芳香族アミンを使用する場合は、例えば120~220℃の範囲内で加熱縮合を行うことが好ましい。加熱縮合の温度は、縮合によって生成する水を系外へ放出させるため、又はポリイミドシロキサンの合成の後に引き続いて加熱縮合反応を行なう場合に当該縮合工程を簡略化するため等の理由で、例えば120~220℃の範囲内が好ましく、140~200℃の範囲内がより好ましい。反応時間は、0.5時間~24時間程度が好ましい。短時間の熱処理で実用上十分な耐湿半田耐熱性を得るという観点から、160℃以上で、0.5時間以上の加熱とすることが好ましい。そして、より低温の熱処理で実用上十分な耐湿半田耐熱性を得るという観点から150℃以上で、1時間以上の加熱とすることが望ましい。 Further, the curing by the condensation reaction is not particularly limited as long as the conditions allow the ketone group in the polyimidesiloxane and the primary amino group of the amino compound to react to form an imine bond (C═N bond). Depending on the type of amino compound, for example, when an aliphatic amine is used, it can be condensed with a ketone group in polyimide siloxane even at room temperature, but it is preferable to promote the condensation reaction by heating. When an aliphatic amine is used as the amino compound, it is preferable to perform heat condensation within the range of 60 to 200 ° C., for example. When an aromatic amine is used, the heat condensation is performed within the range of 120 to 220 ° C., for example. It is preferable to carry out. The temperature of the heat condensation is, for example, 120 for the purpose of releasing water generated by the condensation out of the system or simplifying the condensation step when the heat condensation reaction is subsequently performed after the synthesis of the polyimidesiloxane. It is preferably in the range of -220 ° C, more preferably in the range of 140-200 ° C. The reaction time is preferably about 0.5 to 24 hours. From the viewpoint of obtaining practically sufficient moisture-resistant soldering heat resistance by a short heat treatment, it is preferable to heat at 160 ° C. or higher for 0.5 hour or longer. Then, from the viewpoint of obtaining practically sufficient moisture-resistant soldering heat resistance by a lower temperature heat treatment, it is desirable to heat at 150 ° C. or higher for 1 hour or longer.
 縮合反応の終点は、例えばフーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、赤外線吸収スペクトルを測定することによって、1670cm-1付近のポリイミドシロキサンにおけるケトン基に由来する吸収ピークの減少又は消失、及び1635cm-1付近のイミン基に由来する吸収ピークの出現により確認することができるし、あるいはラマン分光光度計(市販品:日本分光製 NRS-3100)を用い、ラマンスペクトルを測定することによって、1567cm-1付近のイミン基に由来するピークの出現により確認することができる。また、160℃、2時間の熱処理で実用上十分な耐湿半田耐熱性を発現できるか否かは、形成された架橋ポリイミド樹脂の粘度を指標として把握することが可能である。例えば、ポリイミド樹脂の分子量が70,000~140,000の範囲内である場合に、温度260℃における架橋剤を添加したポリイミド樹脂の粘度が1×10Pa・s以上であることが好ましい。温度260℃における架橋ポリイミド樹脂の粘度が1×10Pa・s以上であれば、実用上十分な耐湿半田耐熱性を獲得できる程度まで架橋形成が生じるものと考えることができる。このように架橋ポリイミド樹脂の粘度をしきい値として採用する理由は、第1にC=N結合による架橋形成率を直接測定することが困難であることが挙げられる。第2に、実用上十分な耐湿半田耐熱性を獲得するために必要な架橋形成率(ケトン基の消費率)は、架橋ポリイミド樹脂の分子量に応じて変化するため、単純に架橋形成率によって本発明の架橋ポリイミド樹脂における耐湿半田耐熱性を判断することが困難であることが挙げられる。しかし、温度260℃における架橋ポリイミド樹脂の粘度が1×10Pa・s以上であれば、実用上十分な耐湿半田耐熱性を獲得できた状態になっているものと考えるため、本発明では、このときの粘度を縮合反応による硬化の終点を判断する目安として採用している。従って、縮合反応の終点とは、必ずしもケトン基のすべてが消費され、それ以上の硬化が進まないことを意味するのではなく、実用上十分な性質(特に耐湿半田耐熱性)を持つ硬化物(半硬化物)が得られた時点を意味する。 The end point of the condensation reaction is derived from the ketone group in polyimidesiloxane near 1670 cm −1 by measuring the infrared absorption spectrum using, for example, a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO). It can be confirmed by the decrease or disappearance of the absorption peak and the appearance of an absorption peak derived from an imine group near 1635 cm −1 , or by using a Raman spectrophotometer (commercial product: NRS-3100 manufactured by JASCO Corporation) By measuring the spectrum, it can be confirmed by the appearance of a peak derived from an imine group near 1567 cm −1 . Further, whether or not a practically sufficient moisture-resistant soldering heat resistance can be exhibited by heat treatment at 160 ° C. for 2 hours can be determined by using the viscosity of the formed crosslinked polyimide resin as an index. For example, when the molecular weight of the polyimide resin is in the range of 70,000 to 140,000, the viscosity of the polyimide resin to which a crosslinking agent is added at a temperature of 260 ° C. is preferably 1 × 10 5 Pa · s or more. If the viscosity of the cross-linked polyimide resin at a temperature of 260 ° C. is 1 × 10 5 Pa · s or more, it can be considered that the cross-linking is formed to such an extent that practically sufficient moisture-resistant soldering heat resistance can be obtained. The reason why the viscosity of the cross-linked polyimide resin is employed as the threshold value is that it is difficult to directly measure the cross-linking formation rate due to C═N bonds. Second, since the cross-linking formation rate (ketone group consumption rate) necessary to obtain practically sufficient moisture-resistant solder heat resistance varies depending on the molecular weight of the cross-linked polyimide resin, it is simply determined by the cross-linking formation rate. It is difficult to judge the moisture-resistant solder heat resistance in the crosslinked polyimide resin of the invention. However, if the viscosity of the crosslinked polyimide resin at a temperature of 260 ° C. is 1 × 10 5 Pa · s or more, it is considered that the practically sufficient moisture-resistant soldering heat resistance has been obtained. The viscosity at this time is adopted as a standard for judging the end point of the curing by the condensation reaction. Therefore, the end point of the condensation reaction does not necessarily mean that all of the ketone groups are consumed and further curing does not proceed, but a cured product having practically sufficient properties (especially moisture solder heat resistance) ( It means the time when a semi-cured product is obtained.
 ポリイミドシロキサンのケトン基とアミノ化合物の第1級のアミノ基との加熱縮合は、例えば、
 (a)ポリイミドシロキサンの合成(イミド化)に引き続き、アミノ化合物を添加して加熱すること、
 (b)ジアミン成分として予め過剰量のアミノ化合物を仕込んでおき、ポリイミドシロキサンの合成(イミド化)に引き続き、イミド化(若しくはアミド化)に関与しない残りのアミノ化合物とともにポリイミドシロキサンを加熱すること、又は、
 (c)アミノ化合物を添加したポリイミドシロキサンの組成物を所定の形状に加工した後(例えば任意の基材に塗布した後やフィルム状に形成した後)に加熱すること、
等によって行うことができる。
The heat condensation of the ketone group of polyimidesiloxane and the primary amino group of the amino compound is, for example,
(A) Following the synthesis (imidation) of polyimide siloxane, adding an amino compound and heating,
(B) charging an excess amount of an amino compound in advance as a diamine component and heating the polyimide siloxane together with the remaining amino compound not involved in imidization (or amidation) following the synthesis (imidation) of the polyimide siloxane; Or
(C) heating after processing the polyimidesiloxane composition to which the amino compound has been added into a predetermined shape (for example, after being applied to an arbitrary base material or after being formed into a film),
Etc.
 上記(b)の場合、過剰のアミノ化合物は、ポリイミドシロキサンの製造時における末端置換基として酸無水物基を封止する反応に消費され、生成するポリイミドシロキサンの分子量が極端に低下することがあるので、硬化物において十分な耐熱性が得られにくい傾向がある。そのため、予め過剰量のアミノ化合物を仕込む方法[上記(b)]は、本発明の効果を損なわない範囲内において適宜用いることが好ましい。アミノ化合物における少なくとも2つの第1級アミノ基を有効にケトン基と反応させてC=N結合を形成させるためには、上記(a)又は(c)のように、アミノ化合物をポリイミドシロキサンの合成(イミド化)を完了した後に添加することが好ましい。上記(c)の場合、加熱縮合は、例えばアミノ化合物とポリイミドシロキサンとが混合した状態の組成物によってカバーレイフィルムの接着剤層を形成する際に行う熱処理の熱や、該接着剤層を形成した後、配線層を有する回路基板に熱圧着させる際の熱などを利用して行うこともできる。 In the case of (b) above, the excess amino compound is consumed in the reaction of sealing the acid anhydride group as a terminal substituent during the production of polyimidesiloxane, and the molecular weight of the resulting polyimidesiloxane may be extremely reduced. Therefore, it tends to be difficult to obtain sufficient heat resistance in the cured product. Therefore, it is preferable to use the method [the above (b)] in which an excess amount of an amino compound is previously charged as long as the effect of the present invention is not impaired. In order to effectively react at least two primary amino groups in an amino compound with a ketone group to form a C═N bond, the amino compound is synthesized from polyimide siloxane as in (a) or (c) above. It is preferable to add after completing (imidization). In the case of (c) above, the heat condensation is performed by, for example, the heat of heat treatment performed when the adhesive layer of the coverlay film is formed from a composition in which an amino compound and polyimide siloxane are mixed, or the adhesive layer is formed. After that, it can also be performed by using heat at the time of thermocompression bonding to the circuit board having the wiring layer.
[無機フィラー]
 本発明の架橋ポリイミド樹脂は、任意の(C)成分として、平均粒径が2~25μmの範囲内の板状の無機フィラーを含有することができる。(C)成分の無機フィラーを配合することによって、架橋ポリイミド樹脂を例えばカバーレイフィルムの接着剤層に利用する場合に、ガスバリア性を有する無機フィラーにより、大気中の酸素の透過が遮断される結果、銅配線の酸化と銅の拡散が抑制されて長期耐熱性を向上させることができる。
[Inorganic filler]
The cross-linked polyimide resin of the present invention can contain a plate-like inorganic filler having an average particle size in the range of 2 to 25 μm as an optional component (C). (C) By blending the component inorganic filler, when the crosslinked polyimide resin is used for, for example, the adhesive layer of the coverlay film, the permeation of oxygen in the atmosphere is blocked by the inorganic filler having gas barrier properties. In addition, oxidation of copper wiring and copper diffusion are suppressed, and long-term heat resistance can be improved.
 (C)成分の無機フィラーとしては、接着剤層に十分なガスバリア性を付与するために、板状のものを用いることが好ましい。ここで「板状」とは、例えば、扁平状、平板状、薄片状、鱗片状等を含む意味で用い、無機フィラーの厚みが、平面部分の長径又は短径より十分に小さいもの(好ましくは1/2以下)をいう。特に、鱗片状の無機フィラーを用いることが好ましい。別の観点から、「板状」はフィラー粒子の長径と厚みとの比(長径/厚み)が好ましくは5以上、より好ましくは10以上、更に好ましくは15以上であるものを意味する。また、板状の無機フィラーは、上記長径と平均粒径との関係が、長径≧平均粒径>0.4×長径であることが好ましく、より好ましくは長径≧平均粒径≧0.5×長径であることがよい。なお、本発明においてフィラー粒子の長径(又は短径)及び厚み並びに長径と厚みとの比は、実体顕微鏡により任意10粒のフィラーを測定したときの平均値とする。無機フィラーの形状が板状でなく、例えば球状である場合には、接着剤層のガスバリア性が低下して配線層の酸化が進行し、カバーレイフィルムの接着強度が低下する場合があるが、板状フィラー配合の効果を損なわない範囲で、板状以外の形状の無機フィラーを配合することを妨げるものではない。 As the inorganic filler of component (C), it is preferable to use a plate-like material in order to impart sufficient gas barrier properties to the adhesive layer. Here, the “plate shape” is used to mean, for example, a flat shape, a flat plate shape, a flake shape, a scale shape, etc., and the thickness of the inorganic filler is sufficiently smaller than the major axis or minor axis of the plane portion (preferably 1/2 or less). In particular, it is preferable to use a scale-like inorganic filler. From another viewpoint, “plate-like” means that the ratio of the major axis to the thickness (major axis / thickness) of the filler particles is preferably 5 or more, more preferably 10 or more, and still more preferably 15 or more. In the plate-like inorganic filler, the relationship between the long diameter and the average particle diameter is preferably long diameter ≧ average particle diameter> 0.4 × long diameter, more preferably long diameter ≧ average particle diameter ≧ 0.5 ×. It is good that it is a long diameter. In the present invention, the major axis (or minor axis) and thickness of the filler particles, and the ratio of the major axis to the thickness are the average values when ten arbitrary fillers are measured with a stereomicroscope. If the shape of the inorganic filler is not plate-like, for example, it is spherical, the gas barrier property of the adhesive layer is lowered, the oxidation of the wiring layer proceeds, and the adhesive strength of the coverlay film may be reduced. It does not preclude blending inorganic fillers having a shape other than the plate shape as long as the effect of blending the plate filler is not impaired.
 (C)成分の無機フィラーとしては、例えばタルク、マイカ、セリサイト、クレイ、カオリン等の絶縁性の無機フィラーを用いることが好ましい。 As the inorganic filler of component (C), it is preferable to use an insulating inorganic filler such as talc, mica, sericite, clay, kaolin and the like.
 無機フィラーは、レーザー回折法により算出した平均粒径が2~25μmの範囲内であることが好ましく、5~20μmの範囲内であることがより好ましい。ここで、無機フィラーの粒径は、粒子の長手直径の平均値を基準とする。平均粒径が上記上限値を超えると、カバーレイフィルムの接着剤層の表面荒れが生じる傾向があり、上記下限値を下回ると、酸素透過を抑制する効果が得られにくい。 The inorganic filler preferably has an average particle diameter calculated by a laser diffraction method in the range of 2 to 25 μm, and more preferably in the range of 5 to 20 μm. Here, the particle size of the inorganic filler is based on the average value of the longitudinal diameters of the particles. When the average particle diameter exceeds the upper limit, the surface roughness of the adhesive layer of the coverlay film tends to occur. When the average particle diameter is less than the lower limit, it is difficult to obtain the effect of suppressing oxygen transmission.
 また、無機フィラーの粒度分布は、個数基準で、粒径10μm以下が好ましくは60%以上、より好ましくは65%以上であり、粒径20μm以上が10%以下であることが好ましい。粒径10μm以下の無機フィラーが60%未満であると、接着剤樹脂組成物をフィルム化した際に、フィラーが層状に並ばす、フィルム表面に突起が現れ、フィルム表面の荒れの原因となる。また、粒径20μm以上の無機フィラーが10%を超えると、フィルム表面に突起が現れ、フィルム表面の荒れの原因となり、例えば15μm以下の薄いフィルムを作製した際には、表面荒れの傾向になりやすい。また、無機フィラーの粒径の頻度分布は、0.1~100μmが好ましく、0.5~70μmがより好ましい。頻度分布が、上記上限値を超えると、接着剤層の表面荒れが生じる傾向があり、上記下限値を下回ると、酸素透過を抑制する効果が得られにくい。 In addition, the particle size distribution of the inorganic filler is preferably 60% or more, more preferably 65% or more, and preferably the particle size of 20 μm or more is 10% or less on a number basis. When the inorganic filler having a particle diameter of 10 μm or less is less than 60%, when the adhesive resin composition is formed into a film, the fillers are arranged in layers, and protrusions appear on the film surface, which causes the film surface to become rough. In addition, if the inorganic filler having a particle size of 20 μm or more exceeds 10%, protrusions appear on the film surface, causing the surface of the film to become rough. For example, when a thin film of 15 μm or less is produced, the surface tends to be rough. Cheap. The frequency distribution of the particle size of the inorganic filler is preferably from 0.1 to 100 μm, more preferably from 0.5 to 70 μm. If the frequency distribution exceeds the upper limit, the surface of the adhesive layer tends to be rough, and if the frequency distribution is lower than the lower limit, it is difficult to obtain the effect of suppressing oxygen transmission.
 (C)成分の無機フィラーの配合量は、上記(A)成分及び(B)成分の合計100重量部に対して、5~200重量部であり、好ましくは10~150重量部であり、更に好ましくは30~100重量部であり、望ましくは40~80重量部である。上記(A)成分及び(B)成分の合計100重量部に対して無機フィラーの配合量が5重量部未満では、配合の効果が得られず、酸素透過を抑制する効果が得られない。また、上記(A)成分及び(B)成分の合計100重量部に対して無機フィラーの配合量が200重量部を超えると、接着剤層が脆弱となり、その結果として接着剤層での凝集破壊による強度低下が生じるため、見かけ上の接着性が著しく低下する。また、本発明において無機フィラーは、板状のものを用いるが、板状でない無機フィラーを併用することも可能である。板状でない無機フィラーを併用する場合には、(A)成分及び(B)成分の合計100重量部に対して無機フィラー全体(板状およびその他形状の合計)の配合量が200重量部を超えないようにすることが好ましい。 The compounding amount of the inorganic filler of component (C) is 5 to 200 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the total of component (A) and component (B). The amount is preferably 30 to 100 parts by weight, and desirably 40 to 80 parts by weight. When the blending amount of the inorganic filler is less than 5 parts by weight with respect to 100 parts by weight of the total of the component (A) and the component (B), the blending effect cannot be obtained, and the effect of suppressing oxygen permeation cannot be obtained. Moreover, when the compounding quantity of an inorganic filler exceeds 200 weight part with respect to a total of 100 weight part of said (A) component and (B) component, an adhesive bond layer will become weak, As a result, cohesive failure in an adhesive bond layer As a result, the apparent adhesiveness is significantly reduced. In the present invention, a plate-like inorganic filler is used, but it is also possible to use a non-plate-like inorganic filler in combination. When the inorganic filler that is not plate-shaped is used in combination, the total amount of the inorganic filler (plate-shaped and other shapes total) exceeds 200 parts by weight with respect to 100 parts by weight of the total of component (A) and component (B). It is preferable not to do so.
[作用]
 上記(A)成分のポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基との反応は、脱水縮合反応であり、ポリイミドシロキサン中のケトン基の炭素原子と第1級アミノ基の窒素原子がC=N結合を形成する結果、鎖状のポリイミドシロキサンがアミノ化合物によって架橋されて網目状の高分子を形成するものと考えられる。そして、好ましくは上記(A)成分のポリイミドシロキサン中に水素結合形成基を含むことにより、架橋反応に先立ち、隣接するポリイミドシロキサン鎖の間で水素結合が生じ、アミノ化合物との架橋反応の反応点となるケトン基どうしを近づけることができる。その結果、アミノ化合物による架橋反応が促進され、実用上十分な耐湿半田耐熱性を獲得するまでの加熱時間を短縮できる。通常、ポリイミドシロキサンは分子間相互作用を生じにくいため、ポリイミドシロキサンの配向制御は困難であるが、水素結合形成基を主鎖中に含むことにより、水素結合を生じさせることができる。さらに、ケトン基とアミノ化合物との架橋構造が生じると、ポリイミドシロキサンにおける見かけ上の高分子量化のみならず、ポリイミドシロキサンの分子同士をある程度拘束することが可能になるので、耐熱性が向上し、極めて優れた半田耐熱性が得られると考えられる。また、C=N結合における窒素原子近傍が立体的に嵩高くなることにより、架橋ポリイミド樹脂に含まれる極性基の銅原子の求核能を低下させることによって、銅配線からの銅の接着剤層への拡散を抑制することができ、高温環境での使用における接着強度の低下を抑制する効果が得られるものと考えられる。このような理由により、本発明で使用するアミノ化合物は、少なくとも2つのアミノ基を有する必要があり、アミノ基の数は好ましくは2~5、より好ましくは2~3である。また、アミノ基を3つ以上有するアミノ化合物では、2つのアミノ基がC=N結合を形成した後の架橋構造体が立体的に嵩高くなるために、残りの未反応のアミノ基がケトン基と反応しにくくなることから、アミノ基の数は2であることが特に好ましい。さらに、上記のとおり接着剤樹脂組成物の硬化時間を短縮するという観点では、アミノ化合物としてジヒドラジド化合物を用いることが最も好ましい。
[Action]
The reaction between the ketone group of the polyimide siloxane of the component (A) and the primary amino group of the amino compound is a dehydration condensation reaction, and the carbon atom of the ketone group and the nitrogen atom of the primary amino group in the polyimide siloxane are As a result of forming a C = N bond, it is considered that a chain polyimidesiloxane is crosslinked with an amino compound to form a network polymer. Preferably, by including a hydrogen bond-forming group in the polyimide siloxane of the component (A), a hydrogen bond is generated between adjacent polyimide siloxane chains prior to the crosslinking reaction, and the reaction point of the crosslinking reaction with the amino compound. Can be brought close to each other. As a result, the crosslinking reaction by the amino compound is promoted, and the heating time until a practically sufficient moisture-resistant soldering heat resistance is obtained can be shortened. Usually, since polyimidesiloxane hardly causes intermolecular interaction, it is difficult to control the orientation of polyimidesiloxane, but by including a hydrogen bond forming group in the main chain, a hydrogen bond can be generated. Furthermore, when a crosslinked structure of a ketone group and an amino compound occurs, not only the apparent high molecular weight in polyimide siloxane but also the polyimide siloxane molecules can be constrained to some extent, thus improving the heat resistance, It is considered that extremely excellent solder heat resistance can be obtained. In addition, the vicinity of the nitrogen atom in the C = N bond becomes three-dimensionally bulky, thereby reducing the nucleophilic ability of the copper atom of the polar group contained in the crosslinked polyimide resin, so that the copper adhesive layer from the copper wiring It is thought that the effect of suppressing the decrease in the adhesive strength when used in a high temperature environment can be obtained. For these reasons, the amino compound used in the present invention must have at least two amino groups, and the number of amino groups is preferably 2 to 5, more preferably 2 to 3. In addition, in an amino compound having three or more amino groups, the cross-linked structure after the two amino groups form a C═N bond becomes three-dimensionally bulky, so that the remaining unreacted amino group is a ketone group. It is particularly preferable that the number of amino groups is 2. Furthermore, from the viewpoint of shortening the curing time of the adhesive resin composition as described above, it is most preferable to use a dihydrazide compound as the amino compound.
[接着剤樹脂組成物]
 本発明の接着剤樹脂組成物は、上記ポリイミドシロキサン[(A)成分]と、少なくとも2つの第1級のアミノ基を官能基として有するアミノ化合物[(B)成分]と、を必須成分として含有する。この接着剤樹脂組成物は、(A)成分及び(B)成分を混合もしくは混練させることにより、並びに/または(A)成分及び(B)成分を含有した状態で加熱することにより、前記ポリイミドシロキサンのケトン基とアミノ化合物の第1級のアミノ基とが縮合反応してC=N結合を形成する性質を有する。すなわち、本発明の接着剤樹脂組成物は、ポリイミドシロキサンとアミノ化合物との縮合反応によって本発明の硬化物に変化する。ここで、本発明の「硬化物」とは、ポリイミドシロキサンのケトン基と、アミノ化合物の第1級アミノ基との架橋反応がそれ以上進行しない程度まで完結した状態だけではなく、上記架橋反応の余地を残した半硬化の状態をも含む。本発明の接着剤樹脂組成物において、(A)成分の重量平均分子量は、例えば30,000~200,000の範囲内の範囲内が好ましく、160℃、2時間の加熱で十分な耐湿半田耐熱性を得るとの観点からは70,000~140,000の範囲内がより好ましい。(A)成分の重量平均分子量が70,000未満であると、接着剤樹脂組成物を溶液にした場合の流動性の制御が困難になり、また硬化物の耐熱性の低下が生じる傾向になる。一方、重量平均分子量が140,000を超えると、溶剤への可溶性を損なう傾向になる。
[Adhesive resin composition]
The adhesive resin composition of the present invention contains the polyimidesiloxane [(A) component] and an amino compound [(B) component] having at least two primary amino groups as functional groups as essential components. To do. This adhesive resin composition is obtained by mixing or kneading the component (A) and the component (B) and / or heating in a state containing the component (A) and the component (B). And the primary amino group of the amino compound undergo a condensation reaction to form a C═N bond. That is, the adhesive resin composition of the present invention changes to the cured product of the present invention by a condensation reaction between polyimide siloxane and an amino compound. Here, the “cured product” of the present invention is not only a state in which the crosslinking reaction between the ketone group of the polyimide siloxane and the primary amino group of the amino compound does not proceed any further, Including the semi-cured state leaving room. In the adhesive resin composition of the present invention, the weight average molecular weight of the component (A) is preferably in the range of 30,000 to 200,000, for example. From the viewpoint of obtaining properties, it is more preferably within the range of 70,000 to 140,000. When the weight average molecular weight of the component (A) is less than 70,000, it becomes difficult to control the fluidity when the adhesive resin composition is made into a solution, and the heat resistance of the cured product tends to decrease. . On the other hand, when the weight average molecular weight exceeds 140,000, the solubility in the solvent tends to be impaired.
 接着剤樹脂組成物は、ケトン基1モルに対し、第1級アミノ基が合計で0.004モル~1.5モル、好ましくは0.005モル~1.2モル、より好ましくは0.03モル~0.9モル、特に好ましくは0.04モル~0.5モルとなるようにアミノ化合物を含有する。 The adhesive resin composition has a total of primary amino groups of 0.004 mol to 1.5 mol, preferably 0.005 mol to 1.2 mol, more preferably 0.03 mol per mol of ketone groups. The amino compound is contained in an amount of from mol to 0.9 mol, particularly preferably from 0.04 mol to 0.5 mol.
 本発明の接着剤樹脂組成物には、上記(A)成分のポリイミドシロキサン、(B)成分のアミノ化合物とともに、任意成分として上記(C)成分の無機フィラーを含有することが好ましい。さらに必要に応じて、エポキシ樹脂などの他の樹脂成分、硬化促進剤、カップリング剤、充填剤、顔料、溶剤、難燃剤などを適宜配合することができる。ただし、可塑剤には、極性基を多く含有するものがあり、それが銅配線からの銅の拡散を助長する懸念があるため、可塑剤は極力使用しないことが好ましい。 The adhesive resin composition of the present invention preferably contains the inorganic filler of the component (C) as an optional component together with the polyimide siloxane of the component (A) and the amino compound of the component (B). Further, if necessary, other resin components such as an epoxy resin, a curing accelerator, a coupling agent, a filler, a pigment, a solvent, a flame retardant and the like can be appropriately blended. However, some plasticizers contain a large number of polar groups, and there is a concern that this may promote the diffusion of copper from the copper wiring. Therefore, it is preferable not to use the plasticizer as much as possible.
 本発明の接着剤樹脂組成物に(C)成分の無機フィラー以外の任意成分を配合する場合は、例えば、架橋ポリイミド樹脂100重量部に対し、任意成分の合計で1~10重量部の配合量とすることが好ましく、2~7重量部の配合量とすることがより好ましい。 In the case where an optional component other than the inorganic filler of component (C) is blended in the adhesive resin composition of the present invention, for example, the blending amount of 1 to 10 parts by weight in total of the optional component is 100 parts by weight of the crosslinked polyimide resin The blending amount is preferably 2 to 7 parts by weight.
 以上のようにして得られる本発明の接着剤樹脂組成物は、これを用いて接着剤層を形成した場合に優れた柔軟性と熱可塑性を有するものとなり、例えばFPC、リジッド・フレックス回路基板などの配線部を保護するカバーレイフィルム用の接着剤として好ましい特性を有している。カバーレイフィルムの接着剤層として使用する場合、カバーレイ用フィルム材の片面に本発明の接着剤樹脂組成物を溶液の状態(例えば、溶剤を含有するワニス状)で塗布した後、例えば60~220℃の温度で熱圧着させることにより、カバーレイ用フィルム材層と接着剤層を有する本発明のカバーレイフィルムを形成できる。この場合、熱圧着の際の熱を利用してポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基とを加熱縮合させることができる。また、熱圧着の際の加熱縮合が充分でない場合でも、熱圧着の後に更に熱処理を施して加熱縮合させることもできる。熱圧着後に熱処理を施す場合、熱処理温度は、例えば60~220℃が好ましく、80~200℃がより好ましい。また、任意の基材上に、本発明の接着剤樹脂組成物を溶液の状態(例えば、溶剤を含有するワニス状)で塗布し、例えば80~180℃の温度で乾燥した後、剥離することにより、接着剤フィルムを形成し、この接着剤フィルムを、上記カバーレイ用フィルム材と例えば60~220℃の温度で熱圧着させることによっても、カバーレイ用フィルム材層と接着剤層を有する本発明のカバーレイフィルムを形成できる。この場合も、熱圧着の際の熱を利用してポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基とを加熱縮合させることができる。以上のように、本発明の接着剤樹脂組成物は、ポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基とが未反応の状態で種々の形態に加工して利用できる。更にまた、本発明の接着剤樹脂組成物は、任意の基材上に、スクリーン印刷により溶液の状態で被覆膜を形成し、例えば80~180℃の温度で乾燥させて使用することもできる。好ましくは更に130~220℃の温度で所定時間熱処理し、被覆膜を完全に硬化させることにより、硬化物を形成することもできる。 The adhesive resin composition of the present invention obtained as described above has excellent flexibility and thermoplasticity when it is used to form an adhesive layer, such as FPC, rigid flex circuit board, etc. It has preferable characteristics as an adhesive for a coverlay film that protects the wiring part. When used as an adhesive layer of a cover lay film, the adhesive resin composition of the present invention is applied in the form of a solution (for example, a varnish containing a solvent) to one side of a cover lay film material. By carrying out thermocompression bonding at a temperature of 220 ° C., the coverlay film of the present invention having a coverlay film material layer and an adhesive layer can be formed. In this case, it is possible to heat-condense the ketone group of the polyimide siloxane and the primary amino group of the amino compound using heat at the time of thermocompression bonding. Moreover, even when heat condensation at the time of thermocompression bonding is not sufficient, heat treatment can be further performed after thermocompression bonding for heat condensation. When heat treatment is performed after thermocompression bonding, the heat treatment temperature is preferably 60 to 220 ° C, for example, and more preferably 80 to 200 ° C. Further, the adhesive resin composition of the present invention is applied on an arbitrary substrate in a solution state (for example, a varnish containing a solvent), dried at a temperature of, for example, 80 to 180 ° C., and then peeled off. The film having the coverlay film material layer and the adhesive layer can also be formed by thermocompression bonding the adhesive film with the coverlay film material at a temperature of 60 to 220 ° C., for example. The coverlay film of the invention can be formed. In this case as well, the ketone group of the polyimide siloxane and the primary amino group of the amino compound can be heat-condensed using the heat during thermocompression bonding. As described above, the adhesive resin composition of the present invention can be used after being processed into various forms in a state where the ketone group of polyimidesiloxane and the primary amino group of the amino compound are unreacted. Furthermore, the adhesive resin composition of the present invention can be used by forming a coating film in the form of a solution by screen printing on an arbitrary substrate and drying it at a temperature of 80 to 180 ° C., for example. . Preferably, a cured product can be formed by further heat-treating at a temperature of 130 to 220 ° C. for a predetermined time to completely cure the coating film.
[カバーレイフィルム・ボンディングシート]
 本発明のカバーレイフィルムは、カバーレイフィルム材と、該カバーレイフィルム材に積層された、上記接着剤樹脂組成物により構成される接着剤層とを備えている。本発明のカバーレイフィルムにおけるカバーレイ用フィルム材としては、限定する趣旨ではないが、例えばポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂等のポリイミド系樹脂フィルムや、ポリアミド系樹脂フィルム、ポリエステル系樹脂フィルムなどを用いることができる。これらの中でも、優れた耐熱性を持つポリイミド系樹脂フィルムを用いることが好ましい。カバーレイ用フィルム材層の厚みは、特に限定されるものではないが、例えば5μm以上100μm以下が好ましい。また、接着剤層の厚さは、特に限定されるものではないが、例えば10μm以上50μm以下が好ましい。
[Coverlay film / bonding sheet]
The coverlay film of the present invention includes a coverlay film material and an adhesive layer composed of the adhesive resin composition laminated on the coverlay film material. The film material for the coverlay in the coverlay film of the present invention is not limited, but, for example, a polyimide resin film such as a polyimide resin, a polyetherimide resin, a polyamideimide resin, a polyamide resin film, or a polyester resin. A film or the like can be used. Among these, it is preferable to use a polyimide resin film having excellent heat resistance. The thickness of the coverlay film material layer is not particularly limited, but is preferably 5 μm or more and 100 μm or less, for example. The thickness of the adhesive layer is not particularly limited, but is preferably 10 μm or more and 50 μm or less, for example.
 また、本発明の接着剤樹脂組成物をフィルム状に形成したものは、例えば多層FPCのボンディングシートとしても利用することができる。ボンディングシートとして用いる場合、任意の基材フィルム上に、本発明の接着剤樹脂組成物を溶液の状態で塗布し、例えば80~180℃の温度で乾燥した後、剥離して得られる接着剤フィルムをそのままボンディングシートとして使用してもよいし、この接着剤フィルムを任意の基材フィルムと積層した状態で使用してもよい。ボンディングシートとして用いる場合も、熱圧着の際の熱を利用してポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基とを加熱縮合させることができるし、熱圧着の後に更に熱処理を施して加熱縮合させることもできる。 Moreover, what formed the adhesive resin composition of this invention in the film form can be utilized also as a bonding sheet of multilayer FPC, for example. When used as a bonding sheet, an adhesive film obtained by coating the adhesive resin composition of the present invention in the form of a solution on an arbitrary base film, drying at a temperature of, for example, 80 to 180 ° C., and then peeling. May be used as a bonding sheet as it is, or may be used in a state where this adhesive film is laminated with an arbitrary substrate film. Also when used as a bonding sheet, the heat of thermocompression bonding can be used to heat-condense the polyimidesiloxane ketone group and the primary amino group of the amino compound. Heat condensation can also be performed.
 また、カバーレイフィルムやボンディングシートは、接着剤面に離型材を貼り合わせて離型材層を有する形態としてもよい。離型材の材質は、カバーレイフィルムやボンディングシートの形態を損なうことなく剥離可能であれば特に限定されるものではないが、例えば、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレンなどの樹脂フィルムや、これらの樹脂フィルムを紙上に積層したものなどを用いることができる。 Also, the coverlay film and the bonding sheet may have a release material layer by bonding a release material to the adhesive surface. The material of the release material is not particularly limited as long as it can be peeled without impairing the form of the coverlay film or the bonding sheet. For example, resin films such as polyethylene terephthalate, polyethylene, and polypropylene, and these resin films And the like laminated on paper can be used.
 本発明の接着剤樹脂組成物を用いて、成型し、熱処理により上記加熱縮合反応を生じさせて得られるカバーレイフィルムやボンディングシートは、ポリイミドシロキサンとアミノ化合物との反応によって得られた架橋ポリイミド樹脂を含有するため、優れた半田耐熱性を有している。より具体的には、後記実施例に示すように、半田耐熱性(乾燥)が260℃以上、好ましくは280℃以上、より好ましくは300℃以上であり、半田耐熱性(耐湿)が200℃以上、好ましくは260℃以上、より好ましくは280℃以上である。このように極めて優れた半田耐熱性を具備することにより、半田工程で変形や剥離などの発生が防止され、製造される回路基板等の歩留まりと信頼性の向上に寄与できる。 The coverlay film or bonding sheet obtained by molding using the adhesive resin composition of the present invention and causing the heat condensation reaction by heat treatment is a cross-linked polyimide resin obtained by reaction of polyimidesiloxane and an amino compound. Therefore, it has excellent solder heat resistance. More specifically, as shown in Examples below, the solder heat resistance (drying) is 260 ° C. or higher, preferably 280 ° C. or higher, more preferably 300 ° C. or higher, and the solder heat resistance (humidity resistance) is 200 ° C. or higher. The temperature is preferably 260 ° C. or higher, more preferably 280 ° C. or higher. Thus, by having extremely excellent solder heat resistance, the occurrence of deformation or peeling in the soldering process is prevented, and it is possible to contribute to the improvement of the yield and reliability of the circuit board to be manufactured.
[回路基板]
 本発明の回路基板は、以上のようにして得られるカバーレイフィルムやボンディングシートを備えている限り、その構成に特に制限はない。例えば、本発明の回路基板の好ましい形態は、少なくとも、基材と、基材上に所定のパターンで形成された銅などの金属からなる配線層と、該配線層を覆う本発明のカバーレイフィルムとを備えている。回路基板の基材としては、特に限定する趣旨ではないが、FPCの場合は、上記カバーレイ用フィルム材と同様の材質を用いることが好ましく、ポリイミド系樹脂製の基材を用いることが好ましい。
[Circuit board]
As long as the circuit board of this invention is provided with the coverlay film and bonding sheet which are obtained as mentioned above, there is no restriction | limiting in particular in the structure. For example, the preferred form of the circuit board of the present invention is at least a base material, a wiring layer made of a metal such as copper formed in a predetermined pattern on the base material, and the cover lay film of the present invention covering the wiring layer And has. The base material of the circuit board is not particularly limited, but in the case of FPC, it is preferable to use the same material as the coverlay film material, and it is preferable to use a polyimide resin base material.
 本発明の回路基板は、本発明のカバーレイフィルムを用いることにより、優れた柔軟性と熱可塑性を有する接着剤層が配線間に充填され、カバーレイフィルムと配線層との高い密着性が得られる。また、ポリイミドシロキサンとアミノ化合物との反応によって得られた架橋ポリイミド樹脂を含む接着剤層を形成することにより、銅配線からの銅の拡散が抑制され、高温環境での使用が繰り返されても、優れた密着性を長期間に亘り維持できる。より具体的には、大気中、150℃、1000時間の長期耐熱性試験後において、エネルギー分散型X線(EDX)分析装置による測定(後記実施例を参照)で、接着剤層への銅の拡散量を2.5%以下に抑制することができる。その結果、長期耐熱性試験後の銅配線層とカバーレイ用フィルム材層との剥離強度を0.2kN/m以上に維持することが可能である。特に、一般式(1)及び(2)中の基Ar、基R及び基Rを選定することにより、0.4kN/m以上の極めて高い剥離強度を得ることが可能である。また、原料の全ジアミン成分に対するジアミノシロキサンの配合比率を35モル%以上とすることにより、優れた可溶性を得ることが可能であり、可塑剤を配合しなくても、カバーレイフィルムの反りを防止できる。 By using the cover lay film of the present invention, the circuit board of the present invention is filled with an adhesive layer having excellent flexibility and thermoplasticity between the wirings, and high adhesion between the cover lay film and the wiring layer is obtained. It is done. In addition, by forming an adhesive layer containing a cross-linked polyimide resin obtained by the reaction of polyimide siloxane and amino compound, copper diffusion from the copper wiring is suppressed, even if repeated use in a high temperature environment, Excellent adhesion can be maintained over a long period of time. More specifically, after a long-term heat resistance test at 150 ° C. and 1000 hours in the atmosphere, the measurement of the energy dispersive X-ray (EDX) analyzer (see Examples below) shows that the copper on the adhesive layer The amount of diffusion can be suppressed to 2.5% or less. As a result, it is possible to maintain the peel strength between the copper wiring layer and the coverlay film material layer after the long-term heat resistance test at 0.2 kN / m or more. In particular, by selecting the group Ar, the group R 1 and the group R 2 in the general formulas (1) and (2), it is possible to obtain an extremely high peel strength of 0.4 kN / m or more. Also, by setting the blending ratio of diaminosiloxane to the total diamine component of the raw material to 35 mol% or more, it is possible to obtain excellent solubility and prevent warping of the coverlay film without blending a plasticizer. it can.
 また、本発明の回路基板は、多層回路基板として構成してもよい。この場合、カバーレイフィルムだけでなく、ボンディングシートにも、本発明の接着剤樹脂組成物から得られる接着剤フィルムを用いることができる。 Further, the circuit board of the present invention may be configured as a multilayer circuit board. In this case, the adhesive film obtained from the adhesive resin composition of the present invention can be used not only for the coverlay film but also for the bonding sheet.
 本発明の回路基板の製造は、特に限定されるものではないが、例えば銅張積層板などの金属張積層板の金属箔を化学エッチング等の方法で所定のパターンに回路加工した後、その回路上の必要な部分にカバーレイフィルムを積層し、例えば熱プレス装置などを用いて熱圧着する方法などを挙げることができる。この場合、圧着条件は、特に限定されるものではないが、例えば、圧着温度は好ましくは130℃以上220℃以下、より好ましくは140℃以上200℃以下、圧力は0.1MPa以上4MPa以下とすることが好ましい。なお、カバーレイフィルムの状態で、ポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基とが未反応である場合は、カバーレイフィルムを回路配線に熱圧着させる際の熱を利用して縮合反応を起こさせることができる。すなわち、カバーレイフィルムの接着剤層が配線層に当接するように配置し、両部材を熱圧着する工程と同時に、接着剤層中に含まれる(A)成分のケトン基と(B)成分の第1級のアミノ基とを縮合反応させてC=N結合を形成させることが可能である。 The production of the circuit board of the present invention is not particularly limited. For example, after the metal foil of a metal-clad laminate such as a copper-clad laminate is processed into a predetermined pattern by a method such as chemical etching, the circuit is produced. For example, a method of laminating a cover lay film on the necessary portion above and performing thermocompression bonding using, for example, a hot press apparatus can be used. In this case, the pressure bonding conditions are not particularly limited. For example, the pressure bonding temperature is preferably 130 ° C. or higher and 220 ° C. or lower, more preferably 140 ° C. or higher and 200 ° C. or lower, and the pressure is 0.1 MPa or higher and 4 MPa or lower. It is preferable. In addition, when the ketone group of polyimide siloxane and the primary amino group of the amino compound are unreacted in the state of the cover lay film, condensation is performed using heat when the cover lay film is thermocompression bonded to the circuit wiring. A reaction can be caused. That is, it arrange | positions so that the adhesive bond layer of a coverlay film may contact | connect a wiring layer, and the process of carrying out the thermocompression bonding of both members, and the ketone group of (A) component contained in an adhesive bond layer, and (B) component It is possible to carry out a condensation reaction with a primary amino group to form a C═N bond.
 次に、本発明の架橋ポリイミド樹脂を熱伝導性基板及び熱伝導性ポリイミドフィルムに適用した実施の形態について説明する。 Next, an embodiment in which the crosslinked polyimide resin of the present invention is applied to a thermally conductive substrate and a thermally conductive polyimide film will be described.
 最近の電子機器の小型化により、回路の集積度は上がってきており、情報処理の高速化とも相まって、機器内に生じる熱の放熱手段が注目されている。また、地球温暖化を始めとする環境問題への意識の高まりにより、環境負荷が低くかつ省エネルギーな製品が強く求められるようになっている。その代表例として、白熱灯に代わりLED照明の急速な普及が挙げられるが、LED照明の性能を充分に発揮させるためには、使用時に発生する熱を効率的に逃がすことが重要となっている。また、車載用途等に使用されるパワー半導体材料であるSiCでは、高温作動させるため使用時に発生する熱を効率的に逃がすことが重要となっている。そこで、加工性に富み、放熱性に優れた回路基板を提供するために、絶縁層を構成するポリイミドフィルムに関し、厚み方向の熱伝導率を向上させる検討がなされている。 With the recent miniaturization of electronic devices, the degree of circuit integration has increased, and in conjunction with the speeding up of information processing, heat dissipation means for heat generated in the device has attracted attention. In addition, with the growing awareness of environmental issues such as global warming, there is a strong demand for products with low environmental impact and energy saving. A typical example is the rapid spread of LED lighting in place of incandescent lamps, but in order to fully demonstrate the performance of LED lighting, it is important to efficiently release the heat generated during use. . Further, in SiC, which is a power semiconductor material used for in-vehicle applications, it is important to efficiently release heat generated during use in order to operate at a high temperature. Then, in order to provide the circuit board which was rich in workability and excellent in heat dissipation, about the polyimide film which comprises an insulating layer, examination which improves the thermal conductivity of the thickness direction is made | formed.
 しかし、従来技術のポリイミドフィルムの厚み方向の熱伝導率では、放熱基板としての性能が不足しており、改善の必要があった。また、一般に、銅箔などの金属層に樹脂層を積層して金属張積層体を作製する場合、通常、金属層と樹脂層との間にエポキシ系接着剤や熱可塑性樹脂による接着層を設ける必要がある。この接着層の介在は、金属層に生じる熱の放熱をさらに低下させる要因になるばかりでなく、実用的な基板として使用する場合に求められる耐熱性、屈曲性などの諸特性の低下を招く。このようにポリイミド樹脂に熱伝導性フィラーを配合させた基板材料やフィルム材料は知られているものの、耐熱性の高いポリイミド樹脂を他の部材と加熱圧着しようとすると高温での加圧条件で行なう必要があり、配線の欠落、部品の破損等の原因になることが懸念される。また、シロキサンポリイミドに熱伝導性フィラーを配合した場合、上記高温加圧の条件は緩和されるが、十分な耐熱性、特に長期耐熱性を確保することができず、高温環境で使用される放熱基板の主樹脂層としての適用には不向きと考えられる。 However, the thermal conductivity in the thickness direction of the conventional polyimide film is insufficient in performance as a heat radiating substrate and needs to be improved. In general, when a metal-clad laminate is produced by laminating a resin layer on a metal layer such as copper foil, an adhesive layer made of an epoxy adhesive or a thermoplastic resin is usually provided between the metal layer and the resin layer. There is a need. The interposition of the adhesive layer not only causes a further decrease in the heat dissipation generated in the metal layer, but also causes a decrease in various properties such as heat resistance and flexibility required for use as a practical substrate. Although a substrate material and a film material in which a heat conductive filler is mixed with a polyimide resin are known in this way, when a heat-resistant polyimide resin is to be thermocompression-bonded with another member, it is performed under a high pressure condition. This is necessary, and there is a concern that it may cause a lack of wiring, damage to parts, and the like. In addition, when a thermally conductive filler is blended with siloxane polyimide, the above-mentioned conditions of high-temperature pressurization are relaxed, but sufficient heat resistance, particularly long-term heat resistance cannot be ensured, and heat dissipation used in a high-temperature environment. It is considered unsuitable for application as a main resin layer of a substrate.
 そこで、接着層を必要とせず、絶縁層と金属層、セラミック基板、Si基板、その他の基材との間の実用的接着強度を有し、かつ絶縁層の熱伝導性、(長期)耐熱性に優れた熱伝導性基板、及び該熱伝導性基板に、上記の特性を与えることが可能で、比較的低温領域での加熱圧着性を有する熱伝導性ポリイミドフィルムの提供が望まれていた。本実施の形態では、絶縁層と金属層、セラミック基板、Si基板、その他の基材との間の実用的接着強度を有し、かつ絶縁層の熱伝導性、(長期)耐熱性に優れる熱伝導性基板、及びこの特性に加え、比較的低温領域下での加熱圧着性を有する熱伝導性ポリイミドフィルムを提供する。 Therefore, there is no need for an adhesive layer, it has practical adhesive strength between the insulating layer and the metal layer, ceramic substrate, Si substrate, and other base materials, and the thermal conductivity of the insulating layer, (long-term) heat resistance It has been desired to provide a heat conductive substrate excellent in heat resistance, and a heat conductive polyimide film that can give the above-mentioned characteristics to the heat conductive substrate and has thermocompression bonding properties in a relatively low temperature region. In this embodiment, heat having a practical adhesive strength between an insulating layer and a metal layer, a ceramic substrate, a Si substrate, or other base material, and excellent in thermal conductivity and (long-term) heat resistance of the insulating layer. Provided is a conductive substrate, and a thermally conductive polyimide film having thermocompression bonding properties in a relatively low temperature region in addition to this property.
[熱伝導性基板]
 本発明の一実施の形態の熱伝導性基板は、ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を少なくとも1層有する。絶縁層は、フィラー含有ポリイミド樹脂層を少なくとも1層有していればよい。絶縁層の片面又は両面には金属層を有する。フィラー含有ポリイミド樹脂層は、上記の架橋ポリイミド樹脂中に熱伝導性フィラーが含有されている。フィラー含有ポリイミド樹脂層を構成するポリイミド樹脂は、アミノ化合物とのC=N結合による架橋構造を有している。この架橋構造の架橋形成率(硬化の度合い)が制御されたフィラー含有ポリイミド樹脂層による絶縁層を、金属層の片面に有するものは、樹脂層に接着性をもたせることが可能であり、例えば樹脂付銅箔として、すなわち熱伝導性樹脂付銅箔として他の基材と接着して用いることができる。
[Thermal conductive substrate]
The thermally conductive substrate of one embodiment of the present invention has at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin. The insulating layer only needs to have at least one filler-containing polyimide resin layer. The insulating layer has a metal layer on one side or both sides. The filler-containing polyimide resin layer contains a thermally conductive filler in the above-mentioned crosslinked polyimide resin. The polyimide resin constituting the filler-containing polyimide resin layer has a cross-linked structure by a C═N bond with an amino compound. A resin layer having an insulating layer made of a filler-containing polyimide resin layer in which the crosslinking formation rate (degree of curing) of this crosslinked structure is controlled can be provided with adhesiveness to the resin layer. It can be used as an attached copper foil, that is, as a copper foil with a heat conductive resin, adhered to another substrate.
[絶縁層]
 絶縁層は、架橋ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を少なくとも1層有していればよく、フィラー含有ポリイミド樹脂層以外に、これに積層された他のポリイミド樹脂層を備えていてもよい。この場合、フィラー含有ポリイミド樹脂層を構成する架橋ポリイミド樹脂と、絶縁層中の他のポリイミド樹脂層を構成するポリイミド樹脂とは、同種のポリイミド樹脂でもよいし、異種のポリイミド樹脂でもよい。フィラー含有ポリイミド樹脂層以外の他のポリイミド樹脂層として異種のポリイミド樹脂を使用する場合のポリイミド樹脂の種類は特に問われるものではない。ただし、熱伝導性基板の放熱特性を高める観点から、絶縁層の全体がフィラー含有ポリイミド樹脂層により形成されていることが好ましい。この場合、フィラー含有ポリイミド樹脂層は単層に限らず、複数層が積層されたものでもよい。
[Insulation layer]
The insulating layer only needs to have at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a cross-linked polyimide resin. In addition to the filler-containing polyimide resin layer, other polyimide resins laminated thereon A layer may be provided. In this case, the crosslinked polyimide resin constituting the filler-containing polyimide resin layer and the polyimide resin constituting the other polyimide resin layer in the insulating layer may be the same type of polyimide resin or different types of polyimide resins. The kind of polyimide resin in the case of using different types of polyimide resins as other polyimide resin layers other than the filler-containing polyimide resin layer is not particularly limited. However, from the viewpoint of enhancing the heat dissipation characteristics of the thermally conductive substrate, the entire insulating layer is preferably formed of a filler-containing polyimide resin layer. In this case, the filler-containing polyimide resin layer is not limited to a single layer, and may be a laminate of a plurality of layers.
[熱伝導フィラー]
 本実施の形態では、フィラー含有ポリイミド樹脂層中の熱伝導性フィラーの含有割合は、5~80wt%の範囲内であることが必要であり、10~60wt%の範囲内が好ましい。熱伝導性フィラーの含有割合が5wt%に満たないと、回路基板等の電子部品とした際の放熱特性が十分でなく、80wt%を超えると耐折性や耐屈曲性の低下が顕著となり、また、フィラー含有ポリイミド樹脂層の強度も低下する。
[Thermal conductive filler]
In the present embodiment, the content ratio of the thermally conductive filler in the filler-containing polyimide resin layer needs to be in the range of 5 to 80 wt%, and preferably in the range of 10 to 60 wt%. If the content of the heat conductive filler is less than 5 wt%, the heat dissipation characteristics when the electronic component such as a circuit board is not sufficient, and if it exceeds 80 wt%, the decrease in folding resistance and bending resistance becomes significant. Moreover, the intensity | strength of a filler containing polyimide resin layer also falls.
 熱伝導性フィラーとしては、高熱伝導性のフィラーが好ましく、具体的には、例えばアルミニウム、銅、ニッケル、シリカ、ダイヤモンド、アルミナ、マグネシア、ベリリア、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素等が挙げられる。これらの中でも、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類のフィラーが好ましい。フィラー含有ポリイミド樹脂層は絶縁層として作用するので、その観点からはポリイミド樹脂層に配合されるフィラーは絶縁性であるものが適する。フィラー形状は、特に制限されるものではなく、例えば板状(燐片状を含む)、球状、針状、棒状のいずれでも良い。また、熱伝導性フィラーの含有量を高め、熱伝導性などの特性とのバランスを考慮し、異なる形状(例えば、板状と球状、板状と針状など)のフィラーを併用することもできる。 As the thermally conductive filler, a highly thermally conductive filler is preferable, and specifically, for example, aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, silicon carbide, etc. Can be mentioned. Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable. Since the filler-containing polyimide resin layer acts as an insulating layer, from that point of view, an insulating filler is suitable for the polyimide resin layer. The filler shape is not particularly limited, and may be, for example, a plate shape (including a flake shape), a spherical shape, a needle shape, or a rod shape. Moreover, considering the balance with characteristics such as thermal conductivity by increasing the content of the thermal conductive filler, fillers having different shapes (for example, plate-like and spherical, plate-like and needle-like) can be used in combination. .
 熱伝導性フィラーのサイズは、フィラー含有ポリイミド樹脂層の厚み方向にフィラーを均一に分散させて熱伝導性を向上させる観点から、例えば、平均粒子径が0.5~10μmの範囲内にあることが好ましく、0.8~5μmの範囲内にあることがより好ましい。熱伝導性フィラーの平均粒子径が0.5μmに満たないと、個々のフィラー内部での熱伝導が小さくなり、結果としてフィラー含有ポリイミド樹脂層の熱伝導率が向上しないばかりでなく、粒子同士が凝集を起こしやすくなり、均一に分散させることが困難となる恐れがある。一方、10μmを超えると、フィラー含有ポリイミド樹脂層への充填率が低下し、かつフィラー界面においてフィラー含有ポリイミド樹脂層が脆くなる傾向にある。 The size of the thermally conductive filler is, for example, in the range of an average particle diameter of 0.5 to 10 μm from the viewpoint of improving the thermal conductivity by uniformly dispersing the filler in the thickness direction of the filler-containing polyimide resin layer. Is more preferable, and is more preferably within a range of 0.8 to 5 μm. If the average particle diameter of the thermally conductive filler is less than 0.5 μm, the heat conduction inside each filler is reduced, and as a result, the thermal conductivity of the filler-containing polyimide resin layer is not improved, and the particles are Aggregation tends to occur, and it may be difficult to uniformly disperse. On the other hand, when it exceeds 10 μm, the filling rate into the filler-containing polyimide resin layer is lowered, and the filler-containing polyimide resin layer tends to be brittle at the filler interface.
[架橋ポリイミド樹脂及びポリイミドシロキサン]
 フィラー含有ポリイミド樹脂層を形成するためのポリイミド樹脂は、上記架橋ポリイミド樹脂であり、好ましくは上記一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンにおける基Ar及び/又は基R中のケトン基に、少なくとも2つの第1級のアミノ基を官能基として有するアミノ化合物を反応させてC=N結合を形成させることにより、ポリイミドシロキサンがアミノ化合物によって架橋された構造を有するものである。この場合、樹脂中の式(1)で表される構成単位の存在量は40モル%~100モル%の範囲内、好ましくは80モル%~100モル%の範囲内であることがよい。
[Crosslinked polyimide resin and polyimidesiloxane]
The polyimide resin for forming the filler-containing polyimide resin layer is the cross-linked polyimide resin, preferably a group Ar and / or group in polyimide siloxane having the structural units represented by the general formulas (1) and (2). A structure in which polyimide siloxane is crosslinked by an amino compound by reacting the ketone group in R 2 with an amino compound having at least two primary amino groups as functional groups to form a C═N bond. Is. In this case, the abundance of the structural unit represented by the formula (1) in the resin is in the range of 40 mol% to 100 mol%, preferably in the range of 80 mol% to 100 mol%.
 また、本発明の熱伝導性基板の好ましい態様では、上記一般式(1)及び(2)中に水素結合形成基を含むことができる。 In a preferred embodiment of the thermally conductive substrate of the present invention, a hydrogen bond forming group can be contained in the general formulas (1) and (2).
 上記一般式(1)、(2)で表される構成単位を有するポリイミドシロキサンにおいて、基Ar及び/又は基R中には、ケトン基を含み、このケトン基が、アミノ化合物との反応に関与する。この場合、ポリイミドシロキサンにおける基Ar及び/又は基R中のケトン基の少なくとも一部分にアミノ化合物のアミノ基が反応してC=N結合を形成していればよい。ポリイミド樹脂の架橋形成率(硬化の度合い)は、架橋形成によるポリイミド樹脂の硬化が完了した状態でなくてもよく、実用上十分な耐熱性を確保できる程度であればよい。つまり、ポリイミド樹脂は架橋反応が完了した硬化状態でもよいし、架橋形成の余地が残された半硬化状態であってもよい。硬化状態を半硬化状態に留めることで、樹脂層に接着性を持たせ、樹脂付き銅箔の用途に適したものとすることができる。架橋ポリイミド樹脂が実用上十分な耐熱性を有するかどうかは、例えば粘度を指標として判断することができる。 The general formula (1), in the polyimide siloxanes having a structural unit represented by (2), during the group Ar and / or groups R 2, include a ketone group, the ketone group is, for reaction with the amino compound concern. In this case, it is only necessary that the amino group of the amino compound reacts with at least a part of the ketone group in the group Ar and / or the group R 2 in the polyimidesiloxane to form a C═N bond. The crosslinking formation rate (degree of curing) of the polyimide resin may not be a state in which the curing of the polyimide resin by the crosslinking formation is completed, and may be a level that can ensure practically sufficient heat resistance. That is, the polyimide resin may be in a cured state where the crosslinking reaction has been completed, or may be in a semi-cured state in which room for crosslinking is left. By keeping the cured state in a semi-cured state, the resin layer can be provided with adhesiveness and can be made suitable for the use of the resin-coated copper foil. Whether or not the cross-linked polyimide resin has practically sufficient heat resistance can be determined using, for example, viscosity as an index.
 また、フィラー含有ポリイミド樹脂層は、フィラー含有率が一定であれば、架橋ポリイミド樹脂の架橋形成率が低いと相対的に接着性が高くなり、架橋ポリイミド樹脂の架橋形成率が高いと相対的に接着性が低くなる傾向がある。そのため、架橋ポリイミド樹脂の架橋形成率を例えば熱圧着後の銅箔とのピール強度(圧着面接着強度)を指標として判断することも可能である。より具体的には、片面に金属層を有する熱伝導性基板を作製した後、この熱伝導性基板のポリイミド樹脂層の上に厚さ18μmの圧延銅箔(表面粗さRa=0.7μm)を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスする。そして、後記実施例に示す「銅箔引剥し強度(ピール強度)」に従って180°引剥し試験を行い、前記圧延銅箔とポリイミド樹脂層とのピール強度を測定する。このとき、例えばフィラー含有率が80wt%でピール強度が0.4[kN/m]以上である場合を架橋形成が完了していない半硬化状態(架橋形成の余地が残された状態)とし、フィラー含有率が5wt%でピール強度が0.4[kN/m]以下である場合を架橋形成が完了した硬化状態と判定することができる。なお、「架橋形成が完了した硬化状態」は、架橋形成率が100%の状態(ポリイミドシロキサンにおける基Ar及び/又は基R中のケトン基が完全にC=N結合を形成している状態)を意味するものではなく、温度160℃、圧力2MPa、時間2時間のプレス条件で加熱処理をした場合でも、それ以上架橋反応が進行しない状態を意味する。 In addition, if the filler-containing polyimide resin layer has a constant filler content, the adhesiveness is relatively high when the crosslinking formation rate of the crosslinked polyimide resin is low, and relatively high when the crosslinking formation rate of the crosslinking polyimide resin is high. There is a tendency for adhesion to be low. Therefore, it is also possible to determine the crosslinking formation rate of the crosslinked polyimide resin using, for example, the peel strength (bonding surface adhesion strength) with the copper foil after thermocompression bonding as an index. More specifically, after producing a heat conductive substrate having a metal layer on one side, a rolled copper foil (surface roughness Ra = 0.7 μm) having a thickness of 18 μm is formed on the polyimide resin layer of the heat conductive substrate. And press under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours. Then, a 180 ° peel test is performed in accordance with “copper foil peel strength (peel strength)” shown in Examples below, and the peel strength between the rolled copper foil and the polyimide resin layer is measured. At this time, for example, when the filler content is 80 wt% and the peel strength is 0.4 [kN / m] or more, it is set as a semi-cured state in which the crosslinking is not completed (a state in which room for crosslinking is left), A case where the filler content is 5 wt% and the peel strength is 0.4 [kN / m] or less can be determined as a cured state in which the cross-linking is completed. The “cured state in which the cross-linking has been completed” is a state in which the cross-linking rate is 100% (a state in which the ketone group in the group Ar and / or the group R 2 in the polyimidesiloxane completely forms a C═N bond). ), And means that the crosslinking reaction does not proceed any more even when the heat treatment is performed under the pressing conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours.
 また、一般式(1)で表される構成単位において基Rとしては、例えば、上記式(4)で表されるジアミノシロキサンから誘導されたジアミノシロキサン残基を挙げることができる。 In addition, examples of the group R 1 in the structural unit represented by the general formula (1) include a diaminosiloxane residue derived from the diaminosiloxane represented by the above formula (4).
 上記ジアミノシロキサン残基は、ジアミノシロキサンからアミノ基を除いたシロキサン結合(Si-O-Si)を有する基であるが、このシロキサン結合の割合を増加させることによって、可塑剤を配合しなくても絶縁層に十分な柔軟性が付与される。また、可塑剤中には極性基が多く含まれることから、可塑剤を配合しないことの利点として、一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンを用いたポリイミド樹脂中に含まれる極性基の量を抑制できることが挙げられる。このため、本実施の形態では、式(1)におけるmの値を0.4以上、好ましくは0.8以上とする。mの値が0.4未満では反りの抑制効果が十分に得られない。また、シロキサン結合を増加させることによって、ポリイミドシロキサンのイミド結合部位の減少による硬化収縮を低減させる効果もあると考えられる。このようなことから、本実施の形態では、式(2)におけるnの値を0~0.6、好ましくは0~0.2の範囲内とする。 The diaminosiloxane residue is a group having a siloxane bond (Si—O—Si) obtained by removing an amino group from diaminosiloxane. By increasing the ratio of the siloxane bond, a plasticizer can be added. Sufficient flexibility is imparted to the insulating layer. Moreover, since many polar groups are contained in the plasticizer, as an advantage of not containing the plasticizer, a polyimide resin using a polyimide siloxane having structural units represented by the general formulas (1) and (2) The amount of polar groups contained therein can be suppressed. For this reason, in this Embodiment, the value of m in Formula (1) shall be 0.4 or more, Preferably it is 0.8 or more. If the value of m is less than 0.4, the effect of suppressing warpage cannot be obtained sufficiently. In addition, it is considered that increasing the siloxane bond also has an effect of reducing curing shrinkage due to a decrease in the imide bond site of polyimidesiloxane. For this reason, in the present embodiment, the value of n in the formula (2) is set in the range of 0 to 0.6, preferably 0 to 0.2.
 このように、上記一般式(4)で表されるジアミノシロキサンを用いてポリイミド中にシロキサン骨格を導入することにより、得られるポリイミドシロキサンに加熱圧着時の流動性を与え、金属層等との接着性を向上させることができる。 Thus, by introducing the siloxane skeleton into the polyimide using the diaminosiloxane represented by the above general formula (4), the resulting polyimidesiloxane is given fluidity at the time of thermocompression bonding and adhered to a metal layer or the like. Can be improved.
[フィラー含有ポリイミド樹脂の製造]
 フィラー含有ポリイミド樹脂は、上記一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンを含む樹脂溶液に、熱伝導性フィラーを混合して均一に分散させた後、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物を加えて、ポリイミドシロキサンのケトン基とアミノ化合物の第1級アミノ基とを縮合反応させることにより製造される。この縮合反応により、ポリイミドシロキサンに架橋構造が形成され、硬化して硬化物となる。この場合、アミノ化合物の添加量は、ケトン基1モルに対し、第1級アミノ基が合計で0.004モル~1.5モル、好ましくは0.005モル~1.2モル、より好ましくは0.03モル~0.9モル、特に好ましくは0.04モル~0.5モルである。ケトン基1モルに対して第1級アミノ基が合計で0.004モル未満となるようなアミノ化合物の添加量では、アミノ化合物によるポリイミドシロキサンの架橋が十分ではないため、ポリイミド樹脂と熱伝導性フィラーとを含む樹脂組成物を硬化させた後の硬化物において半田耐熱性が発現しにくい傾向となり、アミノ化合物の添加量が1.5モルを超えると未反応のアミノ化合物が熱可塑剤として作用し、同硬化物において半田耐熱性を低下させたり、高温での長期耐熱性を低下させたりする傾向がある。
[Production of filler-containing polyimide resin]
The filler-containing polyimide resin is obtained by mixing and uniformly dispersing a heat conductive filler in a resin solution containing polyimide siloxane having the structural units represented by the general formulas (1) and (2). It is produced by adding an amino compound having a primary amino group as a functional group and causing a condensation reaction between the ketone group of polyimidesiloxane and the primary amino group of the amino compound. By this condensation reaction, a cross-linked structure is formed in the polyimide siloxane and cured to a cured product. In this case, the addition amount of the amino compound is 0.004 mol to 1.5 mol, preferably 0.005 mol to 1.2 mol, and more preferably a total of primary amino groups with respect to 1 mol of the ketone group. It is 0.03 mol to 0.9 mol, particularly preferably 0.04 mol to 0.5 mol. The addition amount of the amino compound in which the primary amino group is less than 0.004 mol in total with respect to 1 mol of the ketone group is not sufficient to crosslink the polyimide siloxane with the amino compound. Solder heat resistance tends to be difficult to develop in a cured product after curing a resin composition containing a filler, and when the added amount of the amino compound exceeds 1.5 mol, the unreacted amino compound acts as a thermoplastic agent. However, the cured product tends to reduce solder heat resistance or to reduce long-term heat resistance at high temperatures.
 また、縮合反応の条件は、ポリイミドシロキサンにおけるケトン基とアミノ化合物の第1級アミノ基が反応してイミン結合(C=N結合)を形成する条件であれば、特に制限されない。アミノ化合物の種類にもよるが、例えば脂肪族アミンを使用する場合は、常温においてもポリイミドシロキサンにおけるケトン基と縮合させることが可能であるが、加熱によって縮合反応を促進することが好ましい。脂肪族アミンを使用する場合は、例えば60~200℃の範囲内で加熱縮合を行うことが好ましく、芳香族アミンを使用する場合は、例えば120~220℃の範囲内で加熱縮合を行うことが好ましい。加熱縮合の温度は、縮合によって生成する水を系外へ放出させるため、又はポリイミドシロキサンの合成の後に引き続いて加熱縮合反応を行なう場合に当該縮合工程を簡略化するため等の理由で、例えば120~220℃の範囲内が好ましく、140~200℃の範囲内がより好ましい。反応時間は、熱処理温度によって異なるが、例えば3分間から30時間の範囲内とすることができる。ここで、高い架橋形成率を得たい場合は、上記温度範囲において、反応時間を例えば1時間超~24時間程度とすることが好ましく、架橋形成率を低くしておきたい場合は、上記温度範囲において、反応時間を例えば3~60分間の範囲内とすることが好ましく、5~30分間の範囲内とすることがより好ましい。縮合反応の終点は、例えばフーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、赤外線吸収スペクトルを測定することによって、1670cm-1付近のポリイミドシロキサンにおけるケトン基に由来する吸収ピークの減少又は消失、及び1635cm-1付近のイミン基に由来する吸収ピークの出現により確認することができるし、あるいはラマン分光光度計(市販品:日本分光製 NRS-3100)を用い、ラマンスペクトルを測定することによって、1567cm-1付近のイミン基に由来するピークの出現により確認することができる。 The conditions for the condensation reaction are not particularly limited as long as the ketone group in the polyimidesiloxane and the primary amino group of the amino compound react to form an imine bond (C═N bond). Depending on the type of amino compound, for example, when an aliphatic amine is used, it can be condensed with a ketone group in polyimide siloxane even at room temperature, but it is preferable to promote the condensation reaction by heating. When an aliphatic amine is used, it is preferable to perform heat condensation within a range of 60 to 200 ° C., for example, and when an aromatic amine is used, heat condensation is performed within a range of 120 to 220 ° C., for example. preferable. The temperature of the heat condensation is, for example, 120 for the purpose of releasing water generated by the condensation out of the system or simplifying the condensation step when the heat condensation reaction is subsequently performed after the synthesis of the polyimidesiloxane. It is preferably in the range of -220 ° C, more preferably in the range of 140-200 ° C. The reaction time varies depending on the heat treatment temperature, but can be, for example, in the range of 3 minutes to 30 hours. Here, when it is desired to obtain a high crosslinking rate, it is preferable that the reaction time is, for example, more than 1 hour to about 24 hours in the above temperature range, and when it is desired to keep the crosslinking rate low, the above temperature range. The reaction time is preferably in the range of 3 to 60 minutes, for example, and more preferably in the range of 5 to 30 minutes. The end point of the condensation reaction is derived from the ketone group in polyimidesiloxane near 1670 cm −1 by measuring the infrared absorption spectrum using, for example, a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO). It can be confirmed by the decrease or disappearance of the absorption peak and the appearance of an absorption peak derived from an imine group near 1635 cm −1 , or by using a Raman spectrophotometer (commercial product: NRS-3100 manufactured by JASCO Corporation) By measuring the spectrum, it can be confirmed by the appearance of a peak derived from an imine group near 1567 cm −1 .
 また、上記熱伝導性フィラーを含有するポリイミド樹脂溶液の調製は、例えば、溶媒を含むポリイミド樹脂溶液に熱伝導性フィラー及び架橋形成のためのアミノ化合物をそれぞれ所定量添加し、攪拌装置などで分散させることで調製する方法や、溶媒中に熱伝導性フィラーを分散させながらジアミンと酸無水物を添加して重合を行いポリイミド樹脂溶液とした後に架橋形成のためのアミノ化合物を添加する方法などが好ましい。なお、上記溶媒には、N,N-ジメチルアセトアミドの他、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらを1種若しくは2種以上併用して使用することもできる。 The polyimide resin solution containing the above heat conductive filler is prepared, for example, by adding a predetermined amount of each of the heat conductive filler and the amino compound for cross-linking to a polyimide resin solution containing a solvent, and dispersing with a stirrer or the like. And a method of adding an amino compound for cross-linking after adding a diamine and an acid anhydride to form a polyimide resin solution while dispersing a thermally conductive filler in a solvent. preferable. Examples of the solvent include N, N-dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. These may be used alone or in combination of two or more.
 好ましい態様において、ポリイミドシロキサンのケトン基とアミノ化合物の第1級のアミノ基との加熱縮合は、例えば、
 (a)ポリイミドシロキサンの合成(イミド化)に引き続き、アミノ化合物及び熱伝導性フィラーを添加して加熱すること、
 (b)ジアミン成分として予め過剰量のアミノ化合物を仕込んでおき、ポリイミドシロキサンの合成(イミド化)に引き続き、熱伝導性フィラーを添加した後、イミド化(若しくはアミド化)に関与しない残りのアミノ化合物とともにポリイミドシロキサンを加熱すること、又は、
 (c)アミノ化合物及び熱伝導性フィラーを添加したポリイミドシロキサンの組成物を所定の形状に加工した後(例えば任意の基材に塗布した後やフィルム状に形成した後)に加熱すること、
等によって行うことができる。
In a preferred embodiment, the heat condensation of the ketone group of the polyimide siloxane and the primary amino group of the amino compound is, for example,
(A) Subsequent to the synthesis (imidization) of polyimide siloxane, adding an amino compound and a thermally conductive filler and heating,
(B) An excess amount of an amino compound is charged in advance as a diamine component, and after the synthesis (imidation) of polyimide siloxane, a thermally conductive filler is added, and then the remaining amino acid not involved in imidization (or amidation) Heating the polyimide siloxane with the compound, or
(C) heating after processing the composition of polyimide siloxane to which an amino compound and a thermally conductive filler are added into a predetermined shape (for example, after being applied to an arbitrary substrate or after being formed into a film),
Etc.
 上記(b)の場合、過剰のアミノ化合物は、ポリイミドシロキサンの製造時における末端置換基として酸無水物基を封止する反応に消費され、生成するポリイミドシロキサンの分子量が極端に低下することがあるので、硬化物において十分な耐熱性が得られにくい傾向がある。そのため、予め過剰量のアミノ化合物を仕込む場合[上記(b)]は、本発明の効果を損なわない範囲内において適宜用いることが好ましい。アミノ化合物における少なくとも2つの第1級アミノ基を有効にケトン基と反応させてC=N結合を形成させるためには、上記(a)又は(c)のように、アミノ化合物をポリイミドシロキサンの合成(イミド化)を完了した後に添加することが好ましい。上記(c)の場合、加熱縮合は、例えばアミノ化合物とポリイミドシロキサンとが混合された状態の組成物を支持基材上に形成した後の熱処理などによって行うこともできる。 In the case of (b) above, the excess amino compound is consumed in the reaction of sealing the acid anhydride group as a terminal substituent during the production of polyimidesiloxane, and the molecular weight of the resulting polyimidesiloxane may be extremely reduced. Therefore, it tends to be difficult to obtain sufficient heat resistance in the cured product. Therefore, when an excess amount of an amino compound is charged in advance [the above (b)], it is preferably used as long as the effects of the present invention are not impaired. In order to effectively react at least two primary amino groups in an amino compound with a ketone group to form a C═N bond, the amino compound is synthesized from polyimide siloxane as in (a) or (c) above. It is preferable to add after completing (imidization). In the case of the above (c), the heat condensation can also be performed by, for example, a heat treatment after forming a composition in which an amino compound and polyimide siloxane are mixed on a support substrate.
[金属層]
 本発明の熱伝導性基板における金属層としては、例えば銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、亜鉛及びそれらの合金等の導電性金属箔を挙げることができ、これらの中でも銅箔又は銅を90%以上含む合金銅箔やアルミ箔が好ましく用いられる。金属層の好ましい厚み範囲は、熱伝導性基板の用途に応じて設定できるが、電子機器、照明機器などの基板材料として使用する場合は、例えば5~2000μmの範囲内とすることが好ましい。金属層の厚みが5μmに満たないと、製造工程における搬送時にシワが入るなどの不具合が生じるおそれがあり、反対に2000μmを超えると加工性が低下する場合がある。
[Metal layer]
Examples of the metal layer in the thermally conductive substrate of the present invention include conductive metal foils such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc, and alloys thereof. Among them, copper foil or alloy copper foil or aluminum foil containing 90% or more of copper is preferably used. The preferred thickness range of the metal layer can be set according to the use of the thermally conductive substrate, but when used as a substrate material for electronic equipment, lighting equipment, etc., it is preferably in the range of 5 to 2000 μm, for example. If the thickness of the metal layer is less than 5 μm, problems such as wrinkles may occur during conveyance in the manufacturing process. Conversely, if the thickness exceeds 2000 μm, workability may be reduced.
 また、金属層として用いる導電性金属箔は、絶縁層との接着性と微細回路加工性との両立を図るために、絶縁層と接着する面の表面粗度(Ra)が、例えば0.05~1.0μmの範囲内であることが好ましい。絶縁層と接着する面の表面粗度(Ra)が0.05μm未満では、熱伝導性基板の用途によって金属層と絶縁層が剥がれやすくなることがあり、一方、絶縁層と接着する面の表面粗度(Ra)が1.0μmを超えると、粗化によるアンカー効果により金属層と絶縁層との接着性は良好となるが、金属層を配線加工した際における配線形状の悪化が懸念される。 Further, the conductive metal foil used as the metal layer has a surface roughness (Ra) of the surface to be bonded to the insulating layer of, for example, 0.05 in order to achieve both the adhesion to the insulating layer and the fine circuit processability. It is preferably in the range of -1.0 μm. If the surface roughness (Ra) of the surface that adheres to the insulating layer is less than 0.05 μm, the metal layer and the insulating layer may be easily peeled off depending on the use of the thermally conductive substrate, while the surface of the surface that adheres to the insulating layer. When the roughness (Ra) exceeds 1.0 μm, the adhesion between the metal layer and the insulating layer becomes good due to the anchor effect due to the roughening, but there is a concern that the wiring shape may deteriorate when the metal layer is processed by wiring. .
[熱伝導性基板の製造方法]
 次に、熱伝導性基板(金属張積層体)の製造方法の一例について説明する。熱伝導性基板は、ポリイミドシロキサンに熱伝導性フィラーを均一に分散させ、さらにアミノ化合物を混合したフィラー含有ポリイミド樹脂の溶液を、金属層となる金属基材上に直接塗布し、乾燥して塗布膜を形成する工程と、この塗布膜を加熱し、ポリイミドシロキサンにおけるケトン基の少なくとも一部にアミノ化合物のアミノ基を反応させてC=N結合を形成させることにより、フィラー含有ポリイミド樹脂層を形成する工程と、を含む方法によって製造することができる。この場合、フィラー含有ポリイミド樹脂層上に、さらに同様の方法で、フィラー含有ポリイミド樹脂層を積層形成してもよいし、他のポリイミド樹脂層を積層形成してもよい。ここで、金属基材としては、放熱基板や回路基板の導体層となる上記した銅箔等の金属箔を用いることができる。また、上記のとおり、フィラー含有ポリイミド樹脂層は、架橋形成が完了した硬化状態でもよいし、架橋形成が完了していない半硬化状態でもよい。
[Method for producing thermally conductive substrate]
Next, an example of a method for producing a heat conductive substrate (metal-clad laminate) will be described. Thermally conductive substrate is a polyimide-siloxane solution in which a thermally conductive filler is uniformly dispersed and a solution of a filler-containing polyimide resin in which an amino compound is mixed is directly applied onto a metal substrate to be a metal layer and then dried and applied. A filler-containing polyimide resin layer is formed by heating the coating film and reacting the amino group of the amino compound with at least a part of the ketone group in polyimidesiloxane to form a C = N bond. Can be manufactured by a method including. In this case, the filler-containing polyimide resin layer may be further laminated on the filler-containing polyimide resin layer by the same method, or another polyimide resin layer may be laminated. Here, as a metal base material, metal foils, such as above-mentioned copper foil used as the conductor layer of a thermal radiation board | substrate or a circuit board, can be used. In addition, as described above, the filler-containing polyimide resin layer may be in a cured state in which cross-linking is completed or in a semi-cured state in which cross-linking is not completed.
 金属基材上へのフィラー含有ポリイミド樹脂の溶液の塗布は、公知の方法で行うことができ、例えば、バーコード方式、グラビアコート方式、ロールコート方式、ダイコート方式等から適宜選択して採用することができる。 Application of the filler-containing polyimide resin solution on the metal substrate can be performed by a known method, for example, appropriately selected from a barcode method, a gravure coating method, a roll coating method, a die coating method, and the like. Can do.
 本発明をよりわかりやすく説明するために、絶縁層の片面に金属層を有する熱伝導性基板(片面金属熱伝導性基板)と、絶縁層の両面に金属層を有する熱伝導性基板(両面金属熱伝導性基板)に分けて製造例を示す。ここでは、絶縁層が、1層のフィラー含有ポリイミド樹脂層のみにより構成される場合を例に挙げて説明する。 In order to explain the present invention more clearly, a thermally conductive substrate (single-sided metal thermally conductive substrate) having a metal layer on one side of an insulating layer and a thermally conductive substrate (double-sided metal having a metal layer on both sides of the insulating layer) Production examples are shown separately for the thermally conductive substrate. Here, a case where the insulating layer is constituted by only one filler-containing polyimide resin layer will be described as an example.
<片面金属熱伝導性基板>
 まず、熱伝導性基板の金属層を構成する銅箔などの金属箔を準備する。この金属箔上に、熱伝導性フィラー及びアミノ化合物を含有するポリイミド樹脂溶液を塗布し、例えば120℃以下の温度で乾燥し一定量の溶媒を除去する。その後、更に高温で熱処理してアミノ化合物による架橋反応を生じさせる。これにより、フィラー含有ポリイミド樹脂層の片面に金属層を有する熱伝導性基板とすることができる。ここで、アミノ化合物との架橋形成のための熱処理の時間は、目的とする架橋形成率に応じて設定することができる。片面金属熱伝導性基板は樹脂付銅箔として使用する場合、後からフィラー含有ポリイミド樹脂層に例えば金属箔、セラミック基板、その他の材質の部材を接着することを想定して架橋形成率を低くしておくことが好ましいため、その場合の熱処理時間は、上記温度範囲において、例えば3~60分間の範囲内とすることが好ましく、5~30分間の範囲内とすることがより好ましい。
<Single-sided metal thermal conductive substrate>
First, a metal foil such as a copper foil constituting the metal layer of the thermally conductive substrate is prepared. On this metal foil, a polyimide resin solution containing a thermally conductive filler and an amino compound is applied and dried at a temperature of 120 ° C. or less, for example, to remove a certain amount of solvent. Thereafter, it is further heat-treated at a high temperature to cause a crosslinking reaction with an amino compound. Thereby, it can be set as the heat conductive board | substrate which has a metal layer on the single side | surface of a filler containing polyimide resin layer. Here, the heat treatment time for forming a cross-link with the amino compound can be set according to the target cross-link formation rate. When a single-sided metal thermal conductive substrate is used as a resin-coated copper foil, the crosslink formation rate is lowered on the assumption that, for example, a metal foil, a ceramic substrate, or another material member will be bonded to the filler-containing polyimide resin layer later. Therefore, the heat treatment time in that case is preferably in the range of 3 to 60 minutes, for example, and more preferably in the range of 5 to 30 minutes in the above temperature range.
<両面金属熱伝導性基板>
 両面金属熱伝導性基板は、上記の方法で得られた片面金属熱伝導性基板のフィラー含有ポリイミド樹脂層に金属箔を熱圧着することによって製造できる。金属箔を熱圧着する場合の条件は、例えば加熱温度は120~180℃の範囲内、圧力は2~4MPaの範囲内、プレス時間は0.1~24時間の範囲内とすることが好ましい。
<Double-sided metal thermal conductive substrate>
The double-sided metal thermally conductive substrate can be produced by thermocompression bonding a metal foil to the filler-containing polyimide resin layer of the single-sided metal thermally conductive substrate obtained by the above method. The conditions for thermocompression bonding of the metal foil are preferably, for example, that the heating temperature is in the range of 120 to 180 ° C., the pressure is in the range of 2 to 4 MPa, and the pressing time is in the range of 0.1 to 24 hours.
 本実施の形態の熱伝導性基板は、アミノ化合物による架橋構造に加え、熱伝導性フィラーの含有量を適正範囲に調節している。これによって、絶縁層は十分な耐熱性を有し、接着層を介在させなくても金属層と絶縁層とを比較的低温で接着可能になり、かつ熱伝導性に優れたものとなる。したがって、本実施の形態の熱伝導性基板は、高い放熱性が求められる電子機器、照明機器などの基板材料として、工業的に広く用いることが可能であり、例えばパワー半導体実装用放熱基板などの放熱基板や、フレキシブル基板に代表される回路基板等の用途で使用するために特に適したものである。 In the thermally conductive substrate of the present embodiment, the content of the thermally conductive filler is adjusted to an appropriate range in addition to the crosslinked structure of the amino compound. As a result, the insulating layer has sufficient heat resistance, the metal layer and the insulating layer can be bonded at a relatively low temperature without interposing an adhesive layer, and has excellent thermal conductivity. Accordingly, the thermally conductive substrate of the present embodiment can be widely used industrially as a substrate material for electronic devices and lighting devices that require high heat dissipation, such as a heat dissipation substrate for power semiconductor mounting. It is particularly suitable for use in applications such as a heat dissipation board and a circuit board typified by a flexible board.
[熱伝導性ポリイミドフィルム]
 本実施の形態の熱伝導性ポリイミドフィルムは、ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を備えた熱伝導性ポリイミドフィルムである。このフィラー含有ポリイミド樹脂層における熱伝導性フィラーの含有率は5~80wt%の範囲にあり、前記フィラー含有ポリイミド樹脂層におけるポリイミド樹脂が、上記一般式(1)及び(2)で表される構成単位を有するポリイミドシロキサンにおける前記ケトン基に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、ポリイミドシロキサンがアミノ化合物によって架橋された構造を有している。このポリイミド樹脂は架橋反応が完了した硬化状態でもよいし、架橋形成の余地が残された半硬化状態であってもよい。ここで、フィラー含有ポリイミド樹脂層は、上記熱伝導性基板における絶縁層の一部分もしくは全部を構成するフィラー含有ポリイミド樹脂層と同様の構成である。本実施の形態のフィラー含有ポリイミド樹脂層を構成するポリイミド樹脂や熱伝導性フィラーは、上記の熱伝導性基板において説明したものを使用できる。
[Thermal conductive polyimide film]
The thermally conductive polyimide film of the present embodiment is a thermally conductive polyimide film provided with a filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin. The content of the heat conductive filler in the filler-containing polyimide resin layer is in the range of 5 to 80 wt%, and the polyimide resin in the filler-containing polyimide resin layer is represented by the above general formulas (1) and (2) The polyimide siloxane is an amino compound by reacting the ketone group in the polyimide siloxane having a unit with an amino group of an amino compound having at least two primary amino groups as functional groups to form a C = N bond. It has the structure bridge | crosslinked by. The polyimide resin may be in a cured state where the crosslinking reaction has been completed, or in a semi-cured state in which room for crosslinking is left. Here, the filler-containing polyimide resin layer has the same configuration as the filler-containing polyimide resin layer that constitutes a part or all of the insulating layer in the thermally conductive substrate. What was demonstrated in said heat conductive board | substrate can be used for the polyimide resin and heat conductive filler which comprise the filler containing polyimide resin layer of this Embodiment.
 本実施の形態の熱伝導性ポリイミドフィルムは、その全体がフィラー含有ポリイミド樹脂層によって構成されていてもよいし、フィラー含有ポリイミド樹脂層以外に、熱伝導性基板の絶縁層と同様に、他のポリイミド樹脂層を備えていてもよいが、放熱特性を高める観点から、全体がフィラー含有ポリイミド樹脂層により形成されていることが好ましい。この場合、フィラー含有ポリイミド樹脂層は単層に限らず、複数層が積層されたものでもよい。このように、本実施の形態の熱伝導性ポリイミドフィルムは、金属層と張り合わされていない点を除き、上記熱伝導性基板の絶縁層と同様の構造及び物性を有している。そして、熱伝導性ポリイミドフィルムは、例えば上記熱伝導性基板を作製した後、その金属層をエッチングにより除去することによって作製することができる。あるいは、任意の基材に、熱伝導性フィラーを含有するイミド化後のポリイミド樹脂溶液に第1級アミノ基を有するアミノ化合物を混合した塗布液を塗布し、乾燥させた後、基材から剥離して熱伝導性ポリイミドフィルムとすることもできる。この場合、基材上で加熱して架橋反応を完了させた後に基材から剥離してもよいし、乾燥させただけの硬化前の状態で基材から剥離し、その後加熱して架橋反応による硬化を完了させてもよい。 The entirety of the thermally conductive polyimide film of the present embodiment may be constituted by a filler-containing polyimide resin layer, and other than the filler-containing polyimide resin layer, other than the insulating layer of the thermally conductive substrate, Although the polyimide resin layer may be provided, it is preferable that the whole is formed of the filler-containing polyimide resin layer from the viewpoint of enhancing the heat dissipation characteristics. In this case, the filler-containing polyimide resin layer is not limited to a single layer, and may be a laminate of a plurality of layers. Thus, the thermally conductive polyimide film of the present embodiment has the same structure and physical properties as the insulating layer of the thermally conductive substrate, except that it is not bonded to the metal layer. And a heat conductive polyimide film is producible by removing the metal layer by etching, for example after producing the said heat conductive board | substrate. Alternatively, a coating solution in which an amino compound having a primary amino group is mixed with a polyimide resin solution after imidization containing a thermally conductive filler is applied to an arbitrary substrate, dried, and then peeled off from the substrate. It can also be set as a heat conductive polyimide film. In this case, it may be peeled off from the base material after it is heated on the base material to complete the crosslinking reaction, or it is peeled off from the base material in a state prior to curing just dried, and then heated to depend on the cross-linking reaction. Curing may be completed.
 本実施の形態の熱伝導性ポリイミドフィルムは、金属箔(金属板)、セラミック基板、Si基板等に対して実用的接着強度を有しており、かつ熱伝導性に優れている。この熱伝導性ポリイミドフィルムは、接着層を介在させなくても、金属箔(金属板)、セラミック基板、Si基板等と張り合わせることができる。つまり、熱伝導性ポリイミドフィルムは、その片面又は両面に、接着層を必要とせずに金属箔(金属板)、セラミック基板などの接着対象基材と直接張り合わせることが可能な性質を有している。したがって、本実施の形態の熱伝導性ポリイミドフィルムは、例えば放熱基板や回路基板等の用途で金属層、セラミック層などの基材に積層して使用するために適したフィルムである。 The thermally conductive polyimide film of the present embodiment has practical adhesive strength to metal foil (metal plate), ceramic substrate, Si substrate, etc., and is excellent in thermal conductivity. This thermally conductive polyimide film can be bonded to a metal foil (metal plate), a ceramic substrate, a Si substrate or the like without an adhesive layer. That is, the heat conductive polyimide film has a property that can be directly bonded to a bonding target base material such as a metal foil (metal plate) or a ceramic substrate on one or both sides without requiring an adhesive layer. Yes. Therefore, the thermally conductive polyimide film of the present embodiment is a film suitable for being used by being laminated on a base material such as a metal layer or a ceramic layer in applications such as a heat dissipation board or a circuit board.
 本実施の形態の熱伝導性ポリイミドフィルムの他の構成及び効果は、上記熱伝導性基板における絶縁層と同様であるため説明を省略する。 Since other configurations and effects of the thermally conductive polyimide film of the present embodiment are the same as those of the insulating layer in the thermally conductive substrate, description thereof is omitted.
 以上のように、本実施の形態の熱伝導性基板及び熱伝導性ポリイミドフィルムは、絶縁層中に特定のポリイミド樹脂を含むフィラー含有ポリイミド樹脂層を備えているため、比較的低温での熱圧着が可能であり、絶縁層の半田耐熱性に優れるとともに、繰り返し高温環境に置かれても、金属配線層との接着力を低下させず、かつ熱伝導特性に優れる。従って、本実施の形態の熱伝導性基板及び熱伝導性ポリイミドフィルムを用いることにより、高温環境下で用いられる回路基板や放熱基板、熱伝導性樹脂付銅箔等の信頼性を向上させることができる。 As described above, since the thermally conductive substrate and the thermally conductive polyimide film of the present embodiment include the filler-containing polyimide resin layer containing a specific polyimide resin in the insulating layer, thermocompression bonding at a relatively low temperature. In addition to being excellent in soldering heat resistance of the insulating layer, it is excellent in heat conduction characteristics without deteriorating the adhesive force with the metal wiring layer even when repeatedly placed in a high temperature environment. Therefore, by using the heat conductive substrate and the heat conductive polyimide film of the present embodiment, it is possible to improve the reliability of a circuit board, a heat dissipation board, a copper foil with a heat conductive resin, etc. used in a high temperature environment. it can.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.
[接着強度の測定]
 接着強度は、幅10mm、長さ100mmに切り出した試験片の接着剤面を銅箔(35μm厚み)の光沢面(防錆金属を除去したもの)の上に置き、温度160℃、圧力2MPa、時間2時間の条件でプレスした後、引張試験機(東洋精機株式会社製、ストログラフ-M1)を用いて、180°方向に50mm/分の速度で引き剥がす時の力を接着強度とする。
[Measurement of adhesive strength]
The adhesive strength was 10 mm in width and 100 mm in length, and the adhesive surface of the test piece was placed on a glossy surface of copper foil (thickness of 35 μm) (with rust-proof metal removed), temperature 160 ° C., pressure 2 MPa, After pressing for 2 hours, the tensile strength (strength-M1 manufactured by Toyo Seiki Co., Ltd.) is used to determine the force at the time of peeling at a speed of 50 mm / min in the 180 ° direction as the adhesive strength.
[重量平均分子量(Mw)の測定]
 重量平均分子量は、ゲル浸透クロマトグラフ(東ソー株式会社製、HLC-8220GPCを使用)により測定した。標準物質としてポリスチレンを用い、展開溶媒にN,N-ジメチルアセトアミドを用いた。
[Measurement of weight average molecular weight (Mw)]
The weight average molecular weight was measured by gel permeation chromatography (manufactured by Tosoh Corporation, using HLC-8220GPC). Polystyrene was used as a standard substance, and N, N-dimethylacetamide was used as a developing solvent.
[反りの評価方法]
 反りの評価は、以下の方法で行った。厚さ25μmのカプトンフィルム上に乾燥後の厚さが35μmになるようにポリイミド接着剤を塗布した。この状態でカプトンフィルムが下面になるように置き、フィルムの4隅の反り上がっている高さの平均を測定し、5mm以下を「良」、5mmを超える場合を「不可」とした。
[Evaluation method of warpage]
The warpage was evaluated by the following method. A polyimide adhesive was applied onto a 25 μm thick Kapton film so that the thickness after drying was 35 μm. In this state, the Kapton film was placed on the lower surface, and the average of the heights of warping of the four corners of the film was measured.
[半田耐熱性(乾燥)の評価方法]
 ポリイミド銅張積層板(新日鐵化学社製、商品名;エスパネックスMC18-25-00FRM)を回路加工して、配線幅/配線間隔(L/S)=1mm/1mmの回路が形成されたプリント基板を用意し、試験片の接着剤面をプリント基板の配線の上に置き、温度170℃、圧力1MPa、時間1分の条件でプレスし、その後オーブンにて温度150℃、時間24時間の条件で加熱した。この銅箔付きの試験片を105℃、相対湿度50%で1時間放置した後、各評価温度に設定した半田浴中に10秒間浸漬し、その接着状態を観察して、発泡、ふくれ、剥離等の不具合の有無を確認した。耐熱性は不具合が生じない上限の温度で表現し、例えば「320℃」は、320℃の半田浴中で評価して、不具合が認められないことを意味する。
[Method for evaluating solder heat resistance (drying)]
A circuit of polyimide copper-clad laminate (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Espanex MC18-25-00FRM) was formed, and a circuit with wiring width / wiring interval (L / S) = 1 mm / 1 mm was formed. A printed circuit board is prepared, and the adhesive surface of the test piece is placed on the wiring of the printed circuit board and pressed under conditions of a temperature of 170 ° C., a pressure of 1 MPa, and an hour of 1 minute, and then an oven at 150 ° C. for 24 hours Heated under conditions. This test piece with copper foil was left at 105 ° C. and 50% relative humidity for 1 hour, then immersed in a solder bath set to each evaluation temperature for 10 seconds, and observed for adhesion, foaming, blistering, and peeling. The presence or absence of such defects was confirmed. The heat resistance is expressed by an upper limit temperature at which no defect occurs. For example, “320 ° C.” means that no defect is recognized when evaluated in a solder bath at 320 ° C.
[半田耐熱性(耐湿)の評価方法]
 ポリイミド銅張積層板(新日鐵化学社製、商品名;エスパネックスMC18-25-00FRM)を回路加工して、配線幅/配線間隔(L/S)=1mm/1mmの回路が形成されたプリント基板を用意し、試験片の接着剤面をプリント基板の配線の上に置き、温度170℃、圧力1MPa、時間1分の条件でプレスし、その後オーブンにて温度150℃、時間24時間の条件で加熱した。この銅箔付きの試験片を85℃、相対湿度85%で24時間放置した後、各評価温度に設定した半田浴中に10秒間浸漬し、その接着状態を観察して、発泡、ふくれ、剥離等の不具合の有無を確認した。耐熱性は不具合が生じない上限の温度で表現し、例えば「270℃」は、270℃の半田浴中で評価して、不具合が認められないことを意味する。
[Method for evaluating solder heat resistance (moisture resistance)]
A circuit of polyimide copper-clad laminate (manufactured by Nippon Steel Chemical Co., Ltd., trade name: Espanex MC18-25-00FRM) was formed, and a circuit with wiring width / wiring interval (L / S) = 1 mm / 1 mm was formed. A printed circuit board is prepared, and the adhesive surface of the test piece is placed on the wiring of the printed circuit board and pressed under conditions of a temperature of 170 ° C., a pressure of 1 MPa, and an hour of 1 minute, and then an oven at 150 ° C. for 24 hours Heated under conditions. The test piece with the copper foil was allowed to stand at 85 ° C. and a relative humidity of 85% for 24 hours, and then immersed in a solder bath set to each evaluation temperature for 10 seconds. The presence or absence of malfunctions was confirmed. The heat resistance is expressed by an upper limit temperature at which no defect occurs. For example, “270 ° C.” means that no defect is recognized when evaluated in a solder bath at 270 ° C.
 [レオメーター評価]
 離型PETフィルム上に乾燥後の厚さが25μmになるようにポリイミド接着剤を塗布した。離型PETフィルムからポリイミド接着剤フィルムを剥離し、このポリイミド接着剤フィルム(3cm×3cm)を10枚程度積層し、真空ラミネーターを用いて70℃/0.85MPa/10secの条件で熱圧着を行い、約250μm程度の厚みのサンプルを作製した。得られたサンプルについて、レオメーター(RS150 RheoStress、Haake社製)を用いて、昇温速度4℃/minの条件でサンプルの粘度変化を評価した。
[Rheometer evaluation]
A polyimide adhesive was applied onto the release PET film so that the thickness after drying was 25 μm. The polyimide adhesive film is peeled from the release PET film, about 10 polyimide adhesive films (3 cm × 3 cm) are laminated, and thermocompression bonding is performed using a vacuum laminator under the conditions of 70 ° C./0.85 MPa / 10 sec. A sample having a thickness of about 250 μm was prepared. About the obtained sample, the viscosity change of the sample was evaluated on the conditions of the temperature increase rate of 4 degree-C / min using the rheometer (RS150 RheoStress, the product made from Haake).
 本実施例で用いた略号は以下の化合物を示す。
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3’,4,4’-ジフェニルテトラカルボン酸二無水物
BAPP:2,2-ビス(4-アミノフェノキシフェニル)プロパン
BAFL:ビスアニリンフルオレン
PSX:ジアミノシロキサン(重量平均分子量は740である)
N-12:ドデカン二酸ジヒドラジド
ADH:アジピン酸ジヒドラジド
K-1:タルク(日本タルク株式会社製、商品名;MICRO ACE K-1、形状;鱗片状、平均長径;7.0μm、平均短径;5.8μm、長径と厚みとの比;15以上、平均粒子径;6.6μm、メジアン径(D50);6.9μm、最大粒子径;64.9μm、最小粒子径;0.5μm、最頻径;8.7μm、粒径10μm以下の積算粒子量;77%、粒径20μm以上の積算粒子量;5%)
The abbreviations used in the examples represent the following compounds.
BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride BPDA: 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride BAPP: 2,2-bis (4-aminophenoxy) Phenyl) propane BAFL: bisaniline fluorene PSX: diaminosiloxane (weight average molecular weight is 740)
N-12: dodecanedioic acid dihydrazide ADH: adipic acid dihydrazide K-1: talc (manufactured by Nippon Talc Co., Ltd., trade name; MICRO ACE K-1, shape: scaly, average major axis; 7.0 μm, average minor axis; 5.8 μm, ratio of major axis to thickness: 15 or more, average particle size: 6.6 μm, median diameter (D50); 6.9 μm, maximum particle size; 64.9 μm, minimum particle size: 0.5 μm, mode Diameter: 8.7 μm, cumulative particle amount of particle size of 10 μm or less; 77%, cumulative particle amount of particle size of 20 μm or more; 5%)
合成例1-1
 1000mlのセパラブルフラスコに、71.850gのPSX(0.0971モル)、7.474gのBAPP(0.0182モル)、1.568gのN-12(0.0061モル)、39.109gのBTDA(0.1214モル)、168gのN-メチル-2-ピロリドン及び112gのキシレンを装入し、室温で1時間良く混合して、ポリアミド酸溶液を得た。このポリアミド酸溶液を190℃に昇温し、20時間加熱、攪拌し、イミド化を完結したポリイミド溶液1aを得た。得られたポリイミド溶液1aにおけるポリイミド樹脂の重量平均分子量(Mw)は90,000であった。このときの全ジアミン成分に対するジアミノシロキサン成分のモル%は80%(m値=0.8)である。
Synthesis Example 1-1
In a 1000 ml separable flask, 71.850 g PSX (0.0971 mol), 7.474 g BAPP (0.0182 mol), 1.568 g N-12 (0.0061 mol), 39.109 g BTDA. (0.1214 mol) 168 g of N-methyl-2-pyrrolidone and 112 g of xylene were charged and mixed well at room temperature for 1 hour to obtain a polyamic acid solution. This polyamic acid solution was heated to 190 ° C., heated and stirred for 20 hours to obtain a polyimide solution 1a having completed imidization. The weight average molecular weight (Mw) of the polyimide resin in the obtained polyimide solution 1a was 90,000. At this time, the mol% of the diaminosiloxane component relative to the total diamine component is 80% (m value = 0.8).
合成例1-2
 1000mlのセパラブルフラスコに、72.407gのPSX(0.0978モル)、5.021gのBAPP(0.0122モル)、3.160gのN-12(0.0122モル)、39.412gのBTDA(0.1223モル)、168gのN-メチル-2-ピロリドン及び112gのキシレンを装入し、室温で1時間良く混合して、ポリアミド酸溶液を得た。このポリアミド酸溶液を190℃に昇温し、20時間加熱、攪拌し、イミド化を完結したポリイミド溶液1bを得た。得られたポリイミド溶液1bにおけるポリイミド樹脂の重量平均分子量(Mw)は73,000であった。このときの全ジアミン成分に対するジアミノシロキサン成分のモル%は80%(m値=0.8)である。
Synthesis Example 1-2
In a 1000 ml separable flask, 72.407 g PSX (0.0978 mol), 5.021 g BAPP (0.0122 mol), 3.160 g N-12 (0.0122 mol), 39.412 g BTDA (0.1223 mol) 168 g of N-methyl-2-pyrrolidone and 112 g of xylene were charged and mixed well at room temperature for 1 hour to obtain a polyamic acid solution. This polyamic acid solution was heated to 190 ° C., heated and stirred for 20 hours to obtain a polyimide solution 1b having completed imidization. The weight average molecular weight (Mw) of the polyimide resin in the obtained polyimide solution 1b was 73,000. At this time, the mol% of the diaminosiloxane component relative to the total diamine component is 80% (m value = 0.8).
合成例1-3
 1000mlのセパラブルフラスコに、71.301gのPSX(0.0964モル)、9.889gのBAPP(0.0241モル)、38.810gのBTDA(0.1204モル)、168gのN-メチル-2-ピロリドン及び112gのキシレンを装入し、室温で1時間良く混合し、ポリアミド酸溶液を得た。このポリアミド酸溶液を190℃に昇温し、6時間加熱、攪拌し、イミド化を完結したポリイミド溶液1cを得た。得られたポリイミド溶液1cにおけるポリイミド樹脂の重量平均分子量(Mw)は107,000であった。このときの全ジアミン成分に対するジアミノシロキサン成分のモル%は80%(m値=0.8)である。
Synthesis Example 1-3
In a 1000 ml separable flask, 71.301 g PSX (0.0964 mol), 9.889 g BAPP (0.0241 mol), 38.810 g BTDA (0.1204 mol), 168 g N-methyl-2 -Pyrrolidone and 112 g of xylene were charged and mixed well at room temperature for 1 hour to obtain a polyamic acid solution. This polyamic acid solution was heated to 190 ° C., heated and stirred for 6 hours to obtain a polyimide solution 1c having completed imidization. The weight average molecular weight (Mw) of the polyimide resin in the obtained polyimide solution 1c was 107,000. At this time, the mol% of the diaminosiloxane component relative to the total diamine component is 80% (m value = 0.8).
 合成例1-1~1-3を表1にまとめた。 Synthesis examples 1-1 to 1-3 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
参考例1-1
 合成例1-1で得られたポリイミド溶液1aをポリイミドフィルム(デュポン社製、商品名;カプトンENS、縦×横×厚さ=200mm×300mm×25μm)の片面に塗布し、80℃で15分間乾燥を行い、接着剤層厚さ35μmのカバーレイフィルムとした。次に、得られたカバーレイフィルムを表面の防錆金属層を除去した銅箔上に置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、評価サンプルを得た。
Reference Example 1-1
The polyimide solution 1a obtained in Synthesis Example 1-1 was applied to one surface of a polyimide film (manufactured by DuPont, trade name: Kapton ENS, length × width × thickness = 200 mm × 300 mm × 25 μm), and 15 minutes at 80 ° C. Drying was performed to obtain a coverlay film having an adhesive layer thickness of 35 μm. Next, the obtained coverlay film was placed on a copper foil from which the surface rust-proof metal layer was removed, and pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours to obtain an evaluation sample.
[実施例1-1]
 合成例1-1で得られたポリイミド溶液1aに5.78gのN-12(0.0224モル)及び57.81gのK-1を配合し、更に1時間攪拌することでポリイミド溶液1を得た。
[Example 1-1]
The polyimide solution 1a obtained in Synthesis Example 1-1 was mixed with 5.78 g of N-12 (0.0224 mol) and 57.81 g of K-1 and further stirred for 1 hour to obtain a polyimide solution 1. It was.
 得られたポリイミド溶液1をポリイミドフィルム(デュポン社製、商品名;カプトンENS、縦×横×厚さ=200mm×300mm×25μm)の片面に塗布し、80℃で15分間乾燥を行い、接着剤層厚さ35μmのカバーレイフィルム1とした。このカバーレイフィルム1を表面の防錆金属層を除去した銅箔上に置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、評価サンプル1を得た。硬化後の銅箔との接着強度は0.65kN/mであった。また、カバーレイフィルムの反りも問題なかった。また、ポリイミド溶液1を、基材の片面に塗布し、80℃で15分間乾燥を行い、厚さ25μmのポリイミド接着剤フィルムを作製した。このポリイミド接着剤フィルム10枚程度を真空ラミネーターで温度70℃、圧力0.85MPa、時間10secの条件で熱圧着して約250μm程度の厚みのサンプルを作製し、レオメーター評価を行ったところ、260℃での粘度は118,000Pa・sであった。 The obtained polyimide solution 1 was applied to one side of a polyimide film (manufactured by DuPont, trade name: Kapton ENS, length × width × thickness = 200 mm × 300 mm × 25 μm), dried at 80 ° C. for 15 minutes, and adhesive A coverlay film 1 having a layer thickness of 35 μm was obtained. This cover lay film 1 was placed on a copper foil from which the rust-proof metal layer on the surface was removed, and pressed under the conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours to obtain Evaluation Sample 1. The adhesive strength with the copper foil after curing was 0.65 kN / m. Moreover, the warp of the coverlay film was no problem. Moreover, the polyimide solution 1 was apply | coated to the single side | surface of a base material, and it dried for 15 minutes at 80 degreeC, and produced the 25-micrometer-thick polyimide adhesive film. About 10 sheets of this polyimide adhesive film were thermocompression-bonded with a vacuum laminator under conditions of a temperature of 70 ° C., a pressure of 0.85 MPa, and a time of 10 sec, and a sample having a thickness of about 250 μm was prepared. The viscosity at 11 ° C. was 118,000 Pa · s.
 次に評価サンプル1に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.45kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, heat treatment was performed on the evaluation sample 1 in an oven in the atmosphere at 150 ° C. for 1000 hours. It was 0.45 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、ポリイミドフィルムの両面に銅により回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-1で得られたカバーレイフィルム1をプリント基板の回路面に置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、カバーレイフィルムを備えた配線基板1を得た。 Further, a printed circuit board having a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} formed of copper on both sides of the polyimide film was prepared, and the coverlay film 1 obtained in Example 1-1 was prepared. The printed circuit board was placed on the circuit surface and pressed under the conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours to obtain a wiring board 1 provided with a coverlay film.
[実施例1-2]
 実施例1-1における57.81gのK-1を配合したことの代わりに、K-1を配合しなかったこと以外は、実施例1-1と同様にして、ポリイミド溶液2を得たのち、カバーレイフィルム2を得、評価サンプル2を得た。評価サンプルにおける接着剤層のラマンスペクトルを測定したところ、1567cm-1付近にイミノ基の形成によるピークが確認された。この測定結果から、評価サンプルでは、カバーレイフィルムと銅箔との熱圧着と同時に、ポリイミド樹脂中のケトン基とアミノ化合物(N-12)との縮合反応が生じたと推定される。硬化後の銅箔との接着強度は1.08kN/mであった。また、カバーレイフィルムの反りも問題なかった。なお、ポリイミド溶液2を用い、実施例1-1と同様にして作製したポリイミド接着剤フィルムのレオメーター評価を行ったところ、260℃での粘度は113,000Pa・sであった。
[Example 1-2]
After obtaining polyimide solution 2 in the same manner as in Example 1-1 except that 57.81 g of K-1 in Example 1-1 was blended, K-1 was not blended. The coverlay film 2 was obtained and the evaluation sample 2 was obtained. When the Raman spectrum of the adhesive layer in the evaluation sample was measured, a peak due to the formation of an imino group was confirmed in the vicinity of 1567 cm −1 . From this measurement result, it is presumed that in the evaluation sample, the condensation reaction between the ketone group in the polyimide resin and the amino compound (N-12) occurred simultaneously with the thermocompression bonding of the coverlay film and the copper foil. The adhesive strength with the copper foil after curing was 1.08 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 2 revealed that the viscosity at 260 ° C. was 113,000 Pa · s.
 次に評価サンプル2に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.41kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, heat treatment was performed on the evaluation sample 2 in an oven in the atmosphere at 150 ° C. for 1000 hours. It was 0.41 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、実施例1-1と同様にして、回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-2で得られたカバーレイフィルム2をプリント基板の回路面に置き熱圧着して、カバーレイフィルムを備えた配線基板2を得た。 Further, a printed circuit board on which a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} is prepared in the same manner as in Example 1-1, and the coverlay obtained in Example 1-2 is prepared. The film 2 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 2 provided with a coverlay film.
[実施例1-3]
 実施例1-1における5.78gのN-12を配合したことの代わりに、3.47gのN-12(0.0134モル)を配合したこと以外は、実施例1-1と同様にして、ポリイミド溶液3を得たのち、カバーレイフィルム3を得、評価サンプル3を得た。硬化後の銅箔との接着強度は0.70kN/mであった。また、カバーレイフィルムの反りも問題なかった。なお、ポリイミド溶液3を用い、実施例1-1と同様にして作製したポリイミド接着剤フィルムのレオメーター評価を行ったところ、260℃での粘度は35,000Pa・sであった。
[Example 1-3]
The same procedure as in Example 1-1 except that 3.47 g of N-12 (0.0134 mol) was blended instead of blending 5.78 g of N-12 in Example 1-1. After obtaining the polyimide solution 3, the coverlay film 3 was obtained and the evaluation sample 3 was obtained. The adhesive strength with the copper foil after curing was 0.70 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 3 revealed that the viscosity at 260 ° C. was 35,000 Pa · s.
 次に評価サンプル3に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.39kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, heat treatment was performed on the evaluation sample 3 in an oven in the atmosphere at 150 ° C. for 1000 hours. It was 0.39 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、実施例1-1と同様にして、回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-3で得られたカバーレイフィルム3をプリント基板の回路面に置き熱圧着して、カバーレイフィルムを備えた配線基板3を得た。 Further, a printed circuit board on which a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} is prepared in the same manner as in Example 1-1, and the coverlay obtained in Example 1-3 is prepared. The film 3 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 3 provided with a coverlay film.
[実施例1-4]
 実施例1-1におけるポリイミド溶液1aの代わりに、合成例1-2で得られたポリイミド溶液1bを使用したこと以外は、実施例1-1と同様にして、ポリイミド溶液4を得たのち、カバーレイフィルム4を得、評価サンプル4を得た。硬化後の銅箔との接着強度は0.72kN/mであった。また、カバーレイフィルムの反りも問題なかった。なお、ポリイミド溶液4を用い、実施例1-1と同様にして作製したポリイミド接着剤フィルムのレオメーター評価を行ったところ、260℃での粘度は110,000Pa・sであった。
[Example 1-4]
After obtaining the polyimide solution 4 in the same manner as in Example 1-1, except that the polyimide solution 1b obtained in Synthesis Example 1-2 was used instead of the polyimide solution 1a in Example 1-1, A coverlay film 4 was obtained, and an evaluation sample 4 was obtained. The adhesive strength with the cured copper foil was 0.72 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 4 revealed that the viscosity at 260 ° C. was 110,000 Pa · s.
 次に評価サンプル4に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.58kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, the evaluation sample 4 was heat-treated in the oven at 150 ° C. for 1000 hours in the atmosphere. It was 0.58 kN / m when the copper foil after a process and the adhesive strength of the coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、実施例1-1と同様にして、回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-4で得られたカバーレイフィルム4をプリント基板の回路面に置き熱圧着して、カバーレイフィルムを備えた配線基板4を得た。 Further, a printed circuit board on which a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} was prepared in the same manner as in Example 1-1, and the coverlay obtained in Example 1-4 was prepared. The film 4 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 4 provided with a coverlay film.
[実施例1-5]
 実施例1-1におけるポリイミド溶液1aの代わりに、合成例1-2で得られたポリイミド溶液1bを使用したこと、及び5.78gのN-12を配合したことの代わりに、3.47gのN-12(0.0134モル)を配合したこと以外は、実施例1-1と同様にして、ポリイミド溶液5を得たのち、カバーレイフィルム5を得、評価サンプル5を得た。硬化後の銅箔との接着強度は0.80kN/mであった。また、カバーレイフィルムの反りも問題なかった。なお、ポリイミド溶液5を用い、実施例1-1と同様にして作製したポリイミド接着剤フィルムのレオメーター評価を行ったところ、260℃での粘度は108,000Pa・sであった。
[Example 1-5]
Instead of the polyimide solution 1a in Example 1-1, the polyimide solution 1b obtained in Synthesis Example 1-2 was used, and instead of 5.78 g of N-12 blended, 3.47 g of Except that N-12 (0.0134 mol) was blended, a polyimide solution 5 was obtained in the same manner as in Example 1-1, then a coverlay film 5 was obtained, and an evaluation sample 5 was obtained. The adhesive strength with the copper foil after curing was 0.80 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 5 revealed that the viscosity at 260 ° C. was 108,000 Pa · s.
 次に評価サンプル5に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.48kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, heat treatment was performed on the evaluation sample 5 in an oven in the atmosphere at 150 ° C. for 1000 hours. It was 0.48 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、実施例1-1と同様にして、回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-5で得られたカバーレイフィルム5をプリント基板の回路面に置き熱圧着して、カバーレイフィルムを備えた配線基板5を得た。 Further, a printed circuit board on which a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} is prepared in the same manner as in Example 1-1, and the coverlay obtained in Example 1-5 is prepared. The film 5 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 5 provided with a coverlay film.
[実施例1-6]
 実施例1-1における5.78gのN-12を配合したことの代わりに、5.78gのBAPP(0.0141モル)を配合したこと以外は、実施例1-1と同様にして、ポリイミド溶液6を得たのち、カバーレイフィルム6を得、評価サンプル6を得た。硬化後の銅箔との接着強度は0.72kN/mであった。また、カバーレイフィルムの反りも問題なかった。なお、ポリイミド溶液6を用い、実施例1-1と同様にして作製したポリイミド接着剤フィルムのレオメーター評価を行ったところ、260℃での粘度は36,000Pa・sであった。
[Example 1-6]
A polyimide was prepared in the same manner as in Example 1-1 except that 5.78 g of BAPP (0.0141 mol) was added instead of 5.78 g of N-12 in Example 1-1. After obtaining the solution 6, the coverlay film 6 was obtained and the evaluation sample 6 was obtained. The adhesive strength with the cured copper foil was 0.72 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 6 revealed that the viscosity at 260 ° C. was 36,000 Pa · s.
 次に評価サンプル6に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.51kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, the evaluation sample 6 was heat-treated in an oven at 150 ° C. for 1000 hours in the atmosphere. It was 0.51 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、実施例1-1と同様にして、回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-6で得られたカバーレイフィルム6をプリント基板の回路面に置き熱圧着して、カバーレイフィルムを備えた配線基板6を得た。 Further, a printed circuit board on which a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} is prepared in the same manner as in Example 1-1, and the coverlay obtained in Example 1-6 is prepared. The film 6 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 6 provided with a coverlay film.
[実施例1-7]
 実施例1-1における5.78gのN-12を配合したことの代わりに、5.78gのBAFL(0.0166モル)を配合したこと以外は、実施例1-1と同様にして、ポリイミド溶液7を得たのち、カバーレイフィルム7を得、評価サンプル7を得た。硬化後の銅箔との接着強度は0.65kN/mであった。また、カバーレイフィルムの反りも問題なかった。なお、ポリイミド溶液7を用い、実施例1-1と同様にして作製したポリイミド接着剤フィルムのレオメーター評価を行ったところ、260℃での粘度は28,000Pa・sであった。
[Example 1-7]
A polyimide was prepared in the same manner as in Example 1-1 except that 5.78 g of BAFL (0.0166 mol) was added instead of 5.78 g of N-12 in Example 1-1. After obtaining the solution 7, the coverlay film 7 was obtained and the evaluation sample 7 was obtained. The adhesive strength with the cured copper foil was 0.65 kN / m. Moreover, the warp of the coverlay film was no problem. The rheometer evaluation of the polyimide adhesive film produced in the same manner as in Example 1-1 using the polyimide solution 7 revealed that the viscosity at 260 ° C. was 28,000 Pa · s.
 次に評価サンプル7に対しオーブンで大気中、150℃、1000時間の熱処理を行った。処理後の銅箔とカバーレイフィルムの接着強度を測定したところ、0.41kN/mであった。このときの剥離面は、銅と接着剤層の界面であった。 Next, heat treatment was performed on the evaluation sample 7 in an oven in the air at 150 ° C. for 1000 hours. It was 0.41 kN / m when the copper foil after a process and the adhesive strength of a coverlay film were measured. The peeling surface at this time was an interface between copper and the adhesive layer.
 さらに、実施例1-1と同様にして、回路{配線幅/配線間隔(L/S)=25μm/25μm}が形成されたプリント基板を用意し、実施例1-7で得られたカバーレイフィルム7をプリント基板の回路面に置き熱圧着して、カバーレイフィルムを備えた配線基板7を得た。 Further, a printed circuit board on which a circuit {wiring width / wiring interval (L / S) = 25 μm / 25 μm} is prepared in the same manner as in Example 1-1, and the coverlay obtained in Example 1-7 is prepared. The film 7 was placed on the circuit surface of the printed board and thermocompression bonded to obtain a wiring board 7 provided with a coverlay film.
参考例1-2
 実施例1-1におけるポリイミド溶液1aの代わりに、合成例1-3で得られたポリイミド溶液1cを使用したこと以外は、実施例1-1と同様にして、ポリイミド溶液を得た。このポリイミド溶液をポリイミドフィルム(デュポン社製、商品名;カプトンENS、縦×横×厚さ=200mm×300mm×25μm)の片面に塗布し、80℃で15分間乾燥を行い、接着剤層厚さ35μmのカバーレイフィルムとした。このカバーレイフィルムについて、実施例1-1と同様にして評価した。
Reference Example 1-2
A polyimide solution was obtained in the same manner as in Example 1-1 except that the polyimide solution 1c obtained in Synthesis Example 1-3 was used instead of the polyimide solution 1a in Example 1-1. This polyimide solution is applied to one side of a polyimide film (DuPont, trade name: Kapton ENS, length x width x thickness = 200 mm x 300 mm x 25 µm), dried at 80 ° C for 15 minutes, and the thickness of the adhesive layer A 35 μm coverlay film was obtained. The coverlay film was evaluated in the same manner as in Example 1-1.
 実施例1-1~実施例1-7及び参考例1-1~1-2の結果をまとめて表2及び表3に示した。表2及び表3において、接着強度1は、硬化後の銅箔とカバーレイフィルムの接着強度を示し、接着強度2は、大気中、150℃、1000時間の熱処理後の銅箔とカバーレイフィルムとの接着強度を示す。なお、表2及び表3中のモル比は、ポリイミドシロキサン中のケトン基1モルに対するアミノ化合物中の第1級アミノ基の合計のモル比を意味する。 The results of Examples 1-1 to 1-7 and Reference Examples 1-1 to 1-2 are collectively shown in Table 2 and Table 3. In Table 2 and Table 3, adhesive strength 1 indicates the adhesive strength between the cured copper foil and coverlay film, and adhesive strength 2 indicates the copper foil and coverlay film after heat treatment in air at 150 ° C. for 1000 hours. The adhesive strength is shown. In addition, the molar ratio in Table 2 and Table 3 means the molar ratio of the sum total of the primary amino group in an amino compound with respect to 1 mol of ketone groups in a polyimidesiloxane.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
[水素結合形成基導入によるイミン架橋形成の時間短縮の効果の検証]
 本発明に係る接着剤樹脂組成物のイミン架橋形成の時間短縮は、以下のようにして検証を行った。
[Verification of the effect of shortening the time for imine bridge formation by introducing hydrogen bond-forming groups]
The shortening of the imine crosslink formation time of the adhesive resin composition according to the present invention was verified as follows.
[実施例1-8]
 合成例1-1で得られたポリイミド溶液1aに5.78gのN-12(0.224モル)及び11.56gのK-1を配合し、更に1時間攪拌することでポリイミド溶液8を得た。
[Example 1-8]
The polyimide solution 1a obtained in Synthesis Example 1-1 was mixed with 5.78 g of N-12 (0.224 mol) and 11.56 g of K-1 and further stirred for 1 hour to obtain a polyimide solution 8. It was.
 得られたポリイミド溶液8をポリイミドフィルム(デュポン社製、商品名;カプトンENS、縦×横×厚さ=200mm×300mm×25μm)の片面に塗布し、80℃で15分間乾燥を行い、接着剤層厚さ35μmのカバーレイフィルム8とした。このカバーレイフィルム8を表面の防錆金属層を除去した銅箔上に置き、温度200℃、圧力2MPa、時間1時間の条件でプレスし、評価サンプル8を得た。評価結果を表4に示す。 The obtained polyimide solution 8 was applied to one side of a polyimide film (manufactured by DuPont, trade name: Kapton ENS, length × width × thickness = 200 mm × 300 mm × 25 μm), dried at 80 ° C. for 15 minutes, and adhesive A coverlay film 8 having a layer thickness of 35 μm was obtained. This cover lay film 8 was placed on a copper foil from which the surface rust-proof metal layer was removed, and pressed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 1 hour to obtain an evaluation sample 8. The evaluation results are shown in Table 4.
[実施例1-9]
 実施例1-8と同様にして、ポリイミド溶液8を得たのち、カバーレイフィルム8を得た。
[Example 1-9]
In the same manner as in Example 1-8, a polyimide solution 8 was obtained, and then a coverlay film 8 was obtained.
 実施例1-8における温度200℃、圧力2MPa、時間1時間の条件で加熱したことの代わりに、温度150℃、圧力2MPa、時間1時間の条件で加熱したこと以外は、実施例1-8と同様にして、評価サンプル9を得た。評価結果を表4に示す。 Example 1-8 was used except that heating was performed under the conditions of a temperature of 150 ° C., a pressure of 2 MPa, and an hour of 1 hour instead of heating under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and an hour of 1 hour. In the same manner as described above, an evaluation sample 9 was obtained. The evaluation results are shown in Table 4.
[実施例1-10]
 実施例1-8における温度200℃、圧力2MPa、時間1時間の条件で加熱したことの代わりに、温度200℃、圧力2MPa、時間0.5時間の条件で加熱したこと以外は、実施例1-8と同様にして、評価サンプル10を得た。評価結果を表4に示す。
[Example 1-10]
Example 1 is the same as Example 1-8 except that heating was performed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 1 hour, except that heating was performed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 0.5 hours. In the same manner as in −8, an evaluation sample 10 was obtained. The evaluation results are shown in Table 4.
[実施例1-11]
 実施例1-8における温度200℃、圧力2MPa、時間1時間の条件で加熱したことの代わりに、温度160℃、圧力2MPa、時間0.5時間の条件で加熱したこと以外は、実施例1-8と同様にして、評価サンプル11を得た。評価結果を表4に示す。
[Example 1-11]
Example 1-8 except that heating was performed under conditions of a temperature of 200 ° C., a pressure of 2 MPa, and a time of 1 hour, except that heating was performed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 0.5 hours. In the same manner as in −8, an evaluation sample 11 was obtained. The evaluation results are shown in Table 4.
[実施例1-12]
 実施例1-8における温度200℃、圧力2MPa、時間1時間の条件で加熱したことの代わりに、温度130℃、圧力2MPa、時間1時間の条件で加熱したこと以外は、実施例1-8と同様にして、評価サンプル12を得た。評価結果を表4に示す。
[Example 1-12]
Example 1-8 was used except that heating was performed under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and an hour of 1 hour instead of heating under the conditions of a temperature of 200 ° C., a pressure of 2 MPa, and an hour of 1 hour in Example 1-8. In the same manner as described above, an evaluation sample 12 was obtained. The evaluation results are shown in Table 4.
 実施例1-8~実施例1-12の結果をまとめて表4に示した。 The results of Example 1-8 to Example 1-12 are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表4から、ポリイミドシロキサン中に水素結合形成基を導入したことによって、温度150℃~200℃、0.5~1時間の加熱で実用上十分な半田耐熱性(特に耐湿半田耐熱性)が得られることが確認された。 From Table 4, by introducing hydrogen bond-forming groups into polyimidesiloxane, practically sufficient solder heat resistance (especially moisture solder heat resistance) can be obtained by heating at a temperature of 150 ° C. to 200 ° C. for 0.5 to 1 hour. It was confirmed that
[試験例1]
 実施例1-1で調製したポリイミド溶液1を、基材の片面に塗布し、80℃で15分間乾燥を行い、厚さ25μmのポリイミド接着剤フィルムを作製した。このポリイミド接着剤フィルム(3cm×3cm)を10枚程度積層し、真空ラミネーターを用いて70℃/0.85MPa/10secの条件で熱圧着を行い、約250μm程度の厚みの評価サンプルAを得た。一方、参考例1-2で調製したポリイミド溶液についても、同様に処理して評価サンプルBを得た。これらのサンプルA及びBについて、レオメーター評価を実施した。その結果を図1に示した。サンプルAは、160℃前後から速やかに粘度が上昇しており、260℃付近での粘度は118,000Pa・sであった。一方、サンプルBは、サンプルAに比べて粘度上昇が遅く、260℃付近での粘度は45,000Pa・sであった。これらサンプルA、Bの粘度の上昇速度の違いは、水素結合性の官能基である-NHCO-基を含まないポリイミドシロキサンを用いたサンプルBに比較して、-NHCO-基を含むポリイミドシロキサンを用いたサンプルAにおいて架橋形成反応がより速やかに進行したためであると考えられた。ここで、表2及び表3に示した実施例1-1と参考例1-2の半田耐熱性の比較では、特に耐湿半田耐熱性において実施例1-1の方が格段に優れていることがわかる。また、図1から、サンプルAの粘度は、200℃以上では1×10Pa・s以上でほぼ横ばいである。これらのことから、260℃付近での粘度が1×10Pa・s以上であることが、実用上十分な耐湿半田耐熱性、つまり260℃以上の半田耐熱温度を得るための架橋形成の割合を示すしきい値として有効であると考えられた。
[Test Example 1]
The polyimide solution 1 prepared in Example 1-1 was applied to one side of a substrate and dried at 80 ° C. for 15 minutes to produce a polyimide adhesive film having a thickness of 25 μm. About 10 sheets of this polyimide adhesive film (3 cm × 3 cm) were laminated and thermocompression bonded under the conditions of 70 ° C./0.85 MPa / 10 sec using a vacuum laminator to obtain an evaluation sample A having a thickness of about 250 μm. . On the other hand, the polyimide solution prepared in Reference Example 1-2 was treated in the same manner to obtain Evaluation Sample B. A rheometer evaluation was performed on these samples A and B. The results are shown in FIG. The viscosity of sample A rapidly increased from around 160 ° C., and the viscosity at around 260 ° C. was 118,000 Pa · s. On the other hand, the increase in viscosity of Sample B was slower than that of Sample A, and the viscosity at around 260 ° C. was 45,000 Pa · s. The difference in the rate of increase in the viscosity of Samples A and B is that polyimide siloxane containing —NHCO— groups is different from Sample B using polyimide siloxane that does not contain —NHCO— groups, which are hydrogen bonding functional groups. It was considered that this was because the cross-linking reaction proceeded more rapidly in the sample A used. Here, in the comparison of solder heat resistance between Example 1-1 and Reference Example 1-2 shown in Table 2 and Table 3, Example 1-1 is much superior in terms of moisture solder resistance. I understand. Moreover, from FIG. 1, the viscosity of the sample A is almost flat at 1 × 10 5 Pa · s or more at 200 ° C. or more. From these facts, the viscosity in the vicinity of 260 ° C. being 1 × 10 5 Pa · s or more is a practically sufficient moisture-resistant solder heat resistance, that is, the ratio of crosslinking to obtain a solder heat-resistant temperature of 260 ° C. or more. It was thought that it was effective as a threshold value indicating
[試験例2]
 実施例1-1で用いたポリイミドシロキサンの分子量を変えて耐湿半田耐熱性の試験を行った。重量平均分子量を変えたポリイミドシロキサンを用いた以外は、実施例1-1と同様にカバーレイフィルムを作製して耐湿半田耐熱性評価を行った。評価結果を表5に示す。重量平均分子量が約88,000~130,000のポリイミドシロキサンを用いた場合は、耐湿半田耐熱性が260℃以上を示した。
[Test Example 2]
The moisture resistance soldering heat resistance test was conducted by changing the molecular weight of the polyimidesiloxane used in Example 1-1. A coverlay film was prepared and evaluated for resistance to moisture soldering in the same manner as in Example 1-1 except that polyimidesiloxane having a different weight average molecular weight was used. The evaluation results are shown in Table 5. When polyimidesiloxane having a weight average molecular weight of about 88,000 to 130,000 was used, the resistance to moisture soldering was 260 ° C. or higher.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 次に、実施例1-1で用いたポリイミドシロキサンの分子量を変えてレオメーター評価を行い、粘度上昇の挙動について試験を行った。重量平均分子量が、130,000のポリイミドシロキサンを用いた以外は、実施例1-1と同様にしてポリイミド溶液を得た。このポリイミド溶液を、基材の片面に塗布し、80℃で15分間乾燥を行い、厚さ25μmのポリイミド接着剤フィルムを作製した。このポリイミド接着剤フィルム(3cm×3cm)を10枚程度積層し、真空ラミネーターを用いて70℃/0.85MPa/10secの条件で熱圧着を行い、約250μm程度の厚みの評価サンプルCを得た。また、重量平均分子量が67,000のポリイミドシロキサンを用いた以外は、実施例1-1と同様にして得たポリイミド溶液からも、上記と同様にしてサンプルDを調製した。 Next, rheometer evaluation was carried out by changing the molecular weight of the polyimidesiloxane used in Example 1-1, and a test for increasing viscosity was conducted. A polyimide solution was obtained in the same manner as in Example 1-1 except that polyimidesiloxane having a weight average molecular weight of 130,000 was used. This polyimide solution was applied to one side of the substrate and dried at 80 ° C. for 15 minutes to prepare a polyimide adhesive film having a thickness of 25 μm. About 10 sheets of this polyimide adhesive film (3 cm × 3 cm) were laminated and thermocompression bonded under the conditions of 70 ° C./0.85 MPa / 10 sec using a vacuum laminator to obtain an evaluation sample C having a thickness of about 250 μm. . Sample D was also prepared in the same manner as described above from a polyimide solution obtained in the same manner as in Example 1-1 except that polyimidesiloxane having a weight average molecular weight of 67,000 was used.
 これらのサンプルC及びDについてのレオメーター評価の結果を図2に示した。図2より、重量平均分子量が130,000のサンプルCは、粘度が上昇し始める温度(硬化開始温度)が、重量平均分子量が67,000のサンプルDに比べて少し高く、かつ200℃を超えると粘度がほぼ1×10Pa・s以上になっているのに対し、サンプルDでは、粘度が上昇し始める温度が低く、かつ1×10Pa・sを上回ることはなかった。 The results of rheometer evaluation for these samples C and D are shown in FIG. As shown in FIG. 2, the sample C having a weight average molecular weight of 130,000 has a temperature at which the viscosity starts to increase (curing start temperature) slightly higher than that of the sample D having a weight average molecular weight of 67,000 and exceeds 200 ° C. Viscosity was approximately 1 × 10 5 Pa · s or more, whereas in Sample D, the temperature at which the viscosity began to rise was low and did not exceed 1 × 10 5 Pa · s.
 図2と上記表2の結果から、実用上十分な耐湿半田耐熱性を得るためには、ポリイミドシロキサンの重量平均分子量も考慮する必要があり、260℃以上の耐湿半田耐熱性を発現するために適切な分子量範囲が存在することが強く示唆された。さらに、試験例1で得られたしきい値も考慮すると、ポリイミドシロキサンの重量平均分子量は、70,000~140,000の範囲内が好ましいと考えられた。このような分子量の範囲が、実用上十分な耐湿半田耐熱性を得る上で好ましい理由は未だ解明されていないが、以下のように考えれば合理的説明が可能である。すなわち、ポリイミドシロキサンの分子量が低い方が、架橋反応性が高い傾向にあるが、70,000を下回るような過度に低い分子量では、260℃の粘度がしきい値に達せず、耐湿半田耐熱性が低下するものと考えられる。逆に、ポリイミドシロキサンの分子量が140,000を超えて高くなると、ポリイミド分子鎖の運動性が低下するために架橋反応性が低下し、この場合も260℃の粘度がしきい値に達しないと考えられる。 From the results shown in FIG. 2 and Table 2 above, it is necessary to consider the weight average molecular weight of polyimide siloxane in order to obtain practically sufficient moisture-resistant solder heat resistance. It was strongly suggested that an appropriate molecular weight range exists. Furthermore, considering the threshold value obtained in Test Example 1, it was considered that the weight average molecular weight of the polyimidesiloxane is preferably in the range of 70,000 to 140,000. Although the reason why such a molecular weight range is preferable for obtaining practically sufficient moisture-resistant soldering heat resistance has not yet been elucidated, a rational explanation can be made by considering the following. That is, the lower the molecular weight of polyimide siloxane, the higher the crosslinking reactivity, but at an excessively low molecular weight below 70,000, the viscosity at 260 ° C. does not reach the threshold value and the resistance to moisture solder resistance Is considered to decrease. Conversely, if the molecular weight of the polyimide siloxane is higher than 140,000, the mobility of the polyimide molecular chain is lowered and the crosslinking reactivity is lowered. In this case, too, the viscosity at 260 ° C. does not reach the threshold value. Conceivable.
 次に、熱伝導性基板及び熱伝導性ポリイミドフィルムの実施例について説明する。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Next, examples of the heat conductive substrate and the heat conductive polyimide film will be described. In the following examples, various measurements and evaluations are as follows unless otherwise specified.
[銅箔引剥し強度(ピール強度)]
 熱伝導性基板の銅箔層を幅1.0mm、長さ180mmの長矩形にパターンエッチングし、そのパターンが中央になるように、幅20mm、長さ200mmに試験片を切り抜き、IPC-TM-650.2.4.19(東洋精機製)により180°引剥し試験を行った。
[Copper foil peel strength (peel strength)]
The copper foil layer of the heat conductive substrate was pattern-etched into a long rectangle with a width of 1.0 mm and a length of 180 mm, and a test piece was cut out to a width of 20 mm and a length of 200 mm so that the pattern would be in the center, and IPC-TM- A 180 ° peeling test was conducted by 650.2.19 (manufactured by Toyo Seiki).
[厚み方向熱伝導率(λzTC)]
 熱伝導性ポリイミドフィルムを20mm×20mmのサイズに切り出し、白金による蒸着、黒化処理を行った後、レーザーフラッシュ法による厚み方向の熱拡散率(NETZSCH社製キセノンフラッシュ アナライザー LFA 447 Nanoflash)、DSCによる比熱、水中置換法による密度をそれぞれ測定し、これらの結果をもとに熱伝導率(W/m・K)を算出した。なお、熱伝導性ポリイミドフィルムは、測定時に厚さ100μmのサンプルを作製して、使用した。
[Thickness direction thermal conductivity (λzTC)]
A thermally conductive polyimide film was cut into a size of 20 mm × 20 mm, subjected to vapor deposition with platinum and blackening treatment, and then a thermal diffusivity in the thickness direction by a laser flash method (Xenon Flash Analyzer LFA 447 Nanoflash manufactured by NETZSCH), according to DSC The specific heat and the density by the underwater substitution method were measured, and the thermal conductivity (W / m · K) was calculated based on these results. In addition, the heat conductive polyimide film produced and used the sample of thickness 100 micrometers at the time of a measurement.
[耐電圧]
 熱伝導性ポリイミドフィルムを5cm×5cmのサイズでカットし、JIS C2110に基づき、KIKUSUI製TOS 5101装置にて、段階昇圧法により絶縁油中にて耐電圧を測定した。0.2kV刻みで電圧をステップ上昇させ、各電圧において20秒保持し、漏れ電流8.5mAとし、破壊した電圧の一つ前の値を初期耐電圧とした。電極のサイズは2cmφである。
[Withstand voltage]
The thermally conductive polyimide film was cut into a size of 5 cm × 5 cm, and the withstand voltage was measured in insulating oil by a step-up method using a TOS 5101 apparatus manufactured by KIKUSUI based on JIS C2110. The voltage was stepped up in steps of 0.2 kV, held at each voltage for 20 seconds, a leakage current of 8.5 mA, and the value immediately before the broken voltage was the initial withstand voltage. The size of the electrode is 2 cmφ.
[重量平均分子量(Mw)の測定]
 重量平均分子量は、ゲル浸透クロマトグラフ(東ソー株式会社製、HLC-8220GPCを使用)により測定した。標準物質としてポリスチレンを用い、展開溶媒にN,N-ジメチルアセトアミドを用いた。
[Measurement of weight average molecular weight (Mw)]
The weight average molecular weight was measured by gel permeation chromatography (manufactured by Tosoh Corporation, using HLC-8220GPC). Polystyrene was used as a standard substance, and N, N-dimethylacetamide was used as a developing solvent.
[半田耐熱性(乾燥)の評価方法]
 熱伝導性基板の銅箔層を所定形状にパターニングして回路加工を行い、300℃を上限として各温度の半田浴に10秒浸漬して、接着状態を観察して、発泡、ふくれ、剥離などの不具合の有無を確認した。耐熱性は不具合が生じない上限の温度を半田耐熱性とした。例えば「300℃」は、300℃の半田浴中で評価して、不具合が認められないことを意味する。
[Method for evaluating solder heat resistance (drying)]
Circuit processing is carried out by patterning the copper foil layer of the heat conductive substrate into a predetermined shape, dipping in a solder bath at each temperature up to 300 ° C. for 10 seconds, observing the adhesive state, foaming, blistering, peeling, etc. The presence or absence of defects was confirmed. For the heat resistance, the upper limit temperature at which no defects occur was defined as solder heat resistance. For example, “300 ° C.” means that no defect is observed when evaluated in a solder bath at 300 ° C.
[カールの測定方法]
 CCLカール(最大反り量):
 金属/樹脂の積層体を50mm×50mmのサイズに切り出し、恒温恒湿環境下(23±3℃、50±5%RH)で24時間放置後に、ノギスを用いて4隅の反り量の測定を実施した。この際、樹脂面側もしくは金属側へ反っている場合は、最も反り量の大きいところをCCL最大反り量とした。最大反り量の絶対量が5mm以下である場合を○(良好)とし、5mm以上である場合を×(不良)と判断した。
[Curl measurement method]
CCL curl (maximum warpage):
Cut the metal / resin laminate into a size of 50 mm x 50 mm, leave it for 24 hours in a constant temperature and humidity environment (23 ± 3 ° C, 50 ± 5% RH), and then measure the amount of warping at the four corners using a caliper. Carried out. At this time, when warping toward the resin surface side or the metal side, the CCL maximum warpage amount was determined at the place with the largest warpage amount. The case where the absolute amount of the maximum warp amount was 5 mm or less was judged as ◯ (good), and the case where it was 5 mm or more was judged as x (defective).
 本実施例で用いた略号は以下の化合物を示す。
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3’,4,4’-ジフェニルテトラカルボン酸二無水物
BAPP:2,2-ビス(4-アミノフェノキシフェニル)プロパン
DAPE:4,4’-ジアミノジフェニルエーテル
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
The abbreviations used in the examples represent the following compounds.
BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride BPDA: 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride BAPP: 2,2-bis (4-aminophenoxy) Phenyl) propane DAPE: 4,4′-diaminodiphenyl ether m-TB: 2,2′-dimethyl-4,4′-diaminobiphenyl
PSX:下記一般式で表されるジアミノシロキサン
(mの数平均値は1~20の範囲内であり、重量平均分子量は740である)
PSX: diaminosiloxane represented by the following general formula (the number average value of m 1 is in the range of 1 to 20 and the weight average molecular weight is 740)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
N-12:下記構造式のドデカン二酸ジヒドラジド N-12: Dodecanedioic acid dihydrazide having the following structural formula
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
NMP:N-メチル-2-ピロリドン
DMAc:N,N-ジメチルアセトアミド
NMP: N-methyl-2-pyrrolidone DMAc: N, N-dimethylacetamide
合成例2-1
 1000mlのセパラブルフラスコに、71.850gのPSX(0.0971モル)、7.474gのBAPP(0.0182モル)、1.568gのN-12(0.0061モル)、39.109gのBTDA(0.1214モル)、168gのN-メチル-2-ピロリドン及び112gのキシレンを装入し、室温で1時間良く混合して、ポリアミド酸溶液を得た。このポリアミド酸溶液を190℃に昇温し、20時間加熱、攪拌し、イミド化を完結したポリイミド溶液2aを得た。得られたポリイミド溶液2aにおけるポリイミド樹脂の重量平均分子量(Mw)は90,000であった。このときの全ジアミン成分に対するジアミノシロキサン成分のモル%は80%である。
Synthesis Example 2-1
In a 1000 ml separable flask, 71.850 g PSX (0.0971 mol), 7.474 g BAPP (0.0182 mol), 1.568 g N-12 (0.0061 mol), 39.109 g BTDA. (0.1214 mol) 168 g of N-methyl-2-pyrrolidone and 112 g of xylene were charged and mixed well at room temperature for 1 hour to obtain a polyamic acid solution. This polyamic acid solution was heated to 190 ° C., heated and stirred for 20 hours to obtain a polyimide solution 2a having completed imidization. The weight average molecular weight (Mw) of the polyimide resin in the obtained polyimide solution 2a was 90,000. At this time, the mol% of the diaminosiloxane component relative to the total diamine component is 80%.
[実施例2-1]
 合成例2-1で得られたポリイミド溶液2aを63.88g秤量し、2.56gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを38.4g秤量し、N-12を1.096g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナを含有するポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で30分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で60分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は10wt%である。続いて、この熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、両面に金属層を有する熱伝導性基板を得た。
[Example 2-1]
63.88 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 2.56 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 38.4 g of solvent NMP was weighed into another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied onto a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 30 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 60 minutes to form an insulating layer in which a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina as a heat conductive filler in this insulating layer is 10 wt%. Subsequently, a rolled copper foil having a thickness of 18 μm is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides. A substrate was obtained.
 得られた熱伝導性基板における絶縁層の特性を評価するために銅箔をエッチング除去して熱伝導性ポリイミドフィルム(F1)を作製し、耐電圧、熱伝導率をそれぞれ評価した。これらの結果を表6に示した。更に、熱伝導性基板を所定パターンに加工して、接着強度、半田耐熱性及びカールの測定を行った。これらの結果を表7に示した。なお、表7中の「塗布面接着強度」とは、ポリイミド溶液を圧延銅箔上に塗布した際の塗布膜と銅箔との境界面における金属層との接着強度を意味し、「圧着面接着強度」とは、ポリイミド溶液を圧延銅箔上に塗布した際の塗布膜の表面側に後から金属層を圧着させた場合の接着強度を意味する(表9において同じである)。 In order to evaluate the characteristics of the insulating layer in the obtained thermally conductive substrate, the copper foil was removed by etching to produce a thermally conductive polyimide film (F1), and the withstand voltage and thermal conductivity were evaluated. These results are shown in Table 6. Further, the heat conductive substrate was processed into a predetermined pattern, and the adhesive strength, solder heat resistance and curl were measured. These results are shown in Table 7. “Applied surface adhesive strength” in Table 7 means the adhesive strength between the coating film and the metal layer at the boundary between the copper foil when the polyimide solution is applied onto the rolled copper foil, “Adhesion strength” means the adhesion strength when the metal layer is later pressure-bonded to the surface side of the coating film when the polyimide solution is applied onto the rolled copper foil (the same applies in Table 9).
[実施例2-2]
 合成例2-1で得られたポリイミド溶液2aを47.99g秤量し、17.28gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを28.81g秤量し、N-12を0.82g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナを含有するポリイミド溶液に入れて、再度均一になるまでに遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で30分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で60分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は50wt%である。続いて、この熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、両面に金属層を有する熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Example 2-2]
47.99 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 17.28 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 28.81 g of solvent NMP was weighed into another container, 0.82 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed with a centrifugal stirrer until it became uniform again to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied onto a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 30 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 60 minutes to form an insulating layer in which a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina which is a heat conductive filler in this insulating layer is 50 wt%. Subsequently, a rolled copper foil having a thickness of 18 μm is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides. A substrate was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
[実施例2-3]
 合成例2-1で得られたポリイミド溶液2aを47.88g秤量し、17.24gの窒化アルミニウム(平均粒径1.1μm、トクヤマ製)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを15.6g秤量し、N-12を0.82g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記の窒化アルミニウムが入ったポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で30分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で60分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーである窒化アルミニウムの含有量は50wt%である。続いて、この熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、両面に金属層を有する熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Example 2-3]
47.88 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, 17.24 g of aluminum nitride (average particle size 1.1 μm, manufactured by Tokuyama) was added, and mixed with a centrifugal stirrer until uniform. . Subsequently, 15.6 g of solvent NMP was weighed in another container, 0.82 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the polyimide solution containing the above aluminum nitride, and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied onto a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 30 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 60 minutes to form an insulating layer in which a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of aluminum nitride which is a heat conductive filler in this insulating layer is 50 wt%. Subsequently, a rolled copper foil having a thickness of 18 μm is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides. A substrate was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
合成例2-2
 1000mlのセパラブルフラスコに、71.30gのPSX(0.0964モル)、9.89gのBAPP(0.0241モル)、38.66gのBTDA(0.120モル)、168gのN-メチル-2-ピロリドン及び112gのキシレンを装入し、室温で1時間良く混合して、ポリアミド酸溶液を得た。このポリアミド酸溶液を190℃に昇温し、20時間加熱、攪拌し、イミド化を完結したポリイミド溶液2bを得た。得られたポリイミド溶液2bにおけるポリイミド樹脂の重量平均分子量(Mw)は122,000であった。このときの全ジアミン成分に対するジアミノシロキサン成分のモル%は80%(m値=0.8)である。なお、「m値」は、得られたポリイミド樹脂中に含まれる、上記一般式(1)で表される構成単位の存在モル比を意味する。
Synthesis Example 2-2
In a 1000 ml separable flask, 71.30 g PSX (0.0964 mol), 9.89 g BAPP (0.0241 mol), 38.66 g BTDA (0.120 mol), 168 g N-methyl-2 -Pyrrolidone and 112 g of xylene were charged and mixed well at room temperature for 1 hour to obtain a polyamic acid solution. This polyamic acid solution was heated to 190 ° C., heated and stirred for 20 hours to obtain a polyimide solution 2b having completed imidization. The weight average molecular weight (Mw) of the polyimide resin in the obtained polyimide solution 2b was 122,000. At this time, the mol% of the diaminosiloxane component relative to the total diamine component is 80% (m value = 0.8). In addition, "m value" means the presence molar ratio of the structural unit represented by the said General formula (1) contained in the obtained polyimide resin.
[実施例2-4]
 合成例2-2で得られたポリイミド溶液2bを400.24g秤量し、16.34gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを97.4g秤量し、N-12を4.2g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナが入ったポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で30分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で2時間かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は10wt%である。続いて、この熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、両面に金属層を有する熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Example 2-4]
400.24 g of the polyimide solution 2b obtained in Synthesis Example 2-2 was weighed, and 16.34 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 97.4 g of solvent NMP was weighed into another container, 4.2 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied onto a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 30 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 2 hours to form an insulating layer in which a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and a heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina as a heat conductive filler in this insulating layer is 10 wt%. Subsequently, a rolled copper foil having a thickness of 18 μm is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides. A substrate was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
[実施例2-5]
 合成例2-2で得られたポリイミド溶液2bを400g秤量し、147.0gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを97.3g秤量し、N-12を4.2g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナが入ったポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で30分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で2時間かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は50wt%である。続いて、この熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、両面に金属層を有する熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Example 2-5]
400 g of the polyimide solution 2b obtained in Synthesis Example 2-2 was weighed, and 147.0 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added uniformly. It mixed with the centrifugal stirrer until it became. Subsequently, 97.3 g of solvent NMP was weighed into another container, 4.2 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied onto a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 30 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 2 hours to form an insulating layer in which a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and a heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina which is a heat conductive filler in this insulating layer is 50 wt%. Subsequently, a rolled copper foil having a thickness of 18 μm is placed on the polyimide insulating layer of the thermally conductive substrate, pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours, and the thermal conductivity having a metal layer on both sides. A substrate was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
合成例2-3
 攪拌装置を備えた500mlセパラブルフラスコ中の255gのDMAcに、28.9050gのBAPPを窒素気流下で攪拌しながら加えて溶解させた後、攪拌を維持したまま、15.0281gのPMDAを加え、10分後、1.0669gのBPDAを加えた。その後、室温で4時間攪拌を続けて重合反応を行い、ポリイミド前駆体となる粘稠なポリアミド酸溶液2cを得た。
Synthesis Example 2-3
To 255 g of DMAc in a 500 ml separable flask equipped with a stirrer, 28.9050 g of BAPP was added with stirring under a nitrogen stream and dissolved, and then 15.0281 g of PMDA was added while maintaining stirring. After 10 minutes, 1.0669 g of BPDA was added. Thereafter, the polymerization reaction was continued for 4 hours at room temperature to obtain a viscous polyamic acid solution 2c to be a polyimide precursor.
[比較例2-1]
 合成例2-3で得られたポリアミド酸溶液2cを78.7g秤量し、1.3gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、溶剤DMAcを15.7g追加して、再度均一になるまでに遠心攪拌機で混合し、熱伝導性フィラーを10wt%含有するポリアミド酸溶液を得た。次に、厚み18μmの圧延銅箔(Ra=0.7μm)上に、このポリアミド酸溶液を硬化後の厚みが25μmとなるように塗布し、120℃で加熱乾燥し溶剤を除去した。その後、130~340℃の温度範囲で、段階的に20分かけて昇温加熱して、片面に金属層を有する熱伝導性基板を作製した。続いて、この熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を重ね合わせ、真空プレス機を用いて、160℃で加熱圧着を試みた。しかし、160℃では接着できなかったので、160℃、270℃で30分ずつ加熱してから、面圧19.1MPaで温度360℃まで昇温し、プレス時間25分の条件で加熱圧着して、両面に金属層を有する熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Comparative Example 2-1]
78.7 g of the polyamic acid solution 2c obtained in Synthesis Example 2-3 was weighed, and 1.3 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. The mixture was mixed with a centrifugal stirrer until uniform. Subsequently, 15.7 g of the solvent DMAc was added and mixed with a centrifugal stirrer until it became uniform again to obtain a polyamic acid solution containing 10 wt% of a heat conductive filler. Next, this polyamic acid solution was applied onto a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and dried by heating at 120 ° C. to remove the solvent. Thereafter, the temperature was raised and heated stepwise in a temperature range of 130 to 340 ° C. over 20 minutes to produce a thermally conductive substrate having a metal layer on one side. Subsequently, a rolled copper foil having a thickness of 18 μm was superposed on the polyimide insulating layer of this thermally conductive substrate, and thermocompression bonding was attempted at 160 ° C. using a vacuum press. However, since it could not be bonded at 160 ° C., it was heated at 160 ° C. and 270 ° C. for 30 minutes, then heated to a temperature of 360 ° C. at a surface pressure of 19.1 MPa, and subjected to thermocompression bonding under a press time of 25 minutes. A thermally conductive substrate having metal layers on both sides was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
[比較例2-2]
 合成例2-3で得られたポリアミド酸溶液2cを69.6g秤量し、10.4gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、溶剤DMAcを13.9g追加して、再度均一になるまでに遠心攪拌機で混合し、熱伝導性フィラーを50wt%含有するポリアミド酸溶液を得た。次に、比較例2-1と同様に操作して、熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Comparative Example 2-2]
69.6 g of the polyamic acid solution 2c obtained in Synthesis Example 2-3 was weighed, and 10.4 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. The mixture was mixed with a centrifugal stirrer until uniform. Subsequently, 13.9 g of the solvent DMAc was added and mixed with a centrifugal stirrer until it became uniform again to obtain a polyamic acid solution containing 50 wt% of the heat conductive filler. Next, a heat conductive substrate was obtained by operating in the same manner as in Comparative Example 2-1. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
[合成例2-4]
 攪拌装置を備えた500mlセパラブルフラスコ中の255gのDMAcに、20.7283gのm-TBを窒素気流下で攪拌しながら加えて溶解させた後、攪拌を維持したまま、11.5380gのPMDAを加え、10分後、12.7337gのBPDAを加えた。その後、室温で4時間攪拌を続けて重合反応を行い、ポリイミド前駆体となるポリアミド酸溶液2dの粘稠な溶液を得た。
[Synthesis Example 2-4]
20.7283 g of m-TB was added to 255 g of DMAc in a 500 ml separable flask equipped with a stirrer while stirring under a nitrogen stream, and then 11.5380 g of PMDA was added while maintaining stirring. In addition, after 10 minutes, 12.7337 g of BPDA was added. Thereafter, the polymerization reaction was continued for 4 hours at room temperature to obtain a viscous solution of the polyamic acid solution 2d serving as a polyimide precursor.
[比較例2-3]
 比較例2-1のポリアミド酸溶液2cの代わりに、合成例2-4で得られたポリアミド酸溶液2dを用いて、比較例2-1と同様に操作して加熱圧着を試みたが接着できなかったため、比較例2-1における360℃のプレス温度を380℃として加熱圧着し、比較例2-3の熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Comparative Example 2-3]
Using the polyamic acid solution 2d obtained in Synthesis Example 2-4 in place of the polyamic acid solution 2c of Comparative Example 2-1, an operation similar to that of Comparative Example 2-1 was performed and thermocompression bonding was attempted. Accordingly, the heat-pressure bonding was performed with the press temperature of 360 ° C. in Comparative Example 2-1 set to 380 ° C., and the heat conductive substrate of Comparative Example 2-3 was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
[比較例2-4]
 比較例2-2のポリアミド酸溶液2cの代わりに、合成例2-4で得られたポリアミド酸溶液2dを用いて、比較例2-2と同様に操作して加熱圧着を試みたが接着できなかったため、比較例2-1における360℃のプレス温度を380℃として加熱圧着し、比較例2-4の熱伝導性基板を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Comparative Example 2-4]
Although the polyamic acid solution 2d obtained in Synthesis Example 2-4 was used in place of the polyamic acid solution 2c of Comparative Example 2-2 and an operation similar to Comparative Example 2-2 was performed, thermocompression bonding was attempted. Therefore, the heat-pressure bonding was carried out with the press temperature of 360 ° C. in Comparative Example 2-1 set to 380 ° C., and the heat conductive substrate of Comparative Example 2-4 was obtained. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
[比較例2-5]
 実施例2-1のアルミナを添加しないことを除いては、実施例2-1と同様に操作して、比較例2-5の両面金属積層体を得た。続いて、実施例2-1と同じように評価を行った。その結果を表6及び表7に示した。
[Comparative Example 2-5]
A double-sided metal laminate of Comparative Example 2-5 was obtained in the same manner as in Example 2-1, except that the alumina of Example 2-1 was not added. Subsequently, evaluation was performed in the same manner as in Example 2-1. The results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表6中、硬化剤の含有量は、ポリイミド樹脂の固形分に対する重量%を意味し、フィラー含有量は、エッチングによって銅箔を除去した熱伝導性ポリイミドフィルム全体に対するフィラーの重量%を意味する。 In Table 6, the content of the curing agent means the weight percent with respect to the solid content of the polyimide resin, and the filler content means the weight percent of the filler with respect to the entire thermally conductive polyimide film from which the copper foil has been removed by etching.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表6から、絶縁層を形成するポリイミド樹脂中に熱伝導性フィラーを含有する実施例2-1~2-5の熱伝導性基板は、熱伝導性フィラーを含有しないポリイミド樹脂によって絶縁層を形成した比較例2-5の金属張積層体に比べて、熱伝導率が大幅に改善されていることがわかる。また、表7から、ポリイミドシロキサンがアミノ化合物によって架橋された構造を有するポリイミド樹脂を使用した実施例2-1~2-5の熱伝導性ポリイミドフィルムは、架橋構造を持たないポリイミド樹脂を使用した比較例2-1~2-4の熱伝導性ポリイミドフィルムに比べてプレス加工性が良好であり、特に低温でのプレスによって実用上十分な接着性が得られた。なお、耐電圧性と耐熱性については、実施例2-1~2-5、比較例2-1~2-5ともに実用上十分な特性を有していた。実施例2-1~2-5の熱伝導性基板は、カールの発生が小さく、使用性に優れていた。 From Table 6, the heat conductive substrates of Examples 2-1 to 2-5 containing the heat conductive filler in the polyimide resin forming the insulating layer are formed of the polyimide resin not containing the heat conductive filler. It can be seen that the thermal conductivity is greatly improved as compared with the metal-clad laminate of Comparative Example 2-5. Further, from Table 7, the thermally conductive polyimide films of Examples 2-1 to 2-5 using a polyimide resin having a structure in which polyimidesiloxane is crosslinked with an amino compound are polyimide resins having no crosslinked structure. The press workability was better than the heat conductive polyimide films of Comparative Examples 2-1 to 2-4, and practically sufficient adhesiveness was obtained by pressing at a low temperature. In terms of voltage resistance and heat resistance, Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-5 had practically sufficient characteristics. The thermally conductive substrates of Examples 2-1 to 2-5 were small in curling and excellent in usability.
[実施例2-6]
 合成例2-1で得られたポリイミド溶液2aを63.89g秤量し、86.56gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを35.06g秤量し、N-12を1.096g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナを含有するポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で15分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で60分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は79wt%である。
[Example 2-6]
63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 86.56 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied on a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 15 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 60 minutes to form an insulating layer in which a heat conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina which is a heat conductive filler in this insulating layer is 79 wt%.
 得られた熱伝導性基板における絶縁層の特性を評価するために銅箔をエッチング除去して熱伝導性ポリイミドフィルム(F6)を作製し、耐電圧、熱伝導率をそれぞれ評価した。更に、熱伝導性基板を5cm角サイズにカットし、カールの測定を行った。これらの結果を表8に示した。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、0.5[kN/m]以上であった。 In order to evaluate the characteristics of the insulating layer in the obtained thermally conductive substrate, the copper foil was removed by etching to produce a thermally conductive polyimide film (F6), and the withstand voltage and thermal conductivity were evaluated. Further, the thermally conductive substrate was cut into a 5 cm square size, and the curl was measured. These results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side | surface, when 1 mm180 degree peel strength (crimp surface adhesive strength) between metal / resins was measured, it was 0.5. [KN / m] or more.
[実施例2-7]
 合成例2-1で得られたポリイミド溶液2aを63.89g秤量し、53.69gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを35.06g秤量し、N-12を1.096g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナを含有するポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で15分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で10分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は70wt%である。続いて、実施例2-6と同じように評価を行った。その結果を表8に示した。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、0.6[kN/m]以上であった。
[Example 2-7]
63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 53.69 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied on a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 15 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 10 minutes to form an insulating layer in which a thermally conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina which is a heat conductive filler in this insulating layer is 70 wt%. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side | surface, when 1 mm180 degree peel strength (crimp surface adhesive strength) between metal / resins was measured, it was 0.6. It was [kN / m] or more.
[実施例2-8]
 実施例2-7において、120℃で5分、160℃で10分かけて加熱したことの替わりに、120℃で5分、160℃で60分かけて加熱した以外は実施例2-7と同様にして、片面に金属層を有する熱伝導性基板を作製した。続いて、実施例2-6と同じように評価を行った。その結果を表8に示した。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、0.6[kN/m]以上であった。
[Example 2-8]
In Example 2-7, in place of heating at 120 ° C. for 5 minutes and 160 ° C. over 10 minutes, except for heating at 120 ° C. for 5 minutes and 160 ° C. over 60 minutes, Example 2-7 Similarly, a thermally conductive substrate having a metal layer on one side was produced. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side | surface, when 1 mm180 degree peel strength (crimp surface adhesive strength) between metal / resins was measured, it was 0.6. It was [kN / m] or more.
[実施例2-9]
 合成例2-1で得られたポリイミド溶液2aを63.89g秤量し、2.56gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを35.06g秤量し、N-12を1.096g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナを含有するポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で15分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で10分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は10wt%である。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、0.7[kN/m]以上であった。
[Example 2-9]
63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 2.56 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied on a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 15 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 10 minutes to form an insulating layer in which a thermally conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina as a heat conductive filler in this insulating layer is 10 wt%. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side | surface, when 1 mm180 degree peel strength (crimp surface adhesive strength) between metal / resin was measured, [KN / m] or more.
[実施例2-10]
 実施例2-9において、120℃で5分、160℃で10分かけて加熱したことの替わりに、120℃で5分、160℃で60分かけて加熱した以外は実施例2-9と同様にして、片面に金属層を有する熱伝導性基板を作製した。続いて、実施例2-6と同じように評価を行った。その結果を表8に示した。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、0.7[kN/m]以上であった。
[Example 2-10]
In Example 2-9, instead of heating at 120 ° C. for 5 minutes and 160 ° C. over 10 minutes, Example 2-9 was repeated except that heating was performed at 120 ° C. for 5 minutes and 160 ° C. over 60 minutes. Similarly, a thermally conductive substrate having a metal layer on one side was produced. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side | surface, when 1 mm180 degree peel strength (crimp surface adhesive strength) between metal / resin was measured, [KN / m] or more.
[実施例2-11]
 合成例2-1で得られたポリイミド溶液2aを63.89g秤量し、23.01gのアルミナ(平均粒径1.5μm、住友化学製、商品名:AA-1.5)を添加して、均一になるまで遠心攪拌機で混合した。続いて、別の容器に溶剤NMPを35.06g秤量し、N-12を1.096g添加して、N-12が溶けるまで攪拌した。このN-12のNMP溶液を上記のアルミナを含有するポリイミド溶液に入れて、再度均一になるまで遠心攪拌機で混合し、熱伝導性フィラーを含有するポリイミド溶液を得た。このポリイミド溶液を硬化後の厚みが25μmとなるように、厚さ18μmの圧延銅箔(Ra=0.7μm)上に塗布し、80℃で15分間加熱乾燥し溶剤を除去した。その後、120℃で5分、160℃で10分かけて加熱して、上記圧延銅箔上にポリイミド樹脂中に熱伝導性フィラーが分散した絶縁層を形成し、片面に金属層を有する熱伝導性基板を作製した。この絶縁層における熱伝導性フィラーであるアルミナの含有量は50wt%である。続いて、実施例2-6と同じように評価を行った。その結果を表8に示した。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、 0.7[kN/m]以上であった。
[Example 2-11]
63.89 g of the polyimide solution 2a obtained in Synthesis Example 2-1 was weighed, and 23.01 g of alumina (average particle size 1.5 μm, manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5) was added. Mix with a centrifugal stirrer until uniform. Subsequently, 35.06 g of solvent NMP was weighed in another container, 1.096 g of N-12 was added, and the mixture was stirred until N-12 was dissolved. This N-12 NMP solution was put into the above-mentioned polyimide solution containing alumina and mixed again with a centrifugal stirrer until uniform, to obtain a polyimide solution containing a thermally conductive filler. This polyimide solution was applied on a rolled copper foil (Ra = 0.7 μm) having a thickness of 18 μm so that the thickness after curing was 25 μm, and the solvent was removed by heating at 80 ° C. for 15 minutes. Thereafter, heating is performed at 120 ° C. for 5 minutes and at 160 ° C. for 10 minutes to form an insulating layer in which a thermally conductive filler is dispersed in polyimide resin on the rolled copper foil, and heat conduction having a metal layer on one side. A conductive substrate was produced. The content of alumina which is a heat conductive filler in this insulating layer is 50 wt%. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side, when the 1 mm 180 degree peel strength (crimp surface adhesive strength) between metal / resin was measured, 0.7 [KN / m] or more.
[実施例2-12]
 実施例2-11において、120℃で5分、160℃で10分かけて加熱したことの替わりに、120℃で5分、160℃で60分かけて加熱した以外は実施例2-11と同様にして、片面に金属層を有する熱伝導性基板を作製した。続いて、実施例2-6と同じように評価を行った。その結果を表8に示した。また、この片面に金属層を有する熱伝導性基板のポリイミド樹脂層に熱圧着させた圧延銅箔について、金属/樹脂間の1mm180°ピール強度(圧着面接着強度)を測定したところ、0.7[kN/m]以上であった。
[Example 2-12]
In Example 2-11, instead of heating at 120 ° C. for 5 minutes and at 160 ° C. for 10 minutes, except for heating at 120 ° C. for 5 minutes and 160 ° C. for 60 minutes, Example 2-11 Similarly, a thermally conductive substrate having a metal layer on one side was produced. Subsequently, evaluation was performed in the same manner as in Example 2-6. The results are shown in Table 8. Moreover, about the rolled copper foil thermocompression-bonded to the polyimide resin layer of the heat conductive board | substrate which has a metal layer on this single side | surface, when 1 mm180 degree peel strength (crimp surface adhesive strength) between metal / resin was measured, [KN / m] or more.
[実施例2-13]
 実施例2-7で作製した片面に金属層を有する熱伝導性基板のポリイミド絶縁層の上に厚さ18μmの圧延銅箔を置き、温度160℃、圧力2MPa、時間2時間の条件でプレスし、両面に金属層を有する熱伝導性基板を得た。得られた熱伝導性基板を所定パターンに加工して、接着強度、半田耐熱性及びカールの測定を行った。その結果を表9に示した。
[Example 2-13]
A rolled copper foil having a thickness of 18 μm was placed on the polyimide insulating layer of the heat conductive substrate having a metal layer on one side produced in Example 2-7, and pressed under conditions of a temperature of 160 ° C., a pressure of 2 MPa, and a time of 2 hours. A thermally conductive substrate having metal layers on both sides was obtained. The obtained heat conductive substrate was processed into a predetermined pattern, and adhesive strength, solder heat resistance and curl were measured. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表8から、絶縁層を形成するポリイミド樹脂中に熱伝導性フィラーを含有する実施例2-6~2-12の片面金属熱伝導性基板は、熱伝導率が高く、カールの発生も小さく、使用性に優れていた。また、表9から、実施例2-13の両面金属熱伝導性基板は、プレス加工性が良好であり、低温でのプレスによって実用上十分な接着性が得られた。また、実施例2-6~2-13の片面もしくは両面金属熱伝導性基板は、耐電圧性と耐熱性について、実用上十分な特性を有していた。 From Table 8, the single-sided metal thermal conductive substrates of Examples 2-6 to 2-12 containing a thermal conductive filler in the polyimide resin forming the insulating layer have high thermal conductivity and small curling. It was excellent in usability. Further, from Table 9, the double-sided metal thermally conductive substrate of Example 2-13 had good press workability, and practically sufficient adhesiveness was obtained by pressing at low temperature. In addition, the single-sided or double-sided metal thermally conductive substrates of Examples 2-6 to 2-13 had practically sufficient characteristics with respect to voltage resistance and heat resistance.
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。例えば、上記実施の形態では、本発明のポリイミド樹脂の用途として、FPCなどの回路基板のカバーレイフィルムやボンディングシート用の接着剤を例に挙げたが、上記以外の用途、例えばテープオートメーティッドボンディング(TAB)、チップサイズパッケージ(CSP)等における接着用樹脂の形成にも利用できる。 As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment. For example, in the above embodiment, the polyimide resin of the present invention has been exemplified by adhesives for circuit board coverlay films and bonding sheets such as FPC, but other uses such as tape automated bonding. (TAB), chip size package (CSP) and the like can be used for forming an adhesive resin.

Claims (30)

  1.  下記の成分(A)及び(B)、
    (A)ケトン基を有するポリイミドシロキサン、並びに、
    (B)少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物、
    を反応させて得られる架橋ポリイミド樹脂であって、
     前記(A)成分のポリイミドシロキサンにおけるケトン基の少なくとも一部分に前記(B)成分のアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有することを特徴とする架橋ポリイミド樹脂。
    The following components (A) and (B),
    (A) a polyimidesiloxane having a ketone group, and
    (B) an amino compound having at least two primary amino groups as functional groups,
    A cross-linked polyimide resin obtained by reacting
    The amino group of the amino compound of the component (B) reacts with at least a part of the ketone group in the polyimide siloxane of the component (A) to form a C═N bond, so that the polyimide siloxane is formed by the amino compound. A crosslinked polyimide resin, characterized by having a crosslinked structure.
  2.  前記ポリイミドシロキサンが、下記の一般式(1)及び(2)で表される構成単位:
    Figure JPOXMLDOC01-appb-C000001
    [式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基及び水素結合形成基を含み、m、nは各構成単位の存在モル比を示し、mは0.35~1.0の範囲内、nは0~0.65の範囲内である]
    を有するポリイミドシロキサンである請求項1に記載の架橋ポリイミド樹脂。
    The polyimidesiloxane is a structural unit represented by the following general formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, and Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 to 1 In the range of 0, n is in the range of 0 to 0.65]
    The cross-linked polyimide resin according to claim 1, which is a polyimide siloxane having the following.
  3.  前記構成単位の存在モル比mが、0.75~1.0の範囲内、nが、0~0.25の範囲内である請求項2に記載の架橋ポリイミド樹脂。 3. The cross-linked polyimide resin according to claim 2, wherein the molar ratio m of the structural unit is in the range of 0.75 to 1.0, and n is in the range of 0 to 0.25.
  4.  前記ポリイミドシロキサンが、下記の一般式(1)及び(2)で表される構成単位:
    Figure JPOXMLDOC01-appb-C000002
    [式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar中にケトン基を、R中に水素結合形成基をそれぞれ含み、m、nは各構成単位の存在モル比を示し、mは0.35以上1.0未満の範囲内、nは0を超え0.65以下の範囲内である]
    を有するポリイミドシロキサンである請求項1に記載の架橋ポリイミド樹脂。
    The polyimidesiloxane is a structural unit represented by the following general formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, Ar contains a ketone group, R 2 contains a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 or more and 1 Within the range of less than 0, n is in the range of more than 0 and not more than 0.65]
    The cross-linked polyimide resin according to claim 1, which is a polyimide siloxane having the following.
  5.  前記構成単位の存在モル比mが、0.75以上1.0未満の範囲内、nが、0を超え0.25以下の範囲内である請求項4に記載の架橋ポリイミド樹脂。 The cross-linked polyimide resin according to claim 4, wherein the molar ratio m of the structural unit is in a range of 0.75 or more and less than 1.0, and n is in a range of more than 0 and 0.25 or less.
  6.  前記ポリイミドシロキサンにおける前記水素結合形成基が、-NHCO-である請求項2又は4に記載の架橋ポリイミド樹脂。 The crosslinked polyimide resin according to claim 2 or 4, wherein the hydrogen bond-forming group in the polyimidesiloxane is -NHCO-.
  7.  前記ポリイミドシロキサンが、ジヒドラジド化合物を原料として合成されたものである請求項1に記載の架橋ポリイミド樹脂。 The cross-linked polyimide resin according to claim 1, wherein the polyimide siloxane is synthesized using a dihydrazide compound as a raw material.
  8.  前記アミノ化合物が、ジヒドラジド化合物である請求項1に記載の架橋ポリイミド樹脂。 The crosslinked polyimide resin according to claim 1, wherein the amino compound is a dihydrazide compound.
  9.  さらに、平均粒径が2~25μmの範囲内の板状の無機フィラーを、前記(A)成分及び(B)成分の合計100重量部に対して5~200重量部の範囲内で含有する請求項1に記載の架橋ポリイミド樹脂。 Furthermore, the plate-like inorganic filler having an average particle diameter of 2 to 25 μm is contained within a range of 5 to 200 parts by weight with respect to a total of 100 parts by weight of the component (A) and the component (B). Item 2. A crosslinked polyimide resin according to Item 1.
  10.  下記(A)成分及び(B)成分、
    (A)ケトン基及び水素結合形成基を有する重量平均分子量が20,000~150,000であるポリイミドシロキサン、並びに
    (B)少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物、
    を含み、
     前記(A)成分中のケトン基1モルに対し、前記第1級アミノ基が合計で0.004モル~1.5モルの範囲内となるように前記(B)成分を含有する接着剤樹脂組成物。
    The following (A) component and (B) component,
    (A) a polyimidesiloxane having a weight average molecular weight of 20,000 to 150,000 having a ketone group and a hydrogen bond-forming group, and (B) an amino compound having at least two primary amino groups as functional groups,
    Including
    Adhesive resin containing the component (B) so that the total amount of the primary amino groups is within the range of 0.004 mol to 1.5 mol with respect to 1 mol of the ketone group in the component (A). Composition.
  11.  前記(A)成分が、下記の一般式(1)及び(2)で表される構成単位:
    Figure JPOXMLDOC01-appb-C000003
    [式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基及び水素結合形成基を含み、m、nは各構成単位の存在モル比を示し、mは0.35~1.0の範囲内、nは0~0.65の範囲内である]
    を有するポリイミドシロキサンである請求項10に記載の接着剤樹脂組成物。
    The structural unit in which the component (A) is represented by the following general formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, and Ar and / or R 2 contains a ketone group and a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 to 1 In the range of 0, n is in the range of 0 to 0.65]
    The adhesive resin composition according to claim 10, wherein the adhesive resin composition is polyimide siloxane.
  12.  前記構成単位の存在モル比mが、0.75~1.0の範囲内、nが、0~0.25の範囲内である請求項11に記載の接着剤樹脂組成物。 The adhesive resin composition according to claim 11, wherein the molar ratio m of the structural units is in the range of 0.75 to 1.0, and n is in the range of 0 to 0.25.
  13.  前記(A)成分が、下記の一般式(1)及び(2)で表される構成単位:
    Figure JPOXMLDOC01-appb-C000004
    [式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rはジアミン化合物から誘導される2価のジアミン残基をそれぞれ表し、Ar中にケトン基を、R中に水素結合形成基をそれぞれ含み、m、nは各構成単位の存在モル比を示し、mは0.35以上1.0未満の範囲内、nは0を超え0.65以下の範囲内である]
    を有するポリイミドシロキサンである請求項10に記載の接着剤樹脂組成物。
    The structural unit in which the component (A) is represented by the following general formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000004
    [Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic acid anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, and R 2 is derived from a diamine compound. Each represents a divalent diamine residue, Ar contains a ketone group, R 2 contains a hydrogen bond-forming group, m and n represent the molar ratio of each constituent unit, and m is 0.35 or more and 1 Within the range of less than 0, n is in the range of more than 0 and not more than 0.65]
    The adhesive resin composition according to claim 10, wherein the adhesive resin composition is polyimide siloxane.
  14.  前記構成単位の存在モル比mが、0.75以上1.0未満の範囲内、nが、0を超え0.25以下の範囲内であることを特徴とする請求項13に記載の接着剤樹脂組成物。 14. The adhesive according to claim 13, wherein the molar ratio m of the structural unit is in a range of 0.75 or more and less than 1.0, and n is in a range of more than 0 and 0.25 or less. Resin composition.
  15.  前記(A)成分における前記水素結合形成基が、-NHCO-であることを特徴とする請求項10に記載の接着剤樹脂組成物。 The adhesive resin composition according to claim 10, wherein the hydrogen bond forming group in the component (A) is -NHCO-.
  16.  前記(A)成分が、ジヒドラジド化合物を原料として合成されたものであることを特徴とする請求項10に記載の接着剤樹脂組成物。 The adhesive resin composition according to claim 10, wherein the component (A) is synthesized using a dihydrazide compound as a raw material.
  17.  前記(B)成分が、ジヒドラジド化合物であることを特徴とする請求項10に記載の接着剤樹脂組成物。 The adhesive resin composition according to claim 10, wherein the component (B) is a dihydrazide compound.
  18.  前記(A)成分及び(B)成分の合計100重量部に対して、更に(C)平均粒径が2~25μmの範囲内の板状の無機フィラーを5~200重量部含有する請求項10に記載の接着剤樹脂組成物。 11. The composition further comprises (C) 5 to 200 parts by weight of a plate-like inorganic filler having an average particle diameter in the range of 2 to 25 μm with respect to 100 parts by weight of the total of the components (A) and (B). The adhesive resin composition as described in 2.
  19.  請求項10に記載の接着剤樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the adhesive resin composition according to claim 10.
  20.  接着剤層とカバーレイ用フィルム材層とを積層したカバーレイフィルムであって、
     前記接着剤層が、請求項10に記載の接着剤樹脂組成物を用いて形成されたものであるカバーレイフィルム。
    A cover lay film in which an adhesive layer and a cover lay film material layer are laminated,
    The coverlay film in which the said adhesive bond layer is formed using the adhesive agent resin composition of Claim 10.
  21.  基材と、該基材上に形成された配線層と、該配線層を被覆する請求項20に記載のカバーレイフィルムと、を備えた回路基板。 A circuit board comprising: a base material; a wiring layer formed on the base material; and the coverlay film according to claim 20 covering the wiring layer.
  22.  ケトン基を有する酸無水物成分と、水素結合形成基を有するジアミン化合物及びジアミノシロキサンを含むジアミン成分と、を混合し、加熱することによりイミド化して、ケトン基及び水素結合形成基を有するポリイミドシロキサンを形成する工程、
     前記ポリイミドシロキサン中の隣接する主鎖の間で水素結合を形成させる工程、並びに、
     前記ポリイミドシロキサンのケトン基の少なくとも一部分に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基を反応させてC=N結合を形成させ、前記ポリイミドシロキサンを前記アミノ化合物によって架橋する工程、
    を備えた架橋ポリイミド樹脂の製造方法。
    A polyimide siloxane having a ketone group and a hydrogen bond forming group by mixing an acid anhydride component having a ketone group, a diamine compound having a hydrogen bond forming group and a diamine component containing a diaminosiloxane, and imidation by heating. Forming a process,
    Forming hydrogen bonds between adjacent main chains in the polyimidesiloxane; and
    At least a part of the ketone group of the polyimide siloxane is reacted with an amino group of an amino compound having at least two primary amino groups as a functional group to form a C = N bond, and the polyimide siloxane is crosslinked with the amino compound. The process of
    A method for producing a crosslinked polyimide resin comprising:
  23.  ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を少なくとも1層有する絶縁層の片面又は両面に金属層を有する熱伝導性基板において、前記フィラー含有ポリイミド樹脂層の熱伝導性フィラーの含有率が5~80wt%の範囲にあり、前記フィラー含有ポリイミド樹脂層におけるポリイミド樹脂が、下記の一般式(1)及び(2)で表される構成単位:
    Figure JPOXMLDOC01-appb-C000005
    [式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rは芳香族ジアミン及び/又は脂肪族ジアミンから誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基を含み、m、nは各構成単位の存在モル比を示し、mは0.4~1.0の範囲内、nは0~0.6の範囲内である]
    を有するポリイミドシロキサンにおける前記ケトン基に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有する架橋ポリイミド樹脂であることを特徴とする熱伝導性基板。
    In a thermally conductive substrate having a metal layer on one or both sides of an insulating layer having at least one filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin, the thermally conductive filler of the filler-containing polyimide resin layer The content of is in the range of 5 to 80 wt%, and the polyimide resin in the filler-containing polyimide resin layer is a structural unit represented by the following general formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000005
    [Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, R 2 is an aromatic diamine and / or Each represents a divalent diamine residue derived from an aliphatic diamine, Ar and / or R 2 contains a ketone group, m and n represent the molar ratio of each constituent unit, and m is 0.4 In the range of -1.0 and n is in the range of 0-0.6]
    The polyimide group having the amino group reacts with the amino group of the amino compound having at least two primary amino groups as functional groups to form a C═N bond, so that the polyimide siloxane has the amino group. A thermally conductive substrate, which is a crosslinked polyimide resin having a structure crosslinked by a compound.
  24. 前記アミノ化合物が、ジヒドラジド化合物である請求項23に記載の熱伝導性基板。 The thermally conductive substrate according to claim 23, wherein the amino compound is a dihydrazide compound.
  25. 熱伝導性フィラーがシリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種のフィラーである請求項23に記載の熱伝導性基板。 The thermally conductive substrate according to claim 23, wherein the thermally conductive filler is at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia.
  26. 熱伝導性フィラーが、平均粒子径が0.5~10μmの範囲にある球状アルミナである請求項23に記載の熱伝導性基板。 The thermally conductive substrate according to claim 23, wherein the thermally conductive filler is a spherical alumina having an average particle diameter in the range of 0.5 to 10 µm.
  27. 上記ポリイミドシロキサンが、水素結合形成基を有するものである請求項23に記載の熱伝導性基板。 The thermally conductive substrate according to claim 23, wherein the polyimide siloxane has a hydrogen bond forming group.
  28.  前記ポリイミドシロキサン、前記熱伝導性フィラー及び前記アミノ化合物を混合したフィラー含有ポリイミド樹脂の溶液を、前記金属層となる金属基材上に塗布し、乾燥して塗布膜を形成する工程と、
     前記塗布膜を加熱し、前記ポリイミドシロキサンにおける前記ケトン基の少なくとも一部に、前記アミノ化合物のアミノ基を反応させてC=N結合を形成させることによりフィラー含有ポリイミド樹脂層を形成する工程と、
    を含む方法によって製造されるものである請求項23に記載の熱伝導性基板。
    A step of applying a solution of a filler-containing polyimide resin in which the polyimide siloxane, the thermally conductive filler, and the amino compound are mixed onto a metal base material to be the metal layer and drying to form a coating film;
    Heating the coating film, and reacting an amino group of the amino compound with at least a part of the ketone group in the polyimidesiloxane to form a C = N bond to form a filler-containing polyimide resin layer;
    The thermally conductive substrate according to claim 23, which is produced by a method comprising:
  29.  前記フィラー含有ポリイミド樹脂層が、半硬化状態である請求項28に記載の熱伝導性基板。 The thermally conductive substrate according to claim 28, wherein the filler-containing polyimide resin layer is in a semi-cured state.
  30.  ポリイミド樹脂中に熱伝導性フィラーが分散されたフィラー含有ポリイミド樹脂層を備えた熱伝導性ポリイミドフィルムであって、
     前記フィラー含有ポリイミド樹脂層における熱伝導性フィラーの含有率が5~80wt%の範囲にあり、前記フィラー含有ポリイミド樹脂層におけるポリイミド樹脂が、下記の一般式(1)及び(2)で表される構成単位:
    Figure JPOXMLDOC01-appb-C000006
    [式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはジアミノシロキサンから誘導される2価のジアミノシロキサン残基、Rは芳香族ジアミン及び/又は脂肪族ジアミンから誘導される2価のジアミン残基をそれぞれ表し、Ar及び/又はR中にはケトン基を含み、m、nは各構成単位の存在モル比を示し、mは0.4~1.0の範囲内、nは0~0.6の範囲内である]
    を有するポリイミドシロキサンにおける前記ケトン基に、少なくとも2つの第1級アミノ基を官能基として有するアミノ化合物のアミノ基が反応してC=N結合を形成していることにより、前記ポリイミドシロキサンが前記アミノ化合物によって架橋された構造を有する架橋ポリイミド樹脂であることを特徴とする熱伝導性ポリイミドフィルム。
     
     
     
    A thermally conductive polyimide film comprising a filler-containing polyimide resin layer in which a thermally conductive filler is dispersed in a polyimide resin,
    The content of the heat conductive filler in the filler-containing polyimide resin layer is in the range of 5 to 80 wt%, and the polyimide resin in the filler-containing polyimide resin layer is represented by the following general formulas (1) and (2). Unit:
    Figure JPOXMLDOC01-appb-C000006
    [Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride, R 1 is a divalent diaminosiloxane residue derived from diaminosiloxane, R 2 is an aromatic diamine and / or Each represents a divalent diamine residue derived from an aliphatic diamine, Ar and / or R 2 contains a ketone group, m and n represent the molar ratio of each constituent unit, and m is 0.4 In the range of -1.0 and n is in the range of 0-0.6]
    The polyimide group having the amino group reacts with the amino group of the amino compound having at least two primary amino groups as functional groups to form a C═N bond, so that the polyimide siloxane has the amino group. A thermally conductive polyimide film, which is a crosslinked polyimide resin having a structure crosslinked by a compound.


PCT/JP2012/063859 2011-06-14 2012-05-30 Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film WO2012172972A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280026149.6A CN103649174B (en) 2011-06-14 2012-05-30 Crosslinked polyimide resin, its manufacture method, adhesive resin composition and application thereof
KR1020137029319A KR101757023B1 (en) 2011-06-14 2012-05-30 Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011132111A JP5784993B2 (en) 2011-06-14 2011-06-14 Crosslinked polyimide resin, production method thereof, adhesive resin composition, cured product thereof, coverlay film, and circuit board
JP2011-132111 2011-06-14
JP2011-138395 2011-06-22
JP2011138395 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012172972A1 true WO2012172972A1 (en) 2012-12-20

Family

ID=47356964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063859 WO2012172972A1 (en) 2011-06-14 2012-05-30 Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film

Country Status (4)

Country Link
KR (1) KR101757023B1 (en)
CN (1) CN103649174B (en)
TW (1) TWI546322B (en)
WO (1) WO2012172972A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029656A1 (en) * 2013-08-29 2015-03-05 住友理工株式会社 Flexible conductive material and transducer
CN105532080A (en) * 2013-09-12 2016-04-27 住友电气工业株式会社 Adhesive composition for printed wiring boards, bonding film, coverlay, copper-clad laminate and printed wiring board
US20180134847A1 (en) * 2016-11-11 2018-05-17 Industrial Technology Research Institute Polymers and resin composition employing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627267B (en) * 2014-04-17 2018-06-21 住友精化股份有限公司 Heat dissipation film, dispersion for heat radiation layer, method for manufacturing heat dissipation film, and solar cell
TWI690544B (en) * 2016-10-28 2020-04-11 奇美實業股份有限公司 Flexible substrate composition, method of producing the same and flexible substrate
JP6562147B2 (en) * 2018-02-05 2019-08-21 三菱マテリアル株式会社 Insulating film, insulated conductor, metal base substrate
CN116496623A (en) * 2023-04-06 2023-07-28 瑞声科技(南京)有限公司 Resin composition, polyimide preparation method and related products

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816303A (en) * 1972-12-20 1974-06-11 Us Interior Poly(n-amido)imides as semipermeable membranes
US4020050A (en) * 1973-06-13 1977-04-26 Ppg Industries, Inc. Method of preparing polymer from dianhydride and hydrazine or dihydrazide
JPH06345866A (en) * 1993-06-14 1994-12-20 Nippon Steel Corp Siloxane-modified polyimide resin
JPH0913001A (en) * 1995-06-27 1997-01-14 Tomoegawa Paper Co Ltd Liquid adhesive for electronic component and adhesive tape for electronic component
JP2008291063A (en) * 2007-05-22 2008-12-04 Nippon Steel Chem Co Ltd Method for surface-treating polyimide resin, and method for producing metal cladding laminated material
JP2010204146A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Photosensitive resin composition and circuit wiring board using the same
WO2011040194A1 (en) * 2009-10-02 2011-04-07 新日鐵化学株式会社 Adhesive resin composition, cover lay film, and circuit board
WO2011077917A1 (en) * 2009-12-22 2011-06-30 新日鐵化学株式会社 Polyimide resin, manufacturing method therefor, adhesive resin composition, coverlay film, and circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218496B1 (en) * 1994-03-31 2001-04-17 Occidental Chemical Corporation Polyimidesiloxane adhesive
JP4772593B2 (en) * 2006-06-06 2011-09-14 信越化学工業株式会社 Polyimide silicone resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816303A (en) * 1972-12-20 1974-06-11 Us Interior Poly(n-amido)imides as semipermeable membranes
US4020050A (en) * 1973-06-13 1977-04-26 Ppg Industries, Inc. Method of preparing polymer from dianhydride and hydrazine or dihydrazide
JPH06345866A (en) * 1993-06-14 1994-12-20 Nippon Steel Corp Siloxane-modified polyimide resin
JPH0913001A (en) * 1995-06-27 1997-01-14 Tomoegawa Paper Co Ltd Liquid adhesive for electronic component and adhesive tape for electronic component
JP2008291063A (en) * 2007-05-22 2008-12-04 Nippon Steel Chem Co Ltd Method for surface-treating polyimide resin, and method for producing metal cladding laminated material
JP2010204146A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Photosensitive resin composition and circuit wiring board using the same
WO2011040194A1 (en) * 2009-10-02 2011-04-07 新日鐵化学株式会社 Adhesive resin composition, cover lay film, and circuit board
WO2011077917A1 (en) * 2009-12-22 2011-06-30 新日鐵化学株式会社 Polyimide resin, manufacturing method therefor, adhesive resin composition, coverlay film, and circuit board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029656A1 (en) * 2013-08-29 2015-03-05 住友理工株式会社 Flexible conductive material and transducer
CN105532080A (en) * 2013-09-12 2016-04-27 住友电气工业株式会社 Adhesive composition for printed wiring boards, bonding film, coverlay, copper-clad laminate and printed wiring board
US20160198570A1 (en) * 2013-09-12 2016-07-07 Sumitomo Electroc Industries, Ltd. Adhesive composition for printed wiring boards, bonding film, coverlay, copper-clad laminate and printed wiring board
EP3046402A4 (en) * 2013-09-12 2016-08-31 Sumitomo Electric Industries Adhesive composition for printed wiring boards, bonding film, coverlay, copper-clad laminate and printed wiring board
US10244626B2 (en) 2013-09-12 2019-03-26 Sumitomo Electric Industries, Ltd. Adhesive composition for printed wiring boards, bonding film, coverlay, copper-clad laminate and printed wiring board
US20180134847A1 (en) * 2016-11-11 2018-05-17 Industrial Technology Research Institute Polymers and resin composition employing the same
US10626219B2 (en) * 2016-11-11 2020-04-21 Industrial Technology Research Institute Polymers and resin composition employing the same

Also Published As

Publication number Publication date
TWI546322B (en) 2016-08-21
KR20140021001A (en) 2014-02-19
TW201305248A (en) 2013-02-01
KR101757023B1 (en) 2017-07-11
CN103649174B (en) 2016-02-03
CN103649174A (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5777944B2 (en) Crosslinked polyimide resin, adhesive resin composition and cured product thereof, coverlay film, and circuit board
JP5100894B2 (en) Polyimide resin, production method thereof, adhesive resin composition, coverlay film, and circuit board
WO2012172972A1 (en) Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film
JP5665846B2 (en) Thermally conductive polyimide film and thermal conductive laminate using the same
JP5650084B2 (en) Thermally conductive substrate and thermally conductive polyimide film
JP7301495B2 (en) Metal-clad laminates and circuit boards
JP5148760B2 (en) Adhesive resin composition, coverlay film and circuit board
JP5902139B2 (en) Polyimide resin composition
TW202337695A (en) Metal-clad laminate, circuit board, multilayer circuit board and method of manufacturing the same excellent in dimensional stability of a conductor circuit
JP6262691B2 (en) Solvent-soluble polyimide resin
JP5784993B2 (en) Crosslinked polyimide resin, production method thereof, adhesive resin composition, cured product thereof, coverlay film, and circuit board
JP6713784B2 (en) Polyimide, polyimide solution, resin film, polyimide composition, cross-linked polyimide, coverlay film and circuit board
JP2016124982A (en) Crosslinked polyimide resin, method for production thereof, adhesive resin composition, cured material thereof, coverlay film, and circuit board
JP6284247B2 (en) Solvent-soluble polyimide resin
JP6031563B2 (en) Polyimide resin for adhesive
JP2012067240A (en) Coverlay film and circuit board
JP7079227B2 (en) Method for manufacturing solvent-soluble polyimide resin
JP6082439B2 (en) Raw material polyimide resin for forming adhesive layer of coverlay film
JP6858111B2 (en) Method for manufacturing solvent-soluble polyimide resin
JP6527893B2 (en) Raw material polyimide resin for bonding sheet and bonding sheet
JP4862247B2 (en) Heat resistant adhesive composition
JP2017133001A (en) Raw material polyimide resin for adhesive, coverlay film and bonding sheet
JP2023024470A (en) Method for manufacturing circuit board with adhesive layer and multilayer circuit board
JP2007273829A (en) Flexible board with metal foil and flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029319

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800063

Country of ref document: EP

Kind code of ref document: A1