TW200923483A - Display device capable of measuring an illuminance and widening a dynamic range of the measured illuminance - Google Patents

Display device capable of measuring an illuminance and widening a dynamic range of the measured illuminance Download PDF

Info

Publication number
TW200923483A
TW200923483A TW97138763A TW97138763A TW200923483A TW 200923483 A TW200923483 A TW 200923483A TW 97138763 A TW97138763 A TW 97138763A TW 97138763 A TW97138763 A TW 97138763A TW 200923483 A TW200923483 A TW 200923483A
Authority
TW
Taiwan
Prior art keywords
circuit
value
illuminance
count value
clock signal
Prior art date
Application number
TW97138763A
Other languages
Chinese (zh)
Other versions
TWI387803B (en
Inventor
Hirotaka Hayashi
Takashi Nakamura
Masayoshi Fuchi
Masahiro Tada
Hiroki Nakamura
Original Assignee
Toshiba Matsushita Display Tec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Tec filed Critical Toshiba Matsushita Display Tec
Publication of TW200923483A publication Critical patent/TW200923483A/en
Application granted granted Critical
Publication of TWI387803B publication Critical patent/TWI387803B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A capacitor charged beforehand is discharged according to a light surrounding a display unit. A data is decreased similarly to the voltage between the electrodes of the capacitor. A trigger signal is outputted if the data becomes equal to or less than a threshold value. A clock signal whose cycle of changing levels gradually becomes long is generated. A count value is updated at each change of the clock signal's level and the updated count value is outputted. The count value is sampled when the trigger signal is outputted.

Description

200923483 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可量測光照度以及擴大被量測光照度 的動態範圍的顯示裝置。 本申請案係基於且主張2007年11月15曰申請之日本專利 申請案第2007-296912號及2008年5月20申請之日本專利申 請案第2008-131822號之優先權之權益,該等申請案之整 個内谷以引用的方式併入本文中。 【先前技術】 需要減少一具有一顯示裝置之設備之電力消耗。對於一 液晶顯示裝置,一種減少電力消耗之方法正在研究中。該 方法係當一顯示單元之周圍光照度低時(例如在晚上),降 低一背光之亮度。認為亦可藉由在一周圍光照度低時(例 如在晚上)降低發光像素之亮度來減少一有機電致發光顯 示裝置之電力消耗。具體而t,存在一如下提議:在此顯 V: 不裝置之一顯示單元周圍的一區域中佈置一光感測器電 路:且使用該光感測器電路之一輸出來降低一背光或像素 之免度。 -自八有肖,顯不面板分離之光感測器電路之液晶顯 示裝置揭示於日本未審杳糞 不香置專利特許公開案第1992-200923483 IX. Description of the Invention: [Technical Field] The present invention relates to a display device capable of measuring illuminance and expanding the dynamic range of the measured illuminance. The present application is based on and claims the priority of Japanese Patent Application No. 2007- 296 912, filed on Jan. The entire inner valley of the case is incorporated herein by reference. [Prior Art] There is a need to reduce the power consumption of a device having a display device. For a liquid crystal display device, a method of reducing power consumption is under study. The method reduces the brightness of a backlight when the ambient light around a display unit is low (e.g., at night). It is considered that the power consumption of an organic electroluminescence display device can also be reduced by reducing the brightness of the illuminating pixels when the ambient illuminance is low (e.g., at night). Specifically, there is a proposal to display a light sensor circuit in an area around a display unit of one of the devices: and use one of the output of the light sensor circuit to lower a backlight or pixel Exemption. - The liquid crystal display device of the light sensor circuit which is not separated from the panel is revealed in Japan. The unexamined manure is not disclosed in the Patent Licensing Publication No. 1992-

174819/1997-146073號中。鈇而 lL T …、而此分離使得難以形成更 小或更薄之裝置。為解決舲問s 鮮决此問喊’曰本未審查專利特許公 開案第2007-1 14315號中揭示了 — y 種藉由在一顯示面板中 形成一光感測器電路來製作一 表作更小或更薄之液晶顯示裝置 13 504 丨.doc 200923483 ’控制一背光之亮度以 之裝置量測光照度時, 之技術。另外’在液晶顯示裝置中 精確地量測光照度。 此外,在藉由諸如上述顯示裝置 進行以下操作。 在一時脈信號之位準之每—改變 又i日可更新—預設定計數 值。在對應於該光照度之時間輸出—觸發信號。在輸出該174819/1997-146073. And lL T ..., and this separation makes it difficult to form a smaller or thinner device. In order to solve the problem, it is disclosed in the Japanese Patent Application Laid-Open No. 2007-1 14315, which discloses that a photo sensor circuit is formed in a display panel to create a watch. Smaller or thinner liquid crystal display device 13 504 丨.doc 200923483 'The technique of controlling the brightness of a backlight to measure the illuminance by the device. Further, the illuminance is accurately measured in the liquid crystal display device. Further, the following operations are performed by a display device such as the above. Each of the values of the one-time signal - the change can be updated on the i-day - the preset count value. The trigger signal is output at a time corresponding to the illuminance. At the output

觸發信號時’對該計數值進行取樣。該所取樣之計數值對 應於該光照度。 若該時脈信號之位準之變化之 支化之循核係短,則一在最大 計數值變為最小時之週期之長度俜 贫又係短。因此,該計數值僅 可表示一光照度之—窄範圍,士去 靶固诸如一個自約80[1χ]至約 l〇〇〇[lx]之範圍(例如)。亦即, 、 )J 1 °茨汁數值可表示之一光昭 度之動態範圍係約10倍一樣窄。 … 因此,該顯示裝置僅可在—例如其中光照度低之房間中 使用。減地,㈣置僅可在一例b其中光照度高之戶外 使用。因此,該顯示裝置之便利被破壞。 本發明係#於上錢況而做出。本發明之—目標係提供 種可I測光照度以及擴大被量測光照度之—動態範圍之 顯不裝置。 【發明内容】 根據第一本發明之一顯示裝置之特徵在於其包含:—具 有像素之顯示單元;一光感測器電路,其具有一電容器及 一光電轉換元件,該光電轉換元件根據該顯示單元之一周 圍光照度使該電容器放t;一#術電4,其將一數據類似 i3504I.doc 200923483 地降低至該電容器之各電極之間的電壓且若該數據 於或小於一臨限值則輸出一觸發信號;一時脈信號產生 路,其產生-其改變位準之循環逐漸變長之時脈信號;= 計數器《,其在該時脈信號之位準之每—改變^更新: 計數值;及-取樣鎖存電路,其在輸出該觸發信號時㈣ 計數值進行取樣。 x 於第-本發明中’由於該時脈信號之改變位準之猶 漸變長,因此該所取樣之計數值之-動態範圍變寬。、亦 即,可量測一光照度之寬動態範圍。 根據第二本發明之一顯示裝置之特徵在於其包含 不單元,其具有像素;一光感測器電路,其具有—電容器 及一光電轉換元件,該光電轉換元件根據該顯示單元之1When the trigger signal is sent, the count value is sampled. The sampled value of the sample corresponds to the illuminance. If the branching of the change of the level of the clock signal is short, the length of the period when the maximum count value becomes minimum is poor and short. Therefore, the count value can only represent a narrow range of illuminance, such as a range from about 80 [1 χ] to about l 〇〇〇 [lx] (for example). That is, the value of J 1 ° can indicate that the dynamic range of one of the light is about 10 times as narrow. ... Therefore, the display device can be used only in a room where, for example, the illuminance is low. Earth reduction, (4) can only be used in an example of b outdoor where the illuminance is high. Therefore, the convenience of the display device is broken. The present invention is made in the context of money. The object of the present invention is to provide a display device that can measure the illuminance and expand the dynamic range of the measured illuminance. SUMMARY OF THE INVENTION A display device according to a first aspect of the present invention is characterized in that it comprises: a display unit having pixels; a photo sensor circuit having a capacitor and a photoelectric conversion element, the photoelectric conversion element being according to the display The illuminance around one of the cells causes the capacitor to be placed; a #4, which reduces a data similar to i3504I.doc 200923483 to the voltage between the electrodes of the capacitor and if the data is at or below a threshold Outputting a trigger signal; a clock signal generating path, which generates a clock signal whose cycle of changing the level gradually becomes longer; = counter ", which is at the level of the clock signal - changes ^ update: count value And a sampling latch circuit that samples the count value when the trigger signal is output (4). x In the first invention, since the change level of the clock signal is gradually longer, the dynamic range of the count value of the sample is widened. That is, a wide dynamic range of illuminance can be measured. A display device according to a second aspect of the present invention is characterized in that it comprises a unit having pixels, a photo sensor circuit having a capacitor and a photoelectric conversion element, the photoelectric conversion element being according to the display unit

周圍光照度使該電容器放雷.瞀IA 電,一异術電路,其將-數據類 似地降低至該電容器之各電極 像頰 成…I電枉之間的電壓’且若該數據變 成·#於或小於一 限值時則輪中 于只J翰出一觸發信號;一時脈信The surrounding illuminance causes the capacitor to be thundered. 瞀 IA electric, a different circuit, which similarly reduces the data to the voltage between the electrodes of the capacitor like the buzzer...I 且 and if the data becomes ·# Or less than a limit value, then only one trigger signal is sent in the wheel; one time pulse letter

產生電路,其產生一時脈作# JU 改-… 時脈信號之位準遇期性 改變,一汁數窃電路,苴在 ,、在該時脈信號之位準之 =新一計數值’·-取樣鎖存電路,其在輸出心 ^對該計數值進行取樣;_值_心, ; 射表具有各自與-輸出值相關聯之該所取樣= 值之靶圍,該值轉換電路經組能 ,且心Μ找出該等範圍中— 3該所取樣計數值之範圍,且已 之輸出值;其中該映射表之輪出值越:所找出範圍相關聯 窄。 出值越大,該相關聯範圍越 13504I.doc 200923483 於第二本發明中’由於該映射表之輸出值越大,該相關 聯範圍越窄,因此該輪出之輸出值之一動態範圍變寬。亦 即,可量測一光照度之寬動態範圍。 【實施方式】 . 第一實施例 、於根據第-實施例之液晶顯示裳置中,_對絕緣且可透 光基板構成-液晶胞。一密封於該等基板之間的液晶材料 r 形成-液晶層。具體而言’如圖1中所圖解闡釋,於液晶 顯示裝置1中’在一陣列基板2與一對置基板3之間形成一 液晶層4。 陣列基板2具有一由玻璃及類似物組成之絕緣且可透光 基板作為一支撐基板。在該支撐基板上,幾乎平行地且以 相等間隔形成掃描線。幾乎正交於該等掃描線形成信號 線。一透明層内絕緣膜形成於掃描線與信號線之間,以使 掃描線與信號線間彼此電絕緣。在掃描線與信號線之每一 : 交叉點附近形成一薄膜電晶體作為一開關元件及類似物。 於陣列基板2中,像素電極經形成類似於一矩陣。每一 像素電極皆經由一形成於該層内絕緣膜中之通孔電連接至 對應之開關元件。請注意,如先前所述,雖然在陣列基板 之支撐基板與像素電極之間佈置有掃描線、信號線、諸如 薄膜電晶體之開關元件及層内絕緣膜等等,但其在圖工中 被省略。此外,雖然可在所有像素電極上形成一定向膜, 但該定向膜亦被省略。 對置基板3具有一由玻璃及類似物組成之絕緣且可透光 135041.doc 200923483 :板八亦作為—支揮基板。在對置基板3之—面對液晶A circuit is generated, which generates a clock to make a change to the ... JU signal--the timing of the clock signal changes, the circuit of the juice is smashed, and the position of the clock signal is the new one. a sampling latch circuit that samples the count value at the output core; _value_heart, ; the shot table has a target range of the sampled value associated with each of the output values, the value conversion circuit is grouped Can, and find out the range of the sampled count value in the range - 3 and the output value; wherein the round-out value of the map is: the range is narrowly correlated. The larger the value, the more the correlation range is 13504I.doc 200923483. In the second invention, 'the larger the output value of the mapping table is, the narrower the correlation range is. Therefore, the dynamic range of one of the output values of the round is changed. width. That is, a wide dynamic range of illuminance can be measured. [Embodiment] The first embodiment, in the liquid crystal display according to the first embodiment, constitutes a liquid crystal cell with an insulating and permeable substrate. A liquid crystal material r sealed between the substrates forms a liquid crystal layer. Specifically, as illustrated in Fig. 1, a liquid crystal layer 4 is formed between an array substrate 2 and a pair of substrates 3 in the liquid crystal display device 1. The array substrate 2 has an insulating and light-permeable substrate composed of glass and the like as a supporting substrate. On the support substrate, scan lines are formed almost in parallel and at equal intervals. Signal lines are formed almost orthogonal to the scan lines. A transparent interlayer insulating film is formed between the scan line and the signal line to electrically insulate the scan line from the signal line. A thin film transistor is formed as a switching element and the like in the vicinity of the intersection of the scanning line and the signal line. In the array substrate 2, the pixel electrodes are formed similar to a matrix. Each of the pixel electrodes is electrically connected to a corresponding switching element via a through hole formed in the insulating film of the layer. Note that, as described earlier, although a scan line, a signal line, a switching element such as a thin film transistor, an interlayer insulating film, and the like are disposed between the support substrate of the array substrate and the pixel electrode, it is Omitted. Further, although an oriented film can be formed on all of the pixel electrodes, the alignment film is also omitted. The opposite substrate 3 has an insulation composed of glass and the like and is permeable to light. 135041.doc 200923483: The plate 8 is also used as a support substrate. On the opposite substrate 3 - facing the liquid crystal

曰'形成各自對應於像素之濾色片層5。一透明對 置電極6(其由—读日曰B 導電材料諸如氧化銦錫及類似物組 成)形成於所有遽色片層5上。每—遽色片層係一由染料及 顏料上色之樹脂層。每一像素包含例如紅色滤色片層、綠 色濾色片層及藍色濾色片層。雖然在該圖中被省略,但為 差比及類似目的,形成一黑矩陣層以填充各自圍繞 在對應像素之所㈣色片層周圍之區域。 偏光板8分別佈置於陣列基板2之一背側上及對置基 岫側上。使用一佈置在背側之背光9作為一光源來 執行圖像顯示。 、如圖2中所圖解闡釋,一黑矩陣ΒΜ係形成於一形狀類似 ;圍繞在一由像素組成之顯示單元Α周圍之圖片框架之 °β域中以便防止來自背光之光茂漏。一外部大型積體電 路裝置10係在形成黑矩陣ΒΜ之區域外部藉由玻璃上晶片 方法安裝於陣列基板2上。 以上所述係液晶顯示裝置1之一基本組成。 另外於液晶顯示裝置1中,一開口 11形成於黑矩陣ΒΜ 中’且一用於量測一周圍光照度之光感測器電路12面對開 口 1 1安裝在陣列基板上。一用於量測一本底電流之光感測 器電路13安裝在遮蔽於黑矩陣ΒΜ之下之陣列基板上。 圖3圖解闈釋每一光感測器電路12及13之一電路圖。光 感測器電路12及13彼此相同,且每一光感測器電路具有一 光電二極體55及一電容器56。光感測器電路12之光電二極 I35041.doc 200923483 體55係一將顯示單元A周圍之光轉換成一電信號之光電轉 換元件。 於每一光感測器電路中,在一預設定時間,一預設定電 壓Vprc預先為電容器56充電。於光感測器電路12中,根據 顯示單元A之一周圍光照度之一光電流在光電二極體“中 流動。於光感測器電路i 3中,一本底電流在光電二極體5 5 中流動。 圖4圖解闡釋一外部大型積體電路裝置1〇之一部分以及 光感測電路12及13與一另外安裝之光感測器電路丨4之方 框圖。例如,光感測器電路14係用於量測背光9之光照 度’且光感測益電路14僅接收來自背光9之光。 外部大型積體電路裝置1〇具有一預充電電路HI、—算 術電路112、一時脈信號產生電路113、一計數器電路 114、一取樣鎖存電路Π5及一併/串行轉換電路116。 首先’預充電電路111將恆定電壓Vprc提供至光感測器 電路12、13及14。在提供電壓Vprc期間之一預設定時間 處’預充電電路111將一啓動信號SRT,(例如,一個脈衝 信號)提供至光感測器電路12、13及14,時脈信號產生電 路113 ’計數器電路114及並/串行轉換電路116。 每一光感測器電路1 2、1 3及14可以電壓Vprc給電容器5 6 預先充電。具體而言,例如,該光感測器電路藉由導通由 一薄膜電晶體及類似物(未圖解闡釋)構成之類比開關來連 接施加電壓Vprc之導線與該電容器之一正電極。因此,電 容器56之各電極之間的一電壓等於電壓vprc。 135041.doc 11 200923483 每一光感測器電路丨2、13及14例如在提供啓動信號SRT 時,藉由關斷上述類比開關來斷開施加電壓Vprc2導線與 電谷器56。具有一根據顯示單元A之一周圍光照度之量之 光電流在光感測器電路12之光電二極體55中流動。該本底 電流在光感測器電路13之光電二極體55中流動。具有一根 據背光9之一光照度之量之光電流在光感測器電路14之光 電二極體55中流動。因此,每一電容器56放電,且該等電 严 極之間的電壓降低。光感測器電路12、13及14將電容器之 正電極之電壓分別輸出為電信號ph〇t〇 i、ph〇t〇 2及抑〇1〇 3 ° 算術電路112產生一具有一預設定量之數據且類似地將 忒數據降低至來自光感測器電路丨2之電信號ph〇t〇 1因電容 态56放電而降低之位準。此時,算術電路i丨2根據來自用 於量測本底電流之光感測器電路13之電信號ph〇t〇 2之位準 及來自用於量測背光9之光照度之光感測器電路14之電信 I 旎Ph〇t〇 3之位準來校正該數據。請注意,算術電路112運 作以使經校正之數據類似地降低至電信號ph〇t〇 1之位準。 算術電路112預先記憶一臨限值且在該經校正之數據變 成等於或小於該臨限值時將觸發信號TRG(例如,一個脈 衝k號)提供至取樣鎖存電路丨丨5。 時脈信號產生電路丨13將一時脈信號CLK提供至計數器 電路114及並/串行轉換電路116。 如圖5中圖解闡釋,時脈信號產生電路113產生其改變位 準之循環逐漸變長之時脈信號CLK ,該等改變位準例如在 13504I.doc -12· 200923483 一時間Τ1處開始,時間τι係在一提供啓動信號SRT時之時 間T0之後。時脈信號產生電路113將由此產生之時脈信號 CLK提供至計數器電路114及並/串行轉換電路116。 於圖4中’計數器電路114在此處遞減一計數值CNT。計 數器電路114在提供啓動信號SRT時重設計數值CNT。此 處’假設計數值CNT係一 4位元值。計數值CNT被重設為 1 6,其係一 4位元可表示的一範圍之最大值。然後,以1遞 減計數值CNT1直至變成1,其係該範圍之最小值。 a十數器電路114在時脈信號CLK之位準之每一改變時遞 減计數值CNT。每當該計數值被遞減時,計數器電路114 便藉由並行信號將計數值CNT提供至取樣鎖存電路丨丨5。 計數器電路114亦在重設計數值CNT時做此操作。 取樣鎖存電路115在輸出觸發信號TRG時對計數值CNT 進行取樣。取樣鎖存電路115藉由並行信號將所取樣之計 數值C NT k供至並/串行轉換電路116。並/串行轉換電路 116將該等並行信號轉換成一串行信號且輸出該串行信 號。曰' forms a color filter layer 5 each corresponding to a pixel. A transparent counter electrode 6 (which is composed of a -reading B-conductive material such as indium tin oxide and the like) is formed on all of the cyan sheet layers 5. Each of the enamel sheets is a resin layer colored with a dye and a pigment. Each pixel includes, for example, a red color filter layer, a green color filter layer, and a blue color filter layer. Although omitted in the figure, for the difference ratio and the like, a black matrix layer is formed to fill the regions surrounding the (four) color chip layers of the corresponding pixels. The polarizing plates 8 are respectively disposed on the back side of one of the array substrates 2 and on the opposite base side. The image display is performed using a backlight 9 disposed on the back side as a light source. As illustrated in Fig. 2, a black matrix lanthanum is formed in a similar shape; surrounding the ?? field of a picture frame around a display unit 像素 composed of pixels to prevent light leakage from the backlight. An external large integrated circuit device 10 is mounted on the array substrate 2 by a wafer-on-wafer method outside the region where the black matrix is formed. The above is a basic composition of one of the liquid crystal display devices 1. Further, in the liquid crystal display device 1, an opening 11 is formed in the black matrix ’ and a photo sensor circuit 12 for measuring a peripheral illuminance is mounted on the array substrate facing the opening 11. A photosensor circuit 13 for measuring a background current is mounted on the array substrate shielded under the black matrix. FIG. 3 illustrates a circuit diagram of each of the photosensor circuits 12 and 13. The photosensor circuits 12 and 13 are identical to each other, and each photosensor circuit has a photodiode 55 and a capacitor 56. Photodiode of photosensor circuit 12 I35041.doc 200923483 Body 55 is a photoelectric conversion element that converts light around display unit A into an electrical signal. In each photosensor circuit, a pre-set voltage Vprc is precharged for capacitor 56 for a predetermined time. In the photo sensor circuit 12, a photocurrent flows in the photodiode according to one of the illuminances around one of the display units A. In the photo sensor circuit i3, a background current is in the photodiode 5 Figure 5 illustrates a block diagram of a portion of an external large integrated circuit device 1 and light sensing circuits 12 and 13 and an additionally mounted light sensor circuit 4. For example, light sensor circuit 14 It is used to measure the illuminance of the backlight 9 and the photo-sensing benefit circuit 14 receives only light from the backlight 9. The external large-scale integrated circuit device 1 has a pre-charging circuit HI, an arithmetic circuit 112, and a clock signal generating circuit. 113. A counter circuit 114, a sample latch circuit Π5 and a parallel/serial conversion circuit 116. First, the precharge circuit 111 supplies a constant voltage Vprc to the photo sensor circuits 12, 13 and 14. The supply voltage Vprc is provided. At one of the preset times, the precharge circuit 111 supplies a start signal SRT, (for example, a pulse signal) to the photo sensor circuits 12, 13 and 14, the clock signal generating circuit 113' counter circuit 114 and /serial The circuit 116 is replaced. Each of the photo sensor circuits 1 2, 13 and 14 can be precharged to the capacitor 5 6 by a voltage Vprc. Specifically, for example, the photo sensor circuit is turned on by a thin film transistor and the like. The object (not illustrated) constitutes an analog switch for connecting the wire of the applied voltage Vprc with one of the positive electrodes of the capacitor. Therefore, a voltage between the electrodes of the capacitor 56 is equal to the voltage vprc. 135041.doc 11 200923483 The detector circuits 丨 2, 13 and 14 interrupt the applied voltage Vprc2 wire and the electric grid 56 by turning off the analog switch, for example, when the start signal SRT is supplied. There is an amount according to the illuminance around one of the display units A. The photocurrent flows in the photodiode 55 of the photo sensor circuit 12. The background current flows in the photodiode 55 of the photo sensor circuit 13. It has a light according to the amount of illumination of the backlight 9. Current flows in the photodiode 55 of the photosensor circuit 14. Thus, each capacitor 56 is discharged and the voltage between the electrical terminals is reduced. The photosensor circuits 12, 13 and 14 will be capacitors Positive electrode The voltages are respectively output as electrical signals ph〇t〇i, ph〇t〇2 and 〇1〇3°. The arithmetic circuit 112 generates a data having a predetermined amount and similarly reduces the 忒 data to the light sensor circuit. The electrical signal ph〇t〇1 of 丨2 is lowered due to the discharge of the capacitive state 56. At this time, the arithmetic circuit i丨2 is based on the electrical signal ph〇 from the photosensor circuit 13 for measuring the background current. The level of t〇2 and the level of the telecommunications I 旎Ph〇t〇3 from the photosensor circuit 14 for measuring the illuminance of the backlight 9 are used to correct the data. Note that the arithmetic circuit 112 operates to The corrected data is similarly reduced to the level of the electrical signal ph〇t〇1. The arithmetic circuit 112 preliminarily stores a threshold value and supplies a trigger signal TRG (e.g., a pulse k number) to the sampling latch circuit 丨丨5 when the corrected data becomes equal to or smaller than the threshold value. The clock signal generating circuit 13 supplies a clock signal CLK to the counter circuit 114 and the parallel/serial conversion circuit 116. As illustrated in FIG. 5, the clock signal generating circuit 113 generates a clock signal CLK whose cycle of changing the level is gradually lengthened, for example, starting at 13504I.doc -12·200923483 at a time Τ1, time Τι is after a time T0 when the start signal SRT is supplied. The clock signal generating circuit 113 supplies the thus generated clock signal CLK to the counter circuit 114 and the parallel/serial conversion circuit 116. In Fig. 4, the counter circuit 114 decrements a count value CNT here. The counter circuit 114 redesigns the value CNT when the start signal SRT is supplied. Here, the false design value CNT is a 4-bit value. The count value CNT is reset to 1 6, which is the maximum value of a range that can be represented by a 4-bit. Then, the count value CNT1 is decremented by 1 until it becomes 1, which is the minimum value of the range. The decker circuit 114 decrements the count value CNT each time the level of the clock signal CLK changes. Whenever the count value is decremented, the counter circuit 114 supplies the count value CNT to the sampling latch circuit 丨丨5 by the parallel signal. Counter circuit 114 also does this when redesigning the value CNT. The sampling latch circuit 115 samples the count value CNT when the trigger signal TRG is output. The sampling latch circuit 115 supplies the sampled value C NT k to the parallel/serial conversion circuit 116 by a parallel signal. The parallel/serial conversion circuit 116 converts the parallel signals into a serial signal and outputs the serial signal.

如圖6中所圖解闡釋,藉由串行信號輸出之計數值CNT 係一 4位元值,計數值CNT包含於一自丨至16之範圍内且對 應於光照度。 例如,光照度越低,圖4中所圖解闡釋之電信號ph〇t〇 i 之位準降低越漸進。因此,光照度越低,提供觸發信號 TRG越遲。因此,光照度越低,所輸出之計數值cnt越 低0 135041.doc 13 200923483 於第一實施例中,例,倘若光照度約為90[1χ] ’則計 數值CNT為1。例如,倘若光照度約為9〇〇〇〇[1χ],則計數 值CNT為16。亦即’計數值CNT可以表示一約為1〇〇〇倍之 光照度之動態範圍。 下文將闡述一比較實例。於該比較實例中,時脈信號產 生電路113產生一圖5中所圖解闡釋之時脈信號clK,,其改 變位準之循環係恆定。時脈信號產生電路113將時脈信號 CLK提供至计數器電路114及並/串行轉換電路ns。 由於在該比較實例中時脈信號CLK,之改變位準之循環係 恆定的而於第一實施例中時脈信號CLK之該位準之循環逐 漸變長,因此計數值CNT| 16變成丨之時間長度在該比= 實例中比在第一實施例中短。 因此,計數值CNT在第一實施例中能夠表示上述—約 1〇〇〇倍之光照度之動態範圍,而計數值CNT在該比較實例 中可能表示一例如僅約10倍之動態範圍。 如圖ό中所圖解闡釋’於該比較實例中,例如,偶若光 照度約為70[1Χ],則計數值CNT為卜例如,倘若光照度約 為10000[1χ],則計數值CNT為16。 相反地,於第一實施例中,如上所述,例如,倘若光照 度約為90[lx] ’則計數值cnt*!。例如,倘若光照度約為' 90000[lx],則計數值 CNT為 16。 於第一實施例中,由於時脈信號之改變位準 ^ 千 變 長’因此由圖6中之對數所表示之光照度與計數值之間、 線性度可係完美。 θ 、 135041.doc -14- 200923483 因此,根據第一實施例,由於時脈信號之改變位準之循 環逐漸變長,因此所取樣之計數值CNT之一動態範圍變 寬。亦即’可量測一光照度之寬動態範圍。因此’既可在 一暗房間内亦可在一晴朗天氣之戶外量測一光照度。 請注意,該算術電路112無須校正數據,雖然算術電路 1 1 2於第一實施例中係如此做。在此情形下,光感測器電 路13及光感測器電路14係不必要的。 第二實施例 如圖7中所圖解闡釋’根據本發明之第二實施例之液晶 顯示裝置1A類似於根據第一實施例之液晶顯示裝置1。於 第二實施例中,給相同之元件指配相同之參考標記。且將 省略相同之解釋。下文中’將主要闡述不同之處。 於液晶顯示裝置1A中’一黑矩陣bm形成於一形狀類似 於一圍繞在顯示單元A周圍之圖片框架之區域中。一外部 大型積體電路裝置10A安裝在形成黑矩陣BM之區域外部。As illustrated in Fig. 6, the count value CNT by the serial signal output is a 4-bit value, and the count value CNT is included in a range from 丨 to 16 and corresponds to the illuminance. For example, the lower the illuminance, the more progressive the level of the electrical signal ph〇t〇 i illustrated in Figure 4 decreases. Therefore, the lower the illuminance, the later the trigger signal TRG is provided. Therefore, the lower the illuminance, the lower the count value cnt outputted. 0 135041.doc 13 200923483 In the first embodiment, the CNT is 1 if the illuminance is about 90 [1 χ] ’. For example, if the illuminance is about 9 〇〇〇〇 [1 χ], the count value CNT is 16. That is, the count value CNT can represent a dynamic range of illuminance of about 1 〇〇〇. A comparative example will be explained below. In this comparative example, the clock signal generating circuit 113 generates a clock signal clK as illustrated in Fig. 5, and the cycle of changing the level is constant. The clock signal generating circuit 113 supplies the clock signal CLK to the counter circuit 114 and the parallel/serial conversion circuit ns. Since the cycle of the change level of the clock signal CLK is constant in the comparative example and the cycle of the clock signal CLK is gradually lengthened in the first embodiment, the count value CNT|16 becomes 丨The length of time is shorter in this ratio = instance than in the first embodiment. Therefore, the count value CNT can represent the above-described dynamic range of illuminance of about 1 〇〇〇 in the first embodiment, and the count value CNT may represent, for example, only about 10 times the dynamic range in the comparative example. As illustrated in Fig. ’, in the comparative example, for example, if the illuminance is about 70 [1 Χ], the count value CNT is, for example, if the illuminance is about 10000 [1 χ], the count value CNT is 16. In contrast, in the first embodiment, as described above, for example, if the illuminance is about 90 [lx] ', the count value cnt*! is counted. For example, if the illuminance is about '90000 [lx], the count value CNT is 16. In the first embodiment, since the change level of the clock signal is "long", the linearity between the illuminance and the count value represented by the logarithm in Fig. 6 can be perfect. θ, 135041.doc -14- 200923483 Therefore, according to the first embodiment, since the cycle of the change level of the clock signal is gradually lengthened, the dynamic range of one of the sampled count values CNT is widened. That is, a wide dynamic range of illuminance can be measured. Therefore, it is possible to measure an illuminance in a dark room or outdoors in a clear weather. Note that the arithmetic circuit 112 does not need to correct the data, although the arithmetic circuit 112 does this in the first embodiment. In this case, the photo sensor circuit 13 and the photo sensor circuit 14 are unnecessary. SECOND EMBODIMENT As shown in Fig. 7, a liquid crystal display device 1A according to a second embodiment of the present invention is similar to the liquid crystal display device 1 according to the first embodiment. In the second embodiment, the same components are assigned the same reference numerals. The same explanation will be omitted. In the following, the main points will be explained. In the liquid crystal display device 1A, a black matrix bm is formed in a shape similar to an area surrounding a picture frame around the display unit A. An external large integrated circuit device 10A is mounted outside the area where the black matrix BM is formed.

光感測器電路121、122及123佈置於其中形成黑矩陣BM 之區域中。每一光感測器電路121、122及丨23皆具有光感 測器電路及算術電路。光感測器電路121、122及123分別 輸出觸發信號TRG1、TRG2及TRG3,其每-者皆類似於觸 發信號TRG。每一觸發信號皆被提供至外部大型積體電路 裝置10A。光感測器電路121、122及123中之—者接收例如 來自背光9之光,且剩餘之光感測器電路接收來自顯示區 域A周圍處之光。 如圖8中所圖解闡釋,外部大型積體電路裝置1〇八具有預 135041.doc -15· 200923483 充電電路111,一時脈信號產生電路113A,計數器電路 1141、1142及 1143 ’ 取樣鎖存電路1151、1152及 1153,值 轉換電路1171、1172及1173。每一光感測器電路12卜122 及123皆具有光感測器電路12及算術電路Η〗。 預充電電路111首先將恆定電壓Vprc提供至每一光感測 器電路121、122及123。在一提供電壓Vprc期間之預設定 時間處,預充電電路111將一啓動信號SRT至提供光感測 器電路121、122及123 ,計數器電路Η4ΐ、η 42及1143。 每一光感測器電路以電壓Vprc給電容器56預先充電。每 一電容器之各電極之間的一電壓等於電壓vprc。 每一光感測器電路在提供啓動信號SRT時斷開施加電壓 Vprc之導線與電容器%。一具有一根據顯示單元a之一周 圍光照度或來自背光9之光之一光照度之量之光電流在每 一光電二極體55中流動。因此,每一電容器56放電且該等 電極之間的電壓降低。光感測器電路m、122及123將電 容器之正電極之電壓分別輸出為電信號Ph〇t〇 i丨、 12及 Photo 1 3。 每一算術電路112產生一具有一預設定量之數據且類似 地將該數據逐漸降低至來自光感測器電路12之電信號因電 容器放電而降低之位準。 每一算術電路112預先記憶一臨限值且當該對應數據變 成等於或小於該臨限值時,該等算術電路將觸發信號 TRG1、TRG2及TRG3(例如,一個脈衝信號)分別提供至取 樣鎖存電路1151、1152及1153。 13 504】.doc •16· 200923483 時脈信號產生電路113A將圖5中所圖解闡釋之時脈信號 CLK'(其係位準週期性改變之時脈信號CLK,)提供至計數器 電路 1 141、1142及 1143。 計數器電路1141、1142及1143在此處分別遞增計數值 CNT1、CNT2及CNT3。每一計數器電路在提供啓動信號 SRT時重設對應計數值。此處,假設每一計數值係一 16位 元值。计數值被重設為〇,其係一丨6位元值可表示之範圍 之最小值。然後,以1遞增計數值直至變成65535,其係該 範圍之最大值。 每一計數器電路皆在時脈信號CLK之位準之每一改變時 遞增對應計數值。每當計數值被遞增時,每一計時器電路 將該計數值提供至對應之取樣鎖存電路。計數器電路亦在 重設計數值時做此操作。 每一取樣鎖存電路在輸出對應觸發信號時對對應計數值 取樣。取樣鎖存電路藉由並行信號將所取樣之計數值 CNT1、CNT2及CNT3分別提供至值轉換電路1171、1172及 1173。 值轉換電路1171、1172及1173將計數值CNT1、CNT2及 CNT3分別轉換為輸出值〇UT j、〇UT2及〇υτ3,且輸出該 等輸出值。 如圖9中所圖解闡釋,每一值轉換電路具有一映射表, 該映射表具有多個各自與-輸出值相關聯之對應計數值之 範圍。 若將該等所取樣計數值中之任—者提供至對應值轉換電 135041.doc -17- 200923483 路則該值轉換電路首先在對應映射表之該等範圍中找出 一個包含所取樣計數值之範圍。然後,該值轉換電路藉由 並打信號將與所找出範圍相關聯之輸出值輸出為—輸出值 0UT1、OUT2 或 〇UT3。 違映射表之輸出值越大,該相關聯範圍中所包含之計數 值越h 4映射表之輸出值越大,該相關聯範圍越窄。 肩輸出值係一 4位元值’如同圖6中所圖解闡釋之輸出值 一樣。該輸出值包含於—自〇至15之範圍Θ,且對應於光 照度。 例如,光照度越低,圖8中所圖解闡釋之電信號烈的〇 11、Photo 12及Photo 13之位準之降低越漸進。因此,光 照度越低,提供觸發信號越遲。且該等計數值被遞增。因 此,光照度越低,所取樣之計數值越大。 由於映射表之輸出值越大,相關聯範圍中所包含之計數 值越小,因此光照度越低,輸出值越低。亦即,該等輸出 值對應於光照度。 如同圖6中所圖解闡釋之輸出值cnt—樣,每一輸出值 亦可表示一約1000倍之光照度之動態範圍。 此處’將闡述一在類似映射表中具有相同寬度之範圍之 比較實例。 例如,假設寬度為100 ’以致倘若輸出值等於或大於i 〇 且等於或小於15則可獲得由對數表示之光照度與輸出值之 間的一完美線性度。 最大計數值在該比較實例中係1600(= 100的16倍)而最大 135041.doc • 18- 200923483 計數值于第二實施例中係65535 β因此,該比較實例無法 表不對應於一大於1600之計數值之低光照度。 因此,於該比較實例中’該輸出值可表示一例如僅約 10倍之動態範圍。 、… 才反如同6十數值在第一實施例中一樣,輸出值在第二 實施例中能夠表示-例如約為1GGG倍之光照度之動態範 圍。 心 另外,由於映射表之輸出值越大,相關聯之範圍越窄, 因此光照度與輸出值之間的線性度可在該光照度之 圍内係完美。 因此,根據該第二實施命j,由於映射表之輸出值越大, 相關聯之範圍越窄,因此輸出值之一動態範圍變寬、亦 即,可量測-光照度之寬動態範圍。目此,既可在一暗房 間内亦可在一晴朗天氣之戶外量測一光照度。 請注意,本發明不侷限於第—或第二實施例。只要具有 本發明之特性’可改變每一液晶顯示裝置。 例如雖然在根據第二實施例之液晶顯示裝置中使用具 有-恒定之改變位準循環之時脈信號clk,,但如同在第二 實施例中—樣可使用其改變位準之循環逐漸變長之時脈 號 CLK。 可個別地叹疋该等映射表’以使得輸出值之間因光感測 器電路中該等光電轉換元件之特性差異所致之差異可介於 一公差内。 倘若根據第二實施例夕你a _ J之液日日顯示裝置係大批量製作的, 135041.doc •19· 200923483 則映射表對於每一顯示裝w比 B _ 俨置白可係不同的,以使得關於液 日日顯示裝置之間的光昭 内 巧’、'、度表達之效能差異可介於一公差 第一或第二實施例巾夕 一 Λ j甲之液晶顯示裝置僅係根據本發明之 』不裝置之H該顯示裝置可係—使用有機電致發光 之』不裝h在此情形τ,唯_必須做的係選擇—與在每 只知例中用於光照度量測之組成類似之組成。 雖然在第—或第二實施例中’將光電二極體55用作-光 電轉換元件(其根據顯示單元周圍之光使在光感測器電路 中充電之電容器放電),但該光電轉換元件可係一光電電 晶體。 【圖式簡單說明】 圖1圖解闡釋一根據本發明之一第一實施例之一液晶顯 示裝置之剖視圖; 圖2圖解闡釋一圖丨中之液晶顯示裝置之平面圖; 圖3圖解闡釋一包含於圖1中之液晶顯示裝置中之一光感 測器電路之電路圖; 圖4圖解闡釋一包含於圖1中之液晶顯示裝置中之一外部 大型積體電路裝置之一部分以及光感測器電路之方框圖; 圖5圖解閣釋—用於圖1中之液晶顯示裝置中之時脈信號 及一比較實例之時脈信號之波形; 圖6圖解閣釋一在圖1中之液晶顯示裝置中所量測之一光 照度與一在該裝置中所使用之一計數值的關係以及一在一 比車父實例之裳置中所量測之一光照度與一在該裝置中所使 135041.doc -20- 200923483 用之一計數值的關係; 第二實施例之一液晶顯 圖7圖解闌釋一根據本發明之一 示裝置之平面圖; 圖8圖解閱釋一包含於圖7申之液晶顯示裝置中之一外部 大型積體電路裝置之一部分及光感測器電路之方框圖; 圖9圖解閣釋一在圖7中之液晶顯示展置中所使用之一映 射表之實例性内容。 【主要元件符號說明】 1 1A 2 3 4 5 6 7 8 9 10 10A 11 12 13 14 液晶顯示裝置 液晶顯示裝置 陣列基板 對置基板 液晶層 濾色片層 透明對置電極 偏光板 偏光板 背光 外部大型積體電路裝置 外部大型積體電路裝置 開口 ~ 光感測器電路 光感測器電路 光感測器電路 135041.doc •21- 200923483 55 光電二極體 56 電容器 111 預充電電路 112 算術電路 113 時脈信號產生電路 113A 時脈信號產生電路 114 計數器電路 115 取樣鎖存電路 116 並串行轉換電路 121 光感測器電路 122 光感測器電路 123 光感測器電路 1141 計數器電路 1142 計數器電路 1143 計數器電路 1151 取樣鎖存電路 1152 取樣鎖存電路 1153 取樣鎖存電路 1171 值轉換電路 1172 值轉換電路 1173 值轉換電路 A 顯示單元 BM 黑矩陣 135041.doc -22-The photo sensor circuits 121, 122, and 123 are disposed in a region in which the black matrix BM is formed. Each of the photo sensor circuits 121, 122 and 丨 23 has a photo sensor circuit and an arithmetic circuit. The photo sensor circuits 121, 122, and 123 respectively output trigger signals TRG1, TRG2, and TRG3, each of which is similar to the trigger signal TRG. Each of the trigger signals is supplied to the external large integrated circuit device 10A. The light sensor circuits 121, 122, and 123 receive light, for example, from the backlight 9, and the remaining photo sensor circuits receive light from around the display area A. As illustrated in FIG. 8, the external large-scale integrated circuit device 1 has a pre-135041.doc -15·200923483 charging circuit 111, a clock signal generating circuit 113A, counter circuits 1141, 1142, and 1143' sampling latch circuit 1151. 1, 2152 and 1153, value conversion circuits 1171, 1172, and 1173. Each of the photo sensor circuits 12 and 122 has a photo sensor circuit 12 and an arithmetic circuit. The precharge circuit 111 first supplies a constant voltage Vprc to each of the photo sensor circuits 121, 122, and 123. At a predetermined time during which the voltage Vprc is supplied, the precharge circuit 111 supplies a start signal SRT to the photo sensor circuits 121, 122 and 123, and the counter circuits Η4, η 42 and 1143. Each photosensor circuit precharges capacitor 56 with a voltage Vprc. A voltage between the electrodes of each capacitor is equal to the voltage vprc. Each photosensor circuit disconnects the wire and capacitor % of the applied voltage Vprc when the start signal SRT is supplied. A photocurrent having an amount of illuminance according to the ambient illuminance of one of the display units a or the light from the backlight 9 flows in each of the photodiodes 55. Therefore, each capacitor 56 is discharged and the voltage between the electrodes is lowered. The photo sensor circuits m, 122, and 123 output the voltages of the positive electrodes of the capacitors as electrical signals Ph〇t〇 i丨, 12, and Photo 1 3, respectively. Each of the arithmetic circuits 112 produces a data having a predetermined amount of data and similarly gradually reduces the data to a level at which the electrical signal from the photosensor circuit 12 is lowered due to discharge of the capacitor. Each of the arithmetic circuits 112 pre-stores a threshold value and when the corresponding data becomes equal to or less than the threshold value, the arithmetic circuits provide the trigger signals TRG1, TRG2, and TRG3 (eg, one pulse signal) to the sampling locks, respectively. The circuits 1151, 1152 and 1153 are stored. 13 504].doc •16·200923483 The clock signal generating circuit 113A supplies the clock signal CLK′ illustrated in FIG. 5 (which is a clock signal CLK whose level is periodically changed) to the counter circuit 1 141, 1142 and 1143. The counter circuits 1141, 1142, and 1143 increment the count values CNT1, CNT2, and CNT3, respectively. Each counter circuit resets the corresponding count value when the start signal SRT is supplied. Here, it is assumed that each count value is a 16-bit value. The count value is reset to 〇, which is the minimum of the range over which a 6-bit value can be represented. Then, the count value is incremented by 1 until it becomes 65535, which is the maximum value of the range. Each counter circuit increments the corresponding count value each time the level of the clock signal CLK changes. Each timer circuit provides the count value to the corresponding sample latch circuit whenever the count value is incremented. The counter circuit also does this when redesigning the values. Each sampling latch circuit samples the corresponding count value when outputting the corresponding trigger signal. The sampling latch circuit supplies the sampled count values CNT1, CNT2, and CNT3 to the value conversion circuits 1171, 1172, and 1173, respectively, by parallel signals. The value conversion circuits 1171, 1172, and 1173 convert the count values CNT1, CNT2, and CNT3 into output values 〇UT j, 〇UT2, and 〇υτ3, respectively, and output the output values. As illustrated in Figure 9, each value conversion circuit has a mapping table having a plurality of respective count values associated with the -output values. If any of the sampled count values is supplied to the corresponding value conversion circuit 135041.doc -17-200923483, the value conversion circuit first finds one of the ranges corresponding to the mapping table and includes the sampled count value. The scope. Then, the value conversion circuit outputs the output value associated with the found range as an output value of 0UT1, OUT2 or 〇UT3 by a parallel signal. The larger the output value of the violation mapping table, the more the count value included in the correlation range is. The larger the output value of the mapping table is, the narrower the correlation range is. The shoulder output value is a 4-bit value' as the output value illustrated in Figure 6. The output value is included in the range from - to 15 and corresponds to the illuminance. For example, the lower the illuminance, the more gradual the reduction in the level of 电 11, Photo 12, and Photo 13 as illustrated by the electrical signal illustrated in FIG. Therefore, the lower the illumination, the later the trigger signal is provided. And the count values are incremented. Therefore, the lower the illuminance, the larger the sampled value. Since the output value of the mapping table is larger, the smaller the count value included in the associated range, the lower the illuminance, and the lower the output value. That is, the output values correspond to the illuminance. As with the output value cnt as illustrated in Figure 6, each output value can also represent a dynamic range of about 1000 times the illuminance. Here, a comparative example of a range having the same width in a similar mapping table will be explained. For example, assume a width of 100 ′ so that a perfect linearity between the illuminance and the output value represented by the logarithm can be obtained if the output value is equal to or greater than i 〇 and equal to or less than 15. The maximum count value is 1600 (= 16 times 100) and 135041.doc • 18-200923483 in the comparative example. The count value is 65535 in the second embodiment. Therefore, the comparison example cannot represent a value greater than 1600. The low illuminance of the count value. Thus, in this comparative example, the output value can represent a dynamic range of, for example, only about 10 times. In the first embodiment, the output value can be expressed in the second embodiment - for example, a dynamic range of about 1 GGG times the illuminance. In addition, since the output value of the mapping table is larger, the associated range is narrower, so the linearity between the illuminance and the output value can be perfect within the illuminance. Therefore, according to the second implementation, since the output value of the mapping table is larger, the associated range is narrower, so that the dynamic range of one of the output values is widened, that is, the wide dynamic range of the illuminance can be measured. In this way, it is possible to measure an illuminance in a dark room or outdoors in a clear weather. Note that the present invention is not limited to the first or second embodiment. Each liquid crystal display device can be changed as long as it has the characteristics of the present invention. For example, although the clock signal clk having a constant-changing level loop is used in the liquid crystal display device according to the second embodiment, as in the second embodiment, the cycle in which the level is changed can be gradually lengthened. The clock number CLK. The maps may be individually sighed so that the difference between the output values due to the difference in characteristics of the photoelectric conversion elements in the photosensor circuit may be within a tolerance. According to the second embodiment, the liquid Japanese display device of the a_J is produced in large quantities, 135041.doc •19·200923483, the mapping table is different for each display device than the B _ 俨 white, In order to make the difference in the performance of the light between the liquid display devices, the degree of performance can be between a tolerance first or second embodiment, the liquid crystal display device is only in accordance with the present invention. The device is not equipped with H. The display device can be used - the use of organic electroluminescence does not contain h in this case τ, only the choice of the system must be made - similar to the composition used for illumination measurement in each case The composition. Although the photodiode 55 is used as a photoelectric conversion element (which discharges a capacitor charged in the photosensor circuit according to light around the display unit) in the first or second embodiment, the photoelectric conversion element Can be a photoelectric transistor. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a liquid crystal display device according to a first embodiment of the present invention; FIG. 2 is a plan view showing a liquid crystal display device in a drawing; FIG. Figure 1 is a circuit diagram of a photosensor circuit in the liquid crystal display device of Figure 1; Figure 4 illustrates a portion of an external large-scale integrated circuit device included in the liquid crystal display device of Figure 1 and a photosensor circuit Figure 5 is a block diagram showing the waveform of the clock signal used in the liquid crystal display device of Figure 1 and a clock signal of a comparative example; Figure 6 is a diagram showing the amount of the liquid crystal display device of Figure 1 Measuring the relationship between one illuminance and one of the count values used in the device and one of the illuminance measured in one of the rides of the parent instance and one of the 135041.doc -20- 200923483 is a relationship of one count value; one of the liquid crystal display diagrams of the second embodiment is a plan view of a device according to one embodiment of the present invention; FIG. 8 is a view of a liquid crystal display device of FIG. One A block diagram of a portion of the circuit device portion and a large-scale integrated circuit of the light sensor; FIG. 9 illustrates a liquid crystal Ge release in FIG. 7 shows an example of the mapping table one show set used content. [Main component symbol description] 1 1A 2 3 4 5 6 7 8 9 10 10A 11 12 13 14 Liquid crystal display device Liquid crystal display device Array substrate opposite substrate Liquid crystal layer color filter layer transparent counter electrode polarizing plate polarizing plate backlight external large Integrated circuit device external large integrated circuit device opening ~ Photo sensor circuit light sensor circuit light sensor circuit 135041.doc • 21- 200923483 55 Photodiode 56 Capacitor 111 Precharge circuit 112 Arithmetic circuit 113 Pulse signal generation circuit 113A clock signal generation circuit 114 counter circuit 115 sampling latch circuit 116 and serial conversion circuit 121 photo sensor circuit 122 photo sensor circuit 123 photo sensor circuit 1141 counter circuit 1142 counter circuit 1143 counter Circuit 1151 Sampling Latch Circuit 1152 Sampling Latch Circuit 1153 Sampling Latch Circuit 1171 Value Conversion Circuit 1172 Value Conversion Circuit 1173 Value Conversion Circuit A Display Unit BM Black Matrix 135041.doc -22-

Claims (1)

200923483 十、申請專利範圍: 1· 一種顯示裝置,其包括: 一具有像素之顯示單元; 一光感測器電路,其具有一電容器及一光電轉換元 件,該光電轉換元件根據該顯示單元之一周圍光照度使 該電容器放電; 异術電路’其將一數據類似地降低至該電容器之各 電極之間的電壓’且若該數據變成等於或小於一臨限值 則輸出一觸發信號; 一產生一時脈信號之時脈信號產生電路,該時脈信號 之改變位準之循環逐漸變長; D十數器電路,其在該時脈信號之位準之每一改變時 更新一計數值;及 取樣鎖存電路,其在輸出該觸發信號時對該計數值 進行取樣。 2. 一種顯·示裝置,其包括: 具有像素之顯示單元; -光感測器電路’其具有一電容器及一光電轉換元 件該光電轉換凡件根據該顯示單元之一周圍光照度使 該電容器放電; ,舁術電|將一數據類似地降低至該電容器之各 電極之間的電壓,且若該數據變成等於或小於一臨限值 則輪出一觸發信號; -產生-時脈信號之時脈信號產生電路,該時脈信號 135041.doc 200923483 之位準週期性地改變; 一計數器電路,其在該時脈信號之位準之每一改變時 更新一計數值; 取樣鎖存電路,其在輸出該觸發信號時對該計數值 進行取樣;及 一具有-映射表之值轉換電路,該映射表具有多個各 ^與-輸出值相M聯之該所取樣計數值之範圍,該值轉 數:路以在該等範圍中找出—個包含該所取樣計 其:之範圍且輸出與該所找出範圍相關聯之該輪出值; 3表之該輸出值越大,該相關聯範圍越窄。 3.如$求項丨或請求項2之 乍 形成於-形狀_ / 、置,其中該域測器電路 ❿狀頬似於一其φ报 之一圖片框架' 单元之陣列基板 單元周圍。 _中’該圖片框架區域圍繞在該顯示 135041.doc200923483 X. Patent application scope: 1. A display device comprising: a display unit having pixels; a photo sensor circuit having a capacitor and a photoelectric conversion element, the photoelectric conversion element being according to one of the display units The surrounding illuminance discharges the capacitor; the singular circuit 'slows a data similarly to the voltage between the electrodes of the capacitor' and outputs a trigger signal if the data becomes equal to or less than a threshold value; a clock signal generating circuit of the pulse signal, the cycle of changing the level of the clock signal is gradually lengthened; the D-number circuit is configured to update a count value when each of the levels of the clock signal changes; and sampling A latch circuit that samples the count value when the trigger signal is output. 2. A display device comprising: a display unit having pixels; - a photo sensor circuit having a capacitor and a photoelectric conversion element, the photoelectric conversion device discharging the capacitor according to an illumination degree around one of the display units , 舁 电 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | a pulse signal generating circuit, the timing of the clock signal 135041.doc 200923483 is periodically changed; a counter circuit that updates a count value when each of the levels of the clock signal changes; a sampling latch circuit And sampling the count value when the trigger signal is output; and a value conversion circuit having a mapping table, wherein the mapping table has a plurality of ranges of the sampled count values of the respective sum-output values M, the value The number of revolutions: the road is found in the range - the range containing the sampled range and the output is associated with the range of the rounded value; 3 the larger the output value of the table, Associated with the narrower range. 3. If the item 丨 or the request item 2 is formed in the - shape _ / , the set, wherein the domain circuit is shaped like a φ reported one of the picture frame 'units around the array substrate unit. _中' The picture frame area surrounds the display 135041.doc
TW97138763A 2007-11-15 2008-10-08 Display device capable of measuring an illuminance and widening a dynamic range of the measured illuminance TWI387803B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007296912 2007-11-15
JP2008131822A JP2009139914A (en) 2007-11-15 2008-05-20 Display device

Publications (2)

Publication Number Publication Date
TW200923483A true TW200923483A (en) 2009-06-01
TWI387803B TWI387803B (en) 2013-03-01

Family

ID=40870534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138763A TWI387803B (en) 2007-11-15 2008-10-08 Display device capable of measuring an illuminance and widening a dynamic range of the measured illuminance

Country Status (2)

Country Link
JP (1) JP2009139914A (en)
TW (1) TWI387803B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9313476B2 (en) 2014-08-07 2016-04-12 Omnivision Technologies, Inc. Precharged latched pixel cell for a time of flight 3D image sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550062B2 (en) * 1987-04-21 1996-10-30 オリンパス光学工業株式会社 Exposure control device
JPH063193A (en) * 1992-06-23 1994-01-11 Fuji Electric Co Ltd Color sensor circuit
JPH06313841A (en) * 1993-04-30 1994-11-08 Fuji Film Micro Device Kk Photometric device and photometric method
JP4492430B2 (en) * 2005-05-10 2010-06-30 エプソンイメージングデバイス株式会社 Electro-optical device, control circuit for illumination device, and control method
JP2007114315A (en) * 2005-10-18 2007-05-10 Toshiba Matsushita Display Technology Co Ltd Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9313476B2 (en) 2014-08-07 2016-04-12 Omnivision Technologies, Inc. Precharged latched pixel cell for a time of flight 3D image sensor
TWI552570B (en) * 2014-08-07 2016-10-01 豪威科技股份有限公司 Precharged latched pixel cell for a time of flight 3d image sensor

Also Published As

Publication number Publication date
TWI387803B (en) 2013-03-01
JP2009139914A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US9122348B2 (en) Touch panel
US8379005B2 (en) Liquid crystal display device utilizing a photosensor
KR101189268B1 (en) Thin film array panel and driving apparatus for liquid crystal display and liquid crystal display including the same
KR101032946B1 (en) Photosensor and display device including photosensor
TW200840350A (en) Display device
US20080204642A1 (en) Electro-optical device, semiconductor device, display device, and electronic apparatus having the same
GB2446821A (en) An ambient light sensing system
CN102713999A (en) Electronic device and electronic system
CN101281916A (en) Light sensing device and display device
TWI267808B (en) Liquid crystal display and driving method therefor
CN101634765A (en) Display device and electronic equipment
CN113138477B (en) Display panel and electronic device
TW201030439A (en) Electrophoretic display device using photo sensor
CN109950235A (en) A kind of display device of integrating fingerprint identification function and solar cell module
CN106094320A (en) Color membrane substrates and liquid crystal indicator
CN103699283B (en) Touch screen and its driving method and display device
TW200919400A (en) Display device
CN107167942B (en) Color film substrate, display device and display method
KR20060029856A (en) Sensor and display device including sensor
CN105629556B (en) Light valve and display device
KR100993667B1 (en) Display device capable of measuring an illuminance and widening a dynamic range of the measured illuminance
JP2007140106A (en) Display apparatus
TW200923483A (en) Display device capable of measuring an illuminance and widening a dynamic range of the measured illuminance
JP2007279100A (en) Display device
CN105702682B (en) Thin-film transistor array base-plate and production method and liquid crystal display panel