200950176 九、發明說明: 【發明所屬之技術領域】 - 本發明涉及一種發光模組,尤其涉及一種利用太陽能 •電池(solar cell)進行供電之發光模組。 【先前技術】 隨著當今時代對節能環保觀念之宣導’越來越多之綠 色能源被開發利用,其中’太陽能作為現有最理想之綠色 能源被轉化為電能並廣泛地應用於路燈、地燈、機場照明 ❹燈等照明裝置,以提供該照明裝置發光時所耗費之電能。 太陽能電池之結構具體請參閱2006 IEEE 4th World Conference on Photovoltaic Energy Conversion 上發表之文 章 Amorphous-Silicon / Polymer Solar Cells and Key Design Rules for Hybrid Solar Cells。 惟,目前市面上採用太陽能供電之照明裝置如太陽能 路燈等’其結構通常較為龐大,例如,於先前技術中,用 ❹於將太陽能轉換為電能之太陽能電池與發光元件,如螢光 燈、白熾燈、發光二極體之間一般需要設置基板進行連接, 導致其架設成本較高,同時亦制約了採用太陽能供電之照 明裝置之大規模推廣應用。 有鑒於此,有必要提供一種利用太陽能電池供電且積 體化之發光模組。 【發明内容】 下面將以實施例說明一種積體化之發光模組。 -種發光模組’其包括至少—發光二極體晶片,每個 5 200950176 發光二極體晶片具有一第一 P型/N型半導體層;一太陽能 .電池,該太陽能電池具有一第二卩型/N型半導體層;以及 •至少一連接電極,其夾設於該太陽能電池之第二卩型/N型 半導體層與該至少一發光二極體晶片之第一 p型爪型半導 體層之間以連接該太陽能電池與該至少一發光二極體晶 片。 相對於先前技術’本發明所提供之發光模組,其藉由 ❹設置至少一連接電極將至少一發光二極體晶片與一太陽能 電池連接於一起,且該太陽能電池可轉化太陽光能為電 能,從而對該發光二極體晶片供電以使其發光。由於該太 陽能電池與該發光二極體晶片藉由該連接電極直接連接而 形成該發光模組,故,該發光模組高度積體化,其具有較 小之體積’可應用於小型化之電子產品,如作為手機背光 模組以提供螢幕顯示等。 【實施方式】 ❹ 下面將結合圖式對本發明實施例作進一步之詳細說 明。 請參閱圖1,本發明第一實施例提供之一種發光模組 10,其包括至少一發光二極體晶片11、一太陽能電池12, 以及連接該發光二極體晶片11與該太陽能電池12之至少 一連接電極13。 該發光二極體晶片11包括一第一 N型半導體層112、 一第一 P型半導體層114以及一量子井(Multi Quantum Well, MQW)層116。該量子井116位於該第一 N型半導體層112 6 200950176 與該第一 P型半導體層114之間,該第一 N型半導體層112 上形成有一 N型電極118。 該第一 N型半導體層112可摻雜有矽(Si)之氮化鎵 • (GaN)作為材質,該第一 P型半導體層114可摻雜鎂(Mg) 之氮化鎵鋁(AlGaN)作為材質。該N型電極118可利用沉積 或蝕刻等方法形成於該第一 N型半導體層112上。 該發光二極體晶片 11 還具有一透明基底 (sapphire)llO,上述第一 N型半導體層112、量子井層116 ®及第一 P型半導體層114可依序形成於該透明基底110上, 該透明基底110具體可為一透明藍寶石基板(transparent sapphire substrate)或摻雜有銦錫氧化物(ITO)之藍寶石 (AI2O3)基板。 該太陽能電池12包括一光伏半導體層(Photovoltaic Semiconductor Layer)120、一透明導電層(Transparent Conductive Layer)122 及至少一前電極(Front Electrode)層 .124 ° 具體地,該光伏半導體層120包括層疊之一第二P型 半導體層1200及一第二N型半導體層1202,該第二P型 半導體層1200與該第二N型半導體層1202之間形成一 PN 結(PN junction)。優選地,該第二N型半導體層1202及第 二P型半導體層1200可分別係採用CVD等方法形成之N 型 a-Si:H(Hydrogenated amorphous silicon,即氫化非晶石夕) 及P型a-Si:H,即該太陽能電池12為一非晶矽太陽能電 池。該PN結由該第二N型半導體層1202及第二P型半導 7 200950176 體層1200之間之介面接觸而形成。 該透明導電層122形成於該光伏半導體層120之第二N 型半導體層1202上,其可採用銦錫氧化層(Indium Tin • Oxide,ITO)或氧化辞(ZnO)等材料製成。該透明導電層122 可對該光伏半導體層120起保護作用及導電作用。 該至少一前電極124進一步形成於該透明導電層122 上,其材料可係銀(Ag ),銅(Cu ),鉬(Mo ),銘(A1), 銅紹合金(Cu-Al Alloy ),銀銅合金(Ag-Cu Alloy ),或者 ®銅鉬合金(Cu-Mo Alloy )等。另,該前電極124可藉由金 屬導線14電性連接至該N型電極118。 該至少一連接電極13用於連接該發光二極體晶片11 與該太陽能電池12,其夾設於該太陽能電池之光伏半導體 層120與該發光二極體晶片11之第一 P型半導體層114之 間,且其材料同樣可係銀(Ag ),銅(Cu ),鉬(Mo ),鋁 (A1),銅銘合金(Cu-Al Alloy ),銀銅合金(Ag-Cu Alloy ) ’ φ 或者銅翻合金(Cu-Mo Alloy )等。 當該太陽能電池12受太陽光照射時,聚集於PN結上 之空穴(Holes)及電子(Electrons)將分別為光伏半導體層120 之第二P型半導體層1200及第二N型半導體層1202所吸 引並移動,進而聚集於該第二P型半導體層1200及該第二 N型半導體層1202之兩端,使得該第二P型半導體層1200 及第二N型半導體層1202之間形成電勢差,而由於該第二 N型半導體層1202依次藉由透明導電層122、前電極124、 金屬導線14及N型電極118與第一 N型半導體層112電性 8 200950176 連接而w亥第一 P型半導體層1200則藉由連接電極13與 該第P型半導體層114電性連接,故,該發光二極體晶 片11中之第一 p型半導體層114與其第一 N型半導體層 112之間亦將形成電勢差,使得該第一 p型半導體層114中 之二八机向第一 N型半導體層112,同時第一 N型半導體 層112中之電子流向第一 p型半導體層ιΐ4,當該空穴與該 電子相遇時,其二者相互結合並釋放出光子從而發光並産 ❾生",、月之作用。由此,該太陽能電池12吸收太陽光照並將 太陽光此轉化為電能,從而對發光二極體晶片U供電。可 理解,於该能量轉化過程中,該連接電極13既相當於發光 .二極體晶片11之?型電極’又相當於太陽能電池12之背 電極(Back Electrode,其節省了分別製造發光二極體晶 片々11之p型電極及太陽能電池12之背電極之製程從而 ,約了發光模组1Q之製造成本。另,該太陽能電池12與 該發光二極體晶片11#由該連接電極13直接連接而形成 ❹該發光模組10,使得該發光模組1〇具有較小之體積,並可 ,用於小型化之電子產品’如作為手機背光模組以提供榮 明可理解’該至少一發光二極體晶片11之數目可根據照 明之需要進行設定,並不局限於圖i所示出之兩個。另, 該至少-連接電極13之數目可與該發光二極體晶片η之 數目相-致,以相對應地電性連接該至少—發光二極體晶 片11與該太陽能電池12。 本領域技術人員進-步可理解,於本實施例中,發光 9 200950176 二極體晶片11之第一 N型半導體層112與第一 1>型半導體 層114之間之位置,以及太陽能電池12之第二半導體 層1202與第二P型半導體層12〇〇之間之位置可同時互換, 使得該連接電極13夾設於第一 n型半導體層112與第二N 型半導體層1202之間以連接該至少一發光二極體晶片η 與該太陽能電池12 ’其同樣可利用太陽能電池12將太陽光 能轉化為電能並對發光二極體晶片11供電。 ❹ 請參閱圖2,本發明第二實施例提供之一種發光模組 20,其與本發明第一實施例之發光模組之不同之處在 於:該發光模組20進一步包括一蓄電裝置25,太陽能電池 ,22於白天受太陽光照時所轉化之電能儲存於該蓄電裝置25 中’該蓄電裝置25於需要時’如於夜晚時對至少一發光二 極體晶片21供電。 該蓄電裝置25可為錯蓄電池、鋰/離子電池、鎳/金屬 風化物電池或電谷器專’於本實施例中,該蓄電裝置25為 ⑩一鐘/離子電池。 該發光二極體晶片21之第一 N型半導體層212與該太 陽能電池22之前電極224分別藉由金屬導線24、26電性 連接至該蓄電裝置25之負極,而連接電極23則藉由金属 導線28連接至該蓄電裝置25之正極。工作時,該太陽能 電池22藉由該金屬導線24、28對該蓄電裝置25充電,而 該蓄電裝置25藉由該金屬導線26、28對該發光二極體晶 片21供電。 綜上所述,本發明確已符合發明專利之要件,遂依法 200950176 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明第一實施例所提供之發光模組之剖面示 意圖。 圖2係本發明第二實施例所提供之發光模組之剖面示200950176 IX. Description of the Invention: [Technical Field] The present invention relates to a lighting module, and more particularly to a lighting module that uses a solar cell to supply power. [Prior Art] With the promotion of energy conservation and environmental protection in the current era, more and more green energy is being developed and utilized. Among them, solar energy is converted into electric energy as the most ideal green energy, and is widely used in street lamps and floor lamps. A lighting device such as an airport lighting xenon lamp to provide electrical energy for the lighting device to emit light. For details on the structure of solar cells, please refer to the article Amorphous-Silicon / Polymer Solar Cells and Key Design Rules for Hybrid Solar Cells published in the IEEE 4th World Conference on Photovoltaic Energy Conversion. However, solar-powered lighting devices such as solar street lamps and the like currently on the market are generally bulky. For example, in the prior art, solar cells and light-emitting elements, such as fluorescent lamps and incandescent lamps, used to convert solar energy into electrical energy. It is generally necessary to provide a substrate for connection between the lamp and the light-emitting diode, which results in a high cost of erection, and also restricts the large-scale popularization and application of the solar-powered lighting device. In view of this, it is necessary to provide a light-emitting module that is powered by a solar cell and integrated. SUMMARY OF THE INVENTION An integrated light-emitting module will be described below by way of embodiments. a light-emitting module comprising at least a light-emitting diode chip, each of the 5 200950176 light-emitting diode chips having a first P-type/N-type semiconductor layer; a solar cell having a second electrode a type/N-type semiconductor layer; and at least one connection electrode interposed between the second 卩-type/N-type semiconductor layer of the solar cell and the first p-type claw-type semiconductor layer of the at least one illuminating diode chip The solar cell and the at least one light emitting diode chip are connected. Compared with the prior art, the light-emitting module provided by the present invention connects at least one light-emitting diode wafer and a solar battery by providing at least one connecting electrode, and the solar battery can convert solar energy into electrical energy. Thereby, the light emitting diode chip is powered to emit light. Since the solar cell and the LED chip are directly connected by the connection electrode to form the light-emitting module, the light-emitting module is highly integrated, and has a small volume, which can be applied to miniaturized electronic Products, such as mobile phone backlight modules to provide screen display. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the drawings. Referring to FIG. 1 , a light emitting module 10 according to a first embodiment of the present invention includes at least one LED chip 11 , a solar cell 12 , and a photodiode wafer 11 and the solar cell 12 . At least one of the electrodes 13 is connected. The LED array 11 includes a first N-type semiconductor layer 112, a first P-type semiconductor layer 114, and a Quantum Well (MQ) layer 116. The quantum well 116 is located between the first N-type semiconductor layer 112 6 200950176 and the first P-type semiconductor layer 114. An N-type electrode 118 is formed on the first N-type semiconductor layer 112. The first N-type semiconductor layer 112 may be doped with bismuth (Si) gallium nitride (GaN) as a material, and the first P-type semiconductor layer 114 may be doped with magnesium (Mg) aluminum gallium nitride (AlGaN). As a material. The N-type electrode 118 can be formed on the first N-type semiconductor layer 112 by deposition or etching. The LED substrate 11 further has a transparent substrate (Sapphire) 110, and the first N-type semiconductor layer 112, the quantum well layer 116, and the first P-type semiconductor layer 114 are sequentially formed on the transparent substrate 110. The transparent substrate 110 may specifically be a transparent sapphire substrate or a sapphire (AI2O3) substrate doped with indium tin oxide (ITO). The solar cell 12 includes a photovoltaic semiconductor layer 120, a transparent conductive layer 122, and at least one front electrode layer. 124 ° Specifically, the photovoltaic semiconductor layer 120 includes a stacked layer. A second P-type semiconductor layer 1200 and a second N-type semiconductor layer 1202 form a PN junction between the second P-type semiconductor layer 1200 and the second N-type semiconductor layer 1202. Preferably, the second N-type semiconductor layer 1202 and the second P-type semiconductor layer 1200 are respectively N-type a-Si:H (hydrogenated amorphous silicon) and P-type formed by CVD or the like. a-Si: H, that is, the solar cell 12 is an amorphous germanium solar cell. The PN junction is formed by interface contact between the second N-type semiconductor layer 1202 and the second P-type semiconductor layer 1200. The transparent conductive layer 122 is formed on the second N-type semiconductor layer 1202 of the photovoltaic semiconductor layer 120, and may be made of a material such as Indium Tin Oxide (ITO) or Oxidation (ZnO). The transparent conductive layer 122 can protect and electrically conduct the photovoltaic semiconductor layer 120. The at least one front electrode 124 is further formed on the transparent conductive layer 122, and the material thereof may be silver (Ag), copper (Cu), molybdenum (Mo), Ming (A1), and Cu-Al Alloy. Ag-Cu Alloy, or ® Cu-Mo Alloy. In addition, the front electrode 124 can be electrically connected to the N-type electrode 118 by a metal wire 14. The at least one connecting electrode 13 is configured to connect the LED body 11 and the solar cell 12, and is sandwiched between the photovoltaic semiconductor layer 120 of the solar cell and the first P-type semiconductor layer 114 of the LED substrate 11 Between, and the material can also be silver (Ag), copper (Cu), molybdenum (Mo), aluminum (A1), copper alloy (Cu-Al Alloy), silver-copper alloy (Ag-Cu Alloy) 'φ Or copper alloy (Cu-Mo Alloy). When the solar cell 12 is irradiated with sunlight, holes and electrons accumulated on the PN junction will be the second P-type semiconductor layer 1200 and the second N-type semiconductor layer 1202 of the photovoltaic semiconductor layer 120, respectively. The second P-type semiconductor layer 1200 and the second N-type semiconductor layer 1202 are attracted and moved to form a potential difference between the second P-type semiconductor layer 1200 and the second N-type semiconductor layer 1202. The first N-type semiconductor layer 1202 is sequentially connected to the first N-type semiconductor layer 112 by the transparent conductive layer 122, the front electrode 124, the metal wire 14 and the N-type electrode 118. The semiconductor layer 1200 is electrically connected to the P-type semiconductor layer 114 via the connection electrode 13 , so that the first p-type semiconductor layer 114 and the first N-type semiconductor layer 112 in the LED array 11 are A potential difference is also formed such that two of the first p-type semiconductor layers 114 are directed to the first N-type semiconductor layer 112 while electrons in the first N-type semiconductor layer 112 are flowing toward the first p-type semiconductor layer ι 4, when When a hole meets the electron, The two combine with each other and release photons to illuminate and produce the role of "," and the moon. Thereby, the solar cell 12 absorbs the sunlight and converts the sunlight into electric energy, thereby supplying power to the light-emitting diode wafer U. It can be understood that in the energy conversion process, the connection electrode 13 is equivalent to luminescence. What is the diode chip 11? The type electrode 'is again equivalent to the back electrode of the solar cell 12 (Back Electrode, which saves the process of separately manufacturing the p-type electrode of the light-emitting diode chip 11 and the back electrode of the solar cell 12, thereby about the light-emitting module 1Q The manufacturing cost is the same. The solar cell 12 and the LED chip 11 are directly connected to the light-emitting module 10 to form the light-emitting module 10, so that the light-emitting module 1 has a small volume, and The electronic product for miniaturization 'as a mobile phone backlight module to provide glory understandable' The number of at least one light-emitting diode chip 11 can be set according to the needs of illumination, and is not limited to the one shown in FIG. In addition, the number of the at least-connecting electrodes 13 may be related to the number of the light-emitting diode wafers η to electrically connect the at least-light-emitting diode wafer 11 and the solar cell 12 correspondingly. It will be understood by those skilled in the art that in the present embodiment, the position between the first N-type semiconductor layer 112 of the light-emitting 9 200950176 diode wafer 11 and the first 1 >-type semiconductor layer 114, and the solar cell 1 The position between the second semiconductor layer 1202 and the second P-type semiconductor layer 12 is simultaneously interchangeable, so that the connection electrode 13 is interposed between the first n-type semiconductor layer 112 and the second N-type semiconductor layer 1202. The solar cell 12 can be used to convert solar energy into electrical energy and power the LED array 11 by connecting the at least one light-emitting diode wafer η to the solar cell 12'. Referring to FIG. 2, the present invention The light-emitting module 20 of the second embodiment is different from the light-emitting module of the first embodiment of the present invention in that the light-emitting module 20 further includes a power storage device 25, and the solar battery 22 is exposed to the sun during the daytime. The electric energy converted in the time is stored in the power storage device 25, and the power storage device 25 supplies power to the at least one LED chip 21 at night. The power storage device 25 can be a wrong battery, a lithium/ion battery, In the present embodiment, the power storage device 25 is a 10-hour/ion battery. The first N-type semiconductor layer 212 of the LED chip 21 and the solar cell are used. The electrode 224 is electrically connected to the negative electrode of the power storage device 25 by the metal wires 24 and 26, respectively, and the connection electrode 23 is connected to the positive electrode of the power storage device 25 by the metal wire 28. In operation, the solar battery 22 borrows The power storage device 25 is charged by the metal wires 24 and 28, and the power storage device 25 supplies power to the light-emitting diode chip 21 by the metal wires 26 and 28. In summary, the present invention has indeed met the invention patent. The patent application is filed in accordance with the law of 200950176. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Anyone familiar with the skill of the present invention will be assisted by the spirit of the present invention. Equivalent modifications or variations are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a light-emitting module according to a first embodiment of the present invention. 2 is a cross-sectional view of a light emitting module according to a second embodiment of the present invention;
意圖。 【主要元件符號說明】 發光模組 10、20 發光二極體晶片 11、21 太陽能電池 12、22 連接電極 13 金屬導線 14、24、26 ' 28 透明基底 110 第一 N型半導體層 112 、 212 第一 P型半導體層 114 量子井 116 N型電極 118 光伏半導體層 120 透明導電層 122 前電極 124 、 224 第二P型半導體層 1200 第二N型半導體層 1202 連接電極 23 蓄電裝置 25 11intention. [Description of main component symbols] Light-emitting module 10, 20 Light-emitting diode wafer 11, 21 Solar cell 12, 22 Connecting electrode 13 Metal wire 14, 24, 26' 28 Transparent substrate 110 First N-type semiconductor layer 112, 212 A P-type semiconductor layer 114 quantum well 116 N-type electrode 118 Photovoltaic semiconductor layer 120 Transparent conductive layer 122 Front electrode 124, 224 Second P-type semiconductor layer 1200 Second N-type semiconductor layer 1202 Connecting electrode 23 Power storage device 25 11