200917341 九、發明說明 【發明所屬之技術領域】 本發明是有關使用於半導體元件、平板顯示器、及太 陽電池等的製造之電漿處理裝置,特別是成膜面積大時, 照樣可使成膜速度提升,且可抑止粒子的發生之電漿處理 裝置。 【先前技術】 現今,半導體元件、太陽電池、或液晶顯示面板或電 漿顯示器面板等的平板顯示器的製造時,蝕刻、濺鍍或 CVD( Chemical Vapor Deposition)等會被利用,進行精 度高的加工處理。 在半導體元件的製造中,被施以使用電漿的處理(電 漿處理)的矽晶圓、及使用於平板顯示器的玻璃基板,一 心一意追尋大型化。對應於此,實施電漿處理的處理裝置 的減壓處理室(反應室)亦大型化,在此減壓處理室內, 使對形成於半導體元件或平板顯示器等的各種基板的膜的 成形精度造成大的影響的反應性電漿中的反應活性種(自 由基)或離子均一地生成,而進行均一的電漿處理的必要 性會增大。 作爲製造大型的薄膜太陽電池的裝置,例如可使用 ECR ( Electron Cyclotron Resonance)電漿 CVD 裝置或 ICP ( Inductively Coupled Plasma)電漿裝置。 然而,爲了使取得1 m x 1 m程度的大面積的蒸鍍面的 -4 - 200917341 電漿產生,例如在ECR電漿CVD裝置中,使用於粒子迴 旋加速器的磁場產生用的線圏及放射電波用的天線的配置 會互相干渉,實現困難。 於是,在電漿CVD裝置中,用以使取得1 m X 1 m程度 的大面積的蒸鍍面的電漿產生的天線被提案(專利文獻1 )° 在專利文獻1中是揭示有由陣列天線所構成的電漿生 成用天線,該陣列天線是使由表面被電介體覆蓋的柱狀導 電體所構成的複數個天線元件交替地顛倒給電方向而配置 成平行且平面狀。藉由使用此專利文獻1的電漿生成用天 線,可使電磁波的空間分布一樣的電漿產生,可取得 lmxlm程度的大面積的蒸鍍面。 其次,說明有關揭示於專利文獻1之具備陣列天線的 以往電漿CVD裝置。 在此,圖5是表示以往的電漿CVD裝置的構成。 圖5所示的以往電槳CVD裝置100是具有:控制部 102、分配器1〇4、阻抗整合器1〇6及長方體狀的反應容 器1 0 8。此控制部1 0 2是在於控制電漿c V D裝置1 〇 〇的 各機器。 在反應容器108形成有導入口丨1〇,在該導入口 110 經由氣體供給管1 1 2來連接成膜氣體供給部i i 4。此成膜 氣體供給部1 1 4是例如在形成S i 〇 2膜時,供給氧氣體及 TEOS ( Tetra-Ethyl-Ortho-SiliCate (矽酸四乙醋))氣體 (以下稱爲TE0S氣體)作爲原料氣體g。 200917341 並且,在反應容器108的下壁108b形成有排氣口 1 1 6。在該排氣口 1 1 6經由排氣管1 1 8來連接用以使反應 容器108內形成真空的真空排氣部120。並且,在反應容 器1 08中設有測定內部壓力的壓力感測器(未圖示)。 而且,在反應容器108的內部,從上壁108a側依序 設有:氣體放射板1 22、由複數的天線元件1 24所構成的 天線陣列126、及基板平台128。在該基板平台128的表 面128a載置基板130。 並且,阻抗整合器1 06是被連接至天線元件1 24,用 以改正在電漿生成時的天線元件1 24的負荷變化所產生的 阻抗不整合。 氣體放射板1 22是使由成膜氣體供給部1 1 4導入的原 料氣體G擴散於廣面積者,具有跨越反應容器108的內 部全域的大小。藉由此氣體放射板1 22,反應容器1 〇8內 會被隔成2個的空間。氣體放射板1 2 2的上壁1 〇 8 a側的 空間爲氣體分散室132,氣體放射板122的下壁l〇8b側 的空間爲反應室1 3 4。 而且,氣體放射板122是形成有複數個的貫通孔 122a。此氣體放射板122是以金屬形成,且被接地。 另外,在基板平台1 2 8設有加熱器(未圖示),此加 熱器是藉由控制部102來控制。 在以往的電漿CVD裝置1 00中,於玻璃基板或矽晶 圓等的基板130的表面130a,例如形成Si〇2膜時,藉由 真空排氣部120來使反應容器108內的壓力成爲ipa〜數 -6 - 200917341 1 0 0 P a程度的狀態,且對天線元件1 2 4供給高頻信號,藉 此在天線元件1 2 4的周圍放射電磁波。 此時,由成膜氣體供給部1 1 4供給原料氣體G至氣 體分散室132,使該原料氣體G從貫通孔122a以一定的 流速來流入反應室134。然後,原料氣體G會電離,而產 生空間密度均一的電漿。藉此,在基板的表面130a 形成Si02膜。 如此,在以往的電漿CVD裝置100中,可使均一的 電漿產生,因此即使是lmxlm程度大的面積,還是可在 基板130的表面130a形成Si02膜。 〔專利文獻1〕特開2〇〇3-86581號公報 【發明內容】 (發明所欲解決的課題) 如上述般,以往的電槳CVD裝置1 00即使是的面積 ,還是可對基板1 3 0的表面1 3 0 a形成S i Ο 2膜。然而’所 發生的電漿會形成達到天線元件1 24爲止的狀態’亦即在 電漿中配置有天線元件1 24的狀態,在天線元件1 24的表 面124a附近,電場分布極度高。因此,在天線元件124 的表面1 24a附近,原料氣體G會因電漿而過剩分解。藉 此,例如在基板130的表面130a形成Si02膜時,Si02等 的反應生成物會因電漿而被過剩生成,未能寄與成膜’附 著甚至堆積於天線元件124的表面124a。如此’寄與成 膜的Si02的比例會減少,有成膜速度降低的問題點。 200917341 並且,在天線元件124的表面124a附近,因爲原料 氣體G被過剩地分解,原料氣體G的分解程度會形成不 均一,亦有無法取得充分的膜厚均一性之虞。 而且,堆積於天線元件1 2 4的表面1 2 4 a的S i 02 (反 應生成物)會形成粒子,亦有導致處理室1 3 4內的粒子增 加的問題點。因爲該粒子的增加,所被形成的膜的膜質會 有降低之虞。 本發明的目的是在於提供一種可解除上述以往技術的 問題點,即使成膜面積大時,照樣可使成膜速度提升,且 可抑止粒子的發生,形成膜質及膜厚均一性佳的膜之電漿 處理裝置。 (用以解決課題的手段) 爲了達成上述目的,本發明之電漿處理裝置’係使用 原料氣體來對配置於所定位置的處理對象基板實施處理的 電漿處理裝置,其特徵係具有: 電漿生成部,使用以電介體覆蓋表面的棒狀導體所構 成的天線元件取複數所定的間隙而配列成的天線陣列來生 成電漿;及 氣體放射部,其係以能夠覆蓋上述電漿生成部的方式 設置,具備設於上述天線陣列的上方的氣體放射板; 由對配置於所定位置的處理對象基板的表面呈垂直的 方向來看上述天線元件及上述放射板時’ 在上述放射板中’在與上述電發生成部的上述天線兀 -8- 200917341 件之間的領域整合的第1領域中形成有複數個對上述電漿 生成部開口的氣體放出口,且在與上述天線元件的位置的 領域整合的第2領域中未形成有上述氣體放出口。 在本發明中,最好具有表面配置上述處理對象基板的 基板平台,上述基板平台係設於上述電漿生成部的下方。 又,本發明中,最好具有將上述原料氣體供給至上述 氣體放射部的原料氣體供給部,上述電漿生成部係於供給 上述原料氣體的狀態下,利用上述天線陣列來生成電漿。 又,本發明中,上述原料氣體係例如爲氧氣體及 TEOS氣體的混合氣體。 〔發明的效果〕 根據本發明的電漿處理裝置,則有關以能夠覆蓋電漿 生成部的方式設置的氣體放射部,是構成在與配置於下方 的電漿生成部的天線元件之間的領域整合的第1領域中形 成有複數個對電漿生成部開口的氣體放出口,且在與電漿 生成部的天線元件的位置的領域整合的第2領域中未形成 有氣體放出口。從原料氣體供給部供給原料氣體至氣體放 射部的氣體放射板,而利用天線陣列來生成電漿時,在天 線元件的表面的周圍附近是電場分布會形成極度高的狀態 。但是,因爲在與天線元件整合的第2領域中未形成有氣 體放出口,在天線元件的表面的周圍附近無氣體放射口, 所以原料氣體不會被供給至天線元件的表面的周圍附近。 因此,不會發生原料氣體的過剩分解,反應生成物不會被 -9- 200917341 過剩地生成。藉此,可抑止反應生成物附著或堆積於天線 元件的表面,制止粒子的發生。 又’若根據本發明的電漿處理裝置,則因爲在天線元 件的表面的周圍附近不會發生原料氣體的過剩分解,反應 生成物不會被生成,所以寄與成膜的原料氣體會增加,原 料氣體的利用效率會變高,成膜速度會提升。藉此,本發 明是即使成膜面積大,還是可使成膜速度提升的同時,抑 止粒子的發生。 又’若根據本發明的電漿處理裝置,則因爲在天線元 件的表面的周圍附近不會發生原料氣體的過剩分解,所以 原料氣體的分解程度會形成均一,可取得充分的膜厚均一 性。 【實施方式】 以下,根據圖面所示的適當實施形態來詳細說明本發 明的電漿處理裝置。 圖1是表示本發明的電漿處理裝置的實施形態的電漿 CVD裝置的構成圖。 本實施形態的圖1所示的電漿C VD裝置1 0 (以下稱 爲CVD裝置1 0 )是例如使用混合2種類氣體的混合氣體 作爲原料氣體G來成膜。 本實施形態中,有關2種類的氣體,第1原料氣體( 活性種氣體)爲使用氧氣體,第2原料氣體爲使用TEO S 氣體,對玻璃基板或矽晶圓等的基板(處理對象基板)3 6 -10- 200917341 的表面36a形成Si〇2膜爲例來進行説明。罗 的電漿處理装置中,作爲原料氣體G使用的 限於2種類,且形成於基板3 6的膜並非限於 圖1所示的CVD裝置10是具有:控制 器14、阻抗整合器16、及長方體狀的反應容 制部1 2是如後述控制c V D裝置1 〇的各機器 反應容器18是金屬製或合金製,被接地。 在反應谷窃18的上壁iga形成有導入原 導入口 22。在該導入口 22連接原料氣體供給 ’在原料氣體供給管23連接原料氣體供給部 此原料氣體供給部2 6是用以在反應容器 了取得形成於基板3 6的表面3 6 a的膜所必要 G者。例如’在基板36的表面36a形成Si〇2 氧氣體(第1原料氣體)及TEOS氣體(第2 的混合氣體’作爲原料氣體G。 原料氣體供給部26是具備對應於氣體( 成的膜)的種類及數量份的氣瓶(未圖示), 來自該氣瓶的氣體流量的流量調整部(未圖示 施形態中是對氣瓶充塡氧氣體(第i原料氣體 又’原料氣體供給部26,爲了供給TEOS 備被充塡有液體的槽(未圖示)、氣化液體的 圖示)、及調節藉由氣化部而被氣化的氣體流 整部(未圖示)。本實施形態是在槽中充 TEOS,藉由氣化部來氣化而取得TEOS氣體 3外,本發明 丨氣體數並非 Si〇2 膜。 部12、分配 器1 8。此控 $者。並且, 料氣體G的 管23 。而且 26 ° 1 8內供給爲 :的原料氣體 :膜時,供給 原料氣體) 對應於所形 且具備調整 :)。在本實 )。 氣體,而具 ^氣化部(未 i量的流量調 塡有液體的 (第2原料 -11 - 200917341 氣體)’藉由流量調整部來調整τ E O S氣體的流量。 本實施形態中是由原料氣體供給部26來對後述的反 應室39供給混合氧氣體(第1原料氣體)及TE0S氣體 (第2原料氣體)的原料氣體。 並且’在反應容器18的下壁丨8b形成有排氣口 24。 在該排氣口 24連接排氣管25。而且,在排氣管25連接 真空排氣部2 7。此真空排氣部2 7是具有乾式泵及渦輪分 子栗等的真空泵者。並且’在反應容器18設有測定內部 的壓力之壓力感測器(未圖示)。 而且’在反應容器1 8的內部,從下壁丨8 b側依序設 有載置於表面34a的基板平台34、基板36,在此基板平 台3 4的上方設有由複數的天線元件3 2所構成的天線陣列 (電漿生成部)3 0 ’更在天線陣列3 〇的上方,以能夠覆 蓋天線陣列3 0的方式’設有氣體放射部4〇 (氣體放射板 42 )。 在此,圖2是表示本實施形態的電漿CVD裝置的天 線陣列的模式平面圖。 如圖2所示,天線陣列3 0是複數的天線元件3 2會對 於與基板平台34的表面34a大致平行的平面(未圖示) 互相平行地設置複數所定的間隙(間)3 3來配列構成者 。此天線陣列30是設於氣體放射部40下側(下壁1 8b側 )。並且,天線元件32是對於各側壁1 8c、1 8d亦設有所 定的間隙3 3。在本發明中,天線元件3 2與各側壁1 8c、 18d的間隙33亦與各天線元件32的間隙33同樣對待。 -12- 200917341 並且,在天線陣列3 0中,各天線元件3 2是橫跨反應 容器1 8之對向的2個側壁1 8c及側壁1 8d來配置。此天 線陣列30 (各天線元件32 )是對氣體放射部40 (參照圖 1)的氣體放射板42(參照圖1)及基板平台34的表面 3 4 a (參照圖1 )平行設置。 天線元件3 2是單極天線,電性絕緣安裝於反應容器 1 8的側壁1 8 e、1 8 f所形成的開口部(未圖示)。 在天線陣列3 0中是如圖2所示在與隣接的天線元件 3 2彼此相反方向從反應容器1 8內的側壁1 8 e、1 8 f突出, 給電方向形成逆向。該等的天線元件3 2是高頻電流供給 端的側會被連接至阻抗整合器1 6。此阻抗整合器1 6爲匹 配箱。 阻抗整合器1 6是與控制部1 2的高頻電源所發生的高 頻信號的頻率調整一起使用,用以改正在電漿的生成中因 天線元件3 2的負荷變化所產生的阻抗不整合。 各天線元件3 2是形成由電氣傳導率高的導體所構成 的棒狀(亦可爲管狀),以使用的高頻波長的(2 n+ 1 ) /4倍 (η爲0或正的整數)的長度作爲單極天線的天線元件的 放射長度。 各天線元件3 2是被收納於由石英等的電介體所構成 的圓筒構件3 7 ’各天線元件3 2的表面是以石英等的電介 體所覆蓋。如此藉由使用電介體來覆蓋棒狀的導體,可調 整作爲天線兀件32的電谷及電感(inductance)。藉此, 可沿者天線兀件3 2的長度方向來使高頻電流有效地傳播 -13- 200917341 ,可使電磁波有效地放射。另外’以下所謂天線元件3 2 的表面,並非意指棒狀的導體的表面’而是圓筒構件37 的表面3 7 a。 在本實施形態中’設置阻抗整合器1 6 ’更如後述般 ,形成於氣體放射部40 (氣體放射板42)的金屬會被 接地,藉此與形成鏡像關係的電磁波作用’在每個天線元 件3 2形成所定的電磁波。又,由於構成天線陣列3 0的天 線元件3 2是與隣接的天線元件3 2給電方向成逆向’因此 在後述的反應室3 9中電磁波是均一地形成。 在此,如圖1所示’基板平台34是如上述般’在表 面34a載置有基板36。在該基板平台34中是使基板平台 3 4的中心與基板3 6的中心一致來載置基板3 6。 並且,在基板平台34的內部設有加熱基板36的發熱 體(未圖示),更設有被接地的電極板(未圖示)。此發 熱體是被連接至控制部12,發熱體的加熱是藉由控制部 1 2來控制。 另外,亦可爲電極板被連接至偏壓電源(未圖示), 藉由此偏壓電源來對電極板施加所定的偏壓電壓之構成。 並且,圖1所示的氣體放射部40是具有氣體放射板 42跨越反應容器1 8的內部全域的大小者,以能夠覆蓋天 線陣列3 0的方式設置。本實施形態中是藉由氣體放射部 40來將反應容器1 8內隔成2個的空間,氣體放射部40 的上壁1 8a側的空間爲氣體分散室3 8,氣體放射部40的 下壁1 8b側的空間爲反應室3 9。 -14- 200917341 氣體放射部40是用以使供給至氣體分散室3 8之成 用的氣體廣面積擴散於反應室39內者。本實施形態中 氣體放射部40是使由原料氣體供給部2 6導入的原料氣 G (氧氣體及TEOS氣體)廣面積擴散於反應室39內。 並且,氣體放射部4 〇是在例如由s iC所構成的氣 放射板42形成有複數個直徑爲〇.3mm〜2mm程度的貫 孔。該等的貫通孔是形成氣體放出口 44。而且’在氣 放射部40中,於氣體放射板42的表面形成有金屬膜, 被接地。 如圖3所示,在氣體放射部40中,由垂直於基板 台3 4的表面3 4 a的方向,亦即對配置於基板平台3 4的 面3 4 a的基板3 6的表面呈垂直的方向來看陣列天線3 0 氣體放射板42時,在與設於下方的天線陣列3 0的天線 件3 2的位置整合的氣體放射板4 2的領域(第2領域) 中未形成有氣體放射口 44。 並且,在氣體放射部40中,由垂直於基板平台34 表面34a的方向來看陣列天線30及氣體放射板42時, 未與天線元件3 2的位置的領域整合的領域(第1領域 ’亦即在和天線元件3 2與天線元件3 2的間隙3 3的領 整合的形成領域(第1領域)4 8中形成有放射口 4 4。 在本實施形態的氣體放射部40中,是在和天線元 3 2與天線元件3 2的間隙3 3整合的形成領域4 8中形成 射口 44,在和天線元件32整合的領域46中不形成氣 放射口 4 4 ’藉此如圖4所示,即使經由氣體放射口 4 4 膜 體 體 通 體 且 平 表 及 元 46 的 在 ) 域 件 放 體 來 -15- 200917341 供給原料氣體G,原料氣體G也難以被供給至天線元件 32與氣體放射板42之間的空間α等的天線元件32的表 面37a周圍。因此,在天線元件32的表面37a的周圍附 近,雖電場分布會形成極度高,但在天線元件3 2的周圍 附近不會有原料氣體G被電漿過剩地分解的情況。藉此 ,即使從原料氣體G生成Si 02等的反應生成物’其量亦 少,附著或堆積於天線元件3 2的表面3 7a的情況會被抑 止。 並且,在本實施形態中,因爲在天線元件3 2的表面 3 7a的周圍附近不會發生原料氣體G的過剩分解’所以適 於形成在基板36的表面36a的Si02膜的成膜之原料氣體 G的分解氣體的比例會變多,亦即,利用在形成於基板 36的表面36a的Si02膜的成膜之原料氣體G (氧氣體及 TEOS氣體)的利用效率會變高,成膜速度也會提升。 而且,在本實施形態中,因爲在天線元件3 2的表面 3 7a的周圍附近不會有原料氣體G過剩地被分解的情況, 所以原料氣體G的分解程度會形成均一,可取得充分的 膜厚均—性。 又,如圖4所示,天線元件3 2的表面3 7 a與放射口 44最接近天線元件32的表面37a的邊緣的距離最好是 天線元件3 2的表面3 7 a的外徑D的2 5 %以上。亦即,在 未形成有氣體放射部40的氣體放射口 44的領域46的天 線元件32的配列方向的寬度L最好是外徑D的1 50%以 上。 -16- 200917341 又,本實施形態的氣體放射部40中,形成有氣體放 射口 4 4的形成領域4 8之氣體放射口 4 4的配置式樣並無 特別加以限定。例如,亦可縮小接近天線元件32的氣體 放射口 44的開口,使供給至天線元件3 2附近的原料氣體 G的量能夠減少。又,氣體放射口 44的開口形狀亦無特 別加以限定,亦可爲圓形或四角形。 控制部是具有由高頻振盪電路、放大器所構成的高頻 電源(未圖示)及電流·電壓感測器(未圖示),按照電 流·電壓感測器的檢測信號來進行該高頻電源的振盪頻率 的變更及阻抗整合器1 6的調整者。此控制部1 2是對天線 元件32控制共通的高頻信號的頻率,使所有的天線元件 3 2接近阻抗整合的狀態,然後’藉由連接至各天線元件 3 2的阻抗整合器1 6,個別調整各天線元件3 2的阻抗。控 制部1 2與複數的阻抗整合器1 6是經由分配器1 4來連接 。並且,控制部1 2是對天線元件3 2也控制高頻信號的供 給。 另外,原料氣體供給部26及真空排氣部27也會藉由 控制部1 2來控制。藉由此控制部1 2來控制原料氣體供給 部26的原料氣體G (氧氣體及TEOS氣體)的供給時機 、及流量(供給量)等。 而且,可藉由控制部1 2來控制真空排氣部27,使反 應容器18內的原料氣體等排氣,可將反應容器is內的壓 力調整成所望的壓力。 在本實施形態中’例如Si02膜的成膜時,自原料氣 -17- 200917341 體供給部26導入的原料氣體G (氧氣體及TEOS氣體) 會在反應容器1 8內從上壁18 a側流至下壁1 8 b側(以下 將從上壁1 8 a側往下壁1 8 b側的方向稱爲「垂直方向」) ,從排氣口 2 4排出。 並且,在本實施形態中是藉由控制部1 2來使反應容 器18內的壓力利用真空排氣部27成爲IPa〜數lOOPa程 度的狀態,從氣體放射板4 2的氣體放射口 4 4來供給原料 氣體G (氧氣體及TEOS氣體)。更藉由對天線元件32 供給高頻信號來使電磁波放射至天線元件3 2的周圍。藉 此,在反應容器18內的天線元件32的附近生成電漿(未 圖示),且氧氣體(活性種氣體)會被激勵而取得氧自由 基(反應活性種)。此時,因爲發生的電漿具有導電性, 所以從天線元件3 2放射的電磁波容易被反射於電漿。因 此,電磁波是在天線元件3 2的表面3 7a的周邊的局部領 域局部存在。如此,在具有複數個由單極天線所構成的天 線元件3 2的天線陣列3 0是電漿會在天線元件3 2的表面 3 7 a附近局部存在形成,在天線元件3 2的表面3 7 a的周 圍,電場分布會極度變高。 另外,有關利用如此的天線陣列的電漿生成的原理的 詳細説明是被記載於本案申請人之前案日本特開2 0 0 3 -8 65 8 1號公報。又,利用天線陣列的電漿生成裝置之各天 線的詳細阻抗整合方法是被記載於同本案申請人的前案曰 本特願2 0 0 5 - 0 1 4 2 5 6號說明書。本發明的天線陣列及各天 線的詳細阻抗整合方法,例如只要利用上述各說明書記載 -18- 200917341 的方法即可。 .其次’以s i 〇2膜爲例來説明有關本實 裝置1 〇的成膜方法。 首先’從原料氣體供給部2 6經由原料 來以一定流量將原料氣體G(氧氣體(活 TEOS氣體)放出至氣體分散室38,從與: 連通的放射口 44來使原料氣體g以一定的 應室3 9內。 另外,在對反應容器18(反應室39) 體G時’反應容器18(反應室39)是利用 來排氣,藉由控制部1 2來將反應容器1 8 ( 例如保持於1 P a〜數1 0 〇 P a程度的壓力。藉 器18 (反應室39)的垂直方向流動原料氣 及TEOS氣體)。 其次,對天線元件3 2供給高頻信號’ 於天線元件32的周圍。藉此’在反應室39 存在於天線元件3 2附近的電漿’可取得從 放射的原料氣體G的氧氣體(活注種氣體 自由基(反應活性種)。氧自由基(反應活 化的Τ Ε Ο S氣體的反應是藉由活性狀態的寒 活性種)的活性能量來進行’在基板3 6的 Si02 膜。 在本實施形態的成膜方法中,是在天線 面3 7 a的周圍,以原料氣體G不會被供給的 施形態的CVD 氣體供給管 性種氣體)及 氣體分散室3 8 流速流入至反 內供給原料氣 真空排氣部2 7 反應室39 )內 此,在反應容 體G (氧氣體 使電磁波放射 內,產生局部 氣體放出口 44 )被激勵的氧 性種)與被活 ,自由基(反應 表面3 6 a形成 元件 3 2的表 方式,配置氣 -19- 200917341 體供給部4 0的氣體放射口 4 4,在天線元件3 2的表面3 7 a 的周圍,抑止局部存在於天線元件32附近的電發所造成 的原料氣體G的過剩分解,而來抑止SiCh等反應生成物 的生成。藉此,可抑止Si02等的反應生成物附著或堆積 於天線元件3 2的表面3 7 a,因此可抑止粒子的發生。又 ,因爲粒子的發生被抑止,所以有關形成的膜(Si〇2膜) 的膜質也可取得較佳者。 並且,在本實施形態的成膜方法中’因爲在天線元件 3 2的表面3 7 a的周圍不供給原料氣體G ’過剩的原料氣體 G的分解會被抑止,所以適於成膜的分解氣體的比例會變 高,被利用於Si02膜的成膜之原料氣體G (氧氣體及 TEOS氣體)的比例(利用效率)會增加,所以成膜速度 也會提升。 而且,在本實施形態中,因爲在天線元件3 2的表面 3 7a的周圍附近之過剩的原料氣體G的分解會被抑止,所 以在反應室39內的原料氣體G的分解程度會形成均一’ 對於基板3 6的表面3 6 a而言適於膜(S i Ο 2膜)的成膜的 分解氣體會被均一地供給,因此所被成膜的膜(Si〇2膜) 的膜厚均一性也會提升。 另外,在本實施形態的成膜方法中,即使基板3 6例 如爲1 m X 1 m程度的大小,天線陣列3 0還是可生成均一的 電漿,如上述般抑止粒子的發生,且因爲成膜速度快’所 以比起以往更可快速形成膜質及膜厚均一性佳的Si〇2膜 -20 - 200917341 並且,在本實施形態的CVD裝置中是以在基板3 6的 表面36a形成Si〇2膜的裝置爲例來進行説明,但本發明 的電漿處理裝置並非限於此。本發明的電漿處理裝置是可 利用於半導體元件 '液晶顯示面板或電漿顯示器面板等的 平板顯示器面板、及太陽電池等的各種膜的成膜。又,本 發明的電漿處理裝置亦可作爲蝕刻裝置使用,且亦可使用 於基板平台的洗滌處理。 而且,在本實施形態的CVD裝置中是藉由使用配置 有複數個單極天線的天線陣列3 0作爲電漿生成部,使局 部存在於天線陣列30的天線元件32的表面37a的周圍附 近來生成電漿。藉由此構成,可在電漿未被直接暴露於基 板平台3 4所載置的基板3 6的狀態下,使基板3 6與天線 陣列3 0的距離比較接近配置。藉此,對於在天線陣列3 0 的天線元件3 2的表面3 7a的周圍附近所被激勵的氧自由 基(反應活性種)的激勵壽命而言,可使天線陣列3 0與 基板36的距離充分接近。亦即,可在氧自由基(反應活 性種)充分激勵的狀態下到達基板3 6的表面3 6a。 又’本實施形態的CVD裝置中,爲了在基板36的表 面36a形成Si〇2膜’而使用氧氣體(第1原料氣體)及 TEOS氣體(第2原料氣體)的2種類氣體作爲原料氣體 G,但本發明並非限於此。原料氣體g是按照所形成的膜 的種類適當選擇所被使用的氣體的種類及數目。 又,本實施形態的C V D裝置中,使用於原料氣體g 的弟1原料氣體’爲使用形成反應活性種的氣體,除了氧 -21 - 200917341 氣體以外,例如可使用氮氣體、氫氣體及氬氣體。又,使 用於原料氣體G的第2原料氣體,爲使用供以形成第1 原料氣體以外的膜的氣體,例如使用含金屬化合物的氣體 〇 例如,在本實施形態的CVD裝置中,形成矽膜時, 就原料氣體G而言,第1原料氣體是例如使用氫氣體, 第2原料氣體是例如使用矽烷氣體。此情況亦可取得本發 明的效果。 以上,詳細說明有關本發明的電漿處理裝置,但本發 明並非限於上述實施形態,只要不脫離本發明的主旨範圍 ,當然亦可實施各種的改良及變更。 【圖式簡單說明】 圖1是表示本發明的電漿處理裝置的實施形態之電漿 CVD裝置的構成圖。 圖2是表示本實施形態的電漿CVD裝置的天線陣列 的模式平面圖。 圖3是表示本實施形態的電漿CVD裝置的氣體放射 部與天線陣列的天線元件的配置狀態的模式平面圖。 圖4是表示本實施形態的電漿CVD裝置的氣體放射 部與天線陣列的天線元件的配置狀態。 圖5是表示以往的電漿CVD裝置的構成。 【主要元件符號說明】 -22- 200917341 10、100:電漿CVD裝置(CVD裝置) 1 2 :控制部 1 4 :分配器 1 6 :阻抗整合器 18 :反應容器 22 :導入口 23 :原料氣體供給管 24 :排氣口 26 :原料氣體供給部 2 7 :真空排氣部 3 0 :天線陣列 3 2 :天線元件 3 3 :間隙 3 4 :基板平台 3 6 :基板 3 8 :氣體分散室 3 9 :反應室 40 :氣體放射部 42 :氣體放射板 44 :氣體放射口 G :原料氣體 -23-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used for manufacturing semiconductor elements, flat panel displays, and solar cells, and the like, particularly when a film forming area is large, a film forming speed can be obtained. A plasma processing apparatus that enhances and suppresses the occurrence of particles. [Prior Art] Nowadays, in the manufacture of flat-panel displays such as semiconductor elements, solar cells, or liquid crystal display panels or plasma display panels, etching, sputtering, or CVD (Chemical Vapor Deposition) can be utilized for high-precision processing. deal with. In the manufacture of a semiconductor element, a germanium wafer subjected to a plasma treatment (plasma treatment) and a glass substrate used for a flat panel display are focused on large-scale development. In response to this, the pressure reduction processing chamber (reaction chamber) of the processing apparatus that performs the plasma treatment is also increased in size, and the molding precision of the film formed on various substrates such as a semiconductor element or a flat panel display is caused in the pressure reduction processing chamber. The reactive species (free radicals) or ions in the large-effect reactive plasma are uniformly formed, and the necessity of performing uniform plasma treatment is increased. As an apparatus for manufacturing a large-sized thin film solar cell, for example, an ECR (electron Cyclotron Resonance) plasma CVD apparatus or an ICP (Inductively Coupled Plasma) plasma apparatus can be used. However, in order to obtain a plasma of -4 to 200917341 which is a large-area vapor deposition surface of about 1 mx 1 m, for example, in an ECR plasma CVD apparatus, a coil for generating a magnetic field for a particle cyclotron and a radio wave are generated. The configuration of the antennas used will dry up and make it difficult to implement. In the plasma CVD apparatus, an antenna for generating a plasma having a large-area vapor deposition surface of about 1 m × 1 m has been proposed (Patent Document 1). A plasma generating antenna composed of an antenna in which a plurality of antenna elements including a columnar conductor covered with a dielectric surface are alternately inverted in a feeding direction and arranged in parallel and in a planar shape. By using the plasma generating antenna of Patent Document 1, a plasma having the same spatial distribution of electromagnetic waves can be generated, and a large-area vapor deposition surface of about lmxlm can be obtained. Next, a conventional plasma CVD apparatus including the array antenna disclosed in Patent Document 1 will be described. Here, FIG. 5 shows a configuration of a conventional plasma CVD apparatus. The conventional electric paddle CVD apparatus 100 shown in Fig. 5 includes a control unit 102, a distributor 1〇4, an impedance integrator 1〇6, and a rectangular parallelepiped reaction container 108. This control unit 102 is a machine that controls the plasma c V D device 1 〇 . The introduction port 〇1〇 is formed in the reaction container 108, and the film formation gas supply unit i i 4 is connected to the introduction port 110 via the gas supply pipe 1 1 2 . The film forming gas supply unit 141 is, for example, supplied with oxygen gas and TEOS (Tetra-Ethyl-Ortho-SiliCate) gas (hereinafter referred to as TEOS gas) when the S i 〇 2 film is formed. Raw material gas g. 200917341 Further, an exhaust port 1 16 is formed in the lower wall 108b of the reaction vessel 108. A vacuum evacuation portion 120 for forming a vacuum in the reaction vessel 108 is connected to the exhaust port 1 16 via the exhaust pipe 1 1 6 . Further, a pressure sensor (not shown) for measuring the internal pressure is provided in the reaction container 108. Further, inside the reaction container 108, a gas emission plate 1 22, an antenna array 126 composed of a plurality of antenna elements 1 24, and a substrate stage 128 are sequentially disposed from the upper wall 108a side. The substrate 130 is placed on the surface 128a of the substrate stage 128. Further, the impedance integrator 106 is connected to the antenna element 146 for correcting the impedance unconformity caused by the load variation of the antenna element 14 when the plasma is generated. The gas emission plate 1 22 diffuses the raw material gas G introduced from the film formation gas supply unit 1 1 4 into a wide area, and has a size spanning the entire inner portion of the reaction container 108. By the gas emission plate 1 22, the inside of the reaction container 1 〇 8 is partitioned into two spaces. The space on the upper wall 1 〇 8 a side of the gas emission plate 1 2 2 is the gas dispersion chamber 132, and the space on the lower wall 10 8 side of the gas emission plate 122 is the reaction chamber 134. Further, the gas radiation plate 122 is formed with a plurality of through holes 122a. This gas emission plate 122 is formed of metal and is grounded. Further, a heater (not shown) is provided on the substrate stage 1 28, and the heater is controlled by the control unit 102. In the conventional plasma CVD apparatus 100, when the Si〇2 film is formed on the surface 130a of the substrate 130 such as a glass substrate or a tantalum wafer, for example, the pressure in the reaction container 108 is made by the vacuum evacuation unit 120. Ipa to -6 - 200917341 1 0 0 The state of P a is high-frequency signal supplied to the antenna element 1 24, whereby electromagnetic waves are radiated around the antenna element 1 24 . At this time, the material gas G is supplied from the film forming gas supply unit 1 14 to the gas dispersion chamber 132, and the material gas G flows into the reaction chamber 134 from the through hole 122a at a constant flow rate. Then, the material gas G is ionized to produce a plasma having a uniform spatial density. Thereby, an SiO 2 film is formed on the surface 130a of the substrate. As described above, in the conventional plasma CVD apparatus 100, since uniform plasma can be generated, the SiO 2 film can be formed on the surface 130a of the substrate 130 even in an area having a large lmxlm. [Problem to be Solved by the Invention] As described above, the conventional electric paddle CVD apparatus 100 can be used for the substrate 13 even in the area of the conventional electric paddle CVD apparatus 100. The surface 1 0 0 a of 0 forms a S i Ο 2 film. However, the state in which the generated plasma is formed until the antenna element 146 is formed, that is, the state in which the antenna element 146 is disposed in the plasma, the electric field distribution is extremely high in the vicinity of the surface 124a of the antenna element 146. Therefore, in the vicinity of the surface 1 24a of the antenna element 124, the material gas G is excessively decomposed by the plasma. As a result, for example, when the SiO 2 film is formed on the surface 130a of the substrate 130, the reaction product such as SiO 2 is excessively generated by the plasma, and is not attached to the film ‘attached or even deposited on the surface 124a of the antenna element 124. Thus, the ratio of SiO 2 deposited to the film is reduced, and there is a problem that the film formation speed is lowered. In addition, in the vicinity of the surface 124a of the antenna element 124, since the source gas G is excessively decomposed, the degree of decomposition of the material gas G is uneven, and sufficient film thickness uniformity cannot be obtained. Further, S i 02 (reaction product) deposited on the surface 1 2 4 a of the antenna element 1 2 4 forms particles, which also causes a problem of an increase in particles in the processing chamber 134. As the particles increase, the film quality of the formed film may decrease. An object of the present invention is to provide a problem that can solve the above-mentioned prior art. When the film formation area is large, the film formation speed can be improved, and the occurrence of particles can be suppressed, and a film having good film quality and film thickness uniformity can be formed. Plasma processing unit. (Means for Solving the Problem) In order to achieve the above object, a plasma processing apparatus of the present invention is a plasma processing apparatus that performs processing on a substrate to be processed placed at a predetermined position using a material gas, and has the following features: The generating unit generates a plasma by using an antenna array in which a plurality of antenna elements formed by a rod-shaped conductor covering the surface of the dielectric body are arranged in a predetermined number of gaps, and a gas radiation portion that covers the plasma generating unit In a method of providing a gas emission plate provided above the antenna array, when the antenna element and the radiation plate are viewed in a direction perpendicular to a surface of the substrate to be processed disposed at a predetermined position, 'in the radiation plate' In the first field of field integration between the antenna 兀-8-200917341 of the electric generating portion, a plurality of gas discharge ports opening to the plasma generating portion are formed, and the position of the antenna element is The gas discharge port is not formed in the second field of field integration. In the present invention, it is preferable that the substrate platform having the substrate to be processed disposed on the surface thereof is provided, and the substrate platform is disposed below the plasma generating portion. Furthermore, in the present invention, it is preferable that the raw material gas is supplied to the material gas supply unit of the gas radiation unit, and the plasma generation unit generates the plasma by the antenna array in a state where the material gas is supplied. Further, in the invention, the raw material gas system is, for example, a mixed gas of an oxygen gas and a TEOS gas. [Effects of the Invention] According to the plasma processing apparatus of the present invention, the gas radiation portion provided so as to cover the plasma generating portion is formed in the field between the antenna element and the electrode element disposed in the lower plasma generating portion. In the first field of integration, a plurality of gas discharge ports opening to the plasma generating portion are formed, and a gas discharge port is not formed in the second field integrated with the position of the antenna element of the plasma generating portion. When the material gas is supplied from the material gas supply unit to the gas emission plate of the gas emission unit, and the plasma is generated by the antenna array, the electric field distribution is extremely high in the vicinity of the periphery of the surface of the antenna element. However, since the gas discharge port is not formed in the second field integrated with the antenna element, there is no gas discharge port in the vicinity of the surface of the antenna element, so that the material gas is not supplied to the vicinity of the periphery of the surface of the antenna element. Therefore, excessive decomposition of the material gas does not occur, and the reaction product is not excessively produced by -9-200917341. Thereby, it is possible to suppress the reaction product from adhering to or accumulating on the surface of the antenna element, thereby suppressing the occurrence of particles. Further, according to the plasma processing apparatus of the present invention, since excessive decomposition of the material gas does not occur in the vicinity of the surface of the antenna element, the reaction product is not generated, and the material gas to be deposited and formed is increased. The utilization efficiency of the material gas is increased, and the film formation speed is increased. Thereby, in the present invention, even if the film formation area is large, the film formation speed can be increased and the occurrence of particles can be suppressed. Further, according to the plasma processing apparatus of the present invention, since excessive decomposition of the material gas does not occur in the vicinity of the surface of the antenna element, the degree of decomposition of the material gas is uniform, and sufficient film thickness uniformity can be obtained. [Embodiment] Hereinafter, a plasma processing apparatus according to the present invention will be described in detail based on an appropriate embodiment shown in the drawings. Fig. 1 is a configuration diagram showing a plasma CVD apparatus according to an embodiment of a plasma processing apparatus according to the present invention. The plasma C VD apparatus 10 (hereinafter referred to as CVD apparatus 10) shown in Fig. 1 of the present embodiment is formed by, for example, mixing a gas of a mixture of two types of gases as a material gas G. In the present embodiment, the first material gas (active species gas) is oxygen gas, and the second material gas is a substrate (processing substrate) such as a glass substrate or a tantalum wafer using TEO S gas. The surface 36a of 3 6 -10- 200917341 is formed by taking an Si 〇 2 film as an example. In the plasma processing apparatus of the apparatus, the material used as the source gas G is limited to two types, and the film formed on the substrate 36 is not limited to the CVD apparatus 10 shown in FIG. 1 and includes the controller 14, the impedance integrator 16, and the rectangular parallelepiped. Each of the reaction chambers 1 to 2 is a metal or alloy, and is grounded, as each of the machine reaction vessels 18 that control the c VD device 1 described later. An introduction leading inlet 22 is formed in the upper wall iga of the reaction valley. The raw material gas supply unit is connected to the inlet port 22. The material gas supply unit is connected to the material gas supply unit 23. The material gas supply unit 26 is required to obtain a film formed on the surface 36a of the substrate 36 in the reaction container. G. For example, 'Si 2 O 2 gas (first material gas) and TEOS gas (the second mixed gas ' is used as the material gas G on the surface 36 a of the substrate 36 . The material gas supply unit 26 is provided with a gas (forming film). The type and the number of cylinders (not shown), the flow rate adjustment unit of the gas flow rate from the cylinder (not shown in the embodiment, the cylinder is filled with oxygen gas (the first material gas and the material gas supply) The portion 26 is a tank (not shown) in which a liquid is filled in the TEOS, a vaporized liquid (not shown), and a gas flow portion (not shown) that is vaporized by the vaporization unit. In the present embodiment, the TEOS is charged in the tank, and the TEOS gas 3 is obtained by vaporization by the vaporization unit. The number of helium gas in the present invention is not the Si〇2 membrane. The portion 12 and the distributor 1 are controlled. The tube 23 of the material gas G. The raw material gas supplied in the range of 26 ° 1 8 : when the membrane is supplied, corresponds to the shape and has an adjustment:). In this real). The gas is supplied to the gasification unit (the second flow rate is adjusted (the second raw material -11 - 200917341 gas). The flow rate adjustment unit adjusts the flow rate of the τ EOS gas. In the present embodiment, the gas is used. The gas supply unit 26 supplies a raw material gas of a mixed oxygen gas (first raw material gas) and a TEOS gas (second raw material gas) to a reaction chamber 39 to be described later. Further, an exhaust port is formed in the lower wall 丨 8b of the reaction container 18. 24. The exhaust pipe 25 is connected to the exhaust port 24. Further, the vacuum exhaust unit 27 is connected to the exhaust pipe 25. The vacuum exhaust unit 27 is a vacuum pump having a dry pump, a turbo pump, or the like. 'The reaction vessel 18 is provided with a pressure sensor (not shown) for measuring the internal pressure. Further, 'in the inside of the reaction vessel 18, the substrate placed on the surface 34a is sequentially provided from the lower wall 丨 8 b side. On the platform 34 and the substrate 36, an antenna array (plasma generating portion) 3 0 ' composed of a plurality of antenna elements 32 is disposed above the antenna array 3 上方 above the substrate platform 34 to cover the antenna Array 30 mode 'with gas radiation 4 〇 (gas Fig. 2 is a schematic plan view showing an antenna array of the plasma CVD apparatus of the present embodiment. As shown in Fig. 2, the antenna array 30 is a plurality of antenna elements 32 for the substrate platform 34. The planes 34a are substantially parallel to each other (not shown), and a plurality of predetermined gaps (inter) 3 3 are arranged in parallel to each other. The antenna array 30 is disposed on the lower side of the gas radiation portion 40 (the lower wall 18b side). Moreover, the antenna element 32 is also provided with a predetermined gap 3 3 for each of the side walls 18c, 18d. In the present invention, the gap 33 between the antenna element 32 and each of the side walls 18c, 18d is also associated with each antenna element 32. The gap 33 is treated similarly. -12- 200917341 Further, in the antenna array 30, each of the antenna elements 32 is disposed across the two side walls 18c and the side walls 18d opposite to the reaction container 18. The antenna array 30 is provided. (Each antenna element 32) is provided in parallel with the gas emission plate 42 (see Fig. 1) of the gas radiation portion 40 (see Fig. 1) and the surface 3 4 a (see Fig. 1) of the substrate stage 34. The antenna element 3 2 is a single a pole antenna, electrically insulated from the side wall of the reaction vessel 18, 8 8 e, 1 8 f An opening portion (not shown) formed in the antenna array 30, as shown in FIG. 2, protrudes from the side walls 1 8 e, 1 8 f in the reaction container 18 in a direction opposite to the adjacent antenna elements 32, The power supply direction is reversed. The side of the antenna element 32 that is the high frequency current supply end is connected to the impedance integrator 16. The impedance integrator 16 is a matching box. The impedance integrator 16 is the control unit 1 2 The frequency adjustment of the high-frequency signal generated by the high-frequency power source is used together to correct the impedance unconformity caused by the load change of the antenna element 32 in the generation of the plasma. Each of the antenna elements 32 is formed in a rod shape (or a tubular shape) composed of a conductor having a high electrical conductivity, and is used at a high frequency wavelength of (2 n+ 1 ) / 4 times (η is 0 or a positive integer). The length is the radiation length of the antenna element of the monopole antenna. Each of the antenna elements 32 is housed in a cylindrical member made of a dielectric such as quartz. The surface of each of the antenna elements 3 2 is covered with a dielectric such as quartz. Thus, by using a dielectric to cover the rod-shaped conductor, the electric valley and inductance as the antenna element 32 can be adjusted. Thereby, the high-frequency current can be efficiently propagated along the longitudinal direction of the antenna element 32 to -13-200917341, so that the electromagnetic wave can be efficiently radiated. Further, the surface of the antenna element 3 2 hereinafter is not intended to mean the surface of the rod-shaped conductor but the surface 3 7 a of the cylindrical member 37. In the present embodiment, the "impedance integrator 1 6" is disposed, and as will be described later, the metal formed in the gas radiation portion 40 (the gas radiation plate 42) is grounded, thereby acting on the electromagnetic wave forming the mirror image relationship 'at each antenna. Element 3 2 forms a predetermined electromagnetic wave. Further, since the antenna element 32 constituting the antenna array 30 is opposite to the power supply direction of the adjacent antenna element 32, electromagnetic waves are uniformly formed in the reaction chamber 39 which will be described later. Here, as shown in Fig. 1, the substrate stage 34 is placed on the surface 34a with the substrate 36 as described above. In the substrate stage 34, the substrate 36 is placed such that the center of the substrate stage 34 coincides with the center of the substrate 36. Further, a heat generating body (not shown) for heating the substrate 36 is provided inside the substrate stage 34, and an electrode plate (not shown) to be grounded is further provided. This heat generating body is connected to the control unit 12, and heating of the heat generating body is controlled by the control unit 12. Alternatively, the electrode plate may be connected to a bias power source (not shown), and the bias voltage source may be used to apply a predetermined bias voltage to the electrode plate. Further, the gas radiation portion 40 shown in Fig. 1 has a size in which the gas radiation plate 42 spans the entire interior of the reaction container 18, and is provided so as to cover the antenna array 30. In the present embodiment, the reaction chamber 18 is partitioned into two spaces by the gas radiation unit 40, and the space on the upper wall 18a side of the gas radiation portion 40 is the gas dispersion chamber 3 and the lower portion of the gas radiation portion 40. The space on the side of the wall 18b is the reaction chamber 39. -14- 200917341 The gas radiation portion 40 is for diffusing a wide area of the gas supplied to the gas dispersion chamber 38 into the reaction chamber 39. In the gas-emitting portion 40 of the present embodiment, the material gas G (oxygen gas and TEOS gas) introduced from the material gas supply unit 26 is diffused into the reaction chamber 39 over a wide area. Further, the gas radiation portion 4 is formed of a plurality of through holes having a diameter of about 33 mm to 2 mm, for example, in the gas radiation plate 42 composed of s iC. These through holes are formed into gas discharge ports 44. Further, in the gas radiation portion 40, a metal film is formed on the surface of the gas radiation plate 42, and is grounded. As shown in FIG. 3, in the gas radiation portion 40, the surface perpendicular to the surface 34 4 a of the substrate stage 34, that is, the surface of the substrate 36 disposed on the surface 34 4 of the substrate stage 34 is vertical. When the array antenna 30 gas radiation plate 42 is viewed in the direction, no gas is formed in the field (second field) of the gas radiation plate 42 integrated with the position of the antenna element 32 of the antenna array 30 provided below. Radiation port 44. Further, in the gas radiation portion 40, when the array antenna 30 and the gas radiation plate 42 are viewed from the direction perpendicular to the surface 34a of the substrate stage 34, the field of the position of the antenna element 32 is not integrated (the first field ' In other words, in the field of formation (first field) 48 in which the gap between the antenna element 3 2 and the antenna element 3 2 is integrated, the radiation port 44 is formed. In the gas radiation portion 40 of the present embodiment, An aperture 44 is formed in the formation field 48 in which the antenna element 3 2 is integrated with the gap 3 3 of the antenna element 32, and the air radiation port 4 4 ' is not formed in the field 46 integrated with the antenna element 32. It is shown that even if the raw material gas G is supplied to the material element G via the gas discharge port 4 4 and the surface material and the element 46 of the flat surface element are supplied, the material gas G is hardly supplied to the antenna element 32 and the gas emission. The space α between the plates 42 is around the surface 37a of the antenna element 32. Therefore, in the vicinity of the surface 37a of the antenna element 32, the electric field distribution is extremely high, but the material gas G is not excessively decomposed by the plasma in the vicinity of the antenna element 32. Thereby, even if the amount of the reaction product θ such as Si 02 is generated from the material gas G, the amount is small, and the adhesion or deposition on the surface 37a of the antenna element 32 is suppressed. Further, in the present embodiment, since the excessive decomposition of the source gas G does not occur in the vicinity of the periphery of the surface 37a of the antenna element 32, the material gas suitable for film formation of the SiO 2 film formed on the surface 36a of the substrate 36 is suitable. The ratio of the decomposition gas of G is increased, that is, the utilization efficiency of the material gas G (oxygen gas and TEOS gas) formed by the SiO 2 film formed on the surface 36a of the substrate 36 is increased, and the film formation speed is also high. Will improve. Further, in the present embodiment, since the material gas G is excessively decomposed in the vicinity of the periphery of the surface 37a of the antenna element 32, the degree of decomposition of the material gas G is uniform, and a sufficient film can be obtained. Thickness - sex. Further, as shown in Fig. 4, the distance between the surface 37a of the antenna element 32 and the edge of the surface 44a of the radiating port 44 closest to the antenna element 32 is preferably the outer diameter D of the surface 37a of the antenna element 32. 2 5 % or more. That is, the width L of the arrangement direction of the antenna element 32 in the field 46 of the gas discharge port 44 in which the gas radiation portion 40 is not formed is preferably 1 50% or more of the outer diameter D. Further, in the gas radiation portion 40 of the present embodiment, the arrangement pattern of the gas radiation ports 4 4 in which the gas radiation ports 44 are formed is not particularly limited. For example, the opening of the gas radiation port 44 close to the antenna element 32 can be reduced, so that the amount of the material gas G supplied to the vicinity of the antenna element 32 can be reduced. Further, the shape of the opening of the gas radiation port 44 is not particularly limited, and may be circular or quadrangular. The control unit is a high-frequency power source (not shown) including a high-frequency oscillation circuit and an amplifier, and a current/voltage sensor (not shown), and the high-frequency power source (not shown) performs the high-frequency signal according to the detection signal of the current/voltage sensor. The change of the oscillation frequency of the power supply and the adjuster of the impedance integrator 16. The control unit 1 2 controls the frequency of the common high-frequency signal to the antenna element 32, brings all the antenna elements 32 into a state of impedance integration, and then 'by the impedance integrator 16 connected to each antenna element 32. The impedance of each antenna element 32 is individually adjusted. The control unit 12 and the plurality of impedance integrators 16 are connected via the distributor 14. Further, the control unit 12 also controls the supply of the high frequency signal to the antenna element 32. Further, the material gas supply unit 26 and the vacuum exhaust unit 27 are also controlled by the control unit 12. The control unit 1 2 controls the supply timing, flow rate (supply amount), and the like of the material gas G (oxygen gas and TEOS gas) of the material gas supply unit 26. Further, the vacuum exhaust unit 27 can be controlled by the control unit 12 to exhaust the material gas or the like in the reaction container 18, and the pressure in the reaction container is can be adjusted to a desired pressure. In the present embodiment, for example, when the SiO 2 film is formed, the material gases G (oxygen gas and TEOS gas) introduced from the raw material gas-17-200917341 body supply unit 26 are in the reaction container 18 from the upper wall 18a side. It flows to the side of the lower wall 1 8 b (hereinafter, the direction from the upper wall 1 8 a side to the lower wall 1 8 b side is referred to as "vertical direction"), and is discharged from the exhaust port 24 . In the present embodiment, the pressure in the reaction container 18 is in a state where the pressure in the reaction container 18 is about IPa to several 100 Pa by the control unit 12, and the gas is emitted from the gas discharge port 44 of the gas emission plate 42. Raw material gas G (oxygen gas and TEOS gas) is supplied. Further, electromagnetic waves are radiated to the periphery of the antenna element 32 by supplying a high frequency signal to the antenna element 32. Thereby, a plasma (not shown) is generated in the vicinity of the antenna element 32 in the reaction container 18, and the oxygen gas (active species gas) is excited to obtain an oxygen radical (reactive species). At this time, since the generated plasma has conductivity, electromagnetic waves radiated from the antenna element 32 are easily reflected to the plasma. Therefore, the electromagnetic wave is locally present in a partial region around the surface 37a of the antenna element 32. Thus, in the antenna array 30 having a plurality of antenna elements 32 composed of monopole antennas, plasma is locally formed in the vicinity of the surface 37a of the antenna element 32, on the surface 3 of the antenna element 3 2 Around the a, the electric field distribution will become extremely high. Further, a detailed description of the principle of plasma generation using such an antenna array is described in the Japanese Patent Application Laid-Open No. Hei 2 0 0 3-8 65 8 1 . Further, the detailed impedance integration method for each antenna of the plasma generating apparatus using the antenna array is described in the previous document of the applicant of the present application, the Japanese Patent Application No. 2 0 0 5 - 0 1 4 2 5 6 . The antenna array of the present invention and the detailed impedance integration method of each antenna may be, for example, a method described in each of the above descriptions -18-200917341. Next, the s i 〇 2 film is taken as an example to describe the film formation method of the present device. First, the raw material gas G (oxygen gas (live TEOS gas) is discharged to the gas dispersion chamber 38 at a constant flow rate from the raw material gas supply unit 26, and the raw material gas g is made constant from the radiation port 44 that communicates with: Further, in the reaction vessel 18 (reaction chamber 39), the reaction vessel 18 (reaction chamber 39) is exhausted by the reaction vessel 18 (reaction chamber 39), and the reaction vessel 18 is controlled by the control unit 12 (for example) The pressure is maintained at a level of 1 P a to 10 〇P a. The raw material gas and the TEOS gas are flowed in the vertical direction of the reactor 18 (reaction chamber 39). Next, the high-frequency signal is supplied to the antenna element 32. The periphery of 32. By means of the 'plasma present in the vicinity of the antenna element 32 in the reaction chamber 39', oxygen gas (live seed gas radical (reactive species)) derived from the source gas G to be emitted can be obtained. The reaction-activated Τ Ε 气体 S gas is reacted by the active energy of the cold active species in the active state to perform the SiO 2 film on the substrate 36. In the film formation method of the present embodiment, it is on the antenna surface 37. Around the a, the raw material gas G is not supplied The CVD gas supply tube type gas and the gas dispersion chamber 38 flow rate flows into the reverse feed material gas evacuation unit 2 7 reaction chamber 39), in the reaction volume G (oxygen gas causes electromagnetic wave radiation, The local gas discharge port 44 is generated and the activated oxygen radical (the reaction surface 3 6 a forms the element 3 2), and the gas discharge port 4 of the gas supply unit 40 is disposed. 4, around the surface 3 7 a of the antenna element 32 2, excessive decomposition of the material gas G caused by the electric power locally present in the vicinity of the antenna element 32 is suppressed, and generation of a reaction product such as SiCh is suppressed. It is possible to suppress the reaction product of SiO 2 or the like from adhering to or accumulating on the surface 3 7 a of the antenna element 32, thereby suppressing the occurrence of particles. Further, since the occurrence of particles is suppressed, the film (Si〇2 film) is formed. In the film formation method of the present embodiment, the decomposition of the raw material gas G which is not supplied with the material gas G' around the surface 37a of the antenna element 32 is suppressed. and so The ratio of the decomposition gas to be formed in the film is increased, and the ratio (utilization efficiency) of the material gas G (oxygen gas and TEOS gas) used for film formation of the SiO 2 film is increased, so that the film formation speed is also increased. In the present embodiment, since the decomposition of the excess material gas G in the vicinity of the periphery of the surface 37a of the antenna element 32 is suppressed, the degree of decomposition of the material gas G in the reaction chamber 39 is uniform. The surface-dissolved gas suitable for film formation of the film (S i Ο 2 film) is uniformly supplied to the surface 3 6 a of 3 6 , so that the film thickness uniformity of the film (Si 〇 2 film) to be formed is also Will improve. Further, in the film forming method of the present embodiment, even if the substrate 36 has a size of, for example, about 1 m × 1 m, the antenna array 30 can generate a uniform plasma, suppressing the occurrence of particles as described above, and Since the film speed is fast, the Si 2 film 2 and the film thickness uniformity are more rapidly formed than in the prior art. In the CVD apparatus of the present embodiment, Si 〇 is formed on the surface 36 a of the substrate 36 . The apparatus of the film 2 is described as an example, but the plasma processing apparatus of the present invention is not limited thereto. The plasma processing apparatus of the present invention can be used for forming a film of a flat panel display panel such as a liquid crystal display panel or a plasma display panel, and various films such as a solar cell. Further, the plasma processing apparatus of the present invention can also be used as an etching apparatus, and can also be used for washing processing of a substrate platform. Further, in the CVD apparatus of the present embodiment, the antenna array 30 in which a plurality of monopole antennas are disposed is used as the plasma generating portion, and is locally present in the vicinity of the periphery of the surface 37a of the antenna element 32 of the antenna array 30. Generate plasma. With this configuration, the distance between the substrate 36 and the antenna array 30 can be relatively close to the arrangement in a state where the plasma is not directly exposed to the substrate 36 placed on the substrate stage 34. Thereby, the distance between the antenna array 30 and the substrate 36 can be made for the excitation lifetime of the oxygen radical (reactive species) excited near the periphery of the surface 37a of the antenna element 3 2 of the antenna array 30. Fully close. That is, the surface 36a of the substrate 36 can be reached in a state where the oxygen radical (reactive species) is sufficiently excited. In the CVD apparatus of the present embodiment, two kinds of gases of oxygen gas (first source gas) and TEOS gas (second source gas) are used as the source gas G in order to form the Si 2 film 2 on the surface 36 a of the substrate 36 . However, the invention is not limited thereto. The material gas g is appropriately selected in accordance with the type of the formed film, and the type and number of gases to be used. Further, in the CVD apparatus of the present embodiment, the material 1 used as the source gas g is a gas in which a reactive species is formed, and in addition to the oxygen-21 - 200917341 gas, for example, a nitrogen gas, a hydrogen gas, and an argon gas can be used. . In addition, the second source gas used for the source gas G is a gas for forming a film other than the first material gas, and for example, a gas containing a metal compound is used. For example, in the CVD apparatus of the present embodiment, a ruthenium film is formed. In the case of the material gas G, for example, hydrogen gas is used as the first material gas, and decane gas is used as the second material gas. This situation can also achieve the effects of the present invention. Although the plasma processing apparatus according to the present invention has been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a configuration diagram showing a plasma CVD apparatus according to an embodiment of a plasma processing apparatus according to the present invention. Fig. 2 is a schematic plan view showing an antenna array of the plasma CVD apparatus of the embodiment. Fig. 3 is a schematic plan view showing an arrangement state of the gas radiation portion of the plasma CVD apparatus of the embodiment and the antenna element of the antenna array. Fig. 4 is a view showing an arrangement state of the antenna elements of the gas radiation portion and the antenna array of the plasma CVD apparatus of the embodiment. Fig. 5 is a view showing the configuration of a conventional plasma CVD apparatus. [Description of main component symbols] -22- 200917341 10, 100: Plasma CVD device (CVD device) 1 2 : Control unit 1 4 : Distributor 1 6 : Impedance integrator 18 : Reaction vessel 22 : Inlet 23 : Raw material gas Supply pipe 24: exhaust port 26: material gas supply unit 2 7 : vacuum exhaust unit 3 0 : antenna array 3 2 : antenna element 3 3 : gap 3 4 : substrate stage 3 6 : substrate 3 8 : gas dispersion chamber 3 9 : Reaction chamber 40 : Gas radiation portion 42 : Gas emission plate 44 : Gas emission port G : Raw material gas -23-