TW200930489A - Laser processing equipment - Google Patents

Laser processing equipment Download PDF

Info

Publication number
TW200930489A
TW200930489A TW097144747A TW97144747A TW200930489A TW 200930489 A TW200930489 A TW 200930489A TW 097144747 A TW097144747 A TW 097144747A TW 97144747 A TW97144747 A TW 97144747A TW 200930489 A TW200930489 A TW 200930489A
Authority
TW
Taiwan
Prior art keywords
laser beam
sensor
detection signal
laser
reflector
Prior art date
Application number
TW097144747A
Other languages
Chinese (zh)
Other versions
TWI352002B (en
Inventor
Hyun-Jung Kim
Dae-Jin Kim
Seung-Hwan Eom
Kwang-Jae Lee
Original Assignee
Kornic Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kornic Systems Corp filed Critical Kornic Systems Corp
Publication of TW200930489A publication Critical patent/TW200930489A/en
Application granted granted Critical
Publication of TWI352002B publication Critical patent/TWI352002B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam

Abstract

Laser processing equipment is provided. The laser beam processing equipment includes a laser resonator, an optical system, a reflector, and a laser beam aligning unit. The optical system converts the laser beam resonated by the laser resonator to have an energy density of a beam profile with a predetermined beam width. The reflector is disposed between the laser resonator and a chamber to reflect the laser beam. The laser beam aligning unit aligns the laser beam radiated into the chamber. The aligning member defines a through-hole that is greater in area than a cross-section of the laser beam to enable the laser beam to pass therethrough. The controller controls a driver to control a distance between a center of the laser beam and a center of the through-hole, based on the laser beam detected as passing through the through-hole of the aligning member.

Description

200930489 j /ριι 六、發明說明: 【發明所屬之技術領域】 本揭露内容有關於一種雷射處理設備,更具體而言, 有關於一種帶有改進的配置的雷射處理設備,此雷射處理 設備允許將雷射束對準放射到處理對象上並對雷射束的重 新對準進行補償。 【先前技術】 © 通常,在有機發光二極體(OLED)顯示器以及液晶顯示 器(LCD)中’玻璃基板用作基板。如圖1所示,在經受藉 由雷射退火設備執行的雷射退火製程之後,玻璃基板是結 晶的或者其結晶度被提高。 參照圖1,習知的雷射退火設備1〇〇,包括光學系統以 及設置有玻璃基板33,的反應室30,其中此光學系統包括 發射准分子(excimer)錯射的雷射共鳴器1〇,、用於反射 雷射東的多個反射器,望遠鏡(telescopic lens)(未顯示)、 φ 勻質器(未顯示)、場透鏡(未顯示)以及投影透鏡24'。勻質 器設置在第二反射器43,及第三反射器44,之間。而且,衰 减器46’設置在第一子反射器41,及第一反射器42,之間。第 子反射器4Γ構造成藉由致動器(未顯示)而可線性移動, - 並且藉由雷射共鳴器1〇,發射的雷射束可藉由能量計47,而 量測。而且,第二子反射器45,構造成可藉由致動器(未顯 示)而在雙箭頭(double-sided arrow)所示的方向上線性移 動’並且藉由第二子反射器45’反射的雷射束可藉由能量計 47’而量測。測微計611,及621,對各聯接到第一反射器42, 200930489200930489 j /ριι VI, invention description: [Technical field of invention] The disclosure relates to a laser processing apparatus, and more particularly to a laser processing apparatus with an improved configuration, the laser processing The device allows the laser beam to be directed to the processing object and compensates for the realignment of the laser beam. [Prior Art] © Generally, a glass substrate is used as a substrate in an organic light emitting diode (OLED) display and a liquid crystal display (LCD). As shown in Fig. 1, after undergoing a laser annealing process performed by a laser annealing apparatus, the glass substrate is crystallized or its crystallinity is improved. Referring to Fig. 1, a conventional laser annealing apparatus 1 includes an optical system and a reaction chamber 30 provided with a glass substrate 33, wherein the optical system includes an excimer-missing laser resonator. , a plurality of reflectors for reflecting the laser east, a telescopic lens (not shown), a φ homogenizer (not shown), a field lens (not shown), and a projection lens 24'. The homogenizer is disposed between the second reflector 43, and the third reflector 44. Moreover, the attenuator 46' is disposed between the first sub-reflector 41 and the first reflector 42. The first sub-reflector 4 is configured to be linearly movable by an actuator (not shown) - and by the laser resonator 1 〇, the emitted laser beam can be measured by the energy meter 47. Moreover, the second sub-reflector 45 is configured to be linearly movable in a direction indicated by a double-sided arrow by an actuator (not shown) and reflected by the second sub-reflector 45' The laser beam can be measured by the energy meter 47'. Micrometers 611, and 621, each coupled to the first reflector 42, 200930489

! yXL 及第二反射器431 ’並且第一反射器42,及第二反射器43· 的反射表面以及雷射束之間的角度透過測微計的操作而控 制’以允許改變雷射束的反射方向。圖1中的點晝線顯+干 了雷射束的光學路徑。 I · Μ 在上述配置的雷射退火設備100,中,要求對準光學系 統,以在玻璃基板33’上放射具有所希望形狀以及東流給施 的雷射束。此等光學系統的對準可主要分類爲原始束(raw 〇 beam)對準、光學部件對準以及精細調諧,其中原始束對 準尤其重要。 對於原始束對準(也即,將自雷射共鳴器1〇,發射的雷 射束對準)’必須使得雷射束相對於光學路徑而在預定的高 度處水平地或竪直地行進並最終行進到光學系統的中心。 此原始束對準是透過驅動測微計,控制第一反射器42'及第 二反射器43’來執行的。尤其重要的是,使雷射束成一直線 地行進在第二反射器43,及第三反射器44,之間,或行進在 泛 k置有勻質器(其將具有高斯輪廟(Gaussjanpr〇fye)的雷 射束改變爲平頂配置)的光學路徑的區域中。 因此’爲對準在第二反射器43,及第三反射器44·之間 行進的雷射束,控制雷射共鳴器10,以使所發射的雷射束放 射在第一反射器42'的中心處,並且操作測微計以控制第二 反射器,使由第一反射器反射的雷射束放射釣第二反射器 43'的中心處。一對十字線(cross-hair) 50’安裝在第二反射 器42'及第三反射器43,之間。操作各測微計611,及621,以 控制第一反射器42,及第二反射器43,,使得雷射束穿過十 200930489 子線50’的中心。更具體而言,各對十字線5〇,彼此相距預 定距離式地安裝在第二反射器43,及第三反射器44,之間的 光學導執(未顯示)上,並且可單獨地控制並且驅動第一反 射器的測微計611’及第二反射器的測微計621,,以允許雷 料穿過各對十字線5〇,巾的巾心,使得㈣束成一直7線地 穿過各十字線的中心。在此,十字線50,的中心設置成相互 解ϋ?過十钱的巾叫雷射束销域賴燒紙 Ο (未顯示)而檢查。在對準雷射束之後,必須移除十字線50,。 然而,在使用上述十字線50,的對準製程中,不便之處 在於··必須多次執行對準製程,對於雷射束行進方向的每 一次對準檢查都必須使用燃燒紙(burnpaper),並且更不 便之處在於:必須分別手動控制各測微計611,及621,。而 且,由於對準製程藉由技術人員執行,雷射束可直接、間 接和/或偶然地物理性傷害技術人員。 而且,在使用雷射退火設備的製程中,例如在改變雷 泛射退火設備1〇〇’時,如果在清潔或更換雷射腔窗體期間、 在對準雷射管期間或其後在清潔或更換共鳴器期間雷射束 輪廓改變,必須重點檢查穿過光學系統的雷射束的狀態。 至此,在拆卸光學系統之後,必須安裝上述十字線以執行 檢查和修正,這再次受到上述限制。 放射到玻璃基板33’的雷射束的輪廓通常是平頂 (flat-top)的輪廓。然而’較佳的是透過各種類型的束流 輪廓的導電製程測試,而研發最優化處理的最佳東流= 廓。例如’可應用傾斜的束流輪廓。然而,爲了改變此束 ❹ ❿ 200930489 ^υυ/pu 流輪廓’不便之處在於:必須打開雷射 _ 控制共鳴H,尤其要控制設1G的門並且 sk在翰出聯接器上的測微計611, 及或者必翁開光㈣統的蓋子(e晴)並且控制 设在第一反射器42’及第-及射哭工制 Α第一反射裔43’上的測微計611,及 【發明内容】 【技術問題】 本揭露内容提供-種雷射處理設備,能够防止人體 的直接_接與雷射束接觸、可财地自動對 >田,、备在執行雷射束及共鳴器的空腔窗體的清潔及 更換雷射束的空腔窗(cavity wind〇w)時,可較易地在不必 拆卸光學料㈣况下,群雷射紅及可_監控雷射 束的對準並且自動地麵未解,此雷射纽設備能够維 持放射到處理對象上的雷射束的均勻的形狀以及輪#。 本揭路内谷還提供一種雷射處理設備,通過能够阻擋 雷射束的-部份的改進的配置’此雷射處理設備能够藉由 改變放射到處理對象上的雷射束的最終輪#而優化處理條 件。 【技術方案】 根據示範性實施例,提供了一種雷射處理設備,包括: 雷射共鳴器,使雷射束共鳴;光學系統,轉變藉由雷射共 鳴器而共鳴的雷射束,以使此雷射束具有帶有預定束流寬 度的束流輪麼的能量密度;反應室’在此反應室中藉由光 學系統轉變的雷射束,放射到設置在反應室中的處理對象 200930489 上 束I =射之間以反射雷射 準,其中雷射束對準Ι 反應室中的雷射束對 之門,##署/144·兀匕括安裝在反射器以及處理對象 3 U在雷射束的行進路徑巾的 ❹ =二;中r孔的面積大於雷射束的』 東:===:控制藉由反射器 孔時檢測的雷射束,控制器控制ς動器以 心及通孔的巾<_轉。 束的中 【有益效果】 體接時’,可防止與雷射束的直接或間接與人 window)的清潔;更:二及共鳴器的空腔窗體(ca* )月及更換期間改變了雷射束的光學路徑時,可 ^拆卸光學部件的情况下自動地及較易地解雷射束。 可即時監控雷射束的對準並且可自動地補償未對 放射到處理對象上的雷射束的最終形狀及輪廓可 終輪二::變放射到處理對象上的雷射束的最 ^讓本發明之上述和其他目的、特徵和優點能更明顯 1文特舉較佳實施例,並配合所附圖式詳細說明如 【實施方式】 於下文中,參考圖式詳細介紹特定的實施例。 置圖圖2是根據示範性實施例的雷射處理設備的示意性配 圖3疋根據圖2的示範性實施例的一對對準單元的 φ ❹ 200930489 不意性透視圖,遂且圖4是 性實施例的雷射處理設備中圖”的示範 區塊圖。 ^使㈣雷射束對準控制的控制 設備,々ΐίΓ=°:!造成作爲雷射退火 旦踝代表雷射束的光學路徑。 反應室3G、反t1⑻設有雷射共鳴11 1G、光學系統如、 … 反射器以及雷射束對準單元。 使雷器1G產生雷射束(例如,准分子雷射幻並 产的變雷射東以使之具有帶有預定束流寬 量密度。光學系統2〇包括多個光學部 二學部件包括望遠鏡21 '勻質器22、場透 鏡投I透鏡24 ’以執行對雷射束的膨脹以及勻質功 能’從而^改變爲長方形的(oblong)雷射束。 反應室30具有限定有追火空間的内部空間31。台架 32安裝在㈣空間31巾,及處理對象或者用於雷射退火 的玻璃基板33設置在台架32上。透明窗體34安裝在反應 室30的頂部,由光學系統2〇改變的雷射束穿過該透明窗 34進入反應室30 〇 反射器反射雷射束。反射器設置在雷射共鳴器1〇以及 反應室30之間。在本實施例中安裝有多個反射器,共計5 個。具體而言,第一子反射器41、第一反射器42、第二反 射器43、第三反射器44以及第二子反射器45沿雷射束的 200930489yXL and second reflector 431' and the angle between the reflective surface of the first reflector 42, and the second reflector 43· and the laser beam is controlled by the operation of the micrometer to allow for changing the laser beam Direction of reflection. The point line in Figure 1 shows the optical path of the laser beam. I · Μ In the laser annealing apparatus 100 configured as described above, it is required to align the optical system to emit a laser beam having a desired shape and an eastward flow on the glass substrate 33'. The alignment of such optical systems can be primarily classified into raw 〇 beam alignment, optical component alignment, and fine tuning, where raw beam alignment is especially important. For the original beam alignment (ie, aligning the emitted laser beam from the laser resonator 1 )) 'must make the laser beam travel horizontally or vertically at a predetermined height relative to the optical path and It eventually travels to the center of the optical system. This original beam alignment is performed by driving the micrometer to control the first reflector 42' and the second reflector 43'. It is especially important that the laser beam travels in-line between the second reflector 43, and the third reflector 44, or travels in a pan-k with a homogenizer (which will have a Gaussian wheel temple (Gaussjanpr〇) The laser beam of fye) is changed to the area of the optical path of the flat top configuration). Thus, to align the laser beam traveling between the second reflector 43 and the third reflector 44, the laser resonator 10 is controlled such that the emitted laser beam is emitted at the first reflector 42' At the center, and operating the micrometer to control the second reflector, the laser beam reflected by the first reflector is radiated at the center of the second reflector 43'. A pair of cross-hairs 50' are mounted between the second reflector 42' and the third reflector 43. Each of the micrometers 611, and 621 are operated to control the first reflector 42, and the second reflector 43, such that the laser beam passes through the center of the ten 200930489 sub-line 50'. More specifically, each pair of cross wires 5〇 are mounted at a predetermined distance from each other on an optical guide (not shown) between the second reflector 43, and the third reflector 44, and can be individually controlled And driving the micrometer 611' of the first reflector and the micrometer 621 of the second reflector to allow the lightning to pass through the pair of crosshairs 5, the towel core, so that (4) bundles into 7 lines Pass through the center of each crosshair. Here, the center of the crosshair 50 is set to be mutually untied. The towel that has passed the ten-dollar is called the laser beam-spinning paper Ο (not shown) and is inspected. After aligning the laser beam, the crosshair 50 must be removed. However, in the alignment process using the above-mentioned crosshair 50, the inconvenience is that the alignment process must be performed multiple times, and burn paper must be used for each alignment check of the direction of travel of the laser beam. And the more inconvenient is that each of the micrometers 611, and 621, must be manually controlled. Moreover, since the alignment process is performed by a technician, the laser beam can physically, directly, and/or accidentally physically harm the technician. Moreover, in the process of using a laser annealing apparatus, for example, when changing the lightning annealing apparatus 1 〇〇 ', during cleaning or replacement of the laser chamber window, during or after aligning the laser tube Or the laser beam profile changes during the replacement of the resonator, and the state of the laser beam passing through the optical system must be checked. At this point, after disassembling the optical system, the above-mentioned crosshair must be installed to perform inspection and correction, which is again subject to the above limitations. The outline of the laser beam radiated to the glass substrate 33' is usually a flat-top profile. However, it is preferable to develop the optimum east flow profile for the optimum processing through the conductive process test of various types of beam profiles. For example, a tilted beam profile can be applied. However, in order to change this bundle ❿ 200930489 ^ υυ / pu flow profile 'inconvenience is: must open the laser _ control resonance H, especially to control the 1G door and sk on the Han output connector micrometer 611 And/or the opening of the cover (e) and control the micrometer 611 provided on the first reflector 42' and the first and the first crying 43', and [invention content 】 【Technical Issues】 The disclosure provides a laser processing device that prevents direct contact between the human body and the laser beam, and can be automatically operated on the field, and is equipped with a laser beam and a resonator. When the cavity window is cleaned and the cavity window of the laser beam is replaced, it is easier to monitor the laser beam alignment and to monitor the alignment of the laser beam without disassembling the optical material (4). The automatic ground is unresolved and this laser beam device is capable of maintaining the uniform shape of the laser beam radiated onto the processing object as well as the wheel #. The present invention also provides a laser processing apparatus capable of blocking the final configuration of a laser beam that is radiated onto a processing object by an improved configuration capable of blocking the portion of the laser beam. And optimize the processing conditions. [Technical Solution] According to an exemplary embodiment, there is provided a laser processing apparatus including: a laser resonator that resonates a laser beam; and an optical system that converts a laser beam resonating by a laser resonator so that The laser beam has an energy density with a beam width of a predetermined beam width; the reaction chamber 'in this reaction chamber is converted by a laser beam converted by an optical system to a processing object 200930489 disposed in the reaction chamber Beam I = shot between the reflected lasers, where the laser beam is aligned with the laser beam in the reaction chamber, ##署/144·兀匕Installed in the reflector and processed object 3 U in Ray The path of the beam travels ❹ = two; the area of the r hole is larger than that of the laser beam. East: ===: Controls the laser beam detected by the reflector hole, and the controller controls the actuator to Through-hole towel <_ turn. The [beneficial effect] of the bundle can prevent the cleaning of the laser beam directly or indirectly with the window; in addition, the cavity form of the resonator (ca*) and the replacement period are changed. When the optical path of the laser beam is removed, the laser beam can be automatically and easily resolved in the case of removing the optical component. The alignment of the laser beam can be monitored in real time and the final shape and contour of the laser beam that is not radiated onto the processing object can be automatically compensated for. The final round of the laser beam that is radiated to the processing object is: The above and other objects, features, and advantages of the invention will be apparent from the description of the appended claims. FIG. 2 is a schematic diagram of a laser processing apparatus according to an exemplary embodiment. FIG. 2 is a perspective view of a pair of alignment units according to an exemplary embodiment of FIG. 2, and FIG. 4 is a perspective view. Exemplary block diagram of the image in the laser processing apparatus of the embodiment. ^Making (4) the laser beam alignment control device, 々ΐίΓ=°:! causes the optical path of the laser beam as the laser annealing The reaction chamber 3G and the anti-t1 (8) are provided with a laser resonance 11 1G, an optical system such as a ... reflector, and a laser beam aligning unit. The lightning beam is generated by the lightning detector 1G (for example, a change in excimer laser illusion) The laser beam has a predetermined beam width density. The optical system 2 includes a plurality of optical portion components including a telescope 21 'homogenizer 22, a field lens I lens 24' to perform a pair of laser beams The expansion and homogenization function 'is changed to an oblong laser beam. The reaction chamber 30 has an internal space 31 defining a chasing space. The gantry 32 is mounted in the (4) space 31, and the processing object or The laser annealed glass substrate 33 is disposed on the gantry 32 A transparent window 34 is mounted on top of the reaction chamber 30, and a laser beam changed by the optical system 2 passes through the transparent window 34 into the reaction chamber 30. The reflector reflects the laser beam. The reflector is disposed in the laser resonator 1 Between the crucible and the reaction chamber 30. In the present embodiment, a plurality of reflectors are mounted for a total of 5. Specifically, the first sub-reflector 41, the first reflector 42, the second reflector 43, and the third reflection 44 and second sub-reflector 45 along the laser beam 200930489

J\J LJ I piX 行進方向依序地安裝。致動器46安裝在第一子反射器41 及第一反射器42之間,望遠鏡21安裝在第一反射器42 以及第二反射器43之間、勻質器22及場透鏡23安裝在第 二反射器43及第三反射器44之間,並且投影透鏡24安農 在第三反射器44及第二子反射器45之間。在此,第一子 反射器41及第一子反射器45安裝成藉由致動器(未顯示) 線性可移動,並且在第一子反射器41及第二子反射器45 ❹ 設置在雷射束的光學路徑中時,雷射束的能量藉由能量計 47而量測。 設有雷射束對準單元以對準放射到反應室3〇中的雷 射束。雷射束對準單元包括對準單元51及52、驅動器61 及62、感測器71、72、73及74以及控制器80。 對準單元51及52安裝在相鄰的反射器之間,並且爲 沿雷射束的行進路徑設置多個。特別地,在本實施例中對 準單元51及52成對地設置在第二反射器43及苐三反射器 〇 44之間。也即’第一對準單元51及第二對準單元52沿雷 射東的行進方向依序地設置在第二反射器43及第三反射 器44之間。通孔511及521分別設定在感測器第一對準單 - $ 51及第二對準單元52中。通孔511及521形成爲大於 . 雷射束的橫衔面積,使得雷射束可穿過通孔511及521。 而且,第一對準單元51的通孔511及第二對準單元52的 通孔521相互同心地設置。第一對準單元51及第二對準單 f 52文裝在光學導軌(〇pticalrail)(未顯示)上的相同高 a ’並且尤其是在本實施例中,將對準單元的通孔511 200930489 及521的各自的中心(〇設置成距導軌的底面(fl〇〇r) 90mm。 驅動器61及62驅動反射器以控制雷射束的行進路 徑。在本實施例中,成對地提供驅動器61及62,以分別 驅動設置在雷射共鳴器10以及對準單元51及52之間的多 個反射器,具體而言驅動第一反射器42及第二反射器43。 也即,第一驅動器61驅動第一反射器42,第二驅動器62 ❹ 驅動第二反射器43。在此,如在上文中所介紹的習知的雷 射處理設備那樣,驅動器61及62中之每一者均構造成包 括一對測微計611及621。在每個驅動器的測微計611及 621都被驅動時,反射器42及43的反射角度可改變雷射 束的行進方向,使得可以控制雷射束的反射以及行進方向。 感測器71、72、73及74檢測入射的雷射束,並在檢 測雷射束時將檢測訊號輸出到控制器80(待於下文介紹)。 在本實施例中,感測器71、72、73及74之構成爲光感測 g 器(photo sensor )’ 此等感測器一式四份(in quadruplicate ) 地分別聯接到第一對準單元51及第二對準單元52。也即, 每個對準單元51及52均具有聯接到其上的第一感測器 71、第二感測器72、第三感測器73以及第四感測器74。 如圖3所示,第一感測器71及第二感測器72分別設 置在通孔511及521的相互面對的左侧以及右侧的任一側 處,第三感測器73以第四感測器74也分別設置在通孔的 相互面對的上側及下側的任一側處。因此,全部四個感測 器71、72、73及74分別在通孔511及521的中心(C)周圍 11 200930489 ΟJ\J LJ I piX The direction of travel is installed in sequence. The actuator 46 is mounted between the first sub-reflector 41 and the first reflector 42, the telescope 21 is mounted between the first reflector 42 and the second reflector 43, and the homogenizer 22 and the field lens 23 are mounted. Between the two reflectors 43 and the third reflector 44, and the projection lens 24 is between the third reflector 44 and the second sub-reflector 45. Here, the first sub-reflector 41 and the first sub-reflector 45 are mounted to be linearly movable by an actuator (not shown), and are disposed in the first sub-reflector 41 and the second sub-reflector 45 ❹ The energy of the laser beam is measured by the energy meter 47 when in the optical path of the beam. A laser beam aligning unit is provided to align the laser beam that is radiated into the reaction chamber 3〇. The laser beam alignment unit includes alignment units 51 and 52, drivers 61 and 62, sensors 71, 72, 73 and 74, and a controller 80. The alignment units 51 and 52 are mounted between adjacent reflectors and are provided in plurality along the travel path of the laser beam. Specifically, in the present embodiment, the alignment units 51 and 52 are disposed in pairs between the second reflector 43 and the third reflector 〇 44. That is, the first alignment unit 51 and the second alignment unit 52 are sequentially disposed between the second reflector 43 and the third reflector 44 in the traveling direction of the laser east. The through holes 511 and 521 are respectively set in the first alignment unit - $ 51 of the sensor and the second alignment unit 52. The through holes 511 and 521 are formed to be larger than the cross-sectional area of the laser beam so that the laser beam can pass through the through holes 511 and 521. Further, the through hole 511 of the first alignment unit 51 and the through hole 521 of the second alignment unit 52 are disposed concentrically with each other. The first alignment unit 51 and the second alignment unit f 52 are mounted on the same height a ' on the optical rail (not shown) and, in particular, in this embodiment, the through hole 511 of the alignment unit will be aligned. The respective centers of 200930489 and 521 (〇 are disposed 90 mm from the bottom surface (fl〇〇r) of the guide rail. The drivers 61 and 62 drive the reflectors to control the traveling path of the laser beam. In the present embodiment, the drivers are provided in pairs. 61 and 62 for respectively driving a plurality of reflectors disposed between the laser resonator 10 and the alignment units 51 and 52, specifically driving the first reflector 42 and the second reflector 43. That is, the first The driver 61 drives the first reflector 42, and the second driver 62 ❹ drives the second reflector 43. Here, as in the conventional laser processing apparatus described above, each of the drivers 61 and 62 Constructed to include a pair of micrometers 611 and 621. When the micrometers 611 and 621 of each driver are driven, the angles of reflection of the reflectors 42 and 43 can change the direction of travel of the laser beam so that the laser can be controlled Beam reflection and direction of travel. Sensors 71, 72, 73 and 7 4 detecting the incident laser beam and outputting the detection signal to the controller 80 when detecting the laser beam (to be described later). In the present embodiment, the sensors 71, 72, 73 and 74 are configured as light. Sensing photo sensors 'these sensors are coupled in quadruplicate to the first aligning unit 51 and the second aligning unit 52. That is, each aligning unit 51 and 52 Each has a first sensor 71, a second sensor 72, a third sensor 73, and a fourth sensor 74 coupled thereto. As shown in FIG. 3, the first sensor 71 and the second The sensors 72 are respectively disposed at either side of the mutually facing left and right sides of the through holes 511 and 521, and the third sensor 73 is also disposed at the mutual face of the through holes by the fourth sensor 74, respectively. On either side of the upper side and the lower side. Therefore, all four sensors 71, 72, 73, and 74 are around the center (C) of the through holes 511 and 521, respectively. 11 200930489 Ο

徑向地設置。因此,互相面對的感測器71、72、73及74 的中心與通孔511及521的中心(C)對準。而且,第一感測 器71及第二感測器72之間的距離以及第三感測器73及第 四感測器74之間的距離,允許雷射束在第一感測器71及 第二感測器72之間以及第三感測器73及第四感測器74 之間經過。也即’相互面對的感測器對71及72以及感測 器對73及74不能同時地檢測雷射束,即僅每對感測器71 及72以及73及74中之一個感測器能够檢測穿過通孔511 及521的雷射束。例如,如果第一感測器71及第三感測器 73檢測雷射束,第二感測器72及第四感測器74不能檢測 雷射束。 控制器80基於自各感測器71、72、73及74接收的檢 測訊號,來控制第一驅動器61及第二驅動器62,從而控 制雷射束的中心以及通孔511及521的中心(c)之間的距 離。具體而言,在本實施例中的控制器8〇控制第一驅動器 61的測微計611對,以及第二驅動器62的測微計621對 中之每-者。控制器80還控制第一驅動器61及第二驅動 器62,使得雷射束的中心穿過感測器第一對準單元η及 第二對準單元52的通孔511及521的中心(c)。 的說=文給㈣於㈣器8㈣控制製程_範性實施例 控制器80操作控制第一驅動器61, 泰 過對準單元的通孔511的中心(C)。也即:控田制哭 根據來自第一感測器71、第二感測器72、第二^ ~ 12 200930489 /pn 二74的檢測訊號來控制第—驅動器M,使 對準單元的通孔511的中心(〇。 詳細介紹感測器72時,如下文所 令心。丨樣可以對準雷射束以穿過各對準單元的水平 虽雷射束接觸第一感測器71且第一 檢測訊號’控制器80驅動第一驅動器6广二1時輪? ==訊號以控制雷射束的行進路徑:僅: 動i 測訊#u。其後,控制器8G驅動第一驅 射束的行進二一/測器71輸出另一檢測訊號以控制雷 接下來= ,僅第一感測器71輸出檢測訊號。 以使雷射在卜參考時_)_輸出驅動訊號 吏雷射束穿過第-感測器71及第二感靡72之間的中 心。在此,第—參考時_)基於從第二感測H 72輸出檢 φ 測訊號的時點到第-感測器71輸出另—檢測訊號的時間 而譯·置。 〇在本實施例中的控制器8〇尤其構造成控制第一驅動 器61,使得第二感測器72輸出初始檢測訊號,而在此之 後第一感測器71輸出另一初始檢測訊號。在這種情况下, 第一參考時間(tl)是由控制器80計算,爲從第二感測器72 輸出初始檢測訊號到第一感測器7 i輸出另一初始檢測訊 號的時間中點(halfwaypoint)。因此,在第一參考時間(tl) 期間輸出驅動訊號,可對準雷射束的中心以穿過第一感測 器71及第二感測器72之間的中心(C1)。 13 200930489 ❹ Ο 如果在雷射束經過第一感測器71及第二感測器72之 間時’第一感測器71及第二感測器72均不輸出檢測訊號, 控制器8〇驅動第一驅動器61來控制雷射束的行進路徑, 使得第一感測器71輪出檢測訊號。在此,僅第一感測器 71輸出檢測訊號。此後,控制器8〇驅動第一驅動器61來 ,制雷射束的行進路徑,使得第二感測器72輸出檢測訊 號。在此,僅第二感測器72輸出檢測訊號。其後,控制器 在第一參考時間(t2)期間輸出驅動訊號以使雷射束穿過第 一感測器71及第二感測器72之間的中心。在此,第二參 考時間(t2)基於從第一感測器71輸出檢測訊號到第二感測 器72輪出檢測訊號的持續時間而設置。 在本實施例中的控制器8〇尤其構造成,使得第一感測 f 71輸出初始檢測訊號,在此之後第二感測器72輸出初 始檢1訊號。在這種情况下,第二參考時間⑼是由控制器 ^算爲從第-感測器71輸出初始檢測訊號到第二感測 2輸出初始檢測訊號的時間中點。因此,在第二參考時 期間輸ih轉減,可鱗雷射束的巾如穿過 感測器71及第二感測器72之間的中心(ci)。 如拙1此’無論第一感測器71是否輪出檢測訊號,控制器 =第-參考時間⑹或第二參考時間⑼期間輪出驅 器;心穿過第一感測器71及第, 而且’在使用帛二感測器73及第四感測器Μ時,帝 射束可設在各對準單元之間的堅直中心處。使用第三感二 200930489 i 器73及第四感測器74的控制製程與使用第— π 及第二感測器72的控制製程相同。具體而言,在感測 器73輸出檢測訊號時,控制器8〇驅動第一驅動器^’,使 得第四感測器74輸出初始檢測訊號並且其後驅 驅 動器6卜使得第三⑽H 73再次輸出初始檢測訊號,在 此之後控㈣80在第三參考時_)齡增出驅動訊號來Set radially. Therefore, the centers of the sensors 71, 72, 73, and 74 facing each other are aligned with the centers (C) of the through holes 511 and 521. Moreover, the distance between the first sensor 71 and the second sensor 72 and the distance between the third sensor 73 and the fourth sensor 74 allow the laser beam to be at the first sensor 71 and The second sensor 72 passes between the third sensor 73 and the fourth sensor 74. That is, the mutually facing sensor pairs 71 and 72 and the sensor pairs 73 and 74 cannot simultaneously detect the laser beam, that is, only one of each pair of sensors 71 and 72 and 73 and 74. The laser beam passing through the through holes 511 and 521 can be detected. For example, if the first sensor 71 and the third sensor 73 detect the laser beam, the second sensor 72 and the fourth sensor 74 cannot detect the laser beam. The controller 80 controls the first driver 61 and the second driver 62 based on the detection signals received from the respective sensors 71, 72, 73 and 74, thereby controlling the center of the laser beam and the centers of the through holes 511 and 521 (c) the distance between. Specifically, the controller 8 in the present embodiment controls each of the pair of micrometers 611 of the first driver 61 and the pair of micrometers 621 of the second driver 62. The controller 80 also controls the first driver 61 and the second driver 62 such that the center of the laser beam passes through the center of the through holes 511 and 521 of the first alignment unit n and the second alignment unit 52 of the sensor (c) . Said = text to (four) to (four) device 8 (four) control process - exemplary embodiment controller 80 operates to control the first driver 61, the center of the through hole 511 of the alignment unit (C). That is, the control field crying controls the first driver M according to the detection signals from the first sensor 71, the second sensor 72, and the second ^ 12 200930489 / pn 274, so that the through hole 511 of the aligning unit Center (〇. When the sensor 72 is described in detail, as will be explained below. The laser beam can be aligned to pass through the level of each alignment unit. Although the laser beam contacts the first sensor 71 and is first The detection signal 'controller 80 drives the first driver 6 to widen the 1 hour wheel? == signal to control the travel path of the laser beam: only: i i tune #u. Thereafter, the controller 8G drives the first drive beam The traveler 21/tester 71 outputs another detection signal to control the lightning next =, and only the first sensor 71 outputs the detection signal. In order to make the laser in the reference _)_ output drive signal 吏 laser beam wear The center between the first sensor 71 and the second sensor 72 is passed. Here, the first reference time_) is based on the time from when the second sensing H 72 outputs the detected φ signal to the time when the first sensor 71 outputs the other detecting signal. The controller 8 in the present embodiment is specifically configured to control the first driver 61 such that the second sensor 72 outputs an initial detection signal, after which the first sensor 71 outputs another initial detection signal. In this case, the first reference time (t1) is calculated by the controller 80, for outputting the initial detection signal from the second sensor 72 to the midpoint of the time at which the first sensor 7i outputs another initial detection signal. (halfwaypoint). Therefore, the drive signal is output during the first reference time (tl), and the center of the laser beam can be aligned to pass through the center (C1) between the first sensor 71 and the second sensor 72. 13 200930489 ❹ Ο If the first sensor 71 and the second sensor 72 do not output a detection signal when the laser beam passes between the first sensor 71 and the second sensor 72, the controller 8〇 The first driver 61 is driven to control the travel path of the laser beam such that the first sensor 71 rotates the detection signal. Here, only the first sensor 71 outputs a detection signal. Thereafter, the controller 8 drives the first driver 61 to make a travel path of the laser beam, so that the second sensor 72 outputs a detection signal. Here, only the second sensor 72 outputs a detection signal. Thereafter, the controller outputs a drive signal during the first reference time (t2) to pass the laser beam through the center between the first sensor 71 and the second sensor 72. Here, the second reference time (t2) is set based on the duration from the output of the detection signal by the first sensor 71 to the rotation of the detection signal by the second sensor 72. The controller 8 in this embodiment is especially configured such that the first sensing f 71 outputs an initial detection signal, after which the second sensor 72 outputs an initial detection signal. In this case, the second reference time (9) is calculated by the controller as the midpoint of the time from the output of the initial detection signal by the first sensor 71 to the output of the initial detection signal by the second sensing 2. Therefore, during the second reference period, the input ih is reduced, and the scaleable beam of the towel passes through the center (ci) between the sensor 71 and the second sensor 72. If the first sensor 71 rotates the detection signal, the controller = the first reference time (6) or the second reference time (9) during the wheel drive; the heart passes through the first sensor 71 and the first, and 'When using the second sensor 73 and the fourth sensor ,, the beam can be placed at the center of the center between the alignment units. The control process using the third sense two 200930489 and the fourth sensor 74 is the same as the control process using the first π and the second sensor 72. Specifically, when the sensor 73 outputs the detection signal, the controller 8 drives the first driver, so that the fourth sensor 74 outputs the initial detection signal and the rear driver 6 causes the third (10) H 73 to output again. The initial detection signal, after which the control (four) 80 in the third reference _) age increases the drive signal

Ο 最^對準雷射束。在此,第三參考時間⑼是從第四感測器 74輸出減制訊制第三感_ 73再:欠如初始檢測 訊號的時間中點。 一如果第三感測器73及第四感測器74,在雷射束經過 第三感測器73及第四感測器74之間時均不輪出檢測訊 ,、’控制器80驅動第-驅動器61,使得第三感測器73輸 ^初始檢測訊號,並且控制器8〇驅動第一驅動器Μ,使 得第四感測器74輸出初始檢測訊號。其後,控制器8〇在 第四參考時間(t4)期間輸出驅動訊號以對準雷射束。在此, =四參考時_)是從第三感測器73輸出初始檢測訊號到 第四感測器74輸出初始檢測訊號的時間中點。 因此,無論第三感測器73是否輸出檢測訊號,控制器 8〇都將在第三參考咖⑼或第四參考翻⑽期間輸出 驅動訊號,以使雷射束的中心穿過第三感測器73及第四感 測器74之間的中心(C2)。 如上所述,控制器8〇可在第一參考時間(tl)或第二參 8、,(t2)期間輸出驅動訊號,以使雷射束的中心穿過第一 感測盗71及第二感測器72之間的中心(C1),並且控制器 15 ❹ Ο 200930489 器Μ之間的中心(C2)。因二第二=73及第四感測 間(戦第二參考時間⑼期在第-參考時 =職第四參考時間⑼期間=;訊3第;: 中心(ci)以及第三感測㊉73 ^:感測器72之間的 ㈣,蚀㈣w 第四感測器74之間的中心 孔5U的'兩個軸對準以穿過第-對準單元的通 控制器80操作控制第二驅動器6 第二對準單元⑵的通孔521的中· ^射#= 8〇,據來自聯接到第二對準單元52的第—感測器71、第 2Γ、第三感測器73以及第四感測器74的檢測訊 號來控制第二驅動器62時,使雷射束對準以穿過第二對準 單=的通孔521的中心(C)。用於對準雷射束以穿過第二對 準單70的通孔521的中心(Q的控制製程,與用於對準雷射 束以穿過第-對準單元的通孔511的中心(c)的控制製程 相同,因此,本文不提供對其的詳細介紹。 如上所述,控制器80可控制第一驅動器61及第二驅 動器62以使雷射束穿過第一對準單元及第二對準單元的 通孔511及521的中心(〇。由於第一對準單元的通孔511 及第二對準單元的通孔521設置在相同的高度處,可以使 雷射束對準兩個軸穿過各通孔511及521的中心(C)並且平 行地行進。因此,在本實施例中,不需移動對準單元51 16 ❹Ο Align the laser beam with the best. Here, the third reference time (9) is a time-in-time from the fourth sensor 74 outputting the subtraction signal third sense_73 again: less than the initial detection signal. If the third sensor 73 and the fourth sensor 74 do not rotate the detection signal when the laser beam passes between the third sensor 73 and the fourth sensor 74, the controller 80 drives The first driver 61 causes the third sensor 73 to input an initial detection signal, and the controller 8 drives the first driver Μ such that the fourth sensor 74 outputs an initial detection signal. Thereafter, the controller 8 outputs a drive signal during the fourth reference time (t4) to align the laser beam. Here, the =four reference time_) is the midpoint of the time from the output of the initial detection signal by the third sensor 73 to the output of the initial detection signal by the fourth sensor 74. Therefore, regardless of whether the third sensor 73 outputs a detection signal, the controller 8 will output a driving signal during the third reference coffee (9) or the fourth reference flip (10) to pass the center of the laser beam through the third sensing. The center (C2) between the device 73 and the fourth sensor 74. As described above, the controller 8 can output a driving signal during the first reference time (t1) or the second reference 8, (t2) to pass the center of the laser beam through the first sensing thief 71 and the second The center (C1) between the sensors 72, and the center (C2) between the controllers 15 Ο 30 200930489 Μ. Because the second second = 73 and the fourth sensing interval (戦 second reference time (9) period in the first reference time = the fourth reference time (9) period =; news 3 first;: center (ci) and third sensing ten 73 ^: (four) between the sensors 72, eclips (four) w The 'two axes of the center hole 5U between the fourth sensors 74 are aligned to operate the second driver through the controller 80 of the first aligning unit 6 The middle of the through hole 521 of the second alignment unit (2) is the first sensor 71, the second Γ, the third sensor 73, and the third sensor unit When the detection signal of the four sensors 74 controls the second driver 62, the laser beam is aligned to pass through the center (C) of the through hole 521 of the second alignment sheet = for aligning the laser beam to wear Passing through the center of the through hole 521 of the second alignment sheet 70 (the control process of Q is the same as the control process for aligning the laser beam to pass through the center (c) of the through hole 511 of the first alignment unit, thus The detailed description thereof is not provided herein. As described above, the controller 80 can control the first driver 61 and the second driver 62 to pass the laser beam through the through holes 511 of the first alignment unit and the second alignment unit. And 521 Heart (〇. Since the through hole 511 of the first alignment unit and the through hole 521 of the second alignment unit are disposed at the same height, the laser beam can be aligned with the two axes passing through the respective through holes 511 and 521 Center (C) and travel in parallel. Therefore, in the present embodiment, it is not necessary to move the aligning unit 51 16 ❹

200930489 ==,二藉由自動地操作的驅動器61及62 行雷射束的對準#^知的雷射處理設備更簡單地執 二=準,並且在對準期間不存在人體暴露於雷射 在維修雷射共鳴器10時需要雷射束的對準。 在控7輸㈣脑u來清潔或更換雷射料· 過光學系統期間以及在其經過光學系統之前導 特徵,引起放射到處理對象上的束流輪廓 變。,此等改變由於原始束流沒有適當地對準而發生。因 此’當雷射束經如上所述那#對準時,在維修雷射共鳴器 _發生的雷射束輪廟的改變可得到補償,具體而言,在 退火處理_發生的無法麵的縣束流的未對準,可藉 由上述對準補償執行可靠的雷射退火。 曰 雷射束對準單元更包括感測器致動器(未顯示)以及對 準單元致動器90。 感測器致動器(未顯示)提供多個對應於感測器的數 量,以線性移動各感測器71、72、73及74。具體而言, 如圖3所示,每個都感測器71、72、73及74可在雙向箭 頭的方向上線性移動而靠近或遠離通孔的中心(c)。因此, 在感測器71、72、73及74分別藉由它們的感測器致動器 線性移動以改變每個感測器的位置時,聯接到每個對準單 元的四個感測器的中心,可自對準單元的通孔511或521 17 200930489 的中心(Q偏離。因此’可根據用戶的需求執行對準, 雷射束的中心自通孔511及512的中心(c)偏離。200930489 ==, two laser processing devices by means of automatically operating drivers 61 and 62 for the alignment of the laser beam are more simply implemented, and there is no human exposure to the laser during alignment. The alignment of the laser beam is required when servicing the laser resonator 10. The profile of the beam that is radiated onto the treated object is induced during the control of the 7th (4) brain to clean or replace the laser material during the passage of the optical system and before it passes through the optical system. These changes occur because the original beam is not properly aligned. Therefore, when the laser beam is aligned as described above, the change of the laser beam wheel temple that occurs in the maintenance of the laser resonator _ can be compensated, specifically, in the annealing process For misalignment of the flow, reliable laser annealing can be performed by the alignment compensation described above. The laser beam aligning unit further includes a sensor actuator (not shown) and an alignment unit actuator 90. A sensor actuator (not shown) provides a plurality of sensors corresponding to the number of sensors to linearly move the sensors 71, 72, 73 and 74. Specifically, as shown in Fig. 3, each of the sensors 71, 72, 73, and 74 can move linearly in the direction of the two-way arrow toward or away from the center (c) of the through hole. Thus, the four sensors coupled to each of the alignment units are activated when the sensors 71, 72, 73, and 74 are linearly moved by their sensor actuators, respectively, to change the position of each sensor. The center of the self-aligned unit can be self-aligned to the center of the through hole 511 or 521 17 200930489 (Q is deviated. Therefore, the alignment can be performed according to the user's needs, and the center of the laser beam is deviated from the center (c) of the through holes 511 and 512 .

對準單元致動^ 9〇成對地提供,並且對準單元致 分別線性驅動對準單元51及仏各對準單錢動器9 與穿過對準單元的雷射束的行進方向,相交的方向上分別 移動對準單51及52 ’具體而言在圖3的雙向箭頭所顯 示的橫向方向以及上下方向上移動對準單元51及52。同 樣,各對準單元51《52可線性移動,並且透過移動對準 單元51及52中之-者(例如,向上移動第一對準單元 51),可將雷射束輪廓自圖5所示的狀紐變顧6所示的 狀態,其中在@ 5所示驗態巾鱗雷射束赌得雷射束 在第广反射g 43及第三反射器44之間平行地行進在圖 6所示的狀態中雷射束的一部份藉由第一對準單元51阻 ΙΛ* 擒。 如果雷射束自圖5中所示的雷射束的對準狀態傾斜到 〇 另一狀態(於此另一狀態中藉由驅動第-驅動器61及第二 鶴器62中之至少-者喊得雷射束的中心以非垂直交 又的角度人賴第-對準單元51上),並且雷射束在圖7 所示的傾斜狀態中行進,那麽雷射束的一部份可藉由第一 對準單元51阻擋以使得雷射束輪廓改變。 類似地’在本實施例中可藉由線性移動對準單元51 及52或驅動驅動器61及62而改變雷射束輪廓。因此,可 藉由改變雷射束輪廓(其爲製程變量)而發現優化處理條 件。 18 200930489 7卜7^33那樣改變雷射束輪廓,根據來自各感測器 制驅動器61及訊上,本實施例中的控制器80控 一 及對準早元致動器(未顯示)中之至少 α « π、、而$,控制器80構造成能够控制所有驅動器 μ认以及對準單元致動器(未顯示),以在上述介紹的狀 此狀態中雷射束平行地或以—定的傾斜角行進)中 透過阻擋雷射束的—部份而改變雷射束輪靡^The aligning unit actuations are provided in pairs, and the aligning units respectively linearly drive the aligning unit 51 and the aligning single aligners 9 with the traveling direction of the laser beam passing through the aligning unit, intersecting In the direction of the movement, the alignment sheets 51 and 52' are respectively moved. Specifically, the alignment units 51 and 52 are moved in the lateral direction and the up-and-down direction indicated by the double-headed arrow of FIG. Similarly, each alignment unit 51 "52 can move linearly, and by moving the alignment units 51 and 52 (for example, moving the first alignment unit 51 upward), the laser beam profile can be as shown in FIG. The state of the change is shown in Fig. 6, wherein the laser beam gambling the laser beam at the @5 indicates that the laser beam travels in parallel between the wide reflection g 43 and the third reflector 44 in Fig. 6. In the illustrated state, a portion of the laser beam is blocked by the first alignment unit 51. If the laser beam is tilted from the aligned state of the laser beam shown in FIG. 5 to the other state (in this other state, by driving at least the at least one of the first driver 61 and the second crane 62) The center of the laser beam is at a non-perpendicular angle on the first alignment unit 51, and the laser beam travels in the tilted state shown in Figure 7, then a portion of the laser beam can be The first alignment unit 51 blocks to cause the laser beam profile to change. Similarly, the laser beam profile can be changed in the present embodiment by linearly moving the alignment units 51 and 52 or driving the drivers 61 and 62. Therefore, optimized processing conditions can be found by changing the beam profile, which is a process variable. 18 200930489 7 7 7 33 change the laser beam profile, according to the driver 61 from each sensor and the signal, the controller 80 in this embodiment is controlled and aligned with the early element actuator (not shown) At least α « π, and $, the controller 80 is configured to be able to control all of the driver and aligning unit actuators (not shown) such that in the state described above, the laser beam is parallel or with - In a fixed tilt angle, the laser beam rim is changed by blocking the portion of the laser beam.

、儘管已經參考特定的實施例介紹了雷射處理設備,其 並不限於此。gj此’本領域熟知其技藝者應該理解的是, 在不背離巾請專利範圍所限定的本發賴精神及範圍的情 况下,可對本發明做各種修改以及改變。 例如,雖然示範性實施例構造成設有一對對準單元, 但疋可代替地,提供一個或三個或多個對準單元。 而且’雖然示範性實施例配置有聯接到各對準單元的 4個感測器’但是可代替地,4個感測器不是特定的要求, 並且可只用一對相對的感測器代替。 另外’雖然示範性實施例構造成使得雷射束的中心穿 過通孔的中心,但是,如果不同地設置參考時間’可使得 雷射束的中心自通孔的中心偏離。 根據示範性實施例,控制器可控制驅動器,以使雷射 束的中心穿過通孔的中心。 根據另一示範性實施例,雷射束對準單元玎還包括各 聯接到對準單元而設置在通孔的任一侧部處的第〆感測器 及第二感測器,以檢測入射的雷射束並在檢測雷射束時將 19 200930489 檢測訊號輸出到控制器。第 ™ 示一琢 距離可構造成分.社帝61·»· 第一感測器及第二感測器之間的Although the laser processing apparatus has been described with reference to a specific embodiment, it is not limited thereto. It will be understood by those skilled in the art that various modifications and changes can be made in the invention without departing from the scope and scope of the invention. For example, while the exemplary embodiment is configured to provide a pair of alignment units, instead of one, three or more alignment units may be provided. Moreover, although the exemplary embodiment is configured with 4 sensors' coupled to the respective alignment units, alternatively, the 4 sensors are not specific requirements and may be replaced with only a pair of opposing sensors. Further, although the exemplary embodiment is constructed such that the center of the laser beam passes through the center of the through hole, if the reference time is set differently, the center of the laser beam can be made to deviate from the center of the through hole. According to an exemplary embodiment, the controller may control the driver such that the center of the laser beam passes through the center of the through hole. According to another exemplary embodiment, the laser beam aligning unit 玎 further includes a second sensor and a second sensor each coupled to the aligning unit and disposed at either side of the through hole to detect the incident The laser beam and the 19 200930489 detection signal are output to the controller when detecting the laser beam. The TM shows a distance between the configurable components. The social sensor 61·»· between the first sensor and the second sensor

一感測器輸出另一 檢測訊號的時間點之間的時間。當第一 ^測器及第二感測器均在雷射束路徑的外部並且並不輸出 T訊號時,可驅動驅動器直至第—感測諸緣測訊號 ^並且可驅動轉器直至第二感啦輸出檢測訊號爲 止”後’控制器可在第二參考時間上輸出驅動訊號以驅 動驅動器從ffjj使得雷射束的巾。穿過通孔的巾心、,其中此 ,二參考時間基於從H卿輸出檢測訊號到第二感測 器輸出另一檢測訊號之間的時間。 根據另一示範性實施例,雷射束對準單元可進一步設 有第二感測器及第四感測器,此第三感測器及第四感測器 在檢測雷射束時將檢測訊號輸出到控制器。第三及第四感 測器可分別聯接到對準單元以檢測入射的雷射束,其中此 對準單元在通孔的中心周圍與第一感測器及第二感測器一 同徑向地待設置在通孔的任一侧部處。第三及第四感測器 之間的距離可構造成允許雷射束經過第一感測器及第二感 測器之間。在第三感測器與雷射束接觸並且輸出檢測訊號 20 200930489 ❹ =’控制器可驅動驅動器直到第四感測器輸出檢測訊號, ^且驅動驅動器直到第三感測器輸出另—檢測訊號。其 ^控制器可在第二參考時間上輪出驅動訊號以驅動 器,以使得雷射束的中心穿過通孔的中心,其中此第三表 ,時間基於從第喊聰輸出檢測訊制第三制器輪出 =一檢測訊號之間的時間。當第三感測器及第四感測器均 在雷射束路徑料部並且並不輸純測訊鱗,可驅動驅 動器直至第—感測II輸出檢測訊號,並且可驅動驅動器 =第四感測ϋ輸{ϋ檢測訊號。其後,控·可在第四參考 *間上輸出轉訊號轉動驅動器從而使得雷射束的中心 通孔的中〜’其中第四參考時間基於從第三感測器輸 測訊號到第四感測器輸出另一檢測訊號之間的時間。 根據又·個示範性實施例,反射器可在雷射共鳴器及 對象m成多個,並骑準單元可在反射器之間 女裝成相鄰的多個。可安裝多個對準單元,使得各對準單 元的通孔同心地設置。第—感測器、第二感測器、第三感 測器及第四_^可各分卿制各解單元,驅動器可 對應於反射㈣安裝成錄,以軸設置雷射共鳴器及多 f對準單70之間的多個反射器,並且控制器可控制各驅動 器以使雷射束穿過各對準單元的通孔的中心。 一根據又一示範性實施例,光學系統可包括勻質器、第 反射器、第二反射器以第三反射器,它們可沿雷射束在 雷射共鳴H及神單元之關的行㈣向依序設置,第一 對準單元、自_及第二料單元可沿飾束在第二反射 21 200930489 器及第三反射器之間的行進方向依序地設置,第一反射器 及第-反射器可藉由第一驅動器及第二驅動器分別驅動, 並且控制器可控制第一驅動器及第二驅動器以使雷射束的 巾心穿過第—對準單元的通孔及第二對準單元的通孔的中 心,〇 雖然本發明已以較佳實施例揭露如上,然其並非用以 =定本發明,任何熟習此技藝者,在不脫離本明之精神和 〇 犯圍内,當可作些許之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1疋習知的雷射處理設備的示範性示意配置圖。 圖2是根據示範性實施例的雷射處理設備的示意性配 置圖。 .· 圖3是根據圖2的示範性實施例的一對對準單元的示 意性透視圖。 炫圖4是根據圖2的示範性實施例用於說明在雷射處理 ® 設備中的雷射束對準控制的控制區塊圖。以及 圖5至圖7是說明使用根據圖2中的示範性實施例的 雷射處理設備的雷射束輪廓改變的剖面圖。 【主要元件符號說明】 10、10,:雷射共鳴器 11 :聯接器 21 :望遠鏡 22 =勻質器 22 200930489The time between when a sensor outputs another time to detect a signal. When the first detector and the second sensor are both outside the laser beam path and do not output the T signal, the driver can be driven until the first sensing edge signal ^ and the rotating device can be driven until the second sense After the output detection signal is "after" the controller can output a driving signal at the second reference time to drive the driver to make the laser beam from the ffjj through the through hole of the towel, wherein the second reference time is based on the H The output of the detection signal to the second sensor outputs a time between the other detection signals. According to another exemplary embodiment, the laser beam alignment unit may further be provided with a second sensor and a fourth sensor, The third sensor and the fourth sensor output a detection signal to the controller when detecting the laser beam. The third and fourth sensors are respectively coupled to the aligning unit to detect the incident laser beam, wherein The alignment unit is disposed radially around the center of the through hole together with the first sensor and the second sensor at either side of the through hole. The distance between the third and fourth sensors Can be configured to allow the laser beam to pass the first sensor and the second sense Between the detectors, the third sensor is in contact with the laser beam and outputs a detection signal 20 200930489 ❹ = 'the controller can drive the driver until the fourth sensor outputs a detection signal, ^ and drives the driver until the third sensor Outputting another detection signal. The controller can rotate the driving signal to the driver at the second reference time so that the center of the laser beam passes through the center of the through hole, wherein the third table is based on the time from the first Output detection signal third controller wheel = time between detection signals. When the third sensor and the fourth sensor are both in the beam path and do not lose the pure signal scale, can be driven The driver up to the first-sensing II output detection signal, and can drive the driver=fourth sensing transmission {ϋ detection signal. Thereafter, the control can output the rotation signal between the fourth reference* to rotate the driver to make the laser beam The middle of the central through hole is in which the fourth reference time is based on the time between the third sensor transmitting signal and the fourth sensor outputting another detecting signal. According to yet another exemplary embodiment, the reflector Laser resonator The object m is plural, and the riding unit may be adjacent to each other between the reflectors. A plurality of alignment units may be installed such that the through holes of the respective alignment units are concentrically arranged. The second sensor, the third sensor and the fourth _^ can be divided into different solution units, the driver can be corresponding to the reflection (four) installed into the recording, the shaft is set to the laser resonator and the multi-f alignment unit 70 a plurality of reflectors between the controllers, and the controller can control the drivers to pass the laser beam through the center of the through holes of the respective alignment units. According to still another exemplary embodiment, the optical system can include a homogenizer, The reflector and the second reflector are arranged in a third reflector, which can be arranged along the laser beam in the row (4) of the laser resonance H and the god unit, the first alignment unit, the self-alignment unit and the second material unit. The first reflector and the first reflector can be respectively driven by the first driver and the second driver, and can be respectively controlled along the traveling direction between the second reflection 21 200930489 and the third reflector. The first driver and the second driver can be controlled to pass the core of the laser beam - aligning the through hole of the unit with the center of the through hole of the second alignment unit, although the invention has been disclosed above in the preferred embodiment, but it is not intended to be used in the invention, and anyone skilled in the art does not The spirit and scope of the present invention may be changed and retouched. Therefore, the scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exemplary schematic configuration diagram of a conventional laser processing apparatus. FIG. 2 is a schematic configuration diagram of a laser processing apparatus, according to an exemplary embodiment. Figure 3 is a schematic perspective view of a pair of alignment units in accordance with the exemplary embodiment of Figure 2. Figure 4 is a control block diagram illustrating the laser beam alignment control in a Laser Processing ® device in accordance with the exemplary embodiment of Figure 2. And Figures 5 through 7 are cross-sectional views illustrating laser beam profile changes using a laser processing apparatus in accordance with the exemplary embodiment of Figure 2 . [Explanation of main component symbols] 10, 10,: Laser resonator 11 : Coupling 21 : Telescope 22 = Homogenizer 22 200930489

23 : 場透鏡 24、 24, :投影透鏡 30 : 反應室 31 : 内部空間 32 : 台架 33、 33' 玻璃基板 34 : 透明窗體 41 ' 41' 第一子反射器 42、 42, 第一反射器 43、 43, 第二反射器 44、 44' 第三反射器 45、 45' 第二子反射器 46、 46' 衰减器 47、 47, 能量計 50、 50' 十字線 51 : 對準單元 52 : 對準單元 61 : 第一 -驅動器 62 : 第二驅動器 71 : 第一 -感測器 72 ·· 第二感測器 73 : 第三感測器 74 : 第四感測器 80 : 控制器 200930489 90 :對準單元致動器 100、100’ :雷射退火設備 511、512 :通孔 611、621 :測微計 61Γ、62Γ :測微計 C:通孔的中心 C1 :第一感測器71及第二感測器72之間的中心 C2 :第三感測器73及第四感測器74之間的中心 2423: Field lens 24, 24, Projection lens 30: Reaction chamber 31: Internal space 32: Stage 33, 33' Glass substrate 34: Transparent window 41 '41' First sub-reflector 42, 42 First reflection 43, 43, second reflector 44, 44' third reflector 45, 45' second sub-reflector 46, 46' attenuator 47, 47, energy meter 50, 50' cross line 51: alignment unit 52 : Alignment unit 61 : First - driver 62 : Second driver 71 : First - sensor 72 · Second sensor 73 : Third sensor 74 : Fourth sensor 80 : Controller 200930489 90: Aligning unit actuators 100, 100': laser annealing devices 511, 512: through holes 611, 621: micrometer 61 Γ, 62 Γ: micrometer C: center C1 of the through hole: first sensor Center C2 between 71 and second sensor 72: center 24 between third sensor 73 and fourth sensor 74

Claims (1)

200930489 / 企ΑΙΑ 七、申請專利範圍: 1. 一種雷射處理設備,包括: 雷射共鳴器’使雷射束共π鳥; 光㈣統’、轉變藉由所料射共鳴“共鳴的所述雷 料’以使所述雷射束具有帶駄束錢度的束流輪腐的 能量密度; 反應室,在所述反應室中藉由所述光學系統轉變的所 〇 述雷射束,放射到設置在所述反應室中的處理對象上; 反㈣’設置所㈣射共鳴器及所述反應室之間以反 射所述雷射束;以及 雷射束對準單元,將放射到所述反應室中的所述雷射 束對準,所述雷射束對準單元包括 對準構件,女裝在所述反射器及所述處理對象之間, 並且設置在所述雷射束的行進路徑中,所述對準構件限定 通孔,所述通孔的面積大於所述雷射束的橫截面積以允許 _ 所述雷射束經過, η 驅動器,驅動所述反射器以控制藉由所述反射器反射 的所述雷射束的所述行進路徑,以及 控制器’控制所述驅動器以控制所述雷射束的中心及 所述通孔的中心之間的距離,基於當所述雷射束穿過所述 對準構件的所述通孔時檢測的訊號》 2.如申請專利範圍第1項所述之雷射處理設備,其中 所述控制器控制所述驅動器,以使所述雷射束的所述中心 穿過所述通孔的所述中心。 25 200930489 3.如申請專利範圍第2項所述之雷射處理設備,其中 所述雷射束對準單元’還包括分別聯接到所述對準構 件並且设置在所述通孔的任一侧部處的第一感測器及第_ 感測器,以檢測入射的所述雷射束並且在檢測所述雷射束 時將檢測訊號輸出到所述控制器,所述第一感測器及所述 弟一感測器之間的距離允許所述雷射束能够在所述第一咸 測器及所述第二感測器之間經過, 0 其中在所述第一感測器檢測到所述雷射束並且輸出所 述檢測訊號時,所述控制器驅動所述驅動器直到所述第二 感測器輸出所述檢測訊號以及所述第一感測器再次輸出所 述檢測訊號,此後所述控制器輸出驅動訊號以在第一參考 時間内,驅動所述驅動器從而使所述雷射束的所述中心穿 過所述通孔的所述中心,其中所述第一參考時間是基於從 所述第一感測器輸出所述檢測訊號的時間點,延伸到所述 第一感測器再次輸出所述檢測訊號的時間點的時間而設 定,以及 © 當所述第一感測器及所述第二感測器均自所述雷射束 的所述行進路徑偏離並且不輸出所述檢測訊號時,所述控 制器驅動所述驅動器直至所述第一感測器輸出所述檢測訊 號,以及所述第一感測器輸出所述檢測訊號,此後所述控 制器在第二參考時間内,輸出所述驅動訊號,以驅動所述 驅動器從而使所述雷射束的所述中心穿過所述通孔的所述 中心,其中所述第二參考時間是基於自所述第一感測器輸 出所述檢測訊號的時間點,延伸到所述第二感測器輸出所 26 200930489 述檢測訊號的時間點的時間而設定。 4·如申叫專利範圍第3項所述之雷射處理設備,其中 所述雷射束對準單元還包括第三感測器及第四感測 ,各別聯制所骑準構件以及設置在所述通孔的相對 賴部處’而與所述第—感測器及所述第二感測器-同徑 向地設置在所述通孔的所述中心周圍,所述第三感測器及 所述第四感測器檢測入射的所述雷射束,並且在檢測所述 ❹ 雷射束時將檢測訊號輸出到所述控制器,所述第三感測器 及所述第四感測器之間的距離,使得所述雷射束能够在所 述第一感測器及所述第二感測器之間經過, 其中在所述第三感測器檢測到所述雷射束並且輸出所 述檢測訊號時,所述控制器驅動所述驅動器直至所述第四 感測器輸出所述檢測訊號並且所述第三感測器再次輸出所 述檢測訊號,此後所述控制器輸出驅動訊號以在第三參考 時間内驅動所述驅動器從而使所述雷射束的所述中心穿過 ◎ 所述通孔的所述中心,其中所述第三參考時間是基於從所 述第四感測器輸出所述檢測訊號的時間點,到所述第三感 測器再次輸出所述檢測訊號的時間點延伸時間而設定,以 及 在所述第三感測器及所述第四感測器均自所述雷射束 的所述行進路徑偏離並且不輸出所述檢測訊號時’所述控 制器驅動所述驅動器直至所述第三感測器輸出所述檢測訊 號’以及所述第四感測器輸出所述檢測訊號,此後所述控 制器在第四參考時間内輸出所述驅動訊號,以驅動所述驅 27 200930489 動器從而使所述雷射束的所述巾穿過所述通 心,其中所述第四參考咖是基於從所述第三感 ^ 所述檢測訊號__,朗述第域靡輸出所述= 訊號的時間點的延伸時間而設定。 揿測 5·如申請專利範圍第4項所述之雷射處理設備, ❹ ❹ 所述第一參考時間,是從所述第二感測器初始輪^所 述檢測訊號的時舰’騎述第-制_再次初 述檢測訊號的時間點的時間中點,. ’ 所述第二參考時間,是從所述第-感測器初始輪出所 述檢測訊號的時_,到所述第二制器初始 = 測訊號的時間點的時間令點, 足檢 所述第三參考時間,是從所述第四感測器初始輸出所 述檢測訊號的時間點,到所述第三制器再次初始輪出所 述檢測訊號的時間點的時間中點,以及 所述第四參考時間,是從所述第三感測器初始輸出所 述檢測訊制時間點’酬述第喊㈣初始地輸出所述 檢測訊號的時間點的時間中點。 6.如申研專利範圍第4項所述之雷射處理設備,其中 所述反射器’在所述雷射共鳴器及所述處理對象之間 設置多個, 所述對準構件,在彼等相鄰的所述反射器之間安裝多 個, 安裝所述對準構件,使得所述對準構件的所述各通孔 同心地設置, 28 200930489 所述第一感測器、所述第二感測器、所述第三感測器 及所述第四感測器,分別聯接到所述各對準構件, 所述驅動器,對應於設置在所述雷射共鳴器及所述對 準構件之間的所述反射器中之每一者而安裝多個,以驅動 所述反射器,以及 所述控制器,控制所述驅動器中之每一者以使所述雷 射束穿過所述對準構件中之每一者的所述通孔的所述中 0 7·如申請專利範圍第6項所述之雷射處理設備,其中 所述光學系統包括勻質器, 第一反射器、第二反射器及第三反射器設置在所述雷 射共鳴器及所述對準構件之間,並且沿著所述雷射束的所 述行進路徑依序地設置, 第一對準構件、所述勻質器及第二對準構件,設置在 所述第二反射器及所述第三反射器之間,並且沿所述雷射 束的所述行進路徑依序地設置, 所述第一反射器及所述第二反射器,各藉由第一驅動 器及第二驅動器而驅動,以及 所述控制器控制所述第一驅動器及所述第二驅動器, 以使所述雷射束的所述中心穿過所述第一對準構件的所述 通孔及所述第二對準構件的所述通孔的各自的中心。 &如申請專利範圍第3項至第7項中之任一項所述之 雷射處理設備,其中所述雷射束對準單元還包括: 感測器致動器,驅動所述感測器移動而靠近或遠離所 29 200930489 述通孔的所述中心;以及 對準構件致動器,驅動所述對準構件以在與穿過所 通孔的所述雷射束的所述行進路徑交又的方向上二 對準構件。 9·如申請專利顧第8項所述之雷射處理設備, ❹ 所述控制器基於人射到所述對準構件的所述通孔上時ς 雷^束,控制所述驅動器及所述對準構件_中 Si:者來: = 來阻擋所述雷射束 射束的輪康。 準構件的觀通孔的所述雷 〇 30200930489 / ΑΙΑ 七 VII, the scope of application for patents: 1. A laser processing equipment, including: the laser resonator 'make the laser beam a total of π birds; the light (four) system', the transformation by the resonance of the material "resonance" a material "to make the laser beam have an energy density of beam rot with a beam of money; a reaction chamber in which the laser beam is transformed by the optical system, radiation To a processing object disposed in the reaction chamber; an inverse (four) 'set (four) between the resonator and the reaction chamber to reflect the laser beam; and a laser beam alignment unit that will radiate to The laser beam alignment in the reaction chamber, the laser beam alignment unit including an alignment member, a pair of women between the reflector and the processing object, and disposed on the travel of the laser beam In the path, the alignment member defines a through hole having an area larger than a cross sectional area of the laser beam to allow the laser beam to pass, and an n driver driving the reflector to control The row of the laser beam reflected by the reflector a path, and a controller 'controlling the driver to control a distance between a center of the laser beam and a center of the through hole based on the pass when the laser beam passes through the alignment member 2. The laser processing apparatus of claim 1, wherein the controller controls the driver to pass the center of the laser beam through the through hole The laser processing apparatus of claim 2, wherein the laser beam aligning unit ' further includes a coupling member respectively coupled to the alignment member and disposed in the a first sensor and a _ sensor at either side of the aperture to detect the incident laser beam and output a detection signal to the controller when detecting the laser beam The distance between the first sensor and the first sensor allows the laser beam to pass between the first detector and the second sensor, where When a sensor detects the laser beam and outputs the detection signal, the The controller drives the driver until the second sensor outputs the detection signal and the first sensor outputs the detection signal again, after which the controller outputs a driving signal for the first reference time. Driving the driver such that the center of the laser beam passes through the center of the through hole, wherein the first reference time is based on a time when the detection signal is output from the first sensor And extending to a time when the first sensor outputs the detection signal again, and © when the first sensor and the second sensor are both from the laser beam When the traveling path deviates and does not output the detection signal, the controller drives the driver until the first sensor outputs the detection signal, and the first sensor outputs the detection signal And thereafter, the controller outputs the driving signal to drive the driver to pass the center of the laser beam through the center of the through hole in a second reference time, wherein the Two-parameter Time of the detection signal is output from the first sensor based on the time point, the time point extends 26200930489 detecting signals of said second set time sensor output. 4. The laser processing apparatus of claim 3, wherein the laser beam aligning unit further comprises a third sensor and a fourth sensing, and the respective components are arranged and arranged. Provided at the opposite portion of the through hole and radially disposed around the center of the through hole with the first sensor and the second sensor, the third sense The detector and the fourth sensor detect the incident laser beam, and output a detection signal to the controller when detecting the ❹ laser beam, the third sensor and the first a distance between the four sensors, such that the laser beam can pass between the first sensor and the second sensor, wherein the thunder is detected by the third sensor When the beam is output and the detection signal is output, the controller drives the driver until the fourth sensor outputs the detection signal and the third sensor outputs the detection signal again, after which the control Outputting a drive signal to drive the driver during a third reference time to cause the laser beam The center passes through the center of the through hole, wherein the third reference time is based on a time point when the detection signal is output from the fourth sensor, to the third sensor again Setting a time point extension time of the detection signal, and deviating from the traveling path of the laser beam at the third sensor and the fourth sensor and not outputting the detection signal The controller drives the driver until the third sensor outputs the detection signal 'and the fourth sensor outputs the detection signal, after which the controller outputs during the fourth reference time The driving signal is driven to drive the drive 27 200930489 to pass the towel of the laser beam through the center of the heart, wherein the fourth reference coffee is based on the third sense The detection signal __ is set by the extension time of the time point at which the signal is output. 5. The laser processing apparatus of claim 4, wherein the first reference time is a time ship 'riding from the initial sensor of the second sensor The first reference time is the time midpoint of the time point at which the detection signal is first described, and the second reference time is when the detection signal is initially rotated from the first sensor to the said The second controller initial = the timing point of the time point of the test signal, and the third reference time of the foot test is the time point from the initial output of the detection signal by the fourth sensor to the third controller a midpoint of time at which the detection signal is initially rotated again, and the fourth reference time is an initial output of the detection signal time point from the third sensor 'rewarding the first call (4) initially The midpoint of the time at which the detection signal is output. 6. The laser processing apparatus of claim 4, wherein the reflector is disposed between the laser resonator and the processing object, and the alignment member is in the Mounting a plurality of the adjacent reflectors, the alignment member is mounted such that the through holes of the alignment member are concentrically disposed, 28 200930489, the first sensor, the first a second sensor, the third sensor and the fourth sensor respectively coupled to the respective alignment members, the driver corresponding to the laser resonator and the alignment A plurality of each of the reflectors between the members are mounted to drive the reflector, and the controller controls each of the drivers to pass the laser beam through The laser processing apparatus of the sixth aspect of the invention, wherein the optical system comprises a homogenizer, a first reflector a second reflector and a third reflector disposed on the laser resonator and the pair Arranging sequentially between the members and along the traveling path of the laser beam, the first alignment member, the homogenizer and the second alignment member are disposed on the second reflector and the Between the third reflectors, and sequentially along the traveling path of the laser beam, the first reflector and the second reflector are respectively provided by the first driver and the second driver Driving, and the controller controls the first driver and the second driver to pass the center of the laser beam through the through hole of the first alignment member and the second Aligning the respective centers of the through holes of the member. The laser processing apparatus of any one of claims 3 to 7, wherein the laser beam aligning unit further comprises: a sensor actuator that drives the sensing The device moves closer to or away from the center of the through hole 29; and an alignment member actuator that drives the alignment member to follow the travel path of the laser beam through the through hole Align the components in the direction of the second alignment. 9. The laser processing apparatus of claim 8, wherein the controller controls the driver and the laser based on a beam when a person hits the through hole of the alignment member. The alignment member _ in Si: comes to: = to block the rotation of the laser beam. The Thunder of the through hole of the quasi-member 30
TW097144747A 2007-11-19 2008-11-19 Laser processing equipment TWI352002B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070117781A KR100939043B1 (en) 2007-11-19 2007-11-19 Laser process equipment

Publications (2)

Publication Number Publication Date
TW200930489A true TW200930489A (en) 2009-07-16
TWI352002B TWI352002B (en) 2011-11-11

Family

ID=40667978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097144747A TWI352002B (en) 2007-11-19 2008-11-19 Laser processing equipment

Country Status (5)

Country Link
JP (1) JP5220121B2 (en)
KR (1) KR100939043B1 (en)
CN (1) CN101868887B (en)
TW (1) TWI352002B (en)
WO (1) WO2009066918A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252583B (en) * 2012-02-20 2016-12-28 株式会社迪思科 Laser processing and laser processing device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2403172B1 (en) * 2011-09-22 2014-12-12 Jeanología, S.L. METHOD AND SYSTEM OF ADJUSTMENT OF THE ALIGNMENT OF A PHOTONIC BEAM
CN104563976B (en) * 2013-10-11 2018-04-27 中国石油化工股份有限公司 Laser perforation system and laser perforating methods
EP3642664A1 (en) * 2017-06-23 2020-04-29 JENOPTIK Optical Systems GmbH Method for supporting an adjustment of a beam expander, adjustment support device and beam expander
EP4056948A1 (en) * 2018-10-26 2022-09-14 Concept Laser GmbH Determination device for determining at least one parameter of an energy beam
KR20210014835A (en) 2019-07-30 2021-02-10 삼성디스플레이 주식회사 Laser annealing apparatus and method of manufacturing substrate having poly-Si layer using the same
JPWO2021145357A1 (en) * 2020-01-15 2021-07-22
CN114505578A (en) * 2020-11-17 2022-05-17 大族激光科技产业集团股份有限公司 Method and device for debugging flight light path

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215107Y2 (en) * 1973-09-26 1977-04-05
JPS60130935A (en) * 1983-12-19 1985-07-12 Mitsubishi Electric Corp Laser beam transmitter
US4879448A (en) * 1988-10-24 1989-11-07 Storage Technology Corporation Apparatus for laser welding and annealing
US5103082A (en) 1990-07-12 1992-04-07 Grumman Aerospace Corporation Automatic laser beam expander-pinhole alignment system
JPH0780671A (en) * 1993-09-16 1995-03-28 Sanyo Mach Works Ltd Method and device for detecting beam abnormality of laser beam machine
JPH09271971A (en) * 1996-04-02 1997-10-21 Shinozaki Seisakusho:Kk Laser beam machine
JP3052928B2 (en) 1998-04-01 2000-06-19 日本電気株式会社 Laser processing equipment
JP2001284281A (en) * 2000-03-30 2001-10-12 Sumitomo Heavy Ind Ltd Laser machining device and method
CA2389607A1 (en) 2000-10-10 2002-04-18 The Trustees Of Columbia University Method and apparatus for processing thin metal layers
JP3903761B2 (en) 2001-10-10 2007-04-11 株式会社日立製作所 Laser annealing method and laser annealing apparatus
US7321114B2 (en) * 2005-03-10 2008-01-22 Hitachi Via Mechanics, Ltd. Apparatus and method for beam drift compensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252583B (en) * 2012-02-20 2016-12-28 株式会社迪思科 Laser processing and laser processing device

Also Published As

Publication number Publication date
JP5220121B2 (en) 2013-06-26
KR100939043B1 (en) 2010-01-27
CN101868887B (en) 2012-10-10
WO2009066918A2 (en) 2009-05-28
JP2011505252A (en) 2011-02-24
TWI352002B (en) 2011-11-11
KR20090051405A (en) 2009-05-22
WO2009066918A3 (en) 2009-09-03
CN101868887A (en) 2010-10-20

Similar Documents

Publication Publication Date Title
TW200930489A (en) Laser processing equipment
US20210200049A1 (en) Portable defect mitigators for electrochromic windows
EP2196836A1 (en) Automatic focusing device and microscope
JP2013506152A5 (en)
CN101733545B (en) Bug repairing apparatus
CN102608098B (en) Confocal raman spectrometer and treatment method for laser path of confocal raman spectrometer
JP2016095135A (en) Range finding device
US10495804B2 (en) Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
CN102192908A (en) Polysilicon thin film inspection method and device thereof
TW201219743A (en) Optical apparatus and method for creating an image of an object
KR102377917B1 (en) Illumination for Fluorescence Imaging Using Objectives
TW201544801A (en) Polarization-axis detector, polarimetry equipment, polarimetry method and polarization light irradiation equipment
KR101088637B1 (en) Slit lamp microscope for tilting detection angle
JP5230240B2 (en) Laser processing equipment
CN107361738B (en) Diaphragm system for ophthalmic device and ophthalmic device
KR101227401B1 (en) Alignment device for scan mirror
KR101929561B1 (en) Display apparatus for supporting field of view control
JP2016095136A (en) Range finding device and calibration method
KR101153270B1 (en) Real time testable dicing device for planar type distributor and test method thereof
US20220176488A1 (en) Laser device
CN117224077B (en) Fundus imaging device
KR20190114065A (en) Automatic Focus Control Module and Surface Defects Detection Device Having The Same
KR100972661B1 (en) Ultra-Red Luminating Apparatus
KR101219385B1 (en) Align device for image sensor of optical system
JP6926494B2 (en) Subjective optometry device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees