TW200925462A - Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same - Google Patents

Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same Download PDF

Info

Publication number
TW200925462A
TW200925462A TW097128000A TW97128000A TW200925462A TW 200925462 A TW200925462 A TW 200925462A TW 097128000 A TW097128000 A TW 097128000A TW 97128000 A TW97128000 A TW 97128000A TW 200925462 A TW200925462 A TW 200925462A
Authority
TW
Taiwan
Prior art keywords
belt
sheave
main
control
rotation
Prior art date
Application number
TW097128000A
Other languages
Chinese (zh)
Other versions
TWI378199B (en
Inventor
Toshio Unno
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of TW200925462A publication Critical patent/TW200925462A/en
Application granted granted Critical
Publication of TWI378199B publication Critical patent/TWI378199B/en

Links

Landscapes

  • Control Of Transmission Device (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

To inhibit reduction of driving comfort caused by idle rotation of a primary sheave with respect to a belt during acceleration. A transmission 20 includes an input shaft 12, an output shaft 13, a primary sheave 23 that rotates together with the input shaft 12, a secondary sheave 24 that rotates together with the output shaft 13, and a belt 25 that is wound around both the primary sheave 23 and the secondary sheave 24. The transmission 20 includes a motor 22 that shifts a speed change ratio by driving a moveable sheave 23a of the primary sheave 23. A control device (an ECU 5) of the transmission 20 includes a secondary sheave rotation speed sensor 28 that detects rotation of the belt 25, and a control portion 55 of the ECU 5 performs a sheave position control (a normal control of the speed change ratio) after rotation of the belt 25 is detected after starting.

Description

200925462 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種無段變速機控制裝置、無段變速機, 及配備其之車輛。 【先前技術】 在已知技術中,可無段地改變變速比之電子控制無段變 速機(在下文中,稱作"ECVT”(電子控制無段變速機))用於 Ο 速克達摩托車、所謂的四輪輕便車,及其類似物中。 通常’ ECVT包括隨著輸入軸旋轉之主槽輪、隨著輸出 轴旋轉之副槽輪、纏繞主槽輪與副槽輪兩者之皮帶,及改 變主槽輪之皮帶槽寬度之致動器。此外,上述車輛包括控 制ECVT致動器之控制裝置。控制裝置基於車輛之驅動狀 態(諸如,車輛速度、引擎速度、節流閥開度等)且亦基於 展不與變速比之關係的變速比映射來控制致動器及改變變 速比°因此’在安裝有ECVT之車輛(在下文中,稱作"配 〇 八體σ之’主槽輪通常具有可在輸入軸之軸向上滑動之 可移動槽輪’及在輸入軸之轴向上固定之固定槽輪。致動 接至主槽輪之可移動槽輪◊主槽輪之可移動槽輪由致 動器來驅動且在輸入軸之軸向上滑動。此改變主槽輪上之 皮帶槽之寬度。 卜㈣槽輪具有可在輸 出軸之轴向上滑動之可移動播 輪,及在輪出, 軸之軸向上固定之固定槽輪。將可移動槽輪 備有ECVT之車輛中,騎者不必改變齒輪或操作離合 器。 133245.doc 200925462 推動至固定槽輪側之彈簧連接至副槽輪之可移動槽輪。藉 由彈簧將副槽輪之可移動槽輪朝著固定槽輪側恆定地^ 動。由於此原因,使皮帶槽之寬度變窄之方向上(使皮帶 之纏繞半徑增寬之方向上)的負載經恆定地施加至副槽 輪。因此,主槽輪在使皮帶槽寬度增寬之方向上(在使皮 ’ 冑之纏繞半徑變窄之方向上)怪定地接收來自副槽輪側的 • 負載。 ❹ 纟此種結構之情況下’當主槽輪之可移動槽輪在固定槽 輪之方向上滑動時,主槽輪之皮帶槽寬度變窄,且皮帶之 纏繞半徑擴大。伴隨此動作,隨著副槽輪皮帶槽中之皮帶 移動至副槽輪之徑向上之内部,副槽輪之可移動槽輪在遠 離固定槽輪之方向上抵抗彈簧之推動力而移動。以此方 式,變速比變小,且可移動槽輪移動接近所謂的高速檔位 置(Top position)(在該位置處,變速比在最小值)。 另一方面,若主槽輪之可移動槽輪在遠離固定槽輪之方 〇 向上滑動,則主槽輪之皮帶槽寬度增寬,且皮帶之纏繞半 徑減小。伴隨此動作,隨著副槽輪皮帶槽中之皮帶移動至 副槽輪之徑向上之外部,副槽輪之可移動槽輪由於彈簧之 推動力而在固定槽輪之方向上移動。以此方式,變速比變 大,且可移動槽輪移動接近所謂的低速檔位置(在該位置 處,變速比在最大值)。 此時’通常控制裝置控制致動器以使得主槽輪之可移動 槽輪返回至低速檔位置,在該低速檔位置處,當車輛停止 (包括空轉)時,皮帶槽寬度最寬且變速比最大。此外,控 133245.doc 200925462 主槽輪之可移動槽 制裝置控制致動器以使得在動力接通時 輪明確地返回至低速檔位置。 然而,例如’當在騎乘經由突然制動而停止之後立即斷 開動力時,致動器有時停止而不使主槽輪完全返回至低速 槽位置。此夕卜’若在此狀態中再次接通動力,則主槽輪之 可移動槽輪將自動地移動至低速檔位置而皮帶不旋換 Ο200925462 IX. Description of the Invention: [Technical Field] The present invention relates to a stepless transmission control device, a stepless transmission, and a vehicle equipped therewith. [Prior Art] In the known art, an electronically controlled stepless speed changer (hereinafter, referred to as "ECVT" (electronically controlled stepless speed change) which can change the speed ratio without delay is used for the idling speed motorbike In cars, so-called four-wheeled vehicles, and the like. Usually 'ECVT includes a main sheave that rotates with the input shaft, a secondary sheave that rotates with the output shaft, and both the main sheave and the secondary sheave. a belt, and an actuator that changes a belt groove width of the main sheave. Further, the vehicle includes a control device that controls the ECVT actuator. The control device is based on a driving state of the vehicle (such as vehicle speed, engine speed, throttle opening) Degree, etc.) and also based on the gear ratio map showing the relationship between the gear ratio and the gear ratio to control the actuator and change the gear ratio. Therefore, 'the vehicle with the ECVT installed (hereinafter, referred to as " equipped with the eight body σ' The main sheave usually has a movable sheave that is slidable in the axial direction of the input shaft and a fixed sheave fixed in the axial direction of the input shaft. Actuated to the movable sheave of the main sheave, the main sheave Movable sheave is actuated Drive and slide in the axial direction of the input shaft. This changes the width of the belt groove on the main sheave. (4) The sheave has a movable wheel that can slide in the axial direction of the output shaft, and in the wheel, the shaft A fixed sheave fixed in the axial direction. In a vehicle equipped with an ECVT with a movable sheave, the rider does not have to change the gear or operate the clutch. 133245.doc 200925462 The spring that pushes the spring to the fixed sheave side to the movable groove of the auxiliary sheave By means of a spring, the movable sheave of the auxiliary sheave is constantly moved toward the fixed sheave side. For this reason, the width of the belt groove is narrowed (in the direction in which the winding radius of the belt is widened) The load is constantly applied to the auxiliary sheave. Therefore, the main sheave receives the auxiliary sheave from the secondary sheave in the direction in which the width of the belt is widened (in the direction in which the winding radius of the skin is narrowed). Side load • ❹ 纟 In the case of this structure, when the movable sheave of the main sheave slides in the direction of the fixed sheave, the width of the belt groove of the main sheave is narrowed and the winding radius of the belt is enlarged. Accompanied by this action, along with the vice The belt in the pulley belt groove moves to the inside of the radial direction of the auxiliary sheave, and the movable sheave of the auxiliary sheave moves against the driving force of the spring in a direction away from the fixed sheave. In this way, the gear ratio becomes smaller. And the movable sheave moves close to the so-called Top position (at which the gear ratio is at a minimum). On the other hand, if the movable sheave of the main sheave is away from the fixed sheave When the 〇 slides upward, the width of the belt groove of the main sheave is widened, and the winding radius of the belt is reduced. With this action, as the belt in the belt pulley of the auxiliary sheave moves to the outside of the radial direction of the auxiliary sheave, the auxiliary groove The movable sheave of the wheel moves in the direction of the fixed sheave due to the urging force of the spring. In this way, the gear ratio becomes larger, and the movable sheave moves close to the so-called low gear position (at which the gear ratio is At the maximum). At this point, the 'normal control device controls the actuator to return the movable sheave of the main sheave to a low gear position at which the belt groove width is the widest and the gear ratio is greater when the vehicle is stopped (including idling) maximum. In addition, control 133245.doc 200925462 The movable trough of the main sheave controls the actuator such that the wheel is explicitly returned to the low gear position when the power is turned on. However, for example, when the power is turned off immediately after the ride is stopped by the sudden braking, the actuator sometimes stops without returning the main sheave to the low speed slot position. Further, if the power is turned on again in this state, the movable sheave of the main sheave will automatically move to the low gear position and the belt will not be reversed.

言之’儘管皮帶不旋轉’主槽輪侧上之皮帶槽寬度仍增 寬。因此,皮帶可能自主槽輪脫落。 然而,若皮帶自主槽輪脫落,則主槽輪將在無皮帶之情 况下空轉且不將力傳動至皮帶。此外,若用於使主槽輪之 可移動槽輪滑動以便改變變速比之槽輪位置控制在此狀態 中開始,則由於皮帶已自主槽輪脫落而使力不傳動至之皮 帶將被旋轉速度已增加至某種程度之主槽輪夾在中間,且 此將引起突然將力傳動至皮帶。由於此原因,不平穩之加 速及不良騎乘舒適感成為問題。 因此,提議:當引擎起動期間主槽輪之槽寬度比預先設 疋之規定槽寬度窄時’在引擎速度尚未超過規定可容許變 速的速度時不執行變速比控制(換言之,槽輪位置控制), 且在引擎速度已超過可容許變速的速度之後開始變速比控 制(例如,見專利文獻1)。 [專利文獻1]曰本專利第3375362號 【發明内容】 [本發明之揭示内容] [本發明將解決之問題] 133245.doc 200925462 在專利文獻1中所描述之ECVT控制裝置的情況下,可推 測:若引擎ϋ度超過可容許變速的速纟,則皮帶將與主槽 輪-起旋轉。然而,實際上,不可能有把握地判定主槽輪 在無皮帶之情況下不空轉。換言之,若主槽輪在無皮帶之 情況下旋轉’則可自引擎速度有把握地判定皮帶在旋轉。 然而’若主槽輪在無皮帶之情況下空轉,則不可能經由引 •擎速度確認皮帶之旋轉。由於此原因,在上文所描述之控 〇 ㈣裝置之情況下’即使實際上主槽輪在無皮帶之情況下空 轉,槽輪位置控制亦可能疏忽地開始,因為引擎速度已超 過可容許變速的速度。因此,在專利文獻丨中所描述之 ECVT控制裝置的情況下,無法有把握地偵測主槽輪是否 隨著皮帶旋轉。因此,最終難以解決當主槽輪在無皮帶之 情況下空轉時不能夠達成平穩加速的問題。 已根據此等情況設計本發明,且本發明之目標為藉由使 用致動器控制變速比之無段變速機來抑制加速期間由於主 〇 槽輪在無皮帶之情況下空轉而降低騎乘舒適感。 [用於解決問題之方式] 本發明之無段變速機之控制裝置為配置於車輛之驅動源 與驅動輪之間的可無段地改變變速比之電子控制無段變速 機的控制裝置。該無段變速機包括輸入軸、輸出軸、主槽 輪,β亥主槽輪包括與輸入軸一起旋轉之主固定槽輪本體及 主可移動槽輪本體β主可移動槽輪本體面對主固定槽輪本 體,且可在輸入軸之軸向上相對於主固定槽輪本體改變位 置。主可移動槽輪本體與主固定槽輪本體一起形成朝著徑 133245.doc 200925462 向外部延伸及增寬的主側皮帶槽,且主可移動槽輪本體與 輸入轴一起旋轉。無段變速機亦包括副槽輪,該副槽輪包 括與輸出轴一起旋轉之副固定槽輪本體及面對副固定槽輪 本體之副可移動槽輪本體。副可移動槽輪本體可在輸出軸 之軸向上相對於副固定槽輪本體改變位置,且與副固定槽 輪本體一起形成朝著徑向外部延伸及增寬的副側皮帶槽β '副可移動槽輪本體與輸出軸一起旋轉。無段變速機亦包括 0 纏繞於主側皮帶槽及副側皮帶槽中之皮帶、藉由改變主側 皮帶槽之寬度及副側皮帶槽之寬度中之至少一者而改變主 槽輪與副槽輪之間的變速比之致動器、直接或間接地偵測 皮帶之旋轉之皮帶旋轉偵測感測器,及控制致動器之控制 部。在起動之後,在偵測到皮帶之旋轉之後,控制部開始 對致動器之控制。 根據上文所描述之控制裝置,在起動之後,在偵測到皮 帶之旋轉之後’對改變變速比之致動器之控制開始。因 Ο 此’當主槽輪相對於皮帶空轉時’不執行致動器控制。因 此,有可能抑制加速期間由於在主槽輪空轉時開始改變變 速比之致動器控制而發生碰撞。 [本發明之優點] 根據本發明,使用致動器控制變速比之無段變速機可抑 制加速期間由於主槽輪相對於皮帶之空轉而產生的騎乘舒 適感之降低。 【實施方式】 -第一實施例- 133245.doc -10- 200925462 > <摩托車1之結構 實施例中,將作為本發明之實施例之一實例說明速 克達摩托車1。如圖i所示,摩托車}包括手柄4、動力單元 2及作為驅動輪之後輪3。動力單元2與後輪3藉由力傳動 機構6而連接。 (手柄4) μ圖2展示手柄4之結構的概述。手柄4包括連接至轉向頭 〇 ❹ 官(未圖不)之手柄桿4d。+柄4包括配置於手柄桿^之左端 上之左抓握部分43,及配置於手柄桿4d之右端上之右抓握 部分4b。右抓握部分4b可於手柄桿4d上旋轉。若騎者旋轉 右抓握部分4b,則操作圖3中所展示之節流間7〇且調整節 流閥開度。 制動桿4e靠近抓握部分4a、财之每_者而配置。當摩 托車1之制動器(諸圖中未展示)由操作此等制動桿4e之:者 操作時,如補後所描述的,由ECU 5輸出制動信號咖。 開關盒40配置於左抓握部分蚊右側上。各種操作 設置於開關盒40上。 料Γ/Τ中心部分中存在顯示車輔速度、剩餘燃 料4之顯示面板7。 (動力單元2) 如圖3所示,動力單元2包括作為驅動 雄之引擎1 〇、電子 控制變速機20、離心式離合器30,及诘、* Λ & 迷機構3 1。變速機 20包括無段變速齒輪機構21,及充當改 讽 之變速比之致動器的馬達… 變變速齒輪機構21 133245.doc 200925462 變速齒輪機構21經建構以使得可無段地改變變速比。具 體言之,如圖4所示’變速齒輪機構21包括輸入轴12、輸 出軸13、主槽輪23,及副槽輪24»具有通常成V形形狀橫 截面之皮帶25纏繞主槽輪23及副槽輪24。在此實施例中, 皮帶25由橡膠製成。 如圖4所示’主槽輪23包括可移動槽輪23a及固定槽輪 ' 23b。可移動槽輪23a可在輸入軸12之軸向上滑動。另一方 0 面’固定槽輪不可在輸入轴12之軸向上滑動。注意, 可移動槽輪23a與固定槽輪23b經附接以使得其與輸入軸i2 起旋轉’但不可相對於輸入轴12旋轉。另外,可移動槽 輪23 a及固定槽輪23 b形成在徑向外部中延伸及增寬之皮帶 槽 23c。 上文所描述之馬達22安裝於主槽輪23上。馬達22驅動可 移動槽輪23a,且使可移動槽輪23a在輸入軸12之軸向上滑 動。當可移動槽輪23 a滑動時,其改變主槽輪23之皮帶槽 O 23c之寬度。此使被主槽輪23夾在中間之皮帶25朝著主槽 輪23徑向内部或外部移動。 另外,副槽輪24包括可移動槽輪24a及固定槽輪24b。可 移動槽輪24a可在輸出軸13之軸向上滑動。另一方面,固 定槽輪24b不可在輸出軸13之轴向上滑動。注意,可移動 槽輪24a與固定槽輪24b經附接以使得其與輸出軸13 一起旋 轉,但不可相對於輸出軸13旋轉。彈簧24d在使皮帶槽24c 之寬度變窄之方向上推動可移動槽輪24a。另外,可移動 槽輪24a及固定槽輪24b形成在徑向外部中延伸及增寬之皮 133245.doc •12· 200925462 帶槽24c 〇 在此種結構之情況下,如圖4所示,當馬達22使主槽輪 23之可移動槽輪23 a在固定槽輪23b之方向上滑動時,主槽 輪23之皮帶槽23c之寬度變窄,且主槽輪23側處之皮帶25 之纏繞半徑擴大。伴隨此動作,隨著副槽輪24之皮帶槽 24c中之皮帶25移動至副槽輪24之徑向上之内部,副槽輪 , 24之可移動槽輪24a在遠離固定槽輪24b之方向上抵抗彈簧 24d之推動力而移動。因此’副槽輪24側處之皮帶25之纏 〇 繞半徑減小。以此方式’變速比變小,且可移動槽輪 23a、24a移動接近所謂的高速檔位置(在該位置處,變速 比在最小值)。 另一方面’如圖5所示’若馬達22使主槽輪23之可移動 槽輪23a在遠離固定槽輪23b之方向上滑動,則主槽輪23之 皮帶槽23c之寬度增寬’且主槽輪23側處之皮帶25之纏繞 半徑減小。伴隨此動作’隨著副槽輪24之皮帶槽24c中之 Q 皮帶25移動至副槽輪24之徑向上之外部,副槽輪24之可移 動槽輪24a藉由彈簧24d之推動力而在固定槽輪24b之方向 上移動。此擴大副槽輪24側處之皮帶25之纏繞半徑。以此 方式’變速比變大,且可移動槽輪23 a、24a移動接近低速 檔位置(在該位置處,變速比在最大值)。 此外,如圖3所示,輸出軸13經由離心式離合器3 〇而連 接至減速機構3 1。此外,減速機構3 1經由力傳動機構6(諸 如’皮帶、鏈條及驅動軸)而連接至後輪3。此將離心式離 合器30配置於變速齒輪機構21之輸出軸13與為驅動輪之後 133245.doc -13- 200925462 輪3之間。 離心式離合器30根據副槽輪24之旋轉速度而嚙合及脫 離。具體言之,若副槽輪24之旋轉速度尚未達到規定的旋 轉速度’則離心式離合器30脫離。因此,不將副槽輪24之 旋轉傳動至後輪3。另一方面,若副槽輪24之旋轉速度處 於或尚於規定的旋轉速度,則離心式離合器响合。因 ' 此,經由離心式離合器30、減速機構3 1及力傳動機構ό將 0 副槽輪24之旋轉傳動至後輪3。此使得後輪3旋轉。 «摩托車1之控制系統》 在下文中’將參看圖3描述摩托車丨之控制系統。如圖3 所示,摩托車1之控制主要由充當控制裝置2ECU(電子控 制單元)5來執行。ECU 5包括儲存預先設定之變速比及各 種设定之記憶體57、控制部55,及驅動馬達22之驅動電路 56。控制部55執行槽輪位置控制(本發明之變速比之正常 控制)’該槽輪位置控制使主槽輪23之可移動槽輪23a滑動 Q 以改變變速比。 各種感測器及開關連接至ECU 5 ^具體言之,節流閥開 口感測器33、制動桿4c、引擎旋轉速度感測器u、槽輪位 置感測器26、主槽輪旋轉速度感測器27、副槽輪旋轉速度 感測器28,及車輛感測器32連接至ECU 5。In other words, the belt groove width on the main sheave side is widened despite the fact that the belt does not rotate. Therefore, the belt may be detached from the autonomous sheave. However, if the belt's autonomous sheave is detached, the main sheave will idle without belt and will not transmit force to the belt. Further, if the position control of the sheave for sliding the movable sheave of the main sheave to change the gear ratio is started in this state, the belt will be rotated because the belt has its own sheave off. The main sheave that has been added to some extent is sandwiched and this will cause a sudden force transmission to the belt. For this reason, unsteady acceleration and poor ride comfort are problems. Therefore, it is proposed that when the groove width of the main sheave is narrower than the predetermined groove width set in advance when the engine is started, 'the gear ratio control is not executed when the engine speed has not exceeded the speed of the prescribed allowable shift (in other words, the sheave position control) And the gear ratio control is started after the engine speed has exceeded the speed of the allowable shift (for example, see Patent Document 1). [Patent Document 1] Japanese Patent No. 3,372,362 [Draft of the Invention] [Disclosure of the Invention] [Problems to be Solved by the Invention] 133245.doc 200925462 In the case of the ECVT control device described in Patent Document 1, Presumably: If the engine twist exceeds the speed limit of the allowable shift, the belt will rotate with the main sheave. However, in practice, it is impossible to determine with certainty that the main sheave does not idling without a belt. In other words, if the main sheave rotates without a belt, the belt can be surely rotated from the engine speed. However, if the main sheave idling without a belt, it is impossible to confirm the rotation of the belt via the engine speed. For this reason, in the case of the control device described above, 'even if the main sheave actually idling without a belt, the sheave position control may inadvertently start because the engine speed has exceeded the allowable shifting speed. speed. Therefore, in the case of the ECVT control device described in the patent document, it is impossible to surely detect whether or not the main sheave rotates with the belt. Therefore, it is finally difficult to solve the problem that the main sheave cannot achieve smooth acceleration when it is idling without a belt. The present invention has been devised in view of such circumstances, and the object of the present invention is to suppress the riding comfort during the acceleration due to the idle rotation of the main idler pulley without the belt by the use of the actuator to control the speed ratio of the stepless speed changer. sense. [Means for Solving the Problem] The control device for the stepless transmission of the present invention is a control device for an electronically controlled stepless transmission that is disposed between the drive source of the vehicle and the drive wheels and that can change the speed ratio without interruption. The stepless speed changer comprises an input shaft, an output shaft and a main sheave, and the β-hai main sheave comprises a main fixed sheave body that rotates together with the input shaft and a main movable sheave body β main movable sheave body faces the main The sheave body is fixed and can be changed in position relative to the main fixed sheave body in the axial direction of the input shaft. The main movable sheave body together with the main fixed sheave body forms a main side belt groove extending outwardly and widened toward the diameter 133245.doc 200925462, and the main movable sheave body rotates together with the input shaft. The stepless transmission also includes an auxiliary sheave including a secondary fixed sheave body that rotates with the output shaft and a secondary movable sheave body that faces the secondary fixed sheave body. The auxiliary movable sheave body can be changed in position in the axial direction of the output shaft with respect to the auxiliary fixed sheave body, and together with the auxiliary fixed sheave body, a secondary side belt groove β′ can be formed which extends toward the radially outer portion and widens. The moving sheave body rotates with the output shaft. The stepless transmission also includes a belt wound in the main side belt groove and the auxiliary side belt groove, and the main groove and the pair are changed by changing at least one of the width of the main side belt groove and the width of the auxiliary side belt groove. An actuator having a gear ratio between the sheaves, a belt rotation detecting sensor that directly or indirectly detects the rotation of the belt, and a control portion that controls the actuator. After starting, after detecting the rotation of the belt, the control portion starts control of the actuator. According to the control device described above, after the start, after the rotation of the belt is detected, the control of the actuator for changing the speed ratio starts. Because of this, the actuator control is not performed when the main sheave is idling with respect to the belt. Therefore, it is possible to suppress the collision during the acceleration due to the actuator control that starts to change the speed ratio when the main sheave is idling. [Advantages of the Invention] According to the present invention, the stepless speed changer that uses the actuator to control the speed ratio can suppress the reduction in riding comfort due to the idling of the main sheave with respect to the belt during acceleration. [Embodiment] - First Embodiment - 133245.doc -10- 200925462 ><Structure of Motorcycle 1 In the embodiment, a Scooter motorcycle 1 will be described as an example of an embodiment of the present invention. As shown in Fig. i, the motorcycle} includes a handle 4, a power unit 2, and a rear wheel 3 as a drive wheel. The power unit 2 and the rear wheel 3 are connected by a force transmission mechanism 6. (Handle 4) μ Figure 2 shows an overview of the structure of the handle 4. The handle 4 includes a handlebar 4d that is coupled to the steering head 未 ❹ (not shown). The handle 4 includes a left grip portion 43 disposed on the left end of the handle bar ^ and a right grip portion 4b disposed on the right end of the handle bar 4d. The right grip portion 4b is rotatable on the handlebar 4d. If the rider rotates the right grip portion 4b, the throttle 7 shown in Fig. 3 is operated and the throttle opening is adjusted. The brake lever 4e is disposed close to the grip portion 4a and the fortune. When the brake of the motorcycle 1 (not shown) is operated by the operation of the brake lever 4e, the brake signal is outputted by the ECU 5 as described later. The switch box 40 is disposed on the right side of the left grip portion mosquito. Various operations are provided on the switch box 40. A display panel 7 displaying the vehicle auxiliary speed and the remaining fuel 4 is present in the center portion of the magazine/Τ. (Power Unit 2) As shown in Fig. 3, the power unit 2 includes an engine 1 as a drive unit, an electronically controlled transmission 20, a centrifugal clutch 30, and a cymbal, * Λ & The transmission 20 includes a stepless transmission gear mechanism 21, and a motor serving as an actuator for changing the speed ratio. The variable speed gear mechanism 21 133245.doc 200925462 The transmission gear mechanism 21 is constructed such that the speed ratio can be changed without a step. Specifically, as shown in FIG. 4, the 'transmission gear mechanism 21 includes the input shaft 12, the output shaft 13, the main sheave 23, and the auxiliary sheave 24» has a belt V of a generally V-shaped cross section wound around the main sheave 23 And the auxiliary sheave 24 . In this embodiment, the belt 25 is made of rubber. As shown in Fig. 4, the main sheave 23 includes a movable sheave 23a and a fixed sheave '23b. The movable sheave 23a is slidable in the axial direction of the input shaft 12. The other 0-side fixed sheave cannot slide in the axial direction of the input shaft 12. Note that the movable sheave 23a and the fixed sheave 23b are attached such that they rotate with the input shaft i2' but are not rotatable relative to the input shaft 12. Further, the movable sheave 23a and the fixed sheave 23b form a belt groove 23c which extends and widens in the radially outer portion. The motor 22 described above is mounted on the main sheave 23. The motor 22 drives the movable sheave 23a and slides the movable sheave 23a in the axial direction of the input shaft 12. When the movable sheave 23a slides, it changes the width of the belt groove O23c of the main sheave 23. This causes the belt 25 sandwiched by the main sheave 23 to move radially inward or outward toward the main sheave 23. In addition, the auxiliary sheave 24 includes a movable sheave 24a and a fixed sheave 24b. The movable sheave 24a is slidable in the axial direction of the output shaft 13. On the other hand, the fixed sheave 24b is not slidable in the axial direction of the output shaft 13. Note that the movable sheave 24a and the fixed sheave 24b are attached such that they rotate together with the output shaft 13, but are not rotatable relative to the output shaft 13. The spring 24d pushes the movable sheave 24a in a direction that narrows the width of the belt groove 24c. In addition, the movable sheave 24a and the fixed sheave 24b are formed to extend and widen in the radially outer portion of the skin 133245.doc • 12· 200925462 with the groove 24c. In the case of such a structure, as shown in FIG. When the motor 22 slides the movable sheave 23a of the main sheave 23 in the direction of the fixed sheave 23b, the width of the belt groove 23c of the main sheave 23 is narrowed, and the winding of the belt 25 at the side of the main sheave 23 is entangled. The radius is enlarged. With this action, as the belt 25 in the belt groove 24c of the auxiliary sheave 24 moves to the inside in the radial direction of the auxiliary sheave 24, the movable sheave 24a of the auxiliary sheave, 24 is away from the fixed sheave 24b. It moves against the urging force of the spring 24d. Therefore, the winding radius of the belt 25 at the side of the sub-groove 24 is reduced. In this way, the shift ratio becomes smaller, and the movable sheaves 23a, 24a move closer to the so-called high speed position (at which the speed ratio is at the minimum). On the other hand, 'as shown in FIG. 5', if the motor 22 slides the movable sheave 23a of the main sheave 23 away from the fixed sheave 23b, the width of the belt groove 23c of the main sheave 23 is widened and The winding radius of the belt 25 at the side of the main sheave 23 is reduced. With this action 'as the Q belt 25 in the belt groove 24c of the auxiliary sheave 24 moves to the outside in the radial direction of the auxiliary sheave 24, the movable sheave 24a of the auxiliary sheave 24 is driven by the urging force of the spring 24d. The fixed sheave 24b moves in the direction. This enlarges the winding radius of the belt 25 at the side of the auxiliary sheave 24 . In this way, the gear ratio becomes larger, and the movable sheaves 23a, 24a move closer to the low gear position (at which the gear ratio is at the maximum). Further, as shown in Fig. 3, the output shaft 13 is connected to the speed reduction mechanism 31 via the centrifugal clutch 3 。. Further, the speed reduction mechanism 31 is coupled to the rear wheel 3 via a force transmission mechanism 6, such as a belt, a chain, and a drive shaft. This arranges the centrifugal clutch 30 between the output shaft 13 of the transmission gear mechanism 21 and the wheel 133245.doc -13- 200925462 after the drive wheel. The centrifugal clutch 30 is engaged and disengaged in accordance with the rotational speed of the sub-groove 24. Specifically, if the rotational speed of the secondary sheave 24 has not reached the predetermined rotational speed ', the centrifugal clutch 30 is disengaged. Therefore, the rotation of the sub-groove 24 is not transmitted to the rear wheel 3. On the other hand, if the rotational speed of the secondary sheave 24 is at or above a predetermined rotational speed, the centrifugal clutch is engaged. Therefore, the rotation of the 0 sub-groove 24 is transmitted to the rear wheel 3 via the centrifugal clutch 30, the speed reduction mechanism 3 1 and the force transmission mechanism ό. This causes the rear wheel 3 to rotate. «Control System of Motorcycle 1" Hereinafter, a control system of a motorcycle raft will be described with reference to FIG. As shown in Fig. 3, the control of the motorcycle 1 is mainly performed by acting as a control unit 2ECU (Electronic Control Unit) 5. The ECU 5 includes a memory 57 that stores a preset speed ratio and various settings, a control unit 55, and a drive circuit 56 that drives the motor 22. The control unit 55 performs the sheave position control (normal control of the speed ratio of the present invention). The sheave position control causes the movable sheave 23a of the main sheave 23 to slide Q to change the speed ratio. Various sensors and switches are connected to the ECU 5. Specifically, the throttle opening sensor 33, the brake lever 4c, the engine rotational speed sensor u, the sheave position sensor 26, and the main sheave rotational speed sense The detector 27, the sub-groove rotation speed sensor 28, and the vehicle sensor 32 are connected to the ECU 5.

節流閥開口感測器33偵測摩托車k節流閱開度。節流 間開口感測器33連接至節流閥7〇。節流間開口感測器纖 所偵^I之節流閥開度作為節流閥開度信號⑻輸出至腳 5田騎者操作制動桿乜時,將制動信號102輸出至ECU I33245.doc -14 - 200925462 5。換言之’自騎者操作制動桿4C時開始至騎者停止操作 制動桿4c時,制動桿4c持續地輸出制動信號102。 引擎旋轉速度感測器11偵測引擎1 〇之旋轉速度。引擎旋 轉速度感測器11將引擎1 〇之所偵測之旋轉速度作為引擎旋 轉速度信號103輸出至ECU 5。 槽輪位置感測器26為用於偵測變速齒輪機構21之變速比 ' 之感測器。具體言之,槽輪位置感測器26偵測主槽輪 0 23(見圖4、圖5)之皮帶槽23c之寬度。舉例而言,當主槽輪 23包括固定槽輪23b及可相對於固定槽輪23b改變位置之可 移動槽輪23 a時(如在此實施例中),槽輪位置感測器26偵測 可移動槽輪本體相對於固定槽輪23b之位置。此外,槽輪 位置感測器26將可移動槽輪23a之位置作為槽輪位置信號 1〇4輸出至ECU 5。 主槽輪旋轉速度感測器27偵測主槽輪23之旋轉速度。主 槽輪旋轉速度感測器27將主槽輪23之所偵測之旋轉速度作 〇 為主槽輪旋轉速度信號105輸出至ECU 5。 衂槽輪旋轉速度感測器28偵測副槽輪24之旋轉速度,副 槽輪旋轉速度感測器28將副槽輪24之所偵測之旋轉速度作 為副槽輪旋轉速度信號106輸出至Ecu 5。 -車輛速度感測器32偵測摩托車丨之車輛速度。車輛速度 感測器32將所偵測之車輛速度作為車輛速度信號1〇7輸出 至ECU 5。注意,車輛速度感測器32可為偵測後輪3之旋轉 速度之裝置;例如,車輛速度感測器32可藉由偵測減速機 構31之輸出軸之旋轉速度而獲得車輛速度。另外,車輛速 133245.doc •15· 200925462 度感測器32可藉由偵測前輪之旋轉速度而獲得車輛速度。 (ECU 5之控制概述) -引擎控制- ECU 5執行對引擎1〇之控制。具體言之,ecu $基於節 流閥開口信號101及車輛速度信號1〇7(及其他)計算目標引 '擎旋轉速度。在監視引擎旋轉速度信號1〇3之同時,ecu 5 -控制引擎10之旋轉速度等以使得其處於所計算的目標引擎 〇 旋轉速度。此係經由調整引擎10之點火裝置(未圖示)之點 火週期及供應至引擎10之燃料供應量來進行。 -換檔控制- 另外,ECU 5執行對變速機20之控制。具體言之,當動 力接通且起動發生時,ECU 5首先執行起動控制以確認皮 帶25之旋轉。此外,一旦由起動控制確認皮帶乃之旋轉, 則執行用於改變變速比之槽輪位置控制(本發明之變速比 之正常控制)。 Q 《起動控制》 在起動控制中,當執行變速齒輪機構21之皮帶25之旋轉 的债測且偵測到皮帶25之旋轉時,槽輪位置控制開始。注 意’在本發明之此實施例中,本發明之皮帶旋轉偵測感測 器為偵測副槽輪24之旋轉速度之副槽輪旋轉速度感測器 28。因此,ECU 5之控制部55自由副槽輪旋轉速度感測器 28偵測到的副槽輪24之旋轉速度來判定皮帶25是否在旋 轉。若判定皮帶25在旋轉,則槽輪位置控制開始。在下文 中’將參看圖6詳細地描述起動控制之流程圖。 133245.doc •16- 200925462 首先’如圖6所示,由ECU 5讀取由副槽輪旋轉速度感測 器28偵測到的作為副槽輪旋轉速度信號(圖3中之&旋轉速 度信號)1 06的副槽輪24之旋轉速度(步驟S1)。 當讀取副槽輪旋轉速度信號106時,ECU 5判定副槽輪24 之旋轉速度是否處於或高於規定的可容許旋轉速度(步驟 S2)。若在步驟S2中ECU 5之判定為是,換言之,若判定副 槽輪24之紅轉速度處於或高於規定的可容許旋轉速度,則 0 常式進行至步驟S3。 在步驟S3中,ECU 5之控制部55控制馬達22,直至變速 比換檔至低速檔側為止。因此’主槽輪23之可移動槽輪 23a朝著低速檔位置移動。此外,當基於自槽輪位置感測 器26輸入之槽輪位置信號1 〇4偵測到主槽輪23之可移動槽 輪23a已移動至低速檔位置時,常式進行至步驟S4。 在步驟S4中,控制部55開始槽輪位置控制(換言之,變 速比之正常控制)^此外,終止起動控制。 © 另一方面,若步驟S2中之判定為否,換言之,若判定副 槽輪24之旋轉速度尚未達到規定的可容許旋轉速度,則常 式進行至步驟S5。 首先,在步驟S5中,判定步驟§2中之否判定之累積數目 ^否已達到規定次數。此外,若步驟S5中之判定為是,換 言之,若敎步驟S2中之否判定之數目已達到規定次數, 則常式進行至步驟S6。 在步驟S6中’執行異常訊息之顯示。此異常訊息顯示之 目的在於向騎者通知主槽輪23在無皮帶25之情況下持續空 133245.doc -17· 200925462 主饩Γ :實施例中’如圖2所示’顯示面板7上存在異常警 ’且且控制部55將異常訊息信號⑽傳輸至異常警告 燈7a以使異常馨生、吟7。主你 吊。。燈73凴燈。因此,執行異常訊息顯示。 此外,終止起動控制。The throttle opening sensor 33 detects the degree of reading of the motorcycle k throttle. The throttle opening sensor 33 is connected to the throttle valve 7A. The throttle opening of the throttle sensor is detected as the throttle opening signal (8) output to the foot 5 when the rider operates the brake lever ,, and the brake signal 102 is output to the ECU I33245.doc - 14 - 200925462 5. In other words, when the rider operates the brake lever 4C until the rider stops operating the brake lever 4c, the brake lever 4c continuously outputs the brake signal 102. The engine rotation speed sensor 11 detects the rotation speed of the engine 1 。. The engine rotation speed sensor 11 outputs the rotation speed detected by the engine 1 to the ECU 5 as the engine rotation speed signal 103. The sheave position sensor 26 is a sensor for detecting the gear ratio ' of the shift gear mechanism 21. Specifically, the sheave position sensor 26 detects the width of the belt groove 23c of the main sheave 0 23 (see Figs. 4, 5). For example, when the main sheave 23 includes the fixed sheave 23b and the movable sheave 23a that can change position relative to the fixed sheave 23b (as in this embodiment), the sheave position sensor 26 detects The position of the movable sheave body relative to the fixed sheave 23b. Further, the sheave position sensor 26 outputs the position of the movable sheave 23a to the ECU 5 as the sheave position signal 1〇4. The main sheave rotation speed sensor 27 detects the rotational speed of the main sheave 23. The main sheave rotation speed sensor 27 outputs the detected rotational speed of the main sheave 23 to the ECU 5 as the main sheave rotational speed signal 105. The groove wheel rotation speed sensor 28 detects the rotation speed of the auxiliary groove wheel 24, and the auxiliary groove wheel rotation speed sensor 28 outputs the rotation speed detected by the auxiliary groove wheel 24 as the auxiliary groove wheel rotation speed signal 106 to Ecu 5. The vehicle speed sensor 32 detects the vehicle speed of the motorcycle. The vehicle speed sensor 32 outputs the detected vehicle speed to the ECU 5 as a vehicle speed signal 1〇7. Note that the vehicle speed sensor 32 may be a device that detects the rotational speed of the rear wheel 3; for example, the vehicle speed sensor 32 may obtain the vehicle speed by detecting the rotational speed of the output shaft of the reduction mechanism 31. In addition, the vehicle speed 133245.doc • 15· 200925462 degree sensor 32 can obtain the vehicle speed by detecting the rotational speed of the front wheel. (Overview of Control of ECU 5) - Engine Control - The ECU 5 performs control of the engine 1〇. Specifically, ecu $ calculates the target's rotational speed based on the throttle opening signal 101 and the vehicle speed signal 1〇7 (and others). While monitoring the engine rotation speed signal 1〇3, the ecu 5 - controls the rotation speed of the engine 10 or the like so that it is at the calculated target engine 旋转 rotation speed. This is done by adjusting the ignition cycle of the ignition device (not shown) of the engine 10 and the fuel supply to the engine 10. - Shift Control - In addition, the ECU 5 performs control of the transmission 20. Specifically, when the power is turned on and the start occurs, the ECU 5 first performs the start control to confirm the rotation of the belt 25. Further, once the rotation of the belt is confirmed by the start control, the sheave position control for changing the speed ratio (normal control of the speed ratio of the present invention) is executed. Q "Start Control" In the start control, when the measurement of the rotation of the belt 25 of the transmission gear mechanism 21 is performed and the rotation of the belt 25 is detected, the sheave position control is started. Note that in the embodiment of the present invention, the belt rotation detecting sensor of the present invention is a sub-groove rotation speed sensor 28 that detects the rotational speed of the sub-groove 24. Therefore, the control unit 55 of the ECU 5 determines whether or not the belt 25 is rotating by the rotation speed of the sub-groove 24 detected by the sub-disc rotation speed sensor 28. If it is determined that the belt 25 is rotating, the sheave position control is started. A flowchart of the start control will be described in detail below with reference to Fig. 6. 133245.doc •16- 200925462 First, as shown in FIG. 6, the ECU 5 reads the sub-groove rotation speed signal detected by the sub-groove rotation speed sensor 28 (the & rotation speed in FIG. 3). The rotation speed of the sub-groove 24 of the signal 610 (step S1). When the sub-groove rotation speed signal 106 is read, the ECU 5 determines whether or not the rotation speed of the sub-groove 24 is at or above a predetermined allowable rotation speed (step S2). If the determination of the ECU 5 is YES in step S2, in other words, if it is determined that the red rotation speed of the sub-groove 24 is at or above the predetermined allowable rotation speed, then the routine returns to step S3. In step S3, the control unit 55 of the ECU 5 controls the motor 22 until the gear ratio shifts to the low gear side. Therefore, the movable sheave 23a of the main sheave 23 moves toward the low gear position. Further, when it is detected based on the sheave position signal 1 〇 4 input from the sheave position sensor 26 that the movable sheave 23a of the main sheave 23 has moved to the low gear position, the routine proceeds to step S4. In step S4, the control unit 55 starts the sheave position control (in other words, the normal control of the speed change ratio). Further, the start control is terminated. On the other hand, if the determination in the step S2 is NO, in other words, if it is determined that the rotation speed of the sub-groove 24 has not reached the predetermined allowable rotation speed, the routine proceeds to a step S5. First, in step S5, it is determined whether the cumulative number of the determinations in the step § 2 has not reached the prescribed number of times. Further, if the determination in the step S5 is YES, in other words, if the number of the determinations in the step S2 has reached the predetermined number of times, the routine proceeds to a step S6. The display of the abnormality message is performed in step S6. The purpose of this abnormal message display is to inform the rider that the main sheave 23 is continuously empty without the belt 25 133245.doc -17· 200925462 Main 饩Γ: In the embodiment, 'the display panel 7 is present as shown in FIG. 2 The abnormality is detected and the control unit 55 transmits the abnormality signal signal (10) to the abnormality warning lamp 7a to make the abnormality 吟7. Lord you hang. . Light 73 lights. Therefore, an exception message display is performed. In addition, the start control is terminated.

:步驟5中之判定為否,換言之,若判定步驟S2中之否 帛積數目肖未達到規定次數,則返回至步驟S1且重 複每步驟。凊注意,步驟S2中之否判定之累積數目係藉 諸圖中未展示之§十數器來計數。此外,當自步驟S5返回 至步驟S1時’藉由計數器計數之累積數目增加—。注意, 當起動控制結束時,重設計數器。 «槽輪位置控制》 當藉由起動控制確認皮帶25之旋轉時,Ecu 5執行改變 變速機20之變速比之槽輪位置控制。ECU 5基於預先儲存 於δ己憶體57中之變速比映射而藉由驅動馬達22來控制槽輪 位置。 © 具體言之,ECU 5内之記憶體57儲存摩托車1之騎乘狀態 (諸如’摩托車1之車輛速度、引擎旋轉速度及節流閥開度 等)以及規定與變速比之關係之變速比映射。圖3中所展示 之控制部5 5基於此變速比映射以及車輛速度信號1 〇7及引 擎旋轉速度信號103來計算目標變速比。控制部55將PWM 信號108輸出至驅動電路56,PWM信號108係基於所計算的 目標變速比、槽輪位置信號104及副槽輪旋轉速度信號 106。驅動電路56根據PWM信號108將脈衝電壓施加至馬達 22。此驅動馬達22且調整主槽輪23之皮帶槽寬度。因此, 133245.doc 200925462 變速機20之變速比得以改變,直至該變速比處於目標變速 比為止。 注意,在此實施例中,描述一實例:改變變速齒輪機構 21之變速比之致動器為由PWM控制之馬達22。然而,在本 發明中,對使用何種類型之致動器來改變變速機2〇之變速 比無特定限制。舉例而言,改變變速機2〇之變速比之致動 • 器可為由ΡΑΜ(脈衝振幅調變)控制之馬達。或者,改變變 ^ 速機20之變速比之致動器可為步進馬達。或者,改變變速 機20之變速比之致動器可為液壓致動器等。 如上文所示,根據此實施例之變速機2〇之控制裝置 (ECU 5),在偵測到皮帶25之旋轉之後執行槽輪位置控制 (正常控制)^因此,當主槽輪23在無皮帶25之情況下空轉 時,不執行槽輪位置控制。因此,有可能抑制加速期間由 於在主槽輪23空轉時開始槽輪位置控制而發生碰撞。因 此,藉由此變速機20之控制裝置(ECU 5),可實現準確的 Ο 變速比控制,且可預先抑制與ECVT有關之控制問題。 另外,在此實施例中,在變速機2〇之控制裝置(Ε(:υ 5) 中’由副槽輪旋轉速度感測器2 8輸入副槽輪旋轉速度信號 1〇6,且控制裝置(ECU 5)自副槽輪24之旋轉速度偵測皮帶 25之旋轉。因此,根據此實施例,相對較不昂貴之副槽輪 旋轉速度感測器2 8可用作本發明之皮帶旋轉偵測感測器。 此時’ S根據引擎速度之槽輪位置控制如在習知Ecvt 控制裝置中開始時,可能偵測不到主槽輪23在無皮帶乃之 情況下的空轉,且有可能儘管事實上主槽輪23空轉,槽輪 133245.doc ,Λ 200925462 位置控制仍可能開始。為瞭解決此問題,有可能藉由偵測 車輛速度以及引擎速度而偵測主槽輪23之空轉。具體言 之’若車輛速度為零,則儘管事實上引擎速度已超越規定 的引擎速度’亦可判定主槽輪23在空轉。此外,有可能藉 由以此方式偵測主槽輪23之空轉而抑制槽輪位置控制開 始0 然而’在此實施例之變速機20中,離心式離合器30置放 〇The determination in step 5 is NO. In other words, if it is determined in step S2 that the number of accumulations does not reach the predetermined number of times, the process returns to step S1 and each step is repeated. It is noted that the cumulative number of the determinations in step S2 is counted by the § tensor not shown in the figure. Further, when returning from step S5 to step S1, 'the cumulative number counted by the counter is increased. Note that the counter is reset when the start control ends. «Slot wheel position control" When the rotation of the belt 25 is confirmed by the start control, the Ecu 5 performs the change of the sheave position control of the speed ratio of the transmission 20. The ECU 5 controls the sheave position by the drive motor 22 based on the gear ratio map stored in advance in the δ memory. © In particular, the memory 57 in the ECU 5 stores the riding state of the motorcycle 1 (such as 'vehicle speed of the motorcycle 1 , engine rotation speed, throttle opening degree, etc.) and the shifting speed specified in relation to the speed ratio Ratio mapping. The control unit 55 shown in Fig. 3 calculates the target speed ratio based on the speed ratio map and the vehicle speed signal 1 〇 7 and the engine rotational speed signal 103. The control unit 55 outputs the PWM signal 108 to the drive circuit 56 based on the calculated target speed ratio, the sheave position signal 104, and the sub-groove rotation speed signal 106. The drive circuit 56 applies a pulse voltage to the motor 22 in accordance with the PWM signal 108. This drives the motor 22 and adjusts the belt groove width of the main sheave 23. Therefore, the gear ratio of the transmission 20 is changed until the gear ratio is at the target gear ratio. Note that, in this embodiment, an example is described in which the actuator that changes the speed ratio of the shift gear mechanism 21 is the motor 22 controlled by PWM. However, in the present invention, there is no particular limitation on which type of actuator is used to change the speed ratio of the transmission 2〇. For example, the actuator that changes the speed ratio of the transmission 2〇 can be a motor controlled by ΡΑΜ (pulse amplitude modulation). Alternatively, the actuator that changes the speed ratio of the speed changer 20 may be a stepping motor. Alternatively, the actuator that changes the speed ratio of the transmission 20 may be a hydraulic actuator or the like. As described above, the control device (ECU 5) of the transmission 2 according to this embodiment performs the sheave position control (normal control) after detecting the rotation of the belt 25. Therefore, when the main sheave 23 is in the absence When the belt 25 is idling, the sheave position control is not performed. Therefore, it is possible to suppress the occurrence of collision during the acceleration period due to the start of the sheave position control when the main sheave 23 is idling. Therefore, by the control device (ECU 5) of the transmission 20, accurate 变速 gear ratio control can be realized, and control problems related to ECVT can be suppressed in advance. Further, in this embodiment, the sub-groove rotation speed signal 1〇6 is input by the sub-groove rotation speed sensor 28 in the control device (Ε(:5) of the transmission 2〇, and the control device (ECU 5) detects the rotation of the belt 25 from the rotational speed of the auxiliary sheave 24. Therefore, according to this embodiment, the relatively less expensive secondary sheave rotational speed sensor 28 can be used as the belt rotation detection of the present invention. Detecting the sensor. At this time, the S-slot position control according to the engine speed may not detect the idling of the main sheave 23 without the belt when starting in the conventional Ecvt control device, and it is possible Despite the fact that the main sheave 23 is idling, the position control of the sheave 133245.doc, Λ 200925462 may still begin. To solve this problem, it is possible to detect the idling of the main sheave 23 by detecting the speed of the vehicle and the speed of the engine. Specifically, if the vehicle speed is zero, it is determined that the main sheave 23 is idling despite the fact that the engine speed has exceeded the prescribed engine speed. Further, it is possible to detect the idling of the main sheave 23 in this manner. And suppress the slot wheel position control to start 0 '20, the centrifugal clutch 30 disposed square embodiment of the transmission in this embodiment

於輸出軸13與為驅動輪之後輪3之間。在此種變速機2〇中 (其中除偵測引擎速度外亦偵測車輛速度),若副槽輪24之 旋轉速度低於規定的旋轉速度(即使皮帶25在旋轉),則離 心式離合器30脫離。此防止來自引擎10之力被傳動至驅動 輪(後輪3) ^因此’即使皮帶25在旋轉,在某些情形下仍有 可此由於車柄速度為零而使得槽輪位置控制將不開始。因 此,若副槽輪24之旋轉速度未處於或高於規定的旋轉速 度’則槽輪位置控制將不開始。此係有問題的,因為在槽 輪位置控制開始之前需要顯著量之時間。 然而,在變速機20之控制裝置(ECU 5)之情況下,偵測 皮帶25之旋轉,且當皮帶25旋轉時槽輪位置控制開始。因 此,儘管事實上主槽輪23在空轉,亦可抑制槽輪位置控制 開始。此外,儘管事實上皮帶25在旋轉,亦可抑制槽輪位 置控制不開始。因此,可實現藉由變速機2〇進行的變速比 之準確控制,且可預先抑制與ECVT㈣之控制問題。 此時,若在突然制動之後立即斷開動力,則主槽輪幻之 可移動槽輪23a將停止,而非直至返回至低逮檔位置。在 133245.doc -20- 200925462 諸如此之狀況下,若再次接通動力,則皮帶槽23c之寬度 擴大,因為主槽輪23之可移動槽輪23a再次返回至低速槽 位置。若此發生’則儘管事實上皮帶25不旋轉,皮帶25仍 將變得鬆弛,且由於僅主槽輪23之皮帶槽23c變得擴大而 使得主槽輪23將空轉。 在此實施例中’皮帶25為橡膠皮帶。此外,與由金屬製 成之皮帶相比,若消除張力,則橡膠皮帶更可能變得鬆 0 弛。因此,如前所述,若在突然制動之後立即斷開動力且 主槽輪23之可移動槽輪23a停止而非直至返回至低速稽位 置,則在使用橡膠皮帶之變速機20中主槽輪23發生空轉之 機率比在使用金屬皮帶之變速機中主槽輪23發生空轉之機 率高。然而,在由變速機20之控制裝置(ECU 5)侦測到皮 帶25之旋轉之後執行槽輪位置控制(正常控制)。因此,當 主槽輪23相對於皮帶25空轉時,不執行槽輪位置控制(正 常控制)。因此,如在此實施例中使用本發明之控制裝置 〇 控制使用橡膠皮帶之變速機20尤其有效,且允許更進一步 改良上文所描述之效應。 另外’當皮帶25不旋轉時,變速機20之控制裝置(ecu 5 )之控制部5 5重複地執行皮帶2 5是否旋轉之判定達規定次 數。此外’當控制部55執行皮帶25尚未旋轉之判定達規定 次數時’其判定主槽輪23無段地空轉且照明異常警告燈 7a。因此’藉由變速機20之控制裝置(ECU 5)向操作者(騎 者)通知主槽輪23無段地空轉。 此外,若變速機20之控制裝置(ECu 5)之控制部55偵測 133245.doc •21 · 200925462 到皮帶25在旋轉,則在控制馬達22以便先將將變速比換樓 至低速檔侧之後,再開始槽輪位置控制(正常控制)(圖6中 之步驟S3、步驟S4)。因此,根據變速機20之控制裝置 (ECU 5),即使主槽輪23停止而未返回至低速擋位置,仍 將變速比明確地換檔至低速檔側,此使得變速比有可能自 低速檔側增加。因此,根據變速機20之控制裝置(Ecu 5)’當接通動力時,平穩加速係可能的,即使先前已斷開 動力而主槽輪23之可移動槽輪23a未返回至低速檔位置亦 如此。 < 第一修改實例> 注意,在上文所描述之實施例中,控制部55判定主槽輪 23無段地空轉且在控制部55判定副槽輪以之旋轉速度尚未 達到規定的可容許旋轉速度之累積次數達到規定次數時, 顯示異常訊息。在第一修改實例之控制部55中,如圖以斤 〇 不,若自起動控制之開始至當前時間的累積時間達到或超 過規定時間,則判定主槽輪23無段地空轉且顯示異常訊 〜在下文中,詳細地描述第一修改實例之起動控制。注 &步驟S 1至S4與上文所描述之實施例申的步驟相 同’所以省略了對其之描述。 在第-修改實例中’在起動控制之步㈣處,判定自起 動控制之開始至當前時 -a#pa ^ L 系積時間疋否已達到或超過規 此外’若步驟S5處之判定為是,換言之,若判定 控制之開始至當前時間的累 定時間,則常式進行至步驟S6e=時間已達到或超過規 Γ 在步驟S6處,顯示與上文 133245.doc -22. 200925462 所描述之實施例中相同的異常訊息。此外,終止起動控 制。 另一方面’若步驟S5處之判定為否,換言之,若判定自 起動控制之開始至當前時間的累積時間尚未達到或超過規 . ㈣間,則返回至步額且重複每一步驟。注意,自起動 控制之開始至當前時間之累積時間係藉由諸圖中未展示之 ' 言1數器來計S。另夕卜,當終止起動控制時,ί設計數器。 〇 卩此方式,當皮帶25不旋轉時,第-修改實例中之控制 裝置(ECU 5)之控制部55重複皮帶乃是否旋轉之判定直 至自起動控制之開始至當前時間#累積時間達到規定時間 為止。此外,當步驟S2處之否判定(皮帶25不旋轉之判定) 已持續規定時間或更長時間時,控制部55判定主槽輪23無 段地空轉且照明異常警告燈7a。經由此動作,第一修改實 例之控制裝置(ECU 5)亦可以與上文所描述之實施例相同 之方式向操作者(騎者)通知主槽輪23無段地空轉之事實。 〇 <第二修改實例> 在上文所描述之實例中,在起動控制中,ECU 5藉由判 疋剎槽輪24之旋轉速度是否已達到或超過規定的可容許旋 轉速度而偵測皮帶25是否旋轉。在第二修改實例中,_ 5在起動控制中不僅基於副槽輪24之旋轉速度而且基於主 槽輪23之旋轉速度來偵測皮帶25之旋轉。在下文中,參看 圖8詳細地描述第二修改實例之起動控制。注意’因為步 驟S3至S6與上文所描述之實施例中之步驟相同,所以省略 了對其之描述。 133245.doc •23· 200925462 在第二修改實例中,在起動控制之步驟s丨處,由ECU 5 讀取由副槽輪旋轉速度感測器28偵測到的作為副槽輪旋轉 速度k號106(圖3中之Se旋轉速度信號)的副槽輪24之旋轉 速度。此外,伴隨此讀取,亦由ECU 5讀取由主槽輪旋轉 速度感測器27偵測到的作為主槽輪旋轉速度信號丨〇5(圖3 中之Pr旋轉速度信號)的主槽輪23之旋轉速度。 當讀取主槽輪旋轉速度信號105及副槽輪旋轉速度信號 〇 106時,ECU 5之控制部55判定主槽輪23之旋轉速度是否已 達到或超過規定的第一旋轉速度且副槽輪24之旋轉速度是 否已達到或超過規定的第二旋轉速度(步驟S2)。此外,當 控制部55判定步驟S2處之判定為是時,常式進行至步驟 S3。另一方面,當經由控制部55判定步驟S2處之判定為否 時’常式進行至步驟S5。 然而,根據第二修改實例之控制裝置(ECU 5),不僅基 於副槽輪24之旋轉速度而且基於主槽輪23之旋轉速度來判 Ο 疋皮帶25是否旋轉。因此,根據第二修改實例之控制裝置 (ECU 5) ’可更可靠地偵測皮帶25之旋轉。因此,根據第 二修改實例之控制裝置(ECU 5),更準確的起動控制係可 能的’且可預先抑制與ECVT控制有關之問題。 注意’用於基於主槽輪23之旋轉速度及副槽輪24之旋轉 速度偵測皮帶25之旋轉的方法不必限於使用主槽輪23及副 槽輪24自身的旋轉速度的方法。可基於包括主槽輪23之旋 轉速度及副槽輪24之旋轉速度的許多變數來偵測皮帶25之 旋轉。舉例而言’可藉由自主槽輪23之旋轉速度及副槽輪 133245.doc •24· 200925462 24之旋轉速度計算實際變速比且接著將此實際變速比與預 先設定之變速比相比較來偵測皮帶25之旋轉。 <第三修改實例> 第三修改實例之控制裝置(ECU 5)使用間隙感測器61(代 替副槽輪旋轉速度感測器28)作為偵測皮帶25之不均勻性 " 之皮帶旋轉偵測感測器。 -如圖9所示’間隙感測器61量測自間隙感測器61至皮帶 〇 25之距離’且基於此距離之差異來偵測皮帶25面對間隙感 測器61之部分是皮帶25之凹面部分25a還是凸面部分25b。 此外’例如’間隙感測器61經配置以便在凹面部分25a經 過間隙感測器61之前方時將偵測信號發送至ecu 5。因 此’ ECU 5可藉由量測在指定量之時間内自間隙感測器61 發送偵測信號之次數而計算皮帶25之旋轉速度。 以此方式’若間隙感測器61用作皮帶旋轉偵測感測器’ 則皮帶25是否旋轉之更直接偵測係可能的。因此,根據第 〇 三修改實例之控制裝置(ECU 5),更準確的起動控制係可 能的,且可預先抑制與ECVT控制有關之問題。 <第四修改實例> 第四修改實例之控制裝置(ECU 5)使用感測器62(代替副 槽輪旋轉速度感測器28)作為偵測皮帶25上之條狀圖案之 皮帶旋轉偵測感測器。 ,如圖1G⑷所示’在第四修改實例之皮帶25上預先以條狀 形式置放可光學地或磁性地偵測之圖案25卜此外,使用 可谓測可光學地或磁性地伯測之圖案❿之光學或磁性感 133245.doc -25· 200925462 測器作為感測器62。此外,感測器62經配置以便在條狀形 圖案25C筵過感測器62之前方時將偵測信號自感測器62 發送至ECU 5。因此,ECU 5可藉由量測在規定量之時間 内自感測器62發送摘測信號之次數而計算皮帶25之旋轉速 度。 以此方式,若光學感測器62或磁性感測器62用作皮帶旋 ' 轉㈣感測11 ’則皮帶25是^旋轉之更直制測係可能 〇 的。因此,根據第四修改實例之控制裝置(ECU 5),更準 確的起動控制係可能的,且可預先抑制與制有關 之問題。 -第二實施例- 圖11為展示根據第二實施例之摩托車之無段變速機26〇 及控制系統的方塊圖。根據第二實施例,變速機260亦為 皮帶型ECVT。然而,根據第二實施例之變速機26〇之皮帶 為所謂的金屬皮帶264。 Ο 根據第一實施例,ECVT之致動器為馬達22(見圖3)。然 而’ ECVT之致動器不必限於為馬達22。根據下文中所說 明的第二實施例,ECVT之致動器為液壓致動器。 此外,如圖3所示,根據第一實施例之離合器為配置於 變速機20之輸出軸13與後輪3之間的離心式離合器3〇。與 此對比’根據第二實施例之離合器為配置於變速機26〇之 引擎10與輸入軸271之間的多片摩擦離合器265。 詳言之,如圖11所示,根據第二實施例之摩托車包括電 子控制之多片摩擦離合器265及為ECVT之變速機260。變 133245.doc •26· 200925462 速機260包括主槽輪262、副槽輪263,及纏繞於主槽輪262 及副槽輪263之金屬皮帶264。主槽輪262包括固定槽輪本 體262A及可移動槽輪本體262B。副槽輪263包括固定槽輪 本體263八及可移動槽輪本體2638。 主槽輪262具有主槽輪速度感測器27。副槽輪263具有副 槽輪速度感測器28。 摩托車包括作為液壓致動器之液壓缸267A、液壓缸 〇 267B,及連接至液壓缸267A及液壓缸267B之液壓控制閥 267C〇液壓缸267A藉由驅動主槽輪262之可移動槽輪本體 262B而調整主槽輪262之槽寬度。液壓缸267B藉由驅動副 槽輪263之可移動槽輪本體263B而調整副槽輪263之槽寃 度。液壓控制閥267C為調整饋送至液壓缸267A及267B之 液壓之閥。液壓控制閥267C執行控制以便在液壓缸267A 及267B中之任一者中之液壓增加時減小另一缸中之液壓。 液壓控制閥267C由ECU 5來控制。 Q 多片摩擦離合器265配置於變速機260之引擎10與輸入軸 271之間,且,例如,根據引擎10之旋轉速度執行無段控 制。舉例而言,執行控制以使得多片摩擦離合器265在引 擎10之旋轉速度達到規定值時嚙合,且另一方面,在引擎 10之旋轉速度未達到規定值時脫離。 ECU 5之内部結構大體上與第一實施例中之結構相同。 在第二實施例中,亦執行與第一實施例中之控制相同之控 制。在第二實施例中,亦可應用與第一實施例之修改實例 中之每一者相同的修改實例。 133245.doc -27- 200925462 在第二實施例中,亦在起動之後,在偵測到皮帶264之 旋轉之後,ECU 5執行槽輪位置控制(正常控制)。因此, 在第二實施例中,當主槽輪262相對於皮帶264空轉時,亦 不執行槽輪位置控制。因此,可抑制加速期間由於在主槽 輪23空轉時開始槽輪位置控制而發生碰撞。因此,在此實 施例中’準確的變速比控制亦係可能的,且亦可預先抑制 •與EC VT有關之控制問題。 〇 在第二實施例中,根據引擎10之旋轉速度執行無段控制 之多片摩擦離合器265亦配置於變速機260之引擎10與輸入 軸271之間。根據此類型之組態’當換檔控制在偵測到皮 帶264之旋轉之前(換言之,在離合器265嚙合之前)起動 時,有可能加速將不再為平穩的。然而,根據此實施例, 在偵測到皮帶264之旋轉之後執行槽輪位置控制(正常控 制)’所以即使在上文所描述之組態下,亦可始終執行平 穩加速。 〇 注意’在此實施例之情況下,將液壓恆定地施加至主槽 輪262側上之液壓缸267A及副槽輪263側上之液壓缸 267B。在此實施例中’短語”起動之後起動致動器控制,,係 指在起動之後首先改變液壓缸267A或液壓缸267B中之至 少一者的液壓以驅動主槽輪262之可移動槽輪本體2628及 副槽輪263之可移動槽輪本體263B。因此,僅將丨亙定液壓 施加至液壓缸267A及液壓缸267B不包括在如本文中所提 及的開始致動器控制的定義中。 注意,在上文所描述之實施例中之每一者中,作為本發 133245.doc -28· 200925462 明之實施例之-實例來說明速克達摩托車卜然而,本發 明之車輛不限於上文所描述之速克達摩托車^。本發明之 車輛可為不同於速克達摩托車1之車_,諸如跨 或並排型車輛》 單輛 〈術語之定義> "驅動源"係指產生力之物件。"驅動源"可為( 機或電動馬達。 …' 〇 ’’電子控制變速機"係指使用電來換檔變速比之通用變速 機。”電子控制變速機”包括藉由電動馬達換槽變速比之變 速機及藉由電子控制液壓致動器換檔變速比之變速機。換 §之,只要控制為電的,就不存在關於改變變速比之致動 器之類型的特定限制。 [工業適用性] 本發明可用於電子控制無段變速機控制裝置、無段變速 機,及配備其之車輛。 、 〇 【圖式簡單說明】 圖1為利用本發明之摩托車的側視圖。 圖2展示關於手柄部分之組態的簡圖。 圖3為控制裝置之方塊圖。 圖4為展示變速比在高速檔時之變速機的圖。 圖5為展示變速比在低速檔時之變速機的圖。 圖6為展示起動控制之流程的流程圖。 圖7為展示第一修改實例之起動控制之流程的流程圖。 圖8為展示第二修改實例之起動控制之流程的流程圖。 133245.doc -29- 200925462 圖9為展示第三修改實例之皮帶旋轉偵測感測器的圖。 圖1 〇(圖1 0(a)、圖10(b))為展示第四修改實例之皮帶旋轉 偵測感測器的圖。 圖11為根據第二實施例之無段變速機及控制裝置的方塊 【主要元件符號說明】Between the output shaft 13 and the rear wheel 3 of the drive wheel. In such a transmission 2 (which detects the speed of the vehicle in addition to detecting the engine speed), if the rotational speed of the secondary sheave 24 is lower than a prescribed rotational speed (even if the belt 25 is rotating), the centrifugal clutch 30 Get rid of. This prevents the force from the engine 10 from being transmitted to the drive wheels (rear wheel 3) ^ so 'even if the belt 25 is rotating, in some cases it is still possible that the sheave position control will not start because the handle speed is zero . Therefore, if the rotational speed of the auxiliary sheave 24 is not at or above the prescribed rotational speed ', the sheave position control will not start. This is problematic because a significant amount of time is required before the slot position control begins. However, in the case of the control device (ECU 5) of the transmission 20, the rotation of the belt 25 is detected, and the sheave position control is started when the belt 25 is rotated. Therefore, despite the fact that the main sheave 23 is idling, the start of the position control of the sheave can be suppressed. Further, despite the fact that the belt 25 is rotating, the control of the position of the sheave can be suppressed from starting. Therefore, accurate control of the gear ratio by the transmission 2〇 can be realized, and the control problem with the ECVT (4) can be suppressed in advance. At this time, if the power is turned off immediately after the sudden braking, the main sheave of the movable sheave 23a will stop, instead of returning to the low-trap position. In the case of 133245.doc -20- 200925462, if the power is turned on again, the width of the belt groove 23c is enlarged because the movable sheave 23a of the main sheave 23 is returned to the low speed groove position again. If this occurs, the belt 25 will become slack despite the fact that the belt 25 does not rotate, and the main sheave 23 will be idling because only the belt groove 23c of the main sheave 23 becomes enlarged. In this embodiment, the belt 25 is a rubber belt. In addition, if the tension is removed, the rubber belt is more likely to become looser than the belt made of metal. Therefore, as described above, if the power is turned off immediately after the sudden braking and the movable sheave 23a of the main sheave 23 is stopped instead of returning to the low speed position, the main sheave in the transmission 20 using the rubber belt 23 The probability of occurrence of idling is higher than that of the main sheave 23 in a transmission using a metal belt. However, the sheave position control (normal control) is performed after the rotation of the belt 25 is detected by the control device (ECU 5) of the transmission 20. Therefore, when the main sheave 23 is idling with respect to the belt 25, the sheave position control (normal control) is not performed. Therefore, it is particularly effective to control the transmission 20 using a rubber belt as in the embodiment using the control device of the present invention, and to further improve the effects described above. Further, when the belt 25 is not rotated, the control unit 55 of the control unit (ecu 5) of the transmission 20 repeatedly performs the determination as to whether or not the belt 25 is rotated for a predetermined number of times. Further, when the control unit 55 executes the determination that the belt 25 has not been rotated for a predetermined number of times, it is determined that the main sheave 23 is idling without a segment and the abnormal warning lamp 7a is illuminated. Therefore, the control unit (ECU 5) of the transmission 20 notifies the operator (the rider) that the main sheave 23 is idling without interruption. Further, if the control unit 55 of the control device (ECu 5) of the transmission 20 detects 133245.doc • 21 · 200925462 until the belt 25 is rotating, after the motor 22 is controlled so that the gear ratio is changed to the low gear side first Then, the groove wheel position control (normal control) is started (step S3, step S4 in Fig. 6). Therefore, according to the control device (ECU 5) of the transmission 20, even if the main sheave 23 is stopped without returning to the low gear position, the gear ratio is clearly shifted to the low gear side, which makes it possible to shift the gear ratio from the low gear. Side increases. Therefore, according to the control device (Ecu 5) of the transmission 20, when the power is turned on, a smooth acceleration is possible, even if the power has been previously turned off and the movable sheave 23a of the main sheave 23 has not returned to the low gear position. in this way. <First Modified Example> Note that, in the embodiment described above, the control portion 55 determines that the main sheave 23 is idling without a segment and that the control portion 55 determines that the sub-groove has not been rotated at a predetermined speed. When the cumulative number of allowable rotation speeds reaches the specified number of times, an error message is displayed. In the control unit 55 of the first modified example, if the cumulative time from the start of the start control to the current time reaches or exceeds the predetermined time, it is determined that the main sheave 23 is idle without a segment and an abnormality is displayed. ~ In the following, the start control of the first modified example is described in detail. Note & Steps S1 to S4 are the same as those of the embodiment described above, so the description thereof is omitted. In the first modified example, at step (4) of the start control, it is determined whether the start time from the start of the start control to the current time -a#pa ^ L is the time that has been reached or exceeded. If the decision at step S5 is yes In other words, if it is determined that the control is started to the accumulated time of the current time, the routine proceeds to step S6e=the time has reached or exceeded the rule. At step S6, the display is as described in 133245.doc-22.200925462 above. The same anomaly message in the embodiment. In addition, the start control is terminated. On the other hand, if the decision at the step S5 is NO, in other words, if it is determined that the cumulative time from the start of the self-start control to the current time has not reached or exceeded the rule (4), the process returns to the step and each step is repeated. Note that the cumulative time from the start of the start control to the current time is counted by the 'speaker' not shown in the figure. In addition, when the start control is terminated, the counter is set. In this manner, when the belt 25 is not rotated, the control unit 55 of the control device (ECU 5) in the first modification example repeats the determination as to whether or not the belt is rotated until the cumulative time from the start of the start control to the current time # reaches the prescribed time. until. Further, when the NO determination at step S2 (the determination that the belt 25 is not rotated) has continued for a predetermined time or longer, the control portion 55 determines that the main sheave 23 is idling without interruption and illuminates the abnormal warning lamp 7a. By this action, the control device (ECU 5) of the first modified example can also notify the operator (the rider) of the fact that the main sheave 23 is idling without interruption in the same manner as the embodiment described above. 〇<Second Modified Example> In the example described above, in the start control, the ECU 5 detects by determining whether the rotational speed of the brake pulley 24 has reached or exceeded a prescribed allowable rotational speed. Whether the belt 25 is rotated. In the second modified example, _5 detects the rotation of the belt 25 based not only on the rotational speed of the sub-groove 24 but also on the rotational speed of the main sheave 23 in the start control. Hereinafter, the start control of the second modified example will be described in detail with reference to Fig. 8. Note that since steps S3 to S6 are the same as those in the above-described embodiment, the description thereof is omitted. 133245.doc •23· 200925462 In the second modified example, at the step s丨 of the start control, the ECU 5 reads the sub-groove rotation speed k detected by the sub-groove rotation speed sensor 28 The rotational speed of the sub-groove 24 of 106 (Se rotation speed signal in Fig. 3). Further, with this reading, the main groove detected by the main sheave rotation speed sensor 27 as the main sheave rotation speed signal 丨〇5 (Pr rotation speed signal in Fig. 3) is also read by the ECU 5. The rotational speed of the wheel 23. When the main sheave rotational speed signal 105 and the sub-groove rotational speed signal 〇106 are read, the control unit 55 of the ECU 5 determines whether the rotational speed of the main sheave 23 has reached or exceeded a prescribed first rotational speed and the secondary sheave Whether the rotational speed of 24 has reached or exceeded the prescribed second rotational speed (step S2). Further, when the control unit 55 determines that the determination at step S2 is YES, the routine proceeds to step S3. On the other hand, when it is determined via the control unit 55 that the determination at step S2 is NO, the routine proceeds to step S5. However, according to the control device (ECU 5) of the second modified example, it is judged whether or not the belt 25 is rotated based not only on the rotational speed of the auxiliary sheave 24 but also on the rotational speed of the main sheave 23. Therefore, the control device (ECU 5)' according to the second modified example can more reliably detect the rotation of the belt 25. Therefore, according to the control device (ECU 5) of the second modified example, a more accurate starting control system is possible and the problems associated with the ECVT control can be suppressed in advance. Note that the method for detecting the rotation of the belt 25 based on the rotational speed of the main sheave 23 and the rotational speed of the sub-groove 24 is not necessarily limited to the method of using the rotational speeds of the main sheave 23 and the auxiliary sheave 24 itself. The rotation of the belt 25 can be detected based on a number of variables including the rotational speed of the main sheave 23 and the rotational speed of the secondary sheave 24. For example, the actual gear ratio can be calculated by the rotational speed of the autonomous sheave 23 and the rotational speed of the auxiliary sheave 133245.doc •24·200925462 24 and then the actual gear ratio is compared with a preset gear ratio. The rotation of the belt 25 is measured. <Third Modification Example> The control device (ECU 5) of the third modification example uses the gap sensor 61 (instead of the sub-groove rotation speed sensor 28) as a belt for detecting the unevenness of the belt 25 Rotate the sensor. - the gap sensor 61 measures the distance from the gap sensor 61 to the belt cassette 25 as shown in FIG. 9 and detects that the portion of the belt 25 facing the gap sensor 61 is the belt 25 based on the difference in the distance. The concave portion 25a is also the convex portion 25b. Further, for example, the gap sensor 61 is configured to transmit a detection signal to the ecu 5 when the concave portion 25a passes before the gap sensor 61. Therefore, the ECU 5 can calculate the rotational speed of the belt 25 by measuring the number of times the detection signal is transmitted from the gap sensor 61 within a specified amount of time. In this way, if the gap sensor 61 is used as a belt rotation detecting sensor, it is possible to detect whether or not the belt 25 is rotated. Therefore, according to the control device (ECU 5) of the third modified example, a more accurate starting control is possible, and problems related to ECVT control can be suppressed in advance. <Fourth Modified Example> The control device (ECU 5) of the fourth modified example uses the sensor 62 (instead of the sub-groove rotation speed sensor 28) as a belt rotation detection for detecting a strip pattern on the belt 25. Measure the sensor. As shown in FIG. 1G (4), the optically or magnetically detectable pattern 25 is placed in advance on the belt 25 of the fourth modified example. In addition, a pattern that can be optically or magnetically measured is used. ❿之光 or magnetic sexy 133245.doc -25· 200925462 The detector acts as a sensor 62. In addition, the sensor 62 is configured to transmit a detection signal from the sensor 62 to the ECU 5 when the strip pattern 25C passes over the sensor 62. Therefore, the ECU 5 can calculate the rotational speed of the belt 25 by measuring the number of times the self-sensor 62 transmits the measurement signal for a predetermined amount of time. In this manner, if the optical sensor 62 or the magnetic sensor 62 is used as a belt turn 'four sense' 11 ', the belt 25 may be rotated to a more straight line. Therefore, according to the control device (ECU 5) of the fourth modified example, a more accurate starting control system is possible, and the problems associated with the system can be suppressed in advance. - Second Embodiment - Fig. 11 is a block diagram showing a stepless transmission 26 and a control system for a motorcycle according to a second embodiment. According to the second embodiment, the transmission 260 is also a belt type ECVT. However, the belt of the transmission 26 according to the second embodiment is a so-called metal belt 264. According to the first embodiment, the actuator of the ECVT is the motor 22 (see Fig. 3). However, the actuator of the 'ECVT' is not necessarily limited to the motor 22. According to a second embodiment described hereinafter, the actuator of the ECVT is a hydraulic actuator. Further, as shown in Fig. 3, the clutch according to the first embodiment is a centrifugal clutch 3 disposed between the output shaft 13 of the transmission 20 and the rear wheel 3. In contrast, the clutch according to the second embodiment is a multi-plate friction clutch 265 disposed between the engine 10 of the transmission 26 and the input shaft 271. In detail, as shown in Fig. 11, the motorcycle according to the second embodiment includes an electronically controlled multi-plate friction clutch 265 and a speed changer 260 which is an ECVT. 133245.doc •26· 200925462 The speed machine 260 includes a main sheave 262, a sub-groove 263, and a metal belt 264 wound around the main sheave 262 and the auxiliary sheave 263. The main sheave 262 includes a fixed sheave body 262A and a movable sheave body 262B. The auxiliary sheave 263 includes a fixed sheave body 263 and a movable sheave body 2638. The main sheave 262 has a main sheave speed sensor 27. The secondary sheave 263 has a secondary sheave speed sensor 28. The motorcycle includes a hydraulic cylinder 267A as a hydraulic actuator, a hydraulic cylinder 〇 267B, and a hydraulic control valve 267C connected to the hydraulic cylinder 267A and the hydraulic cylinder 267B. The hydraulic cylinder 267A is driven by the movable sheave 262. The groove width of the main sheave 262 is adjusted by 262B. The hydraulic cylinder 267B adjusts the groove width of the auxiliary sheave 263 by driving the movable sheave body 263B of the auxiliary sheave 263. The hydraulic control valve 267C is a valve that adjusts the hydraulic pressure fed to the hydraulic cylinders 267A and 267B. The hydraulic control valve 267C performs control to reduce the hydraulic pressure in the other cylinder when the hydraulic pressure in either of the hydraulic cylinders 267A and 267B increases. The hydraulic control valve 267C is controlled by the ECU 5. The Q multi-plate friction clutch 265 is disposed between the engine 10 of the transmission 260 and the input shaft 271, and performs, for example, stepless control in accordance with the rotational speed of the engine 10. For example, control is performed such that the plurality of friction clutches 265 are engaged when the rotational speed of the engine 10 reaches a prescribed value, and on the other hand, when the rotational speed of the engine 10 does not reach a prescribed value. The internal structure of the ECU 5 is substantially the same as that of the first embodiment. In the second embodiment, the same control as that in the first embodiment is also performed. In the second embodiment, the same modified examples as each of the modified examples of the first embodiment can also be applied. 133245.doc -27- 200925462 In the second embodiment, also after the start, after detecting the rotation of the belt 264, the ECU 5 performs the sheave position control (normal control). Therefore, in the second embodiment, when the main sheave 262 is idling with respect to the belt 264, the sheave position control is not performed. Therefore, it is possible to suppress the collision during the acceleration period due to the start of the chute position control when the main sheave 23 is idling. Therefore, 'accurate speed ratio control is also possible in this embodiment, and control problems related to EC VT can also be suppressed in advance. 〇 In the second embodiment, the multi-plate friction clutch 265 that performs the stepless control in accordance with the rotational speed of the engine 10 is also disposed between the engine 10 of the transmission 260 and the input shaft 271. According to this type of configuration, when the shift control is started before the rotation of the belt 264 is detected (in other words, before the clutch 265 is engaged), it is possible that the acceleration will no longer be smooth. However, according to this embodiment, the sheave position control (normal control) is performed after the rotation of the belt 264 is detected. Therefore, even under the configuration described above, the smooth acceleration can always be performed. 〇 Note that in the case of this embodiment, the hydraulic pressure is constantly applied to the hydraulic cylinder 267A on the side of the main sheave 262 and the hydraulic cylinder 267B on the side of the sub sheave 263. Starting the actuator control after the 'phrase' is activated in this embodiment means that the hydraulic pressure of at least one of the hydraulic cylinder 267A or the hydraulic cylinder 267B is first changed to drive the movable sheave of the main sheave 262 after starting. The movable sheave body 263B of the body 2628 and the secondary sheave 263. Therefore, only applying the set hydraulic pressure to the hydraulic cylinder 267A and the hydraulic cylinder 267B is not included in the definition of starting actuator control as referred to herein. Note that in each of the above-described embodiments, the Scooton motorcycle is described as an example of the embodiment of the present invention 133245.doc -28-200925462. However, the vehicle of the present invention is not limited to The quick-kilda motorcycle described above. The vehicle of the present invention may be a different vehicle than the Scooton motorcycle 1, such as a cross- or side-by-side type vehicle, "single vehicle definition" "drive source" Refers to the force generating object. The "drive source" can be (machine or electric motor. ... ' 〇 ' ' electronically controlled transmission " is a universal transmission that uses electric power to shift gear ratios." Electronic Control "Transmission" includes electric horse A shifting machine having a shift ratio and a shifting machine that shifts the speed ratio by electronically controlling a hydraulic actuator. In other words, as long as the control is electric, there is no specific type of actuator for changing the speed ratio. [Industrial Applicability] The present invention can be applied to an electronically controlled stepless transmission control device, a stepless transmission, and a vehicle equipped therewith. 〇 [Simplified description of the drawings] Fig. 1 is a side view of a motorcycle using the present invention Figure 2 shows a simplified diagram of the configuration of the handle portion. Figure 3 is a block diagram of the control device. Figure 4 is a diagram showing the transmission when the gear ratio is at high gear. Figure 5 is a diagram showing the gear ratio at low gear. Fig. 6 is a flow chart showing the flow of the start control. Fig. 7 is a flow chart showing the flow of the start control of the first modified example. Fig. 8 is a flow chart showing the flow of the start control of the second modified example. Fig. 9 is a diagram showing a belt rotation detecting sensor of a third modified example. Fig. 1 图 (Fig. 10(a), Fig. 10(b)) for showing the fourth modification Example of a belt rotation detection sensor FIG 11 is a variable speed drive and a control device of the second embodiment in a block Main reference numerals DESCRIPTION

1 摩托車 2 動力單元 3 後輪 4 手柄 4a 左抓握部分 4b 右抓握部分 4c 制動桿 4d 手柄桿 5 ECU(控制裝置) 6 力傳動機構 7 顯示面板 7a 異常警告燈 10 引擎 11 引擎旋轉速度感測器 12 輸入軸 13 輸出軸 20 變速機(無段變速機) 21 變速齒輪機構 133245.doc -30· 200925462 22 23 23a 23b 23c 24 24a 24b 24c 24d 25 25a 25b 25c 26 27 28 30 31 32 33 40 ❹ 馬達 主槽輪 可移動槽輪(主可移動槽輪本體) 固定槽輪(主固定槽輪本體) 皮帶槽 副槽輪 可移動槽輪(副可移動槽輪本體) 固定槽輪(副固定槽輪本體) 皮帶槽 彈簧 皮帶 皮帶之凹面部分 皮帶之凸面部分 條狀形式圖案 槽輪位置感測器 主槽輪旋轉速度感測器(皮帶旋轉偵測感測 器) 副槽輪旋轉速度感測器(皮帶旋轉偵測感測 器) 離心式離合器 減速機構 車輛感測器/車輛速度感測器 節流閥開口感測器 開關盒 133245.doc -31 - 200925462 55 控制部 56 驅動電路 57 記憶體(記憶體部) 61 間隙感測器(皮帶旋轉偵測感測器) 62 感測器(皮帶旋轉偵測感測器) 70 節流閥 101 節流閥開度信號/節流閥開口信號 義 102 Ο 制動信號 103 引擎旋轉速度信號 104 槽輪位置信號 105 主槽輪旋轉速度信號 106 副槽輪旋轉速度信號 107 車輛速度信號 108 PWM信號 109 異常訊息信號 ❹ 260 無段變速機 262 主槽輪 262Α 固定槽輪本體 262Β 可移動槽輪本體 263 副槽輪 263Α 固定槽輪本體 263Β 可移動槽輪本體 264 金屬皮帶 265 多片摩擦離合器 133245.doc -32- 200925462 267Α 液壓缸 267Β 液壓缸 267C 液壓控制閥 271 輸入軸 Ο -33- 133245.doc1 Motorcycle 2 Power unit 3 Rear wheel 4 Handle 4a Left grip part 4b Right grip part 4c Brake lever 4d Handle lever 5 ECU (control device) 6 Force transmission mechanism 7 Display panel 7a Abnormal warning light 10 Engine 11 Engine rotation speed Sensor 12 Input shaft 13 Output shaft 20 Transmission (stepless transmission) 21 Transmission gear mechanism 133245.doc -30· 200925462 22 23 23a 23b 23c 24 24a 24b 24c 24d 25 25a 25b 25c 26 27 28 30 31 32 33 40 马达 Motor main sheave movable trough (main movable sheave body) fixed sheave (main fixed sheave body) Belt trough auxiliary sheave movable trough (sub-movable sheave body) fixed sheave (deputy Fixed sheave body) Concave part of the belt groove spring belt belt Convex part of the belt Belt pattern groove wheel position sensor Main groove wheel rotation speed sensor (belt rotation detection sensor) Sub-groove rotation speed sense Detector (belt rotation detection sensor) Centrifugal clutch reduction mechanism vehicle sensor / vehicle speed sensor throttle valve opening sensor switch box 133245.doc -31 - 200925462 55 Control unit 56 Drive circuit 57 Memory (memory unit) 61 Gap sensor (belt rotation detection sensor) 62 Sensor (belt rotation detection sensor) 70 Throttle valve 101 Throttle valve Opening signal / throttle opening signal meaning 102 制动 Brake signal 103 Engine rotation speed signal 104 Noch position signal 105 Main sheave rotation speed signal 106 Sub-groove rotation speed signal 107 Vehicle speed signal 108 PWM signal 109 Abnormal message signal ❹ 260 stepless speed changer 262 main sheave 262Α fixed sheave body 262 Β movable sheave body 263 auxiliary sheave 263 固定 fixed sheave body 263 Β movable sheave body 264 metal belt 265 multi-plate friction clutch 133245.doc -32- 200925462 267Α Hydraulic cylinder 267Β Hydraulic cylinder 267C Hydraulic control valve 271 Input shaft Ο -33- 133245.doc

Claims (1)

200925462 十、申請專利範圍: 1. 一種用於一電子控制無段變速機之控制裝置,該電子控 制無段變速機配置於一車輛之一驅動源與一驅動輪之 間,且可無段地改變一變速比,其中 該無段變速機包含: 一輸入軸, 一輸出軸, 0 主槽輪,其包括一與該輸入軸一起旋轉之主固定槽 輪本體及一面對該主固定槽輪本體且可在該輸入軸之轴 向上相對於該主固定槽輪本體改變位置之主可移動槽輪 本體,該主可移動槽輪本體與該主固定槽輪本體一起形 成一朝著徑向外部延伸及增寬之主側皮帶槽,且該主可 移動槽輪本體與該輸入軸一起旋轉, wj槽輪其包括一與該輸出軸一起旋轉之副固定槽 輪本體及-面對該副gj定槽輪本體且可在該輸出軸之袖 ❹ 向上相對於該副固定槽輪本體改變位置之副可移動槽輪 本體,該副可移動槽輪本體與該副固定槽輪本體一起形 成一朝著該徑向外部延伸及增寬之副侧皮帶槽,且該副 可移動槽輪本體與該輸出軸一起旋轉, 一皮帶,其纏繞於該主側皮帶槽及該副側皮帶槽中, -致動器’其藉由改變該主側皮帶槽之—寬度及該副 側皮帶槽之-寬度中之至少一者而改變該主槽輪與該副 槽輪之間的一變速比, 皮▼旋轉偵測感測器,其直接或間接地偵測該皮帶 133245.doc 200925462 之旋轉,及 一控制該致動器之控制部,其中 該控制部在起動之後於偵測到該皮帶之旋轉之後開始 對該致動器之控制。 2·如請求項1之無段變速機之控制裝置,其中 該皮帶旋轉偵測感測器藉由偵測該副槽輪之一旋轉速 度而偵測該皮帶之旋轉。 0 3.如咕求項1之無段變速機之控制裝置,其中 該無奴變速機進一步包括一配置於該輸出軸與該驅動 輪之間的離心式離合器。 4·如叫求項1之無段變速機之控制裝置,其中 該無段變速機進-步包括—配置於該驅動源與該輸入 軸之間的離合器。 5·如請求項1之無段變速機之控制裝置,其中 該皮帶為一橡膠皮帶。 ❹ 6.如請求項1之無段變速機之控制裝置,其中 該控制部進一步包括一用於通知異常之異常警告燈,且 該控制部基於一來自該皮帶旋㈣測感測器之_結 行==帶是否旋轉’且當判定該皮帶在旋轉時,執 之—正常控制,且另-方面,當判定該皮 ==,該控制部在-規定期間内或達-規定次數 之定該皮帶是否旋轉,且當該皮帶未旋轉 行達該規定期間時或當該皮帶未旋轉之 仃恰好達該規定次數時,該控制部使該異常警 133245.doc 200925462 告燈亮燈。 如請求項1之無段變速機之控制较置,其 更包括一儲存一預先設定之變速 μ i 逯比呔定之記憶體部,且 藉由控制該致動器,該控制部可執行對該變速比之一 正常控制而控制該無段變速機之該變速比朝著該預先設 定之變速比改變,且 在起動之後,於該皮帶旋㈣測感測器偵測到該皮帶 Ο 之旋轉之後’該控制部先以使該變速比變換至低速稽侧 的方式控制該致動H ’再開始對該變速比之該正常控 制0 8·如請求項1之無段變速機之控制裝置,其中 該皮帶旋轉偵測感測器包括 一主側旋轉速度感測器,其偵測該主槽輪之一旋轉速 度, 一 4側旋轉速度感測器’其偵測該副槽輪之一旋轉速 ❹ 度,且 該控制部基於該主槽輪之該旋轉速度及該副槽輪之該 旋轉速度來偵測該皮帶之該旋轉。 9.如請求項8之無段變速機之控制裝置,其中 該控制部自藉由該主側旋轉速度感測器偵測到的該主 槽輪之該旋轉速度及藉由該副側旋轉速度感測器偵測到 的該副槽輪之該旋轉速度計算一實際變速比,且藉由比 較該預先設定之變速比設定與該實際變速比而偵測該皮 帶之旋轉。 133245.doc 200925462 ίο. —種電子控制無段變速機,其配置於一車輛之一驅動源 與一驅動輪之間’且可無段地改變一變速比,該電子护^ 制無段變速機包含: 一輸入軸, 一輸出軸, 一主槽輪,其包括一與該輸入軸一起旋轉之主固定槽 輪本體及一面對該主固定槽輪本體且可在該輸入軸之轴 0 向上相對於該主固定槽輪本體改變位置之主可移動槽輪 本體’該主可移動槽輪本體與該主固定槽輪本體一起形 成一朝著徑向外部延伸及増寬之主側皮帶槽,且該主可 移動槽輪本體與該輸入轴一起旋轉, 一副槽輪,其包括一與該輸出軸一起旋轉之副固定槽 輪本體及一面對該副固定槽輪本體且可在該輸出軸之軸 向上相對於該副固定槽輪本體改變位置之副可移動槽輪 本體,該副可移動槽輪本體與該副固定槽輪本體一起形 Ο 成一朝著該徑向外部延伸及增寬之副側皮帶槽,且該副 可移動槽輪本體與該輸出軸一起旋轉, 一皮帶’其纏繞於該主側皮帶槽及該副側皮帶槽中, 一致動器’其藉由改變該主側皮帶槽之一寬度及該副 侧皮帶槽之一寬度中之至少一者而改變該主槽輪與該副 槽輪之間的一變速比, 一皮帶旋轉债測感測器,其直接或間接地偵測該皮帶 之旋轉,及 一控制該致動器之控制部,其中 133245.doc 200925462 該控制部在起動之後於偵測到該皮帶之旋轉之後開始 對該致動器之控制。 11. 一種車輛,其包含如請求項1之無段變速機之控制裝 置。200925462 X. Patent application scope: 1. A control device for an electronically controlled stepless speed change machine, which is arranged between a driving source of a vehicle and a driving wheel, and can be steplessly Changing a gear ratio, wherein the stepless transmission includes: an input shaft, an output shaft, and a 0 main sheave including a main fixed sheave body that rotates together with the input shaft and one side of the main fixed sheave a main movable sheave body which is changeable in the axial direction of the input shaft with respect to the main fixed sheave body, the main movable sheave body and the main fixed sheave body form a radial direction together Externally extending and widening the main side belt groove, and the main movable sheave body rotates together with the input shaft, and the wj sheave includes a sub-fixed sheave body that rotates together with the output shaft and faces the pair And a sub-movable sheave body that can be changed in position relative to the auxiliary fixed sheave body in the sleeve of the output shaft, the sub-movable sheave body and the auxiliary fixed sheave body form a a secondary side belt groove extending and widened toward the radially outer portion, and the auxiliary movable sheave body rotates together with the output shaft, and a belt is wound around the main side belt groove and the auxiliary side belt groove An actuator that changes a gear ratio between the main sheave and the sub sheave by changing at least one of a width of the main side belt groove and a width of the auxiliary side belt groove, ▼ a rotation detecting sensor that directly or indirectly detects the rotation of the belt 133245.doc 200925462, and a control portion that controls the actuator, wherein the control portion detects the rotation of the belt after starting The control of the actuator is then started. 2. The control device of the stepless speed changer of claim 1, wherein the belt rotation detecting sensor detects the rotation of the belt by detecting a rotation speed of the auxiliary sheave. A control device for a stepless transmission of claim 1, wherein the slaveless transmission further comprises a centrifugal clutch disposed between the output shaft and the drive wheel. 4. The control device of the stepless speed changer of claim 1, wherein the stepless speed change engine further comprises: a clutch disposed between the drive source and the input shaft. 5. The control device of the stepless speed changer of claim 1, wherein the belt is a rubber belt. 6. The control device of the stepless speed changer of claim 1, wherein the control portion further comprises an abnormal warning light for notifying an abnormality, and the control portion is based on a knot from the belt rotating (four) measuring sensor Row == whether the belt rotates 'and when it is determined that the belt is rotating, the normal control, and on the other hand, when it is determined that the skin ==, the control portion is within the prescribed period or up to the prescribed number of times Whether the belt rotates or not, and when the belt is not rotated for the prescribed period or when the belt is not rotated for exactly the predetermined number of times, the control portion lights the abnormal alarm 133245.doc 200925462. If the control of the stepless speed changer of claim 1 is relatively large, it further includes a memory portion for storing a preset speed change ratio, and by controlling the actuator, the control unit can perform the control One of the speed ratios is normally controlled to control the speed ratio of the stepless speed change to the preset speed ratio, and after starting, after the belt rotation sensor detects the rotation of the belt loop The control unit first controls the actuation H' in such a manner that the speed ratio is shifted to the low speed side, and then resumes the normal control of the speed ratio. The control device of the stepless speed changer of claim 1 is as follows. The belt rotation detecting sensor includes a main side rotation speed sensor that detects a rotation speed of the main sheave, and a 4-side rotation speed sensor that detects a rotation speed of the sub-slot And the control unit detects the rotation of the belt based on the rotation speed of the main sheave and the rotation speed of the sub-groove. 9. The control device of the stepless speed changer of claim 8, wherein the control unit detects the rotation speed of the main sheave detected by the main side rotation speed sensor and the rotation speed of the secondary side The rotational speed of the secondary sheave detected by the sensor calculates an actual gear ratio, and the rotation of the belt is detected by comparing the preset gear ratio setting with the actual gear ratio. 133245.doc 200925462 ίο. An electronically controlled stepless transmission, which is disposed between a driving source and a driving wheel of a vehicle and can change a gear ratio without any change, the electronic gearless stepless speed changer The utility model comprises: an input shaft, an output shaft, a main sheave, comprising a main fixed sheave body rotating together with the input shaft and one side of the main fixed sheave body and being axially upward of the input shaft a main movable sheave body that changes position relative to the main fixed sheave body. The main movable sheave body and the main fixed sheave body form a main side belt groove extending radially outward and wide. And the main movable sheave body rotates together with the input shaft, and a pair of sheaves includes a sub-fixed sheave body that rotates together with the output shaft and one side of the sub-fixed sheave body and is at the output a sub-movable sheave body axially changing position relative to the sub-fixed sheave body, the sub-movable sheave body and the sub-fixed sheave body forming a direction extending toward the radially outer portion and widening Side skin Slotted, and the sub-movable sheave body rotates together with the output shaft, a belt is wound in the main side belt groove and the auxiliary side belt groove, and the actuator is changed by the main side belt groove Changing at least one of a width and a width of one of the secondary side belt slots to change a gear ratio between the primary sheave and the secondary sheave, a belt rotating debt sensor directly or indirectly detecting The rotation of the belt is measured, and a control portion that controls the actuator, wherein the control unit starts control of the actuator after detecting the rotation of the belt after starting. A vehicle comprising the control device of the stepless speed changer of claim 1. 133245.doc133245.doc
TW097128000A 2007-09-03 2008-07-23 Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same TWI378199B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007227787 2007-09-03
JP2007305326A JP5162218B2 (en) 2007-09-03 2007-11-27 Control device for continuously variable transmission, continuously variable transmission, and vehicle equipped with the same

Publications (2)

Publication Number Publication Date
TW200925462A true TW200925462A (en) 2009-06-16
TWI378199B TWI378199B (en) 2012-12-01

Family

ID=40462180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128000A TWI378199B (en) 2007-09-03 2008-07-23 Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same

Country Status (5)

Country Link
JP (1) JP5162218B2 (en)
CN (1) CN101382193B (en)
AT (1) ATE487901T1 (en)
DE (1) DE602008003365D1 (en)
TW (1) TWI378199B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466789B (en) * 2011-01-07 2015-01-01 Kwang Yang Motor Co Power system of hybrid electric vehicle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534413B2 (en) 2011-10-14 2013-09-17 Polaris Industries Inc. Primary clutch electronic CVT
US20130096785A1 (en) 2011-10-14 2013-04-18 Polaris Industries Inc. Primary clutch electronic cvt
CN106062434B (en) * 2014-03-03 2017-11-24 加特可株式会社 The control device of infinitely variable speed device for vehicles
US10648554B2 (en) 2014-09-02 2020-05-12 Polaris Industries Inc. Continuously variable transmission
CN106795960B (en) * 2014-10-15 2018-08-03 本田技研工业株式会社 The abnormity determining device of contiuously variable transmission
EP3273104A4 (en) * 2015-03-20 2018-11-07 Jatco Ltd Transmission control device and transmission control method
CN104879490A (en) * 2015-04-21 2015-09-02 常州东风无级变速器有限公司 Continuously variable transmission with high function security
CN104879483A (en) * 2015-04-21 2015-09-02 常州东风无级变速器有限公司 Continuously variable transmission with high function security and power machinery with continuously variable transmission
JP6533832B2 (en) * 2015-09-25 2019-06-19 ジヤトコ株式会社 Control device for continuously variable transmission and control method for continuously variable transmission
EP3505797B1 (en) * 2016-08-29 2020-06-17 Nissan Motor Co., Ltd Control method for continuously variable transmissions
US10641366B2 (en) * 2016-12-22 2020-05-05 Polaris Industries Inc. Engine braking system for continuously variable transmission
US10514096B2 (en) * 2017-10-06 2019-12-24 GM Global Technology Operations LLC Continuously variable transmission ratio measuring device
DE102020123843A1 (en) * 2020-09-14 2022-03-17 elobau GmbH & Co.KG Control lever with link system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375362B2 (en) * 1993-02-24 2003-02-10 本田技研工業株式会社 Continuously variable transmission control device for vehicles
JPH06280951A (en) * 1993-03-31 1994-10-07 Tochigi Fuji Ind Co Ltd Belt type continuously variable transmission
JP2002267008A (en) * 2001-03-06 2002-09-18 Toyota Motor Corp Control device of continuously variable transmission
JP2002372140A (en) * 2001-06-18 2002-12-26 Honda Motor Co Ltd V-belt continuously variable transmission
JP3597808B2 (en) * 2001-09-28 2004-12-08 トヨタ自動車株式会社 Slip detector for continuously variable transmission
JP4291555B2 (en) * 2002-09-20 2009-07-08 ジヤトコ株式会社 Shift control device for continuously variable transmission
JP2006511765A (en) * 2002-12-23 2006-04-06 ファン ドールネズ トランスミッシー ビー.ブイ. Operation method of continuously variable transmission
JP4136878B2 (en) * 2003-09-30 2008-08-20 本田技研工業株式会社 V belt type continuously variable transmission
JP2005172012A (en) * 2003-12-05 2005-06-30 Fuji Heavy Ind Ltd Shift control device for continuously variable transmission
JP2006046633A (en) * 2004-07-02 2006-02-16 Yamaha Motor Co Ltd Vehicle
WO2006006506A1 (en) * 2004-07-09 2006-01-19 Yamaha Hatsudoki Kabushiki Kaisha Saddle riding-type vehicle and speed change control device for stepless speed changer
JP4354380B2 (en) * 2004-10-13 2009-10-28 ジヤトコ株式会社 Shift control device for continuously variable transmission when starting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466789B (en) * 2011-01-07 2015-01-01 Kwang Yang Motor Co Power system of hybrid electric vehicle

Also Published As

Publication number Publication date
CN101382193B (en) 2015-10-21
DE602008003365D1 (en) 2010-12-23
JP2009079754A (en) 2009-04-16
JP5162218B2 (en) 2013-03-13
TWI378199B (en) 2012-12-01
CN101382193A (en) 2009-03-11
ATE487901T1 (en) 2010-11-15

Similar Documents

Publication Publication Date Title
TW200925462A (en) Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same
JP3981317B2 (en) Hydraulic pressure drop detecting device for vehicle transmission
EP1953061B1 (en) Vehicle with a variable transmission and a unit to detect abnormality in the speed detection system
JP5261758B2 (en) Automatic transmission control device for vehicle
JP2007232147A (en) Vehicle
EP2031282B1 (en) Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same
JP2014125982A (en) Automatic stop/start control device of internal combustion engine
KR20180014182A (en) Control device for continuously variable transmission
JP2008089146A (en) Continuously variable transmission control device, control method, program for actualizing the same, and recording medium recording the same
JP6725372B2 (en) Vehicle control device
JP4656748B2 (en) Vehicle engine brake control method
JP6307486B2 (en) Vehicle control device
JP2008045576A (en) Continuously variable transmission
JP2004124841A (en) Failure diagnosis device for vehicle
JP5095359B2 (en) VEHICLE, ITS CONTROL DEVICE, AND VEHICLE ABNORMALITY DETECTING METHOD
KR101293315B1 (en) Line pressure controllable Continuously Variable Transmission and its line pressure controlling method during a coast driving
EP4163519B1 (en) Vehicle
JP2019070426A (en) Vehicle control device
JP4389462B2 (en) Slip detection device for continuously variable transmission
JP4474832B2 (en) Control device for continuously variable transmission
JP4397364B2 (en) Transmission control device
JP4161657B2 (en) Slip detection device for power transmission mechanism
JP2019039488A (en) Vehicle control device and vehicle control method
JP5096559B2 (en) Control device for continuously variable transmission
JP4380170B2 (en) Control device for continuously variable transmission