TW200929838A - Commutation current generator for magnetic motors - Google Patents

Commutation current generator for magnetic motors Download PDF

Info

Publication number
TW200929838A
TW200929838A TW097139028A TW97139028A TW200929838A TW 200929838 A TW200929838 A TW 200929838A TW 097139028 A TW097139028 A TW 097139028A TW 97139028 A TW97139028 A TW 97139028A TW 200929838 A TW200929838 A TW 200929838A
Authority
TW
Taiwan
Prior art keywords
signal
drive
commutation
commutating
force
Prior art date
Application number
TW097139028A
Other languages
Chinese (zh)
Inventor
Georgo Zorz Angelis
Hendrikus Martinus Wilhelmus Goossens
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200929838A publication Critical patent/TW200929838A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

A commutation current generator (30, 60) for controlling independent orthogonal forces of a magnetic motor (40, 70) including a magnetic track (41, 71) and a forcer (42, 72). The commutation current generator (30, 60) receives a demanded drive force signal (DFX) representative of a demanded drive force required to move the forcer (42, 72) to a desired X drive axis position relative to the magnetic track, a demanded orthogonal force signal (DFZ, DFY) representative of a demanded orthogonal force required to move the forcer (42, 72) to a desired orthogonal axis position relative to the magnetic track, and a sensed drive position signal x (t) representative of a sensed X drive axis position of the forcer (42, 72) relative to the magnetic track. In response thereto, the commutation current generator (30, 60) applies a superimposition of commutation orthogonal currents (IZ1-IZ3, IY1-IY3) on commutation drive currents (IX1-IX3) to the forcer (42, 72) for controlling the independent orthogonal forces.

Description

200929838 九、發明說明: 【發明所屬之技術領域】 本發明一般而言係關於用於控制磁鐵馬達的換向裝置。 本發明具體而言係關於回應於兩個或更多個所需求力信號 用於藉由兩個或更多個正交換向定律之疊合控制磁鐵馬達 之獨立正交力之換向電流產生器。 【先前技術】 圖1圖解闡釋採用一磁軌21及一具有多個線圈(未顯示) 之二相出力動子22之一磁鐵馬達20之一側視圖。如在此項 技術中已知’磁軌21採用複數個磁鐵N、S用於產生一跨越 一線性氣隙(未顯示)之磁場,其中出力動子22之線圈經設 計而設置於該線性氣隙内,藉此換向電流產生器1〇將換向 驅動電流Ιχι、【以及IX3施加至出力動子22之相應線圈僅產 生一平行於一 X驅動軸且正交於一 γ橫切軸(未顯示)及一 z 浮置軸之驅動力Fx。為此目的,換向電流產生器1〇回應於 一所需求驅動力信號DFX而產生換向驅動電流Ιχι、ιχ2及 Ιχ3 ’ e亥所需求驅動力信號表示一將出力動子22相對於磁軌 22驅動至出力動子22之一合意X驅動位置所需之所需求驅 動力。在此情況下’鑒於對一馬達而言一所得力等於電流 乘以一馬達常數k之事實,該表示與該所需求驅動力成比 例。換向電流產生器1 〇回應於一所感測驅動位置信號x(t) 而進一步產生換向驅動電流Ιχ1、1?(2及Ιχ3,該所感測驅動 位置信號表示出力動子22在任一既定時刻相對於磁軌21之 一所感測X驅動位置’如一感測器3〇(例如,一絕對位置感 133401.doc 200929838 測器、一相對位置感測器或一磁通量感測器)所感測。 具體而s,如圖2中所示,換向電流產生器1〇採用一具 有一解碼器12、一乘法器13及一乘法器14之換向信號產生 器11。解碼器12根據以下方程式[1H3]執行對所感測驅動 位置仏號x(t)之一相移解碼以產生一對經解碼驅動位置信 號 XP1 及 XP2 : [1] [2] [3] 距且μ係一 Θ=2*π/Ρ * χ(ί)+μ XP1=SIN(0)200929838 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates generally to a reversing device for controlling a magnet motor. More particularly, the present invention relates to a commutating current generator for controlling the independent orthogonal force of a magnet motor by superimposing two or more required force signals in response to two or more desired force signals. [Prior Art] Fig. 1 illustrates a side view of a magnet motor 20 using a magnetic track 21 and a two-phase output mover 22 having a plurality of coils (not shown). As is known in the art, the magnetic track 21 employs a plurality of magnets N, S for generating a magnetic field across a linear air gap (not shown), wherein the coil of the output mover 22 is designed to be placed in the linear gas. Within the gap, thereby the commutating current generator 1 〇 applies the commutating drive current Ιχ, [and IX3 to the respective coils of the output mover 22 to produce only one parallel to an X drive axis and orthogonal to a γ cross cut axis ( Not shown) and the driving force Fx of a z-floating axis. For this purpose, the commutating current generator 1 产生 generates a commutation drive current Ιχι, ιχ2, and Ιχ3 in response to a required driving force signal DFX. The required driving force signal indicates that the output rotor 22 is relative to the magnetic track. 22 drives to one of the output actuators 22 to meet the required driving force required for the X drive position. In this case, in view of the fact that a resultant force for a motor is equal to the current multiplied by a motor constant k, the representation is proportional to the required driving force. The commutating current generator 1 进一步 further generates a commutation drive current Ιχ1, 1? (2 and Ιχ3) in response to a sensed drive position signal x(t), the sensed drive position signal indicating that the force mover 22 is at any given time The X drive position is sensed relative to one of the tracks 21 as sensed by a sensor 3 (eg, an absolute position sense 133401.doc 200929838 detector, a relative position sensor, or a magnetic flux sensor). And s, as shown in Fig. 2, the commutating current generator 1 〇 employs a commutating signal generator 11 having a decoder 12, a multiplier 13 and a multiplier 14. The decoder 12 is based on the following equation [1H3 Performing phase shift decoding on one of the sensed drive position apostrophes x(t) to generate a pair of decoded drive position signals XP1 and XP2: [1] [2] [3] distance and μ system Θ = 2 * π /Ρ * χ(ί)+μ XP1=SIN(0)

❹ XP2=SIN(e+2it/3) 其中P係磁執21之磁鐵之磁北_北或南-南之間 靜態換向偏移。. 乘法器13執行所需求驅動力信號D F χ與經解碼驅動位置 信號χρι之一相乘以產生一換向驅動信號CX1,且乘法器 14執行所需求驅動力信號DFX與經解碼驅動位置信號χρ2 之一相乘以產生一換向驅動信號CX2。 轉而,換向電流產生器1〇之一功率放大器15執行換向驅 動信號CX1及CX2之一功率放大以產生相應換向驅動電流 Ζχι及1x2。功率放大器1 5進一步執行換向驅動電流之一 240相移以產生換向電流ιχ3 ^另一選擇為,解碼器12在結 構上可經組態以產生一額外驅動位置信號,藉此將使用一 額外乘法器以產生一額外換向驅動信號CX3(未顯示)且將 以一三(3)輸入單相功率放大器替換功率放大器15以產生換 向驅動電流IX1、IX2及IX3。 【發明内容】 133401.doc 200929838 儘管本發明之受讓人先前已使用換向電流產生器用於僅 控制磁鐵馬達之一驅動力(如圖1中所述),但本發明提供各 種新且獨特形式之換向電流產生器用於控制AngeHs等人之 國際公開案第WO 2007/026270 A1號(下文稱「Angelis公開 案」)中所述類型之磁鐵馬達之正交力’該公開案係由本 發明之受讓人所擁有且其以全文引用的方式倂入本文中。 本發明之一第一實例性形式係一種包括一磁鐵馬達及一 換向電流產生器之系統。該磁鐵馬達包含一產生一跨越一 線性氣隙具有一 X驅動軸、一 γ橫切軸及一 z浮置軸之磁場 之磁執,及一設置於該線性氣隙内之出力動子。 在一第一操作模式中,該換向電流產生器回應於一所需 求驅動力信號、一所需求浮置力信號及一所感測驅動位置 信號,將換向浮置電流在換向驅動電流上之一疊加施加至 該出力動子,該所需求驅動力信號表示一將該出力動子相 對於該磁軌移動至一合意X驅動轴位置所需之所需求的驅 動力,該所需求浮置力信號表示一將該出力動子相對於該 磁執移動至一合意Z浮置軸位置所需之所需求的浮置力, 而該所感測驅動位置信號表示該出力動子相對於該磁軌之 一所感測X驅動軸的位置。轉而,該出力動子回應於該換 向電流產生器,將該換向驅動電流施加至該出力動子而產 生一平行於該X驅動軸且正交於該2浮置軸之驅動力,且 回應於該換向電流產生器’將該換向浮置電流施加至該出 力動子而產生一正交於該χ驅動軸且平行於該z浮置軸之 浮置力。 133401.doc 200929838 、在—第二操作模式中,該換向電流產生器回應於一所需 f驅動力信號、—所需求橫切力信號及—所感測驅動位置 .:3號’將換向橫切電流在換向驅動電流上之一疊加施加至 • X出力動子’ 5亥所需求驅動力信號表示-將該出力動子相 丨;°亥磁軌移動至-合意x驅動軸位置所需之所需求的驅 自力’該所需求橫切力信號表示__將該出力動子相對於該 磁軌移動至-合意Y橫切軸位置所需之所需求的橫切力, 巾。所感測驅動位置信號表示該出力動子相對於該磁軌之 一所感測x驅動軸的位置。轉而,該出力動子回應於換向 驅動電流施加至該出力動子,產生一平行於該乂驅動袖且 • 丨交於該γ橫切軸之驅動力,且回應於換向橫切電流施加 I出力動子產生一正父於該X驅動轴且平行於該γ橫 切轴之橫切力。 本發明之一第二實例性形式係一種操作一用於控制一磁 鐵馬達之換向電流產生器之方法,該馬達包含一產生一跨 〇 越一線性氣隙,具有一X驅動軸、一Y橫切軸及一z浮置軸 之磁場的磁軌,及一設置於該線性氣隙内之出力動子。該 方法涉及由該換向電流產生器接收一所需求驅動力信號、 一所需求正交力信號及一所感測驅動位置信號x(t),該所 . 需求驅動力信號表示一將該出力動子相對於該磁軌移動至 一合意X驅動軸位置所需之所需求的驅動力,該所需求正 父力信號表示一將該出力動子相對於該磁軌移動至一合竟 正交軸位置所需之所需求的正交力’而該所感測驅動位置 信號表示該出力動子相對於該磁軌之一所感測X驅動軸位 133401.doc •10- 200929838 置。回應於此,該方法進一步涉及由該換向電流產生器將 換向正交電流在換向驅動電流(ιχι·1χ3)上之一疊加施加至 該出力動子。 【實施方式】 ❹ 圖3圖解闡釋一磁鐵馬達40之一側視圖,該馬達採用一 磁軌41及一具有多個線圈(未顯示)之三相出力動子42。根 據Angelis公開案’磁軌40採用複數個磁鐵ν、s以用於產 生一跨越一線性氣隙(未顯示)之磁場,其中出力動子42之 線圈經設計而設置於該線性氣隙内,藉此一換向電流產生 器30將疊加正交換向電流IX1/Z1、、^及Ιχ3,Ζ3施加至出力 動子42之相應線圈會獨立地產生驅動力Fx及一浮置力&兩 者,該驅動力Fx平行於一 X驅動轴且正交於一 γ橫切轴(未 顯示)及一 Z浮置轴,而該浮置力Fz平行於該乙浮置軸且正 交於該X驅動軸及該Y橫切轴。 為此目的,換向電流產生器30回應於一所需求驅動力信 號DFX及一所需求浮置力信號DFZ而產生疊加正交換向電 流Ιχι/Ζ1、Ιχυζ2及Ixs/z3,該所需求驅動力信號表示一將出 力動子42相對於磁軌41移動至一合意Χ驅動位置所需之所 需求驅動力,及該所需求浮置力信號表示一將出力動子“ 相對於磁軌41移動至一合意ζ驅動位置所需之所需求浮置 力。在此情況下,鑒於對一馬達而言一所得力等於電流乘 以-馬達常數k之事實’該表示與該等相應所需求力成比 例。換向電流產生器30回應於一所感測驅動 而進-步產生叠加正交換向電流一χ2^ 133401.doc -11- 200929838 所感測驅動位置信號表示出力動子42在任一既定時刻相對 於磁軌41之一所感測X驅動位置,如感測器5〇(例如,一絕 對位置感測器、一相對位置感測器或一磁通量感測器)所 感測。 具體而言,如圖4中所示’換向電流產生器3〇採用一具 有一解碼器32、四(4)個乘法器33-36及兩(2)個加法器37及 38之換向信號產生器31。解碼器32根據以下方程式[丨]·^] 執行對所感測驅動位置信號x(t)之一相移解碼以產生四(4) 個經相移解碼驅動位置信號χΡ1_ΧΡ4 : Θ=2*π/Ρ * χ(ί) + μ [1] XP1=SIN(0) [2] XP2=SIN(0+2tc/3) [3] XP3 = COS(0) [4] XP4=COS(0+2ti/3) [5] 其中P係磁軌41之磁鐵之磁北-北或南. -南之間距且μ係一 靜態換向偏移。在此情況下,相應地將經解碼驅動位置信 號ΧΡ2-ΧΡ4自經解碼驅動位置信號ΧΡ1相移12〇〇、9〇。及 210。。 乘法器33執行所需求驅動力信號DFX與經解碼驅動位置 信號ΧΡ1之一相乘,以產生一換向驅動信號CX1。乘法器 34執行所需求驅動力信號DFX與經解碼驅動位置信號χρ2 之一相乘,以產生一換向驅動信號CX2。乘法器35執行所 需求浮置力信號DFZ與經解碼驅動位置信號ΧΡ3之一相 乘,以產生一換向浮置信號CZ1。乘法器36執行所需求浮 133401.doc 12 200929838 置力信號DFZ與經解碼驅動位置信號xp4i 一相乘,以產 生一換向浮置信號CZ2。 . 加法器37執行換向浮置信號CZ1在換向驅動信號CX1上 . 之一疊加,以產生疊加正交換向信號SCI,且加法器38執 行換向浮置信號CZ2在換向驅動信號CX2上之一疊加,以 產生疊加正交換向信號SC2。轉而,換向電流產生器3〇之 一功率放大器39執行疊加正交換向信號sci及SC2之一功 率放大,以產生相應疊加正交換向電流1)(1/21及IX2/Z2。功 率放大器39進一步執行對疊加正交換向電流Ιχι/ζι之一 24〇。 相移,以產生疊加正交換向電流Ιχ3/ζ3。 • 因此,如圖5中所示,換向驅動電流ΙΧ1-ΙΧ3具有一12〇。相 移S1且換向序置電流Izl-Iz3具有相同之120。相移β此 外,如Angelis公開案所教示,換向浮置電流12^_123在換向 驅動電流IX1-IX3上之疊加具有一 9〇。相移PS2,以促進獨立 控制驅動力Fx(圖3)及浮置力fz(圖3)。 ❹ 在替代二相實施例中’解碼器32在結構上將經組態以 產生額外經解碼驅動位置信號,藉此將使用兩(2)個額外乘 法器來產生一額外換向驅動信號CX3(未顯示)及一額外換 向浮置k號CZ3(未顯示),將使用一額外加法器將該額外 . 換向浮置信號CX3疊加於該額外換向驅動信號cZ3上,且 功率放大器39在結構上將被組態成一三(3)輸入單相放大 器,以產生疊加正交換向電流Ιχι/Ζ1、Ιχ2/Ζ2&Ιχ3/ζ3。 在一替代兩相實施例中,解碼器22根據以下方程式^卜 [5]執行對所感測驅動位置信號χ(〇之一相移解碼以產生四 133401.doc •13- 200929838 (4)個經相移解碼驅動位置信號χρ 1 _χρ* : [1] [2] [3] [4] [5] Θ=2*π/Ρ * χ(ί)+μ XP1 = SIN(0) XP2 = SIN(0+tu/2) XP3 = COS(0) XP4=COS(e+Tt/2)❹ XP2=SIN(e+2it/3) where P is the magnetic north of the magnetic magnet 21 _ north or south-south between the static commutation offset. The multiplier 13 performs multiplication of the required driving force signal DF χ with one of the decoded driving position signals χρι to generate a commutation driving signal CX1, and the multiplier 14 performs the required driving force signal DFX and the decoded driving position signal χρ2 One of them is multiplied to generate a commutation drive signal CX2. In turn, one of the commutating current generators 1 功率 power amplifier 15 performs power amplification of one of the commutation drive signals CX1 and CX2 to generate respective commutation drive currents Ζχι and 1x2. The power amplifier 15 further performs a phase shift of one of the commutation drive currents 240 to produce a commutating current ι 3 ^. Alternatively, the decoder 12 is structurally configurable to generate an additional drive position signal, whereby a An additional multiplier is used to generate an additional commutation drive signal CX3 (not shown) and the power amplifier 15 will be replaced with a three (3) input single phase power amplifier to produce commutation drive currents IX1, IX2 and IX3. SUMMARY OF THE INVENTION 133401.doc 200929838 Although the assignee of the present invention has previously used a commutating current generator for controlling only one of the driving forces of a magnet motor (as described in Figure 1), the present invention provides various new and unique forms. The commutating current generator is used to control the orthogonal force of a magnet motor of the type described in International Publication No. WO 2007/026270 A1 (hereinafter referred to as "Angelis Publication") by Ange Hs et al. The assignee owns and is referred to in this article in full text. A first exemplary form of the invention is a system comprising a magnet motor and a commutating current generator. The magnet motor includes a magnetic actuator that generates a magnetic field having an X drive shaft, a γ cross cut axis, and a z floating axis across a linear air gap, and an output mover disposed in the linear air gap. In a first mode of operation, the commutating current generator responds to a required driving force signal, a required floating force signal, and a sensed driving position signal to commutate the floating current on the commutating drive current. One of the superposition applied to the output mover, the required drive force signal indicating a required driving force required to move the output mover relative to the magnetic track to a desired X drive shaft position, the required floating The force signal represents a required floating force required to move the output mover relative to the magnetic hold to a desired Z-floating axis position, and the sensed drive position signal indicates the output mover relative to the track One senses the position of the X drive shaft. In turn, the output mover responds to the commutating current generator, and applies the commutating drive current to the output mover to generate a driving force parallel to the X drive shaft and orthogonal to the 2 floating shaft. And in response to the commutating current generator 'applying the commutating floating current to the output moving mover to generate a floating force orthogonal to the crucible drive shaft and parallel to the z-floating axis. 133401.doc 200929838, in the second mode of operation, the commutating current generator is responsive to a desired f driving force signal, - the required transverse force signal and - the sensed driving position.: 3 'will be reversed The cross-cut current is superimposed on one of the commutation drive currents to the • X output mover '5' required drive force signal representation - the output mover is opposite to each other; the ° magnetic track is moved to - the desired x drive shaft position Requires the required drive force 'The required cross-cut force signal indicates __ the desired cross-cut force required to move the output mover relative to the track to the desired Y transverse axis position. The sensed drive position signal indicates the position of the output mover relative to a sense x drive shaft of the track. In turn, the output mover is responsive to the commutation drive current applied to the output mover to generate a driving force parallel to the 乂 drive sleeve and to the γ transverse axis, and in response to the commutation transverse current Applying an I output mover produces a transverse force that is normal to the X drive axis and parallel to the gamma transverse axis. A second exemplary form of the present invention is a method of operating a commutating current generator for controlling a magnet motor, the motor comprising a generating a crossover, a linear air gap, having an X drive shaft, a Y a magnetic track transverse to the axis and a magnetic field of the z-axis, and an output mover disposed in the linear air gap. The method relates to receiving, by the commutating current generator, a required driving force signal, a required orthogonal force signal, and a sensing driving position signal x(t), wherein the required driving force signal indicates that the driving force is to be driven The required driving force required to move the track relative to the track to a desired X drive shaft position, the required positive father force signal indicating that the output mover is moved relative to the track to a coincident orthogonal axis The required orthogonal force required for the position' and the sensed drive position signal indicates that the output mover senses the X drive axis 133401.doc •10-200929838 relative to one of the tracks. In response thereto, the method further involves superimposing, by the commutating current generator, a commutating quadrature current on the one of the commutation drive currents (ι ι χ 1 χ 3) to the output ram. [Embodiment] FIG. 3 illustrates a side view of a magnet motor 40 which employs a magnetic track 41 and a three-phase output mover 42 having a plurality of coils (not shown). According to the Angelis publication, the magnetic track 40 employs a plurality of magnets ν, s for generating a magnetic field across a linear air gap (not shown), wherein the coil of the output mover 42 is designed to be disposed within the linear air gap, Thereby, the commutating current generator 30 applies the superimposed positive exchange to the currents IX1/Z1, ^ and Ιχ3, and the 线圈3 is applied to the corresponding coil of the output ejector 42 to independently generate the driving force Fx and a floating force & The driving force Fx is parallel to an X drive axis and orthogonal to a γ transverse axis (not shown) and a Z floating axis, and the floating force Fz is parallel to the B floating axis and orthogonal to the X The drive shaft and the Y transverse axis. For this purpose, the commutating current generator 30 generates superimposed positive commutating currents Ιχι/Ζ1, Ιχυζ2 and Ixs/z3 in response to a required driving force signal DFX and a required floating force signal DFZ, the required driving force The signal indicates a required driving force required to move the output mover 42 relative to the track 41 to a desired drive position, and the desired float force signal indicates that the output mover "moves relative to the track 41 to A desired floating force required to drive the position. In this case, in view of the fact that a force for a motor is equal to the current multiplied by the - motor constant k, the representation is proportional to the corresponding required force The commutating current generator 30 generates a superimposed positive commutating current in response to a sensing drive. The sensed driving position signal indicates that the force mover 42 is opposite to the magnetic at any given time. One of the tracks 41 senses the X drive position, as sensed by a sensor 5 (eg, an absolute position sensor, a relative position sensor, or a magnetic flux sensor). Specifically, as in FIG. 'Reflection The current generator 3A employs a commutation signal generator 31 having a decoder 32, four (4) multipliers 33-36 and two (2) adders 37 and 38. The decoder 32 is based on the following equation [丨]·^] Perform phase shift decoding on one of the sensed drive position signals x(t) to generate four (4) phase-shifted decoded drive position signals χΡ1_ΧΡ4 : Θ=2*π/Ρ * χ(ί) + μ [1] XP1=SIN(0) [2] XP2=SIN(0+2tc/3) [3] XP3 = COS(0) [4] XP4=COS(0+2ti/3) [5] where P is The magnets of the magnetic track 41 are magnetic north-north or south. - the distance between the south and the μ is a static commutation offset. In this case, the decoded drive position signal ΧΡ2-ΧΡ4 is correspondingly decoded from the drive position signal ΧΡ1 phase. Shifting 12〇〇, 9〇, and 210. The multiplier 33 performs the required driving force signal DFX multiplied by one of the decoded driving position signals ΧΡ1 to generate a commutation driving signal CX1. The multiplier 34 performs the required driving. The force signal DFX is multiplied by one of the decoded drive position signals χρ2 to generate a commutation drive signal CX2. The multiplier 35 performs one of the required floating force signal DFZ and the decoded drive position signal ΧΡ3. Multiply to generate a commutation floating signal CZ1. Multiplier 36 performs the required float 133401.doc 12 200929838 The boost signal DFZ is multiplied by the decoded drive position signal xp4i to produce a commutated floating signal CZ2. The adder 37 performs a superposition of the commutation floating signal CZ1 on the commutation drive signal CX1 to generate a superimposed positive commutation signal SCI, and the adder 38 performs a commutation floating signal CZ2 on the commutation drive signal CX2. A superposition is performed to generate a superimposed positive commutation signal SC2. In turn, one of the commutating current generators 3 功率 power amplifier 39 performs power amplification of one of the superimposed positive switching signals sci and SC2 to generate a corresponding superimposed positive commutating current 1) (1/21 and IX2/Z2. Power Amplifier) 39 further performs a superposition of the positive commutating current Ιχι/ζι by one of the 24 〇 phase shifts to generate a superimposed positive commutating current Ιχ3/ζ3. • Therefore, as shown in FIG. 5, the commutating drive current ΙΧ1-ΙΧ3 has a 12〇. Phase shift S1 and commutation sequence current Izl-Iz3 have the same 120. Phase shift β In addition, as taught by the Angelis publication, the commutation floating current 12^_123 is on the commutation drive current IX1-IX3 The superposition has a 9 〇 phase shift PS2 to facilitate independent control of the driving force Fx (Fig. 3) and the floating force fz (Fig. 3). ❹ In the alternative two-phase embodiment, the decoder 32 will be configured in the structure. To generate an additional decoded drive position signal, whereby two (2) additional multipliers will be used to generate an additional commutation drive signal CX3 (not shown) and an additional commutation float k number CZ3 (not shown), The extra. commutation floating signal CX3 is superimposed on the extra using an additional adder The commutation drive signal cZ3 is, and the power amplifier 39 is structurally configured as a three (3) input single phase amplifier to produce a superimposed positive commutating current Ιχι/Ζ1, Ιχ2/Ζ2&Ιχ3/ζ3. In the alternative two-phase embodiment, the decoder 22 performs a phase shift on the sensed drive position signal χ according to the following equation [5] to generate four 133401.doc •13-200929838 (4) phase shifts. Decode the drive position signal χρ 1 _χρ* : [1] [2] [3] [4] [5] Θ=2*π/Ρ * χ(ί)+μ XP1 = SIN(0) XP2 = SIN(0+ Tu/2) XP3 = COS(0) XP4=COS(e+Tt/2)

圖6圖解闡釋一磁鐵馬達7〇之一仰視圖,該馬達採用一 磁軌71及一具有多個線圈(未顯示)之三相出力動子72。根 據Angelis公開案,磁軌7〇採用複數個磁鐵N、s以用於產 生一跨越一線性氣隙(未顯示)之磁場,其中出力動子72之 線圈經設計而設置於該線性氣隙内,藉此一換向電流產生 器60將疊加正交換向電流Ιχι/γι、Ιχ2/γ2及^3施加至出力 動子72之相應線圈獨立地產生一驅動力Fx及一橫切力fy兩 者,該驅動力FX平行於—χ驅動轴且正交於一 γ橫切軸(未 顯示)及一 ζ橫切軸,而該橫切力FY平行於該¥浮置軸且正 交於該X驅動軸及該z橫切軸。 為此目的,換向電流產生器60回應於一所需求驅動力信 號DFX及-所需求橫切力信號耐而產生叠加正交換向電 流IxwY1、km及lx”3’該所需求驅動力信號表示一將出 力動子72相對於磁軌71移動至一合意χ驅動位置所需之所 需求驅動力,及該所需求橫切力信號表示一將出力動子Μ 相對於磁執71移動至一合音γ躯私 σ蒽γ驅動位置所需之所需求橫切 力。在此情況下1於對—馬達而言—所得力等於電流乘 以-馬達常數k之事實,該等表示與料相應所需求力成 133401.doc •14- 200929838 比例。換向電流產生器60回應於一所感測驅動位置信號 Χ⑴而進—步產生疊加正交換向電流I幻m、ΙΧ2/Υ2及 Ιχρυ3 ’該所感測驅動位置信號表示出力動子72在任一既 定時刻相對於磁軌7丨之一所感測又驅動位置,如一感測器 80(例如,一絕對位置感測器、一相對位置感測器或一磁 通量感測器)所感測。 ΟFig. 6 illustrates a bottom view of a magnet motor 7'', which employs a magnetic track 71 and a three-phase output mover 72 having a plurality of coils (not shown). According to the Angelis publication, the magnetic track 7〇 employs a plurality of magnets N, s for generating a magnetic field across a linear air gap (not shown), wherein the coil of the output mover 72 is designed to be disposed within the linear air gap. Thereby, a commutating current generator 60 independently generates a driving force Fx and a transverse force fy by applying the superimposed positive exchange to the current coils of the output force /ι/γι, Ιχ2/γ2 and ^3 to the output mover 72. The driving force FX is parallel to the χ drive axis and orthogonal to a γ transverse axis (not shown) and a ζ transverse axis, and the transverse force FY is parallel to the ¥ floating axis and orthogonal to the X The drive shaft and the z transverse axis. For this purpose, the commutating current generator 60 generates a superimposed positive commutating current IxwY1, km and lx"3' in response to a required driving force signal DFX and a required cross-cutting force signal resistance. A required driving force required to move the output mover 72 relative to the track 71 to a desired drive position, and the required cross-cut force signal indicates that the output mover 移动 is moved relative to the magnetic actuator 71. The required transverse force required for the position of the sound gamma σ 蒽 γ driving position. In this case 1 in the case of the motor - the resulting force is equal to the current multiplied by the motor constant k, which corresponds to the material The demand force is 133401.doc •14-200929838. The commutating current generator 60 responds to a sensed drive position signal Χ(1) and generates a superimposed positive commutating current I illusion m, ΙΧ2/Υ2, and Ιχρυ3 ' The drive position signal indicates the sensed and driven position of the force mover 72 relative to one of the tracks 7 at any given time, such as a sensor 80 (eg, an absolute position sensor, a relative position sensor, or a magnetic flux) Sensor) Measure. Ο

具體而言,如圖7中所示,換向電流產生器6〇採用一具 有一解碼器62、四(4)個乘法器63-66及兩個加法器67及68 之換向信號產生器61。解碼器62根據以下方程式[1H5]a 行對所感測驅動位置信號x(t)之一相移解碼以產生四(4)個 經相移解碼驅動位置信號XP1—XP4 : [1] [2] [3] [4] Θ=2*π/Ρ ♦ χ(ΐ)+μ XP1=SIN(0) ΧΡ2=8ΙΝ(θ+2π/3) XP3=COS(0) XP4=COS(e + 27t/3) [5] 其中P係磁軌71之磁鐵之磁北-北或南-南之間距且μ係一 靜態換向偏移。在此情況下,相應地使經解碼驅動位置信 號ΧΡ2-ΧΡ4自經解碼驅動位置信號χρι相移12〇。、9〇。及 210。。 乘法器63執行所需求驅動力信號DFX與經解碼驅動位置 信號ΧΡ1之一相乘以產生一換向驅動信號CX1。乘法器64 執行所需求驅動力信號DFX與經解碼驅動位置信號χρ2之 一相乘以產生一換向驅動信號CX2。乘法器65執行所需求 133401.doc 200929838 橫切力信號DFY與經解碼驅動位置信號χΡ3之一相乘以產 生一換向橫切信號CY1 ^乘法器66執行所需求橫切力信號 DFY與經解碼驅動位置信號XP4之—相乘以產生一換向橫 切信號CY2。 加法器67執行換向橫切信號CY1在換向驅動信號cx 1上 之一疊加以產生疊加正交換向信號SCI,而加法器68執行 換向橫切信號CY2在換向驅動信號CX2上之一疊加以產生 登加正交換向信號SC2。轉而,換向電流產生器6〇之一功 率放大器69執行疊加正交換向信號sci及SC2之一功率放 大以產生相應疊加正交換向電流Ixim及Ιχ2/γ2。功率放大 器39進一步執行疊加正交換向電流Ιχι/γι之一 24〇。相移以產 生疊加正交換向電流ιΧ3/Υ3。 因此,如圖8中所示,換向驅動電流匕^幻具有一 12〇。相 移PS1,且換向橫切電流Ιγι·Ιγ3亦具有一 12〇。相移PS1。此 外,如Angelis公開案所教示,換向橫切電流Ιγι_ΐγ3在換向 驅動電流ιχ1·ιΧ3上之疊加具有一 90。相移PS2以促進獨立控 制驅動力Fx(圖3)及橫切力ργ(圖3)。 在一替代三相實施例中,解碼器62在結構上將經組態以 產生額外經解碼驅動位置信號,藉此將使用兩個額外乘 法器以產生一額外換向驅動信號CX3(未顯示)及一額外換 向橫切信號CY3(未顯示),將使用一額外加法器將該額外 換向橫切信號CY3叠加在該額外換向驅動信號⑶上,且 功率放大器69在結構上將被組態成一三⑺輸入單相放大器 以產生疊加正交換向電流Ιχι/γ]、及—η。 13340I.doc •16· 200929838 在一替代兩相實施例中,解碼器62根據以下方程式[1]-[5]執行對所感測驅動位置信號x(t)之一相移解碼以產生四 (4)個經相移解碼驅動位置信號χρΐ_ΧΡ4 : Θ=2*π/Ρ * χ(ί)+μ [1] XP1 = SIN(6) [2] XP2=SIN(e+Tt/2) [3] XP3=COS(0) μ]Specifically, as shown in FIG. 7, the commutating current generator 6A employs a commutating signal generator having a decoder 62, four (4) multipliers 63-66, and two adders 67 and 68. 61. The decoder 62 phase-shifts one of the sensed drive position signals x(t) according to the following equation [1H5]a to generate four (4) phase-shifted decoded drive position signals XP1 - XP4: [1] [2] [3] [4] Θ=2*π/Ρ ♦ χ(ΐ)+μ XP1=SIN(0) ΧΡ2=8ΙΝ(θ+2π/3) XP3=COS(0) XP4=COS(e + 27t/ 3) [5] The magnetic north-north or south-south distance of the magnet of the P-track 71 is a static commutation offset. In this case, the decoded drive position signal ΧΡ2-ΧΡ4 is accordingly shifted from the decoded drive position signal χρι by 12 。. 9, 〇. And 210. . The multiplier 63 performs the required driving force signal DFX multiplied by one of the decoded driving position signals ΧΡ1 to generate a commutation driving signal CX1. The multiplier 64 performs multiplication of the required driving force signal DFX with one of the decoded driving position signals χρ2 to generate a commutation driving signal CX2. The multiplier 65 performs the required 133401.doc 200929838 cross-cutting force signal DFY multiplied by one of the decoded drive position signals χΡ3 to generate a commutation cross-cut signal CY1. The multiplier 66 performs the required cross-cut force signal DFY and decoded. The drive position signal XP4 is multiplied to generate a commutation cross-cut signal CY2. The adder 67 performs superposition of the commutation cross-cut signal CY1 on one of the commutation drive signals cx1 to generate a superimposed positive commutated signal SCI, and the adder 68 performs one of the commutated cross-cut signals CY2 on the commutation drive signal CX2. Superimposed to produce a positive plus exchange signal SC2. In turn, a commutating current generator 6 功 power amplifier 69 performs a power amplification of one of the superimposed positive commutating signals sci and SC2 to produce a corresponding superimposed positive commutating current Ixim and Ιχ2/γ2. The power amplifier 39 further performs superimposition of the positive commutating current Ιχι/γι. The phase shift produces a superimposed positive commutating current ιΧ3/Υ3. Therefore, as shown in Fig. 8, the commutation drive current has a 12 〇. The phase shift PS1, and the commutation transverse current Ιγι·Ιγ3 also has a 12〇. Phase shift PS1. Furthermore, as taught by the Angelis publication, the superposition of the cross-cut current Ιγι_ΐγ3 on the commutation drive current ιχ1·ιΧ3 has a 90. Phase shift PS2 to facilitate independent control of driving force Fx (Fig. 3) and transverse force ργ (Fig. 3). In an alternate three-phase embodiment, decoder 62 will be configured in structure to generate an additional decoded drive position signal, whereby two additional multipliers will be used to generate an additional commutation drive signal CX3 (not shown). And an additional commutation crosscut signal CY3 (not shown) that will be superimposed on the additional commutation drive signal (3) using an additional adder, and the power amplifier 69 will be structurally grouped The state is a three (7) input single-phase amplifier to produce superimposed positive commutating currents Ιχι/γ], and η. 13340I.doc • 16· 200929838 In an alternative two-phase embodiment, decoder 62 performs phase shift decoding on one of the sensed drive position signals x(t) according to equations [1]-[5] below to generate four (4) ) Phase-shifted decoding drive position signal χρΐ_ΧΡ4 : Θ=2*π/Ρ * χ(ί)+μ [1] XP1 = SIN(6) [2] XP2=SIN(e+Tt/2) [3] XP3=COS(0) μ]

Ο XP4=COS(0+7i/2) [5] 實務上,根據本發明之疊加正交換向電流發明原理,本 發明不強加關於一換向電流產生器及一磁鐵馬達之結構組 態之任何限定或任何約束。因此,熟習此項技術者將瞭解 如何將本發明之疊加正交換向電流發明原理應用至換向電 流產生器以用於控制除馬達4〇(圖3)及馬達7〇(圖6)以外之 磁鐵馬達之獨立正交力。特定而言,熟習此項技術者將瞭 解如何在以下背景中應用本發明之疊加正交換向電流發明 原理:(1)一磁軌結構組態之多種改變,(2)一出力動子結 構組態之多種改變,(3)根據Angelis公開案之一磁軌之一 線性氣隙中一出力動子定向之多種改變,(4)出力動子位置 感測器結構組態之多種改變,(5)換向電流之相移範圍, ⑹正交換向電流之相移範圍及⑺換向電流UL斜率及/ 或-負斜率之實施方案。結果係根據本發明之發明原理之 各換向電流產生器組合之多種改變。另外,可相依於產生 器之實際應用在硬體及/或軟體中實施本發明之—換向電 流產生器。 133401.doc 17 200929838 儘管本文令所揭示之本發明實施例目前被視為較佳,但 在不背離本發明精神及範疇之情形下可做各種改動及修 • 改。隨附申請專利範圍中指出本發明範疇,且所有屬於等 . 效内容之意義及範圍内之變動皆意欲涵蓋於申請專利範圍 中。 【圖式簡單說明】 &合附圖閱讀以上對本發明各種實施例之詳細說明,本 ❹ 發明之上述形式及其他形式以及本發明之各種特點及優勢 將變得更加顯而易見。該等詳細說明及圖式僅係對本發明 之圖解闌釋而非限定由隨附申請專利範圍及其等效内容界 定之本發明範疇。 圖1圖解闡釋在此項技術中已知的一換向電流產生器與 一磁鐵馬達之間的一操作交互作用之一視圖; 圖2圖解闡釋在此項技術中已知的圖丨所示的一換向電流 產生器之一實例性實施例之一視圖; 〇 圖3圖解闡釋根據本發明之一換向電流產生器與一磁鐵 馬達之間的一第一實例性操作交互作用之一視圖; ® 4圖解閣釋根據本發明之圖3中所示的換向電流產生器 之一實例性實施例之一視圖; »5.圖解闡釋根據本發明之圖…中所示的換向電流之 一實例性相移之一視圖; 圖6圖解閣釋根據本發明之-換向電流產生器與-磁鐵 馬達之間的一第二實例性操作交互作用之一視圖; 圖7圖解闡釋根據本發明之圖6中所示的換向電流產生器 133401 200929838 之一實例性實施例之一視圖;及 圖8圖解闡釋根據本發明之圖6及7中所示的換向電流之 一實例性相移之一視圖。 【主要元件符號說明】 10 換向電流產生器 11 換向信號產生器 12 解碼器 13 乘法器 ❹ Μ 乘法器 15 功率放大器 20 磁鐵馬達 21 磁軌 ' 22 出力動子/三相出力動子 30 感測器(圖1) 30 換向電流產生器(圖3) © 31 換向信號產生器 32 解碼器 33 乘法器 ' 34 乘法器 . 35 乘法器 36 乘法器 37 加法器 38 加法器 39 功率放大器 133401.doc -19- 200929838 40 磁鐵馬達 41 磁軌 • 42 出力動子/三相出力動子 . 50 感測器 60 換向電流產生器 61 換向信號產生器 62 解碼器 63 乘法器 ❹ 64 乘法器 65 乘法器 66 乘法器 67 加法器 • 68 加法器 69 功率放大器 70 磁鐵馬達 © 71 磁軌 72 出力動子/三相出力動子 80 感測器 133401.doc -20-Ο XP4=COS(0+7i/2) [5] In practice, according to the superimposed positive commutating current invention principle of the present invention, the present invention does not impose any configuration on the configuration of a commutating current generator and a magnet motor. Limited or any constraint. Thus, those skilled in the art will understand how to apply the superimposed positive exchange of the present invention to the commutating current generator for control other than motor 4 (Fig. 3) and motor 7 (Fig. 6). Independent orthogonal force of the magnet motor. In particular, those skilled in the art will understand how to apply the superimposed positive commutating current invention principle of the present invention in the following context: (1) a variety of changes in the configuration of a magnetic track structure, and (2) an output force structure group. A variety of changes in state, (3) according to one of the changes in the linear air gap of one of the tracks of the Angelis publication, a variety of changes in the direction of the output of the actuator, (4) a variety of changes in the structural configuration of the output position sensor (5) The phase shift range of the commutating current, (6) the phase shift range of the commutating current and (7) the commutating current UL slope and / or - the negative slope. The result is a variety of variations in the combination of commutating current generators in accordance with the inventive principles of the present invention. Alternatively, the commutating current generator of the present invention can be implemented in hardware and/or software depending on the actual application of the generator. 133401.doc 17 200929838 While the embodiments of the invention disclosed herein are presently preferred, various modifications and changes may be made without departing from the spirit and scope of the invention. The scope of the invention is indicated by the scope of the appended claims, and all such changes and modifications are intended to be included within the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS The above-described and other forms of the invention, as well as various features and advantages of the invention, will become more apparent. The detailed description and drawings are merely illustrative of the invention and are not intended to limit the scope of the invention. Figure 1 illustrates one view of an operational interaction between a commutating current generator and a magnet motor known in the art; Figure 2 illustrates the diagram shown in the art as known in the art. A view of one of the exemplary embodiments of a commutating current generator; FIG. 3 is a view illustrating a first exemplary operational interaction between a commutating current generator and a magnet motor in accordance with the present invention; ® 4 illustrates a view of one of the exemplary embodiments of the commutating current generator shown in FIG. 3 according to the present invention; »5. illustrates one of the commutating currents shown in the diagram of the present invention... 1 is a view of an exemplary phase shift; FIG. 6 illustrates a second exemplary operational interaction between a commutating current generator and a magnet motor in accordance with the present invention; FIG. 7 is a schematic illustration of the present invention. One of the example embodiments of the commutated current generator 133401 200929838 shown in FIG. 6; and FIG. 8 illustrates an exemplary phase shift of the commutating current shown in FIGS. 6 and 7 in accordance with the present invention. a view. [Main component symbol description] 10 Commutation current generator 11 Commutation signal generator 12 Decoder 13 Multiplier ❹ Multiplier 15 Power amplifier 20 Magnet motor 21 Magnetic track ' 22 Output mover / Three-phase output mover 30 sense Detector (Figure 1) 30 Commutation Current Generator (Figure 3) © 31 Commutation Signal Generator 32 Decoder 33 Multiplier '34 Multiplier. 35 Multiplier 36 Multiplier 37 Adder 38 Adder 39 Power Amplifier 133401 .doc -19- 200929838 40 Magnet motor 41 Track • 42 Output mover / 3-phase output mover. 50 Sensor 60 Commutation current generator 61 Commutation signal generator 62 Decoder 63 Multiplier ❹ 64 Multiplier 65 Multiplier 66 Multiplier 67 Adder • 68 Adder 69 Power Amplifier 70 Magnet Motor © 71 Track 72 Output Transmitter / Three-Phase Power Transmitter 80 Sensor 133401.doc -20-

Claims (1)

200929838 十、申請專利範圍: 1 · 一種系統,其包括: 一磁鐵馬達(4〇),其包含 磁執(41),其產生一跨越一線性氣隙,具有一X驅 動軸、一 γ橫切軸及一 z浮置軸之磁場,及 一出力動子(42),其設置於該線性氣隙内, 其中该出力動子(42)可操作以回應於換向驅動電 流(lx丨-Ιχ3)施加至該出力動子(42),而產生一平行於該χ 驅動軸且正交於該Ζ浮置轴之驅動力(Fx),且 其中該出力動子(42)可操作以回應於換向浮置電 流(IZ1-Iz3)施加至該出力動子(42),而產生一正交於該χ 驅動軸且平行於該Ζ浮置軸之浮置力(Fz);及 一換向電流產生器(30),其可操作以回應於一所需求 驅動力信號(DFX)、一所需求浮置力信號(DFZ)及一所感 測驅動位置信號x(t) ’將該等換向浮置電流(Ιζι_Ιζ3)在該 4換向驅動電流(Ιχ!-Ιχ3)上之一疊加施加至該出力動子 (42), 其中該所需求驅動力信號(DFX)表示一將該出力動 子(42)相對於該磁軌(41)移動至一合意χ驅動軸位置所需 之所需求的驅動力, 其中該所需求浮置力信號(DFZ)表示一將該出力動 子(42)相對於該磁軌(41)移動至一合意Ζ浮置軸位置所需 之所需求的浮置力,及’ 其中該所感測驅動位置信號x(t)表示該出力動子(42) 133401.doc 200929838 相對於該磁軌(41)之一所感測X驅動軸位置。 2.如請求項1之系統,其中該換向電流產生器(3〇)包含: 一換向信號產生器(31),其可操作以回應於該所需求 驅動力信號(DFX)及該所感測驅動位置信號x(t)而產生一 第一疊加正交換向信號(SCI) ’且回應於該所需求驅動力 k號(DFZ)及該所感測驅動位置信號x(t)而進一步產生一 第二疊加正交換向信號(SC2), ❹ 其中該第二疊加正交換向信號(SC2)自該第一疊加 正交換向信號(SCI)相移一第一相移(PS1)。 3. 如請求項2之系統’其中該換向信號產生器(3丨)包含: 一解碼器(32),其可操作以依據對該所感測驅動位置 信號x(t)之一相移解碼,產生一第一經解碼驅動位置信 號(XP1)及一第二經解碼驅動位置信號(ΧΡ3), 其中該第二經解碼驅動位置(ΧΡ3)自該第一經解碼 驅動位置信號(ΧΡ1)相移一第二相移(PS2)。 4. ❹ 如請求項3之系統,其中該換向信號產生器(31)進一步包 含: 一第一乘法器(33),其可操作以依據該所需求驅動力 b號(DFX)與該第一經解碼驅動位置(χρι)之一相乘,而 產生一第一換向驅動信號(CX1);及 第一乘法器(3 5),其可操作以依據該所需求浮置力 信號(DFZ)與該第二經解碼驅動位置(χρ3)之一相乘,而 產生一第—換向浮置信號(CZ1卜 5.如吻求項4之系統,其中該換向信號產生器ο〗)進一步包 133401.doc 200929838 含: 一第一加法器(37),其可操作以依據該第一換向浮置 信號(czi)在該第一換向驅動信號(cxl)上之一疊加,而 產生S亥第一疊加正交換向信號(SCI)。 6·如請求項5之系統, 其中該解碼器(32)可進一步操作以依據對該所感測駆 動位置信號X⑴之該相移解碼,產生一第三經解碼驅動 位置信號(XP2)及一第四經解碼驅動位置信號(χρ4); 其中該第三經解碼驅動位置(χρ2)自該第一經解碼驅 動位置仏號(ΧΡ1)相移該第一相移(psi);且 其中該第四經解碼驅動位置(DP4)自該第一經解碼驅 動位置信號(XP1)相移該第一相移(PS1)與該第二相移 (PS2)之一總和。 7·如請求項6之系統’其中該換向信號產生器(31)進一步包 含:200929838 X. Patent Application Range: 1 · A system comprising: a magnet motor (4〇) comprising a magnetic actuator (41) that produces a linear air gap across an X drive shaft and a gamma cross section a magnetic field of the shaft and a z-axis, and an output mover (42) disposed in the linear air gap, wherein the output mover (42) is operable to respond to the commutation drive current (lx丨-Ιχ3 Applying to the output mover (42) to generate a driving force (Fx) parallel to the χ drive shaft and orthogonal to the Ζ floating axis, and wherein the output mover (42) is operable in response to a commutating floating current (IZ1-Iz3) is applied to the output mover (42) to generate a floating force (Fz) orthogonal to the χ drive shaft and parallel to the Ζ floating axis; and a commutation a current generator (30) operative to commutate in response to a desired driving force signal (DFX), a desired floating force signal (DFZ), and a sensed drive position signal x(t) A floating current (Ιζι_Ιζ3) is superimposed on the output commutator (42) on one of the four commutation drive currents (Ιχ!-Ιχ3), The required driving force signal (DFX) indicates a required driving force required to move the output mover (42) relative to the magnetic track (41) to a desired drive shaft position, wherein the required float The force signal (DFZ) represents a required floating force required to move the output mover (42) relative to the track (41) to a desired floating axis position, and 'where the sensed drive The position signal x(t) represents the X drive shaft position sensed by the output mover (42) 133401.doc 200929838 relative to one of the tracks (41). 2. The system of claim 1, wherein the commutation current generator (3A) comprises: a commutation signal generator (31) operative to respond to the required driving force signal (DFX) and the sense Detecting the driving position signal x(t) to generate a first superimposed positive commutating signal (SCI)' and further generating a response in response to the required driving force k number (DFZ) and the sensed driving position signal x(t) The second superimposed positive commutating signal (SC2), wherein the second superimposed positive commutating signal (SC2) is phase shifted from the first superimposed positive commutating signal (SCI) by a first phase shift (PS1). 3. The system of claim 2 wherein the commutation signal generator (3A) comprises: a decoder (32) operative to decode a phase shift according to one of the sensed drive position signals x(t) Generating a first decoded drive position signal (XP1) and a second decoded drive position signal (ΧΡ3), wherein the second decoded drive position (ΧΡ3) is from the first decoded drive position signal (ΧΡ1) Move a second phase shift (PS2). 4. The system of claim 3, wherein the commutation signal generator (31) further comprises: a first multiplier (33) operative to generate a force b number (DFX) and the A first commutation drive signal (CX1) is generated upon multiplication of one of the decoded drive positions (χρι); and a first multiplier (35) operative to generate a floating force signal (DFZ) according to the demand Multiplied by one of the second decoded drive positions (χρ3) to generate a first commutation floating signal (CZ1b. 5. such as the system of the kiss term 4, wherein the commutation signal generator ο) Further package 133401.doc 200929838 includes: a first adder (37) operative to superimpose one of the first commutation drive signals (cx1) on the first commutation drive signal (cxl) A first superimposed positive commutation signal (SCI) is generated. 6. The system of claim 5, wherein the decoder (32) is further operative to generate a third decoded drive position signal (XP2) and a first according to the phase shift decoding of the sensed pan position signal X(1) a fourth decoded drive position signal (χρ4); wherein the third decoded drive position (χρ2) is phase shifted from the first decoded drive position signal (ΧΡ1) by the first phase shift (psi); and wherein the fourth The decoded drive position (DP4) phase shifts the sum of the first phase shift (PS1) and the second phase shift (PS2) from the first decoded drive position signal (XP1). 7. The system of claim 6 wherein the commutation signal generator (31) further comprises: 8. > ” 一乘法器(34),其可操作以依據該所需求驅動力 L號(DFX)與該第三經解碼驅動位置之一相乘,產 生一第二換向驅動信號(CX2);及 ^。第四乘法器(35),其可操作以依據該所需求浮置力 L號(DFZ)與該第四經解碼驅動位置(χρ4)之一相乘,產 生一第二換向浮置信號(CZ2) 〇 月求項7之系統’其中該換向信號產生器(31)進-步包 第二加法器(38), 其可操作以依據該第二換向浮置 133401.doc 200929838 信號(CZ2)在該第二換向驅動信號(CX2)上之一疊加,產 生該第二疊加正交換向信號(SC2)。 9.如凊求項2之系統,其中該換向電流產生器進一步包 . 含: . 一功率放大器(39),其可操作以依據該疊加正交換向 信號(sci)及該第二疊加正交換向信號(SC2)之一功率放 大,產生該等換向浮置電流(Ιζι_Ιζ3)在該等換向驅動電流 (Jxi-Ix3)上之該疊加。 1 〇.如凊求項9之系統,其中該功率放大器(39)可進一步操作 以依據該疊加正交換向信號(SC1)之該第一相移(psi)之 至少一個額外相移,產生該等換向浮置電流(Ιζι_Ιζ3)在該 等換向驅動電流(Ιχι-Ιχ3)上之該疊加。 • Π·如請求項2之系統,其中該第一相移係120。且該第二相移 係 90°。 12. —種系統,其包括: g 一磁鐵馬達(70),其包含 一磁軌(71),其產生一跨越一線性氣隙,具有一 χ 驅動軸、一 Υ橫切軸及一 2浮置軸之磁場;及 一出力動子(72),其設置於該線桂氣隙内, 长 其中該出力動子(72)可操作以回應於換向驅動電 流(Ιχ丨-Ιχ3)施加至該出力動子(72),而產生—平行於該X 驅動軸且正交於該γ橫切軸之驅動力(Fx),且 其中該出力動子(72)可操作以回應於換向橫切電 流(Iu-IY3)施加至該出力動子(72),而產生—正交於該χ 133401.doc -4- 200929838 驅動轴且平行於該Y橫切軸之橫切力(FY);及 一換向電流產生器(6〇),其可操作以回應於一所需求 驅動力信號(DFX)、一所需求橫切力信號(DFY)及一所感 '則驅動位置信號x(t),將該等換向橫切電流(IY1-IY3)在該 等換向驅動電流(Ιχι-Ιχ3)上之一疊加施加至該出力動子 (72). 其中該所需求驅動力信號(DFX)表示一將該出力動 子(72)相對於該磁軌(71)移動至一合意X驅動轴位置所需 之所需求的驅動力, 其中該所需求橫切力信號(DFY)表示一將該出力動 子(72)相對於該磁軌(7丨)移動至一合意γ橫切轴位置所需 之所需求的橫切力,且, 其中該所感測驅動位置信號x(t)表示該出力動子(72) 相對於該磁軌(71)之一所感測X驅動軸位置。 1 3 ·如請求項丨2之系統,其中該換向電流產生器(60)包含: 一換向信號產生器(61),其可操作以回應於該所需求 驅動力信號(DFX)及該所感測驅動位置信號x(t),而產生 一第一疊加正交換向信號(SCI),且回應於該所需求驅動 力信號(DFY)及該所感測驅動位置信號x(t),而進一步產 生一第二疊加正交換向信號(SC2), 其中該第二疊加正交換向信號(SC2)自該第一疊加 正交換向信號(SCI)相移一第一相移(PS1)。 14.如請求項13之系統,其中該換向信號產生器(61)包含: 一解碼器(62),其可操作以依據對該所感測驅動位置 133401.doc 200929838 信號X⑴之-相移解碼,產生一第一經解碼驅動位置信 號(XP1)及一第二經解碼驅動位置信號(XP3), 其中該第二經解碼驅動位置(XP3)自該第一經解碼 驅動位置信號(XP1)相移一第二相移(pS2)。 1 5·如明求項14之系統,其中該換向信號產生器(61)進-步 包含: 第一乘法器(63),其可操作以依據該所需求驅動力 k號(DFX)與該第—經解碼驅動位置(χρι)之—相乘,產 生一第一換向驅動信號(CX1);及 第一乘法器(65),其可操作以依據該所需求橫切力 佗號(DFY)與該第二經解碼驅動位置(χρ3)之一相乘’產 生一第一換向橫切信號(CΥ1)。 16·如μ求項15之系統,其中該換向信號產生器進一步 包含: 一第一加法器(67),其可操作以依據該第一換向橫切 Q ^號(CY1)在該第—換向驅動信號(CX1)上之-叠加,產 生該第一疊加正交換向信號(SC1)。 17.如請求項16之系統, 其中該解碼器(62)可進一步操作以依據對該所感測驅 ' 動位置信號X(t)之一相移解碼,產生一第三經解碼驅動 位置指號(XP2)及一第四經解碼驅動位置信號(χρ4), 其中該第三經解碼驅動位置(χρ2)自該第一經解碼驅 動位置信號(ΧΡ1)相移該第一相移(PS1),且 其中該第四經解碼驅動位置(DP4)自該第一經解碼驅 133401.doc 200929838 動位置信號(χΡ1)相移該第一相移(PS1)與該第二相移 (PS2)之一總和。 -I8.如請求項17之系統,其中該換向信號產生器(61)進—步 . 包含: 一第三乘法器(64),其可操作以依據該所需求驅動力 信號(DFX)與該第三經解碼驅動位置(XP2)之一相乘,產 生一第二換向驅動信號(CX2);及 一第四乘法器(65),其可操作以依據該所需求橫切力 彳§號(DFY)與該第四經解碼驅動位置(χρ4)之一相乘,產 生一第二換向橫切信號(CY2) » 19.如請求項18之系統,其中該換向信號產生器(61)進一步 包含: 第一加法器(68),其可操作以依據該第二換向橫切 k號(CY2)在該第二換向驅動信號((:又2)上之一疊加,產 生該第二疊加正交換向信號(SC2)。 0 2〇·如咕求項13之系統,其中該換向電流產生器(6〇)進一步 包含: 功率放大器(69),其可操作以依據該疊加正交換向 佗號(sci)與该第二疊加正交換向信號(sc2)之一功率放 大,產生該等換向橫切電流(Ιγι_Ιγ3)在該等換向驅動電 流(Ιχι-ΙχΟ上之該疊加。 21·如請求項2G之系統,其中該功率放大器(69)可進一步操 作以依據該疊加正交換向信號(SC1)之該第一相移(psl) 之至^ —個額外相移’產生該等換向橫切電流(ΙΥ1-ΙΥ3) 133401.doc 200929838 在該等換向驅動電流(ixl_iX3)上之該疊加。 22.如請求項13之系統,其中該第一相移係12〇。且該第二相 移係9〇。。 23 · 一種操作一換向電流產生器以用於控制一磁鐵馬達(40、 )之方法’該馬達包含一產生一跨越一線性氣隙,具有 x駆動軸、一Y橫切軸及一 Z浮置轴之磁場之磁軌(41、 71) ’且進一步包含一設置於該線性氣隙内之出力動子 ' 72) ’該方法包括: 由該換向電流產生器接收一所需求驅動力信號 (DFX)、—所需求橫切力信號(DFY)及一所感測驅動位置 信號x(t), 其中該所需求驅動力信號(DFX)表示一將該出力動 子(42、72)相對於該磁軌(41、71)移動至一合意X驅動軸 位置所需之所需求的驅動力, 其中該所需求正交力信號(DFZ、DF Y)表示一將該 出力動子(42、72)相對於該磁軌(41、71)移動至一合意 正交抽位置所需之所需求的正交力,且 其中該所感測驅動位置信號x(t)表示該出力動子 (42、72)相對於該磁軌(41、71)之一所感測X驅動軸位 置;及 回應於接收到該所需求驅動力信號(DFX)、該所需求 橫切力信號(DFY)及該所感測驅動位置信號χ(〇,由該換 向電流產生器將該等換向正交電流(Ιζι_Ιζ3、Ιγι_Ιγ3)在換 向驅動電流(Ιχ丨-ΙΧ3)上之一疊加施加至該出力動子(42、 133401.doc 200929838 72)。 24. 如請求項23之方法, 其中該等換向正交電流(ιζι-ιζ3、ιΥ1_ιΥ3)係換向浮置電 流(Ιζι-Ιζ3); 其中該出力動子(72)回應於換向驅動電流(Ιχι_Ιχ3)施加 至該出力動子(72)’而產生一平行於該X驅動軸且正交於 該Ζ浮置軸之驅動力(Fx);且 其中該出力動子(42)回應於該等換向浮置電流(Ιζι_Ιζ3) 施加至該出力動子(42),而產生一正交於該χ驅動軸且平 行於該Z浮置軸之浮置力(ρζ)。 25. 如請求項23之方法, 其中該等換向正交電流(Ιζι_Ιζ3、Ιγι_Ιγ3)係換向橫切電 流(Ιγΐ-Ιγ3); 其中S亥出力動子(72)回應於換向驅動電流(Ιχι_Ιχ3)施加 至該出力動子(72),而產生一平行於該又驅動軸且正交於 該Υ橫切軸之驅動力(Fx);且 其中該出力動子(42)可操作以回應於該等換向橫切電 流(IY1-Iy3)施加至該出力動子(42),而產生一正交於該χ 驅動軸且平行於該γ橫切軸之橫切力(Fy)。 133401.doc8. > a multiplier (34) operative to multiply the desired drive force L number (DFX) by one of the third decoded drive positions to produce a second commutation drive signal (CX2) And a fourth multiplier (35) operable to multiply the desired floating force L number (DFZ) by one of the fourth decoded drive positions (χρ4) to generate a second change To the floating signal (CZ2) system of the seventh item, wherein the commutation signal generator (31) further includes a second adder (38) operable to float 133401 according to the second commutation .doc 200929838 The signal (CZ2) is superimposed on one of the second commutation drive signals (CX2) to produce the second superimposed positive commutated signal (SC2). 9. The system of claim 2, wherein the commutation The current generator further includes: a power amplifier (39) operative to amplify power according to one of the superimposed positive commutating signal (sci) and the second superimposed positive commutating signal (SC2), generating the The superposition of the commutating floating current (Ιζι_Ιζ3) on the commutating drive currents (Jxi-Ix3). 1 〇. The system of clause 9, wherein the power amplifier (39) is further operative to generate the commutating floating current according to at least one additional phase shift of the first phase shift (psi) of the superimposed positive switching signal (SC1) (Ιζι_Ιζ3) The superposition on the commutating drive currents (Ιχι-Ιχ3). The system of claim 2, wherein the first phase shifting system 120. and the second phase shifting system is 90°. A system comprising: a magnet motor (70) comprising a magnetic track (71) that produces a linear air gap, a drive shaft, a cross-axis and a 2-float a magnetic field of the shaft; and an output mover (72) disposed in the line gap, wherein the output mover (72) is operable to apply to the commutation drive current (Ιχ丨-Ιχ3) Outputting a mover (72) to generate a driving force (Fx) parallel to the X drive axis and orthogonal to the gamma transverse axis, and wherein the output mover (72) is operable to respond to the commutation crosscut A current (Iu-IY3) is applied to the output mover (72) to produce - orthogonal to the χ 133401.doc -4- 2009298 38 a drive shaft and a transverse shear force (FY) parallel to the Y transverse axis; and a commutating current generator (6〇) operative to respond to a demand driving force signal (DFX), a requirement The transverse force signal (DFY) and a sense' drive position signal x(t) are superimposed on one of the commutating drive currents (Ιχι-Ιχ3) To the output mover (72). wherein the required drive force signal (DFX) represents a requirement for moving the output mover (72) relative to the magnetic track (71) to a desired X drive shaft position. Driving force, wherein the required transverse force signal (DFY) represents a desired transverse direction required to move the output mover (72) relative to the magnetic track (7丨) to a desired γ transverse axis position Shear force, and wherein the sensed drive position signal x(t) represents the X drive shaft position of the output mover (72) relative to one of the tracks (71). The system of claim 2, wherein the commutation current generator (60) comprises: a commutation signal generator (61) operative to respond to the required driving force signal (DFX) and the Sensing the driving position signal x(t) to generate a first superimposed positive commutating signal (SCI), and in response to the required driving force signal (DFY) and the sensed driving position signal x(t), further A second superimposed positive commutated signal (SC2) is generated, wherein the second superimposed positive commutating signal (SC2) is phase shifted from the first superimposed positive commutating signal (SCI) by a first phase shift (PS1). 14. The system of claim 13, wherein the commutation signal generator (61) comprises: a decoder (62) operative to decode the phase shift according to the sensed drive position 133401.doc 200929838 signal X(1) Generating a first decoded drive position signal (XP1) and a second decoded drive position signal (XP3), wherein the second decoded drive position (XP3) is from the first decoded drive position signal (XP1) Move a second phase shift (pS2). The system of claim 14, wherein the commutation signal generator (61) further comprises: a first multiplier (63) operative to generate a force k number (DFX) according to the demand Multiplying the first decoded drive position (χρι) to generate a first commutation drive signal (CX1); and a first multiplier (65) operative to traverse the required cross-cut force nickname ( DFY) is multiplied by one of the second decoded drive positions (χρ3) to generate a first commutation cross-cut signal (CΥ1). 16. The system of claim 15, wherein the commutation signal generator further comprises: a first adder (67) operative to cross the Q^ number (CY1) according to the first commutation at the - superposition on the commutation drive signal (CX1), producing the first superimposed positive commutation signal (SC1). 17. The system of claim 16, wherein the decoder (62) is further operative to generate a third decoded drive position indicator in accordance with phase shift decoding of one of the sensed drive position signals X(t) (XP2) and a fourth decoded drive position signal (χρ4), wherein the third decoded drive position (χρ2) is phase-shifted from the first decoded drive position signal (ΧΡ1) by the first phase shift (PS1), And wherein the fourth decoded driving position (DP4) is phase-shifted from the first decoded drive 133401.doc 200929838 moving position signal (χΡ1) by one of the first phase shift (PS1) and the second phase shift (PS2) sum. The system of claim 17, wherein the commutation signal generator (61) further comprises: a third multiplier (64) operative to act in accordance with the required driving force signal (DFX) Multiplying one of the third decoded drive positions (XP2) to generate a second commutation drive signal (CX2); and a fourth multiplier (65) operative to vary according to the required cross-cut force The number (DFY) is multiplied by one of the fourth decoded drive positions (χρ4) to generate a second commutation cross-cut signal (CY2).. 19. The system of claim 18, wherein the commutation signal generator ( 61) further comprising: a first adder (68) operable to superimpose one of the second commutation drive signals ((: 2) according to the second commutation cross-cut k (CY2) The second superimposed positive commutating signal (SC2). The system of claim 13, wherein the commutating current generator (6A) further comprises: a power amplifier (69) operative to Superimposing a positive exchange sigma (sci) and a power amplification of one of the second superimposed positive exchange signals (sc2), generating the commutation The current (Ιγι_Ιγ3) is at the superposition of the drive current (Ιχι-ΙχΟ). 21. The system of claim 2, wherein the power amplifier (69) is further operative to convert the signal according to the superposition (SC1) The first phase shift (psl) to an additional phase shift 'generates the superposition of the commutation cross-cut currents (ΙΥ1-ΙΥ3) 133401.doc 200929838 on the commutation drive currents (ixl_iX3). 22. The system of claim 13 wherein the first phase shifting system is 12 〇 and the second phase shifting system is 〇.. 23 · operating a commutating current generator for controlling a magnet motor (40, The method includes a magnetic track (41, 71) that generates a magnetic field across a linear air gap, a x-turn axis, a Y-transverse axis, and a Z-floating axis, and further includes a The output mover in the linear air gap '72) 'The method includes: receiving, by the commutating current generator, a required driving force signal (DFX), a required transverse force signal (DFY), and a sensing drive position Signal x(t), where the required driving force signal (DFX) The required driving force required to move the output mover (42, 72) relative to the magnetic track (41, 71) to a desired X drive shaft position, wherein the required orthogonal force signal (DFZ, DF Y) represents a required orthogonal force required to move the output mover (42, 72) relative to the track (41, 71) to a desired orthogonal extraction position, and wherein the sensed drive position The signal x(t) represents the X drive shaft position sensed by the output mover (42, 72) relative to one of the tracks (41, 71); and in response to receiving the required drive force signal (DFX), the The required cross-cut force signal (DFY) and the sensed drive position signal χ (〇, the commutating current generator converts the commutating currents (Ιζι_Ιζ3, Ιγι_Ιγ3) in the commutation drive current (Ιχ丨-ΙΧ3) One of the upper layers is applied to the output mover (42, 133401.doc 200929838 72). 24. The method of claim 23, wherein the commutating orthogonal currents (ιζι-ιζ3, ιΥ1_ιΥ3) are commutating floating currents (Ιζι-Ιζ3); wherein the outputting movers (72) are responsive to commutation drive currents (Ιχι_Ιχ3) applied to the output mover (72)' to generate a driving force (Fx) parallel to the X drive shaft and orthogonal to the xenon floating axis; and wherein the output mover (42) is responsive to the An equal commutating floating current (Ιζι_Ιζ3) is applied to the output mover (42) to generate a floating force (ρζ) orthogonal to the χ drive shaft and parallel to the Z floating axis. 25. The method of claim 23, wherein the commutating orthogonal currents (Ιζι_Ιζ3, Ιγι_Ιγ3) are commutation transversal currents (Ιγΐ-Ιγ3); wherein the S-haul force mover (72) is responsive to the commutation drive current ( Ιχι_Ιχ3) is applied to the output mover (72) to generate a driving force (Fx) parallel to the drive shaft and orthogonal to the Υ transverse axis; and wherein the output mover (42) is operable to respond The commutating transverse currents (IY1-Iy3) are applied to the output mover (42) to produce a transverse force (Fy) orthogonal to the χ drive axis and parallel to the gamma transverse axis. 133401.doc
TW097139028A 2007-10-12 2008-10-09 Commutation current generator for magnetic motors TW200929838A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97945007P 2007-10-12 2007-10-12

Publications (1)

Publication Number Publication Date
TW200929838A true TW200929838A (en) 2009-07-01

Family

ID=40084343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139028A TW200929838A (en) 2007-10-12 2008-10-09 Commutation current generator for magnetic motors

Country Status (2)

Country Link
TW (1) TW200929838A (en)
WO (1) WO2009047741A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015004409A2 (en) * 2012-10-05 2017-07-04 Koninklijke Philips Nv rotary positioning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701122B2 (en) * 1998-05-26 2005-09-28 株式会社荏原製作所 Bearingless rotating machine
JP2001268981A (en) * 2000-03-17 2001-09-28 Ebara Corp Disc type bearingless rotating machine
US7253576B2 (en) * 2004-04-05 2007-08-07 Nikon Corporation E/I core actuator commutation formula and control method
US8803372B2 (en) * 2005-08-29 2014-08-12 Koninklijke Philips N.V. Ironless magnetic linear motors having levitating and transversal force capacities

Also Published As

Publication number Publication date
WO2009047741A3 (en) 2011-05-12
WO2009047741A2 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
CN104052361B (en) Electric machine control system to compensate torque pulsation
JP4400835B2 (en) Electric motor control device
JP4745158B2 (en) Electric motor control device
JP2009261071A (en) Motor
WO2005101643A1 (en) Motor controller
JPH08294248A (en) Electromagnetic rotating machine
JP2011067048A (en) Permanent magnet synchronous motor
JP2008259302A (en) Controller of electric motor
Gruber et al. Design of a bearingless flux-switching slice motor
JP2010057217A (en) Torque pulsation suppression device of electric motor, and suppression method
JP4234359B2 (en) Control device for synchronous motor
JP2008219966A (en) Controller of permanent magnet motor
JP2008259289A (en) Controller for electric motor
JPH08256455A (en) Rotor of synchronous electric motor
JP5172418B2 (en) Control device for electric motor system
TW200929838A (en) Commutation current generator for magnetic motors
JP2007116769A (en) Motor controller/driver for turbocharger with motor
Gruber et al. Design variants of the bearingless segment motor
JP4899788B2 (en) Drive control method for permanent magnet synchronous motor
Magill An investigation of electronic pole changing in high inverter count induction machines
JP2012239302A (en) Rotary electric machine controller
JP2006050705A (en) Motor control unit
JP2008199868A (en) Drive control device of permanent magnet synchronous motor
Gruber et al. Novel bearingless slice motor design with four concentrated coils featuring a unique operational behavior
JP5487622B2 (en) Electric motor control device