TW200917414A - Cathode liner with wafer edge gas injection in a plasma reactor chamber - Google Patents

Cathode liner with wafer edge gas injection in a plasma reactor chamber Download PDF

Info

Publication number
TW200917414A
TW200917414A TW097134230A TW97134230A TW200917414A TW 200917414 A TW200917414 A TW 200917414A TW 097134230 A TW097134230 A TW 097134230A TW 97134230 A TW97134230 A TW 97134230A TW 200917414 A TW200917414 A TW 200917414A
Authority
TW
Taiwan
Prior art keywords
gas
workpiece
wafer
reactor
edge
Prior art date
Application number
TW097134230A
Other languages
Chinese (zh)
Other versions
TWI452649B (en
Inventor
Dan Katz
David Palagashvili
Michael D Willwerth
Valentin N Todorow
Alexander M Paterson
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/899,613 external-priority patent/US7879250B2/en
Priority claimed from US11/899,614 external-priority patent/US7832354B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200917414A publication Critical patent/TW200917414A/en
Application granted granted Critical
Publication of TWI452649B publication Critical patent/TWI452649B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

The disclosure concerns a wafer support for use in a plasma reactor chamber, in which the wafer support has a wafer edge gas injector adjacent and surrounding the wafer edge.

Description

200917414 九、發明說明: 【發明所屬之技術領域】 本文關於一電漿反應器腔室,其用於處理一 如,一半導體晶圓,以生產積體電路。具體說來 係關於在這一類反應器腔室中於頂板及晶圓邊緣 製程氣體注入。 【先前技術】 在用於蝕刻半導體晶圓上之矽或多晶矽薄膜 應器腔室中,在晶圓各處之蝕刻速度之均勻分 的。晶圓各處之蝕刻速度之不均勻分佈由臨界尺 之不均勻性指示。臨界尺寸可為薄膜電路圖案中 線之寬度。臨界尺寸在晶圓表面上遭受較高姓刻 域中較小,而在較低I虫刻速度之區域中較大。 在製程氣體由頂板注入之矽蝕刻腔室中,吾 與其他晶圓表面上之區域相比,在晶圓邊緣之臨 常小。小臨界尺寸之效應典型侷限於晶圓表面之 邊的1 %。此問題使用習用技術並未解決。具體說 均勻性可藉由在頂板將氣體分配劃分為獨立的内 氣體注入區域,並藉由調整至内部及外部區域之 以最大化均勻性來改善。不過,内部及外部氣體 之流速調整並未解決在晶圓表面之外部 1 %之小 之問題。具體說來,在頂板之内部及外部氣體注 流速調整可產生遍及晶圓各處之相當均勻的臨界 工件,例 ,本揭示 之獨立的 之電漿反 佈是必須 寸(CD)中 之一典型 速度之區 人已發現 界尺寸非 外部或周 來,姓刻 部及外部 氣體流速 注入區域 臨界尺寸 入區域之 尺寸,偕 5 200917414 同在晶圓邊緣之一寬度約為晶圓直徑的1 %之區域之例外。 因此,存在有獨立控制晶圓邊緣之外部1 %之臨界尺寸 而不降低對晶圓之其他區域所達成之蝕刻速度分佈均勻性 之需要。 【發明内容】 一工件支撐係.設置用於在一電漿反應器之處理期間支 撐一工件,例如,一半導體晶圓。工件支撐包含一基座, 其具有一工件支樓表面。一處理環疊加在基座之周邊上。 處理環鄰接工件支撐表面之周邊邊界。一晶圓邊緣氣體注 入器係由處理環形成,並具有通常面對一疊加在工件支撐 表面上之工件位置之注入開口。一製程氣體供應器係耦合 至晶圓邊緣氣體注入器。 在一實施例中,晶圓邊緣氣體注入器包含一環形狹缝 開口。在一進一步的實施例中,一襯墊圍繞基座之一側, 並具有一位於處理環下方之頂表面。襯墊内部之複數個軸 向通道延伸通過襯墊至襯墊之頂表面。一環形饋送通道係 定義在處理環及襯墊間。複數個軸向通道各自耦合至環形 饋送通道,且晶圓邊緣氣體注入器係耦合至環形饋送通道。 在尚有一進一步的實施例中,概墊進一步包含一底表 面及一位於底表面下方之基底,基底包含一環形氣室。複 數個轴向通道係搞合至環形氣室。 此申請案主張對2007年9月5曰由Dan Katz等人提 出申請之發明名稱為「電漿反應器腔室中具有晶圓邊緣氣 6 200917414 體注入之陰極槪 及2007年9月 為「在具有獨立 處理一工件之方 優先權。 【實施方式] 參照圖1,_ 柱形側壁1 〇 8、 在晶圓處理期間 陰極電極135, 包含絕緣層1 3 7 1 3 9 ’其分隔電極 絕緣層1 3 7具有 含電感麵合電源 上方。射頻電漿 轉合至線圈天線 過射頻阻抗匹配 供應器16 1係通 緣電容1 6 3阻擋 生器1 5 5。 製程氣體係 至腔室内部空間 及外部區域注入 墊」之美國專利申請案第1 1 /899,6 14號; 5曰由Dan Katz等人提出申請之發明名稱 的晶圓邊緣製程氣體注入之電漿反應器中 法」之美國專利申請案第1 1 / 8 9 9,6 1 3號之 -電漿反應器包含真空腔室1〇〇,其係以圓 項板1 1 0、及地板1 1 5圍住。晶圓支撐1 2 5 支揮半導體晶圓130。晶圓支撐125包含 其亦充當一靜電吸盤(ESC)電極。支撐125 ’其分隔電極1 3 5與晶圓丨3 〇 ;及絕緣層 s 1 3 5與下方之晶圓支撐丨2 5之部件。上部 頂部晶圓支撐表面1 3 7 a。反應器進一步包 裇用器或線圈天線1 4 〇,其位於頂板n 〇 電源產生器1 4 5係通過射頻阻抗匹配1 5 〇 14〇 °射頻電漿偏壓功率產生器155係通 1 6 0叙合至陰極電極1 3 5。直流吸盤電壓 過控制開關1 6 2連接至e S C電極1 3 5。絕 直流電流由供應器i 6丨至射頻偏壓功率產 由頂板1 1 0上之氣體分配注入器1 6 5傳送 之内部。>主入器1 6 5由内部區域注入器1 7 〇 器1 7 5組成。内部區域注入器} 7 〇及外部 7 200917414 區域注入器1 7 5之各一可以複數個注入孔或,替代地,以 一狹缝實施。内部區域注入器1 7 0係定向以將製程氣體導 向腔室之中心區域。外部區域注入器1 7 5係定向以將製程 氣體導向腔室之周邊區域。内部區域注入器170係通過閥 1 8 0耦合至氣體分配面板1 8 5。外部區域注入器1 7 5係通過 閥190耦合至氣體分配.面板185。不同的製程氣體供應器 101、102、103、104、105供應不同的製程氣體給氣體分 配面板1 8 5。如同在圖1之圖式中所指示,在一實施例中, 各氣體供應器可通過獨立閥195個別連接至不同一個的内 部及外部閥1 8 0、1 9 0。在圖1之實施例中,氣體供應器1 0 1 包含氟代烴氣體,例如,CH2F2、或CHF3 ;氣體供應器1 02 包含溴化氫氣體;氣體供應器1 〇 3包含氣氣;氣體供應器 1 04包含氬氣;且氣體供應器1 05包含氧氣。此處所提到 之氣體為範例。可使用任何適當的製程氣體" 晶圓支撐1 25由環形陰極襯墊200圍繞。陰極襯墊200 可由製程相容材料構成,例如,舉例來說,石英。處理環 205覆蓋陰極襯墊200之頂部並覆蓋晶圓支撐表面137a之 周邊部分。處理環2 0 5由製程相容材料構成,例如,石英。 晶圓支撐1 2 5可包含材料,例如,金屬,其與電漿處理不 相容,且襯墊200及環205隔離晶圓支撐125與電漿。處 理環205之徑向内部邊緣205a鄰接晶圓130之邊緣。在一 實施例中,處理環可提供改善的射頻電場分佈。 一矽或多晶矽蝕刻製程利用矽蝕刻氣體,例如,溴化 氫(HBr)及氯(Cl2),以蝕刻矽材料,並利用聚合物種,例 200917414 如,二氟曱烷(CH2F2)、或三氟甲烷(CHF3),以改善 廓。聚合物在與蝕刻反應競爭之聚合物沈積反應中 具有深的深寬比開口之側壁上。 圖1之反應器在晶圓邊緣可具有貧乏的臨界尺 控制之問題。典型地,臨界尺寸為電路圖案中一所 寬度。臨界尺寸傾向於在晶圓邊緣小於晶圓 130 處。小臨界尺寸之問題傾向於發生在晶圓1 3 0邊緣 形區域中,該區域之寬度(由晶圓邊緣向内延伸)約 直徑的1 %。(此窄區域此後將指為圖5所示之晶圓 域 1 3 0a,其在此專利說明書中稍後討論。)在剩餘 1 3 0上方,這類問題係藉由調整閥1 8 0及1 9 0以獲 氣體流速與内部及外部氣體頂板注入器1 7 0、1 7 5之 例而最小化或預防。不過,這一類最佳調整並未解 邊緣區域1 3 0 a之貧乏的臨界尺寸控制問題。晶圓邊 1 3 0 a之小臨界尺寸指示在晶圓邊緣區域較別處更 刻速度。 吾人已發現相對於多數其他部分的晶圓,在晶 區域 1 3 0 a上方之氣體流速極低。舉例來說,在某 中,當在大多數晶圓表面上方之氣體流速介於約4 及2 0米間時,晶圓邊緣區域上方之氣流近乎零。如 邊緣區域上方之氣流因而停滯,則在晶圓邊緣上方 駐留時間極高,產生相對高的製程氣體物種之解離 高解離可在晶圓邊緣區域增加高反應物種之總數。 反應物種可包含自由基或中性粒子,其(a)蝕刻極端 触刻輪 沈積在 寸(CD) 選線之 上之別 之一環 為晶圓 邊緣區 的晶圓 得製程 最佳比 決晶圓 緣區域 高的蝕 圓邊緣 些應用 t秒 10 果晶圓 之氣體 。這類 這類高 迅速或 200917414 (b)抑制聚合物沈積。舉例來說,由這類解離產生之一高反 應蝕刻物種可包含原子Η B r及/或原子C 12。結果為一較高 的蝕刻速度及一相對較小的臨界尺寸。 在一實施例中,一新氣體係在晶圓邊緣注入以對付晶 圓邊緣之不均勻的蝕刻速度。新氣體可為一惰性氣體,例 如,氬。在一實施例中,新氣體之注入增加晶圓邊緣區域 上方之氣體流速,並減少晶圓邊緣區域上方之製程氣體之 駐留時間。駐留時間之減少降低晶圓邊緣區域上方之高反 應物種,例如,自由基或中性粒子,之總數。新氣體在晶 圓邊緣之速度或流速可足夠低以避免影響超出窄晶圓邊緣 區域之蝕刻速度。典型地,晶圓邊緣區域約為3 mm寬。 在一實施例中,一聚合氣體係在晶圓邊緣注入以對付 晶圓邊緣之不均勻的蝕刻速度。舉例來說,聚合氣體可為 C Η 2 F 2或C H F 3。添加聚合物種增加晶圓邊緣區域之聚合物 沈積速度,其降低蝕刻速度。聚合物種氣體注入晶圓邊緣 之速度或流速可足夠低以避免影響超出窄晶圓邊緣區域之 蝕刻速度。典型地,晶圓邊緣區域約為3 mm寬。 在一實施例中,處理環2 0 5係劃分為上部處理環2 1 0 及下部處理環2 1 2,並在其間遺留面對(幾乎接觸)晶圓1 3 0 邊緣之窄環形狹缝220。環形狹縫220以位於0.6 mm至3 mm,例如,約為1 %的晶圓直徑,之範圍中之非常小的距 離與晶圓邊緣分隔。一所需氣體(例如,一惰性氣體或一聚 合物種氣體)係供應以便由環形狹缝 2 2 0徑向向内並直接 在晶圓邊緣注入。此新氣體或聚合物種氣體可由氣體分配 10 200917414 面板1 8 5供應。 在一實施例中,環形氣體氣室2 2 5係設置在陰極襯墊 2 0 0之底部。陰極氣流控制閥2 2 7通過導管2 2 9來控制由 氣體分配面板1 8 5至氣室2 2 5之氣流。氣體係藉由陰極襯 墊200内部之垂直通道240由氣室225傳導至晶圓邊緣之 環形狹缝220。 圖2說明陰極襯墊2 0 0之一示範的内部結構。陰極襯 墊2 00係參照圖1如由一絕緣體,例如,石英,構成而敘 述。在圖2之實施例中,陰極襯墊2 0 0係由金屬構成,且 如圖5所示,石英襯墊126分隔金屬陰極襯墊200與晶圓 支撐125。陰極襯墊200包含圓柱形壁201,其具有環形頂 表面201a。環形基底215支撐圓柱形壁201。肩部235以 徑向朝外方向由基底2 1 5延伸並容納氣體供應入口 2 3 0。 圖1所示之氣室2 2. 5係形成在圖2之陰極環之環形基底2 1 5 内部,如在圖3之橫剖面圖中所描畫。内部通道2 3 2徑向 延伸通過肩部235,並在一端耦合至氣體供應入口 230,且 在一相對端耦合至氣室225,如在圖4之橫剖面圖中所描 晝。如圖 2所示,垂直通道 240軸向延伸通過圓柱形壁 201,並圍繞圓柱形壁201方位角地隔開。各垂直通道240 之底部端係耦合至氣室225,且各垂直通道240之頂部端 在圓柱形壁2 0 1之環形頂部表面2 0 1 a處開口。在一實施例 中,圓柱形壁2 0 1約為0.2 5英吋厚,且各垂直通道2 4 0為 圓柱形壁2 0 1内部之軸向0.0 5英吋的孔。 在圖 1之實施例中,圓柱形壁 201支撐下部處理環 11 200917414 2 1 2,且上部處理環2 1 0係支撐在下部處理環2 1 2上 如圖5所示,内側石英襯墊1 2 6圍繞工件支撐 並由陰極襯墊之圓柱形壁2 0 1圍繞。如圖5所示, 墊126支撐下部處理環212,而陰極襯墊之圓柱形 支撐上部處理環2 1 0。環形氣體饋送腔室2 6 0係由 壁之頂表面2 0 1 a、上部處理環、及下部處理環2 1 2 環形饋送通道2 6 2係形成如同介於上部及下部處理 及2 1 2間之一間隙。上部處理環2 1 0之底表面中之 形突出2 1 0 a面對下部處理環2 1 2之頂表面中之外部 部2 1 2 a。内部環形凹部2 1 0 b係設置在上部處理環 底表面中。内部環形凹部2 1 0 b面對下部處理環2 1 2 的肩部212b以形成氣體注入狭缝220。突出 210a 212a、凹部210b、及肩部212b提供一曲折路徑給 道262,如圖 5所示。通過圖 1之閥 22 7供應之氣 陰極或晶圓支撐125並進入圖4所示之入口 230, 過内部通道232至氣室225。從氣室225起,氣體 過垂直通道240進入圖5之饋送腔室260,接著流 通道262進入注入狹缝220。 如圖6之側視圖所示,注入狹縫2 2 0之端或出 位於晶圓1 3 0邊緣之非常短的距離D之内,其中D 0.6 m m至3 m m之等級間。給定這一短距離,來自 缝2 2 0之氣流效應可高度局部化以便不要影響超出 寬之晶圓邊緣區域1 3 0 a之處理。這類局部化可藉由 狹缝 220内部建立一非常低的氣體流速來實現。 125, 内側襯 壁 20 1 圓柱形 界定。 環210 外部環 環形凹 210之 之凸起 、凹部 饋送通 體流至 接著流 向上流 過饋送 口埠係 係介於 注入狹 3 mm 在注入 舉例來 12 200917414 說,通過閥2 2 7 (至晶圓邊緣注入狹縫2 2 0 )之氣體流速可介 於通過閥1 8 0及1 9 0之氣體流速之1 %及1 0 %間。以此方 式,流出注入狹縫2 2 0之氣體僅影響窄晶圓邊緣區域1 3 0 a 中之處理(例如,蝕刻速度),而不影響在晶圓1 3 0之剩餘 部份上之處理。 圖7為一圖,其描畫晶圓表面上作為一製程中之徑向 位置之二氯化矽(SiCl2)之密度,在該製程中,一聚合氣體 (例如,CH2F2或CHF3)係通過圖1至6之晶圓邊緣注入狹 縫220引入,而一蝕刻製程氣體(例如,Hbr及Cl2)係通過 頂板注入器1 70、1 75引入。SiCl2之密度為在這一類製程 中聚合作用之程度之指示器。圖7之圖顯示在缺乏任何來 自注入狹縫2 2 0之氣流的情況下,聚合作用在晶圓邊緣相 對降低(曲線A)。在聚合氣體通過注入狹缝220供應的情 況下,聚合作用在晶圓邊緣之程度顯著增加(曲線 B)。通 過晶圓邊緣注入狹缝2 2 0之聚合作用氣流係限制在低速。 此注入狹缝之流速限制將聚合作用之增加侷限在晶圓直徑 之外部1 %之晶圓邊緣區域。在一範例中,通過頂板注入器 1 7 0、1 7 5之蝕刻製程氣體流速約為1 5 0 s c c m,而聚合作用 氣體流過晶圓邊緣注入器狹缝220約為5 seem。 圖8說明操作圖1至6之電漿反應器以便增加晶圓邊 緣區域之臨界尺寸之一示範方法。一矽蝕刻劑物種氣體, 例如,H b r及C12,係通過内部區域之頂板注入器1 7 0以一 第一氣體流速(圖8之方塊4 0 0),及通過外部區域之頂板 注入器175以一第二氣體流速(圖8之方塊405)注入。通 13 200917414 過内部及外部區域之頂板注入器1 7 0、1 7 5之氣 在晶圓表面各處所需的平均蝕刻速度。蝕刻速 由獨立調整通過内部及外部之頂板注入器1 7 0、 流速來調整整個除了周邊1 %外之晶圓表面,直 分佈均勻性最佳化為止(圖8之方塊4 1 0)。此 邊緣區域或晶圓表面之外部1 %處之姓刻速度; 尺寸太小)。晶圓邊緣區域之蝕刻速度係(專門) 圓邊緣區域上之氣體駐留時間以減少晶圓邊緣 離而向下調整(或臨界尺寸係向上調整)。在一 降低晶圓邊緣區域上之氣體駐留時間係藉由 體,例如,一惰性氣體或氧,流過晶圓邊緣注 以激起晶圓邊緣上方之氣流而完成(圖8之方J 流增加或氣體駐留時間降低係藉由限制通過晶 器狹縫之氣體流速為一小流速而將之侷限在 域。此小流速係選擇以達到最均勻的臨界尺寸 受製程氣體物種之選擇所影響,並可,舉例來 至20 seem之範圍内。 圖9說明操作圖1至6之電漿反應器以便 緣區域之臨界尺寸之另一示範方法。一石夕I 虫 體,例如,H b r及C12,係通過内部區域之頂枥 以一第一氣體流速(圖9之方塊420),及通過 頂板注入器1 7 5以一第二氣體流速(圖9之方场 通過内部及外部區域之頂板注入器1 7 0、1 7 5之 到在晶圓表面各處所需的平均钱刻速度。I虫刻 流足以達到 度分佈係藉 ' 1 75之氣體 到蝕刻速度 典型使晶圓 &高(或臨界 藉由降低晶 區域上之解 實施例中, 使一適當氣 入狹缝 2 2 0 t免4 1 5 )。氣 圓邊緣注入 晶圓邊緣區 分佈,其可 說,位於 1 增加晶圓邊 刻劑物種氣 .注入器1 7 0 外部區域之 L 4 2 5 )注入。 氣流足以達 速度分佈係 14 200917414 藉由獨立調整通過内部及外部之頂板注入器1 7 0、1 7 5之氣 體流速來調整整個除了周邊1 %外之晶圓表面,直到蝕刻速 度分佈均勻性最佳化為止(圖9之方塊4 3 0)。此典型使晶 圓邊緣區域或晶圓表面之外部1 %處之I虫刻速度太高(或臨 界尺寸太小)。晶圓邊緣區域之钱刻速度係(專門)藉由增加 晶圓邊緣區域上之聚合作用以降低晶圓邊緣區域上之蝕刻 速度而向下調整(或臨界尺寸係向上調整)。在一實施例 中,增加晶圓邊緣區域上之聚合作用係藉由使一聚合作用 氣體,例如,C Η 2 F 2或C H F 3,流過晶圓邊緣注入狹缝2 2 0 而完成(圖9之方塊435)。結果的聚合物沈積速度之增加 增加臨界尺寸。此增加係藉由限制通過晶圓邊緣注入器狹 缝之氣體流速為一小流速而將之侷限在晶圓邊緣區域。此 小流速係選擇以達到最均勻的臨界尺寸分佈,其可受製程 氣體物種之選擇所影響,並可,舉例來說,位於1至20 seem 之範圍内。 在圖8或9之方法之任一者中,進一步的最佳化係藉 由調整通過頂板注入器170及175及/或調整通過晶圓邊緣 狹缝2 2 0之氣體流速來達成。舉例來說,通過頂板注入器 1 7 0、1 7 5之蝕刻劑氣流可減少,同時增加通過晶圓邊緣狹 縫2 2 0之惰性或聚合作用氣流,以進一步增加晶圓邊緣區 域之臨界尺寸。不過,通過晶圓邊緣狹缝之流速可足夠低 以將效應侷限在晶圓邊緣區域=然而,通過頂板注入器 1 7 0、1 7 5之触刻劑氣體流速可如所需般降低(例如,至零)。 相反地,通過頂板注入器1 7 0、1 7 5之餘刻劑氣流可增加, 15 200917414 同時減少通過晶圓邊緣狹缝2 2 0之惰性或聚合作用氣體, 以縮小晶圓邊緣區域之臨界尺寸。 雖然本發明已參照實施例敘述,其中一所選氣體係緊 鄰晶圓邊緣通過一連續狹缝注入器注入,位於晶圓邊緣之 注入器可採用其他形式,例如,許多圍繞晶圓邊緣之一陣 列的或一連串的氣體注入孔口。 雖然前文係針對本發明之實施例,本發明之其他及進 一步的實施例可在不偏離其基本範圍的情況下思及,且其 範圍係由下附之申請專利範圍決定。 【圖式簡單說明】 因此,上文敘述之本發明之實施例可達成並可詳細了 解,在上文簡短總結之本發明之更具體的敘述,可藉由參 照其在附加圖式中說明之實施例而獲得"然而,須注意附 加圖式僅說明本發明之典型實施例,且因此不能視為對其 範圍之限制,因為本發明可及於其他等效之實施例。 圖1描畫根據一實施例之一電漿反應器。 圖2說明圖1反應器之陰極襯墊之内部結構特徵。 圖3為沿著圖2之線3 - 3取得之一橫剖面圖。 圖4為沿著圖2之線4 - 4取得之一橫剖面圖。 圖 5為一實施例之一部分的處理環及陰極襯墊之詳 圖。 圖6為對應圖5之一側視圖。 圖7為一圖,其描畫在有及無氣流通過晶圓邊緣注入 16 200917414 器槽的情況下,圖1之反應器中之二氯化矽之徑向分佈。 圖8說明根據一實施例之一方法。 圖9說明根據另一實施例之一方法。 為利於了解,已在可行處使用相同的參考號碼來標示 圖中共有的相同元件。圖中之圖式皆為概要且未依照比例 繪製。 【主要元件符號說明】 100 真 空 腔 室 137a 晶 圓 支 撐 表 面 101 氣 體 供 應 器 139 絕 緣 層 102 氣 體 供 應 器 140 線 圈 天 線 103 氣 體 供 應 器 145 功 率 產 生 器 1 04 氣 體 供 應 器 150 阻 抗 匹 配 105 氣 體 供 應 器 15 5 偏 壓 功 率 產 生 器 108 側 壁 160 阻 抗 匹 配 110 頂 板 16 1 電 壓 供 應 器 115 地 板 162 控 制 開 關 125 晶 圓 支 撐 163 絕 緣 電 容 126 襯 墊 165 氣 體 分 配 注 入 器 130 晶 圓 170 内 部 區 域 注 入 器 1 30a 晶 圓 邊 緣 區域 175 外 部 區 域 注 入 器 135 陰 極 電 極 1 80 閥 137 絕 緣 層 185 氣 體 分 配 面 板 17 200917414 190 閥 405 圖 8 之 步 驟 2 195 閥 4 10 圖 8 之 步 驟 3 200 陰 極 襯 墊 4 15 圖 8 之 步 驟 4 201 圓 柱 形 壁 420 圖 9 之 步 驟 1 201 a 元 件 201 之 頂表面 425 圖 9 之 步 驟 2 205 處 理 環 430 圖 9 之 步 驟 Λ 205a 徑 向 内 部 邊 緣 435 圖 9 之 步 驟 4 210 上 部 處 理 環 210a 環 形 突 出 210b 内 部 環 形 凹 部 212 下 部 處 理 環 212a 環 形 凹 部 212b 凸 起 的 肩 部 215 環 形 基 底 220 窄 狹 縫 225 氣室 227 閥 229 導管 230 入口 232 通道 235 肩部 240 垂直通道 400 圖8之步驟1 18200917414 IX. Description of the Invention: [Technical Field of the Invention] This document relates to a plasma reactor chamber for processing, for example, a semiconductor wafer to produce an integrated circuit. Specifically, it relates to process gas injection at the top and wafer edge in this type of reactor chamber. [Prior Art] In the ruthenium or polysilicon film chamber for etching a semiconductor wafer, the etching speed is uniform throughout the wafer. The uneven distribution of the etch rate throughout the wafer is indicated by the non-uniformity of the critical dimension. The critical dimension can be the width of the line in the thin film circuit pattern. The critical dimension is smaller on the wafer surface due to the higher surname field and larger in the lower I insect velocity region. In the etch chamber where the process gas is injected from the top plate, it is typically small at the edge of the wafer compared to the area on the other wafer surface. The effect of small critical dimensions is typically limited to 1% of the edge of the wafer surface. This issue has not been resolved using conventional techniques. Specifically, uniformity can be improved by dividing the gas distribution into separate inner gas injection regions in the top plate and by adjusting to the inner and outer regions to maximize uniformity. However, the flow rate adjustment of the internal and external gases does not solve the problem of 1% outside the surface of the wafer. In particular, the gas flow rate adjustments inside and outside the top plate can produce fairly uniform critical workpieces throughout the wafer. For example, the independent plasma counter cloth of the present disclosure is typically one of the required (CD) The speed zone has found that the boundary dimension is not external or weekly, and the size of the surname and the external gas flow rate injection zone is the size of the critical dimension. 偕5 200917414 The width of one of the wafer edges is about 1% of the wafer diameter. An exception to the area. Therefore, there is a need to independently control the outer critical dimension of the wafer edge by 1% without reducing the uniformity of the etch rate distribution achieved for other regions of the wafer. SUMMARY OF THE INVENTION A workpiece support system is provided for supporting a workpiece, such as a semiconductor wafer, during processing of a plasma reactor. The workpiece support includes a base having a workpiece floor surface. A processing loop is superimposed on the periphery of the base. The processing ring abuts a perimeter boundary of the workpiece support surface. A wafer edge gas injector is formed by a processing loop and has an injection opening that generally faces a workpiece position superimposed on the workpiece support surface. A process gas supply is coupled to the wafer edge gas injector. In one embodiment, the wafer edge gas injector includes an annular slit opening. In a further embodiment, a pad surrounds one side of the base and has a top surface below the processing ring. A plurality of axial passages in the interior of the liner extend through the liner to the top surface of the liner. An annular feed channel is defined between the process ring and the liner. A plurality of axial channels are each coupled to the annular feed channel and a wafer edge gas injector is coupled to the annular feed channel. In still a further embodiment, the mat further includes a bottom surface and a substrate below the bottom surface, the substrate including an annular plenum. A plurality of axial passages are engaged to the annular plenum. This application claims to be the name of the invention filed by Dan Katz et al. on September 5, 2007. “The cathode of the plasma reactor chamber with wafer edge gas 6 200917414 is injected and the September 2007 is Having a square priority for independently processing a workpiece. [Embodiment] Referring to Figure 1, a cylindrical sidewall 1 〇8, a cathode electrode 135 during wafer processing, comprising an insulating layer 1 3 7 1 3 9 'separating electrode insulating layer 1 3 7 has an inductive surface-conducting power supply. RF plasma is transferred to the coil antenna. RF impedance matching supply is provided. 16 1 system through-edge capacitor 1 6 3 blocking the living device 1 5 5. Process gas system to the interior of the chamber and U.S. Patent Application Serial No. 1 1/899,61, the entire disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all The plasma reactor of the application No. 1 1 / 8 9 9, 6 1 3 comprises a vacuum chamber 1 围 which is surrounded by a circular plate 1 10 and a floor 1 15 . The wafer supports 1 2 5 of the semiconductor wafer 130. Wafer support 125 includes it also acts as an electrostatic chuck (ESC) electrode. The support 125' has a partition electrode 135 and a wafer 丨3 〇; and an insulating layer s 1 3 5 and a lower wafer support 丨25. Upper top wafer support surface 1 3 7 a. The reactor further includes a device or a coil antenna 1 4 〇, which is located on the top plate n 〇 power generator 1 4 5 through RF impedance matching 1 5 〇 14 〇 ° RF plasma bias power generator 155 system 1 6 0 It is combined to the cathode electrode 1 3 5 . The DC chuck voltage is connected to the e S C electrode 1 3 5 via the control switch 1 6 2 . The absolute DC current is supplied from the supply i 6 丨 to the RF bias power generated by the gas distribution injector 165 on the top plate 110. > The main injector 1 6 5 is composed of an internal area injector 1 7 1 1 7.5. Internal Zone Injector} 7 〇 and External 7 200917414 Each of the Zone Injectors 1 7 5 can have multiple injection holes or, alternatively, a slit. The inner zone injector 170 is oriented to direct process gas to the central region of the chamber. The outer zone injector 1 5 5 is oriented to direct process gas to the peripheral region of the chamber. The inner zone injector 170 is coupled to the gas distribution panel 185 via a valve 180. The outer zone injector 1 7 5 is coupled to the gas distribution panel 185 via valve 190. The different process gas supplies 101, 102, 103, 104, 105 supply different process gases to the gas distribution panel 185. As indicated in the diagram of Fig. 1, in one embodiment, each gas supply may be individually connected to a different one of the inner and outer valves 180, 190 through a separate valve 195. In the embodiment of Figure 1, the gas supply 1 0 1 comprises a fluorohydrocarbon gas, such as CH2F2, or CHF3; the gas supply 102 contains hydrogen bromide gas; the gas supply 1 〇3 contains gas; a gas supply The generator 104 contains argon gas; and the gas supply 105 contains oxygen. The gases mentioned here are examples. Any suitable process gas " wafer support 125 may be surrounded by a ring cathode liner 200. Cathode liner 200 can be constructed of a process compatible material such as, for example, quartz. The process ring 205 covers the top of the cathode liner 200 and covers the peripheral portion of the wafer support surface 137a. The processing ring 205 is constructed of a process compatible material, such as quartz. Wafer support 1 25 may comprise a material, such as a metal, that is incompatible with plasma processing, and liner 200 and ring 205 isolate wafer support 125 from the plasma. The radially inner edge 205a of the process ring 205 abuts the edge of the wafer 130. In one embodiment, the processing loop can provide an improved RF electric field distribution. A germanium or polysilicon etch process utilizes a etch gas, such as hydrogen bromide (HBr) and chlorine (Cl2), to etch the germanium material, and utilizes a polymer species, such as 200917414, for example, difluorodecane (CH2F2), or trifluoride. Methane (CHF3) to improve the profile. The polymer has a deep aspect ratio opening sidewall in the polymer deposition reaction that competes with the etching reaction. The reactor of Figure 1 can have poor threshold rule control at the edge of the wafer. Typically, the critical dimension is a width in the circuit pattern. The critical dimension tends to be less than the wafer 130 at the edge of the wafer. The problem of small critical dimensions tends to occur in the edge region of the wafer 130, the width of which (inwardly extending from the edge of the wafer) is about 1% of the diameter. (This narrow region will hereinafter be referred to as the wafer domain 1 30a shown in Figure 5, which is discussed later in this patent specification.) Above the remaining 130, this type of problem is caused by adjusting the valve 1880. 190 is minimized or prevented by the gas flow rate and the internal and external gas top plate injectors 170, 17 5 . However, this type of optimal adjustment does not solve the problem of poor critical dimension control in the edge region of 130°. A small critical dimension of the wafer edge of 130 mm indicates a faster velocity elsewhere in the wafer edge region. We have found that the gas flow rate above the crystalline region 1 30 a is extremely low relative to most other portions of the wafer. For example, in some cases, when the gas flow rate above most wafer surfaces is between about 4 and 20 meters, the airflow over the edge regions of the wafer is nearly zero. If the airflow above the edge region is thus stagnant, the residence time above the edge of the wafer is extremely high, resulting in a relatively high dissociation of the process gas species. High dissociation increases the total number of highly reactive species in the edge region of the wafer. The reactive species may contain free radicals or neutral particles, which (a) the etched extreme-etched wheel is deposited on the other side of the in-line (CD) line to select the wafer in the wafer edge region. The edge of the edge has a high etched edge and some gas is applied for t seconds. Such high-speed or 200917414 (b) inhibits polymer deposition. For example, one of the highly reactive etch species produced by such dissociation may comprise atom Η B r and/or atom C 12 . The result is a higher etch rate and a relatively smaller critical dimension. In one embodiment, a fresh gas system is injected at the edge of the wafer to counter the uneven etch rate of the edge of the wafer. The new gas can be an inert gas such as argon. In one embodiment, the injection of new gas increases the gas flow rate above the edge region of the wafer and reduces the residence time of the process gas above the edge region of the wafer. The reduction in dwell time reduces the total number of highly reactive species, such as free radicals or neutral particles, above the edge regions of the wafer. The velocity or flow rate of the new gas at the edge of the wafer can be low enough to avoid affecting the etch rate beyond the edge of the narrow wafer. Typically, the wafer edge area is approximately 3 mm wide. In one embodiment, a polymerization gas system is injected at the edge of the wafer to counter the uneven etch rate of the wafer edges. For example, the polymerization gas can be C Η 2 F 2 or CH F 3 . The addition of polymer species increases the rate of polymer deposition in the edge regions of the wafer, which reduces the etch rate. The velocity or flow rate at which the polymer species gas is injected into the edge of the wafer can be low enough to avoid affecting the etch rate beyond the edge region of the narrow wafer. Typically, the wafer edge area is approximately 3 mm wide. In one embodiment, the processing loop 205 is divided into an upper processing loop 2 1 0 and a lower processing loop 2 1 2 with a narrow annular slit 220 that faces (almost contacts) the edge of the wafer 130 . The annular slit 220 is spaced from the wafer edge by a very small distance in the range of 0.6 mm to 3 mm, for example, about 1% of the wafer diameter. A desired gas (e.g., an inert gas or a polymer species gas) is supplied to be injected radially inwardly from the annular slit 220 and directly at the edge of the wafer. This new gas or polymer species gas can be supplied by gas distribution 10 200917414 panel 1 8 5 . In one embodiment, the annular gas chamber 2 25 is disposed at the bottom of the cathode liner 200. The cathode gas flow control valve 2 2 7 controls the gas flow from the gas distribution panel 185 to the gas chamber 2 2 5 through the conduit 2 29 . The gas system is conducted from the plenum 225 to the annular slit 220 at the edge of the wafer by a vertical passage 240 inside the cathode liner 200. Figure 2 illustrates an exemplary internal structure of one of the cathode pads 200. The cathode liner 200 is described with reference to Fig. 1 as constructed of an insulator such as quartz. In the embodiment of FIG. 2, the cathode liner 200 is constructed of metal, and as shown in FIG. 5, the quartz liner 126 separates the metal cathode liner 200 from the wafer support 125. The cathode liner 200 includes a cylindrical wall 201 having an annular top surface 201a. The annular base 215 supports the cylindrical wall 201. The shoulder 235 extends from the base 2 15 in a radially outward direction and houses the gas supply inlet 230. The gas chamber 22.5 shown in Fig. 1 is formed inside the annular substrate 2 1 5 of the cathode ring of Fig. 2, as depicted in the cross-sectional view of Fig. 3. The inner passage 2 3 2 extends radially through the shoulder 235 and is coupled at one end to the gas supply inlet 230 and at an opposite end to the plenum 225 as depicted in the cross-sectional view of FIG. As shown in Figure 2, the vertical passages 240 extend axially through the cylindrical wall 201 and are spaced azimuthally about the cylindrical wall 201. The bottom ends of each of the vertical passages 240 are coupled to the plenum 225, and the top ends of the respective vertical passages 240 are open at the annular top surface 210 of the cylindrical wall 210. In one embodiment, the cylindrical wall 210 is about 0.25 inches thick, and each vertical channel 240 is a 0.05 inch bore in the axial direction of the cylindrical wall 210. In the embodiment of Fig. 1, the cylindrical wall 201 supports the lower processing ring 11 200917414 2 1 2, and the upper processing ring 2 10 is supported on the lower processing ring 2 1 2 as shown in Fig. 5, the inner quartz pad 1 2 6 is supported around the workpiece and surrounded by a cylindrical wall 210 of the cathode liner. As shown in Figure 5, the pad 126 supports the lower processing ring 212, while the cylindrical pad supports the upper processing ring 210. The annular gas feed chamber 260 is formed by the top surface of the wall 2 0 1 a, the upper processing ring, and the lower processing ring 2 1 2 annular feed channel 2 6 2 as if it were between the upper and lower treatments and the 2 1 2 One of the gaps. The shape protrusion 2 1 0 a in the bottom surface of the upper treatment ring 2 10 faces the outer portion 2 1 2 a in the top surface of the lower treatment ring 2 1 2 . The inner annular recess 2 1 0 b is disposed in the bottom surface of the upper processing ring. The inner annular recess 2 1 0 b faces the shoulder 212b of the lower processing ring 2 1 2 to form a gas injection slit 220. The projections 210a 212a, recess 210b, and shoulder 212b provide a tortuous path to the track 262, as shown in FIG. The gas cathode or wafer support 125 supplied through the valve 22 of Fig. 1 and enters the inlet 230 shown in Fig. 4 through the internal passage 232 to the plenum 225. From the plenum 225, the gas passes through the vertical passage 240 into the feed chamber 260 of Figure 5, and then the flow passage 262 enters the injection slit 220. As shown in the side view of Figure 6, the end of the implanted slit 220 is located within a very short distance D of the edge of the wafer 130, where D is between 0.6 m and 3 m. Given this short distance, the airflow effect from the slit 220 can be highly localized so as not to affect the processing beyond the wide wafer edge region 1 130. This localization can be achieved by establishing a very low gas flow rate inside the slit 220. 125, the inner side wall 20 1 is cylindrically defined. The outer ring of the outer ring annular recess 210 of the ring 210, the recess feeds the body flow to the flow then flows upward through the feed port, and the system is injected by a narrow 3 mm in the injection example 12 200917414 said through the valve 2 27 (to the edge of the wafer The gas flow rate of the injection slit 2 2 0 ) may be between 1% and 10% of the gas flow rate through the valves 1 800 and 190. In this way, the gas flowing out of the injection slit 220 affects only the processing (eg, etching speed) in the narrow wafer edge region 1 3 0 a without affecting the processing on the remaining portion of the wafer 130 . Figure 7 is a diagram depicting the density of ruthenium dichloride (SiCl2) on the surface of the wafer as a radial position in a process in which a polymerization gas (e.g., CH2F2 or CHF3) passes through Figure 1 A wafer edge implant slit 220 of 6 is introduced, and an etching process gas (for example, Hbr and Cl2) is introduced through the top plate injectors 170, 175. The density of SiCl2 is an indicator of the extent of polymerization in this type of process. Figure 7 is a graph showing that in the absence of any gas stream from the injection slit 220, the polymerization is relatively reduced at the edge of the wafer (curve A). In the case where the polymerization gas is supplied through the injection slit 220, the degree of polymerization at the edge of the wafer is significantly increased (curve B). The polymerization gas flow through the edge of the wafer to inject the slit 2 2 0 is limited to a low speed. The flow rate limitation of this injection slit limits the increase in polymerization to 1% of the wafer edge area outside the wafer diameter. In one example, the flow rate of the etch process through the top plate injectors 170, 175 is about 150 s c c m, and the polymerization gas flows through the wafer edge injector slit 220 about 5 seem. Figure 8 illustrates an exemplary method of operating the plasma reactor of Figures 1 through 6 to increase the critical dimension of the wafer edge region. An etchant species gas, such as H br and C12, passes through a top plate injector 170 of the inner region at a first gas flow rate (block 400 of Figure 8), and through a top plate injector 175 of the outer region. Injection is performed at a second gas flow rate (block 405 of Figure 8).通 13 200917414 The average etch rate required for the top plate injectors in the inner and outer regions, 1 7 0, 1 7 5 , across the surface of the wafer. The etching rate is adjusted independently by the internal and external top plate injectors 170, and the flow rate is adjusted to the entire surface of the wafer except for 1% of the periphery, and the uniformity of straight distribution is optimized (block 4 1 0 of Fig. 8). The edge area or the outer surface of the wafer surface is 1% of the speed of the surname; the size is too small). The etch rate of the wafer edge region is (specifically) the gas residence time on the rounded edge region to reduce the wafer edge and down (or the critical dimension is adjusted upward). The gas residence time on a reduced edge region of the wafer is accomplished by flowing a body, for example, an inert gas or oxygen, across the edge of the wafer to agitate the gas flow above the edge of the wafer (Fig. 8 increases the J flow) Or gas residence time reduction is limited to the domain by limiting the gas flow rate through the crystal slit to a small flow rate. This small flow rate is selected to achieve the most uniform critical dimension affected by the choice of process gas species, and This can be exemplified by the range of 20 seem. Figure 9 illustrates another exemplary method of operating the plasma reactor of Figures 1 through 6 for critical dimensions of the edge region. A diarrhea I, for example, H br and C12, Passing the top of the inner region at a first gas flow rate (block 420 of Figure 9), and through the top plate injector 175 with a second gas flow rate (the square field of Figure 9 passes through the top and bottom regions of the top plate injector 1 7 0, 1 7 5 to the average cost of the required amount of light across the surface of the wafer. I insect engraving flow is sufficient to achieve the degree of distribution by the '1 75 gas to the etch rate typical of the wafer & high (or critical By lowering the solution on the crystal region In an embodiment, a proper gas is introduced into the slit 2 2 t t 4 1 5 ). The rounded edge is injected into the edge region of the wafer, which can be said to be located at 1 to increase the wafer edge engraving species gas. 0 L 4 2 5 ) in the outer region. Airflow is sufficient to reach the velocity distribution system. 200917414 Adjust the gas flow rate through the internal and external top plate injectors 170, 175 to adjust the entire circumference except for 1%. The surface of the wafer is optimized until the uniformity of the etch rate distribution is optimized (block 430 of Figure 9). This typically causes the I-bit rate at the edge of the wafer or outside the wafer surface to be too high (or critical). The size is too small.) The velocity of the wafer edge region (specifically) is adjusted downward by increasing the polymerization on the edge region of the wafer to reduce the etching speed on the edge region of the wafer (or the critical dimension is adjusted upward). In one embodiment, increasing the polymerization on the edge regions of the wafer is accomplished by flowing a polymerization gas, such as C Η 2 F 2 or CHF 3 , through the edge of the wafer into the slit 2 2 0 ( Block 435) of Figure 9. Results of the polymer The increase in product velocity increases the critical dimension. This increase is limited to the edge region of the wafer by limiting the gas flow rate through the wafer edge injector slit. This small flow rate is selected to achieve the most uniform criticality. The size distribution, which may be affected by the choice of process gas species, and may, for example, be in the range of 1 to 20 seem. In either of the methods of Figure 8 or 9, further optimization is employed. This is achieved by adjusting the gas flow rates through the top plate injectors 170 and 175 and/or adjusting the slits through the wafer edge slits. For example, the etchant gas flow through the top plate injectors 170, 175 can be reduced, At the same time, an inert or polymeric gas flow through the wafer edge slits 2 20 is added to further increase the critical dimension of the wafer edge regions. However, the flow rate through the wafer edge slits can be low enough to limit the effect to the wafer edge region = however, the flow rate of the etchant gas through the top plate injectors 170, 175 can be reduced as desired (eg , to zero). Conversely, the residual gas flow through the top plate injectors 170, 175 can be increased, 15 200917414 simultaneously reduces the inert or polymeric gases passing through the wafer edge slits 2 2 0 to narrow the edge region of the wafer size. Although the invention has been described with reference to the embodiments in which a selected gas system is injected through a continuous slit injector adjacent to the edge of the wafer, the injector at the edge of the wafer may take other forms, for example, an array of many surrounding wafer edges. Or a series of gas injection orifices. While the foregoing is directed to embodiments of the present invention, the subject matter of the invention may be BRIEF DESCRIPTION OF THE DRAWINGS [0012] Accordingly, the embodiments of the present invention described above may be made and understood in detail, and a more specific description of the invention briefly summarized above may be described in the accompanying drawings The invention is to be construed as being limited to the scope of the invention. Figure 1 depicts a plasma reactor in accordance with an embodiment. Figure 2 illustrates the internal structural features of the cathode liner of the reactor of Figure 1. Figure 3 is a cross-sectional view taken along line 3 - 3 of Figure 2. Figure 4 is a cross-sectional view taken along line 4 - 4 of Figure 2. Figure 5 is a detailed view of the processing ring and cathode pad of a portion of an embodiment. Figure 6 is a side view corresponding to Figure 5. Figure 7 is a diagram depicting the radial distribution of hafnium dichloride in the reactor of Figure 1 with and without gas flow through the edge of the wafer to inject 16 200917414. Figure 8 illustrates one method in accordance with an embodiment. Figure 9 illustrates a method in accordance with another embodiment. For the sake of understanding, the same reference numbers have been used where possible to identify the same elements that are common in the figures. The figures in the figures are summarized and not drawn to scale. [Main component symbol description] 100 Vacuum chamber 137a Wafer support surface 101 Gas supply 139 Insulation layer 102 Gas supply 140 Coil antenna 103 Gas supply 145 Power generator 1 04 Gas supply 150 Impedance matching 105 Gas supply 15 5 Bias power generator 108 Sidewall 160 Impedance matching 110 Top plate 16 1 Voltage supply 115 Floor 162 Control switch 125 Wafer support 163 Insulation capacitor 126 Pad 165 Gas distribution injector 130 Wafer 170 Internal area injector 1 30a Wafer Edge region 175 External region injector 135 Cathode electrode 1 80 Valve 137 Insulation 185 Gas distribution panel 17 200917414 190 Valve 405 Figure 2 Step 2 195 Valve 4 10 Step 8 of Figure 3 200 Cathode pad 4 15 Step 4 of Figure 8 201 cylindrical wall 420 step 1 of Figure 9 201 a top surface 425 of element 201 step 2 of Figure 9 205 processing ring 430 Step 9 of FIG. 9 205a Radial inner edge 435 Step 4 of FIG. 9 210 Upper processing ring 210a Annular projection 210b Inner annular recess 212 Lower processing ring 212a Annular recess 212b Projected shoulder 215 Annular base 220 Narrow slit 225 Gas Chamber 227 Valve 229 Catheter 230 Inlet 232 Channel 235 Shoulder 240 Vertical Channel 400 Step 1 of Figure 8 18

Claims (1)

200917414 十、申請專利範圍: 1. 一種用於處理一工件之電漿反應器,包含: 一腔室外殼,其包含一側壁及一頂板; 一工件支撐,其位於該腔室中,並具有一面對該頂 板之工件支撐表面; 一陰極襯墊,其圍繞該工件支撐,並具有一頂表面 及一基底,且具有複數内部氣流通道,其由該基底延伸 至該頂表面; 一氣體供應氣室,其位於該基底,並耦合至各該内 部氣流通道;及 一處理環,其位於該陰極襯墊之該頂表面上方,並 具有一内部邊緣,其鄰接該晶圓支撐表面之一周邊邊緣 一氣體注入器,其位於該處理環中,並具有一通過 該内部邊緣及面對該工件支撐表面之氣體注入路徑,該 氣體注入器耦合至該複數内部氣流通道;及 一氣體供應系統,其耦合至該氣體供應氣室。 2. 如申請專利範圍第1項所述之反應器,其中通過該内部 邊緣之該氣體注入路徑包含一連續狹縫開口,其面對該 工件支撐表面。 3 .如申請專利範圍第1項所述之反應器,其中通過該内部 邊緣之該氣體注入路徑包含複數氣體注入孔口。 4.如申請專利範圍第1項所述之反應器,其中該氣體注入 19 200917414 器包含一間隙,其位於該處理環中,並將該處理環分隔 為上部及下部處理環。 5 .如申請專利範圍第4項所述之反應器,其另包含一内部 饋送通道,其由該處理環及該陰極襯墊界定,該複數内 部氣流通道在該頂表面I馬合至該饋送通道,該饋送通道 耦合至該處理環中之該間隙。 6. 如申請專利範圍第1項所述之反應器,其中該内部邊緣 係與該工件支撐表面之周邊間隔一約小於該工件支撐 表面之直徑之1 %之距離。 7. 如申請專利範圍第1項所述之反應器,其另包含一製程 氣體分散器,其位於該頂板,並耦合至該氣體供應系 統,該製程氣體分散器包含内部及外部氣體注入區域, 及至該内部及外部氣體注入區域之個別的獨立氣流通 道。 8. 如申請專利範圍第 7項所述之反應器,其中至(a)位於 該處理環中之該氣體注入器、(b)該氣體分散器之該内 部氣體注入區域、及(c)該氣體分散器之該外部氣體注 入區域之氣體流速可獨立控制。 9. 如申請專利範圍第8項所述之反應器,其中該氣體供應 系統包含一第一製程氣體源,其耦合至該氣體分散器; 及一第二製程氣體源,其耦合至位於該處理環令之該氣 體注入器。 1 〇.如申請專利範圍第1項所述之反應器,其中該晶圓支撐 20 200917414 具有一通常為圓柱形之對稱軸,且該襯墊包含一圓柱形 壁,其與該晶圓支撐同軸,且其中該氣體注入器包含一 環形狹缝。 1 1 ·如申請專利範圍第1 0項所述之反應器,其中該晶圓支 撐表面具有一周邊邊緣,其對應欲支撐在該晶圓支撐表 面上之一晶圓之周邊邊緣,該環形狹缝與該周邊邊緣分 隔一約小於該工件支撐表面之直徑之1 %之距離。 12.—種在一電漿反應器中處理一工件之方法,包含下列步 驟: 將該工件放置在該電漿反應器腔室中之一工件支 撐上; 通過鄰接並圍繞該工件之周邊邊緣之一工件支撐 製程氣體注入器,引入一第一製程氣體; 將電漿射頻電源耦合至該電漿反應器中,以在該電 漿反應器腔室中產生一電漿; 通過位於該工件支撐上方之該腔室之一頂板之一 頂板製程氣體分散器,引入一第二製程氣體至該腔室 中;及 獨立於通過該頂板製程氣體分散器之氣體流速,控 制通過該工件支撐製程氣體注入器之氣體流速。 1 3 .如申請專利範圍第1 2項所述之方法,其中該頂板製程 氣體分散器包含一外部氣體分散器及一内部氣體分散 器,該方法另包含下列步驟: 21 200917414 調整通過該内部及外部製程氣體分散器之氣體流 速,以最佳化該工件之一主要部分上方之製程均勻性; 及 調整通過該工件支撐製程氣體注入器之氣體流 速,以最佳化該工件之一周邊區域之處理。 1 4.如申請專利範圍第1 2項所述之方法,其中上述通過一 工件支撐製程氣體注入器引入一第一製程氣體之步驟 包含下列步驟: 通過一部分的該工件支撐内側之氣流通道,供應該 第一製程氣體;及 通過圍繞該工件之一處理環,傳導由該氣流通道接 收之製程氣體。 1 5 ·如申請專利範圍第1 3項所述之方法,其另包含限制通 過該工件支撐氣體注入器之氣體流速,以將該第一製程 氣體之效應侷限在該工件之該周邊區域。 22200917414 X. Patent Application Range: 1. A plasma reactor for processing a workpiece, comprising: a chamber casing comprising a side wall and a top plate; a workpiece support located in the chamber and having a a workpiece supporting surface facing the top plate; a cathode liner supported around the workpiece and having a top surface and a substrate, and having a plurality of internal gas flow passages extending from the substrate to the top surface; a gas supply gas a chamber located at the substrate and coupled to each of the internal gas flow passages; and a processing ring positioned above the top surface of the cathode liner and having an inner edge adjacent a peripheral edge of the wafer support surface a gas injector located in the process ring and having a gas injection path through the inner edge and facing the workpiece support surface, the gas injector coupled to the plurality of internal gas flow channels; and a gas supply system Coupled to the gas supply plenum. 2. The reactor of claim 1, wherein the gas injection path through the inner edge comprises a continuous slit opening that faces the workpiece support surface. 3. The reactor of claim 1, wherein the gas injection path through the inner edge comprises a plurality of gas injection orifices. 4. The reactor of claim 1, wherein the gas injection 19 200917414 includes a gap in the process ring and separates the process ring into upper and lower process rings. 5. The reactor of claim 4, further comprising an internal feed passage defined by the process ring and the cathode liner, the plurality of internal gas flow passages being spliced to the feed at the top surface A channel that is coupled to the gap in the processing loop. 6. The reactor of claim 1, wherein the inner edge is spaced from the periphery of the workpiece support surface by a distance of less than about 1% of the diameter of the workpiece support surface. 7. The reactor of claim 1, further comprising a process gas disperser positioned on the top plate and coupled to the gas supply system, the process gas disperser including internal and external gas injection regions, And individual independent airflow channels to the inner and outer gas injection zones. 8. The reactor of claim 7, wherein (a) the gas injector located in the processing loop, (b) the internal gas injection region of the gas disperser, and (c) The gas flow rate of the external gas injection zone of the gas disperser can be independently controlled. 9. The reactor of claim 8, wherein the gas supply system comprises a first process gas source coupled to the gas disperser; and a second process gas source coupled to the process The gas injector of the ring. The reactor of claim 1, wherein the wafer support 20 200917414 has a generally cylindrical axis of symmetry, and the liner comprises a cylindrical wall coaxial with the wafer support And wherein the gas injector comprises an annular slit. 1 1 The reactor of claim 10, wherein the wafer support surface has a peripheral edge corresponding to a peripheral edge of a wafer to be supported on the wafer support surface, the annular narrow The slit is spaced from the peripheral edge by a distance of less than about 1% of the diameter of the workpiece support surface. 12. A method of processing a workpiece in a plasma reactor comprising the steps of: placing the workpiece on one of the workpiece supports in the plasma reactor chamber; by abutting and surrounding the peripheral edge of the workpiece a workpiece supporting a process gas injector for introducing a first process gas; coupling a plasma RF power source to the plasma reactor to generate a plasma in the plasma reactor chamber; passing over the workpiece support One of the top plate process gas dispersers of one of the chambers, introducing a second process gas into the chamber; and controlling the process gas injector through the workpiece independently of the gas flow rate through the top plate process gas disperser Gas flow rate. The method of claim 12, wherein the top-plate process gas disperser comprises an external gas disperser and an internal gas disperser, the method further comprising the steps of: 21 200917414 adjusting through the interior and An external process gas disperser gas flow rate to optimize process uniformity over a major portion of the workpiece; and adjusting a gas flow rate through the workpiece support process gas injector to optimize a peripheral region of the workpiece deal with. The method of claim 12, wherein the step of introducing a first process gas through a workpiece support process gas injector comprises the steps of: supporting a gas flow passage on the inside through a portion of the workpiece; The first process gas should be; and the process gas received by the gas flow path is conducted by processing the ring around one of the workpieces. The method of claim 13, wherein the method further comprises limiting a gas flow rate through the workpiece supporting the gas injector to limit the effect of the first process gas to the peripheral region of the workpiece. twenty two
TW097134230A 2007-09-05 2008-09-05 Cathode liner with wafer edge gas injection in a plasma reactor chamber TWI452649B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/899,613 US7879250B2 (en) 2007-09-05 2007-09-05 Method of processing a workpiece in a plasma reactor with independent wafer edge process gas injection
US11/899,614 US7832354B2 (en) 2007-09-05 2007-09-05 Cathode liner with wafer edge gas injection in a plasma reactor chamber

Publications (2)

Publication Number Publication Date
TW200917414A true TW200917414A (en) 2009-04-16
TWI452649B TWI452649B (en) 2014-09-11

Family

ID=40559414

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097134230A TWI452649B (en) 2007-09-05 2008-09-05 Cathode liner with wafer edge gas injection in a plasma reactor chamber
TW102120964A TWI430395B (en) 2007-09-05 2008-09-05 Cathode liner with wafer edge gas injection in a plasma reactor chamber

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW102120964A TWI430395B (en) 2007-09-05 2008-09-05 Cathode liner with wafer edge gas injection in a plasma reactor chamber

Country Status (3)

Country Link
JP (1) JP5570712B2 (en)
KR (2) KR101437522B1 (en)
TW (2) TWI452649B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568319B (en) * 2011-10-05 2017-01-21 應用材料股份有限公司 Plasma processing apparatus and lid assembly thereof (2)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048193B1 (en) * 2009-08-28 2011-07-08 주식회사 디엠에스 Etching Gas Control System
JP2012049376A (en) * 2010-08-27 2012-03-08 Hitachi High-Technologies Corp Plasma processing apparatus and plasma processing method
KR101239163B1 (en) * 2011-08-26 2013-03-05 (주) 라미나 Cylinder for reactor
KR20140058647A (en) * 2011-09-07 2014-05-14 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for gas distribution and plasma application in a linear deposition chamber
JP5806095B2 (en) * 2011-11-29 2015-11-10 株式会社日立ハイテクノロジーズ Plasma processing equipment
KR102130061B1 (en) * 2013-03-15 2020-07-03 어플라이드 머티어리얼스, 인코포레이티드 Plasma reactor with highly symmetrical four-fold gas injection
KR101598465B1 (en) 2014-09-30 2016-03-02 세메스 주식회사 Apparatus and method for treating a subtrate
TW201634738A (en) * 2015-01-22 2016-10-01 應用材料股份有限公司 Improved injector for spatially separated atomic layer deposition chamber
US9966270B2 (en) * 2015-03-31 2018-05-08 Lam Research Corporation Gas reaction trajectory control through tunable plasma dissociation for wafer by-product distribution and etch feature profile uniformity
US10410832B2 (en) * 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
KR102179754B1 (en) * 2016-12-23 2020-11-17 주식회사 원익아이피에스 Substrate processing ALD
JP7035581B2 (en) * 2017-03-29 2022-03-15 東京エレクトロン株式会社 Board processing device and board processing method.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763222B2 (en) * 1991-12-13 1998-06-11 三菱電機株式会社 Chemical vapor deposition method, chemical vapor deposition processing system and chemical vapor deposition apparatus therefor
US5665640A (en) * 1994-06-03 1997-09-09 Sony Corporation Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
JPH1116888A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Etching device and operation method therefor
US6179924B1 (en) * 1998-04-28 2001-01-30 Applied Materials, Inc. Heater for use in substrate processing apparatus to deposit tungsten
US6263829B1 (en) * 1999-01-22 2001-07-24 Applied Materials, Inc. Process chamber having improved gas distributor and method of manufacture
US6589352B1 (en) * 1999-12-10 2003-07-08 Applied Materials, Inc. Self aligning non contact shadow ring process kit
JP4433614B2 (en) * 2001-01-17 2010-03-17 ソニー株式会社 Etching equipment
US20040025791A1 (en) * 2002-08-09 2004-02-12 Applied Materials, Inc. Etch chamber with dual frequency biasing sources and a single frequency plasma generating source
WO2004095502A2 (en) * 2003-03-31 2004-11-04 Tokyo Electron Limited Plasma processing system and method
US6829056B1 (en) * 2003-08-21 2004-12-07 Michael Barnes Monitoring dimensions of features at different locations in the processing of substrates
US8097120B2 (en) * 2006-02-21 2012-01-17 Lam Research Corporation Process tuning gas injection from the substrate edge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568319B (en) * 2011-10-05 2017-01-21 應用材料股份有限公司 Plasma processing apparatus and lid assembly thereof (2)
US9741546B2 (en) 2011-10-05 2017-08-22 Applied Materials, Inc. Symmetric plasma process chamber
US10453656B2 (en) 2011-10-05 2019-10-22 Applied Materials, Inc. Symmetric plasma process chamber
US10535502B2 (en) 2011-10-05 2020-01-14 Applied Materials, Inc. Symmetric plasma process chamber
US10546728B2 (en) 2011-10-05 2020-01-28 Applied Materials, Inc. Symmetric plasma process chamber
US10580620B2 (en) 2011-10-05 2020-03-03 Applied Materials, Inc. Symmetric plasma process chamber
US10615006B2 (en) 2011-10-05 2020-04-07 Applied Materials, Inc. Symmetric plasma process chamber
US11315760B2 (en) 2011-10-05 2022-04-26 Applied Materials, Inc. Symmetric plasma process chamber

Also Published As

Publication number Publication date
JP2009065153A (en) 2009-03-26
KR20090025153A (en) 2009-03-10
KR101384279B1 (en) 2014-04-11
KR20130081266A (en) 2013-07-16
TW201344842A (en) 2013-11-01
TWI430395B (en) 2014-03-11
JP5570712B2 (en) 2014-08-13
TWI452649B (en) 2014-09-11
KR101437522B1 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
TW200917414A (en) Cathode liner with wafer edge gas injection in a plasma reactor chamber
US7832354B2 (en) Cathode liner with wafer edge gas injection in a plasma reactor chamber
US7879250B2 (en) Method of processing a workpiece in a plasma reactor with independent wafer edge process gas injection
US8066895B2 (en) Method to control uniformity using tri-zone showerhead
KR101522251B1 (en) Etch reactor suitable for etching high aspect ratio features
KR101504084B1 (en) Apparatus and method for controlling edge performance in an inductively coupled plasma chamber
US8137463B2 (en) Dual zone gas injection nozzle
KR100938635B1 (en) Plasma confinement baffle and flow equalizer for enhanced magnetic control of plasma radial distribution
JP5457037B2 (en) Inert gas injection into the edge of the substrate
KR101094982B1 (en) Plasma etching apparatus and plasma etching method
JP4236294B2 (en) Electromagnetically coupled RF plasma reactor with solenoid antenna on top
KR20170074755A (en) Showerhead assembly
KR101092122B1 (en) Gas injection system for etching profile control
US20060196420A1 (en) High density plasma chemical vapor deposition apparatus
US7164571B2 (en) Wafer stage with a magnet
JP7237461B2 (en) multi-zone semiconductor substrate support
KR20150064020A (en) Plasma processing method and plasma processing device
KR20210092322A (en) Film Stress Control for Plasma Enhanced Chemical Vapor Deposition
KR20140144383A (en) Baffle unit, apparatus and method for treating substrate using the same
WO2009085808A2 (en) Apparatus and method for processing a substrate using inductively coupled plasma technology
JPH02250976A (en) Plasma device
KR20220113280A (en) Substrate support and substrate processing apparatus
TW202306072A (en) Substrate processing apparatus and electrostatic chuck
KR20210136678A (en) Substrate Processing Apparatus
KR20100001652A (en) Focus ring of dry etch device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees