TW200931635A - Semiconductor module and imaging device - Google Patents

Semiconductor module and imaging device Download PDF

Info

Publication number
TW200931635A
TW200931635A TW097143468A TW97143468A TW200931635A TW 200931635 A TW200931635 A TW 200931635A TW 097143468 A TW097143468 A TW 097143468A TW 97143468 A TW97143468 A TW 97143468A TW 200931635 A TW200931635 A TW 200931635A
Authority
TW
Taiwan
Prior art keywords
semiconductor
semiconductor element
electrode
semiconductor module
signal
Prior art date
Application number
TW097143468A
Other languages
Chinese (zh)
Other versions
TWI442544B (en
Inventor
Satoshi Noro
Tomofumi Watanabe
Original Assignee
Sanyo Electric Co
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co
Publication of TW200931635A publication Critical patent/TW200931635A/en
Application granted granted Critical
Publication of TWI442544B publication Critical patent/TWI442544B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

In a semiconductor module having a plurality of semiconductor elements, the signal flowing in the bonding wire of one semiconductor element is suppressed from becoming a noise to another semiconductor element, so as to improve the reliability of the operation of the semiconductor module. A current output electrode for delivering a large current is provided in a second semiconductor element laminated on a first semiconductor element. The current output electrode is electrically connected to a circuit board electrode provided on a first wiring layer through a bonding wire. The bonding wire crosses one side E1 of the second semiconductor element. The bonding wire connected to the first semiconductor crosses the sides other than the side F1 which corresponds to the side E1 of the second semiconductor. In other words, the bonding wires crosses the side F2, F3, F4 of the first semiconductors.

Description

200931635 六、發明說明: 【發明所屬之技術領域】 本發明係有關半導體模組及裝載該半導體模組的攝像 裝置。 本申請基於2007年11月14日於日本提出申請的200931635 VI. Description of the Invention: [Technical Field] The present invention relates to a semiconductor module and an image pickup apparatus mounting the same. This application is based on an application filed in Japan on November 14, 2007.

No. 2007-296146及2008年1〇月31日於日本提出申請的 No. 2008-281950主張優先權,並在此引用其内容。 【先前技術】No. 2007-296146 and No. 2008-281950, filed on Jan. 31, 2008, the entire disclosure of which is incorporated herein by reference. [Prior Art]

近年來’伴隨著電子設備的小型化、高功能化,要求 在電子設備上使用的半導體模組的進一步小型化、積體 化。為了響應這樣的要求,開發了在基板上I载多個半導 體晶片的MCM(Multi Chip Module ;多晶片模級)。 作為在MCM中裝載半導體晶片的構成,公知有 數個半導體晶片的多段堆疊(stack)構造。在多段;= 的腿中,在各半導體晶片的周圍設置外部電極,各夕卜^ 電極^基板上的電極接墊(pad)間藉由接合線(η wire)進行電性連接。 ί1§ 這樣的MCM,例如被組裝到CCD相機中 體晶片賦與獨自的功能。例如,在作為邏輯元件:=: 能的半導體晶片中係組裝人控制電路,在作為=發揮: 發揮功能的半導體晶片中係組裝人對驅動b'件1 給電流的電路。冑⑽的電動务 在採用多段堆疊構造的腦中,在作為驅株 揮功能的半導體元件的接合線中流通的錢係成為作^ 320761 3 200931635 而 輯元件而發揮功能的半導體元件的雜訊,作為邏輯元件 發揮功能的半導體元件的動作可靠度因 而減低,甚至有半 導體模組的動作可靠度下降的可能性。 另外’數位相機等攝像裝置要求更加小型化,在裝載 有採用以往的多段堆疊構造的MCM的攝像裝置中,上述的 .半導體70件的動作可靠度的下降就變得明顯了,就會產生 μ下課題’即導致攝像裝置的動作不良的可能性。 Ο 【發明内容】 本發明是鑒於如上所述的課題而研創者,其目的是提 ^ ,技術,即在具有複數個半導體元件的半導體模紐 此抑制在-方的半導體元件的接合線中流通的信號成 方的半導體元件的雜訊’能提高半導翻組的動作 i = f另外’本發明的另—目的是:提供—種使組裝了 ί個半㈣70件的半導體额賴减置的動作可 彝度提两的技術。 具有種態樣是—種半導體模組。該半導體模組 =體;Ϊ在一方的主表面設置有基板電極;第! =體轉’裝餘轉基板,⑽相 者幹 1半導第2半導體元件,震載在第 極·第ϋί’並具有用於輸出大電流的電流輪出用電 ’苐1接合線,對邏輯信號用 對用電 電極進行電性連接9人& κ相對應的基板 祕,及第2接合線,對電流輸出用雷m ”之相對應的基板電極進行電性連 電極及 面側觀看,第1接人心* Λ , 線基板的主表 第接σ線娜過非與第2接合線横穿 320761 200931635 2半導體元件的邊對應的第1半導體元件的邊。 根據本態樣,因為與設置於第1半導體元件的邏輯信 號用電極連接的第1接合線,存在於遠離與設置於第2半 導體元件的電流輸出用電極連接的第2接合線的位置,因 此能抑制由於第2接合線中流通的大電流的影響而在第1 半導體元件產生雜訊之情事。結果,不但能提高第1半導 體元件的動作可靠度,而且能提高半導體模組的動作可靠 度。 ® 電流輸出用電極,也可以沿著第2接合線橫穿過的第 2半導體元件的邊來設置。 第1半導體元件輸出攝像裝置的手抖動補償用的手抖 動補償信號,第2半導體元件輸出提供給根據手抖動補償 信號來驅動攝像裝置的鏡片的驅動手段的大電流。該情況 下,驅動手段也可以是音圈電動機(VCM)。另外,邏輯信號 用電極也可以沿著非與第2接合線橫穿過的第2半導體元 Q 件的邊對應的第1半導體元件的邊來設置。 本發明的其他態樣是一種攝像裝置。該攝像裝置具有 上述任何一種態樣的半導體模組。 【實施方式】 以較佳的實施形態說明本發明。但其僅為例示,並非 用以限制本發明的範圍。 以下,參照圖式說明本發明的實施形態。另外,全部 的附圖中,對相同的構成要素附加相同的標記,並在以下 的說明中適當省略詳細說明。 5 320761 200931635 實施形態的半導體模組,適用於具有手抖動補償功能 的數位相機等攝像裝置。第1圖是顯示具有實施形態的半 導體模組的攝像裝置的電路構成的方塊圖。數位相機具有 信號放大部10及手抖動補償部2〇。信號放大部1G,:預 定的放大率將所輸入的信號進行放大後輸出到手抖動補償 部20。手抖動補償部20”根據戶斤輸入的角速度信號及鏡片 的位置信號,將用以控制鏡片的位置而進行手抖動*補償的 信號輸出到信號放大部10。 ❹ 以下,更具體地說明數位相機的電路構成。 回轉感測器(gyro sensor)50,檢測數位相機的χγ的 2僻轴方向的角速度。藉由回轉感測器50而得到的類比的 角速度信號,由放大電路12放大後,輸出給ADC(類比數 位轉換器)22。ADC 22,將由放大電路12放大後的角速度 信號轉換成數位的角速度信號。從ADC 22輸出的角速产产 號’被輸出給回轉均衡器(gyr〇 eqUalizer)24。 ❹ 在回轉均衡器24中,首先將從ADC 22輪出的數位的 角速度信號輸入給HPF(高通濾波器)26。HPF 26去除從回 轉感測器50輸出的角速度信號之中比因手抖動而產生的 頻率成分低的頻率成分。一般來說’因為手抖動所引起的 頻率成分為1Hz至2〇Hz,因此,例如從角速度信號 0. 7Hz以下的頻率成分。 又口儿 除 回 搖攝(pan)/傾斜(tilt)判定電路28,根據Ηρρ %轸 出的角速度信號,檢測攝像裝置的搖攝動作、傾斜動3 在相應於拍攝對象的移動等使攝像裝置移動的情況下,。 320761 6 200931635 =:?出與該移動對應的角速度信號。β,” 〇 ❹ 在-疋期間内角速度信號連續成為預定值時,列定為必: 進行搖攝動作或者傾斜動作。另外,將相應於拍照對象的 移動等而在水平方向上夢、動攝像震置的動作稱為搖攝動 作’將在垂直方向场動的動作稱為傾斜動作。 度衰減’以使輸出變成〇 增益輕f路3G ’輯_/懈狀電路28的定 結果’將從HPF 26輸出的角速度信號的放大率進行變 例如,在非正在進賴攝動作或者傾斜動作時,變更。 電路30進行HPF 26輸出的角速度信號的增益調整。另周黎 當正在進行搖攝動作或者傾斜動作時,增益調整電略外’ 行如下的增益調整,即:使卿26輸出的角速度信0掩 LPF(低通濾波器>32完成積分電路的任務,對扭、 整電路30輸出的角速度信號進行積分,產生表示攝^益調 的移動量的角度信號。例如,LPF 32係藉由進行使用羧复 遽波器的濾波處理’來求出角度信號、即攝像裝董數字 詈。V的移動 輪出的 動補 定中心(centering)處理電路34,對從LPF 32 角度信號’減去預定的值。在進行攝像裝置中的手= 200931635 償處理時,在繼續執行補償處理的期間,鏡片的位置從基 準位置漸漸離開,有達到鏡片的可動範圍的界限點附近的 情況。這時,繼續手抖動補償處理的話,鏡片能向某一方 的方向移動,但變得無法向其它方向移動。定中心處理電 路是為了防止這種情況發生而設置的,藉由從角度信號減 去預定的值,從而可以以難以接近鏡片的可動範圍的界限 點的方式進行控制。 從定中心處理電路34輸出的角度信號,藉由增益調整 ® 電路36調整到霍爾(Hall)元件70的信號的範圍。藉由增 益調整電路36調整的角度信號,被輸出給霍爾均衡器40。 霍爾元件70為利用霍爾效應的磁感測器,作為鏡片 60的X及Y方向的位置檢測機構來發揮功能。含有藉由霍 爾元件70而得到的鏡片60的位置資訊的類比的位置信 號,由放大電路14放大後,發送給ADC 22。ADC 22將由 放大電路14放大的類比的位置信號轉換成數位的位置信 @ 號。另外,ADC 22將放大電路12及放大電路14的類比輸 出以分時的方式轉換為數位值。 從ADC 22輸出的位置信號被輸出給霍爾均衡器40。 在霍爾均衡器40中,首先,從ADC 22輸出的位置信號被 輸入給加法電路42。另外,藉由增益調整電路36進行過 調整的角度信號被輸入到加法電路42中。加法電路42將 所輸入的位置信號與角度信號相加。從加法電路42輸出的 信號被輸出給伺服電路44。伺服電路44,根據輸出到伺服 電路44的信號,產生控制VCM 80的驅動的信號。該信號 8 320761 200931635 的電流(VCM驅動電流),一般來說為200mA至300mA。另外, 在伺服電路44中,也可以進行使用伺服電路數位濾波器的 濾波處理。 從祠服電路44輸出的VCM驅動信號,藉由DAC(數位 類比轉換器)46而從數位信號轉換成類比信號。類比的VCM 驅動信號,由放大電路16放大後,輸出給VCM 80。VCM 80, 根據VCM驅動信號使鏡片60的X及Y方向的位置進行移動。 在這裏說明沒有手抖動時與有手抖動時的本實施形態 ® 的攝像裝置的電路的動作。 (沒有手抖動時的動作) 沒有手抖動時,因為在攝像裝置中不產生角速度,因 此回轉均衡器24輸出的信號變成“0” 。由VCM 80驅動的 鏡片60的位置被設置成鏡片60的光軸和攝像裝置所具有 的CCD等攝像元件(沒有圖示)的中心相一致,因此霍爾元 件70及放大電路14產生的類比的位置信號,由ADC 22轉 〇 換成表示“0”的數位的位置信號後,被輸出到霍爾均衡器 40。伺服電路44,在位置信號的值為“0”時,以維持當 前的鏡片60的位置的方式輸出控制VCM 80的信號。 另外,在鏡片60的位置與攝像元件的中心不一致時, 霍爾元件70及放大電路14產生的類比的位置信號,由ADC 22轉換成表示與“0”不同的值的數位的位置信號後,被 輸出給霍爾均衡器40。伺服電路44根據ADC 22輸出的數 位的位置信號的值,以使位置信號的值變成“0”的方式控 制 VCM 80 。 9 320761 200931635In recent years, with the miniaturization and high functionality of electronic devices, semiconductor modules used in electronic devices have been required to be further miniaturized and integrated. In response to such a request, an MCM (Multi Chip Module) having a plurality of semiconductor wafers mounted on a substrate has been developed. As a configuration for loading a semiconductor wafer in an MCM, a multi-segment stack structure of a plurality of semiconductor wafers is known. In the legs of the plurality of segments; =, external electrodes are provided around the respective semiconductor wafers, and the electrode pads on the respective electrodes are electrically connected by a bonding wire (η wire). Ί1§ Such an MCM, for example, is assembled into a CCD camera to give the body a unique function. For example, in a semiconductor wafer as a logic element:=:, a human control circuit is assembled, and in a semiconductor wafer functioning as a function, a circuit for supplying a current to the driving b'1 is assembled. In the brain of the multi-segment stacking structure, the money that flows through the bonding wires of the semiconductor element that is a function of the singularity is the noise of the semiconductor element that functions as a component of 320761 3 200931635. The operational reliability of the semiconductor element functioning as a logic element is thus reduced, and there is a possibility that the operational reliability of the semiconductor module may be lowered. In addition, an imaging device such as a digital camera is required to be further miniaturized. In an imaging device in which an MCM using a conventional multi-segment stack structure is mounted, the above-described operation reliability of the semiconductor 70 is significantly reduced, and μ is generated. The next problem is the possibility of malfunction of the imaging device. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for suppressing the flow of a semiconductor element having a plurality of semiconductor elements in a bonding wire of a semiconductor element. The noise of the semiconductor component of the signal can improve the operation of the semi-conductive group. i = f. In addition, the other object of the present invention is to provide a semiconductor-substrate reduction of 70 pieces of assembly. The action can be used to mention two techniques. It has a kind of semiconductor module. The semiconductor module is a body; the substrate is provided with a substrate electrode on one of the main surfaces; the first is a body-transferred substrate, and the (10) phase is a semi-conducting second semiconductor element, and the shock is carried in the first pole and the third And having a current for outputting a large current, a power supply '苐1 bonding wire, a logic signal for electrically connecting a power electrode to a substrate of 9 people & κ, and a second bonding wire, a current The output of the corresponding substrate electrode of the thunder m" is electrically connected to the electrode and the side is viewed. The first connection is the center of the body * Λ , and the main table of the line substrate is connected to the σ line and the second bonding line is crossed by 320761 200931635 2 The side of the first semiconductor element corresponding to the side of the semiconductor element. According to this aspect, the first bonding line connected to the logic signal electrode provided in the first semiconductor element exists in a distance from the current output provided in the second semiconductor element. Since the position of the second bonding wire connected to the electrode is suppressed, it is possible to suppress the occurrence of noise in the first semiconductor element due to the influence of the large current flowing through the second bonding wire. As a result, the operation of the first semiconductor device can be improved. Degree The operation reliability of the semiconductor module can be improved. The current output electrode can be provided along the side of the second semiconductor element that traverses the second bonding line. The first semiconductor element outputs the camera shake compensation device. The hand shake compensation signal, the second semiconductor element outputs a large current supplied to the driving means of the lens for driving the image pickup device based on the hand shake compensation signal. In this case, the driving means may be a voice coil motor (VCM). The electrode may be provided along the side of the first semiconductor element corresponding to the side of the second semiconductor element Q that does not traverse the second bonding line. Another aspect of the present invention is an imaging device. The present invention is described in the preferred embodiments. The present invention is not limited by the scope of the present invention. In the drawings, the same components are denoted by the same reference numerals, and the detailed description will be omitted as appropriate in the following description. 5 320761 200931635 The semiconductor module of the embodiment is applied to an imaging device such as a digital camera having a camera shake compensation function. Fig. 1 is a block diagram showing a circuit configuration of an imaging device having a semiconductor module according to an embodiment. The signal amplifying unit 10 and the camera shake compensation unit 2A. The signal amplifying unit 1G amplifies the input signal by a predetermined amplification factor and outputs the signal to the camera shake compensation unit 20. The hand shake compensation unit 20” inputs an angular velocity signal according to the user's input. And a position signal of the lens, and a signal for performing hand shake* compensation for controlling the position of the lens is output to the signal amplifying portion 10. ❹ Hereinafter, the circuit configuration of the digital camera will be described more specifically. A gyro sensor 50 detects the angular velocity of the χγ of the digital camera in the direction of the singular axis. The analog angular velocity signal obtained by turning the sensor 50 is amplified by the amplifier circuit 12 and output to an ADC (analog digital converter) 22. The ADC 22 converts the angular velocity signal amplified by the amplifying circuit 12 into a digital angular velocity signal. The angular velocity production number 'output from the ADC 22' is output to a gyr 〇 eqUalizer 24. ❹ In the swing equalizer 24, the digital angular velocity signal that is rotated from the ADC 22 is first input to the HPF (High Pass Filter) 26. The HPF 26 removes frequency components from the angular velocity signals output from the return sensor 50 that are lower than the frequency components due to hand shake. Generally, the frequency component due to hand shake is 1 Hz to 2 Hz, and therefore, for example, a frequency component of an angular velocity signal of 0.7 Hz or less. In addition to the pan/tilt determination circuit 28, the panning motion and the tilting motion of the imaging device are detected based on the angular velocity signal extracted by Ηρρ%, and the imaging device is caused in response to the movement of the subject. In the case of moving, 320761 6 200931635 =:? An angular velocity signal corresponding to the movement. ,, 〇❹ 时 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ 〇❹ The action of the shock is called the panning motion. The motion that moves in the vertical direction is called the tilting motion. The degree of attenuation is such that the output becomes the 〇 gain light f path 3G 'complex _ / the result of the slack circuit 28' will The amplification factor of the angular velocity signal outputted by the HPF 26 is changed, for example, when the operation is not in the process of tilting or tilting. The circuit 30 performs gain adjustment of the angular velocity signal output by the HPF 26. Another week, the laser is performing a panning operation or In the tilting action, the gain adjustment is slightly outside the line as follows: the angular velocity signal 0 of the output of the 26 is masked by the LPF (low pass filter > 32 completes the task of the integrating circuit, and the output of the twisted, integrated circuit 30 The angular velocity signal is integrated to generate an angle signal indicating the amount of movement of the camera. For example, the LPF 32 determines the angle signal by performing a filtering process using a carboxy chopper. The centering processing circuit 34 of the moving wheel of V is subtracted from the angle signal 'from the LPF 32' by a predetermined value. When the hand in the imaging device = 200931635 is processed, While the compensation process is being continued, the position of the lens gradually deviates from the reference position and is near the limit point of the movable range of the lens. In this case, if the hand shake compensation process is continued, the lens can move in one direction, but becomes It is not possible to move in the other direction. The centering processing circuit is provided to prevent this from happening, and by subtracting a predetermined value from the angle signal, it is possible to control so as not to approach the limit point of the movable range of the lens. The angle signal output from the centering processing circuit 34 is adjusted by the gain adjustment circuit 36 to the range of the signal of the Hall element 70. The angle signal adjusted by the gain adjustment circuit 36 is output to the Hall equalizer 40. The Hall element 70 is a magnetic sensor using a Hall effect and functions as a position detecting mechanism for the X and Y directions of the lens 60. The analog position signal including the positional information of the lens 60 obtained by the Hall element 70 is amplified by the amplifier circuit 14 and sent to the ADC 22. The ADC 22 converts the analog position signal amplified by the amplifier circuit 14 into a digital position. In addition, the ADC 22 converts the analog output of the amplifying circuit 12 and the amplifying circuit 14 into a digital value in a time sharing manner. The position signal output from the ADC 22 is output to the Hall equalizer 40. 40, first, the position signal output from the ADC 22 is input to the adding circuit 42. Further, the angle signal that has been adjusted by the gain adjusting circuit 36 is input to the adding circuit 42. The adding circuit 42 inputs the input position signal Add to the angle signal. The signal output from the addition circuit 42 is output to the servo circuit 44. The servo circuit 44 generates a signal for controlling the driving of the VCM 80 based on the signal output to the servo circuit 44. The current of this signal 8 320761 200931635 (VCM drive current) is generally 200mA to 300mA. Further, in the servo circuit 44, filtering processing using a servo circuit digital filter may be performed. The VCM drive signal output from the servo circuit 44 is converted from a digital signal to an analog signal by a DAC (Digital Analog Converter) 46. The analog VCM drive signal is amplified by the amplifier circuit 16 and output to the VCM 80. The VCM 80 moves the position of the lens 60 in the X and Y directions in accordance with the VCM drive signal. Here, the operation of the circuit of the imaging device of the embodiment ® when there is no hand shake and when there is hand shake will be described. (Operation without hand shake) When there is no hand shake, since the angular velocity is not generated in the imaging device, the signal output from the rotary equalizer 24 becomes "0". The position of the lens 60 driven by the VCM 80 is set such that the optical axis of the lens 60 coincides with the center of an imaging element (not shown) such as a CCD of the imaging device, and thus the analogy generated by the Hall element 70 and the amplifying circuit 14 The position signal is switched from the ADC 22 to a position signal indicating a digit of "0", and then output to the Hall equalizer 40. The servo circuit 44 outputs a signal for controlling the VCM 80 so as to maintain the position of the current lens 60 when the value of the position signal is "0". Further, when the position of the lens 60 does not coincide with the center of the image sensor, the analog position signal generated by the Hall element 70 and the amplifier circuit 14 is converted by the ADC 22 into a position signal indicating a digit different from "0". It is output to the Hall equalizer 40. The servo circuit 44 controls the VCM 80 in such a manner that the value of the position signal becomes "0" in accordance with the value of the position signal of the digital output from the ADC 22. 9 320761 200931635

^過反覆進行le樣的動作從而控制鏡片6 以使鏡片60的位置與攝像元件的中。相—致。 (有手抖動時的動作) ί放,電路14產生的類比的位置信號,由脱22轉= ❹ 〇 % 數位:置信號後,被輸出給霍爾均衡器40。 =方面’因為手抖動導致攝像裝置進行了 ^"2及定中心處理電路34,根據用回轉 : :出的角速度信號,輸出表示攝像繼移動量的= 祠服電路44根據就22輪出的表* “〇,,的位置 與疋中心處理電路輸出的角度信號相加後的信號 ^ =驅動信號。這時,不管位置信號是否為“〇,,,因為與= ’、'、〇的角度仏號相加,故伺服電路44產生使鏡片60於 動的補償信號。 夕 妓另外,本實施形態的手抖動補償,並不是將CCD的圖 像呼入至記憶體再根據與下一個圖像的比較來排除手抖動 的因素的所謂電子式手抖動補償,而是如上所述,以使鏡 片進行光學移動的鏡片移動方式或者使CCD移動的cCD = 動方式等光學式手抖動補償。 因此,有以下絲:光學式手抖動補償可轉決採用 式手抖動補償機構時產生的課題,.即,因將預先攝得 的大幅圖像進行修煎而引起的晝質惡化、以及因將=寸 320761 10 200931635 的限—5丨起的補償·或攝像倍率存在界限的課題,還 有不能補償一帕i的靜止圖像的振動的課題。制是, •在從高晝質視訊的影像中取出靜止圖像時,光學式手抖動 補償也是有效的。 VCM 80根據伺服電路44輸出的補償信號使鏡片6〇進 行移動’因此攝像裝置所具有的攝像元件能得到對手抖動 所引起的拍照對象的振動進行了抑制的信號。通過反覆這 〇 樣的控制,就能實現手抖動補償。 第2圖是顯示實施形態的半導體模組的概略構成的俯 視圖。另外,第3圖是顯示實施形態的半導體模組的概略 構成的剖視圖。另外,在第2圖中,省略了後述的密封樹 脂 150 〇 半導體模組100具有:配線基板11〇、第i半導體元 件120、第2半導體元件13〇、第3半導體元件140、密封 樹脂150以及焊球160。 ❹ 配線基板11〇具有第1配線層114以及第2配線層 116’其中第丨配線層114與第2配線層116之間隔著絕緣 樹脂層112。第1配線層H4與第2配線層116是藉由貫 通絕緣樹脂層112的通孔117進行電性連接。第2配線層 116連接著焊球 作為構成絕緣樹脂層112的材料,例如可以例示BT樹 月曰等—聚氰胺衍生物(melamine derivative)、液晶聚合 物 '環氧樹脂、PPE樹脂、聚醯亞胺樹脂、氟樹脂、苯酚 樹月日 1_胺雙馬來酸亞胺(polyamide bismaleimide)等 11 320761 200931635 的熱固性樹脂。從 丢,鲈杜* 知1阿半導體模組100的散也 二=絕,層112具有高熱c點來 116的材料, 及這=合金等來作為熱傳導性填充物錯、鎮'踢、辞以 作為構成第1配線層114以 例如可以列舉出麵。 ο 在配線基板11 〇的主表面S1上 件120以及第3半導體元件刚。以層^楚第1半導體元 件120之上的方式裝载有第2半導體元件第1半導體元 體元件120.為邏輯元件,相當於第」圖所卞二。第1半導 部20。另夕卜,第2半導體元件13〇為驅動元:手抖動補償 件’相當於第1圖所示的信號放大部1〇 :或者功率元 12〇、第2半導體元件⑽以及第3半導趙元件3 = 樹脂150進行密封,並被封裝起來。密射樹脂15〇,例如 是利用轉移模(transfer mold)法來形成的。 ❹ 在第1.半導體元件120巾,設置有用於輪入或者輸出 邏輯信號的邏輯信號用電極122。作為被輸入到第^半導 體元件120的邏輯信號,可列舉上述角速度信號、位置信 號。邏輯信號的電流,典型上為2mA。另外,作為從第1 半導體元件120輸出的邏輯信號,可列舉手抖動補償信 或。邏輯#號用電極122 ’經由金屬線等的接合線124,與 設置在第1配線層114上的基板電極u8a進行電性連接。 在第2半導體元件130中,設置有用於輸出大電流的 電流輸出用電極132。作為從第2半導體元件130輸出的 12 320761 200931635 大電流,可列舉用於驅動VCM的電流(200mA至300mA)。電 流輸出用電極132,經由金屬線等的接合線134,與設置在 1 第1配線層114上的基板電極118b進行電性連接。另外, 在第2半導體元件130上,除了電流輸出用電極132之外, 還設有在與其它半導體元件進行信號的輸入輸出時使用的 晶片電極136。晶片電極136,經由金屬線等的接合線137, 與設置在第1配線層114上的基板電極118c進行電性連 接。另外,由接合線124、134、137形成的接線,可以在 ® 將第1半導體元件120裝載到配線基板110上,再在第1 半導體元件120上裝載第2半導體元件130後進行實施。 如第2圖所示,從配線基板110的主表面S1侧來看, 接合線134橫穿過第2半導體元件130的邊E1。與第1半 導體元件120連接的接合線124,橫穿過與第2半導體元 件130的邊E1相對應的第1半導體元件的邊:F1以外的邊, 即橫穿過第1半導體元件120的邊F2、F3、F4。電流輸出 Q 用電極132沿著接合線134橫穿過的第2半導體元件130 的邊E1設置。另外,第1半導體元件120以及第2半導體 元件130的“邊”,也可以稱為一邊的“緣”或“端部”。 另外,第2半導體元件130的邊E1,在第1半導體元 件120的邊?1的上方伸出。換言之,第2半導體元件130 的邊E1,從第1半導體元件120的邊F1突出,在第2半 導體元件130的邊E1的下部附近產生間隙。在本實施形態 中,電流輸出用電極132設置在第2半導體元件130相對 於第1半導體元件120的邊F1伸出的區域内。另外,在本 13 320761 200931635 實施形態的半導體模組100中,在第1半導體元件ΐ2〇 邊F1之侧未設置電極接墊,在將第2半導體元件13〇 的 到第1半導體元件120之上時’不會對第1半導體元件戴 的邊F1之側造成障礙。為此,因為沒有對第2半導體_12〇 130在第丨半導體元件120的邊F1之侧的配置產生,=件 故第2半導體元件130的邊E1就能在第丨半^制, 的邊F1的上方伸出。 牛120 〇 第3半導體元件140,為_〇Μ等記憶體元件。 3半導體元件H。中’例如保持有手抖動補償所需 第 第3半導體元件140設置為:與第2半導體元件13=。 置了電流輸出用電極U2以及接合線134的 的配 的配線基板no的邊近接。更佳為 _ _反〜側 設細半.導體元件13。的形成了電流 :及接合線134的邊相反-侧的配線基板_ 也根據以上說明的半導體模組1〇〇,因為 ^ 半導體120的邏輯信號用電極122連接人在第] 在於遠離與設置在第2半導 Μ 5、叫, 料接的接合線m的位置,二, 中流通的大電流的影響而產生由於接合線u 雜訊。結果,不但能提高半導體^導體元件吻丨 度’而且能提高半導艘模組100的動的動作可: 另外,第2半導體元件13〇的 I度。 120的邊F1伸出,因此與第2半導體 320761 14 200931635 線134的位置成為遠離第1半導體元件120的位置。因此, 能更加抑制接合線134中流通的大電流對第1半導體元件 1 120的影響。 另外,第2半導體元件130,因為以其邊E1在第1半 導體元件120的邊F1的上方伸出的狀態層疊在半導體元件 120上,故第2半導體元件130的設置位置不會被第1半 導體元件120的設置區域所限制。因此,能容易地進行半 導體模組100中的多段堆疊構造的設計。 ® 另外,因為第3半導體元件140被設置在遠離第2半 導體元件130的電流輸出用電極132以及接合線134的位 置上,因此能抑制於第3半導體元件140產生雜訊。結果, 不但能提高第3半導體元件140的動作可靠度,而且能提 高半導體模組100的動作可靠度。另外,在上述的實施形 態中,代替配線基板11、設置於其表面的第1配線層114、 第2配線層116以及焊球160,而使用由金屬形成的引線 ❹ 框(lead frame)也能取得相同的效果。 第4圖是具有上述實施形態的半導體模組的數位相機 的透視立體圖。數位相機具有:回轉感測器50、鏡片60、 霍爾元件70、VCM 80以及半導體模組100。半導體模組 100,如第2圖以及第3圖所示,具有在第1半導體元件 120上層疊第2半導體元件130的構造。另外,在第4圖 所示的半導體模組100中,簡化並適當省略了第1半導體 元件120以及第2半導體元件130以外的構成。 據此,藉由使用層疊第1半導體120'與第2半導體130 15 320761 200931635 的半導體模組100,就能在不會導致動作可靠度下降的情 況下實現數位相機的進一步小型化。 本發明並不限定於上述的實施形態,根據本領域技術 人員的知識當能增加各種設計變更等變化,增加這樣變化 的實施形態也包含在本發明的範圍内。 在本申請中,攝像裝置並不限定於上述的數位相機, 也可以是攝像機、裝載在行動電話上的照相機、監視照相 機等,能取得與數位相機相同的效果。 ® [圖式簡單說明】 第1圖是顯示具有實施形態的半導體模組的攝像裝置 的電路構成的方塊圖。 第2圖是顯示實施形態的半導體模組的概略構成的俯 視圖。_ 第3圖是顯示實施形態的半導體模組的概略構成的剖 視圖。 © 第4圖是具有實施形態的半導體模組的數位相機的透 視立體'圖。 【主要元件符號說明】 10 信號放大部 12 ' 14、16 放大電路 20 手抖動補償部 22 ADC(模擬數字轉換器) 24 回轉均衡器 26 HPF(高通濾波器) 28 搖攝/傾斜判定電路 30、36 增益調整電路 32 LPF (低通濾、波器) 34 定中心處理電路 40 霍爾均衡器 16 320761 200931635 42 加法電路 44 伺服電路 50 回轉感測器 60 鏡片 70 霍爾元件 80 VCM(音圈電動機) 100 半導體模組 110 配線基板 112 絕緣樹脂層 114 第1配線層 116 第2配線層 117 通孔 118a 、118b、118c 基板電極 120 第1半導體元件 122 邏輯信號用電極 Ο ^ 124 ' 134、137 接合線 130 第2半導體元件 132 電流輸出用電極 136 晶片電極 140 第3半導體元件 150 密封樹脂 160 焊球 El、F1 、F2、F3、F4 邊 SI 主表面 ◎ 17 320761The action of the lens 6 is controlled to repeatedly control the position of the lens 60 and the middle of the image pickup element. In the same way. (Operation when there is hand shake) ί, the analog position signal generated by the circuit 14 is turned off 22 = ❹ 〇 % digit: After the signal is set, it is output to the Hall equalizer 40. = Aspect 'Because of the camera shake caused by the camera shake ^2, and the centering processing circuit 34, according to the angular velocity signal of the rotation: : output, the output of the image is the amount of movement = the servo circuit 44 is rotated according to 22 Table * "〇,, the position of the signal is added to the angle signal output from the center processing circuit ^ = drive signal. At this time, regardless of whether the position signal is "〇,,, because of the angle with = ', ', 仏 仏The numbers are added so that the servo circuit 44 produces a compensation signal that causes the lens 60 to move. In addition, the camera shake compensation of the present embodiment is not the so-called electronic hand shake compensation in which the image of the CCD is called into the memory and the factor of the hand shake is excluded based on the comparison with the next image. The optical hand shake compensation such as the lens moving mode for optically moving the lens or the cCD = moving mode for moving the CCD. Therefore, there is the following wire: Optical hand shake compensation can be converted to the problem that occurs when using the hand shake compensation mechanism, that is, the deterioration of the quality caused by the large-scale image taken in advance, and = inch 320761 10 200931635 The limit of -5 的 compensation or the imaging magnification has a problem, and there is a problem that the vibration of a still image cannot be compensated for one kPa. The system is: • Optical hand shake compensation is also effective when taking a still image from a high-quality video. The VCM 80 causes the lens 6 to move based on the compensation signal output from the servo circuit 44. Therefore, the image pickup device of the image pickup device can obtain a signal for suppressing the vibration of the photographed object caused by the opponent's shake. Hand shake compensation can be achieved by repeating this kind of control. Fig. 2 is a plan view showing a schematic configuration of a semiconductor module of the embodiment. Fig. 3 is a cross-sectional view showing a schematic configuration of a semiconductor module of the embodiment. In addition, in the second drawing, the sealing resin 150 to be described later is omitted. The semiconductor module 100 includes the wiring substrate 11A, the i-th semiconductor element 120, the second semiconductor element 13A, the third semiconductor element 140, the sealing resin 150, and Solder ball 160.配线 The wiring board 11A has the first wiring layer 114 and the second wiring layer 116' with the insulating resin layer 112 interposed between the second wiring layer 114 and the second wiring layer 116. The first interconnect layer H4 and the second interconnect layer 116 are electrically connected by a via hole 117 that penetrates the insulating resin layer 112. The second wiring layer 116 is connected to the solder ball as a material constituting the insulating resin layer 112, and examples thereof include melamine derivative, liquid crystal polymer epoxy resin, PPE resin, and polyfluorene. A thermosetting resin of 11 320761 200931635, such as an imine resin, a fluororesin, or a phenolic tree, a polyamide bismaleimide. From the loss, 鲈 Du* knows that the semiconductor module 100 is also two, the layer 112 has a high heat c point to 116 material, and this = alloy, etc. as a thermal conductive filler, the town 'kick, resign For example, a surface may be mentioned as the first wiring layer 114. ο On the main surface S1 of the wiring substrate 11 上 the upper part 120 and the third semiconductor element are just. The second semiconductor element first semiconductor element 120 is mounted on the first semiconductor element 120. The logic element is equivalent to the second figure. The first semi-conducting portion 20. Further, the second semiconductor element 13A is a driving element: the camera shake compensator ′ corresponds to the signal amplifying unit 1A shown in Fig. 1 or the power element 12〇, the second semiconductor element (10), and the third semiconductor semiconductor Element 3 = Resin 150 is sealed and encapsulated. The primer resin 15 is formed, for example, by a transfer mold method. ❹ In the first semiconductor element 120, a logic signal electrode 122 for turning in or outputting a logic signal is provided. The logical signal input to the first semiconductor element 120 includes the angular velocity signal and the position signal. The current of the logic signal is typically 2 mA. Further, as the logic signal output from the first semiconductor element 120, a hand shake compensation signal or may be mentioned. The logic #number electrode 122' is electrically connected to the substrate electrode u8a provided on the first wiring layer 114 via a bonding wire 124 such as a metal wire. The second semiconductor element 130 is provided with a current output electrode 132 for outputting a large current. As a large current of 12 320761 200931635 output from the second semiconductor element 130, a current (200 mA to 300 mA) for driving the VCM can be cited. The current output electrode 132 is electrically connected to the substrate electrode 118b provided on the first wiring layer 114 via a bonding wire 134 such as a metal wire. Further, in addition to the current output electrode 132, the second semiconductor element 130 is provided with a wafer electrode 136 which is used for inputting and outputting signals with other semiconductor elements. The wafer electrode 136 is electrically connected to the substrate electrode 118c provided on the first wiring layer 114 via a bonding wire 137 such as a metal wire. Further, the wiring formed by the bonding wires 124, 134, and 137 can be implemented by mounting the first semiconductor device 120 on the wiring substrate 110 and then mounting the second semiconductor device 130 on the first semiconductor device 120. As shown in FIG. 2, the bonding wire 134 traverses the side E1 of the second semiconductor element 130 as viewed from the main surface S1 side of the wiring substrate 110. The bonding wire 124 connected to the first semiconductor element 120 traverses the side of the first semiconductor element corresponding to the side E1 of the second semiconductor element 130: a side other than F1, that is, a side crossing the first semiconductor element 120 F2, F3, F4. The current output Q electrode 132 is provided along the side E1 of the second semiconductor element 130 that traverses along the bonding wire 134. Further, the "edge" of the first semiconductor element 120 and the second semiconductor element 130 may be referred to as "edge" or "end" of one side. Further, the side E1 of the second semiconductor element 130 is on the side of the first semiconductor element 120? The top of 1 sticks out. In other words, the side E1 of the second semiconductor element 130 protrudes from the side F1 of the first semiconductor element 120, and a gap is formed in the vicinity of the lower portion of the side E1 of the second semiconductor element 130. In the present embodiment, the current output electrode 132 is provided in a region in which the second semiconductor element 130 protrudes from the side F1 of the first semiconductor element 120. Further, in the semiconductor module 100 of the embodiment of the present invention, in the semiconductor device 100 of the embodiment of the present invention, the electrode pads are not provided on the side of the first semiconductor element 2, and the second semiconductor element 13 is formed on the first semiconductor element 120. At the time of 'there is no obstacle to the side of the side F1 worn by the first semiconductor element. Therefore, since the second semiconductor _12 〇 130 is not disposed on the side of the side F1 of the second semiconductor element 120, the side E1 of the second semiconductor element 130 can be at the side of the second half. The top of F1 sticks out. Cattle 120 〇 The third semiconductor element 140 is a memory element such as _〇Μ. 3 semiconductor element H. For example, the third semiconductor element 140 required to maintain hand shake compensation is provided with the second semiconductor element 13=. The side of the current output electrode U2 and the wiring board no of the bonding wire 134 are placed close to each other. More preferably, the _ _ reverse side is provided with a thin half. The conductor element 13 is provided. The current is formed: and the wiring substrate _ on the opposite side of the bonding wire 134 is also in accordance with the semiconductor module 1 以上 described above, because the logic signal of the semiconductor 120 is connected to the electrode by the electrode 122 in the The second semi-conducting Μ 5, called, the position of the bonding wire m of the material, and the influence of the large current flowing in the second, due to the bonding line u noise. As a result, not only the semiconductor conductor element kisser degree can be improved, but also the movement of the semiconductor package 100 can be improved: In addition, the second semiconductor element 13 is at the first degree. The side F1 of 120 is extended, so that the position of the line 134 with the second semiconductor 320761 14 200931635 becomes a position away from the first semiconductor element 120. Therefore, the influence of the large current flowing in the bonding wire 134 on the first semiconductor element 1 120 can be further suppressed. In addition, since the second semiconductor element 130 is stacked on the semiconductor element 120 in a state in which the side E1 protrudes above the side F1 of the first semiconductor element 120, the second semiconductor element 130 is not disposed by the first semiconductor. The setting area of the component 120 is limited. Therefore, the design of the multi-segment stack structure in the semiconductor module 100 can be easily performed. Further, since the third semiconductor element 140 is provided at a position away from the current output electrode 132 of the second semiconductor element 130 and the bonding wire 134, it is possible to suppress the occurrence of noise in the third semiconductor element 140. As a result, not only the operational reliability of the third semiconductor element 140 but also the operational reliability of the semiconductor module 100 can be improved. Further, in the above-described embodiment, instead of the wiring board 11, the first wiring layer 114, the second wiring layer 116, and the solder balls 160 provided on the surface thereof, it is also possible to use a lead frame formed of a metal. Get the same effect. Fig. 4 is a perspective perspective view of a digital camera having the semiconductor module of the above embodiment. The digital camera has a rotary sensor 50, a lens 60, a Hall element 70, a VCM 80, and a semiconductor module 100. As shown in FIGS. 2 and 3, the semiconductor module 100 has a structure in which the second semiconductor element 130 is stacked on the first semiconductor element 120. Further, in the semiconductor module 100 shown in Fig. 4, the configuration other than the first semiconductor element 120 and the second semiconductor element 130 is simplified and appropriately omitted. As a result, by using the semiconductor module 100 in which the first semiconductor 120' and the second semiconductor 130 15 320761 200931635 are stacked, it is possible to further reduce the size of the digital camera without causing a decrease in operational reliability. The present invention is not limited to the above-described embodiments, and it is also within the scope of the present invention to increase the variation of various design changes and the like according to the knowledge of those skilled in the art. In the present application, the imaging device is not limited to the above-described digital camera, and may be a camera, a camera mounted on a mobile phone, a surveillance camera, etc., and can achieve the same effect as a digital camera. ® [Brief Description of the Drawings] Fig. 1 is a block diagram showing a circuit configuration of an image pickup apparatus having a semiconductor module of an embodiment. Fig. 2 is a plan view showing a schematic configuration of a semiconductor module of the embodiment. Fig. 3 is a cross-sectional view showing a schematic configuration of a semiconductor module of the embodiment. © Fig. 4 is a perspective perspective view of a digital camera having a semiconductor module of an embodiment. [Description of main component symbols] 10 Signal amplifying section 12' 14, 16 Amplifying circuit 20 Hand shake compensating section 22 ADC (Analog to Digital Converter) 24 Swing equalizer 26 HPF (High Pass Filter) 28 Panning/tilt determining circuit 30, 36 Gain adjustment circuit 32 LPF (low pass filter, waver) 34 Centering processing circuit 40 Hall equalizer 16 320761 200931635 42 Addition circuit 44 Servo circuit 50 Rotary sensor 60 Lens 70 Hall element 80 VCM (voice coil motor 100 semiconductor module 110 wiring board 112 insulating resin layer 114 first wiring layer 116 second wiring layer 117 through holes 118a, 118b, 118c substrate electrode 120 first semiconductor element 122 logic signal electrode 124 ^ 124 ' 134, 137 bonding Line 130 Second semiconductor element 132 Current output electrode 136 Wafer electrode 140 Third semiconductor element 150 Sealing resin 160 Solder balls El, F1, F2, F3, F4 Side SI main surface ◎ 17 320761

Claims (1)

200931635 申請專利範圍: -種半導體模組,係具有: 配線基板,在1的主表㈣置有基板電極; 第導體疋件’裝裁在前述配線基板,具有用於 輸入或者輸出邏輯信號 古第體元件’裝载在前述第!半導體元件上, 具有用於輸出大電流的電㈣_電極; Ο 的’對前述邏輯信號用電極及與之相對應 的刖述基板電極進行電性連接;及 第2接合線,對前并、恭 ^社述電流輸出用電極及與之相對應 的前述基板電極進行電性 相對應 從前述配線基板的前::表面侧觀看,前述請 合線橫穿過非與前述第2接 述 體元件的邊對應的前述第1半導體第2+導 2. 如申請專利範圍第i項之道 ' ❹ 七 1. 沿著前述第2接合線橫 f組,其中, 的邊來設置前述電流輸的所述第2半導體元件 3. 如申!專利範圍第1項之半導體模組,1中, 前述第1半導體元件於;N T 用的手抖動補償信號,3象裝置的手抖動補償 前述第2半導體元件輪出提供^^ 流,其中該驅動手段根據前 ^動手段的大電 述攝像裝置的鏡片。 計勒補償信號來驅動前 4. 如申請專利範圍第2項之半導體模組,其中, 320761 200931635 前述第1半導體元件輸出攝像裝置的手抖動補償 用的手抖動補償信號, ^ 前述第2半導體元件輸出提供給驅動手段的大電 流,其中該驅動手段根據前述手抖動補償信號來驅動前 述攝像裝置的鏡片。 5. 如申請專利範圍第3項之半導體模組,其中, 前述驅動手段為音圈電動機。 6. 如申請專利範圍第4項之半導體模組,其中, 〇 前述驅動手段為音圈電動機。 7. 如申請專利範圍第1項之半導體模組,其中, 沿著非與前述第2接合線橫穿過的前述第2半導體 元件的邊對應的前述第1半導體元件的邊來設置前述 邏輯信號用電極。 8. 如申請專利範圍第2項之半導體模組,其中, 沿著非與前述第2接合線橫穿過的前述第2半導體 Q 元件的邊對應的前述第1半導體元件的邊來設置前述 邏輯信號用電極。 9. 如申請專利範圍第3項之半導體模組,其中, 沿著非與前述第2接合線橫穿過的前述第2半導體 元件的邊對應的前述第1半導體元件的邊來設置前述 邏輯信號用電極。 10. 如申請專利範圍第5項之半導體模組,其中, 沿著非與前述第2接合線橫穿過的前述第2半導體 元件的邊對應的前述第1半導體元件的邊來設置前述 19 320761 200931635 邏輯信號用電極。 ' 11. 一種攝像裝置,係具有申請專利範圍第1項的半導體模 組。 12. —種攝像裝置,係具有申請專利範圍第2項的半導體模 組。 13. —種攝像裝置,係具有申請專利範圍第3項的半導體模 組。 14. 一種攝像裝置,係具有申請專利範圍第5項的半導體模 〇 , 組。 15. —種攝像裝置,係具有申請專利範圍第7項的半導體模 ❹ 20 320761200931635 Patent application scope: - A semiconductor module having: a wiring substrate in which a substrate electrode is placed in a main table (4); a first conductor member is mounted on the wiring substrate, and has a logic signal for inputting or outputting The body element 'loaded in the aforementioned! The semiconductor element has an electric (four)_electrode for outputting a large current; Ο' is electrically connected to the logic signal electrode and the corresponding reference substrate electrode; and the second bonding wire is connected to the front side. The electric current output electrode and the substrate electrode corresponding thereto are electrically connected to each other, and the request line is traversed from the front surface of the wiring substrate. The first semiconductor 2+ guide 2 corresponding to the side is as described in the scope of the application of the ith item ❹ VII VII. along the second bonding line transverse f group, wherein the side is provided with the aforementioned current input The second semiconductor component 3. Such as Shen! In the semiconductor module of the first aspect of the invention, in the first semiconductor device, the hand shake compensation signal for the NT, and the camera shake of the 3 image device compensates the second semiconductor device to provide a flow, wherein the driving The means is based on the lens of the large-scale imaging device of the pre-action means. The semiconductor module of the second aspect of the invention, wherein the first semiconductor element outputs a camera shake compensation signal for hand shake compensation of the first semiconductor element output device, ^ the second semiconductor element A large current supplied to the driving means is output, wherein the driving means drives the lens of the aforementioned image pickup device in accordance with the aforementioned hand shake compensation signal. 5. The semiconductor module of claim 3, wherein the driving means is a voice coil motor. 6. The semiconductor module of claim 4, wherein the driving means is a voice coil motor. 7. The semiconductor module according to claim 1, wherein the logic signal is provided along a side of the first semiconductor element corresponding to a side of the second semiconductor element that does not traverse the second bonding line. Use an electrode. 8. The semiconductor module according to claim 2, wherein the logic is provided along a side of the first semiconductor element corresponding to a side of the second semiconductor Q element that does not traverse the second bonding line; Signal electrode. 9. The semiconductor module according to claim 3, wherein the logic signal is provided along a side of the first semiconductor element corresponding to a side of the second semiconductor element that does not traverse the second bonding line. Use an electrode. 10. The semiconductor module according to claim 5, wherein the 19 320761 is provided along a side of the first semiconductor element corresponding to a side of the second semiconductor element that does not traverse the second bonding line. 200931635 Electrode for logic signals. 11. An image pickup apparatus comprising the semiconductor module of the first application of the patent scope. 12. A camera device having a semiconductor module having the second item of the patent application. 13. A camera device having a semiconductor module having the third item of the patent application. 14. An image pickup apparatus comprising the semiconductor mold set of claim 5th. 15. A camera device having a semiconductor module of claim 7th item 20 320761
TW097143468A 2007-11-14 2008-11-11 Semiconductor module and imaging device TWI442544B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007296146 2007-11-14
JP2008281950A JP5404000B2 (en) 2007-11-14 2008-10-31 Semiconductor module and imaging device

Publications (2)

Publication Number Publication Date
TW200931635A true TW200931635A (en) 2009-07-16
TWI442544B TWI442544B (en) 2014-06-21

Family

ID=40710930

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097143468A TWI442544B (en) 2007-11-14 2008-11-11 Semiconductor module and imaging device

Country Status (3)

Country Link
JP (1) JP5404000B2 (en)
CN (1) CN101436589B (en)
TW (1) TWI442544B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081646A (en) * 1998-06-26 2000-03-21 Ricoh Co Ltd Camera with camera-shake correction function
JP2002057270A (en) * 2000-08-08 2002-02-22 Sharp Corp Stacked chip semiconductor device
JP2004158536A (en) * 2002-11-05 2004-06-03 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP4580730B2 (en) * 2003-11-28 2010-11-17 ルネサスエレクトロニクス株式会社 Offset junction type multi-chip semiconductor device
JP4103796B2 (en) * 2003-12-25 2008-06-18 沖電気工業株式会社 Semiconductor chip package and multi-chip package
JP4509052B2 (en) * 2005-03-29 2010-07-21 三洋電機株式会社 Circuit equipment
JP4748648B2 (en) * 2005-03-31 2011-08-17 ルネサスエレクトロニクス株式会社 Semiconductor device
JP4756932B2 (en) * 2005-06-27 2011-08-24 キヤノン株式会社 Imaging device and interchangeable lens
KR100665217B1 (en) * 2005-07-05 2007-01-09 삼성전기주식회사 A semiconductor multi-chip package

Also Published As

Publication number Publication date
JP2009141330A (en) 2009-06-25
CN101436589A (en) 2009-05-20
CN101436589B (en) 2012-05-30
TWI442544B (en) 2014-06-21
JP5404000B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US9900539B2 (en) Solid-state image pickup element, and image pickup system
US9167161B1 (en) Camera module package with a folded substrate and laterally positioned components
JPH0637143A (en) Semiconductor device and manufacture thereof
US20120068291A1 (en) Image sensing device and method of manufacturing the same
TWI462242B (en) Semiconductor module and video apparatus
US8311247B2 (en) Piezoelectric body module and manufacturing method therefor
TW200935887A (en) Semiconductor module and imaging apparatus
KR101003568B1 (en) Semiconductor module and image pickup apparatus
TW200931635A (en) Semiconductor module and imaging device
JP5086039B2 (en) Semiconductor module and imaging device
JP5073457B2 (en) Semiconductor module and imaging device
JP5094371B2 (en) Semiconductor module and imaging device
JP2005012207A (en) Semiconductor apparatus for imaging solid object
JP6169370B2 (en) Imaging device and imaging apparatus
JP2008124919A (en) Solid-state imaging apparatus and electronic equipment
JP2005065285A (en) Solid-state image pickup semiconductor device and method for manufacturing the same
WO2015087705A1 (en) Semiconductor device, solid-state imaging element, imaging device, electronic device, and production method therefor
JPWO2014118833A1 (en) Multilayer semiconductor device
JP2009158607A (en) Semiconductor module and imaging device
TW202242527A (en) Camera module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees