JP2009158607A - Semiconductor module and imaging device - Google Patents

Semiconductor module and imaging device Download PDF

Info

Publication number
JP2009158607A
JP2009158607A JP2007333032A JP2007333032A JP2009158607A JP 2009158607 A JP2009158607 A JP 2009158607A JP 2007333032 A JP2007333032 A JP 2007333032A JP 2007333032 A JP2007333032 A JP 2007333032A JP 2009158607 A JP2009158607 A JP 2009158607A
Authority
JP
Japan
Prior art keywords
semiconductor element
semiconductor
signal
circuit
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007333032A
Other languages
Japanese (ja)
Inventor
Tomofumi Watanabe
智文 渡辺
Satoshi Noro
聡 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007333032A priority Critical patent/JP2009158607A/en
Publication of JP2009158607A publication Critical patent/JP2009158607A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for facilitating operation test of individual semiconductor elements in a semiconductor module having a plurality of semiconductor elements. <P>SOLUTION: A semiconductor module 100 comprises a wiring board 110, and a first semiconductor element 120 and a fourth semiconductor element 170 mounted on the wiring board 110. A solder ball 160a is connected electrically with one of electrodes 122 for logic signal of the first semiconductor element 120. A solder ball 160b is connected electrically with one of electrodes for logic signal of the fourth semiconductor element 170. An electrode pad 210a corresponding to the solder ball 160a and an electrode pad 210b corresponding to the solder ball 160b are connected electrically by a third wiring layer 220 provided on a mounting board 200. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体モジュールおよびこれを搭載する撮像装置に関する。   The present invention relates to a semiconductor module and an imaging device on which the semiconductor module is mounted.

近年、電子機器の小型化・高機能化に伴い、電子機器に使用される半導体モジュールのさらなる小型化、集積化が求められている。このような要求に応えるために、基板上に複数の半導体チップを搭載したMCM(マルチチップモジュール)が開発されている。   In recent years, with the downsizing and high functionality of electronic devices, there has been a demand for further downsizing and integration of semiconductor modules used in electronic devices. In order to meet such a demand, an MCM (multi-chip module) in which a plurality of semiconductor chips are mounted on a substrate has been developed.

MCMにおいて半導体チップを搭載する構造として、複数の半導体チップが積層された多段スタック構造が知られている。多段スタック構造のMCMでは、各半導体チップの周囲に外部電極が設けられ、各外部電極と基板上の電極パッドとがボンディングワイヤにより電気的に接続される。   As a structure for mounting a semiconductor chip in the MCM, a multi-stage stack structure in which a plurality of semiconductor chips are stacked is known. In an MCM having a multi-stage stack structure, external electrodes are provided around each semiconductor chip, and each external electrode and an electrode pad on the substrate are electrically connected by a bonding wire.

このようなMCMは、たとえば、CCDカメラに組み込まれ、各半導体チップに独自の機能が付与される。たとえば、ロジック素子として機能する半導体チップには制御回路が組み込まれ、ドライバ素子として機能する半導体チップにCCDを駆動するモータに電流を供給する回路が組み込まれる。また、MCMには、EEPROMなどのメモリ素子が搭載され、メモリ素子に手振れ補正制御などに必要なデータが適宜保持される。
特開2006−286824号公報
Such an MCM is incorporated in, for example, a CCD camera, and each semiconductor chip is given a unique function. For example, a control circuit is incorporated in a semiconductor chip that functions as a logic element, and a circuit that supplies current to a motor that drives a CCD is incorporated in a semiconductor chip that functions as a driver element. In addition, the MCM is equipped with a memory element such as an EEPROM, and data necessary for camera shake correction control or the like is appropriately held in the memory element.
JP 2006-286824 A

複数の半導体チップやメモリ素子が搭載されたMCMでは、半導体チップ同士、または半導体チップとメモリ素子とが配線基板の実装面上に設けられた配線層を介して電気的に接続されている。このため、MCMがパッケージ化された状態で半導体チップやメモリ素子の動作試験を行うには、目的となる素子に接続された他の素子を経由して動作確認をする必要がある。たとえば、半導体チップ(ロジック素子)とメモリ素子とが配線基板上で電気的に接続されている場合にメモリ素子の動作試験をする場合には、半導体素子を動作させなければならない。このため、半導体チップの動作がメモリ素子の動作試験の結果に影響を与えたり、動作試験のプロセスをメモリ素子に接続された半導体チップに合わせて修正する必要が生じたりしていた。   In an MCM on which a plurality of semiconductor chips and memory elements are mounted, the semiconductor chips or the semiconductor chips and the memory elements are electrically connected via a wiring layer provided on the mounting surface of the wiring board. For this reason, in order to perform an operation test of a semiconductor chip or a memory element in a state where the MCM is packaged, it is necessary to confirm the operation via another element connected to the target element. For example, when an operation test of a memory element is performed when a semiconductor chip (logic element) and a memory element are electrically connected on a wiring board, the semiconductor element must be operated. For this reason, the operation of the semiconductor chip has an influence on the result of the operation test of the memory element, and the process of the operation test needs to be corrected according to the semiconductor chip connected to the memory element.

また、従来のMCMでは、一旦パッケージ化されてしまうと、個々の半導体チップまたはメモリ素子に外部の半導体チップを接続させることが困難になるという問題があった。   Further, the conventional MCM has a problem that once it is packaged, it becomes difficult to connect an external semiconductor chip to each semiconductor chip or memory element.

本発明はこうした課題に鑑みてなされたものであり、その目的は、複数の半導体素子を有する半導体モジュールにおいて、個々の半導体素子の動作試験を容易に行うことができる技術の提供にある。   The present invention has been made in view of such problems, and an object thereof is to provide a technique capable of easily performing an operation test of each semiconductor element in a semiconductor module having a plurality of semiconductor elements.

本発明のある態様は、半導体モジュールである。当該半導体モジュールは、配線基板と、配線基板の一方の主表面上に実装された半導体素子と、配線基板の一方の主表面上に実装された他の半導体素子と、配線基板の他方の主表面上に設けられた外部電極と、を備え、配線基板を搭載した実装基板に外部電極が電気的に接続されたときに、半導体素子と他の半導体素子とが実装基板に設けられた配線を介して電気的に接続されることを特徴とする。   One embodiment of the present invention is a semiconductor module. The semiconductor module includes a wiring board, a semiconductor element mounted on one main surface of the wiring board, another semiconductor element mounted on one main surface of the wiring board, and the other main surface of the wiring board. And when the external electrode is electrically connected to the mounting board on which the wiring board is mounted, the semiconductor element and other semiconductor elements are connected via the wiring provided on the mounting board. And electrically connected.

この態様によれば、実装基板に設けられた配線に外部の半導体チップを接続することが可能になる。これにより、たとえば、製品出荷時において一方の半導体素子を起動させることなく、他方の半導体素子の動作試験を行うことができる。   According to this aspect, it is possible to connect an external semiconductor chip to the wiring provided on the mounting substrate. Thereby, for example, the operation test of the other semiconductor element can be performed without starting one semiconductor element at the time of product shipment.

上記態様において、外部電極が実装基板に接続されたときに、半導体素子と他の半導体素子とがバス接続されていてもよい。また、前記半導体素子はロジック素子であり、前記他の半導体素子はメモリ素子であってもよい。   In the above aspect, when the external electrode is connected to the mounting substrate, the semiconductor element and another semiconductor element may be bus-connected. The semiconductor element may be a logic element, and the other semiconductor element may be a memory element.

本発明の他の態様は撮像装置である。当該撮像装置は、上述したいずれかの態様の半導体モジュールを備えることを特徴とする。   Another embodiment of the present invention is an imaging apparatus. The imaging apparatus includes the semiconductor module according to any one of the above-described aspects.

本発明によれば、複数の半導体素子を有する半導体モジュールにおいて、個々の半導体素子の動作試験を容易に行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the semiconductor module which has several semiconductor elements, the operation test of each semiconductor element can be performed easily.

以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様の構成要素には同様の符号を付し、以下の説明において詳細な説明を適宜省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same constituent elements are denoted by the same reference numerals, and detailed description thereof will be appropriately omitted in the following description.

実施の形態に係る半導体モジュールは、手振れ補正機能を有するデジタルカメラなどの撮像装置に好適に用いられる。図1は、実施の形態に係る半導体モジュールを有する撮像装置の回路構成を示すブロック図である。デジタルカメラは、信号増幅部10および手振れ補正部20を有する。信号増幅部10は、入力された信号を所定の増幅率で増幅して手振れ補正部20に出力する。手振れ補正部20は、入力された角速度信号およびレンズの位置信号に基づいて、レンズの位置を制御して手振れ補正を行うための信号を信号増幅部10に出力する。   The semiconductor module according to the embodiment is suitably used for an imaging apparatus such as a digital camera having a camera shake correction function. FIG. 1 is a block diagram illustrating a circuit configuration of an imaging apparatus having a semiconductor module according to an embodiment. The digital camera includes a signal amplification unit 10 and a camera shake correction unit 20. The signal amplification unit 10 amplifies the input signal with a predetermined amplification factor and outputs the amplified signal to the camera shake correction unit 20. Based on the input angular velocity signal and lens position signal, the camera shake correction unit 20 controls the lens position and outputs a signal for performing camera shake correction to the signal amplification unit 10.

以下、デジタルカメラの回路構成についてより具体的に説明する。   Hereinafter, the circuit configuration of the digital camera will be described more specifically.

ジャイロセンサ50は、デジタルカメラのXYの2軸方向の角速度を検出する。ジャイロセンサ50によって得られたアナログの角速度信号は、増幅回路12により増幅された後、ADC(アナログデジタルコンバータ)22に出力される。ADC22は、増幅回路12により増幅された角速度信号をデジタルの角速度信号に変換する。ADC22から出力された角速度信号は、ジャイロイコライザ24に出力される。   The gyro sensor 50 detects the angular velocity in the XY biaxial directions of the digital camera. The analog angular velocity signal obtained by the gyro sensor 50 is amplified by the amplifier circuit 12 and then output to an ADC (analog / digital converter) 22. The ADC 22 converts the angular velocity signal amplified by the amplifier circuit 12 into a digital angular velocity signal. The angular velocity signal output from the ADC 22 is output to the gyro-equalizer 24.

ジャイロイコライザ24において、まず、ADC22から出力されたデジタルの角速度信号がHPF(ハイパスフィルタ)26に入力される。HPF26は、ジャイロセンサ50から出力された角速度信号のうち、手振れによる周波数成分より低い周波数成分を除去する。一般的に、手振れによる周波数成分は、1〜20Hzであるため、たとえば、角速度信号から0.7Hz以下の周波数成分が除去される。   In the gyro-equalizer 24, first, a digital angular velocity signal output from the ADC 22 is input to an HPF (High Pass Filter) 26. The HPF 26 removes a frequency component lower than the frequency component due to camera shake from the angular velocity signal output from the gyro sensor 50. In general, since the frequency component due to camera shake is 1 to 20 Hz, for example, a frequency component of 0.7 Hz or less is removed from the angular velocity signal.

パン・チルト判定回路28は、HPF26が出力する角速度信号に基づいて、撮像装置のパン動作、チルト動作を検出する。被写体の移動などに応じて撮像装置を移動させる場合に、ジャイロセンサ50はその移動に応じた角速度信号を出力する。しかし、パン動作またはチルト動作による角速度信号の変動は手振れによるものではないため、レンズ60などの光学系を補正する必要がない場合がある。パン・チルト判定回路28は、パン動作またはチルト動作による角速度信号の変動に依存することなく、手振れ補正を行うために設けられる。具体的には、パン・チルト判定回路28は、一定期間連続して角速度信号が所定値となることを検出したときに、パン動作またはチルト動作中であると判定する。なお、被写体の移動などに応じて撮像装置を水平方向に動かすことをパン動作といい、垂直方向に移動させることをチルト動作という。   The pan / tilt determination circuit 28 detects the pan operation and tilt operation of the imaging apparatus based on the angular velocity signal output from the HPF 26. When the imaging device is moved according to the movement of the subject, the gyro sensor 50 outputs an angular velocity signal corresponding to the movement. However, since the fluctuation of the angular velocity signal due to the pan operation or the tilt operation is not due to camera shake, it may not be necessary to correct the optical system such as the lens 60. The pan / tilt determination circuit 28 is provided to perform camera shake correction without depending on the fluctuation of the angular velocity signal due to the pan operation or the tilt operation. Specifically, the pan / tilt determination circuit 28 determines that the pan operation or the tilt operation is being performed when it is detected that the angular velocity signal becomes a predetermined value continuously for a certain period. Note that moving the imaging device in the horizontal direction in accordance with the movement of the subject is called a pan operation, and moving in the vertical direction is a tilt operation.

ゲイン調整回路30は、パン・チルト判定回路28の判定結果に応じて、HPF26から出力される角速度信号の増幅率を変更する。たとえば、パン動作またはチルト動作中でない場合には、ゲイン調整回路30はHPF26が出力する角速度信号のゲイン調整を行う。また、パン動作またはチルト動作中の場合には、ゲイン調整回路30は、HPF26が出力する角速度信号の強度を減衰して出力が0となるようなゲイン調整を行う。   The gain adjustment circuit 30 changes the amplification factor of the angular velocity signal output from the HPF 26 according to the determination result of the pan / tilt determination circuit 28. For example, when the pan operation or the tilt operation is not being performed, the gain adjustment circuit 30 adjusts the gain of the angular velocity signal output from the HPF 26. Further, during the pan operation or the tilt operation, the gain adjustment circuit 30 performs gain adjustment so that the intensity of the angular velocity signal output from the HPF 26 is attenuated and the output becomes zero.

LPF(ローパスフィルタ)32は積分回路の役目を果たし、ゲイン調整回路30が出力した角速度信号を積分して、撮像装置の移動量を示す角度信号を生成する。たとえば、LPF32は、デジタルフィルタを用いたフィルタ処理を行うことによって角度信号、つまり撮像装置の移動量を求める。   An LPF (low-pass filter) 32 serves as an integration circuit, and integrates the angular velocity signal output from the gain adjustment circuit 30 to generate an angle signal indicating the amount of movement of the imaging apparatus. For example, the LPF 32 obtains an angle signal, that is, an amount of movement of the imaging device by performing filter processing using a digital filter.

センタリング処理回路34は、LPF32から出力される角度信号に対して、所定の値を減算する。撮像装置において手振れ補正処理を行う場合、補正処理を継続して実行するうちにレンズの位置が基準位置から徐々に離れていき、レンズの可動範囲の限界点付近に達する場合がある。このとき、手振れ補正処理を継続すると、レンズはある一方の方向には移動できるが、他方には移動できなくなる。センタリング処理回路はこれを防止するために設けられるものであり、角度信号から所定の値を減算することによって、レンズの可動範囲の限界点に近づきにくいように制御する。   The centering processing circuit 34 subtracts a predetermined value from the angle signal output from the LPF 32. When camera shake correction processing is performed in the imaging apparatus, the lens position gradually moves away from the reference position while the correction processing is continuously performed, and may reach the vicinity of the limit point of the movable range of the lens. At this time, if the camera shake correction process is continued, the lens can move in one direction but cannot move in the other direction. The centering processing circuit is provided to prevent this, and is controlled so as not to approach the limit point of the movable range of the lens by subtracting a predetermined value from the angle signal.

センタリング処理回路34から出力された角度信号は、ゲイン調整回路36によりホール素子70の信号の範囲に調整される。ゲイン調整回路36によって調整された角度信号は、ホールイコライザ40に出力される。   The angle signal output from the centering processing circuit 34 is adjusted by the gain adjustment circuit 36 to the signal range of the Hall element 70. The angle signal adjusted by the gain adjustment circuit 36 is output to the hall equalizer 40.

ホール素子70は、ホール効果を利用した磁気センサであり、レンズ60のXおよびY方向の位置検出手段として機能する。ホール素子70によって得られたレンズ60の位置情報を含むアナログの位置信号は、増幅回路14により増幅された後、ADC22に送信される。ADC22は、増幅回路14により増幅されたアナログの位置信号をデジタルの位置信号に変換する。なお、ADC22は、増幅回路12および増幅回路14のアナログの出力を時分割でデジタル値に変換する。   The Hall element 70 is a magnetic sensor that uses the Hall effect, and functions as a position detection unit of the lens 60 in the X and Y directions. The analog position signal including the position information of the lens 60 obtained by the Hall element 70 is amplified by the amplifier circuit 14 and then transmitted to the ADC 22. The ADC 22 converts the analog position signal amplified by the amplifier circuit 14 into a digital position signal. The ADC 22 converts the analog outputs of the amplifier circuit 12 and the amplifier circuit 14 into digital values in a time division manner.

ADC22から出力された位置信号は、ホールイコライザ40に出力される。ホールイコライザ40において、まず、ADC22から出力された位置信号は、加算回路42に入力される。また、加算回路42には、ゲイン調整回路36によって調整された角度信号が入力される。加算回路42は、入力された位置信号と角度信号とを加算する。加算回路42から出力された信号は、サーボ回路44に出力される。サーボ回路44は、サーボ回路44に出力された信号に基づいて、VCM(ボイスコイルモータ)80の駆動を制御する信号を生成する。当該信号の電流(VCM駆動電流)は、一般的に、200〜300mAである。なお、サーボ回路44において、サーボ回路用のデジタルフィルタを用いたフィルタ処理が行われてもよい。   The position signal output from the ADC 22 is output to the hall equalizer 40. In the hall equalizer 40, first, the position signal output from the ADC 22 is input to the adder circuit 42. Further, the angle signal adjusted by the gain adjustment circuit 36 is input to the addition circuit 42. The adder circuit 42 adds the input position signal and angle signal. The signal output from the adder circuit 42 is output to the servo circuit 44. The servo circuit 44 generates a signal for controlling driving of a VCM (voice coil motor) 80 based on the signal output to the servo circuit 44. The current of the signal (VCM drive current) is generally 200 to 300 mA. In the servo circuit 44, filter processing using a digital filter for the servo circuit may be performed.

サーボ回路44から出力されたVCM駆動信号は、DAC(デジタルアナログコンバータ)46によりデジタル信号からアナログ信号に変換される。アナログのVCM駆動信号は、増幅回路16により増幅された後、VCM80に出力される。VCM80は、VCM駆動信号に基づいてレンズ60のXおよびY方向の位置を移動させる。   The VCM drive signal output from the servo circuit 44 is converted from a digital signal to an analog signal by a DAC (digital analog converter) 46. The analog VCM drive signal is amplified by the amplifier circuit 16 and then output to the VCM 80. The VCM 80 moves the position of the lens 60 in the X and Y directions based on the VCM drive signal.

ここで手振れがない場合と手振れがある場合の本実施の形態の撮像装置の回路の動作について説明する。   Here, the operation of the circuit of the imaging device of this embodiment when there is no camera shake and when there is camera shake will be described.

(手振れがない場合の動作)
手振れのない場合には、撮像装置に角速度が生じないため、ジャイロイコライザ24の出力する信号は“0”となる。VCM80によって駆動されるレンズ60の位置は、その光軸と撮像装置に備えられるCCDなどの撮像素子(図示せず)の中心が一致するため、ホール素子70および増幅回路14によるアナログの位置信号は、ADC22により“0”を示すデジタルの位置信号に変換された後、ホールイコライザ40に出力される。サーボ回路44は、位置信号の値が“0”のとき、現在のレンズ60の位置を維持するようにVCM80を制御する信号を出力する。
(Operation when there is no camera shake)
When there is no camera shake, an angular velocity does not occur in the image pickup apparatus, so that the signal output from the gyro-equalizer 24 is “0”. The position of the lens 60 driven by the VCM 80 is such that its optical axis coincides with the center of an image pickup device (not shown) such as a CCD provided in the image pickup apparatus. , After being converted into a digital position signal indicating “0” by the ADC 22, it is output to the hall equalizer 40. When the value of the position signal is “0”, the servo circuit 44 outputs a signal for controlling the VCM 80 so as to maintain the current position of the lens 60.

また、レンズ60の位置と撮像素子の中心が一致しない場合、ホール素子70および増幅回路14によるアナログの位置信号は、ADC22により“0”と異なる値を示すデジタルの位置信号に変換された後、ホールイコライザ40に出力される。サーボ回路44は、ADC22の出力するデジタルの位置信号の値に応じて、位置信号の値が“0”となるようにVCM80を制御する。   Further, when the position of the lens 60 and the center of the image sensor do not coincide, the analog position signal by the Hall element 70 and the amplifier circuit 14 is converted into a digital position signal indicating a value different from “0” by the ADC 22, It is output to the hall equalizer 40. The servo circuit 44 controls the VCM 80 so that the value of the position signal becomes “0” according to the value of the digital position signal output from the ADC 22.

このような動作を繰り返すことによって、レンズ60の位置と撮像素子の中心が一致するように、レンズ60の位置が制御される。   By repeating such an operation, the position of the lens 60 is controlled so that the position of the lens 60 and the center of the image sensor coincide with each other.

(手振れがある場合の動作)
VCM80によって駆動されるレンズ60の位置は、その光軸と撮像装置に備えられる撮像素子の中心が一致するため、ホール素子70および増幅回路14によるアナログの位置信号は、ADC22により“0”を示すデジタルの位置信号に変換された後、ホールイコライザ40に出力される。
(Operation when there is camera shake)
Since the optical axis of the lens 60 driven by the VCM 80 coincides with the center of the image pickup device provided in the image pickup apparatus, the analog position signal from the Hall element 70 and the amplifier circuit 14 indicates “0” by the ADC 22. After being converted into a digital position signal, it is output to the hall equalizer 40.

一方、手振れによって撮像装置が移動するため、LPF32およびセンタリング処理回路34は、ジャイロセンサ50で検出された角速度信号に基づいて、撮像装置の移動量を示す角度信号を出力する。   On the other hand, since the imaging apparatus moves due to camera shake, the LPF 32 and the centering processing circuit 34 output an angle signal indicating the movement amount of the imaging apparatus based on the angular velocity signal detected by the gyro sensor 50.

サーボ回路44は、ADC22が出力する“0”を示す位置信号と、センタリング処理回路が出力する角度信号と、を加算した信号に応じて、VCMの駆動信号を生成する。このとき、位置信号は“0”であるにも関わらず、“0”でない角度信号が加算されているため、サーボ回路44はレンズ60を移動させる補正信号を生成する。   The servo circuit 44 generates a VCM drive signal according to a signal obtained by adding the position signal indicating “0” output from the ADC 22 and the angle signal output from the centering processing circuit. At this time, although the position signal is “0”, since the angle signal that is not “0” is added, the servo circuit 44 generates a correction signal for moving the lens 60.

なお、本実施の形態の手振れ補正は、CCDの画像を一度メモリに読み込み、次の画像との比較から手振れの要素を排除する、いわゆる電子式手振れ補正ではなく、上述のとおり、レンズを光学的にシフトさせるレンズシフト方式やCCDをシフトさせるCCDシフト方式などのような光学式手振れ補正である。   The camera shake correction according to the present embodiment is not so-called electronic camera shake correction in which an image of a CCD is once read into a memory and an element of camera shake is excluded from comparison with the next image. Optical camera shake correction, such as a lens shift method for shifting the lens to a CCD or a CCD shift method for shifting a CCD.

したがって、電子式手振れ補正機構を採用した場合に生じる課題、即ち、予め大きめにとった画像をトリミングすることに起因する画質の劣化や、CCDサイズの制約による補正範囲や撮像倍率の限界があるという課題、さらには、1コマ1コマの静止画の触れが補正できないという課題を光学式手振れ補正は解決できるという効果を有する。特に、高画質ビデオの映像から静止画を取り出す場合は、光学式手振れ補正が有効である。   Therefore, there is a problem that arises when the electronic image stabilization mechanism is adopted, that is, there is a limit in the correction range and the imaging magnification due to the degradation of the image quality caused by trimming a large image in advance, or the limitation of the CCD size. The optical hand-shake correction can solve the problem and the problem that the touch of a still image of one frame cannot be corrected. In particular, when a still image is extracted from a high-definition video image, optical camera shake correction is effective.

サーボ回路44が出力する補正信号に基づいて、VCM80はレンズ60を移動させるため、撮像装置に備えられた撮像素子は手振れによる被写体のぶれを抑制した信号を得ることができる。このような制御を繰り返すことによって、手振れ補正制御が実現される。   Since the VCM 80 moves the lens 60 based on the correction signal output from the servo circuit 44, the image pickup device provided in the image pickup apparatus can obtain a signal in which blurring of the subject due to camera shake is suppressed. By repeating such control, camera shake correction control is realized.

図2は、実施の形態に係る半導体モジュールの概略構成を示す平面図である。また、図3は、実施の形態に係る半導体モジュールの概略構成を示す図2のA−A’線に沿った断面図である。なお、図2において、後述する封止樹脂150は省略されている。   FIG. 2 is a plan view showing a schematic configuration of the semiconductor module according to the embodiment. FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG. 2, showing a schematic configuration of the semiconductor module according to the embodiment. In FIG. 2, a sealing resin 150 described later is omitted.

以下に図2および図3に基づいて実施の形態に係る半導体モジュールについて説明する。半導体モジュール100は、配線基板110、第1の半導体素子120、第2の半導体素子130、第3の半導体素子140、第4の半導体素子170、封止樹脂150およびはんだボール160を備える。   The semiconductor module according to the embodiment will be described below with reference to FIGS. The semiconductor module 100 includes a wiring substrate 110, a first semiconductor element 120, a second semiconductor element 130, a third semiconductor element 140, a fourth semiconductor element 170, a sealing resin 150, and solder balls 160.

配線基板110は、絶縁樹脂層112を介して第1の配線層114および第2の配線層116を有する。第1の配線層114と第2の配線層116とは、絶縁樹脂層112を貫通するビア117により電気的に接続されている。第2の配線層116にはんだボール160が接続されている。   The wiring board 110 has a first wiring layer 114 and a second wiring layer 116 with an insulating resin layer 112 interposed therebetween. The first wiring layer 114 and the second wiring layer 116 are electrically connected by a via 117 that penetrates the insulating resin layer 112. Solder balls 160 are connected to the second wiring layer 116.

絶縁樹脂層112を構成する材料としては、たとえば、BTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂が例示される。半導体モジュール100の放熱性向上の観点から、絶縁樹脂層112は高熱伝導性を有することが望ましい。このため、絶縁樹脂層112は、銀、ビスマス、銅、アルミニウム、マグネシウム、錫、亜鉛およびこれらの合金などを高熱伝導性フィラーとして含有することが好ましい。   Examples of the material constituting the insulating resin layer 112 include thermosetting resins such as melamine derivatives such as BT resin, liquid crystal polymers, epoxy resins, PPE resins, polyimide resins, fluororesins, phenol resins, and polyamide bismaleimides. The From the viewpoint of improving the heat dissipation of the semiconductor module 100, the insulating resin layer 112 desirably has high thermal conductivity. For this reason, it is preferable that the insulating resin layer 112 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, alloys thereof, and the like as a high thermal conductive filler.

第1の配線層114および第2の配線層116を構成する材料としては、たとえば、銅が挙げられる。   An example of a material constituting the first wiring layer 114 and the second wiring layer 116 is copper.

配線基板110の主表面S1上に、第1の半導体素子120および第2の半導体素子130が並設して搭載されている。また、第1の半導体素子120の上に積層されるように第3の半導体素子140が搭載されている。第1の半導体素子120はロジック素子であり、図1に示した手振れ補正部20に該当する。また、第2の半導体素子130はドライバ素子あるいはパワー素子であり、図1に示した信号増幅部10に該当する。第3の半導体素子140はフラッシュメモリである。第3の半導体素子140は第1の半導体素子120の機能の一部を担ったり、必要に応じて第1の半導体素子120の機能を代替する。また、第4の半導体素子170は、EEPROMなどのメモリ素子である。第4の半導体素子170に手振れ補正制御に必要なデータまたはパラメータが保持される。第1の半導体素子120、第2の半導体素子130、第3の半導体素子140、および第4の半導体素子170は、封止樹脂150によって封止され、パッケージ化されている。封止樹脂150は、たとえば、トランスファーモールド法により形成される。   On the main surface S1 of the wiring board 110, the first semiconductor element 120 and the second semiconductor element 130 are mounted side by side. In addition, a third semiconductor element 140 is mounted so as to be stacked on the first semiconductor element 120. The first semiconductor element 120 is a logic element and corresponds to the camera shake correction unit 20 shown in FIG. The second semiconductor element 130 is a driver element or a power element, and corresponds to the signal amplification unit 10 shown in FIG. The third semiconductor element 140 is a flash memory. The third semiconductor element 140 assumes a part of the function of the first semiconductor element 120 or substitutes for the function of the first semiconductor element 120 as necessary. The fourth semiconductor element 170 is a memory element such as an EEPROM. The fourth semiconductor element 170 holds data or parameters necessary for camera shake correction control. The first semiconductor element 120, the second semiconductor element 130, the third semiconductor element 140, and the fourth semiconductor element 170 are sealed with a sealing resin 150 and packaged. The sealing resin 150 is formed by, for example, a transfer mold method.

第1の半導体素子120には、ロジック信号を入力または出力するためのロジック信号用電極122が設けられている。第1の半導体素子120に入力されるロジック信号として、上述した角速度信号、位置信号が挙げられる。ロジック信号の電流は、典型的には、2mAである。また、第1の半導体素子120から出力されるロジック信号として、手振れ補正信号が挙げられる。ロジック信号用電極122は、金線などのボンディングワイヤ124を介して、第1の配線層114に設けられた基板電極118aと電気的に接続されている。   The first semiconductor element 120 is provided with a logic signal electrode 122 for inputting or outputting a logic signal. Examples of the logic signal input to the first semiconductor element 120 include the above-described angular velocity signal and position signal. The current of the logic signal is typically 2 mA. An example of the logic signal output from the first semiconductor element 120 is a camera shake correction signal. The logic signal electrode 122 is electrically connected to a substrate electrode 118a provided on the first wiring layer 114 via a bonding wire 124 such as a gold wire.

第2の半導体素子130には、大電流を出力するための電流出力用電極132が設けられている。第2の半導体素子130から出力される大電流として、VCMを駆動するための電流(200〜300mA)が挙げられる。電流出力用電極132は、金線などのボンディングワイヤ134を介して、第1の配線層114に設けられた基板電極118bと電気的に接続されている。また、第2の半導体素子130には、電流出力用電極132の他に、他の半導体素子との信号の入出力に用いられるチップ電極136が設けられている。チップ電極136は、金線などのボンディングワイヤ137を介して、第1の配線層114に設けられた基板電極118cと電気的に接続されている。なお、ボンディングワイヤ124、134、137による結線は、第1の半導体素子120を配線基板110に搭載し、さらに、第1の半導体素子120の上に第3の半導体素子140を搭載した後に実施することができる。   The second semiconductor element 130 is provided with a current output electrode 132 for outputting a large current. A large current output from the second semiconductor element 130 includes a current (200 to 300 mA) for driving the VCM. The current output electrode 132 is electrically connected to the substrate electrode 118b provided on the first wiring layer 114 via a bonding wire 134 such as a gold wire. In addition to the current output electrode 132, the second semiconductor element 130 is provided with a chip electrode 136 used for input / output of signals with other semiconductor elements. The chip electrode 136 is electrically connected to the substrate electrode 118c provided on the first wiring layer 114 via a bonding wire 137 such as a gold wire. The connection by the bonding wires 124, 134, and 137 is performed after the first semiconductor element 120 is mounted on the wiring substrate 110 and the third semiconductor element 140 is mounted on the first semiconductor element 120. be able to.

図2に示すように、配線基板110の主表面S1側から見て、第1の半導体素子120に接続されたボンディングワイヤ124は、第2の半導体素子130の辺E1と対向する辺F1を除く、辺F2、F3およびF4をそれぞれ横切っている。また、ロジック信号用電極122は、辺F2、F3およびF4に沿って設けられている。   As shown in FIG. 2, when viewed from the main surface S1 side of the wiring substrate 110, the bonding wire 124 connected to the first semiconductor element 120 excludes the side F1 facing the side E1 of the second semiconductor element 130. , Crossing sides F2, F3 and F4, respectively. The logic signal electrode 122 is provided along the sides F2, F3, and F4.

第2の半導体素子130に関して、ボンディングワイヤ134は、第1の半導体素子120の辺F1と対向する辺E1以外の辺、本実施の形態では、辺E1に隣接する辺E2を横切っている。また、電流出力用電極132は、辺E2に沿って設けられている。   With respect to the second semiconductor element 130, the bonding wire 134 crosses the side other than the side E1 facing the side F1 of the first semiconductor element 120, that is, the side E2 adjacent to the side E1 in this embodiment. The current output electrode 132 is provided along the side E2.

また、チップ電極136は、辺E1、辺E3、および辺E4に沿ってそれぞれ設けられ、ボンディングワイヤ137は、辺E1、辺E3、および辺E4をそれぞれ横切っている。   The chip electrode 136 is provided along each of the sides E1, E3, and E4, and the bonding wire 137 crosses the sides E1, E3, and E4.

なお、第1の半導体素子120と第2の半導体素子130とは、図2に示すy軸方向に互いにずれた位置に設置されている。本実施の形態では、第1の半導体素子120のy軸方向の中心位置が配線基板110の中心位置により近くなっている。このため、第2の半導体素子130の辺E2と配線基板110の辺G2との距離に比べて、第2の半導体素子130の辺E3と配線基板110の辺G3との距離の方が長くなっている。一方、第1の半導体素子120の辺F2と配線基板110の辺G2との距離は、第1の半導体素子120の辺F3と配線基板110の辺G3との距離と同等である。   Note that the first semiconductor element 120 and the second semiconductor element 130 are installed at positions shifted from each other in the y-axis direction shown in FIG. In the present embodiment, the center position of the first semiconductor element 120 in the y-axis direction is closer to the center position of the wiring board 110. For this reason, the distance between the side E3 of the second semiconductor element 130 and the side G3 of the wiring board 110 is longer than the distance between the side E2 of the second semiconductor element 130 and the side G2 of the wiring board 110. ing. On the other hand, the distance between the side F2 of the first semiconductor element 120 and the side G2 of the wiring board 110 is equal to the distance between the side F3 of the first semiconductor element 120 and the side G3 of the wiring board 110.

第3の半導体素子140には、第1の半導体素子120に設けられた電極パッド125とボンディングワイヤ144を介して電気的に接続される外部電極142が設けられている。これにより、第3の半導体素子140は、第1の半導体素子120と間で信号の送受信が可能になっている。また、第3の半導体素子140には、第1の配線層114に設けられた基板電極118dとボンディングワイヤ146を介して電気的に接続される外部電極148が設けられている。   The third semiconductor element 140 is provided with an external electrode 142 that is electrically connected to the electrode pad 125 provided on the first semiconductor element 120 via a bonding wire 144. Thereby, the third semiconductor element 140 can transmit and receive signals to and from the first semiconductor element 120. In addition, the third semiconductor element 140 is provided with an external electrode 148 that is electrically connected to the substrate electrode 118 d provided on the first wiring layer 114 via the bonding wire 146.

第4の半導体素子170は、電流出力用電極132およびボンディングワイヤ134が設けられた辺E2とは反対側の辺E3に並設して搭載されている。言い換えると、第2の半導体素子130の電流出力用電極132およびボンディングワイヤ134は、第4の半導体素子170が設けられた側の辺とは異なる第2の半導体素子130の辺を横切っている。より好ましくは、第4の半導体素子170は、第2の半導体素子130の電流出力用電極132およびボンディングワイヤ134とは反対側の配線基板110の角部近傍に設けられている。   The fourth semiconductor element 170 is mounted side by side on the side E3 opposite to the side E2 on which the current output electrode 132 and the bonding wire 134 are provided. In other words, the current output electrode 132 and the bonding wire 134 of the second semiconductor element 130 cross the side of the second semiconductor element 130 different from the side on which the fourth semiconductor element 170 is provided. More preferably, the fourth semiconductor element 170 is provided in the vicinity of the corner of the wiring substrate 110 on the side opposite to the current output electrode 132 and the bonding wire 134 of the second semiconductor element 130.

第4の半導体素子170には、ロジック信号を入力または出力するためのロジック信号用電極172が設けられている。ロジック信号用電極172は、金線などのボンディングワイヤ174を介して、第1の配線層114に設けられた基板電極118eと電気的に接続されている。   The fourth semiconductor element 170 is provided with a logic signal electrode 172 for inputting or outputting a logic signal. The logic signal electrode 172 is electrically connected to the substrate electrode 118e provided in the first wiring layer 114 via a bonding wire 174 such as a gold wire.

以上説明した半導体モジュール100によれば、第4の半導体素子170が電流出力用電極132およびボンディングワイヤ134から離れた位置に設けられているため、第2の半導体素子130から出力される大電流によって第4の半導体素子170にノイズが生じることが抑制される。この結果、第4の半導体素子170の動作信頼性を向上させ、ひいては半導体モジュール100の動作信頼性を向上させることができる。   According to the semiconductor module 100 described above, since the fourth semiconductor element 170 is provided at a position away from the current output electrode 132 and the bonding wire 134, the large current output from the second semiconductor element 130 is used. Generation of noise in the fourth semiconductor element 170 is suppressed. As a result, the operational reliability of the fourth semiconductor element 170 can be improved, and as a result, the operational reliability of the semiconductor module 100 can be improved.

また、第2の半導体素子130の辺E2と配線基板110の辺G2との距離に比べて、第2の半導体素子130の辺E3と配線基板110の辺G3との距離の方が長くなっているため、第4の半導体素子170を設置する領域を確保することができる。   Further, the distance between the side E3 of the second semiconductor element 130 and the side G3 of the wiring board 110 is longer than the distance between the side E2 of the second semiconductor element 130 and the side G2 of the wiring board 110. Therefore, a region for installing the fourth semiconductor element 170 can be secured.

また、第2の半導体素子130に関して、第1の半導体素子120の辺F1に対向または隣接する辺E1以外の辺に沿って電流出力用電極132が設けられ、ボンディングワイヤ134が辺E1以外の辺を横切っている。これにより、電流出力用電極132およびボンディングワイヤ134が第1の半導体素子120から離れた位置に設けられるため、第2の半導体素子130が出力する大電流によるノイズが第1の半導体素子120に生じることが抑制される。   In addition, with respect to the second semiconductor element 130, a current output electrode 132 is provided along a side other than the side E1 facing or adjacent to the side F1 of the first semiconductor element 120, and the bonding wire 134 is a side other than the side E1. Across. As a result, the current output electrode 132 and the bonding wire 134 are provided at positions away from the first semiconductor element 120, and therefore noise due to a large current output from the second semiconductor element 130 is generated in the first semiconductor element 120. It is suppressed.

また、第1の半導体素子120に関して、大電流を出力する第2の半導体素子130の辺E1に対向または隣接する辺F1には、ロジック信号用電極122およびボンディングワイヤ124が設けられていない。これにより、第2の半導体素子130が出力する大電流による第1の半導体素子120へのノイズ発生が抑制される。   Further, regarding the first semiconductor element 120, the logic signal electrode 122 and the bonding wire 124 are not provided on the side F1 facing or adjacent to the side E1 of the second semiconductor element 130 that outputs a large current. As a result, generation of noise in the first semiconductor element 120 due to a large current output from the second semiconductor element 130 is suppressed.

図4は、実施の形態に係る半導体モジュールが実装基板に搭載された状態を示す図2のB−B’線に沿った断面図である。   4 is a cross-sectional view taken along the line B-B ′ of FIG. 2, showing a state where the semiconductor module according to the embodiment is mounted on the mounting substrate.

はんだボール160aおよび第2の配線層116aは、ビア117a、第1の配線層114およびボンディングワイヤ124を介して第1の半導体素子120のロジック信号用電極122のひとつと電気的に接続されている。また、はんだボール160bおよび第2の配線層116bは、ビア117b、第1の配線層114およびボンディングワイヤ174を介して図2に示した第4の半導体素子170のロジック信号用電極172のひとつと電気的に接続されている。   The solder ball 160a and the second wiring layer 116a are electrically connected to one of the logic signal electrodes 122 of the first semiconductor element 120 through the via 117a, the first wiring layer 114, and the bonding wire 124. . The solder ball 160b and the second wiring layer 116b are connected to one of the logic signal electrodes 172 of the fourth semiconductor element 170 shown in FIG. 2 via the via 117b, the first wiring layer 114, and the bonding wire 174. Electrically connected.

一方、実装基板200の表面には、はんだボール160に対応して電極パッド210が設けられている。はんだボール160は、対応する電極パッド210にはんだ接合されている。はんだボール160aに対応する電極パッド210aとはんだボール160bに対応する電極パッド210bとは、第3の配線層220によって電気的に接続されている。このように、半導体モジュール100が実装基板200に搭載された状態で、第1の半導体素子120と第4の半導体素子170とが実装基板200に設けられた第3の配線層220を介して電気的に接続されている。これにより、たとえば、第1の半導体素子120は、手振れ補正に関するパラメータを第4の半導体素子170から読み出して、上述したような手ぶれ補正に関する処理を実行することができる。   On the other hand, electrode pads 210 corresponding to the solder balls 160 are provided on the surface of the mounting substrate 200. The solder ball 160 is soldered to the corresponding electrode pad 210. The electrode pads 210a corresponding to the solder balls 160a and the electrode pads 210b corresponding to the solder balls 160b are electrically connected by the third wiring layer 220. Thus, in a state where the semiconductor module 100 is mounted on the mounting substrate 200, the first semiconductor element 120 and the fourth semiconductor element 170 are electrically connected via the third wiring layer 220 provided on the mounting substrate 200. Connected. Thereby, for example, the first semiconductor element 120 can read out the parameter related to camera shake correction from the fourth semiconductor element 170 and execute the process related to camera shake correction as described above.

なお、第1の半導体素子120と第4の半導体素子170との接続方式は、バス接続が好適である。第1の半導体素子120と第4の半導体素子170とがバス接続された状態では、第1の半導体素子120および第4の半導体素子170に入出力されるデータは、半導体素子毎に割り当てられたアドレスにより区別される。   Note that the connection method between the first semiconductor element 120 and the fourth semiconductor element 170 is preferably bus connection. In a state where the first semiconductor element 120 and the fourth semiconductor element 170 are connected by bus, data input / output to / from the first semiconductor element 120 and the fourth semiconductor element 170 is allocated to each semiconductor element. Differentiated by address.

また、実装基板200の裏面には、外部端子230が設けられている。外部端子230は、実装基板200を貫通する導体240によって第3の配線層220と電気的に接続されている。   An external terminal 230 is provided on the back surface of the mounting substrate 200. The external terminal 230 is electrically connected to the third wiring layer 220 by a conductor 240 that penetrates the mounting substrate 200.

第4の半導体素子170の動作試験を行う場合には、外部端子230に外部のCPU300が接続され、CPU300を用いて第4の半導体素子170の動作試験が行われる。また、CPU300を用いて第4の半導体素子170に格納された手振れ補正に関するパラメータを書き換えることができる。   When the operation test of the fourth semiconductor element 170 is performed, the external CPU 300 is connected to the external terminal 230, and the operation test of the fourth semiconductor element 170 is performed using the CPU 300. In addition, the CPU 300 can rewrite parameters relating to camera shake correction stored in the fourth semiconductor element 170.

これによれば、外部端子230を介して、外部のCPU300から第4の半導体素子170に直にアクセスが可能となる。このため、たとえば、第1の半導体素子120(半導体チップ)の動作が第4の半導体素子170(メモリ素子)の動作試験の結果に影響を与えたり、動作試験のプロセスを第4の半導体素子170に接続された第1の半導体素子120に合わせて修正する必要が生じたりすることを防止できる。また、製品出荷時において第1の半導体素子120を起動させることなく、第4の半導体素子170の動作試験を行うことができる。   According to this, the fourth semiconductor element 170 can be directly accessed from the external CPU 300 via the external terminal 230. Therefore, for example, the operation of the first semiconductor element 120 (semiconductor chip) affects the result of the operation test of the fourth semiconductor element 170 (memory element), or the process of the operation test is changed to the fourth semiconductor element 170. Therefore, it is possible to prevent the necessity of making a correction in accordance with the first semiconductor element 120 connected to the. Further, the operation test of the fourth semiconductor element 170 can be performed without starting the first semiconductor element 120 at the time of product shipment.

また、第1の半導体素子120と第4の半導体素子170とを実装基板200に設けられた第3の配線層220を介して電気的に接続することにより、配線基板110の主表面S1上にレイアウト上の制約がある場合であっても、第1の半導体素子120と第4の半導体素子170とを接続することができる。   Further, the first semiconductor element 120 and the fourth semiconductor element 170 are electrically connected via the third wiring layer 220 provided on the mounting substrate 200, so that the main surface S 1 of the wiring substrate 110 is formed. Even when there is a layout restriction, the first semiconductor element 120 and the fourth semiconductor element 170 can be connected.

また、第1の半導体素子120と第4の半導体素子170とを実装基板200に設けられた第3の配線層220を介して電気的に接続することにより、第1の半導体素子120と第4の半導体素子170とを接続する導体をノイズ源となる第2の半導体素子130から引き離すことができる。これにより、第1の半導体素子120と第4の半導体素子170とを接続する導体部分において第2の半導体素子130からのノイズが生じることを抑制することができる。   In addition, the first semiconductor element 120 and the fourth semiconductor element 170 are electrically connected to each other through the third wiring layer 220 provided on the mounting substrate 200, whereby the first semiconductor element 120 and the fourth semiconductor element 120 are connected to each other. The conductor connecting the semiconductor element 170 can be separated from the second semiconductor element 130 serving as a noise source. Thereby, it is possible to suppress the generation of noise from the second semiconductor element 130 in the conductor portion that connects the first semiconductor element 120 and the fourth semiconductor element 170.

図5は、上述の実施形態に係る半導体モジュールを有するデジタルカメラの透過斜視図である。デジタルカメラは、ジャイロセンサ50、レンズ60、ホール素子70、VCM80、および半導体モジュール100を有する。半導体モジュール100は、図2および図3で示したように、第1の半導体素子120、第2の半導体素子130および第4の半導体素子170が並設して搭載されている。また、第1の半導体素子120の上に積層されるように第3の半導体素子140が搭載されている。なお、図4に示した半導体モジュール100では、第1の半導体素子120、第2の半導体素子130、第3の半導体素子140および第4の半導体素子170以外の構成が簡略化され適宜省略されている。   FIG. 5 is a transparent perspective view of a digital camera having the semiconductor module according to the above-described embodiment. The digital camera includes a gyro sensor 50, a lens 60, a hall element 70, a VCM 80, and a semiconductor module 100. As shown in FIGS. 2 and 3, the semiconductor module 100 has the first semiconductor element 120, the second semiconductor element 130, and the fourth semiconductor element 170 mounted in parallel. In addition, a third semiconductor element 140 is mounted so as to be stacked on the first semiconductor element 120. In the semiconductor module 100 illustrated in FIG. 4, the configuration other than the first semiconductor element 120, the second semiconductor element 130, the third semiconductor element 140, and the fourth semiconductor element 170 is simplified and appropriately omitted. Yes.

これによれば、第1の半導体素子120と第2の半導体素子130とが近接された状態であっても、動作信頼性の低下を招くことなくデジタルカメラのさらなる小型化を実現することができる。また、半導体モジュール100について、個々の半導体素子の動作試験を行ったうえでデジタルカメラに搭載することができるため、デジタルカメラの動作信頼性を高めることができる。また、デジタルカメラに搭載された半導体モジュール100について、個々の半導体素子の動作試験を容易に行うことができる。   According to this, even when the first semiconductor element 120 and the second semiconductor element 130 are close to each other, it is possible to further reduce the size of the digital camera without deteriorating the operation reliability. . Further, since the semiconductor module 100 can be mounted on a digital camera after performing an operation test of each semiconductor element, the operation reliability of the digital camera can be improved. In addition, the semiconductor module 100 mounted on the digital camera can be easily tested for operation of individual semiconductor elements.

本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which such modifications are added Can also be included in the scope of the present invention.

本願において撮像装置は、上述のデジタルカメラに限定されるものではなく、ビデオカメラや携帯電話に搭載されたカメラ、監視カメラ等でもよく、デジタルカメラと同様の効果を奏するものである。   In the present application, the imaging device is not limited to the above-described digital camera, and may be a video camera, a camera mounted on a mobile phone, a surveillance camera, or the like, and has the same effect as the digital camera.

実施の形態に係る半導体モジュールを有する撮像装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the imaging device which has the semiconductor module which concerns on embodiment. 実施の形態に係る半導体モジュールの概略構成を示す平面図である。It is a top view which shows schematic structure of the semiconductor module which concerns on embodiment. 実施の形態に係る半導体モジュールの概略構成を示す図2のA−A’線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG. 2 showing a schematic configuration of the semiconductor module according to the embodiment. 実施の形態に係る半導体モジュールが実装基板に搭載された状態を示す図2のB−B’線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line B-B ′ of FIG. 2, showing a state where the semiconductor module according to the embodiment is mounted on a mounting substrate. 実施形態に係る半導体モジュールを有するデジタルカメラの透過斜視図である。1 is a transparent perspective view of a digital camera having a semiconductor module according to an embodiment.

符号の説明Explanation of symbols

10 信号増幅部、12,14,16 増幅回路、20 手振れ補正部、22 ADC、24 ジャイロイコライザ、26 HPF、28 パン・チルト判定回路、30 ゲイン調整回路、32 LPF、34 センタリング処理回路、36 ゲイン調整回路、40 ホールイコライザ、42 加算回路、44 サーボ回路、46 DAC、50 ジャイロセンサ、60 レンズ、70 ホール素子、80 VCM、100 半導体モジュール、110 配線基板、120 第1の半導体素子、130 第2の半導体素子、140 第3の半導体素子、150 封止樹脂、160 はんだボール。 DESCRIPTION OF SYMBOLS 10 Signal amplification part, 12, 14, 16 Amplification circuit, 20 Camera shake correction part, 22 ADC, 24 Gyroscope, 26 HPF, 28 Pan / tilt determination circuit, 30 Gain adjustment circuit, 32 LPF, 34 Centering processing circuit, 36 gain Adjustment circuit, 40 hall equalizer, 42 adder circuit, 44 servo circuit, 46 DAC, 50 gyro sensor, 60 lens, 70 hall element, 80 VCM, 100 semiconductor module, 110 wiring board, 120 first semiconductor element, 130 second A semiconductor element, 140 a third semiconductor element, 150 sealing resin, 160 solder balls.

Claims (4)

配線基板と、
前記配線基板の一方の主表面上に実装された半導体素子と、
前記配線基板の一方の主表面上に実装された他の半導体素子と、
前記配線基板の他方の主表面上に設けられた外部電極と、
を備え、
前記配線基板を搭載した実装基板に前記外部電極が電気的に接続されたときに、前記半導体素子と前記他の半導体素子とが前記実装基板に設けられた配線を介して電気的に接続されることを特徴とする半導体モジュール。
A wiring board;
A semiconductor element mounted on one main surface of the wiring board;
Another semiconductor element mounted on one main surface of the wiring board;
An external electrode provided on the other main surface of the wiring board;
With
When the external electrode is electrically connected to a mounting board on which the wiring board is mounted, the semiconductor element and the other semiconductor element are electrically connected via wiring provided on the mounting board. A semiconductor module characterized by that.
前記外部電極が前記実装基板に接続されたときに、前記半導体素子と前記他の半導体素子とがバス接続されることを特徴とする請求項1に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein when the external electrode is connected to the mounting substrate, the semiconductor element and the other semiconductor element are bus-connected. 前記半導体素子はロジック素子であり、前記他の半導体素子はメモリ素子であることを特徴とする請求項1または2に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein the semiconductor element is a logic element, and the other semiconductor element is a memory element. 請求項1乃至3のいずれか1項に記載の半導体モジュールを備えることを特徴とする撮像装置。   An imaging apparatus comprising the semiconductor module according to claim 1.
JP2007333032A 2007-12-25 2007-12-25 Semiconductor module and imaging device Pending JP2009158607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333032A JP2009158607A (en) 2007-12-25 2007-12-25 Semiconductor module and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333032A JP2009158607A (en) 2007-12-25 2007-12-25 Semiconductor module and imaging device

Publications (1)

Publication Number Publication Date
JP2009158607A true JP2009158607A (en) 2009-07-16

Family

ID=40962329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333032A Pending JP2009158607A (en) 2007-12-25 2007-12-25 Semiconductor module and imaging device

Country Status (1)

Country Link
JP (1) JP2009158607A (en)

Similar Documents

Publication Publication Date Title
US8159540B2 (en) Semiconductor device and imaging capturing apparatus
JP5164533B2 (en) Semiconductor module and imaging device
JP5164532B2 (en) Semiconductor module and imaging device
KR101003568B1 (en) Semiconductor module and image pickup apparatus
JP5086039B2 (en) Semiconductor module and imaging device
JP5094371B2 (en) Semiconductor module and imaging device
JP5073457B2 (en) Semiconductor module and imaging device
JP5404000B2 (en) Semiconductor module and imaging device
US8564676B2 (en) Semiconductor device with anti-shake control function
JP2009158607A (en) Semiconductor module and imaging device
US8553098B2 (en) Semiconductor device and imaging capturing apparatus
JP2005252140A (en) Package for solid photographing device
JP2005065285A (en) Solid-state image pickup semiconductor device and method for manufacturing the same
JP5357480B2 (en) Semiconductor device and imaging device
JP5329161B2 (en) Semiconductor device and imaging device
JP2010205773A (en) Solid-state imaging device and method for manufacturing the same
JP2008193359A (en) Imaging module, and imaging element package
JPH0831584B2 (en) Solid-state imaging device and method of manufacturing the same
JP5260232B2 (en) Semiconductor device and imaging device
JP5329162B2 (en) Semiconductor device and imaging device
JP2008193358A (en) Imaging element unit