TW200915005A - Radiation sensitive resin composition, interlayer dielectric and microlens, and method for producing thereof - Google Patents

Radiation sensitive resin composition, interlayer dielectric and microlens, and method for producing thereof Download PDF

Info

Publication number
TW200915005A
TW200915005A TW097122312A TW97122312A TW200915005A TW 200915005 A TW200915005 A TW 200915005A TW 097122312 A TW097122312 A TW 097122312A TW 97122312 A TW97122312 A TW 97122312A TW 200915005 A TW200915005 A TW 200915005A
Authority
TW
Taiwan
Prior art keywords
decane
group
resin composition
radiation
methyl
Prior art date
Application number
TW097122312A
Other languages
Chinese (zh)
Other versions
TWI444775B (en
Inventor
Masaaki Hanamura
Shin Yoshida
Takahiro Iijima
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200915005A publication Critical patent/TW200915005A/en
Application granted granted Critical
Publication of TWI444775B publication Critical patent/TWI444775B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)
  • Epoxy Resins (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The invention relates to radioactivity-sensitive linear resin composition comprising (A) polysiloxane which has at least one group selected from the group containing oxiranyl group and oxa-cyclobutyl group, and which has the functional group that can be subjected to addition reaction with the oxiranyl group and oxa-cyclobutyl group; and (B) 1,2-diazo quinone compound. The inventive radioactivity-sensitive linear resin composition, when used for forming layer insulation film, can be formed into layer insulation film with high heat resistance, high solvent resistance, high transmissivity, and low dielectric constant even under the sintering condition of less than 250 DEG C, in addition, when used for forming microlens, the inventive radioactivity-sensitive linear resin composition can also be formed into microlens with high transmissivity and excellent melting shape.

Description

200915005 九、發明說明 【發明所屬之技術領域】 本發明關於敏輻射線性樹脂組成物、層間絕緣膜以及 微透鏡以及其等之形成方法。 【先前技術】 薄膜電晶體(以下稱爲「TFT」)型液晶顯示元件或 磁頭元件、積體電路元件、固體攝影元件等之電子零件中 ,一般爲使以層狀配置之配線間絕緣而設有層間絕緣膜。 作爲形成層間絕緣膜之材料,由於較好者爲用以獲得必要 的圖案形狀的步驟數少且具有充分平坦性者,故廣泛使用 有敏輻射線性樹脂組成物(參考特開200 1 -3 54822號及特 開 2001-343743 號公報)。 上述電子零件中’例如TFT型液晶顯示元件由於經 過在上述層間絕緣膜上形成透明電極膜進而在其上形成液 晶定向膜之步驟所製造,故層間絕緣膜在透明電極膜形成 步驟中暴露於高溫條件、暴露於電極圖案形成中所使用之 光阻劑之剝離液中,故有必要對於該等具有充分抗性。 又近幾年來,TFT型液晶顯示元件朝大畫面化、高亮 度化、高精細化、高速應答化、薄型化等發展,作爲其所 使用之層間絕緣膜形成用組成物要求有爲高感度,且所形 成之層間絕緣膜要求有關於低介電率、高透過率等方面之 比以往更增高的高性能。 作爲如此之低介電率、高透過率之層間絕緣膜已知有 -5- 200915005 丙烯酸系樹脂與重氮醌之組合(特開2005-320542 ) '或 酚樹脂與重氮醌之組合(特開2003 -25 5 546 )。然而,該 等材料於膜形成後之加熱步驟會發生外逸氣體(out gas ) ,而有透明性降低等問題。 再者,由以往所知之敏輻射線性樹脂組成物形成層間 絕緣膜時之顯影步驟中,即使顯像時間僅比最適時間略微 過剩,則有圖案發生剝落之情況。 如此,由敏輻射線性樹脂組成物形成層間絕緣膜中, 做爲組成物要求有爲高感度,且在形成步驟中的顯性步驟 中即使顯像時間比特定時間更長時圖案不會發生剝落而顯 示良好密著性且由該等所形成之層間絕緣膜要求有高耐熱 性、高耐溶劑性、高介電率、高透過率等,但目前爲止尙 未知有可滿足該等要求之敏輻射線性樹脂組成物。 另一方面,作爲傳真機、電子影印機、固體攝影元件 等之晶片彩色濾光片之成像光學系或光纖連接器之光學系 材料,使用有具有3~1 00 /z m左右之透鏡直徑之微透鏡或 使該等微透鏡規則配置之微透鏡陣列。 微透鏡或微透鏡陣列之形成,已知有下列方法:形成 相當於透鏡之透鏡圖寒後,藉由加熱處理而使其熔融流動 ,就此作微透鏡加以利用之方法,或使熔融流動之透鏡圖 案作爲光罩藉由乾蝕刻於基底轉印透鏡形狀之方法。上述 透鏡圖案之形成廣泛使用有敏輻射線性樹脂組成物(參考 特開平6 - 1 8 7 0 2以及特開平6 - 1 3 6 2 3 9號)。 不過,形成有如上述之微透鏡或微透鏡陣列之元件在 -6- 200915005 隨後爲了去除成爲配線形成部分之黏接墊上之各種絕緣膜 ,而塗佈平坦化膜以及蝕刻用光阻劑膜,使用所需光罩加 以曝光、顯像,去除黏接墊部份之蝕刻光阻劑’接著’藉 由蝕刻除去平坦化膜或各種絕緣膜,供給至使黏接墊部份 露出之步驟中。因此微透鏡或微透鏡陣列於平坦化膜以及 蝕刻光阻劑之塗膜形成步驟以及蝕刻步驟中之耐溶劑性及 耐熱性變得有其必要。 爲了形成此等微透鏡所用之敏輻射線性樹脂組成物要 求有爲高感度,且爲使由其所形成之微透鏡具有所需曲率 半徑者,要求爲高耐熱性、高透過率等。 又,自以往已知之敏輻射線性樹脂組成物所獲得之微 透鏡,於形成該等之際之顯像步驟中,即使顯像時間僅比 最適時間略微過剩,由於顯像液浸透入圖案與基板間而易 於發生剝落,故有必要嚴格控制顯像時間,而有製品良率 方面的問題。 如上述,自敏輻射線性樹脂組成物形成微透鏡中,做 爲組成物要求有爲高感度,且形成步驟中之顯像步驟中即 使顯像時間比特定時間更長時,亦不會產生圖案剝落而顯 示良好密著性且要求有作爲微透鏡之良好熔融形狀(所需 曲率半徑)、高耐熱性、高耐溶劑性、高透過率,但目前 爲止尙未知有可滿足該等要求之敏輻射線性樹脂組成物。 又’作爲高耐熱性、高透明性、低介電率材料已知有 矽氧烷聚合物,將其使用於層間絕緣膜亦爲已知(特開 2006-178436)。然而,矽氧烷聚合物爲了展現充分的耐 200915005 熱性而有必要使矽氧烷聚合物充分交聯,因此必須在 2 5 0~3 0 0 °C以上之高溫燒成,因此有不適用於生產顯示元 件之步驟中的問題。又,矽氧烷聚合物已嘗試應用於微透 鏡,但目前爲止尙未知有工業上成功的案例。 【發明內容】 本發明係基於上述狀況而進行者。因此,本發明之目 的係提供一種敏輻射線性樹脂組成物,該組成物可在低於 250 °C之燒成條件下,於用於形成層間絕緣膜時,可形成 高耐熱性、高耐溶劑性、高透過率、低介電率之層間絕緣 膜’又用於形成微透鏡時,可形成具有高透過率與良好熔 融形狀之微透鏡。 本發明之其他目的係提供一種敏輻射線性樹脂組成物 ’該組成物具有高的敏輻射線性感度,在顯像步驟中超過 最適顯像時間亦具有可形成良好圖案形狀之顯像裕度( margin ),且容易形成密著性優異之圖案狀薄膜。 本發明之進而其他目的係提供一種使用上述敏輻射線 性樹脂組成物形成層間絕緣膜以及微透鏡之方法。 本發明之又其他目的係提供一種藉由本發明之方法形 成之層間絕緣膜以及微透鏡。 本發明又其他目的以及優點可由下列說明而變得顯而 易見。 依據本發明,第一 ’本發明之上述目的及優點係藉由 下列而達成:一種敏輻射線性樹脂組成物,其含有: -8- 200915005 [A]具有選自由環氧乙烷基及氧雜環丁烷基所組成之 群組之至少一種基及可加成反應於環氧乙烷基或氧雜環丁 烷基之官能基之聚矽氧烷,以及 [B ] 1,2 -重氮醌化合物。 第二,本發明之上述目的及優點係藉由包含下列所述 順序之下列步驟之層間絕緣膜或者微透鏡之形成方法而達 成: (1 )在基板上形成上述敏輻射線性樹脂組成物之被 覆膜之步驟, (2 )對該被覆膜之至少一部份照射輻射線之步驟, (3 )使輻射線照射後之被覆膜顯像之步驟,及 (4 )加熱該顯像後之被覆膜之步驟。 第三,再者本發明之上述目的及優點係藉由以上述方 法形成之層間絕緣膜或微透鏡而達成。 【實施方式】 以下詳述本發明之敏輻射線性樹脂組成物。 [A]成分 本發明所用之[A]成分爲具有選自由環氧乙烷基及氧 雜環丁烷基組成之群組之至少一種之基’及可加成反應於 環氧乙烷基或氧雜環丁烷基之官能基之聚矽氧烷。 上述可加成反應於環氧乙院基或氧雜環丁院基之官能 基可舉例爲例如羥基、锍基、胺基等。 -9- 200915005 本發明所用之[A]成分較好爲例如含有下列之矽烷化 合物之水解縮合物(以下稱爲聚矽氧烷[A]): (al)具有選自由環氧乙烷基及氧雜環丁烷基所組成 之群組之至少一種基與水解性基之矽烷化合物(以下稱爲 「化合物(al )」),以及 (a2)具有可加成反應於環氧乙烷基或氧雜環丁烷基 之官能基與水解性基之矽烷化合物(以下稱爲「化合物( a2 )」) 化合物(a 1 )較好爲以下式(1 )表示之化合物: (X1 YbaSiR^R2。 (1) (式(1)中,X1爲環氧乙烷基、縮水甘油基、縮水甘油 氧基、3,4_環氧基環己基或3 —氧雜環丁烷基,但3—氧 雜環丁烷基之3位置之碳可經碳數1~6之烷基取代,Y1 爲單鍵、亞甲基或碳數2〜6之伸烷基,R1爲碳數1〜6之 烷氧基或碳數2〜6之醯氧基,R2爲碳數1〜6之烷基或碳 數6~12之芳基,a及b各獨立爲1〜3之整數,c爲〇~2之 整數,且 a+b+c=4)。 上式(1)中在X1之3-氧雜環丁烷基之3位置碳處 取代之碳數1〜6之烷基較好爲碳數1〜3之烷基,可舉例爲 例如甲基、乙基、正丙基等。Y1較好爲甲基或碳數2或3 之伸烷基。Y1之碳數2或3之伸烷基可舉例爲例如伸乙 基、三亞甲基等。R1較好爲碳數1〜3之烷氧基或碳數2〜4 之醯基氧基,可舉例爲例如甲氧基、乙氧基、正丙氧基、 -10- 200915005 第三丁氧基、乙醯基等。R2較好爲碳數1〜4之烷基或碳 數6~8之芳基,可舉例爲例如甲基、乙基、苯基等。 此種化合物(a 1 )之具體例分別舉例爲含有環氧乙烷 基之矽烷化合物,例如縮水甘油氧基甲基三甲氧基矽烷、 縮水甘油氧基甲基三乙氧基矽烷、縮水甘油氧基甲基三正 丙氧基矽烷、縮水甘油氧基甲基三異丙氧基矽烷、縮水甘 油氧基甲基三乙醯氧基矽烷、縮水甘油氧基甲基甲基二甲 氧基矽烷、縮水甘油氧基甲基甲基二乙氧基矽烷、縮水甘 油氧基甲基甲基二正丙氧基矽烷、縮水甘油氧基甲基甲基 二異丙氧基矽垸、縮水甘油氧基甲基甲基二乙醯氧基矽烷 、縮水甘油氧基甲基乙基二甲氧基砂院、縮水甘油氧基甲 基乙基二乙氧基矽烷、縮水甘油氧基甲基乙基二正丙氧基 矽院、縮水甘油氧基甲基乙基二異丙氧基石夕院 '縮水甘油 氧基甲基乙基二乙醯氧基矽烷、縮水甘油氧基甲基苯基二 甲氧基砂院、縮水甘油氧基甲基苯基二乙氧基砂燒、縮水 甘油氧基甲基苯基二正丙氧基砂烷、縮水甘油氧基甲基苯 基二異丙氧基砂院、縮水甘油氧基甲基苯基二乙醯氧基砂 烷、2—縮水甘油氧基乙基三甲氧基砂院、2一縮水甘油氧 基乙基三乙氧基砍院、2-縮水甘油氧基乙基二正丙興基 矽烷、2-縮水甘油氧基乙基三異丙氧基矽烷、2一縮水甘 油氧基乙基三乙醯氧基矽烷、2一縮水甘油氧基乙基甲基 二甲氧基矽烷、2-縮水甘油氧基乙基甲基二乙氧基砂院 、2 -縮水甘油氧基乙基甲基二正丙氧基砂院、2一縮水甘 油氧基乙基甲基二異丙氧基矽烷、2一縮水甘油氧基乙基 -11 - 200915005 甲基二乙醯氧基矽烷、2—縮水甘油氧基乙基乙基二甲氧 基砂院、2-縮水甘油氧基乙基乙基二乙氧基砂垸、2—縮 水甘油氧基乙基乙基二正丙氧基矽烷、2_縮水甘油氧基 乙基乙基二異丙氧基矽烷、2-縮水甘油氧基乙基乙基二 乙醯氧基矽烷、2 -縮水甘油氧基乙基苯基二甲氧基矽烷 、2—縮水甘油氧基乙基苯基二乙氧基矽烷、2-縮水甘油 氧基乙基苯基二正丙氧基矽烷、2 -縮水甘油氧基乙基苯 基二異丙氧基矽烷、2-縮水甘油氧基乙基苯基二乙醯氧 基矽烷、3 -縮水甘油氧基丙基三甲氧基矽烷、3 一縮水甘 油氧基丙基三乙氧基矽烷、3-縮水甘油氧基丙基三正丙 氧基矽烷、3-縮水甘油氧基丙基三異丙氧基矽烷、3一縮 水甘油氧基丙基三乙醯氧基矽烷、3-縮水甘油氧基丙基 甲基二甲氧基矽烷、3-縮水甘油氧基丙基甲基二乙氧基 矽烷、3 —縮水甘油氧基丙基甲基二正丙氧基矽院、3 一縮 水甘油氧基丙基甲基二異丙氧基矽烷、3 一縮水甘油氧基 丙基甲基二乙醯氧基矽烷、3 -縮水甘油氧基丙基乙基二 甲氧基矽烷、3 -縮水甘油氧基丙基乙基二乙氧基砂丨兀、3 -縮水甘油氧基丙基乙基二正丙氧基矽烷、3 一縮水甘油 氧基丙基乙基二異丙氧基矽烷、3 -縮水甘油氧基丙基乙 基二乙醯氧基矽烷、3-縮水甘油氧基丙基苯基二甲氧基 矽烷、3—縮水甘油氧基丙基苯基二乙氧基政院、3一縮水 甘油氧基丙基苯基二正丙氧基矽烷、3-縮水甘油胃 基苯基二異丙氧基矽烷、3 -縮水甘油氧基丙基苯基一乙 醯氧基矽烷、(3,4-環氧基環己基)甲基三甲氧基砂丈完 -12- 200915005 、(3,4—環氧基環己基)甲基三乙氧基矽烷、(3,4 氧基環己基)甲基三正丙氧基矽烷、(3,4 -環氧基 基)甲基三乙醯氧基矽烷、(3,4-環氧基環己基) 甲基二甲氧基矽烷、(3,4—環氧基環己基)甲基甲 乙氧基矽烷、(3,4-環氧基環己基)甲基甲基二正 基矽烷、(3,4-環氧基環己基)甲基甲基二乙醯氧 烷、(3,4—環氧基環己基)甲基乙基二甲氧基矽烷 3,4—環氧基環己基)甲基乙基二乙氧基矽烷、(3,4 氧基環己基)甲基乙基二正丙氧基矽烷、(3,4-環 環己基)甲基乙基二乙醯氧基矽烷、(3,4 -環氧基 基)甲基苯基二甲氧基矽烷、(3,4 一環氧基環己基 基苯基二乙氧基矽烷、(3,4-環氧基環己基)甲基 二正丙氧基矽烷、(3,4-環氧基環己基)甲基苯基 醯氧基矽烷、2- (3’,4’_環氧基環己基)乙基三甲 矽烷、2— (3’,4’一環氧基環己基)乙基三乙氧基矽怎 一 (3’,4’ 一環氧基環己基)乙基三正丙氧基矽烷、2 3’,4’ —環氧基環己基)乙基三乙醯氧基矽烷、2-( —環氧基環己基)乙基甲基二甲氧基矽烷、2— (3’, 環氧基環己基)乙基甲基二乙氧基矽烷、2- (3’,4’ 氧基環己基)乙基甲基二正丙氧基矽烷、2— (3’,4’ 氧基環己基)乙基甲基二乙醯氧基矽烷、2— (3’,4’ 氧基環己基)乙基乙基二甲氧基矽烷、2— (3’,4’ 一 基環己基)乙基乙基—乙氧基砂院、2— (3’,4’ _環 環己基)乙基乙基二正丙氧基矽烷、2— (3’,4’一環 —環 環己 甲基 基二 丙氧 基矽 ' ( —土展 氧基 環己 )甲 苯基 二乙 氧基 笔、2 一( 3,,4, 丨4’ 一 -環 —環 一環 環氧 氧基 氧基 -13- 200915005 環己基)乙基乙基二乙醯氧基矽烷、2— (3’,4’ 一環氧基 環己基)乙基苯基二甲氧基矽烷、2-(3’,4’ 一環氧基環 己基)乙基苯基二乙氧基矽烷、2- (3’,4’ 一環氧基環己 基)乙基苯基二正丙氧基矽烷、2— (3,,4’ 一環氧基環己 基)乙基苯基二乙醯氧基矽烷、3- (3’,4’ 一環氧基環己 基)丙基三甲氧基矽烷、3— (3’,4’ 一環氧基環己基)丙 基三乙氧基矽烷、3- (3’,4’ 一環氧基環己基)丙基三正 丙氧基矽烷' 3— (3’,4’ 一環氧基環己基)丙基三乙醯氧 基矽烷、3— (3’,4’一環氧基環己基)丙基甲基二甲氧基 矽烷、3— (3’,4’一環氧基環己基)丙基甲基二乙氧基矽 烷、3— (3’,4’ 一環氧基環己基)丙基甲基二正丙氧基矽 烷、3— (3’,4’ —環氧基環己基)丙基甲基二乙醯氧基矽 烷、3_ (3’,4’ 一環氧基環己基)丙基乙基二甲氧基矽烷 、3-(3’,4’一環氧基環己基)丙基乙基二乙氧基砂垸、3 —(3’,4’ —環氧基環己基)丙基乙基二正丙氧基矽烷、3 _ (3’,4’一環氧基環己基)丙基乙基二乙醯氧基矽烷、3 一(3’,4’一環氧基環己基)丙基苯基二甲氧基矽烷、3_ (3’,4’一環氧基環己基)丙基苯基二乙氧基矽烷、3—( 3’,4’一環氧基環己基)丙基苯基二正丙氧基矽烷、3—( 3’,4’一環氧基環己基)丙基苯基二乙醯氧基矽烷等; 含有氧雜環丁烷基之矽烷化合物爲例如(氧雜環丁烷 _3_基)甲基三甲氧基矽烷、(氧雜環丁烷_3—基)甲 基三乙氧基矽烷、(氧雜環丁烷- 3—基)甲基三正丙氧 基矽烷、(氧雜環丁烷一 3-基)甲基三異丙氧基矽烷、 -14- 200915005 (氧雜環丁烷一 3_基)甲基三乙醯氧基砂院、(興雑我 丁烷一 3—基)甲基甲基二甲氧基矽烷、(氧雜環丁烷一 3 一基)甲基甲基二乙氧基矽烷、(氧雜環丁院一 3 一基) 甲基甲基二正丙氧基矽烷、(氧雜環丁烷- 3 一基)甲基 甲基二異丙氧基矽烷、(氧雜環丁烷-3-基)甲基甲基 二乙醯氧基矽烷、(氧雜環丁烷—3 —基)甲基乙基二甲 氧基矽烷、(氧雜環丁烷一 3 -基)甲基乙基二乙氧基砂 烷、(氧雜環丁烷一 3-基)甲基乙基二正丙氧基矽烷、 (氧雜環丁烷_3-基)甲基乙基二異丙氧基矽烷、(氧 雜環丁烷一 3一基)甲基乙基二乙醯氧基矽烷、(氧雜環 丁焼一 3 —基)甲基苯基二甲氧基砂院、(氧雜環丁院一 3 一基)甲基苯基二乙氧基矽烷、(氧雜環丁烷一 3-基) 甲基苯基二正丙氧基矽烷、(氧雜環丁烷一3 —基)甲基 苯基二異丙氧基矽烷、(氧雜環丁烷-3-基)甲基苯基 二乙醯氧基矽烷、2一 (氧雜環丁烷—3’~基)乙基三甲 氧基砂院、(氧雜環丁垸一 3’一基)乙基三乙氧基矽 烷、(氧雜環丁烷一 3’ 一基)乙基三正丙氧基矽烷、2 — (氧雜環丁烷一 3’一基)乙基三異丙氧基矽烷、2—(氧 雜環丁院一 3, -基)乙基三乙醯氧基砂院、2—(氧雜環 丁烷—3, 一基)乙基甲基二甲氧基矽烷、2—(氧雜環丁 院一 3’一基)乙基甲基二乙氧基砂院、2—(氧雜環丁燒 一 3,_基)乙基甲基二正丙氧基矽烷、2—(氧雜環丁烷 一 3,_基)乙基甲基二異丙氧基矽烷、2- (氧雜環丁烷 一 3, 一基)乙基甲基二乙醯氧基矽烷、2- (氧雜環丁烷 -15- 200915005 一 3,_基)乙基乙基二甲氧基矽烷、2一 (氧雜環丁院— 3’一基)乙基乙基二乙氧基矽烷、2— (氧雜環丁院一 3’ 一基)乙基乙基二正丙氧基矽烷、2—(氧雜環丁院一 3’ 一基)乙基乙基二異丙氧基矽烷、2— (氧雜環丁院一 3’ 一基)乙基乙基二乙醯氧基矽烷、2—(氧雜環丁院一 3 ’ 一基)乙基苯基二甲氧基矽烷'2—(氧雜環丁烷一 3’ 一 基)乙基苯基二乙氧基矽烷、2—(氧雜環丁烷一 3’ 一基 )乙基苯基二正丙氧基矽烷、2—(氧雜環丁烷一 3’ 一基 )乙基苯基一異丙氧基砂院、2—(氧雜環丁院一 3’ 一基 )乙基苯基二乙醯氧基矽烷、3—(氧雜環丁烷一 3’ 一基 )丙基三甲氧基矽烷、3 -(氧雜環丁院一 3’ 一基)丙基 三乙氧基矽烷、3—(氧雜環丁烷—3, 一基)丙基三正丙 氧基矽烷、3—(氧雜環丁烷- 3,~基)丙基三異丙氧基 矽烷、3—(氧雜環丁烷_3, -基)丙基三乙醯氧基矽烷 、3—(氧雜環丁烷一 3’一基)丙基甲基二甲氧基矽烷、3 —(氧雜環丁烷一 3’一基)丙基甲基二乙氧基矽烷、3 一 (氧雜環丁烷一 3’ 一基)丙基甲基二正丙氧基矽烷、3一 (氧雜環丁烷一 3’ 一基)丙基甲基二異丙氧基矽烷、3一 (氧雜環丁烷一 3’ 一基)丙基甲基二乙醯氧基矽烷、3一 (氧雜環丁烷一 3’ 一基)丙基乙基二甲氧基矽烷、3_ ( 氧雜環丁烷一 3’一基)丙基乙基二乙氧基矽烷、3一 (氧 雜環丁烷一 3’ 一基)丙基乙基二正丙氧基矽烷、3—(氧 雜環丁烷一 3’ 一基)丙基乙基二異丙氧基矽烷、3 一 (氧 雜環丁烷一 3’ 一基)丙基乙基二乙醯氧基矽烷' 3_ (氧 -16- 200915005 雜環丁烷一 3’一基)丙基苯基二甲氧基矽烷、3 -(氧雜 環丁烷一 3’ 一基)丙基苯基二乙氧基矽烷、3-(氧雜環 丁烷一 3’_基)丙基苯基二正丙氧基矽烷、3—(氧雜環 丁烷一 3’ —基)丙基苯基二異丙氧基矽烷、3—(氧雜環 丁烷一 3’ —基)丙基苯基二乙醯氧基矽烷、(3 —甲基氧 雜環丁烷—3—基)甲基三甲氧基矽烷、(3—甲基氧雜環 丁烷一3—基)甲基三乙氧基矽烷、(3-甲基氧雜環丁烷 一 3 —基)甲基三正丙氧基矽烷、(3 —甲基氧雜環丁烷一 3 -基)甲基三異丙氧基矽烷、(3 —甲基氧雜環丁烷- 3 一基)甲基三乙醯氧基矽烷、(3 —甲基氧雜環丁烷一 3 — 基)甲基甲基二甲氧基矽烷、(3—甲基氧雜環丁烷一 3 — 基)甲基甲基二乙氧基矽烷、(3—甲基氧雜環丁烷一 3 — 基)甲基甲基二正丙氧基矽烷、(3-甲基氧雜環丁烷- 3 -基)甲基甲基二異丙氧基矽烷、(3 -甲基氧雜環丁烷 —3 —基)甲基甲基二乙醯氧基矽烷、(3 —甲基氧雜環丁 烷一 3 —基)甲基乙基二甲氧基矽烷、(3 —甲基氧雜環丁 烷—3—基)甲基乙基二乙氧基矽烷、(3—甲基氧雜環丁 院一3—基)甲基乙基二正丙氧基矽烷、(3—甲基氧雜環 丁烷一 3—基)甲基乙基二異丙氧基矽烷、(3—甲基氧雜 環丁烷一 3—基)甲基乙基二乙醯氧基矽烷、(3-甲基氧 雜環丁烷一 3—基)甲基苯基二甲氧基矽烷、(3 -甲基氧 雜環丁烷—3—基)甲基苯基二乙氧基矽烷、(3 —甲基氧 雜環丁烷一 3—基)甲基苯基二正丙氧基矽烷、(3 一甲基 氧雜環丁烷一 3 —基)甲基苯基二異丙氧基矽烷、(3 —甲 -17- 200915005 基氧雜環丁烷一 3-基)甲基苯基二乙醯氧基矽烷、2一( 3,一甲基氧雜環丁烷一 3, 一基)乙基三甲氧基砂院、2一 (3’ —甲基氧雜環丁烷一3’一基)乙基三乙氧基砂院、2 —(3’_甲基氧雜環丁烷-3,—基)乙基三正丙氧基砂院 、2- (3, 一甲基氧雜環丁烷一 3, 一基)乙基三異丙氧基 矽烷、2- (3,—甲基氧雜環丁烷—3, 一基)乙基三乙醯 氧基矽烷、2— (3, 一甲基氧雜環丁烷一 3’ 一基)乙基甲 基二甲氧基砂院'2-(3, 一甲基氧雜環丁焼一 3’ 一基) 乙基甲基二乙氧基矽烷、2— (3,—甲基氧雜環丁烷一 3’ —基)乙基甲基二正丙氧基砍院、2—(3’ 一甲基氧雜環 丁烷一3’ —基)乙基甲基二異丙氧基矽烷、2- (3, 一甲 基氧雜環丁烷一3,_基)乙基甲基二乙醯氧基矽烷、2 — (3甲基氧雜環丁烷一 3’ —基)乙基乙基二甲氧基矽烷 、2— (3’一甲基氧雜環丁烷一 3, 一基)乙基乙基二乙氧 基矽烷、2— (3, 一甲基氧雜環丁烷一 3, 一基)乙基乙基 二正丙氧基矽烷、2一(3, 一甲基氧雜環丁烷一 3,—基) 乙基乙基二異丙氧基矽烷、2—(3,一甲基氧雜環丁烷一 3’ 一基)乙基乙基二乙醯氧基矽烷、2_ (3, 一甲基氧雜 環丁院一3’ 一基)乙基苯基二甲氧基矽烷、2一 (3, 一甲 基氧雜環丁院~3’ 一基)乙基苯基二乙氧基矽烷、2- ( 3’-甲基氧雜環丁烷一 3,一基)乙基苯基二正丙氧基矽烷 、2— (3’ 一甲基氧雜環丁烷—3, 一基)乙基苯基二異丙 氧基砂垸、2- (3, 一甲基氧雜環丁烷一 3, 一基)乙基苯 基二乙醯氧基矽烷、3_ (3, 一甲基氧雜環丁烷—3,一基 -18- 200915005 )丙基三甲氧基矽烷、3 —(3’ 一甲基氧雜環丁烷一 3’ 一 基)丙基三乙氧基矽烷、3— (3,—甲基氧雜環丁烷_3’ 一基)丙基三正丙氧基矽烷、3 - (3’ -甲基氧雜環丁烷 —3’ —基)丙基三異丙氧基矽烷、3-(3’一甲基氧雜環 丁烷—3’_基)丙基三乙醯氧基矽烷、3 -(3,—甲基氧 雜環丁烷一 3’一基)丙基甲基二甲氧基矽烷、3- (3,一 甲基氧雜環丁烷一 3’ 一基)丙基甲基二乙氧基矽烷、3 一 (3,一甲基氧雜環丁院一 3’ 一基)丙基甲基二正丙氧基砂 院、3 — (3’ 一甲基氧雜環丁院一3’ 一基)丙基甲基二異 丙氧基矽烷、3 - (3, 一甲基氧雜環丁烷—3, 一基)丙基 甲基二乙醯氧基矽烷、3 - (3,一甲基氧雜環丁烷一 3, 一 基)丙基乙基二甲氧基矽烷、3一 (3’ 一甲基氧雜環丁烷 一 3,一基)丙基乙基二乙氧基矽烷、3 一 (3,—甲基氧雜 環丁烷一 3,—基)丙基乙基二正丙氧基砂烷、3 -(3, _ 甲基氧雜環丁烷- 3, 一基)丙基乙基二異Η氧基矽烷、3 一 (3,一甲基氧雜環丁烷一 3,—基)丙基乙基二乙醯氧基 矽烷、3— (3, 一甲基氧雜環丁院一 3’ 一基)丙基苯基二 甲氧基矽烷、(3, 一甲基氧雜環丁烷〜3,—基)丙基 苯基二乙氧基矽烷、3 -(3’ 一甲基氧雜環丁烷一 3’_基 )丙基苯基二正丙氧基矽烷、3 一 (3’ 一甲基氧雜環丁烷 一 3,一基)丙基苯基二異丙氧基砍院、3〜(3, 一甲基氧 雜環丁烷一 3,一基)丙基苯基二乙釀氧基砂烷、(3, _乙 基氧雜環丁烷一3, 一基)甲基三甲氧基砂燒、(3 -乙基 氧雜環丁烷一 3 -基)甲基三乙氧基砂院、(3—乙基氧雜 -19- 氧基砂院、(3 —乙基氧雑環 基矽烷、(3—乙基氧雜環丁 矽烷、(3—乙基氧雜環丁烷 矽烷、(3—乙基氧雜環丁烷 矽烷、(3—乙基氧雜環丁烷 基砂院、(3 -乙基氧雜環丁 氧基矽烷、(3-乙基氧雜環 醯氧基矽烷、(3-乙基氧雜 甲氧基矽烷、(3 —乙基氧雜 乙氧基矽烷、(3—乙基氧雜 正丙氧基矽烷、(3 —乙基氧 二異丙氧基矽烷、(3 —乙基 基二乙醯氧基矽烷、(3—乙 苯基二甲氧基矽烷、(3-乙 苯基二乙氧基矽烷、(3—乙 苯基二正丙氧基矽烷、(3-基苯基二異丙氧基矽烷、(3 甲基苯基二乙醯氧基矽烷、2 ’一基)乙基三甲氧基矽烷、 3’ 一基)乙基三乙氧基矽烷 一 3’ 一基)乙基三正丙氧基 丁烷一 3’ 一基)乙基三異丙 雜環丁垸- 3’一基)乙基三 基氧雜環丁烷一 3’ —基)乙 200915005 環丁烷—3~基)甲基三正丙 丁烷_3 —基)甲基三異丙氧 烷一 3 -基)甲基三乙醯氧基 —3—基)甲基甲基二甲氧基 —3 —基)甲基甲基二乙氧基 —3—基)甲基甲基二正丙氧 烷一3—基)甲基甲基二異丙 丁烷一 3 —基)甲基甲基二乙 環丁烷一 3~基)甲基乙基二 環丁烷一 3 —基)甲基乙基二 環丁烷一3 —基)甲基乙基二 雜環丁烷一 3 -基)甲基乙基 氧雜環丁烷一3 —基)甲基乙 基氧雜環丁烷一 3—基)甲基 基氧雜環丁烷- 3 —基)甲基 基氧雜環丁烷一 3—基)甲基 乙基氧雜環丁烷一 3-基)甲 ''乙基氧雜環丁烷_3-基) —(3’一乙基氧雜環丁烷一 3 (3’一乙基氧雜環丁烷一 、2— (3’一乙基氧雜環丁烷 矽烷、2- (3, 一乙基氧雜環 氧基矽烷'2- (3, 一乙基氧 乙醯氧基矽烷、2— (3’ 一乙 -20- 200915005 基甲基二甲氧基矽烷、2_ (3’ 一乙基氧雜環丁烷—3’ _ 基)乙基甲基二乙氧基矽烷、2- (3’ 一乙基氧雜環丁烷 —3’一基)乙基甲基二正丙氧基矽烷、2- (3,一乙基氧 雜環丁烷一 3’ 一基)乙基甲基二異丙氧基矽烷、2_ (3, -乙基氧雜環丁烷- 3’一基)乙基甲基二乙醯氧基矽烷、 2— (3’一乙基氧雜環丁烷一3’~基)乙基乙基二甲氧基 石夕院、2— (3’ —乙基氧雜環丁院一 3’一基)乙基乙基二 乙氧基矽烷、2- (3,一乙基氧雜環丁烷一 3, 一基)乙基 乙基二正丙氧基矽烷、2—(3’ 一乙基氧雜環丁烷—3’ 一 基)乙基乙基二異丙氧基矽烷、2— (3, 一乙基氧雜環丁 院一 3’一基)乙基乙基一乙酸氧基砂院、2— (3’一乙基 氧雜環丁烷一 3’ 一基)乙基苯基二甲氧基矽烷、2— (3, 一乙基氧雜環丁烷- 3’ 一基)乙基苯基二乙氧基矽烷、2 —(3’ 一乙基氧雜環丁烷一 3’ 一基)乙基苯基二正丙氧基 矽烷、2— (3’ 一乙基氧雜環丁烷—3’_基)乙基苯基二 異丙氧基矽烷、2— (3’ 一乙基氧雜環丁烷—3, -基)乙 基苯基二乙醯氧基矽烷、3— (3’ 一乙基氧雜環丁烷一 3’ 一基)丙基三甲氧基矽烷、3 —(3’ —乙基氧雜環丁烷一 3’ —基)丙基三乙氧基矽烷、3—(3, 一乙基氧雜環丁烷 -3, 一基)丙基三正丙氧基矽烷、3 —(3, 一乙基氧雜環 丁烷一 3’ —基)丙基三異丙氧基矽烷、3 -(3, 一乙基氧 雜環丁院一 3’ 一基)丙基二乙釀氧基砍院、3— ( 3 ’ 一乙 基氧雜環丁烷一 3’一基)丙基甲基二甲氧基矽烷、3- ( 3’ 一乙基氧雜環丁烷一 3’一基)丙基甲基二乙氧基矽烷、 -21 - 200915005 3 - (3, 一乙基氧雜環丁烷一 3’ 一基)丙基甲基二正丙氧 基矽烷、3 —(3, 一乙基氧雜環丁烷一 3’一基)丙基甲基 二異丙氧基砂院、3—(3’ 一乙基氧雜環丁院一 3’ 一基) 丙基甲基二乙醯氧基矽烷、3- (3’―乙基氧雜環丁烷一 3’_基)丙基乙基二甲氧基矽烷、3 - (3’ 一乙基氧雜環 丁烷一 3’ 一基)丙基乙基二乙氧基矽烷、3— (3’ 一乙基 氧雜環丁烷一 3’一基)丙基乙基二正丙氧基矽烷、3—( 3,-乙基氧雜環丁烷-3’-基)丙基乙基二異丙氧基矽烷 、3 - (3, 一乙基氧雜環丁烷_3’ 一基)丙基乙基二乙醯 氧基矽烷、3— (3’ 一乙基氧雜環丁烷一 3’ —基)丙基苯 基二甲氧基矽烷、3— (3’ 一乙基氧雜環丁烷一3’ —基) 丙基苯基二乙氧基矽烷、3_ (3’ 一乙基氧雜環丁烷一 3’ —基)丙基苯基二正丙氧基矽烷、3—(3’_乙基氧雜環 丁烷—3’ 一基)丙基苯基二異丙氧基矽烷、3- (3’一乙 基氧雜環丁烷- 3’-基)丙基苯基二乙醯氧基矽烷等。 該等中,就提高敏輻射線性樹脂組成物之敏感度、增 大顯像裕度、改善耐熱性之觀點而言,較好使用3 —縮水 甘油氧基丙基三甲氧基矽烷、3 -縮水甘油氧基丙基三乙 氧基矽烷、3 —縮水甘油氧基丙基甲基二甲氧基矽烷、2-(3’,4’_環氧基環己基)乙基三甲氧基矽烷、2- (3’,4, _環氧基環己基)乙基二乙氧基砂院、3 - (3乙基氧 雜環丁烷—3’ —基)丙基三甲氧基矽烷或3— (3,一乙基 氧雜環丁烷- 3’-基)丙基三乙氧基矽烷。該等化合物( a 1 )可單獨使用一種或組合兩種以上使用。 -22- 200915005 化合物(a2)中可加成反應於環氧乙烷基或氧雜環丁 烷基之官能基可舉例爲例如羥基、锍基、胺基等。該胺基 較好爲一級胺基或二級胺基。至於水解性基可舉例爲例如 院氧基、醯氧基、院氧基烷氧基等。該院氧基所具有之碳 數較好爲1〜6,醯氧基所具有之碳數較好爲2〜6,烷氧基 烷氧基所具有之碳數較好爲2〜8。 化合物(a2)較好爲以下式(2)表示之化合物: (X2Y2)dSiR3eR4f (2) (式(2)中’ X2爲羥基、羥基苯基、羥基苯基羰基氧基 '锍基或胺基,Y2爲單鍵、亞甲基、碳數2〜6之伸烷基 或以下式(2-1)表示之二價基: -Y3- Z- Y4- (2-1) (式(2-1)中’ Y3爲亞甲基、碳數2〜6之伸烷基或碳數 6〜12之伸芳基’ γ4爲單鍵、亞甲基或碳數2〜6之伸烷基 ’ z爲硫原子或羥基亞甲基,但式(2 -1 )之左側與X2基 鍵結), R3爲碳數1~6之烷氧基、碳數2〜6之醯氧基或碳數 2〜8之烷氧基烷氧基,R4爲碳數1~6之烷基或碳數6〜12 之芳基,d及e各獨立爲1〜3之整數,f爲〇~2之整數, {旦 d + e + f=4 ) 〇 上式(2)中X2之羥基苯基較好爲4 -羥基苯基,至於 經基苯基羰基氧基較好爲對·羥基苯基羰基氧基。X2之胺 -23- 200915005 基可爲一級胺基或二級胺基,可舉例爲例如一級胺基、N -苯基胺基、N— 2-(胺基乙基)胺基等。γ2較好爲亞 甲基或碳數2或3之伸烷基。Y2之碳數2或3之伸烷基 可舉例爲例如伸乙基、三亞甲基等。R3較好爲碳數1~3 之烷氧基、碳數2〜4之醯氧基或碳數2〜6之烷氧基烷氧基 ,可舉例爲例如甲氧基、乙氧基、正丙氧基、異丙氧基、 乙醯基、甲氧基乙氧基等。R4較好爲碳數1〜4之烷基或 碳數6〜8之芳基,可舉例爲例如甲基、乙基、苯基等。 化合物(a2 )之具體例分別舉例爲含有羥基之矽烷化 合物爲例如羥基甲基三甲氧基矽烷、羥基甲基三乙氧基矽 烷、羥基甲基三正丙氧基矽烷、羥基甲基三異丙氧基矽烷 、羥基甲基三乙醯氧基矽烷、羥基甲基三(甲氧基乙氧基 )矽烷、羥基甲基甲基二甲氧基矽烷、羥基甲基甲基二乙 氧基矽烷、羥基甲基甲基二正丙氧基矽烷、羥基甲基甲基 二異丙氧基矽烷、羥基甲基甲基二乙醯氧基矽烷、羥基甲 基乙基二甲氧基矽烷、羥基甲基乙基二乙氧基矽烷、羥基 甲基乙基二正丙氧基矽烷、羥基甲基乙基二異丙氧基矽烷 、羥基甲基乙基二乙醯氧基矽烷、羥基甲基乙基二(甲氧 基乙氧基)矽烷、羥基甲基苯基二甲氧基矽烷、羥基甲基 苯基二乙氧基矽烷、羥基甲基苯基二正丙氧基矽烷、羥基 甲基苯基二異丙氧基矽烷、羥基甲基苯基二乙醯氧基矽烷 、羥基甲基苯基二(甲氧基乙氧基)矽烷、2-羥基乙基 三甲氧基矽烷、2-羥基乙基三乙氧基矽烷、2-羥基乙基 三正丙氧基矽烷、2-羥基乙基三異丙氧基矽烷' 2-羥基 -24- 200915005 乙基三乙醯氧基矽烷、2—羥基乙基三(甲氧基乙氧 矽烷、2-羥基乙基甲基二甲氧基矽烷、2 —羥基乙基 二乙氧基矽烷、2 -羥基乙基甲基二正丙氧基矽烷、2 基乙基甲基二異丙氧基矽烷、2—羥基乙基甲基二乙 基矽烷、2—羥基乙基乙基二甲氧基矽烷、2 -羥基乙 基二乙氧基矽烷、2-羥基乙基乙基二正丙氧基矽烷 羥基乙基乙基二異丙氧基矽烷、2-羥基乙基乙基二 氧基矽烷、2—羥基乙基乙基二(甲氧基乙氧基)矽| —羥基乙基苯基二甲氧基矽烷、2—羥基乙基苯基二 基矽烷、2—羥基乙基苯基二正丙氧基矽烷、2—羥基 苯基二異丙氧基矽烷、2—羥基乙基苯基二乙醯氧基 、2-羥基乙基苯基二(甲氧基乙氧基)矽烷、3 —羥 基三甲氧基矽烷、3-羥基丙基三乙氧基矽烷' 3—羥 基三正丙氧基矽烷、3 -羥基丙基三異丙氧基矽烷、3 基丙基三乙醯氧基矽烷、3 -羥基丙基三(甲氧基乙 )矽烷、3 —羥基丙基甲基二甲氧基矽烷、3 —羥基丙 基二乙氧基矽烷、3-羥基丙基甲基二正丙氧基矽烷’ 羥基丙基甲基二異丙氧基矽烷、3—羥基丙基甲基二 氧基矽烷' 3 -羥基丙基乙基二甲氧基矽烷、3-羥基 乙基二乙氧基矽烷、3—羥基丙基乙基二正丙氧基矽戈 —羥基丙基乙基二異丙氧基矽烷、3 -羥基丙基乙基 醯氧基矽烷、3—羥基丙基乙基二(甲氧基乙氧基) 、3-羥基丙基苯基二甲氧基矽烷、3-羥基丙基苯基 氧基矽烷、3-羥基丙基苯基二正丙氧基矽烷、3-羥 基) 甲基 -羥 酶氧 基乙 、2 — 乙醯 ξ、2 乙氧 乙基 矽烷 基丙 基丙 -羥 氧基 基甲 3 — 乙醯 丙基 ! ' 3 二乙 矽烷 二乙 基丙 -25- 200915005 基苯基二異丙氧基矽烷、3-羥基丙基苯基二乙醯氧 烷、3 —羥基丙基苯基二(甲氧基乙氧基)矽烷、4一 苯基三甲氧基矽烷、4-羥基苯基三乙氧基矽烷、4-苯基三正丙氧基矽烷、4-羥基苯基三異丙氧基矽烷 羥基苯基三乙醯氧基矽烷、4-羥基苯基三(甲氧基 基)矽烷、4一羥基苯基甲基二甲氧基矽烷、4-羥基 甲基二乙氧基矽烷、4-羥基苯基甲基二正丙氧基矽充 -羥基苯基甲基二異丙氧基矽烷、4一羥基苯基甲基 醯氧基矽烷、4一羥基苯基乙基二甲氧基矽烷、4一羥 基乙基二乙氧基矽烷、4-羥基苯基乙基二正丙氧基 、4一羥基苯基乙基二異丙氧基矽烷、4一羥基苯基乙 乙醯氧基矽烷、4-羥基苯基乙基二(甲氧基乙氧基 烷、4-羥基苯基苯基二甲氧基矽烷、4一羥基苯基苯 乙氧基矽烷、4一羥基苯基苯基二正丙氧基矽烷、4一 苯基苯基二異丙氧基矽烷、4 -羥基苯基苯基二乙醯 矽烷、4-羥基苯基苯基二(甲氧基乙氧基)矽烷、4 基- 5-(對-羥基苯基羰基氧基)戊基三甲氧基矽劳 -羥基- 5 -(對-羥基苯基羰基氧基)戊基三乙氧 烷、4 —羥基一 5-(對一羥基苯基羰基氧基)戊基三 氧基矽烷、4 -羥基一 5-(對-羥基苯基羰基氧基) 三異丙氧基矽烷、4一羥基一 5-(對一羥基苯基羰基 )戊基三乙醯氧基矽烷、4一羥基一 5-(對一羥基苯 基氧基)戊基三(甲氧基乙氧基)矽烷、4 -羥基一 5 對-羥基苯基羰基氧基)戊基甲基二甲氧基矽烷、4 基矽 羥基 羥基 .4 — 乙氧 苯基 έ ' 4 二乙 基苯 矽烷 基二 )矽 基二 羥基 氧基 一羥 c ' 4 基5夕 正丙 戊基 氧基 基羰 —( 一羥 -26- 200915005 基一 5—(對-羥基苯基羰基氧基)戊基甲基二乙氧基矽 烷、4一羥基一 5-(對一羥基苯基羰基氧基)戊基甲基二 正丙氧基矽烷、4 —羥基—5—(對一羥基苯基羰基氧基) 戊基甲基二異丙氧基矽烷、4一羥基—5—(對一羥基苯基 羰基氧基)戊基甲基二乙醯氧基矽烷、4一羥基一 5—(對 一羥基苯基羰基氧基)戊基乙基二甲氧基矽烷、4-羥基 一 5—(對一羥基苯基羰基氧基)戊基乙基二乙氧基矽烷 、4 一羥基一 5-(對—羥基苯基羰基氧基)戊基乙基二正 丙氧基矽烷、4 -羥基一 5—(對一羥基苯基羰基氧基)戊 基乙基二異丙氧基矽烷、4一羥基一 5_ (對—羥基苯基羰 基氧基)戊基乙基二乙醯氧基矽烷、4 —羥基一 5—(對— 羥基苯基羰基氧基)戊基乙基二(甲氧基乙氧基)矽烷、 4 一羥基一 5-(對—羥基苯基羰基氧基)戊基苯基二甲氧 基矽烷、4一羥基-5-(對一羥基苯基羰基氧基)戊基苯 基二乙氧基矽烷、4~羥基_5_ (對一羥基苯基羰基氧基 )戊基苯基二正丙氧基矽烷、4一羥基_5 —(對一羥基苯 基羰基氧基)戊基苯基二異丙氧基矽烷、4 -羥基一 5—( 對-羥基苯基羯基氧基)戊基苯基二乙醯氧基矽烷、4-羥基一 5— (對-淫基苯基羰基氧基)戊基苯基二(甲氧 基乙氧基)砍院、以下式(a2 _ 1 )表示之化合物等: HO - Y3 - S 〜Y4 _ Si(〇R)3 (a2-l) (式(a2 — 1 )中’ Y3以及γ4與上式(2 _丨)中相同意 義’R各獨立爲碳數1〜6之烷基或碳數2~6之醯基); -27- 200915005 含有锍基之化合物爲例如锍基甲基三甲氧基矽烷 基甲基三乙氧基矽烷、锍基甲基三正丙氧基矽烷、锍 基三異丙氧基矽烷、锍基甲基三乙醯氧基矽烷、锍基 三(甲氧基乙氧基)矽烷、巯基甲基甲基二甲氧基矽 锍基甲基甲基二乙氧基矽烷、锍基甲基甲基二正丙氧 烷、锍基甲基甲基二異丙氧基矽烷、锍基甲基甲基二 氧基矽烷、锍基甲基乙基二甲氧基矽烷、锍基甲基乙 乙氧基矽烷、酼基甲基乙基二正丙氧基矽烷、锍基甲 基二異丙氧基矽烷、锍基甲基乙基二乙醯氧基矽烷、 甲基乙基二(甲氧基乙氧基)矽烷、巯基甲基苯基二 基矽烷、锍基甲基苯基二乙氧基矽烷、锍基甲基苯基 丙氧基矽烷、巯基甲基苯基二異丙氧基矽烷、锍基甲 基二乙醯氧基矽烷、锍基甲基苯基二(甲氧基乙氧基 烷、2 —锍基乙基三甲氧基矽烷、2 -巯基乙基三乙氧 烷、2_锍基乙基三正丙氧基矽烷、2 -锍基乙基三異 基矽烷、2 —锍基乙基三乙醯氧基矽烷、2—锍基乙基 甲氧基乙氧基)矽烷、2—锍基乙基甲基二甲氧基矽充 —锍基乙基甲基二乙氧基矽烷、2-锍基乙基甲基二 氧基矽烷、2-锍基乙基甲基二異丙氧基矽烷、2_巯 基甲基二乙醯氧基矽烷、2 —锍基乙基乙基二甲氧基 、2 —巯基乙基乙基二乙氧基矽烷、2—巯基乙基乙基 丙氧基矽烷、2 —锍基乙基乙基二異丙氧基矽烷、2-乙基乙基二乙醯氧基矽烷、2 -巯基乙基乙基二(甲 乙氧基)矽烷、2 -毓基乙基苯基二甲氧基矽烷、2 - 、巯 基甲 甲基 院、 基矽 乙醯 基二 基乙 锍基 甲氧 二正 基苯 )矽 基矽 丙氧 三( !、2 正丙 基乙 矽烷 二正 毓基 氧基 巯基 -28- 200915005 乙基苯基二乙氧基矽烷、2 -锍基乙基苯基二正丙氧基矽 烷、2_锍基乙基苯基二異丙氧基矽烷、2—锍基乙基苯基 二乙醯氧基矽烷、2-锍基乙基苯基二(甲氧基乙氧基) 矽烷、3 -毓基丙基三甲氧基矽烷、3 -锍基丙基三乙氧基 矽烷、3 -毓基丙基三正丙氧基矽烷、3 —巯基丙基三異丙 氧基矽烷、3 —锍基丙基三乙醯氧基矽烷、3 -锍基丙基三 (甲氧基乙氧基)矽烷、3—锍基丙基甲基二甲氧基矽烷 、3-锍基丙基甲基二乙氧基矽烷、3-锍基丙基甲基二正 丙氧基矽烷、3 -锍基丙基甲基二異丙氧基矽烷、3 -锍基 丙基甲基二乙醯氧基矽烷、3 -锍基丙基乙基二甲氧基矽 烷、3-巯基丙基乙基二乙氧基矽烷、3_锍基丙基乙基二 正丙氧基矽烷、3_锍基丙基乙基二異丙氧基矽烷、3_锍 基丙基乙基二乙醯氧基矽烷、3_巯基丙基乙基二(甲氧 基乙氧基)矽烷、3 -巯基丙基苯基二甲氧基矽烷、3 —锍 基丙基苯基二乙氧基矽烷、3 -锍基丙基苯基二正丙氧基 矽烷、3-锍基丙基苯基二異丙氧基矽烷、3-锍基丙基苯 基二乙醯氧基矽烷、3—锍基丙基苯基二(甲氧基乙氧基 )矽烷等; 含胺基之矽烷化合物可舉例爲例如胺基甲基三甲氧基 矽烷、胺基甲基三乙氧基矽烷、胺基甲基三正丙氧基矽烷 、胺基甲基三異丙氧基矽烷、胺基甲基三乙醯氧基矽烷、 胺基甲基三(甲氧基乙氧基)矽烷、胺基甲基甲基二甲氧 基矽烷 '胺基甲基甲基二乙氧基矽烷、胺基甲基甲基二正 丙氧基矽烷、胺基甲基甲基二異丙氧基矽烷、胺基甲基甲 -29- 200915005 基二乙醯氧基矽烷、胺基甲基乙基二甲氧基矽烷、胺基甲 基乙基二乙氧基矽烷、胺基甲基乙基二正丙氧基矽烷、胺 基甲基乙基二異丙氧基矽烷、胺基甲基乙基二乙醯氧基矽 烷、胺基甲基乙基二(甲氧基乙氧基)矽烷、胺基甲基苯 基二甲氧基矽烷、胺基甲基苯基二乙氧基矽烷、胺基甲基 苯基二正丙氧基矽烷、胺基甲基苯基二異丙氧基矽烷、胺 基甲基苯基二乙醯氧基矽烷、胺基甲基苯基二(甲氧基乙 氧基)矽烷、2-胺基乙基三甲氧基矽烷、2 -胺基乙基三 乙氧基矽烷、2 -胺基乙基三正丙氧基矽烷、2 -胺基乙基 三異丙氧基矽烷、2 -胺基乙基三乙醯氧基矽烷、2-胺基 乙基三(甲氧基乙氧基)矽烷、2—胺基乙基甲基二甲氧 基矽烷、2 -胺基乙基甲基二乙氧基矽烷、2_胺基乙基甲 基二正丙氧基矽烷、2 -胺基乙基甲基二異丙氧基矽烷、2 —胺基乙基甲基二乙醯氧基矽烷、2—胺基乙基乙基二甲 氧基矽烷、2—胺基乙基乙基二乙氧基矽烷、2_胺基乙基 乙基二正丙氧基矽烷、2—胺基乙基乙基二異丙氧基矽烷 、2 —胺基乙基乙基二乙醯氧基矽烷、2 -胺基乙基乙基二 (甲氧基乙氧基)矽烷、2 —胺基乙基苯基二甲氧基矽烷 、2—胺基乙基苯基二乙氧基矽烷、2-胺基乙基苯基二正 丙氧基矽烷、2-胺基乙基苯基二異丙氧基矽烷、2-胺基 乙基苯基二乙醯氧基矽烷、2 -胺基乙基苯基二(甲氧基 乙氧基)矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基 三乙氧基矽烷、3 -胺基丙基三正丙氧基矽烷、3 -胺基丙 基三異丙氧基矽烷、3 -胺基丙基三乙醯氧基矽烷、3-胺 -30- 200915005 基丙基三(甲氧基乙氧基)矽烷、3 —胺基丙基甲基二甲 氧基矽烷、3 —胺基丙基甲基二乙氧基矽烷、3—胺基丙基 甲基一正丙氧基砍院、3-胺基丙基甲基二異丙氧基砍院 、3 —胺基丙基甲基二乙醯氧基矽烷、3—胺基丙基乙基二 甲氧基矽烷、3 -胺基丙基乙基二乙氧基矽烷、3 -胺基丙 基乙基二正丙氧基矽烷、3—胺基丙基乙基二異丙氧基矽 垸、3 —胺基丙基乙基一乙酿氧基砂院、3—胺基丙基乙基 二(甲氧基乙氧基)矽烷、3 -胺基丙基苯基二甲氧基矽 烷、3—胺基丙基苯基二乙氧基矽烷、3—胺基丙基苯基二 正丙氧基矽烷、3—胺基丙基苯基二異丙氧基矽烷、3-胺 基丙基苯基二乙醯氧基矽烷、3-胺基丙基苯基二(甲氧 基乙氧基)矽烷、N — 2—(胺基乙基)一 3 —胺基丙基三 甲氧基砂院、N - 2—(胺基乙基)—3—胺基丙基三乙氧 基矽烷、N— 2—(胺基乙基)-3 -胺基丙基三正丙氧基 矽烷、N - 2—(胺基乙基)一 3—胺基丙基三異丙氧基矽 烷、N—2—(胺基乙基)一 3-胺基丙基三乙醯氧基矽烷 ' N- 2-(胺基乙基)一3_胺基丙基三(甲氧基乙氧基 )矽烷、N— 2— (胺基乙基)一3 —胺基丙基甲基二甲氧 基矽烷、N - 2-(胺基乙基)一3 -胺基丙基甲基二乙氧 基矽烷、N— 2-(胺基乙基)—3 —胺基丙基甲基二正丙 氧基矽烷、N— 2-(胺基乙基)—3-胺基丙基甲基二異 丙氧基矽烷、N-2—(胺基乙基)一 3—胺基丙基甲基二 乙酸氧基砂院、N— 2—(胺基乙基)—3—胺基丙基乙基 —甲氧基砂院、N—2_ (胺基乙基)一 3 —胺基丙基乙基 -31 - 200915005 二乙氧基矽烷、N— 2_ (胺基乙基)—3—胺基丙基乙基 二正丙氧基矽烷、N — 2—(胺基乙基)—3 —胺基丙基乙 基二異丙氧基矽烷、N - 2_ (胺基乙基)一 3-胺基丙基 乙基二乙醯氧基矽烷、N— 2—(胺基乙基)一 3 -胺基丙 基乙基二(甲氧基乙氧基)矽烷、N— 2— (胺基乙基) 一 3—胺基丙基苯基一甲氧基砂院、N_2—(胺基乙基) —3 —胺基丙基苯基二乙氧基矽烷、N— 2-(胺基乙基) —3—胺基丙基苯基二正丙氧基矽烷、N—2-(胺基乙基 )_3 -胺基丙基苯基二異丙氧基矽烷、N— 2—(胺基乙 基)一3 —胺基丙基苯基二乙醯氧基矽烷、N - 2—(胺基 乙基)—3 —胺基丙基苯基二(甲氧基乙氧基)矽烷、N 一苯基_3 —胺基丙基三甲氧基矽烷、N —苯基一 3—胺基 丙基三乙氧基矽烷、N -苯基-3 -胺基丙基三正丙氧基 矽烷、N-苯基一 3—胺基丙基三異丙氧基矽烷、N—苯基 一 3 -胺基丙基三乙醯氧基矽烷、N —苯基—3—胺基丙基 三(甲氧基乙氧基)矽烷、N-苯基一 3 —胺基丙基甲基 二甲氧基矽烷、N—苯基一 3 —胺基丙基甲基二乙氧基矽 烷、N —苯基一 3—胺基丙基甲基二正丙氧基矽烷、N —苯 基一 3 —胺基丙基甲基二異丙氧基矽烷、N_苯基一 3 —胺 基丙基甲基二乙醯氧基矽烷、N -苯基一 3 —胺基丙基乙 基二甲氧基矽烷、N—苯基一 3 —胺基丙基乙基二乙氧基 矽烷、N —苯基—3—胺基丙基乙基二正丙氧基矽烷、N — 苯基—3_胺基丙基乙基二異丙氧基矽烷、N -苯基_3-胺基丙基乙基二乙酸氧基砂院、N_苯基一 3 —胺基丙基 -32- 200915005 乙基二(甲氧基乙氧基)矽烷、N—苯基—3 —胺基丙基 苯基二甲氧基矽烷、N-苯基一 3 -胺基丙基苯基二乙氧 基矽烷、N —苯基—3-胺基丙基苯基二正丙氧基矽烷、N 一苯基一 3—胺基丙基苯基二異丙氧基矽烷、N —苯基一 3 一胺基丙基苯基二乙醯氧基矽烷、N-苯基-3 -胺基丙 基苯基二(甲氧基乙氧基)矽烷等。 此等中,就所得層間絕緣膜或微透鏡之耐熱性、透明 性、抗剝離液性等方面而言較適用者爲羥基甲基三甲氧基 矽烷、羥基乙基三甲氧基矽烷、三甲氧基矽烷基丙基-1 —(4’ 一羥基苯基)丙基硫醚、三甲氧基矽烷基丙基- 1 一 (2, -羥基苯基)丙基硫醚、三甲氧基矽烷基丙基一 2 一 (4’一羥基苯基)丙基硫醚、三甲氧基矽烷基丙基一 2 —(2,一羥基苯基)丙基硫醚、三甲氧基矽烷基乙基一( 4’ 一羥基苯基)硫醚、三甲氧基矽烷基丙基一 (4’ 一羥基 苯基)硫醚、3 -锍基丙基三甲氧基矽烷、3—巯基丙基三 乙氧基矽烷或胺基甲基三甲氧基矽烷。該等化合物(a2) 可單獨使用一種或組合兩種以上使用。 聚矽氧烷(A )可爲僅含有如上述化合物(a 1 )以及 (a2 )之矽烷化合物之水解縮合物,或除化合物(a 1 )及 (a2 )外亦可進一步含有(a3 )除(al ) 、( a2 )以外之 水解性矽烷化合物之矽烷化合物之水解縮合物。 上述化合物(a3)較好爲以下式(3)表示之砂院化 合物:200915005 IX. [Technical Field] The present invention relates to a radiation sensitive linear resin composition, An interlayer insulating film, a microlens, and a method of forming the same.  [Prior Art] A thin film transistor (hereinafter referred to as "TFT") type liquid crystal display element or magnetic head element, Integrated circuit components, In electronic parts such as solid-state imaging elements, Generally, an interlayer insulating film is provided to insulate the wirings arranged in a layer.  As a material for forming an interlayer insulating film, Since it is preferred that the number of steps for obtaining the necessary pattern shape is small and has sufficient flatness, Therefore, a linear composition of a sensitive radiation is widely used (refer to Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. 2001-343743).  In the above electronic component, for example, a TFT type liquid crystal display element is manufactured by a step of forming a transparent electrode film on the interlayer insulating film to form a liquid crystal alignment film thereon. Therefore, the interlayer insulating film is exposed to high temperature conditions in the step of forming the transparent electrode film, Exposed to the stripping solution of the photoresist used in electrode pattern formation, Therefore, it is necessary to have sufficient resistance to these.  In recent years, The TFT type liquid crystal display element is large-screened, High brightness, Highly refined, High-speed response, Thinning and other developments, The composition for forming an interlayer insulating film to be used therein is required to have high sensitivity. And the interlayer insulating film formed requires low dielectric constant, High performance, such as high transmittance, is higher than ever.  As such a low dielectric constant, The high-interference interlayer insulating film is known to have a combination of -5-200915005 acrylic resin and diazonium (JP-2005-320542) or a combination of a phenol resin and a diazonium (Japanese Patent Laid-Open No. 2003-25 5 546). however, These materials may have an out gas during the heating step after film formation. There are problems such as reduced transparency.  Furthermore, In the developing step when the interlayer insulating film is formed from the previously known sensitive radiation linear resin composition, Even if the development time is only slightly more than the optimal time, There is a case where the pattern is peeled off.  in this way, Forming an interlayer insulating film from a sensitive radiation linear resin composition,  As a composition, there is a demand for high sensitivity. Further, in the dominant step in the forming step, even if the developing time is longer than the specific time, the pattern does not peel off to exhibit good adhesion, and the interlayer insulating film formed by the film is required to have high heat resistance. High solvent resistance, High dielectric ratio, High transmittance, etc. However, it has not been known so far that there is a sensitive radiation linear resin composition that satisfies these requirements.  on the other hand, As a fax machine, Electronic photocopying machine, An optical system of an imaging optical system or an optical fiber connector of a wafer color filter such as a solid-state imaging element, A microlens having a lens diameter of about 3 to 100 / z m or a microlens array in which the microlenses are regularly arranged is used.  Formation of a microlens or microlens array, The following methods are known: After forming a lens equivalent to the lens, Melt and flow by heat treatment, In this way, the microlens is utilized, Or a method of making a molten flow lens pattern as a mask by dry etching in the shape of a substrate transfer lens. The above-mentioned lens pattern is formed by using a sensitive radiation linear resin composition (refer to Japanese Patent Application Laid-Open No. Hei No. Hei No. Hei No. Hei.  but, An element formed with the microlens or microlens array as described above is then -6-200915005, in order to remove various insulating films on the bonding pads which become wiring forming portions, And applying a planarizing film and a photoresist film for etching, Use the desired mask to expose, Imaging, The etching photoresist that removes the pad portion is then 'by' removing the planarization film or various insulating films by etching, It is supplied to the step of exposing the portion of the bonding pad. Therefore, the solvent resistance and heat resistance of the microlens or microlens array in the coating film forming step and the etching step of the planarizing film and the etching photoresist become necessary.  The sensitivity of the linear resin composition used to form the microlenses is highly sensitive. And in order for the microlens formed therefrom to have a desired radius of curvature, Requires high heat resistance, High transmittance and so on.  also, a microlens obtained from a previously known sensitive radiation linear resin composition, In the imaging step at the time of formation, Even if the development time is only slightly more than the optimal time, Since the developing solution is immersed between the pattern and the substrate, peeling is liable to occur. Therefore, it is necessary to strictly control the development time. There are problems with product yield.  As above, The self-sensitive radiation linear resin composition forms a microlens, As a composition, there is a high sensitivity. And in the developing step in the forming step, even if the developing time is longer than the specific time, It also does not cause pattern peeling to exhibit good adhesion and requires a good melt shape (required radius of curvature) as a microlens, High heat resistance, High solvent resistance, High transmittance, However, there is no known radiation sensitive linear resin composition that satisfies these requirements.  Also as high heat resistance, High transparency, Low dielectric materials are known as siloxane polymers. It is also known to use it for an interlayer insulating film (JP-A-2006-178436). however, In order to exhibit sufficient resistance to 200915005, it is necessary for the siloxane to fully crosslink the siloxane polymer. Therefore, it must be fired at a high temperature of 2500 to 300 °C. Therefore, there are problems in the steps that are not applicable to the production of display elements. also, The siloxane polymer has been tried on micro-lens, But so far there are no industrially successful cases.  SUMMARY OF THE INVENTION The present invention has been made based on the above circumstances. therefore, The object of the present invention is to provide a radiation sensitive linear resin composition, The composition can be fired under 250 ° C, When used to form an interlayer insulating film, Can form high heat resistance, High solvent resistance, High transmittance, When a low dielectric constant interlayer insulating film is used to form a microlens, A microlens having a high transmittance and a good melt shape can be formed.  Another object of the present invention is to provide a radiation sensitive linear resin composition which has a high sensitivity to radiation sensitivity. Exceeding the optimum development time in the developing step also has a development margin which can form a good pattern shape. Further, it is easy to form a pattern-like film excellent in adhesion.  Still another object of the present invention is to provide a method of forming an interlayer insulating film and a microlens using the above-described radiation sensitive resin composition.  Still another object of the present invention is to provide an interlayer insulating film and a microlens formed by the method of the present invention.  Still other objects and advantages of the present invention will become apparent from the following description.  According to the invention, The above objects and advantages of the present invention are achieved by the following: a sensitive radiation linear resin composition, It contains:  -8- 200915005 [A] having at least one group selected from the group consisting of oxiranyl groups and oxetane groups, and an addition reaction capable of reacting with an oxiranyl group or an oxetane group Functional polyoxyalkylene, And [B ] 1, 2 - Diazo hydrazine compound.  second, The above objects and advantages of the present invention are attained by the method of forming an interlayer insulating film or a microlens comprising the following steps in the following sequence:  (1) a step of forming a coating film of the above-mentioned radiation-sensitive linear resin composition on a substrate,  (2) a step of irradiating at least a portion of the coating film with radiation,  (3) a step of developing a coating film after irradiation of the radiation, And (4) a step of heating the coated film after the development.  third, Further, the above objects and advantages of the present invention are attained by the interlayer insulating film or microlens formed by the above method.  [Embodiment] The sensitive radiation linear resin composition of the present invention is described in detail below.  [A] component The component [A] used in the present invention is a group having at least one selected from the group consisting of an ethylene oxide group and an oxetane group, and an addition reaction to an ethylene oxide group or A polyoxyalkylene having a functional group of an oxetane group.  The functional group which can be added to the epoxy group or the oxetane group can be exemplified by, for example, a hydroxyl group. 锍基, Amine and the like.  -9- 200915005 The component [A] used in the present invention is preferably, for example, a hydrolysis condensate (hereinafter referred to as polyoxane [A]) containing the following decane compound:  (al) a decane compound having at least one group selected from the group consisting of an oxiranyl group and an oxetanyl group and a hydrolyzable group (hereinafter referred to as "compound (al)"), And (a2) a compound having a functional group capable of addition reaction to an oxiranyl group or an oxetanyl group and a hydrolyzable group (hereinafter referred to as "compound (a2)") (a1) is preferably a compound (a1). A compound represented by the following formula (1):  (X1 YbaSiR^R2.  (1) (in equation (1), X1 is an oxirane group, Glycidyl group, Glycidyloxy, 3, 4-epoxycyclohexyl or 3-oxetanyl, However, the carbon at the 3-position of the 3-oxetane group may be substituted by an alkyl group having 1 to 6 carbon atoms. Y1 is a single button, a methylene group or an alkylene group having a carbon number of 2 to 6, R1 is an alkoxy group having 1 to 6 carbon atoms or a decyloxy group having 2 to 6 carbon atoms. R2 is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. a and b are each an integer of 1 to 3, c is an integer of 〇~2, And a+b+c=4).  The alkyl group having 1 to 6 carbon atoms which is substituted at the 3-position carbon of the 3-oxetanyl group of X1 in the above formula (1) is preferably an alkyl group having 1 to 3 carbon atoms. For example, a methyl group, Ethyl, N-propyl and the like. Y1 is preferably a methyl group or an alkylene group having 2 or 3 carbon atoms. The alkylene group having 2 or 3 carbon atoms of Y1 can be exemplified by, for example, an ethyl group. Trimethylene and the like. R1 is preferably an alkoxy group having 1 to 3 carbon atoms or a mercaptooxy group having 2 to 4 carbon atoms. For example, methoxy, Ethoxylate, N-propoxy,  -10- 200915005 Third butoxy group, Ethyl group and so on. R2 is preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 8 carbon atoms. For example, a methyl group, Ethyl, Phenyl and the like.  Specific examples of such a compound (a 1 ) are exemplified by a decane compound containing an oxirane group. For example, glycidoxymethyltrimethoxydecane,  Glycidoxymethyltriethoxydecane, Glycidoxymethyltri-n-propoxydecane, Glycidoxymethyl triisopropoxy decane, Shrunken oleyloxymethyltriethoxypropane, Glycidoxymethylmethyldimethoxydecane, Glycidoxymethylmethyldiethoxy decane, Reduced oleyloxymethylmethyldi-n-propoxy oxane, Glycidoxymethylmethyldiisopropoxy oxime, Glycidoxymethylmethyldiethoxypropane, Glycidoxymethylethyldimethoxy sand sand, Glycidyloxymethyldiethoxy decane, Glycidyloxymethylethyldi-n-propoxy broth Glycidyloxymethylethyldiisopropoxy sylvestre 'glycidyloxymethylethyldiethoxypropane, Glycidyloxymethylphenyl dimethoxy sand, Glycidoxymethylphenyldiethoxylate, Shrinkage glyceryloxymethylphenyl di-n-propoxy oxalate, Glycidyloxymethylphenyl diisopropoxy sand pot, Glycidoxymethylphenyldiethoxycarbonyl oxalate, 2--glycidoxyethyl trimethoxy sand yard, 2-glycidyloxyethyltriethoxy chopping, 2-glycidoxyethyldi-n-propenyl decane, 2-glycidoxyethyl triisopropoxy decane, 2-hydrated oleyloxyethyltriethoxypropane, 2-glycidoxyethylmethyldimethoxydecane, 2-glycidoxyethyl methyl diethoxy sand court, 2 - glycidyloxyethyl methyl di-n-propoxy sand, 2-dihydrated oleyloxyethyl methyl diisopropoxy decane, 2-glycidoxyethyl -11 - 200915005 methyl diethoxy decane, 2--glycidoxyethyl ethyl dimethyl oxide sand pot, 2-glycidoxyethylethyldiethoxylate, 2-glycidoxyethylethyldi-n-propoxy oxane, 2_glycidyloxyethylethyldiisopropoxydecane, 2-glycidoxyethylethyldiethoxypropane, 2-glycidoxyethylphenyldimethoxydecane, 2-glycidoxyethylphenyldiethoxydecane, 2-glycidyloxyethylphenyldi-n-propoxy decane, 2 - glycidyloxyethyl phenyl diisopropoxy decane, 2-glycidoxyethylphenyldiethylphosphonium decane, 3-glycidoxypropyltrimethoxydecane, 3 a glycidyloxypropyl triethoxy decane, 3-glycidoxypropyltri-n-propoxy oxane, 3-glycidoxypropyl triisopropoxy decane, 3-glycidoxypropyltriethoxypropane, 3-glycidoxypropylmethyldimethoxydecane, 3-glycidoxypropylmethyldiethoxy decane, 3 — glycidoxypropylmethyldi-n-propoxy broth, 3-glycidoxypropylmethyldiisopropoxydecane, 3 glycidoxy propyl methyl diethoxy decane, 3-glycidoxypropylethyldimethoxydecane, 3-glycidoxypropylethyldiethoxylate, 3-glycidoxypropylethyldi-n-propoxy oxane, 3 glycidyloxypropyl ethyl diisopropoxy decane, 3-glycidoxypropylethyldiethoxydecane, 3-glycidoxypropyl phenyl dimethoxy decane, 3-glycidoxypropyl phenyl diethoxy government, 3-glycidyl propyl phenyl di-n-propoxy decane, 3-glycidyl phenyl diisopropoxy decane, 3-glycidoxypropylphenyl-ethyloxypropane, (3, 4-epoxycyclohexyl)methyltrimethoxy sand finish -12- 200915005, (3, 4-epoxycyclohexyl)methyltriethoxydecane, (3, 4-oxycyclohexyl)methyltri-n-propoxy decane, (3, 4-epoxy)methyltriethoxypropane, (3, 4-epoxycyclohexyl)methyldimethoxydecane, (3, 4-epoxycyclohexyl)methylmethyl ethoxy decane, (3, 4-epoxycyclohexyl)methylmethyldi-n-decane, (3, 4-epoxycyclohexyl)methylmethyldiethoxyoxane, (3, 4-epoxycyclohexyl)methylethyldimethoxydecane 3, 4-epoxycyclohexyl)methylethyldiethoxydecane, (3, 4-oxocyclohexyl)methylethyldi-n-propoxy decane, (3, 4-cyclocyclohexyl)methylethyldiethoxypropane, (3, 4-epoxy)methylphenyldimethoxydecane, (3, 4-epoxycyclohexylphenyl diethoxy decane, (3, 4-epoxycyclohexyl)methyl di-n-propoxy decane, (3, 4-epoxycyclohexyl)methylphenyl decyloxydecane, twenty three', 4'-epoxycyclohexyl)ethyltrimethyl decane, twenty three', 4'-epoxycyclohexyl)ethyltriethoxy oxime (3', 4'-epoxycyclohexyl)ethyltri-n-propoxy decane, twenty three', 4'-epoxycyclohexyl)ethyltriethoxypropane, 2-(-epoxycyclohexyl)ethylmethyldimethoxydecane, twenty three',  Epoxycyclohexyl)ethylmethyldiethoxydecane, twenty three', 4' oxycyclohexyl)ethylmethyldi-n-propoxy decane, twenty three', 4' oxycyclohexyl)ethylmethyldiethoxy decane, twenty three', 4'-oxycyclohexyl)ethylethyldimethoxydecane, twenty three', 4'-cyclohexyl)ethylethyl-ethoxylate, twenty three', 4' _cyclocyclohexyl)ethylethyldi-n-propoxy decane, twenty three', 4'-ring-cyclocyclohexylmethyldipropoxy fluorene ' (- soil-forming oxocyclohexyl)-phenyl phenyl diethoxy pen, 2 one (3, , 4,  丨4'-cyclo-ring-ring-epoxy oxyoxy-13- 200915005 cyclohexyl)ethylethyldiethoxypropane, twenty three', 4'-epoxycyclohexyl)ethylphenyldimethoxydecane, 2-(3’, 4'-epoxycyclohexyl)ethylphenyldiethoxydecane, twenty three', 4'-epoxycyclohexyl)ethylphenyldi-n-propoxy decane, twenty three, , 4'-epoxycyclohexyl)ethylphenyldiethoxypropane, 3- (3’, 4'-epoxycyclohexyl)propyltrimethoxydecane, 3— (3’, 4'-epoxycyclohexyl)propyltriethoxydecane, 3- (3’, 4'-epoxycyclohexyl)propyltri-n-propoxydecane ' 3 - (3', 4'-epoxycyclohexyl)propyltriethylphosphonium decane, 3— (3’, 4'-epoxycyclohexyl) propylmethyldimethoxy decane, 3— (3’, 4'-epoxycyclohexyl) propylmethyldiethoxy decane, 3— (3’, 4'-epoxycyclohexyl)propylmethyldi-n-propoxy decane, 3— (3’, 4'-Epoxycyclohexyl)propylmethyldiethoxymethoxydecane, 3_ (3’, 4'-epoxycyclohexyl)propylethyldimethoxydecane, 3-(3’, 4'-epoxycyclohexyl)propylethyldiethoxylate, 3 —(3’, 4'-epoxycyclohexyl)propylethyldi-n-propoxy decane, 3 _ (3’, 4'-epoxycyclohexyl)propylethyldiethoxypropane, 3 one (3’, 4'-epoxycyclohexyl)propyl phenyl dimethoxy decane, 3_ (3’, 4'-epoxycyclohexyl)propyl phenyldiethoxy decane, 3—( 3’, 4'-epoxycyclohexyl)propylphenyldi-n-propoxy decane, 3—( 3’, 4'-epoxycyclohexyl)propyl phenyldiethoxy decane, etc.;  The oxetane compound containing an oxetane group is, for example, (oxetane-3-yl)methyltrimethoxydecane, (oxetane-3-yl)methyltriethoxydecane, (oxetane-3-yl)methyltri-n-propoxy decane, (oxetane-3-yl)methyltriisopropoxydecane,  -14- 200915005 (oxetane-3)-methyltriethoxylate, (Xingyi I Butane-3-yl) methylmethyldimethoxydecane, (oxetan-3-yl)methylmethyldiethoxydecane, (oxetan-3-yl) methylmethyldi-n-propoxy decane, (oxetan-3-yl)methylmethyldiisopropoxydecane, (oxetan-3-yl)methylmethyldiethoxypropane, (oxetane-3-yl)methylethyldimethoxydecane, (oxetane-3-yl)methylethyldiethoxy oxalate, (oxetane-3-yl)methylethyldi-n-propoxy decane,  (oxetane-3-yl)methylethyldiisopropoxydecane, (oxetane-3-yl)methylethyldiethoxypropane, (oxetane-3-yl)methylphenyldimethoxy sand, (oxetan-3-yl)methylphenyldiethoxydecane, (oxetane-3-yl)methylphenyl di-n-propoxy decane, (oxetan-3-yl)methylphenyldiisopropoxy decane, (oxetan-3-yl)methylphenyl diethoxy decane, 2-(oxe-butane-3'-yl)ethyltrimethoxy sand, (oxetan-3'-yl)ethyltriethoxynonane, (oxetane-3'-yl)ethyltri-n-propoxy decane, 2-(oxetane-3'-yl)ethyltriisopropoxydecane, 2-(Oxyphone) 3,  -ethyl)ethyltriethoxylate sand yard, 2-(oxetane-3)  Monomethylmethyldimethoxydecane, 2-(Oxetane- 3'-yl) ethylmethyldiethoxylate, 2-(oxycyclohexane) 3, _ base) ethyl methyl di-n-propoxy decane, 2-(oxetane-3), _ base) ethylmethyl diisopropoxy decane, 2-(oxetane-3),  a group of ethylmethyldiethoxy decane, 2- (oxetane -15- 200915005 a 3, _ base) ethyl ethyl dimethoxy decane, 2-(oxetane-3'-yl)ethylethyldiethoxydecane, 2-(oxetane-3'-yl)ethylethyldi-n-propoxy decane, 2-(oxetane-3'-yl)ethylethyldiisopropoxydecane, 2-(oxetane-3'-yl)ethylethyldiethoxypropane, 2-(oxetan-3'-yl)ethylphenyldimethoxydecane '2-(oxe-butane-3'-yl)ethylphenyldiethoxydecane, 2-(oxetane-3'-yl)ethylphenyldi-n-propoxy decane, 2-(oxetane-3'-yl)ethylphenyl-isopropoxylate sand, 2-(oxetane-3'-yl)ethylphenyldiethoxypropane, 3-(oxetane-3'-yl)propyltrimethoxydecane, 3 - (oxetan-3'-yl) propyl triethoxy decane, 3-(oxetane-3),  a group of propyl tri-n-propoxy decane, 3-(oxetane-3), ~yl)propyl triisopropoxy decane, 3-(oxetane_3,  -yl)propyltriethoxypropane, 3-(oxe-butane-3'-yl)propylmethyldimethoxydecane, 3-(oxetane-3'-yl)propylmethyldiethoxydecane, 3 (oxetane-3'-yl)propylmethyldi-n-propoxy decane, 3-(oxe-butane-3'-yl)propylmethyldiisopropoxydecane, 3-(oxe-butane-3'-yl)propylmethyldiethoxydecane, 3-(oxetane-3'-yl)propylethyldimethoxydecane, 3_(oxetane-3'-yl)propylethyldiethoxydecane, 3-(oxetane-3'-yl)propylethyldi-n-propoxy decane, 3-(oxetane-3'-yl)propylethyldiisopropoxydecane, 3 (oxetane-3'-yl) propylethyldiethoxymethoxydecane ' 3_ (oxy-16- 200915005 heterocyclobutane-3'-yl) propyl phenyl dimethoxy Decane, 3-(oxacyclobutane-3'-yl)propylphenyldiethoxydecane, 3-(oxetane-3'-yl)propylphenyldi-n-propoxy decane, 3-(oxetane-3'-yl)propylphenyldiisopropoxy decane, 3-(oxetane-3'-yl)propylphenyldiethoxypropane, (3-methyloxetane-3-yl)methyltrimethoxydecane, (3-methyloxetan-3-yl)methyltriethoxydecane, (3-methyloxetane-3-yl)methyltri-n-propoxy decane, (3-methyloxetane-3-yl)methyltriisopropoxydecane, (3-methyloxetane-3-yl)methyltriethoxypropane, (3-methyloxetane-3-yl)methylmethyldimethoxydecane, (3-methyloxetane-3-yl)methylmethyldiethoxydecane, (3-methyloxetane-3-yl)methylmethyldi-n-propoxy decane, (3-methyloxetane-3-yl)methylmethyldiisopropoxydecane, (3-methyloxetane-3-yl)methylmethyldiethoxypropane, (3-methyloxetan-3-yl)methylethyldimethoxydecane, (3-methyloxetan-3-yl)methylethyldiethoxydecane, (3-methyloxetan-3-methyl)methylethyldi-n-propoxy decane, (3-methyloxetan-3-yl)methylethyldiisopropoxydecane, (3-methyloxacyclobutane-3-yl)methylethyldiethoxypropane, (3-methyloxetane-3-yl)methylphenyldimethoxydecane, (3-methyloxetane-3-yl)methylphenyldiethoxydecane, (3-methyloxetane-3-yl)methylphenyldi-n-propoxy decane, (3-methyloxetan-3-yl)methylphenyldiisopropoxydecane, (3—A-17- 200915005 oxetane-3-yl)methylphenyldiethoxypropane, 2 one (3, Monomethyloxetane-3  a base) ethyl trimethoxy sand yard, 2-(3'-methyloxetane-3'-yl)ethyltriethoxy sand, 2 —(3'_methyloxetane-3, —yl)ethyl tri-n-propoxy sand sand, twenty three,  Monomethyloxetane-3  Monoethyltriisopropoxy decane, twenty three, -methyloxetane-3,  Monoethyltriethylphosphonium oxane, twenty three,  Monomethyloxetane-3'-yl)ethylmethyldimethoxy sand garden '2-(3,  Monomethyloxetane-3'-yl)ethylmethyldiethoxydecane, twenty three, - methyloxetane-3'-yl)ethylmethyldi-n-propoxy cough, 2-(3'-monomethyloxetane-3'-yl)ethylmethyldiisopropoxydecane, twenty three,  Monomethyl oxetane-3 _ base) ethylmethyldiethoxy decane, 2 — (3methyloxetane-3'-yl)ethylethyldimethoxydecane, 2-(3'-monomethyloxetane-3,  a group of ethyl ethyl diethoxy decane, twenty three,  Monomethyloxetane-3  Monoethylidene di-n-propoxy decane, 2 one (3,  Monomethyloxetane-3 —yl)ethylethyldiisopropoxydecane, 2—(3, Monomethyloxetane-3'-yl)ethylethyldiethoxypropane, twenty three,  Monomethyloxacyclobutane-3'-yl)ethylphenyldimethoxydecane, 2 one (3,  Monomethyl oxetane ~ 3'-yl) ethyl phenyl diethoxy decane, 2-( 3'-methyloxetane-3, Monoethyl phenyl di-n-propoxy decane, 2-(3'-monomethyloxetane-3,  Monoethylphenyldiisopropyloxysilane, twenty three,  Monomethyloxetane-3  Monoethyl phenyldiethoxy decane, 3_ (3,  Monomethyloxetane-3 One base -18- 200915005 ) propyl trimethoxy decane, 3-(3'-monomethyloxetane-3'-yl)propyltriethoxydecane, 3— (3, - methyloxetane_3'-yl)propyltri-n-propoxy decane, 3-(3'-methyloxetane-3'-yl)propyltriisopropoxydecane, 3-(3'-monomethyloxetane-3'-yl)propyltriethoxypropane, 3 - (3, - methyloxetane-3'-yl)propylmethyldimethoxydecane, 3- (3, Monomethyloxetane-3'-yl)propylmethyldiethoxydecane, 3 one (3, Monomethyl oxetane-3'-yl) propylmethyldi-n-propoxy sand, 3 — (3'-Methyloxetane-3'-yl)propylmethyldiisopropoxydecane, 3 - (3,  Monomethyloxetane-3  Monopropyl)methyldiethoxypropane, 3 - (3, Monomethyloxetane-3  Monopropyl)dimethoxydecane, 3-(3'-monomethyloxetane-3, Monopropyl)diethoxy decane, 3 one (3, - methyloxacyclobutane-3, —propyl” propyl ethyl di-n-propoxy oxa hexane, 3 - (3,  _ methyloxetane-3  Monopropyl)diisomethoxy decane, 3 one (3, Monomethyloxetane-3 —yl)propylethyldiethoxycarbonyl decane, 3— (3,  Monomethyl oxetane-3'-yl) propyl phenyl dimethoxy decane, (3,  Monomethyloxetane ~3, —yl)propyl phenyldiethoxy decane, 3-(3'-monomethyloxetane-3'-yl)propylphenyldi-n-propoxy decane, 3 a (3'-monomethyloxetane-3, One base) propyl phenyl diisopropoxy cleavage, 3~(3,  Monomethyloxetane-3 a propyl phenyl diethoxy oxy sane, (3,  _Ethyl oxetane-3  a base) methyl trimethoxy sand, (3-ethyloxetane-3-yl)methyltriethoxy sand, (3-ethyloxa -19-oxylate sand, (3-ethyloxindole decane, (3-ethyloxetan decane, (3-ethyloxetane decane, (3-ethyloxetane decane, (3-ethyloxetane based sand yard, (3-ethyloxetanoxydecane, (3-ethyloxyheterocyclic decyloxydecane, (3-ethyloxa methoxy decane, (3-ethyloxa ethoxy decane, (3-ethyloxa-n-propoxy decane, (3-ethyloxydiisopropoxydecane, (3-ethyldiethyloxydecane, (3-ethylphenyldimethoxydecane, (3-ethylphenyldiethoxydecane, (3-ethylphenyl di-n-propoxy decane, (3-phenylphenyldiisopropoxydecane, (3 methylphenyldiethoxydecane, 2 '-yl)ethyltrimethoxydecane,  3'-yl)ethyltriethoxydecane-3'-yl)ethyltri-n-propoxybutane- 3'-yl)ethyltriisopropylidene- 3'-yl)ethyl Tribasic oxetane-3'-yl) B 200915005 cyclobutane-3-yl)methyltri-n-propanebutane-3-yl)methyltriisopropoxy-3-methyl)methyl Ethyloxy-3-yl)methylmethyldimethoxy-3-yl)methylmethyldiethoxy-3-yl)methylmethyldi-n-propoxypropane-3-yl) Methyl diisopropylbutane-3-yl)methylmethyldiethylcyclobutane-3-yl)methylethylbicyclobutane-3-yl)methylethylbicyclobutane-3 —yl)methylethyldicyclobutane-3-yl)methylethyloxetane-3-yl)methylethyloxetane-3-yl)methyloxy Cyclobutane-3-(3-methyl)oxetane-3-yl)methylethyloxetane-3-yl)methyl ''ethyloxetane-3-yl) —(3'-ethyloxetane-3 (3'-ethyloxetane) 2-(3'-ethyloxetane decane, twenty three,  Monoethyloxyheterooxane '2- (3,  Monoethyl oxyethoxy decane, 2-(3'-B-20-200915005-based methyldimethoxydecane, 2_(3'-ethyloxetane-3'-yl)ethylmethyldiethoxydecane, 2-(3'-ethyloxetane-3'-yl)ethylmethyldi-n-propoxy decane, twenty three, Monoethyloxetane-3'-yl)ethylmethyldiisopropoxydecane, twenty three,  -ethyloxetane-3'-yl)ethylmethyldiethoxypropane,  2-(3'-Ethyloxetane-3'-yl)ethylethyldimethoxy-Shi Xiyuan, 2-(3'-ethyloxetan-3'-yl)ethylethyldiethoxydecane, twenty three, Monoethyloxetane-3  Monoethylidene di-n-propoxy decane, 2-(3'-ethyloxetane-3'-yl)ethylethyldiisopropoxydecane, twenty three,  Ethyl oxetane, a 3'-based ethyl ethyl acetoacetate, 2-(3'-ethyl oxetane-3'-yl)ethylphenyldimethoxydecane, twenty three,  Monoethyloxetane-3'-yl)ethylphenyldiethoxydecane, 2-(3'-ethyloxetane-3'-yl)ethylphenyldi-n-propoxy decane, 2-(3'-ethyloxetane-3'-yl)ethylphenyldiisopropoxydecane, 2-(3'-ethyloxetane-3,  -yl)ethylphenyldiethoxydecane, 3-(3'-ethyloxetane-3'-yl)propyltrimethoxydecane, 3-(3'-ethyloxetane-3'-yl)propyltriethoxydecane, 3—(3,  Monoethyloxetane-3,  Mono-propyl tri-n-propoxy oxane, 3 — (3,  Monoethyloxetane-3'-yl)propyl triisopropoxy decane, 3 - (3,  1-Ethyloxycyclopentane- 3'-yl)propyldiethyloxy-cylinder, 3-(3 '-Ethyloxetane-3'-yl)propylmethyldimethoxydecane, 3-( 3'-ethyloxetane-3'-yl)propylmethyldiethoxydecane,  -21 - 200915005 3 - (3,  Monoethyloxetane-3'-yl)propylmethyldi-n-propoxy decane, 3 — (3,  Monoethyloxetane-3'-yl)propylmethyldiisopropoxy sand, 3-(3'-ethyl oxetane-3'-yl) propylmethyldiethoxy decane, 3-(3'-ethyloxetane-3'-yl)propylethyldimethoxydecane, 3-(3'-ethyloxetane-3'-yl)propylethyldiethoxydecane, 3-(3'-ethyl oxetane-3'-yl)propylethyldi-n-propoxy decane, 3—( 3, -ethyloxetane-3'-yl)propylethyldiisopropoxydecane, 3 - (3,  Monoethyloxetane_3'-yl)propylethyldiacetoxy oxane, 3-(3'-ethyloxetane-3'-yl)propyl phenyldimethoxydecane, 3-(3'-ethyloxetane-3'-yl)propylphenyldiethoxydecane, 3_(3'-ethyloxetane-3'-yl)propylphenyldi-n-propoxy decane, 3-(3'-ethyloxetane-3'-yl)propylphenyldiisopropoxydecane, 3-(3'-Ethyloxetane-3'-yl)propylphenyldiethoxymethoxydecane.  In these, To increase the sensitivity of the sensitive radiation linear resin composition, Increase the imaging margin, From the standpoint of improving heat resistance, It is preferred to use 3 - glycidyl propyl trimethoxy decane, 3-glycidoxypropyltriethoxy decane, 3 — glycidoxypropyl methyl dimethoxy decane, 2-(3’, 4'-epoxycyclohexyl)ethyltrimethoxydecane, twenty three', 4,  _Epoxycyclohexyl)ethyldiethoxy sand, 3-(3ethyloxetane-3'-yl)propyltrimethoxydecane or 3-(3, Monoethyloxetane-3'-yl)propyltriethoxydecane. These compounds (a 1 ) may be used alone or in combination of two or more.  -22- 200915005 The functional group which can be added to the oxiranyl group or the oxetanyl group in the compound (a2) can be exemplified by, for example, a hydroxyl group. 锍基, Amine and the like. The amine group is preferably a primary amine group or a secondary amine group. As the hydrolyzable group, for example, a hospitaloxy group, Oxyloxy, Alkoxy alkoxy and the like. The carbon number of the oxy group is preferably from 1 to 6, The methoxy group has a carbon number of preferably 2 to 6, The alkoxy alkoxy group preferably has a carbon number of 2 to 8.  The compound (a2) is preferably a compound represented by the following formula (2):  (X2Y2)dSiR3eR4f (2) (in the formula (2), X2 is a hydroxyl group, Hydroxyphenyl, Hydroxyphenylcarbonyloxy 'mercapto or amine group, Y2 is a single bond, Methylene, a dialkyl group having a carbon number of 2 to 6 or a divalent group represented by the following formula (2-1):  -Y3- Z- Y4- (2-1) (in the formula (2-1), Y3 is a methylene group, An alkylene group having a carbon number of 2 to 6 or a aryl group having a carbon number of 6 to 12 is a single bond. A methylene group or a C 2 to 6 alkyl group ' z is a sulfur atom or a hydroxymethylene group. But the left side of the formula (2 -1 ) is bonded to the X2 base),  R3 is an alkoxy group having 1 to 6 carbon atoms. a decyloxy group having 2 to 6 carbon atoms or an alkoxy alkoxy group having 2 to 8 carbon atoms, R4 is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. d and e are each an integer of 1 to 3, f is an integer of 〇~2,  { Dan d + e + f = 4 ) 羟基 The hydroxyphenyl group of X2 in the above formula (2) is preferably a 4-hydroxyphenyl group. As the p-phenylphenylcarbonyloxy group, a p-hydroxyphenylcarbonyloxy group is preferred. Amines of X2 -23- 200915005 The base may be a primary or secondary amine group, For example, a primary amine group, N-phenylamino group, N-2-(Aminoethyl)amine group and the like. Γ2 is preferably a methylene group or a C 2 or 3 alkylene group. The alkylene group having 2 or 3 carbon atoms of Y2 can be exemplified by, for example, an ethyl group. Trimethylene and the like. R3 is preferably an alkoxy group having 1 to 3 carbon atoms, a decyloxy group having 2 to 4 carbon atoms or an alkoxy alkoxy group having 2 to 6 carbon atoms; For example, methoxy, Ethoxylate, N-propoxy, Isopropyloxy,  Ethyl group, Methoxyethoxy and the like. R4 is preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 8 carbon atoms. For example, a methyl group, Ethyl, Phenyl and the like.  Specific examples of the compound (a2) are exemplified by a hydroxy group-containing decane compound such as hydroxymethyltrimethoxy decane. Hydroxymethyltriethoxy decane, Hydroxymethyl tri-n-propoxy decane, Hydroxymethyl triisopropoxy decane, Hydroxymethyltriethoxydecane, Hydroxymethyltris(methoxyethoxy)decane, Hydroxymethylmethyldimethoxydecane, Hydroxymethylmethyldiethoxy decane, Hydroxymethylmethyldi-n-propoxy decane, Hydroxymethylmethyl diisopropoxy decane, Hydroxymethylmethyldiethoxymethoxydecane, Hydroxymethylethyldimethoxydecane, Hydroxymethylethyl diethoxy decane, Hydroxymethylethyldi-n-propoxy oxane, Hydroxymethylethyldiisopropoxydecane, Hydroxymethylethyldiethoxypropane, Hydroxymethylethyl bis(methoxyethoxy)decane, Hydroxymethylphenyl dimethoxy decane, Hydroxymethylphenyl diethoxy decane, Hydroxymethylphenyl di-n-propoxy decane, Hydroxymethylphenyl diisopropoxy decane, Hydroxymethylphenyldiethoxypropane, Hydroxymethylphenyl bis(methoxyethoxy)decane, 2-hydroxyethyltrimethoxydecane, 2-hydroxyethyltriethoxydecane, 2-hydroxyethyl tri-n-propoxy decane, 2-hydroxyethyltriisopropoxydecane' 2-hydroxy-24- 200915005 ethyltriethoxypropane, 2-hydroxyethyltris(methoxyethoxyoxane, 2-hydroxyethylmethyldimethoxydecane, 2-hydroxyethyl diethoxy decane, 2-hydroxyethylmethyldi-n-propoxy oxane, 2 ethyl ethyl diisopropoxy decane, 2-hydroxyethylmethyldiethyl decane, 2-hydroxyethylethyldimethoxydecane, 2-hydroxyethyldiethoxy decane, 2-hydroxyethylethyldi-n-propoxy oxane hydroxyethylethyldiisopropoxy decane, 2-hydroxyethylethyldimethoxydecane, 2-hydroxyethylethyl bis(methoxyethoxy) hydrazine|-hydroxyethyl phenyl dimethoxy decane, 2-hydroxyethylphenyldidecane, 2-hydroxyethylphenyldi-n-propoxy oxane, 2-hydroxyphenyldiisopropoxydecane, 2-hydroxyethylphenyldiethoxycarbonyl, 2-hydroxyethylphenyl bis(methoxyethoxy)decane, 3-hydroxytrimethoxydecane, 3-hydroxypropyltriethoxydecane '3-hydroxytri-n-propoxydecane, 3-hydroxypropyl triisopropoxy decane, 3 propyl triethoxy decane, 3-hydroxypropyltris(methoxyethyl)decane, 3-hydroxypropylmethyldimethoxydecane, 3-hydroxypropyldiethoxydecane, 3-hydroxypropylmethyldi-n-propoxydecane' hydroxypropylmethyldiisopropoxydecane, 3-hydroxypropylmethyldimethoxydecane '3-hydroxypropylethyldimethoxydecane, 3-hydroxyethyldiethoxydecane, 3-hydroxypropylethyldi-n-propoxy-oxo-hydroxypropylethyldiisopropoxydecane, 3-hydroxypropylethyl decyloxydecane, 3-hydroxypropylethyl bis(methoxyethoxy), 3-hydroxypropyl phenyl dimethoxy decane, 3-hydroxypropylphenyloxydecane, 3-hydroxypropylphenyldi-n-propoxy oxane, 3-hydroxy)methyl-hydroxyloxyethyl, 2 — 醯 醯 ξ, 2 ethoxyethyl decyl propyl propyl - hydroxyoxymethyl 3 - acetaminopropyl !  ' 3 dioxane diethyl propyl -25- 200915005 phenyl diisopropoxy decane, 3-hydroxypropylphenyldimethoxyoxane, 3-hydroxypropylphenyl bis(methoxyethoxy)decane, 4-phenyltrimethoxydecane, 4-hydroxyphenyltriethoxydecane, 4-phenyltri-n-propoxy decane, 4-hydroxyphenyltriisopropoxydecane hydroxyphenyltriethoxydecane, 4-hydroxyphenyltris(methoxy)decane, 4-hydroxyphenylmethyldimethoxydecane, 4-hydroxymethyldiethoxy decane, 4-hydroxyphenylmethyldi-n-propoxy fluorenyl-hydroxyphenylmethyldiisopropoxy decane, 4-hydroxyphenylmethyl decyloxydecane, 4-hydroxyphenylethyldimethoxydecane, 4-hydroxyethyldiethoxy decane, 4-hydroxyphenylethyldi-n-propoxy, 4-hydroxyphenylethyldiisopropoxydecane, 4-hydroxyphenylethyl ethoxy decane, 4-hydroxyphenylethyl bis(methoxyethoxylated alkane, 4-hydroxyphenyl phenyl dimethoxy decane, 4-hydroxyphenylbenzene ethoxy decane, 4-hydroxyphenylphenyl di-n-propoxy decane, 4-phenylphenyldiisopropoxydecane, 4-hydroxyphenylphenyldiacetone decane, 4-hydroxyphenylphenyl bis(methoxyethoxy)decane, 4-yl-5-(p-hydroxyphenylcarbonyloxy)pentyltrimethoxyindolyl-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentyltriethoxylate, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentyltrimethoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)triisopropoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyl)pentyltriethoxypropane, 4-hydroxy-5-(p-hydroxyphenyloxy)pentyltris(methoxyethoxy)decane, 4-hydroxy-5-p-hydroxyphenylcarbonyloxy)pentylmethyldimethoxydecane, 4 base hydroxy hydroxyl group . 4 — ethoxyphenyl hydrazine ' 4 diethyl phenyl fluorenyl di) fluorenyl dihydroxy oxy-hydroxy c ' 4 yl 5 butyl propyl ethoxycarbonyl carbonyl — (1 hydroxy-26- 200915005 1-5 —(p-hydroxyphenylcarbonyloxy)pentylmethyldiethoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylmethyldi-n-propoxydecane, 4 — Hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylmethyldiisopropoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylmethyldiethoxycarbonyl Decane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylethyldimethoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylethyldiethyl Oxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylethyldi-n-propoxyoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentyl Diisopropoxy decane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylethyldiethoxymethoxydecane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy) Pentylethyl bis(methoxyethoxy)decane, 4-hydroxy-5-(p-hydroxyphenylcarbonyloxy)pentylphenyl dimethoxydecane, 4-hydroxy-5-(pair Monohydroxyphenylcarbonyloxy)pentylphenyldiethoxydecane, 4~hydroxy-5_(p-hydroxyphenylcarbonyloxy)pentylphenyldi-n-propoxydecane, 4-hydroxyl_5 — (p-hydroxyphenylcarbonyloxy)pentylphenyldiisopropoxydecane, 4-hydroxy-5-(p-hydroxyphenylindolyloxy)pentylphenyldiethoxypropane, 4 -Hydroxy-5-(p-amphenylphenylcarbonyloxy)pentylphenyl bis(methoxyethoxy)-cutting compound, compound represented by the following formula (a2 _ 1 ): HO - Y3 - S ~ Y4 _ Si(〇R)3 (a2-l) (In the formula (a2 - 1), 'Y3 and γ4 have the same meanings as in the above formula (2 _丨), and each of R is independently an alkyl group having 1 to 6 carbon atoms or a fluorenyl group having 2 to 6 carbon atoms; -27- 200915005 A compound having a mercapto group is, for example, mercaptomethyltrimethoxydecylmethyltriethoxydecane, mercaptomethyltri-n-propoxydecane, anthracene Triisopropoxy decane, decylmethyltriethoxy Basear, mercaptotris(methoxyethoxy)decane, mercaptomethylmethyldimethoxydecylmethylmethyldiethoxydecane, mercaptomethylmethyldi-n-propane, Mercaptomethylmethyldiisopropoxydecane, mercaptomethylmethyldioxydecane, mercaptomethylethyldimethoxydecane, mercaptomethylethylethoxydecane, mercaptomethyl Ethyl di-n-propoxy decane, decylmethyl diisopropoxy decane, decylmethylethyl diethoxy decane, methyl ethyl bis(methoxyethoxy) decane, fluorenyl Phenyldiylnonane, mercaptomethylphenyldiethoxydecane, mercaptomethylphenylpropoxydecane, mercaptomethylphenyldiisopropoxydecane, mercaptomethyldiethoxycarbonyl Base decane, mercaptomethylphenyl bis(methoxyethoxyalkyl, 2-mercaptoethyltrimethoxydecane, 2-mercaptoethyltriethoxyethane, 2-mercaptoethyltri-n-propoxy Basear, 2-mercaptoethyltriisodecane, 2-mercaptoethyltriethoxydecane, 2-mercaptoethylmethoxyethoxy)decane, 2-mercaptoethylmethyl Dimethoxy hydrazine - Ethyl ethyl diethoxy decane, 2-mercaptoethyl methyl dioxy decane, 2-mercaptoethyl methyl diisopropoxy decane, 2- fluorenyl methyl diethoxy decane , 2-mercaptoethylethyldimethoxy, 2-mercaptoethylethyldiethoxydecane, 2-mercaptoethylethylpropoxydecane, 2-mercaptoethylethyldiisopropyl Oxydecane, 2-ethylethyldiethoxydecane, 2-mercaptoethylethylbis(methylethoxy)decane, 2-mercaptoethylphenyldimethoxydecane, 2 -, fluorenyl Methyl ketone, ketoethylenediyl ethane methoxy di-n-phenyl benzene fluorenyl propyl oxypropyl (!, 2 n-propyl decane di-n-decyloxy fluorenyl-28- 200915005 ethyl benzene Diethoxy decane, 2-mercaptoethyl phenyl di-n-propoxy decane, 2-mercaptoethyl phenyl diisopropoxy decane, 2-mercaptoethyl phenyl dimethyl oxime Decane, 2-mercaptoethylphenylbis(methoxyethoxy)decane, 3-mercaptopropyltrimethoxydecane, 3-mercaptopropyltriethoxydecane, 3-mercaptopropyl Tri-n-propoxy decane, 3-mercapto-propyl Triisopropoxydecane, 3-mercaptopropyltriethoxydecane, 3-mercaptopropyltris(methoxyethoxy)decane, 3-mercaptopropylmethyldimethoxydecane , 3-mercaptopropylmethyldiethoxydecane, 3-mercaptopropylmethyldi-n-propoxyoxydecane, 3-mercaptopropylmethyldiisopropoxydecane, 3-mercaptopropyl Methyldiethoxydecane, 3-mercaptopropylethyldimethoxydecane, 3-mercaptopropylethyldiethoxydecane, 3-mercaptopropylethyldi-n-propoxy Decane, 3-mercaptopropylethyldiisopropoxydecane, 3-mercaptopropylethyldiethoxydecane, 3-mercaptopropylethylbis(methoxyethoxy)decane, 3-mercaptopropyl phenyl dimethoxy decane, 3-mercaptopropyl phenyl diethoxy decane, 3-mercaptopropyl phenyl di-n-propoxy decane, 3-mercaptopropyl phenyl Diisopropoxydecane, 3-mercaptopropylphenyldiethoxydecane, 3-mercaptopropylphenylbis(methoxyethoxy)decane, etc.; amine group-containing decane compound can be exemplified For example, aminomethyltrimethoxydecane, aminomethyltriethoxy Decane, aminomethyltri-n-propoxyoxydecane, aminomethyltriisopropoxydecane, aminomethyltriethoxydecane, aminomethyltris(methoxyethoxy)decane, Aminomethylmethyldimethoxydecane 'aminomethylmethyldiethoxydecane, aminomethylmethyldi-n-propoxyoxydecane, aminomethylmethyldiisopropoxydecane, Aminomethyl-methyl-29- 200915005-based decyloxydecane, aminomethylethyldimethoxydecane, aminomethylethyldiethoxydecane, aminomethylethyldi-n-propyl Oxydecane, aminomethylethyldiisopropoxydecane, aminomethylethyldiethoxydecane, aminomethylethylbis(methoxyethoxy)decane, amine Phenyldimethoxydecane, aminomethylphenyldiethoxydecane, aminomethylphenyldi-n-propoxydecane, aminomethylphenyldiisopropoxydecane, amine Phenyl phenyl ethoxy decane, aminomethyl phenyl bis (methoxyethoxy) decane, 2-aminoethyl trimethoxy decane, 2-aminoethyl triethoxy decane, 2-aminoethyl N-propoxy decane, 2-aminoethyl triisopropoxy decane, 2-aminoethyltriethoxy decane, 2-aminoethyltris(methoxyethoxy)decane, 2 —Aminoethylmethyldimethoxydecane, 2-aminoethylmethyldiethoxydecane, 2-aminoethylmethyldi-n-propoxyoxynonane, 2-aminoethylmethyl Diisopropoxydecane, 2-aminoethylmethyldiethoxydecane, 2-aminoethyldimethoxydecane, 2-aminoethylethyldiethoxydecane, 2_Aminoethylethyldi-n-propoxy oxane, 2-aminoethylethyldiisopropoxy decane, 2-aminoethylethyldiethoxy decane, 2-aminoethyl Base ethyl bis(methoxyethoxy)decane, 2-aminoethylphenyldimethoxydecane, 2-aminoethylphenyldiethoxydecane, 2-aminoethylphenyl Di-n-propoxy decane, 2-aminoethyl phenyl diisopropoxy decane, 2-aminoethyl phenyl diethoxy decane, 2-aminoethyl phenyl bis (methoxy) Ethoxy)decane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxy Alkane, 3-aminopropyltri-n-propoxyoxydecane, 3-aminopropyltriisopropoxydecane, 3-aminopropyltriethoxypropane, 3-amine-30- 200915005 Tris(methoxyethoxy)decane, 3-aminopropylmethyldimethoxydecane, 3-aminopropylmethyldiethoxydecane, 3-aminopropylmethyl-positive Propoxy cleavage, 3-aminopropylmethyldiisopropoxy cleavage, 3-aminopropylmethyldiethoxydecane, 3-aminopropylethyldimethoxydecane , 3-aminopropylethyldiethoxydecane, 3-aminopropylethyldi-n-propoxyoxydecane, 3-aminopropylethyldiisopropoxyfluorene, 3-amino Propylethyl-ethyloxylate, 3-aminopropylethylbis(methoxyethoxy)decane, 3-aminopropylphenyldimethoxydecane, 3-aminopropyl Phenyl phenyl diethoxy decane, 3-aminopropyl phenyl di-n-propoxy decane, 3-aminopropyl phenyl diisopropoxy decane, 3-aminopropyl phenyl diacetyl Oxy decane, 3-aminopropyl phenyl bis(methoxyethoxy) decane, N 2 - ( Benzyl)-3-aminopropyltrimethoxylate, N-2-(aminoethyl)-3-aminopropyltriethoxydecane, N-2-(aminoethyl) -3 -Aminopropyltri-n-propoxyoxydecane, N - 2 -(aminoethyl)-3-aminopropyltriisopropoxydecane, N-2-(aminoethyl)-3 -aminopropyltriethoxymethoxydecane' N- 2-(aminoethyl)-3-aminopropyltris(methoxyethoxy)decane, N-2-(aminoethyl) a 3-aminopropylmethyldimethoxydecane, N-2-(aminoethyl)-3-aminopropylmethyldiethoxydecane, N-2-(aminoethyl) —3 —Aminopropylmethyldi-n-propoxyoxydecane, N-2-(aminoethyl)-3-aminopropylmethyldiisopropoxydecane, N-2—(Amino B )) 3-Aminopropylmethyldiacetic acid oxide sand, N-2-(aminoethyl)-3-aminopropylethyl-methoxy sand, N-2 (amino Ethyl)-3-aminopropylethyl-31 - 200915005 diethoxy decane, N-2-(aminoethyl)-3-aminopropylethyldi-n-propoxy decane, N — 2 —(Aminoethyl)-3-aminopropylethyldiisopropoxydecane, N 2 —(aminoethyl)-3-aminopropylethyldiethoxypropane N-2-(Aminoethyl)-3-aminopropylethylbis(methoxyethoxy)decane, N-2-(aminoethyl)-3-aminopropylphenyl Monomethoxy sand, N 2 -(aminoethyl)-3-aminopropylphenyldiethoxydecane, N-2-(aminoethyl)-3-aminopropylphenyl N-propoxy decane, N-2-(aminoethyl)_3-aminopropylphenyldiisopropoxy decane, N-2-(aminoethyl)-3-aminopropyl phenyl Diethoxy decane, N - 2 - (aminoethyl) - 3 - aminopropyl phenyl bis (methoxyethoxy) decane, N - phenyl _ 3 - aminopropyl trimethoxy Base decane, N-phenyl-3-aminopropyltriethoxy decane, N-phenyl-3-aminopropyltri-n-propoxy decane, N-phenyl-3-aminopropyltri Isopropoxydecane, N-phenyl-3-aminopropyltriethoxydecane, N-phenyl-3-aminopropyltris(methoxy) Oxy) decane, N-phenyl-3-aminopropylmethyldimethoxydecane, N-phenyl-3-aminopropylmethyldiethoxydecane, N-phenyl-3- Aminopropylmethyldi-n-propoxy oxane, N-phenyl-3-aminopropylmethyldiisopropoxy decane, N-phenyl-3-aminopropylmethyldiethoxycarbonyl Baseline, N-phenyl-3-aminopropylethyldimethoxydecane, N-phenyl-3-aminopropylethyldiethoxydecane, N-phenyl-3-amine Propylethyldi-n-propoxy oxane, N-phenyl-3-aminopropylethyldiisopropoxy decane, N-phenyl-3-aminopropylethyldiacetate , N-phenyl- 3-aminopropyl-32- 200915005 ethyl bis(methoxyethoxy)decane, N-phenyl-3-aminopropyl phenyl dimethoxy decane, N- Phenyl-3-aminopropylphenyldiethoxydecane, N-phenyl-3-ethylaminopropylphenyldi-n-propoxydecane, N-phenyl-3-aminopropylphenyl Diisopropoxydecane, N-phenyl-3-aminopropyl phenyldiethoxypropane, N-phenyl-3 - Aminopropyl phenyl bis(methoxyethoxy) decane, and the like. Among these, hydroxymethyltrimethoxydecane, hydroxyethyltrimethoxydecane, and trimethoxy are preferable in terms of heat resistance, transparency, and peeling resistance of the obtained interlayer insulating film or microlens. Nonylalkyl-1-(4'-hydroxyphenyl)propyl sulfide, trimethoxydecylpropyl-1 mono(2,-hydroxyphenyl)propyl sulfide, trimethoxydecylpropyl 1-2 (4'-hydroxyphenyl)propyl sulfide, trimethoxydecylpropyl-2-(2,1-hydroxyphenyl)propyl sulfide, trimethoxydecylethyl-(4' Monohydroxyphenyl) sulfide, trimethoxydecylpropyl-(4'-hydroxyphenyl) sulfide, 3-mercaptopropyltrimethoxydecane, 3-mercaptopropyltriethoxydecane or amine Methyltrimethoxydecane. These compounds (a2) may be used alone or in combination of two or more. The polyoxyalkylene (A) may be a hydrolysis condensate containing only the decane compound of the above compounds (a 1 ) and (a2), or may further contain (a3) in addition to the compounds (a 1 ) and (a2). A hydrolysis condensate of a decane compound of a hydrolyzable decane compound other than (al) or (a2). The above compound (a3) is preferably a gab compound represented by the following formula (3):

SiR5gR6h (3) -33- 200915005 (式(3)中,R5爲碳數1~6之烷氧基或碳數6〜18之芳 基氧基,其中芳基氧基之氫原子之一部份或全部可經鹵素 原子、胺基、硝基或碳數1〜6之烷基取代,R6爲碳數1~6 之烷基、碳數2〜6之烯基、碳數6~ 18之芳基或(甲基) 丙烯醯氧基,其中芳基所具有之氫原子之一部份或全部可 經鹵素原子、氰基、硝基或碳數1〜6之烷基取代,(甲基 )丙烯醯氧基亦可介以亞甲基或碳數2~6之伸烷基鍵結, g爲1~4之整數,h爲0~3之整數,但g + h = 4) ^ 上述(3)中之R5較好爲碳數1〜4之院氧基或碳數 6~12之芳氧基,可舉例爲例如甲氧基、乙氧基、正丙氧 基、異丙氧基、苯氧基、萘氧基、4_氯苯氧基、4 一氰基 苯氧基、4一硝基苯氧基、4 一甲苯氧基等。R6較好爲碳 數1〜3之烷基、碳數2〜4之烯基、碳數6〜12之芳基、或 直接或介以亞甲基或碳數2〜3之伸烷基鍵結之(甲基)丙 烯醯氧基,其具體例可舉例爲例如甲基、乙基、苯基、4 一氯苯基、4 一氰基苯基、4 —硝基苯基、4 —甲苯基、萘 基、乙烯基、烯丙基、(甲基)丙烯醯氧基、(甲基)丙 烯醯氧基甲基、2-(甲基)丙烯醯氧基乙基、3_ (甲基 )丙烯醯氧基丙基等。 化合物(a3 )之具體例可舉例爲例如如四甲氧基矽烷 、四乙氧基矽烷、四正丙氧基矽烷、四異丙氧基矽烷、四 正丁氧基矽烷之四烷氧基矽烷;甲基三甲氧基矽烷、甲基 三乙氧基矽烷、甲基三正丙氧基矽烷、乙基三乙氧基矽烷 -34- 200915005 、環己基三乙氧基矽烷之單烷基三烷氧基矽烷; 如苯基三乙氧基矽烷、萘基三乙氧基矽烷、4一氯苯 基三乙氧基矽烷、4-氰基苯基三乙氧基矽烷、4 -硝基苯 基三乙氧基矽烷、4 -甲基苯基三乙氧基矽烷之單芳基三 院氧基砂院; 如苯氧基三乙氧基矽烷、萘氧基三乙氧基矽烷、4一 氯苯氧基三乙氧基矽烷、4 -氰基苯氧基三乙氧基矽烷、4 一硝基苯氧基三乙氧基矽烷、4-甲基苯氧基三乙氧基矽 烷之單芳氧基三烷氧基矽烷; 如二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二甲 基二正丙氧基矽烷、甲基(乙基)二乙氧基矽烷、甲基( 環己基)二乙氧基矽烷之二烷基二烷氧基矽烷; 如甲基(苯基)二乙氧基矽烷之單烷基單芳基二烷氧 基砂院;如二苯基二乙氧基矽烷之二芳基二烷氧基矽烷; 如二苯氧基二乙氧基矽烷之二芳基氧基二烷氧基矽烷;如 甲基(苯氧基)二乙氧矽烷之單烷氧基單芳氧基二烷氧基 矽烷; 女口苯基(苯氧基)二乙氧基矽烷之單芳基單芳基氧基 矽烷; 如三甲基乙氧基矽烷、三甲基正丙氧基矽烷、二甲基 (乙基)乙氧基矽烷、二甲基(環己基)乙氧基矽烷之三 烷基單烷氧基矽烷; 二甲基(苯基)乙氧基矽烷之二烷基單芳基單烷氧 基矽烷; -35- 200915005 如甲基(二苯基)乙氧基矽烷之單烷基二 基矽烷; 如三苯氧基乙氧基矽烷之三芳基氧基單烷 如甲基(二苯氧基)乙氧基矽烷之單烷基 單烷氧基矽烷;如苯基(二苯氧基)乙氧基矽SiR5gR6h (3) -33- 200915005 (In the formula (3), R5 is an alkoxy group having 1 to 6 carbon atoms or an aryloxy group having 6 to 18 carbon atoms, wherein a part of a hydrogen atom of an aryloxy group Or all may be substituted by a halogen atom, an amine group, a nitro group or an alkyl group having 1 to 6 carbon atoms, and R6 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and a carbon number of 6 to 18 Or a (meth) acryloxy group in which one or all of the hydrogen atoms of the aryl group may be substituted by a halogen atom, a cyano group, a nitro group or an alkyl group having 1 to 6 carbon atoms, (methyl) The propylene methoxy group may also be bonded via a methylene group or a C 2~6 alkyl group, g is an integer from 1 to 4, and h is an integer from 0 to 3, but g + h = 4) ^ R5 in 3) is preferably an oxy group having 1 to 4 carbon atoms or an aryloxy group having 6 to 12 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a n-propoxy group, and an isopropoxy group. Phenoxy, naphthyloxy, 4-chlorophenoxy, 4-cyanophenoxy, 4-nitrophenoxy, 4-monomethyloxy and the like. R6 is preferably an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkyl group bond directly or via a methylene group or a carbon number of 2 to 3. The (meth) acryloxy group is exemplified by, for example, a methyl group, an ethyl group, a phenyl group, a 4-chlorophenyl group, a 4-cyanophenyl group, a 4-nitrophenyl group, a 4-toluene group. Base, naphthyl, vinyl, allyl, (meth) propylene methoxy, (meth) propylene methoxymethyl, 2-(methyl) propylene methoxyethyl, 3 - (methyl) Acryloxypropyl and the like. Specific examples of the compound (a3) can be exemplified by, for example, tetramethoxy decane such as tetramethoxy decane, tetraethoxy decane, tetra-n-propoxy decane, tetraisopropoxy decane, and tetra-n-butoxy decane. ; methyl trimethoxy decane, methyl triethoxy decane, methyl tri-n-propoxy decane, ethyl triethoxy decane - 34 - 200915005, cyclohexyl triethoxy decane monoalkyl trioxane Oxydecane; such as phenyltriethoxydecane, naphthyltriethoxydecane, 4-chlorophenyltriethoxydecane, 4-cyanophenyltriethoxydecane, 4-nitrophenyl Mono-aryl tri-yard oxide sand trio of triethoxy decane, 4-methylphenyl triethoxy decane; such as phenoxy triethoxy decane, naphthyloxy triethoxy decane, 4 chloro Phenoxytriethoxydecane, 4-cyanophenoxytriethoxydecane, 4-nitrophenoxytriethoxydecane, 4-methylphenoxytriethoxydecane Oxytrialkalkoxydecane; such as dimethyldimethoxydecane, dimethyldiethoxydecane, dimethyldi-n-propoxydecane, methyl(ethyl)diethoxydecane, A a dialkyl dialkoxy decane of the group (cyclohexyl) diethoxy decane; a monoalkyl monoaryl dialkoxy sand court such as methyl (phenyl) diethoxy decane; a diaryl dialkoxy decane of diethoxy decane; a diaryloxy dialkoxy decane such as diphenoxydiethoxy decane; such as methyl (phenoxy) diethoxy decane Monoalkoxy monoaryloxy dialkoxy decane; monoaryl aryl aryl decane of phenyl (phenoxy) diethoxy decane; such as trimethyl ethoxy decane, trimethyl a trialkylmonoalkoxydecane of n-propyloxydecane, dimethyl(ethyl)ethoxydecane, dimethyl(cyclohexyl)ethoxydecane; dimethyl(phenyl)ethoxy a dialkyl monoaryl monoalkoxydecane of decane; -35- 200915005 a monoalkyldiyl decane such as methyl (diphenyl) ethoxy decane; a triaryl group such as triphenyloxyethoxy decane a monoalkyl monoalkoxy decane of an oxymonoalkyl such as methyl (diphenoxy) ethoxy decane; such as phenyl (diphenoxy) ethoxy hydrazine;

如二甲基(苯氧基)乙氧基矽烷之二烷基 單垸氧基砂院; 如二苯基(苯氧基)乙氧基矽烷之二芳基 院氧基砂院; 如甲基(苯基)(苯氧基)乙氧基矽烷之 基單芳氧基單烷氧基矽烷; 如乙烯基三甲氧基矽烷、乙烯基三乙氧基 基三正丙氧基矽烷、乙烯基三異丙氧基矽烷、 醯氧基矽烷、乙烯基三(甲氧基乙氧基)矽烷 基二甲氧基矽烷、乙烯基甲基二乙氧基矽烷、 二正丙氧基矽烷、乙烯基甲基二異丙氧基矽烷 基二乙醯氧基矽烷、乙烯基乙基二甲氧基矽烷 基二乙氧基矽烷、乙烯基乙基二正丙氧基矽烷 基二異丙氧基矽烷、乙烯基乙基二乙醯氧基矽 乙基二(甲氧基乙氧基)矽烷、乙烯基苯基二 、乙烯基苯基二乙氧基矽烷、乙烯基苯基二正 、乙烯基苯基二異丙氧基矽烷、乙烯基苯基二 烷、乙烯基苯基二(甲氧基乙氧基)矽烷等含 芳基單烷氧 氧基砂院; 二芳基氧基 烷之單芳基 單芳基氧基 單芳氧基單 單烷基單芳 矽烷、乙烯 乙烯基三乙 、乙烯基甲 乙烯基甲基 、乙烯基甲 、乙烯基乙 、乙烯基乙 烷、乙烯基 甲氧基矽烷 丙氧基矽烷 乙醯氧基矽 有乙烯基之 -36- 200915005 烷氧基矽烷; 如烯丙基三甲氧基矽烷、烯丙基三乙氧基矽烷、烯丙 基三正丙氧基矽烷、烯丙基三異丙氧基矽烷、烯丙基三乙 醯氧基矽烷、烯丙基三(甲氧基乙氧基)矽烷、烯丙基甲 基二甲氧基矽烷、烯丙基甲基二乙氧基矽烷、烯丙基甲基 二正丙氧基矽烷、烯丙基甲基二異丙氧基矽烷、烯丙基甲 基二乙醯氧基矽烷、烯丙基乙基二甲氧基矽烷、烯丙基乙 基二乙氧基矽烷、烯丙基乙基二正丙氧基矽烷、烯丙基乙 基二異丙氧基矽烷、烯丙基乙基二乙醯氧基矽烷、烯丙基 乙基二(甲氧基乙氧基)矽烷、烯丙基苯基二甲氧基矽烷 、烯丙基苯基二乙氧基矽烷、烯丙基苯基二正丙氧基矽烷 、烯丙基苯基二異丙氧基矽烷、烯丙基苯基二乙醯氧基矽 烷、烯丙基苯基二(甲氧基乙氧基)矽烷等含有烯丙基之 烷氧基矽烷; 如(甲基)丙烯醯氧基甲基三甲氧基矽烷、(甲基) 丙烯醯氧基甲基三乙氧基矽烷、(甲基)丙烯醯氧基甲基 三正丙氧基矽烷、(甲基)丙烯醯氧基甲基三異丙氧基矽 烷、(甲基)丙烯醯氧基甲基三乙醯氧基矽烷、(甲基) 丙烯醯氧基甲基甲基二甲氧基矽烷、(甲基)丙烯醯氧基 甲基甲基二乙氧基矽烷、(甲基)丙烯醯氧基甲基甲基二 正丙氧基矽烷、(甲基)丙烯醯氧基甲基甲基二異丙氧基 矽烷、(甲基)丙烯醯氧基甲基甲基二乙醯氧基矽烷、( 甲基)丙烯醯氧基甲基乙基二甲氧基矽烷、(甲基)丙烯 醯氧基甲基乙基二乙氧基矽烷、(甲基)丙烯醯氧基甲基 -37- 200915005 乙基二正丙氧基矽烷、(甲基)丙烯醯氧基甲基乙基 丙氧基矽烷、(甲基)丙烯醯氧基甲基乙基二乙醯氧 烷、(甲基)丙烯醯氧基甲基苯基二甲氧基矽烷、( )丙烯醯氧基甲基苯基二乙氧基矽烷、(甲基)丙烯 基甲基苯基二正丙氧基矽烷、(甲基)丙烯醯氧基甲 基二異丙氧基矽烷、(甲基)丙烯醯氧基甲基苯基二 氧基矽烷、2-(甲基)丙烯醯氧基乙基三甲氧基矽怎 -(甲基)丙烯醯氧基乙基三乙氧基矽烷、2— (甲 丙烯醯氧基乙基三正丙氧基矽烷、2- (甲基)丙烯 基乙基三異丙氧基矽烷、2-(甲基)丙烯醯氧基乙 乙醯氧基矽烷、3- (甲基)丙烯醯氧基乙基甲基二 基矽烷、2_ (甲基)丙烯醯氧基乙基甲基二乙氧基 、2— (甲基)丙烯醯氧基乙基甲基二正丙氧基矽烷、 (甲基)丙烯醯氧基丙基三甲氧基矽烷、3 — (甲基 烯醯氧基丙基三乙氧基矽烷、3—(甲基)丙烯醯氧 基三正丙氧基矽烷、3 - (甲基)丙烯醯氧基丙基三 氧基矽烷、3 - (甲基)丙烯醯氧基丙基三乙醯氧基 、3_ (甲基)丙烯醯氧基丙基甲基二甲氧基矽烷、3 甲基)丙烯醯氧基丙基甲基二乙氧基矽烷、3 — (甲 丙烯醯氧基丙基甲基二正丙氧基矽烷、3 - (甲基) 醯氧基丙基甲基二異丙氧基矽烷、3- (甲基)丙烯 基丙基甲基二乙醯氧基矽烷、3— (甲基)丙烯醯氧 基乙基二甲氧基矽烷、3- (甲基)丙烯醯氧基丙基 二乙氧基矽烷、3- (甲基)丙烯醯氧基丙基乙基二 二異 基矽 甲基 醯氧 基苯 乙醯 τ. ' 2 基) 醯氧 基三 甲氧 矽烷 3 -)丙 基丙 異丙 矽烷 一( 基) 丙烯 醯氧 基丙 乙基 正丙 -38- 200915005 氧基矽烷、3-(甲基)丙烯醯氧基丙基乙基二異 矽烷、3 - (甲基)丙烯醯氧基丙基乙基二乙醯氧 、3_ (甲基)丙烯醯氧基丙基苯基二甲氧基矽烷 甲基)丙烯醯氧基丙基苯基二乙氧基矽烷、3—( 丙烯醯氧基丙基苯基二正丙氧基矽烷、3-(甲基 醯氧基丙基苯基二異丙氧基矽烷、3- (甲基)丙 基丙基苯基二乙醯氧基矽烷之含有(甲基)丙烯基 等。 該等化合物(a3 )中,就反應性以及所得層間 或微透鏡之耐熱性、透明性、抗剝離液性方面而言 用者爲四甲氧基矽烷、四乙氧基矽烷、甲基三甲氧 、甲基三乙氧基矽烷、苯基三甲氧基矽烷、苯基三 矽烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽烷 基二甲氧基矽烷、二苯基二乙氧基矽烷、乙烯基三 矽烷、乙烯基三乙氧基矽烷、烯丙基三甲氧基矽烷 基三乙氧基矽烷、3 -(甲基)丙烯醯氧基丙基三 矽烷或3-(甲基)丙烯醯氧基丙基三乙氧基矽烷 化合物(a3 )可單獨使用一種或組合兩種以上使用 本發明中較佳使用之聚矽氧烷[A],以由化合 )、(a2)及(a3)衍生之重複單位之合計爲準, 有5〜70重量%,最好10〜60重量%之由化合物( 生之構成單位。若使用該構成單位未滿5重量%之 時,會有在未滿2 5 0°C之燒成條件下所得之層間絕 微透鏡之耐熱性、表面硬度以及抗剝離液性降低之 丙氧基 基矽烷 '3-( 甲基) )丙烯 烯醯氧 之矽烷 絕緣膜 ,較適 基矽烷 乙氧基 、二苯 甲氧基 、嫌丙 甲氧基 。該等 〇 物(al 較好含 al )衍 共聚物 緣膜或 傾向, -39- 200915005 另一方面若爲該構成單位超過70重量%之共聚物,則有 儲存安定性惡化之傾向。 本發明中較佳使用之聚矽氧烷[A],以由化合物(al )、(a2)及(a3)衍生之重複單位之合計爲準,較好含 有5〜70重量%,最好10〜6 0重量%之由化合物(a2)衍 生之構成單位。若使用該構成單位未滿5重量%之共聚物 時,會有在未滿250°C之燒成條件下所得之層間絕緣膜或 微透鏡之耐熱性、表面硬度以及抗剝離液性降低之傾向, 另一方面若爲該構成單位超過70重量%之共聚物’則有 儲存安定性惡化之傾向。 本發明中較佳使用之聚矽氧烷[A],以由化合物(al )、(a2 )及(a3 )衍生之重複單位之合計爲準’較好含 有1 0〜90重量%,最好20〜80重量%之由化合物(a3 )衍 生之構成單位。當該構成單位未達10重量%時’有敏輻 射線性樹脂組成物之儲存安定性降低之傾向’另一方面當 該構成單位之量超過90重量%時,會有所得層間絕緣膜 或微透鏡之耐熱性、表面硬度以及抗剝離液性不足之情況 〇 本發明中較佳使用之聚矽氧烷[A]之具體例可舉例爲 例如3 -縮水甘油氧基丙基三甲氧基矽烷、2 一經基乙基 三甲氧基矽烷以及二甲基二甲氧基矽烷之水解縮合物’ 2— (3,,4,一環氧環己基)乙基三甲氧基矽烷、3一锍 基丙基三甲氧基矽烷以及苯基三甲氧基矽烷之水解縮合物 ,以及 -40- 200915005 3 — (3,一乙基氧雜環丁烷一3’一基)丙基三甲 矽烷、三甲氧基矽烷基丙基一 2 -(4, 一羥基苯基) 硫醚及甲基三甲氧基矽烷水解縮合物。 本發明中較佳使用之聚矽氧烷[A]可藉由使如上 化合物(a 1 ) 、( a2 )及(a3 ),較好在溶劑中,較 觸媒存在下加以水解並縮合而合成。 聚矽氧烷[A]合成中可使用之溶劑可舉例爲例如 、醚類 '二醇醚類、乙二醇單烷基醚乙酸酯類、二乙 類、二乙二醇單烷基醚乙酸酯類、丙二醇單烷基醚類 二醇烷基醚乙酸酯類、丙二醇烷基醚丙酸酯類、芳香 、酮類、酯類等。 該等具體例分別舉例爲醇類爲例如甲醇、乙醇、 醇、2 —苯基乙基醇、3—苯基一1 一丙醇等; 醚類爲四氫呋喃等; 二醇醚爲例如乙二醇單甲基醚、乙二醇單乙基醚 乙二醇單烷基醚乙酸酯爲例如甲基溶纖素乙酸酯 基溶纖素乙酸酯、乙二醇單丁基醚乙酸醋、乙二醇單 醚乙酸酯等; 二乙二醇爲例如二乙二醇單甲基醚、二乙二醇單 酸、二乙二醇二甲基醒、—乙二醇一乙基醒、一·乙一· 基甲基醚等; 二乙二醇單烷基醚乙酸酯爲例如二乙二醇單乙基 酸酯等; 丙二醇單烷基醚爲例如丙二醇單甲基醚、丙二醇 氧基 丙基 述之 好於 醇類 二醇 、丙 族烴 苄基 等; 、乙 乙基 乙基 醇乙 醚乙 單乙 -41 - 200915005 基醚、丙二醇單丙基醚、丙二醇單丁基醚等; 丙二醇單院基醚丙酸酯爲例如丙二醇單甲基醚丙酸酯 、丙二醇單乙基醚丙酸酯、丙二醇單丙基醚丙酸酯、丙二 醇單丁基醚丙酸酯等; 丙二醇單烷基醚乙酸酯爲例如丙二醇單甲基醚乙酸酯 、丙二醇單乙基醚乙酸酯、丙二醇單丙基醚乙酸酯、丙二 醇單丁基醚乙酸酯等; 芳香族烴爲例如甲苯、二甲苯等; 酮類爲例如甲基乙基酮、甲基異丙基酮、環己酮、4 一羥基一 4 一甲基—2 —戊酮等; 酯類爲例如乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁 酯、2 —羥基丙酸乙酯、2 —羥基_2—甲基丙酸甲酯、2 — 羥基一2_甲基丙酸乙酯、羥基乙酸甲酯、羥基乙酸乙酯 、羥基乙酸丁酯、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳酸 丁酯、3 -羥基丙酸甲酯、3 -羥基丙酸乙酯、3 -羥基丙 酸丙酯、3—羥基丙酸丁酯、2 -羥基一 3 —甲基丁酸甲酯 、甲氧基乙酸甲酯、甲氧基乙酸乙酯、甲氧基乙酸丙酯、 甲氧基乙酸丁酯、乙氧基乙酸甲酯、乙氧基乙酸乙酯、乙 氧基乙酸丙酯、乙氧基乙酸丁酯、丙氧基乙酸甲酯、丙氧 基乙酸乙酯、丙氧基乙酸丙酯、丙氧基乙酸丁酯、丁氧基 乙酸甲酯、丁氧基乙酸乙酯、丁氧基乙酸丙酯、丁氧基乙 酸丁酯、2—甲氧基丙酸甲酯、2—甲氧基丙酸乙酯、2 — 甲氧基丙酸丙酯、2—甲氧基丙酸丁酯、2 —乙氧基丙酸甲 酯、2 —乙氧基丙酸乙酯、2 —乙氧基丙酸丙酯、2—乙氧 -42- 200915005 基丙酸丁酯、2- 丁氧基丙酸甲酯、2— 丁氧基丙酸乙酯、 2—丁氧基丙酸丙酯、2 — 丁氧基丙酸丁酯、3 -甲氧基丙 酸甲酯、3—甲氧基丙酸乙酯、3—甲氧基丙酸丙酯、3 — 甲氧基丙酸丁酯、3—乙氧基丙酸甲酯、3 —乙氧基丙酸乙 酯、3 —乙氧基丙酸丙酯、3 —乙氧基丙酸丁酯、3—丙氧 基丙酸甲酯、3-丙氧基丙酸乙酯、3—丙氧基丙酸丙酯、 3 -丙氧基丙酸丁酯、3 - 丁氧基丙酸甲酯、3 - 丁氧基丙 酸乙酯、3 — 丁氧基丙酸丙酯、3 — 丁氧基丙酸丁酯等。 該等溶劑中,以乙二醇烷基醚乙酸酯、二乙二醇、丙 二醇單烷基醚或丙二醇烷基醚乙酸酯較佳,尤其以二乙二 醇二甲基醚、二乙二醇乙基甲基醚、丙二醇甲基醚、丙二 醇乙基醚、丙二醇甲基醚乙酸酯或3—甲氧基丙酸甲酯或 該等之兩種以上之混合物較佳。溶劑之使用量以成爲反應 溶液中之化合物(al) 、(a2)及(a3)合計量之1〇〜50 重量%之量較佳,且以15〜40重量%之量更佳。 用以合成聚矽氧烷[A]之水解及縮合反應較好在酸觸 媒(例如鹽酸、硫酸、硝酸、甲酸、草酸、乙酸、三氟乙 酸、三氟甲烷磺酸、酸性離子交換樹脂、各種路易斯酸等 )或鹼性觸媒(例如氨、一級胺類、二級胺類、三級胺類 、吡啶等含氮芳香族化合物;鹼性離子交換樹脂;氫氧化 鈉等氫氧化物;碳酸鉀等碳酸鹽;乙酸鈉等羧酸鹽;各種 路易斯鹼等)存在下進行。觸媒之使用量相對於化合物( al ) 、( a2 )及(a3 )之合計1莫耳,較好爲0.2莫耳以 下’更好爲0.00001-0.1莫耳。 -43- 200915005 水之使用量、反應溫度及反應時間係經適當設定。例 如可採用下列條件。 水之使用量相對於化合物(al )中之基Rl、化合物 (a2 )中之基R3及化合物(a3 )中之基R5之合計量1莫 耳,較好爲0.1 ~3莫耳,更好爲0.3〜2莫耳,進而更好爲 0.5〜1.5莫耳之量。 反應溫度較好爲40〜2 00 °C,更好爲50〜15(Γ(:。 反應時間較好爲3 0分鐘〜2 4小時,更好爲1〜丨2小時 〇 化合物(al ) 、( a2 )及(a3 )以及水可—次添加以 一階段進行水解及縮合反應,或者化合物(a丨)、(a2 ) 及(a3)以及水可分段添加以多階段進行水解及縮合反應 〇 本發明中所用[A]成分之換算成聚苯乙燦之重量平均 分子量(以下稱爲「Mw」)較好爲5χ102〜5χ1〇4,更好爲 lxlO3〜3χ104。當Mw未達5χ102時,會有顯像裕度不充分 之情況’所得被覆膜之殘膜率等降低,且所得層間絕緣膜 或微透鏡之圖案形狀、耐熱性等劣化,另~方面當超過5 X 1 04時’有敏感度下降使圖案形狀劣化之情況。含有如上 述[A ]成分之敏輻射線性樹脂組成物在顯像時不會發生顯 像殘留且易於形成特定之圖案形狀。 [B]成分 本發明所用之[B]成分爲藉由幅射線照射可產生羧酸 -44 - 200915005 之1,2 —重氮醌,可使用酚性化合物或醇性化合物(以下 稱爲「具有羥基之母核」)或具有胺基之母核與1,2-萘 醌重氮基磺醯氯之縮合物。 具有上述羥基之母核可舉例爲例如三羥基二苯甲酮、 四羥基二苯甲酮、五羥基二苯甲酮、六羥基二苯甲酮、( 多羥基苯基)烷類以及其他具有羥基之母核。 該等具體例分別舉例爲三羥基二苯甲酮爲例如2,3,4 一三羥基二苯甲酮、2,4,6 -三羥基二苯甲酮等; 四羥基二苯甲酮爲 2,2’,4,4’ 一四羥基二苯甲酮、 2,3,4,3, 一四羥基二苯甲酮、2,3,4,4’ 一四羥基二苯甲酮、 2,3,4,2, 一四羥基一 4’ 一甲基二苯甲酮、2,3,4,4’一四羥基 一 3’—甲基二苯甲酮等; 五羥基二苯甲酮爲例如2,3,4,2’,6’_五羥基二苯甲酮 等; 六羥基二苯甲酮爲例如2,4,6,3’,4’,5’一六羥基二苯甲 酮、3,4,5,3,,4,,5,一六羥基二苯甲酮等; (多羥基苯基)烷類爲例如雙(2,4 一二經基苯基) 甲垸、雙(對一經基苯基)甲院、三(對-經基苯基)甲 烷、1,1,1 一三(對一羥基苯基)乙烷、雙(2,3,4一三經 基苯基)甲烷、2,2 -雙(2,3,4 —三羥基苯基)丙烷、 1,1,3 —參(2,5-二甲基一 4一經基苯基)—3—苯基丙院 、4,4,一 [1一 [4 一 [1 一 [4 一經基本基]一1 一甲基乙基]苯基] 亞乙基雙酚、雙(2,5-二甲基一 4一羥基苯基)一 2一羥 基苯基甲烷、3,3,3,,3,一四甲基—1,1’一螺雙茚一 -45 - 200915005 5,6,7,5,,6,,7,一 己醇、2,2,4一 三甲基—7,2’,4’一三羥基黃 烷等; 其他具有羥基之母核爲例如2一甲基一 2一(2,4 —二 經基苯基)一4一(4一經基苯基)—7—經基色院、2—[ 雙異丙基一4 —羥基一2—甲基)苯基}甲基]、1 一 [1一 (3 — {1— (4_經基苯基)一 1 一甲基乙基}一4,6 — 二羥基苯基)一1—甲基乙基]_3—(1 一(3— {1— (4 — 經基苯基)一 1 一甲基乙基}一 4,6—二羥基苯基)一1—甲 基乙基)苯' 4,6—雙{1一 (4 —經基苯基)—1—甲基乙 基}— 1,3 —二羥基苯等。 上述具有胺基之母核舉例爲以胺基取代上述具有羥基 之母核之羥基之化合物。 該等母核中,較好爲2,3,4,4’ 一四羥基二苯甲酮、 4,4’一 [1 一 [4_ [1— [4 —羥基苯基]一 1 一甲基乙基]苯基]亞 乙基]雙酚。 至於上述1,2—萘醌重氮基磺醯鹵較好爲1,2—萘醌 重氮基磺醯氯,至於其具體例舉例爲1,2 -萘醌重氮基- 4 -磺醯氯以及1,2 -萘醌重氮基- 5 -磺醯氯,其中較好使 用1,2 -萘醌重氮基一 5 —磺醯氯。 縮合反應中,相對於酚性化合物或醇性化合物中之羥 基數或具有胺基之母核之胺基數,較好使用相當於3 0〜8 5 莫耳%,更好5〇〜70莫耳%之1,2 -萘醌重氮基磺醯鹵。 縮合反應可以習知方法進行。 此處之[B]成分可單獨使用或組合兩種以上使用。 -46- 200915005 [B]成分之使用比例’相對於100重量份[A]成分’較 好爲1~2 5重量份,更好爲5~20重量份。當該比例未達1 重量份時,輻射線照射部分與未照射部分相對於作爲顯像 液之鹼性水溶液之溶解度差異小’會有難以圖案化之情況 ,且有所得層間絕緣膜或微透鏡之耐熱性及耐溶劑性變得 不充分之情況。另一方面’當該比例超過25重量份時’ 輻射線照射部份對上述鹼性水溶液之溶解度變得不充分’ 而有顯像變困難之情況。 再者,已知藉由添加1,2 -重氮醌化合物會損及所得 硬化膜之光線透過率。過去已知之使用丙烯酸系樹脂或酚 系樹脂之層間絕緣膜或微透鏡形成用組成物中,由於若未 大量添加1,2 -重氮醌化合物,則無法獲得所需之敏輻射 線敏感度,故所得硬化膜之光線透過率提高有其限度。然 而,由於本發明之敏輻射線性樹脂組成物與上述以往相較 ,可以較少的[B] 1,2 -重氮醌化合物量實現高的輻射線感 度,所以具有在高放射線敏感度下形成具有高光線透過率 硬化膜之優點。本發明之敏輻射線性樹脂組成物中[B] 1,2 一重氮醌化合物之使用量,進而相對於1〇〇重量份之[A] 成分,可爲15重量份以下。 其他成分 本發明之敏輻射線性樹脂組成物含有上述[A]成分及 [B]成分做爲必要成分,但可進一步視情況含有[C]敏熱性 酸生成化合物、[D]具有至少一個乙烯屬不飽和雙鍵之聚 -47- 200915005 合性化合物、[E]環氧樹脂、[F]界面活性劑、[G]接著助劑 等。 上述[C]敏熱性酸產生化合物可用於改善耐熱性$ @ 度。其具體例舉例爲鏑鹽、苯并三唑鎗鹽、銨鹽、鱗鹽等 鎗鹽。 上述锍鹽之具體例舉例爲烷基鏑鹽、苄基鏑鹽、二节 基鏑鹽、經取代之苄基鏑鹽等。 該等具體例分別列舉之烷基锍鹽爲例如4 一乙釀* $ 基二甲基毓六氟銻酸鹽、4-乙醯氧基苯基二甲基鏡/、氣 砷酸鹽、二甲基一 4一(苄基氧基羰基氧基)苯基疏八截 銻酸鹽、二甲基- 4- (苯甲醯基氧基)苯基鏡六氣鍊酸 鹽、二甲基一4一 (苯甲醯基氧基)苯基鏑六氟碑酸 二甲基—3-氯- 4 一乙醯氧基苯基鏑六氟銻酸鹽等’ 苄基鏑鹽舉例爲例如苄基一 4 一羥基苯基甲基瓤/、氟 銻酸鹽、苄基- 4 -羥基苯基甲基锍六氟憐酸鹽' 4乙酸 氧基苯基苄基甲基鏑六氟銻酸鹽、苄基一 4 一甲氧基本基 3基一 4 一羥基苯基甲基毓 羥基苯基甲基锍六氟砷酸 甲基锍六氟銻酸鹽、苄基一 2 一甲基一 4a dialkyl monodecyl oxide sand such as dimethyl (phenoxy) ethoxy decane; a diaryl alkoxy sand court such as diphenyl (phenoxy) ethoxy decane; (Phenyl)(phenoxy)ethoxydecane-based monoaryloxymonoalkoxydecane; such as vinyltrimethoxydecane, vinyltriethoxytri-n-propoxydecane, vinyl III Isopropoxydecane, decyloxydecane, vinyl tris(methoxyethoxy)decyldimethoxydecane, vinylmethyldiethoxydecane, di-n-propoxydecane, vinyl Diisopropoxydecylalkyldiethoxydecane, vinylethyldimethoxydecylalkyldiethoxydecane, vinylethyldi-n-propoxydecyloxydiisopropoxydecane, ethylene Ethyl ethyl ethoxylated oxime ethyl bis(methoxyethoxy) decane, vinyl phenyl di, vinyl phenyl diethoxy decane, vinyl phenyl di-n-, vinyl phenyl An aryl-containing monoalkoxylate sandstone such as isopropoxydecane, vinyl phenyl dioxane or vinyl phenyl bis(methoxyethoxy) decane; Monoaryl monoaryloxy monoaryloxy monomonoalkyl monoaryl decane, ethylene vinyl triethylene, vinyl methyl vinyl methyl, vinyl methyl, vinyl ethylene, vinyl Ethane, vinyl methoxy decane, propoxy oxane ethoxy oxime, vinyl - 36- 200915005 alkoxy decane; such as allyl trimethoxy decane, allyl triethoxy decane, olefin Propyl tri-n-propoxy decane, allyl triisopropoxy decane, allyl triethoxy decane, allyl tris (methoxyethoxy) decane, allyl methyl dimethyl Oxydecane, allylmethyldiethoxydecane, allylmethyldi-n-propoxydecane, allylmethyldiisopropoxydecane, allylmethyldiethoxydecane , allyl ethyl dimethoxy decane, allyl ethyl diethoxy decane, allyl ethyl di-n-propoxy decane, allyl ethyl diisopropoxy decane, allyl Ethyl ethoxy decane, allyl ethyl bis(methoxyethoxy) decane, allyl phenyl dimethoxy decane, allyl benzene Diethoxy decane, allyl phenyl di-n-propoxy decane, allyl phenyl diisopropoxy decane, allyl phenyl diethoxy decane, allyl phenyl di Allyl-containing alkoxy decane such as methoxyethoxy) decane; such as (meth) propylene methoxymethyl trimethoxy decane, (meth) propylene methoxymethyl triethoxy decane , (meth) propylene methoxymethyl tri-n-propoxy decane, (meth) propylene methoxymethyl triisopropoxy decane, (meth) propylene methoxymethyl triethoxy methoxy Decane, (meth) propylene methoxymethyl methyl dimethoxy decane, (meth) propylene methoxymethyl methyl diethoxy decane, (meth) propylene methoxymethyl methyl Di-n-propoxy decane, (meth) propylene methoxymethyl methyl diisopropoxy decane, (meth) propylene methoxymethyl methyl diethoxy decane, (methyl) propylene醯oxymethylethyldimethoxydecane, (meth)acryloxymethylethyldiethoxydecane, (meth)acryloxymethyl-37- 200915005 Ethyl di-n-propoxy decane, (meth) propylene methoxymethyl ethyl propoxy decane, (meth) propylene methoxymethyl ethyl dimethyl oxane, (meth) propylene oxime Oxymethylphenyldimethoxydecane, ( ) propylene methoxymethylphenyl diethoxy decane, (meth) propylene methyl phenyl di n-propoxy decane, (meth) propylene醯oxymethyl diisopropoxy decane, (meth) propylene methoxymethyl phenyl dioxy decane, 2-(methyl) propylene methoxyethyl trimethoxy hydrazine - (methyl Propylene methoxyethyl triethoxy decane, 2-(methacryloxyethyl tri-n-propoxy decane, 2-(methyl)propenylethyl triisopropoxy decane, 2-( Methyl) propylene methoxy ethoxy ethoxy decane, 3-(meth) propylene methoxyethyl methyl dimethyl decane, 2 - (meth) propylene methoxyethyl methyl diethoxy, 2-(Methyl)propenyloxyethylmethyldi-n-propoxyoxydecane, (meth)acryloxypropyltrimethoxydecane, 3-(methylallyloxypropyltriethoxy) Base decane, 3 —(meth)propenyloxytri-n-propoxyoxydecane, 3-(meth)acryloxypropyltrioxydecane, 3-(meth)acryloxypropyltriethoxycarbonyl , 3_(Methyl)acryloxypropylmethyldimethoxydecane, 3 methyl)propenyloxypropylmethyldiethoxydecane, 3-(methacryloxypropylmethyl) Di-n-propoxy decane, 3-(methyl) methoxy propyl methyl diisopropoxy decane, 3-(methyl)propenyl propyl dimethyl ethoxy decane, 3- (A) Acryloxyethyldimethoxydecane, 3-(methyl)propenyloxypropyldiethoxydecane, 3-(meth)acryloxypropylethyldidiisoyl矽Methyl methoxy phenethyl hydrazine. ' 2 bases 醯 methoxy methoxy methoxy decane 3 -) propyl isopropyl isopropyl decyl - (yl) propylene methoxy propyl ethyl propyl - 38 - 200915005 oxy decane , 3-(methyl)propenyloxypropylethyl diisodecane, 3-(meth)acryloxypropylethyldiethoxycarbonyl, 3-(meth)acryloxypropylbenzene Dimethoxy oxime Methyl)propenyloxypropylphenyldiethoxydecane, 3-(propyleneoxypropylphenyldi-n-propoxyoxydecane, 3-(methylmethoxypropylphenyldiisopropyl) The (meth)acryl group and the like of oxydecane and 3-(methyl)propylpropyl phenyldiethoxy decane are contained. In the compound (a3), tetramethoxy decane, tetraethoxy decane, methyltrimethoxy is used in terms of reactivity and heat resistance, transparency, and peeling resistance of the obtained interlayer or microlens. , methyl triethoxy decane, phenyl trimethoxy decane, phenyl trioxane, dimethyl dimethoxy decane, dimethyl diethoxy decyl dimethoxy decane, diphenyl di Oxydecane, vinyl trioxane, vinyl triethoxydecane, allyltrimethoxydecyltriethoxydecane, 3-(meth)acryloxypropyltrioxane or 3-(A) The acryloxypropyltriethoxydecane compound (a3) may be used singly or in combination of two or more kinds, preferably using the polyoxyalkylene [A] used in the present invention to form a compound (a2). And (a3) the total of the repeating units derived, which is 5 to 70% by weight, preferably 10 to 60% by weight, of the compound (the raw constituent unit. If the constituent unit is less than 5% by weight, Heat resistance and surface hardness of interlayer microlenses obtained under firing conditions of less than 250 ° C The stripping solution and lower anti-propoxy group Silane '3- (meth)) of propylene oxide Silane alkylene acyl insulating film, the more suitable Silane ethoxy group, diphenyl methoxy, methoxy propyl too. The oxime (al preferably contains al)-derived copolymer film or a tendency, -39-200915005 On the other hand, if the copolymer is more than 70% by weight of the constituent unit, the storage stability tends to be deteriorated. The polyoxyalkylene [A] preferably used in the present invention is preferably a total of 5 to 70% by weight, preferably 10, based on the total of the repeating units derived from the compounds (al), (a2) and (a3). ~60% by weight of the constituent unit derived from the compound (a2). When the copolymer having less than 5% by weight of the constituent unit is used, there is a tendency that the heat resistance, surface hardness, and peeling resistance of the interlayer insulating film or the microlens obtained under firing conditions of less than 250 ° C are lowered. On the other hand, if the copolymer is more than 70% by weight of the constituent unit, the storage stability tends to be deteriorated. The polyoxyalkylene [A] preferably used in the present invention is preferably from 10 to 90% by weight based on the total of the repeating units derived from the compounds (al), (a2) and (a3), preferably 20 to 80% by weight of a constituent unit derived from the compound (a3). When the constituent unit is less than 10% by weight, the tendency of the storage stability of the sensitive radiation linear resin composition is lowered. On the other hand, when the amount of the constituent unit exceeds 90% by weight, the resulting interlayer insulating film or microlens may be obtained. The heat resistance, the surface hardness, and the peeling resistance are insufficient. Specific examples of the polyoxyalkylene [A] preferably used in the present invention are, for example, 3-glycidoxypropyltrimethoxydecane, 2 Hydrolyzed condensate of 2-ethyltrimethoxydecane and dimethyldimethoxydecane '2-(3,4,monoepoxycyclohexyl)ethyltrimethoxydecane, 3-mercaptopropyltrimethyl Hydrolyzed condensate of oxydecane and phenyltrimethoxydecane, and -40-200915005 3 - (3, monoethyloxetane-3'-yl)propyltrimethylnonane, trimethoxydecyl-propyl Hydrogen condensate of 2-methyl-(4, monohydroxyphenyl) sulfide and methyltrimethoxydecane. The polyoxyalkylene [A] preferably used in the present invention can be synthesized by subjecting the above compounds (a 1 ), ( a2 ) and (a3 ), preferably in a solvent, to hydrolysis and condensation in the presence of a catalyst. . The solvent which can be used in the synthesis of polyoxyalkylene [A] can be exemplified by, for example, ethers, 'glycol ethers, ethylene glycol monoalkyl ether acetates, diethylenes, diethylene glycol monoalkyl ether acetates. Esters, propylene glycol monoalkyl ether glycol alkyl ether acetates, propylene glycol alkyl ether propionates, aromatics, ketones, esters, and the like. Examples of the specific examples include alcohols such as methanol, ethanol, alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol, etc.; ethers such as tetrahydrofuran; and glycol ethers such as ethylene glycol. Monomethyl ether, ethylene glycol monoethyl ether glycol monoalkyl ether acetate is, for example, methyl cellosolve acetate-based fibrin acetate, ethylene glycol monobutyl ether acetate vinegar, Ethylene glycol monoether acetate, etc.; diethylene glycol is, for example, diethylene glycol monomethyl ether, diethylene glycol monoacid, diethylene glycol dimethyl ketone, ethylene glycol monoethyl oxime, 1-ethylidene methyl ether or the like; diethylene glycol monoalkyl ether acetate is, for example, diethylene glycol monoethyl ester; propylene glycol monoalkyl ether is, for example, propylene glycol monomethyl ether, propylene glycoloxy The propyl group is better than the alcohol diol, the propyl hydrocarbon benzyl group, etc.; ethyl ethyl ethyl ether ethyl ether ethyl b-41 - 200915005 base ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, etc.; Single-chamber ether propionate is, for example, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, C Alcohol monobutyl ether propionate or the like; propylene glycol monoalkyl ether acetate is, for example, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl Ethyl ether acetate or the like; aromatic hydrocarbons such as toluene, xylene, etc.; ketones such as methyl ethyl ketone, methyl isopropyl ketone, cyclohexanone, 4-hydroxy- 4-methyl- 2 - Ethyl ketone and the like; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, 2-hydroxyl-2 _ethyl propyl propionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, 3-hydroxyl Ethyl propionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, methoxy Propyl propyl acetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate , methyl propoxyacetate, ethyl propoxyacetate, propyl propoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, Butyl butyloxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, 2-B Methyl oxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, 2-ethoxy-42- 200915005 butyl propionate, methyl 2-butoxypropionate , 2 - ethyl butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate , propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate , 3-butyl ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, propyl 3-propoxypropionate, butyl 3-propoxypropionate , 3 - methyl butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, 3-butoxy Butyl propionate. Among these solvents, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether or propylene glycol alkyl ether acetate is preferred, especially diethylene glycol dimethyl ether, diethyl Glycol ethyl methyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol methyl ether acetate or methyl 3-methoxypropionate or a mixture of two or more thereof is preferred. The amount of the solvent to be used is preferably from 1 to 50% by weight based on the total amount of the compounds (al), (a2) and (a3) in the reaction solution, and more preferably from 15 to 40% by weight. The hydrolysis and condensation reaction for synthesizing polyoxyalkylene [A] is preferably carried out in an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, acidic ion exchange resin, Various Lewis acids, etc. or alkaline catalysts (for example, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing aromatic compounds such as pyridine; basic ion exchange resins; hydroxides such as sodium hydroxide; It is carried out in the presence of a carbonate such as potassium carbonate or a carboxylate such as sodium acetate or the like. The amount of the catalyst used is 1 mole based on the total of the compounds (al), (a2) and (a3), preferably 0.2 moles or less, more preferably 0.00001-0.1 moles. -43- 200915005 The amount of water used, the reaction temperature and the reaction time are appropriately set. For example, the following conditions can be employed. The amount of water used is 1 mole, preferably 0.1 to 3 moles, more preferably 0.1 to 3 moles, based on the base R1 in the compound (al), the radical R3 in the compound (a2), and the radical R5 in the compound (a3). It is 0.3 to 2 moles, and more preferably 0.5 to 1.5 moles. The reaction temperature is preferably from 40 to 200 ° C, more preferably from 50 to 15 (Γ (:. The reaction time is preferably from 30 minutes to 2 hours, more preferably from 1 to 2 hours for the compound (al), (a2) and (a3) and water may be added in one stage for hydrolysis and condensation, or compounds (a), (a2) and (a3) and water may be added in stages to carry out hydrolysis and condensation in multiple stages. The weight average molecular weight (hereinafter referred to as "Mw") of the component [A] used in the present invention is preferably 5χ102~5χ1〇4, more preferably lxlO3~3χ104. When the Mw is less than 5χ102 In the case where the development margin is insufficient, the residual film ratio of the obtained coating film is lowered, and the pattern shape and heat resistance of the obtained interlayer insulating film or microlens are deteriorated, and when it exceeds 5×104 'There is a case where the sensitivity is lowered to deteriorate the shape of the pattern. The linear composition of the sensitive radiation containing the component [A] as described above does not cause development residue at the time of development and is liable to form a specific pattern shape. [B] Component The present invention The [B] component used is a carboxylic acid produced by irradiation of radiation -44 - 200915 005, 1, 2 - diazonium, a phenolic compound or an alcoholic compound (hereinafter referred to as "the nucleus having a hydroxyl group") or a mother nucleus having an amine group and 1,2-naphthoquinonediazosulfonate A condensate of chlorine. The core having the above hydroxyl group can be exemplified by, for example, trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl)alkane. And other nucleus having a hydroxyl group. Examples of the specific examples are trihydroxybenzophenone such as 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, and the like. ; tetrahydroxybenzophenone is 2,2',4,4'-tetrahydroxybenzophenone, 2,3,4,3, tetrahydroxybenzophenone, 2,3,4,4' Tetrahydroxybenzophenone, 2,3,4,2, tetrahydroxy- 4'-methylbenzophenone, 2,3,4,4'-tetrahydroxy-3'-methylbenzophenone Etc.; pentahydroxybenzophenone is, for example, 2,3,4,2',6'-pentahydroxybenzophenone, etc.; hexahydroxybenzophenone is, for example, 2,4,6,3',4', 5'-hexahydroxybenzophenone, 3,4,5,3,4,5,hexahydroxybenzophenone, etc. (Polyhydroxyphenyl)alkanes are, for example, bis(2,4-di-diphenyl)carbamidine, bis(p-phenylphenyl)-methyl, tris(p-phenylphenyl)methane, 1,1 , 1 - tris(p-hydroxyphenyl)ethane, bis(2,3,4-trisylphenyl)methane, 2,2-bis(2,3,4-trihydroxyphenyl)propane, 1 ,1,3—parameter (2,5-dimethyl-tetra-phenylphenyl)-3-phenylpropanoid, 4,4,[[1][4[[一一[4一经基基]] 1 monomethylethyl]phenyl]ethylidene bisphenol, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane, 3,3,3,3,1 Tetramethyl-1,1'-spiro-indole-45-200915005 5,6,7,5,6,7,1-hexanol, 2,2,4-trimethyl-7,2',4 'monotrihydroxyflavan, etc.; other nucleus having a hydroxyl group is, for example, 2-methyl-2-iso(2,4-di-phenyl)-4-indanyl-4-phenyl-4-phenyl-phenyl-phenyl , 2-[bisisopropyl-4-hydroxy-1-methyl)phenyl}methyl], 1 -[1 -(3 - {1 - (4_ylphenyl)-1-yl-methyl) }}4,6-dihydroxyphenyl)-1-A Ethyl]_3—(1(3—{1—(4—p-phenyl)-1-methylethyl}- 4,6-dihydroxyphenyl)-1-methylethyl)benzene 4,6-bis{1-(4-cyanophenyl)-1-methylethyl}-1,3-dihydroxybenzene, and the like. The above-mentioned mother core having an amine group is exemplified by a compound in which the above-mentioned hydroxyl group having a hydroxyl group is substituted with an amine group. Among these cores, 2,3,4,4'-tetrahydroxybenzophenone, 4,4'-[1 -[4_[1-[4-hydroxyphenyl]-1-methyl) Ethyl]phenyl]ethylidene]bisphenol. The above 1,2-naphthoquinonediazosulfonium halide is preferably 1,4-naphthoquinonediazosulfonyl chloride, and specific examples thereof are 1,2-naphthoquinonediazino-4-sulfonate Chlorine and 1,2-naphthoquinonediazo-5-sulfonyl chloride, of which 1,2-naphthoquinonediazo-5-sulfonyl chloride is preferably used. In the condensation reaction, the number of hydroxyl groups in the phenolic compound or the alcoholic compound or the number of amine groups having the amine group of the amine group is preferably used in an amount equivalent to 3 to 8 5 mol%, more preferably 5 to 70 mol. % of 1,2-naphthoquinonediazosulfonium halide. The condensation reaction can be carried out by a conventional method. The component [B] herein may be used singly or in combination of two or more. -46- 200915005 The ratio of use of the component [B] is preferably from 1 to 25 parts by weight, more preferably from 5 to 20 parts by weight, per 100 parts by weight of the [A] component. When the ratio is less than 1 part by weight, the difference in solubility between the irradiated portion and the unirradiated portion with respect to the alkaline aqueous solution as the developing liquid is small, and it is difficult to pattern, and the resulting interlayer insulating film or microlens is obtained. The heat resistance and solvent resistance are insufficient. On the other hand, when the ratio exceeds 25 parts by weight, the solubility of the radiation-irradiated portion to the above-mentioned alkaline aqueous solution becomes insufficient, and development becomes difficult. Further, it is known that the light transmittance of the obtained cured film is impaired by the addition of the 1,2-diazonium compound. In the interlayer insulating film or the microlens-forming composition which is known in the past, an acrylic resin or a phenol resin is used, and since a 1,2-diazonium compound is not added in a large amount, the required sensitivity to radiation is not obtained. Therefore, there is a limit to the improvement of the light transmittance of the obtained cured film. However, since the sensitive radiation linear resin composition of the present invention can achieve high radiation sensitivity by reducing the amount of [B] 1,2- diazonium compound compared with the above-mentioned conventional one, it has a high radiation sensitivity. The advantage of having a high light transmittance cured film. The amount of the [B] 1,2-diazonium compound to be used in the radiation-sensitive linear resin composition of the present invention may be 15 parts by weight or less based on 1 part by weight of the [A] component. Other components The sensitive radiation linear resin composition of the present invention contains the above-mentioned [A] component and [B] component as essential components, but may further contain [C] a thermosensitive acid generating compound, and [D] has at least one ethylene genus. Unsaturated double bond poly-47- 200915005 conjugated compound, [E] epoxy resin, [F] surfactant, [G] auxiliaries, etc. The above [C] thermosensitive acid generating compound can be used to improve heat resistance by @ @度. Specific examples thereof include a sulfonium salt, a benzotriazole gun salt, an ammonium salt, a scale salt, and the like. Specific examples of the above phosphonium salt are an alkyl phosphonium salt, a benzyl phosphonium salt, a dibasic phosphonium salt, a substituted benzyl phosphonium salt, and the like. The alkyl sulfonium salts of the specific examples are, for example, 4 ethoxybenzene * dimethyl hydrazine hexafluoroantimonate, 4-ethyl methoxy phenyl dimethyl mirror /, gas arsenate, Methyl 4-(benzyloxycarbonyloxy)phenyl octadecanoate, dimethyl-4-(benzylideneoxy)phenyl mirror hexahydrate, dimethyl one 4-(Benzyl fluorenyloxy)phenyl sulfonium hexafluoroacetic acid dimethyl-3-chloro- 4-ethoxy phenyl hexafluoroantimonate, etc. 'Benzyl sulfonium salt is exemplified by, for example, benzyl 4-1,4-hydroxyphenylmethylhydrazine/, fluoroantimonate, benzyl-4-hydroxyphenylmethylphosphonium hexafluoro-p-acidate, 4-acetoxyphenylphenylmethyl hexafluoroantimonate, Benzyl-4-ylmethoxybenzhydryl 3-yl-tetrahydroxyphenylmethylhydrazine hydroxyphenylmethylphosphonium hexafluoroarsenate methylhydrazine hexafluoroantimonate, benzyl-2-methyl-4-yl

-48- 200915005 銻酸鹽、苄基一 4-甲氧基苄基- 4 -羥基苯基鏑六氟磷酸 鹽等; 經取代之苄基锍鹽舉例爲例如對-氯苄基- 4 -羥基 苯基甲基锍六氟銻酸鹽、對一硝基苄基- 4-羥基苯基甲 基锍六氟銻酸鹽、對-氯苄基- 4 -羥基苯基甲基毓六氟 磷酸鹽、對一硝基苄基- 3 —甲基- 4一羥基苯基甲基锍六 氟銻酸鹽、3,5 -二氯苄基一 4一羥基苯基甲基鏑六氟銻酸 鹽、鄰一氯苄基一 3-氯一 4 一羥基苯基甲基锍六氟銻酸鹽 等。 上述苯并三唑鑰鹽之具體例舉例爲例如3 -苄基苯并 三唑鐵六氟銻酸鹽、3 -苄基苯并三唑鑰六氟磷酸鹽、3 -苄基苯并三唑鎗四氟硼酸鹽、3 - (對-甲氧基苄基)苯 并三唑鑰六氟銻酸鹽、3 -苄基一 2 -甲基硫基苯并三唑鑰 六氟銻酸鹽、3 -苄基- 5-氯苯并三唑鑰六氟銻酸鹽等。 此等中,較好使用锍鹽及苯并三唑鑰鹽,最好使用4 -乙醯氧基苯基二甲基鏑六氟砷酸鹽、苄基- 4 -羥基苯 基甲基毓六氟銻酸鹽、4一乙醯氧基苯基苄基甲基锍六氟 銻酸鹽、二苄基一 4 一羥基苯基锍六氟銻酸鹽、4 一乙醯氧 基苯基苄基鏑六氟銻酸鹽或3-苄基苯并三唑鑰六氟銻酸 。 該等之市售品舉例爲例如 SUNAID SI-L85、SUNAID SI-L1 1 0 ' SUNAID SI-L145、SUNAID SI-L150、SUNAID SI-L160 (三新化學工業(股)製造)等。 [C]敏熱性酸產生化合物之使用比例,相對於成分 -49- 200915005 [A] 1 〇〇重量份’較好在20重量份以下,更好在5重量份 以下。該用量超過20重量份時,於塗膜形成步驟中會析 出析出物’造成塗膜形成阻礙之情況。 上述[D]具有至少一個乙烯屬不飽和雙鍵之聚合性化 合物(以下有時稱爲[D ]成分)較好列舉爲例如單官能基 (甲基)丙烯酸酯、2官能基(甲基)丙烯酸酯或3官能 基以上之(甲基)丙烯酸酯。 上述單官能基(甲基)丙烯酸酯可舉例爲例如(甲基 )丙烯酸2—羥基乙酯、(甲基)丙烯酸卡必醇酯、(甲 基)丙烯酸異冰片酯、(甲基)丙烯酸3 -甲氧基丁酯、 2—(甲基)丙烯醯氧基乙基—2—羥基丙基苯二酸酯等。 該等之市售品舉例爲例如 ARONIX Μ-1 01、ARONIX Μ-ΐ 1 1 ' ARONIX M-114( 以 上爲東 亞合成 (股) 製造) , KATARAD TC-1 1 OS ' KATARAD TC-120S(以上爲曰本化 藥(股)製造),:BISCOT 158、BISCOT 2311 (以上爲大 阪有機化學工業(股)製造) 上述2官能基(甲基)丙烯酸酯可舉例爲例如(甲基 )丙烯酸乙二醇酯、二(甲基)丙烯酸1,6-己二醇酯、 二(甲基)丙烯酸1,9 —壬二醇酯、聚二(甲基)丙烯酸 丙二醇酯、二(甲基)丙烯酸四乙二醇酯、雙苯氧基乙醇 芴二丙烯酸酯等。該等市售品舉例爲例如ARONIX M-2 10 、ARONIX M-240、ARONIX M-6200 C 以上爲東亞合成( 股)製造)’ KATARAD HDDA、KATARAD HX-220、 KATARAD R-604 (以上爲日本化藥(股)製造)’ -50- 200915005 BISCOT 260、BISCOT 312、BISCOT 335HP (以上爲大阪 有機化學工業(股)製造)。 上述3官能基(甲基)丙烯酸酯可舉例爲例如三羥甲 基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸 酯、三((甲基)丙烯醯氧基乙基)磷酸酯、季戊四醇四 (甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二 季戊四醇六(甲基)丙烯酸酯等。該等市售品舉例爲例如 ARONIX M-3 09、ARONIX M-400、ARONIX M-405、 ARONIX M-450、ARONIX M-7100、ARONIX M-803 0、 ARONIX M-8060 (以上爲東亞合成(股)製造), KATARAD TMPTA、KATARAD DPHA、KATARAD DPCA-2 0 、 KATARAD DPCA-30 、 KATARAD DPCA-60 、 KATARAD DPCA-120(以上爲日本化藥(股)製造), BISCOT 295、BISCOT 3 00、BISCOT 360、BISCOT GPT、 BISCOT 3PA、BISCOT 400 (以上爲大阪有機化學工業( 股)製造)。 此等中較好使用3官能基以上之(甲基)丙烯酸酯, 其中最佳者爲三羥甲基丙烷三(甲基)丙烯酸酯、季戊四 醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯 〇 該等單官能基、2官能基或3官能基以上之(甲基) 丙烯酸酯可單獨使用或組合使用。[D]成分之使用比例, 相對於成分[A] 100重量份,較好爲50重量份以下,更好 爲3 0重量份以下。 -51 - 200915005 藉由以如此比例含有[D ]成分,可提高由本發明之敏 輻射線性樹脂組成物所得之層間絕緣膜或微透鏡之耐熱性 以及表面硬度等。若該使用量超過50重量份,則在基板 上形成敏輻射線性樹脂組成物之被覆膜之步驟中會造成膜 粗糙。 上述[E]環氧樹脂只要不影響相溶性下則無特別限制 。較佳可舉例爲雙酚A型環氧樹脂、酚醛清漆型環氧樹 脂、甲酚酚醛清漆型環氧樹脂、環狀脂肪族環氧樹脂、縮 水甘油酯型環氧樹脂、縮水甘油胺型環氧樹脂、雜環式環 氧樹脂、使縮水甘油甲基丙烯酸酯(共)聚合形成之樹脂 等。該等中,最佳爲雙酚A型環氧樹脂、甲酚酚醛清漆 型環氧樹脂、縮水甘油酯型環氧樹脂等。 [E]環氧樹脂之使用比例,相對於成分[A] 100重量份 ,較好爲3 0重量份以下。就由以此比例含有[E ]環氧樹脂 ,可進一步提高由本發明之敏輻射線性樹脂組成物所得之 層間絕緣膜或微透鏡之耐熱性及表面硬度。若該比例超過 3 0重量份,則在基板上形成敏輻射線性樹脂組成物之被 覆膜時,會有被覆之膜厚度均勻性不充分之情況。 又,當[A]成分亦可能稱爲「環氧樹脂」,但具有鹼 可溶性方面與[E]環氧樹脂不同。[E]環氧樹脂爲鹼不溶性 〇 本發明之敏輻射線性樹脂組成物爲了進一步提高塗佈 性,可使用上述[F]界面活性劑。此處可使用之[F]界面活 性劑較好爲氟系界面活性劑、矽氧系界面活性劑及非離子 -52- 200915005 性界面活性劑。 氟系界面活性劑之具體例舉例除1,1,2,2 -四氟辛基 (1,1,2,2 —四氟丙基)酸、1,1,2,2—四氣辛基己基酸、八 乙二醇二(1,1,2,2 —四氟丁基)醚、六乙二醇( 1,1,2,2,3,3 —六氟戊基)醚、八丙二醇二(1,1,2,2—四氟 丁基)醚、六丙二醇二(1,1,2,2,3,3-六氟戊基)醚、全 氟十二烷基磺酸鈉、1,1,2,2,3,3,9,9,10,10 —十氟十二烷, 1,1,2,2,3,3 -六氟癸烷等外,亦可舉例爲氟烷基苯磺酸鈉 :氟烷基氧基伸乙基醚;氟烷基銨碘鎗鹽、氟烷基聚氧伸 乙基醚、全氟烷基聚氧乙醇;全氟烷基烷醇酸酯;氟系烷 酯等。 該等之市售品舉例爲 BM-1000、BM-1100(以上爲 BM Chemie 公司製造),MEGAFAX F142D,MEGAFAX F172、MEGAFAX F173、MEGAFAX F 1 83、MEGAFAX F178 > MEGAFAX F191、MEGAFAX F471 (以上爲大日本 油墨化學工業(股)製造),FLORARD FC-170C、 FLORARD FC-171、FLORARD FC-43 0、FLORARD FC-431 (以上爲住友 3M (股)製造),SURFLON S-112、 SURFLON S-113、SURFLON S-131、SURFLON S-141、 SURFLON S-145、SURFLON S-3 82、SURFLON SC-101、 SURFLON SC-1 02、SURFLON SC-103' SURFLON SC-104 、SURFLON SC-105、SURFLON SC-106 (旭硝子(股) 製造)、F TOP EF301、F TOP EF3 03、F TOP EF3 52 (新 秋田化成(股)製造)。 -53- 200915005 上述矽氧烷系界面活性劑舉例爲例如以DC3PA、 DC7PA、FS- 1 2 65、SF- 84 82、SH11PA、SH21PA、SH28PA 、SH29PA ' SH30PA、SH-190、SH-193、SZ-6032 (東麗· 道康寧矽氧(股)製造)、TSF-4440、TSF-4300、TSF-4445 、 TSF-4446 、 TSF-4460 、 TSF-4452 (日本-48- 200915005 decanoate, benzyl-4-methoxybenzyl-4-hydroxyphenylphosphonium hexafluorophosphate, etc.; substituted benzyl sulfonium salt is exemplified by, for example, p-chlorobenzyl-4-hydroxyl Phenylmethyl hydrazine hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethyl hexafluoroantimonate, p-chlorobenzyl-4-hydroxyphenylmethyl hexafluorophosphate , p-nitrobenzyl-3-methyl-2-hydroxyphenylmethyl hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethyl hexafluoroantimonate, o-Chlorobenzyl-3-chloro-4-hydroxyphenylmethyl hexafluoroantimonate or the like. Specific examples of the above benzotriazole salt are, for example, 3-benzylbenzotriazole iron hexafluoroantimonate, 3-benzylbenzotriazole hexafluorophosphate, 3-benzylbenzotriazole Gun tetrafluoroborate, 3-(p-methoxybenzyl)benzotriazole hexafluoroantimonate, 3-benzyl-2-methylthiobenzotriazole hexafluoroantimonate, 3-benzyl-5-chlorobenzotriazole hexafluoroantimonate. Among these, a sulfonium salt and a benzotriazole key salt are preferably used, and 4-ethyloxyphenyl dimethyl sulfonium hexafluoroarsenate or benzyl-4-hydroxyphenylmethyl fluorene is preferably used. Fluoride, 4-glycidylphenylbenzylmethylphosphonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylphosphonium hexafluoroantimonate, 4-ethoxycarbonylphenylbenzyl Hexafluoroantimonate or 3-benzylbenzotriazole hexafluoroantimonic acid. Such commercially available products are exemplified by, for example, SUNAID SI-L85, SUNAID SI-L1 1 0 ' SUNAID SI-L145, SUNAID SI-L150, SUNAID SI-L160 (manufactured by Sanshin Chemical Industry Co., Ltd.), and the like. [C] The ratio of use of the thermosensitive acid generating compound to the component -49 to 200915005 [A] 1 part by weight ' is preferably 20 parts by weight or less, more preferably 5 parts by weight or less. When the amount is more than 20 parts by weight, precipitates may be precipitated in the coating film forming step to cause formation of a coating film. The above [D] polymerizable compound having at least one ethylenically unsaturated double bond (hereinafter sometimes referred to as a [D] component) is preferably exemplified by, for example, a monofunctional (meth) acrylate or a bifunctional group (methyl). Acrylate or a trifunctional or higher (meth) acrylate. The above monofunctional (meth) acrylate can be exemplified by, for example, 2-hydroxyethyl (meth)acrylate, carbitol (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid 3 -Methoxybutyl ester, 2-(meth)acryloxyethyl 2-hydroxypropyl phthalate, and the like. Such commercially available products are exemplified by, for example, ARONIX Μ-1 01, ARONIX Μ-ΐ 1 1 'ARONIX M-114 (above manufactured by East Asia Synthetic Co., Ltd.), KATARAD TC-1 1 OS 'KATARAD TC-120S (above) For the production of 曰本化药(股),: BISCOT 158, BISCOT 2311 (The above is manufactured by Osaka Organic Chemical Industry Co., Ltd.) The above 2-functional (meth) acrylate can be exemplified by, for example, (meth)acrylic acid Alcohol ester, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, propylene glycol poly(meth)acrylate, di(meth)acrylic acid Ethylene glycol ester, bisphenoxyethanol hydrazine diacrylate, and the like. Examples of such commercially available products are, for example, ARONIX M-2 10, ARONIX M-240, ARONIX M-6200 C or more, manufactured by East Asia Synthetic Co., Ltd.) KATARAD HDDA, KATARAD HX-220, KATARAD R-604 (above Japan) Chemicals (stock) manufacturing) '-50- 200915005 BISCOT 260, BISCOT 312, BISCOT 335HP (above is manufactured by Osaka Organic Chemical Industry Co., Ltd.). The above trifunctional (meth) acrylate may, for example, be, for example, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris((meth)acryloxyethyl)phosphoric acid Ester, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like. Examples of such commercially available products are ARONIX M-3 09, ARONIX M-400, ARONIX M-405, ARONIX M-450, ARONIX M-7100, ARONIX M-803 0, ARONIX M-8060 (the above is East Asian Synthesis ( Co., Ltd.), KATARAD TMPTA, KATARAD DPHA, KATARAD DPCA-2 0, KATARAD DPCA-30, KATARAD DPCA-60, KATARAD DPCA-120 (above manufactured by Nippon Kayaku Co., Ltd.), BISCOT 295, BISCOT 3 00, BISCOT 360, BISCOT GPT, BISCOT 3PA, BISCOT 400 (above the Osaka Organic Chemical Industry Co., Ltd.). Among them, a trifunctional or higher (meth) acrylate is preferably used, and among them, trimethylolpropane tri(meth) acrylate, pentaerythritol tetra(meth) acrylate, dipentaerythritol hexa (A) are preferred. The acrylate oxime The monofunctional, bifunctional or trifunctional or higher (meth) acrylate may be used singly or in combination. The use ratio of the component [D] is preferably 50 parts by weight or less, more preferably 30 parts by weight or less based on 100 parts by weight of the component [A]. -51 - 200915005 By containing the [D] component in such a ratio, the heat resistance, surface hardness, and the like of the interlayer insulating film or microlens obtained from the sensitive radiation linear resin composition of the present invention can be improved. If the amount used exceeds 50 parts by weight, the film may be roughened in the step of forming a coating film of the radiation sensitive linear resin composition on the substrate. The above [E] epoxy resin is not particularly limited as long as it does not affect the compatibility. Preferred examples are bisphenol A type epoxy resin, novolak type epoxy resin, cresol novolak type epoxy resin, cyclic aliphatic epoxy resin, glycidyl ester type epoxy resin, glycidylamine type ring An oxygen resin, a heterocyclic epoxy resin, a resin obtained by (co)polymerization of glycidyl methacrylate, and the like. Among these, bisphenol A type epoxy resin, cresol novolac type epoxy resin, glycidyl ester type epoxy resin, etc. are preferable. The use ratio of the [E] epoxy resin is preferably 30 parts by weight or less based on 100 parts by weight of the component [A]. By containing the [E] epoxy resin in this ratio, the heat resistance and surface hardness of the interlayer insulating film or microlens obtained from the sensitive radiation linear resin composition of the present invention can be further improved. When the ratio exceeds 30 parts by weight, when the coating film of the radiation sensitive linear resin composition is formed on the substrate, the film thickness uniformity of the coating may be insufficient. Further, when the [A] component may also be referred to as "epoxy resin", it is different from the [E] epoxy resin in terms of alkali solubility. [E] Epoxy resin is alkali-insoluble 〇 The radiation-sensitive linear resin composition of the present invention can be used in order to further improve coatability, and the above [F] surfactant can be used. The [F] interfacial activator which can be used herein is preferably a fluorine-based surfactant, a rhodium-based surfactant, and a nonionic-52-200915005 surfactant. Specific examples of the fluorine-based surfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) acid, 1,1,2,2-tetraoctyl group. Hexyl acid, octaethylene glycol di(1,1,2,2-tetrafluorobutyl)ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl)ether, octapropylene glycol Bis(1,1,2,2-tetrafluorobutyl)ether, hexapropanediol bis(1,1,2,2,3,3-hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 1,1,2,2,3,3,9,9,10,10 - decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, etc. Sodium alkylbenzene sulfonate: fluoroalkyloxyethyl ether; fluoroalkyl ammonium iodine salt, fluoroalkyl polyoxyethyl ether, perfluoroalkyl polyoxyethylene; perfluoroalkyl alkanoate Fluorine alkyl esters and the like. Examples of such commercially available products are BM-1000, BM-1100 (above BM Chemie), MEGAFAX F142D, MEGAFAX F172, MEGAFAX F173, MEGAFAX F 1 83, MEGAFAX F178 > MEGAFAX F191, MEGAFAX F471 (above Manufactured by Dainippon Ink Chemical Industry Co., Ltd., FLORARD FC-170C, FLORARD FC-171, FLORARD FC-43 0, FLORARD FC-431 (above Sumitomo 3M), SURFLON S-112, SURFLON S- 113, SURFLON S-131, SURFLON S-141, SURFLON S-145, SURFLON S-3 82, SURFLON SC-101, SURFLON SC-1 02, SURFLON SC-103' SURFLON SC-104, SURFLON SC-105, SURFLON SC-106 (made by Asahi Glass Co., Ltd.), F TOP EF301, F TOP EF3 03, F TOP EF3 52 (manufactured by New Akita Chemicals Co., Ltd.). -53- 200915005 The above surfactants are exemplified by DC3PA, DC7PA, FS-1 2 65, SF-84 82, SH11PA, SH21PA, SH28PA, SH29PA 'SH30PA, SH-190, SH-193, SZ. -6032 (Manufactured by Toray Dow Corning Oxygen Co., Ltd.), TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4452 (Japan

Momentap,Perfoemance · Materials 合同公司製造)等商 品名銷售之者。 上述非離子性界面活性劑可使用例如聚氧乙烯基月桂 基醚、聚氧乙烯硬脂基醚、聚氧乙烯油基醚等聚氧乙烯烷 基醚類;聚氧乙烯辛基苯基醚、聚氧乙烯壬基苯基醚等聚 氧乙烯芳基醚類;聚氧乙烯二月桂酸酯、聚氧乙烯二硬脂 酸酯等聚氧乙烯二烷酯類等;(甲基)丙烯酸系共聚物 POLYFLON Νο·57、95 (共榮社化學(股)製造)等。’ 該等界面活性劑可單獨使用或組合兩種以上使用。 該等[F]界面活性劑之用量,相對於成分[A] 100重量 份’較好在5重量份以下,更好在2重量份以下。當[F] 界面活性劑之用量超過5重量份時,於基板上形成塗膜時 ’有易於產生塗膜之膜粗糙的情況。 本發明之敏輻射線性樹脂組成物中爲了提高與基材之 接著性,可使用[G]接著助劑。 此種[G]接著助劑較好使用官能性矽烷偶合劑,可舉 例爲例如具有羧基、甲基丙烯醯基、異氰酸酯基、環氧基 等反應性取代基之矽烷偶合劑。具體而言可舉例爲三甲氧 基矽烷基苯甲酸、r —甲基丙烯醯氧基丙基三甲氧基矽烷 -54- 200915005 、乙烯基三乙醯氧基矽烷、乙醯基三甲氧基矽烷、r 一異 氰酸酯基丙基三乙氧基矽烷、r -縮水甘油氧基丙基三甲 氧基矽烷、/3 —(3,4-環氧基環己基)乙基三甲氧基矽 烷等。此等[G]接著助劑之用量,相對於成分[A] 100重量 份,較好在20重量份以下,更好在10重量份以下。若接 著助劑之量超過20重量份,會有在顯像步驟中易於發生 顯像殘留之情況。 敏幅射線性樹脂組成物 本發明之敏幅射線性樹脂組成物可藉由使上述[A]成 分及[B]成分以及如上述任意添加之其他成分均勻混合而 調製。本發明之敏幅射線性樹脂組成物較好以溶解於適當 溶劑中之溶液狀態使用。例如藉由將[A]成分及[B]成分以 及任意添加之其他成分以特定比例混合,可調製溶液狀態 之敏幅射線性樹脂組成物。 本發明之敏幅射線性樹脂組成物之調製中所用之溶劑 係使用可使[A]成分及[B]成分以及任意調配之其他成分之 各成分均勻的溶解,且不與各成分反應者。 該等溶劑舉例爲如用以合成作爲[A ]成分較佳使用之 聚砂氧院[A ]之上述溶劑所列示者同樣的溶劑。 該等溶劑中’就各成分之溶解性、與各成分之反應性 、塗膜形成容易性之觀點而言,較好使用醇類、二醇醚、 乙一醇院基醚、醋類及乙二醇。此等中,最好使用节基醇 、2 —苯基乙基醇、3 —苯基—1_丙醇、乙二醇單丁基醚 -55- 200915005 乙酸酯、二乙二醇單乙基醚乙酸酯、二乙二醇二乙基醚、 二乙二醇乙基甲基醚、二乙二醇二甲基醚、丙二醇單甲基 醚、丙二醇單甲基醚乙酸酯、3_甲氧基丙酸甲酯或2一 乙氧基丙酸乙酯,或該等之兩種以上之混合物。 作爲本發明之敏幅射線性樹脂組成物之溶劑’於與高 沸點溶劑倂用時’其使用比例’相對於溶劑總量’較好爲 50重量%以下’更好爲40重量%以下’又更好爲30重 量%以下。高沸點溶劑之使用比例若超過該使用量’會有 塗膜之膜厚均勻性、敏感度以及殘膜率降低之情況。 將本發明之敏幅射線性樹脂組成物調製成溶液狀態時 ,溶液中除溶劑以外之其他成分(亦即[A]成分以及[B]成 分及任意添加之其他成分之合計量)之比例(固成分濃度 )雖可依據使用之目的及所需膜厚値等而任意設定,但較 好爲5〜50重量%,更好爲10〜40重量%,進而更好爲 15~35 重量 %。 如此般調製之組成物溶液亦可使用孔徑0.2 μ m左右 之微孔隙過濾器過濾後提供使用。 層間絕緣膜、微透鏡之形成 接著敘述使用本發明之敏幅射線性樹脂組成物形成本 發明之層間絕緣膜或微透鏡之方法。本發明之層間絕緣膜 或微透鏡之形成方法包含以下所述順序之下列步驟: (1 )在基板上形成本發明之敏輻射線性樹脂組成物 之被覆膜之步驟, -56- 200915005 (2 )對該被覆膜之至少一部份照射輻射線之步驟, (3 )使輻射線照射後之被覆膜顯像之步驟,及 (4 )加熱該顯像後之被覆膜之步驟。 以下針對本發明之層間絕緣膜或微透鏡之形成方法之 各步驟詳細加以說明。 (1 )在基板上形成本發明之敏幅射線性樹脂組成物之被 覆膜之步驟 步驟(1 )中,係將本發明之組成物溶液塗佈在基板 表面上,較好經由預烘烤去除溶劑,形成敏幅射線性樹脂 組成物之被覆膜。 可使用之基板種類舉例爲例如玻璃基板、矽基板以及 在該等表面上形成各種金屬之基板。 至於組成物之塗佈方法並沒有特別限制,可採用例如 噴霧法、輥塗法、旋轉塗佈法(旋塗法)、狹縫模嘴塗佈 法、棒塗佈法、噴墨法等適宜之方法。尤其以旋塗法或狹 縫模嘴塗佈法較佳。預烘烤條件依各種成分之種類、使用 比例等而不同。例如可在6 0〜1 1 0 °c下進行3 0秒〜1 5分鐘 〇 所形成之被覆膜之膜厚,以預烘烤後之値表示,於形 成層間絕緣膜之情況下,較好爲例如3〜6 /z m,於形成微 透鏡之情況下,較好爲例如〇 · 5〜3 /z m。 (2 )對該被覆膜之至少一部份照射幅射線之步驟 -57- 200915005 步驟(2 )中,係使如上述形成之被覆膜之至少一部 份照射輻射線。被覆膜之一部份照射輻射線可藉由例如通 過具有特定圖案之光罩照射幅射線之方法進行。 隨後,藉由使用顯像液進行顯像處理去除輻射線之照 射部份而進行圖案化。此時使用之輻射線舉例爲例如紫外 線、遠紫外線、X線、帶電粒子束等。 上述紫外線舉例爲例如包含g線(波長43 6nm ) 、i 線(波長3 65nm)等之輻射線。遠紫外線舉例爲例如KrF 準分子雷射等。X線舉例爲例如同步加速器輻射線等。帶 電粒子束舉例爲例如電子束等。 該等中,以紫外線較佳,其中尤其以含有g線及i線 中之一或二者之輻射線爲最佳。 輻射線之照射量(曝光量),於形成層間絕緣膜之情 況下,以50〜1,5 00 J/m2較佳,於形成爲透鏡之情況下, 以50〜2,000 J/m2較佳° (3 )使輻射線照射後之被覆膜顯像之步驟 步驟(3 )之顯像處理中使用之顯像液可使用例如氫 氧化鈉、氫氧化鉀、碳酸鈉、矽酸鈉、偏矽酸鈉、氨水、 乙胺、正—丙基胺、二乙胺、二乙胺乙醇、二正丙基胺、 三乙胺、甲基二乙胺、二甲基乙醇胺、三乙醇胺、四甲基 氫氧化銨、四乙基氫氧化銨、吡咯、哌啶、1,8 -二氮雜 雙環[5.4.0] — 7 —十一碳烯、1,5 一二氮雜雙環[4.3.0] - 5 -壬烷等鹼(鹼性化合物)之水溶液。又上述鹼性水溶液 -58- 200915005 中亦可適量添加例如甲醇、乙醇等水溶性有機溶劑及界面 活性劑’或者使本發明之組成物溶解之各種有機溶劑作爲 顯像液使用。 至於顯像方法,可利用溢液法、浸漬法、搖動浸漬法 、淋洗法等適宜之方法。此時之顯像時間隨著組成物之組 成而不同,例如可爲3 0〜1 2 0秒之間。 又’過去已知之敏幅射線性樹脂組成物由於當顯像時 間超過最適値之20〜25秒時所形成之圖案會產生剝落,因 此有必要嚴格控制顯像時間’但於本發明之敏幅射線性樹 脂組成物之情況,在超過最適顯像時間3 0秒以上亦可形 成良好之圖案,因此具有成品良率上的優點。 (4 )將顯像後之被覆膜加熱之步驟 如上述般進行步驟(3 )之顯像步驟後,對於經圖案 化之薄膜較好以例如自來水洗淨進行洗滌處理。再者,較 好藉由高壓水銀燈等全面性的照射輻射線(後曝光),使 該薄膜中殘存之1,2 -重氮醌進行分解處理後,藉由加熱 板、烘箱等加熱裝置對該薄膜進行加熱處理(後烘烤處理 ),進行該薄膜之硬化處理。上述後曝光步驟之曝光量較 好爲2,000〜5,0 00 J/m2。又,該硬化處理之燒成溫度爲例 如120°C以上且未滿250 °C。加熱時間隨著加熱設備種類 而有不同,例如在加熱板上進行加熱處理時可爲5~30分 鐘,在烘箱中進行加熱處理時可爲30〜90分鐘。此時,可 使用進行2次以上之加熱步驟之階段烘烤法。又,當在基 -59- 200915005 板上形成過去已知爲高耐熱材料之由聚矽氧烷組成之感光 性材料之被覆膜時’在250 °C以上之高溫處理有其必要, 但於本發明之敏輻射線性樹脂組成物時,由於該處理溫度 可爲未滿250 °C,進而爲240 °C以下,又進而爲230。(:以 下,因此具有亦適用於形成顯示元件之步驟中之優點。 據此’對於作爲目的之層間絕緣膜或微透鏡,可在基 板表面上形成圖案狀薄膜。 層間絕緣膜 如上述般形成之本發明層間絕緣膜,如由後述之實施 例可了解,係對基板之密著性良好、耐溶劑性及耐熱性優 異、具有高的透過率、介電率低之層間絕緣膜,而可適宜 作爲電子零件之層間絕緣膜。 微透鏡 如上述般形成之本發明微透鏡,由後述之實施例可了 解,爲對基板之密著性良好、耐溶劑性及耐熱性優異、且 具有高的光線透過率及良好熔融形狀之微透鏡,而可適用 作爲固體攝影元件之微透鏡。 本發明之微透鏡形狀,如圖1 ( a )所示,爲半凸透 鏡形狀,顯示良好之聚光特性。 實施例 以下所示之合成例、實施例係更具體的說明本發明, -60- 200915005 但本發明並不受下列實施例之限制。 [A]成分之合成例 合成例1 於裝置分餾管之5 00毫升三頸瓶中注入33.3 基乙基二甲氧基砂院及72.1克二甲基二甲氧基 於其中添加76.8克二乙二醇甲基乙基醚使之溶 石攪拌器攪拌所得溶液歷時3 0分鐘,且升溫至 30分鐘內將含1.4克草酸之43.3克離子交換水 於其中。然後,使之在4 0 °C下反應2小時後,使 溶液在40°C下於1分鐘內減壓至lOTorr (約1. ),藉由維持在該減壓下6 0分鐘餾除副產物甲 ,使反應溶液在1小時內升溫至1 0 0 °C,且一邊 一邊在l〇〇°C下反應2小時。使所得反應溶液冷彳 ’首先在30分鐘內連續添加47.2克之3 —縮水 丙基三甲氧基矽烷,隨後於30分鐘內連續添加; 草酸之10.8克離子交換水,在60°C下進行反應 減壓下自反應溶液餾除甲醇及水,藉由添加二乙 乙基醚使固成分濃度(溶液中所佔聚矽氧烷之重 爲40重量%,獲得含有聚矽氧烷[A-1]之溶液。 [A-1]之換算成聚苯乙烯之重量平均分子量Mw爲 合成例2 於裝置分餾管之5 00毫升三頸瓶中注入39.3 克2-羥 矽烷,且 解,以磁 40〇C。在 連續添加 所得反應 ,3 3 x 1 03Pa 醇。隨後 餾除水分 卻至6 0 °C 甘油氧基 含〇·4克 3小時。 二醇甲基 量比)成 聚矽氧烷 2,600 ° 克3 —锍 -61 - 200915005 基丙基三甲氧基矽烷及119.0克苯基三甲氧基矽烷’於其 中添加76.8克二乙二醇甲基乙基醚使之溶解’以磁石攪 拌器攪拌所得溶液歷時30分鐘’且升溫至40 °C。在30分 鐘內將含1.4克草酸之43.3克離子交換水連續添加於其 中。然後’使之在4 0 °C下反應2小時後,使所得反應溶液 在40°C下於1分鐘內減壓至l〇Torr’藉由維持在該減壓 下6 0分鐘餾除副產物甲醇。隨後,使反應溶液在1小時 內升溫至100 °C,且一邊餾除水分一邊在100它下繼續反 應2小時。使所得反應溶液冷卻至60°C,首先在30分鐘 內連續添加49.3克之2— (3’,4’一環氧基環己基)乙基 三甲氧基矽烷,隨後於30分鐘內連續添加含〇·4克草酸 之10.8克離子交換水,且在6 0 °C下再進行反應3小時。 減壓下自反應溶液餾除甲醇及水,藉由添加二乙二醇甲基 乙基醚使固成分濃度成爲40重量% ’獲得含有聚矽氧烷 [A-2]之溶液。聚矽氧烷[A-2]之換算成聚苯乙烯之重量平 均分子量Mw爲2,500。 合成例3 於裝置分餾管之500毫升三頸瓶中注入55.7克3-( 3’一乙基氧雜環丁烷一 3’ 一基)丙基三甲氧基矽烷、66.1 克三甲氧基矽烷基丙基- 2 -(4’ -羥基苯基)丙基硫醚 及40.3克甲基三甲氧基矽烷,於其中添加139.7克甲基 異丁基酮使之溶解,以磁石攪拌器攪拌所得溶液且使之升 溫至60°C。在1小時內將含1.0克三乙胺之54.0克離子 -62- 200915005 交換水連續添加於其中。然後,在60 °C下進行反應3小時 後,使所得反應溶液冷卻至室溫。隨後,以200克1重量 %之草酸水溶液洗淨兩次,接著以200克離子交換水進行 洗淨。減壓下自所得有機層餾除醇及水,藉由添加二乙二 醇乙基甲基醚使固成分濃度成爲40重量%,獲得含有聚 矽氧烷[A-3]之溶液。聚矽氧烷[A-3]之換算成聚苯乙烯之 重量平均分子量Mw爲2,400。 比較合成例1 於裝置分餾管之500毫升三頸瓶中注入88」克甲基 三甲氧基矽烷及69.4克苯基三甲氧基矽烷,於其中添加 1 3 8 · 9克二丙酮醇使之溶解,以磁石攪拌器攪拌所得溶液 ,同時在30分鐘內連續添加含0.2克磷酸之54.0克離子 交換水。然後使之在40 °C下反應3 0分鐘後,於1小時升 溫至100°c,一邊餾除甲醇與水一邊反應2小時。隨後’ 添加二丙酮醇及γ—丁內酯,藉由二丙酮醇/γ — 丁內酯 = 9 0/10 (重量比)稀釋使固成分成爲35重量%,獲得含 有聚矽氧烷[a-Ι]之溶液。聚矽氧烷[a-Ι]之換算成聚苯乙 烯之重量平均分子量Mw爲2,900。 比較合成例2 於裝置有冷凝管及攪拌機之反應瓶中饋入8重量份之 2,2’ —偶氮雙(2,4 —二甲基戊腈)及220重量份之二乙二 醇乙基甲基醚,接著連續饋入20重量份之苯乙烯、20重 -63- 200915005 量份之甲基丙烯酸、40重量份之甲基丙烯酸縮水甘油酯 及20重量份之甲基丙烯酸三環[5.2.1 ·02’6]癸一 8 —基酯, 並經氮氣置換後,開始緩慢進行攪拌。使溶液溫度上升至 7〇°C,在該溫度下維持5小時,獲得含有共聚物[a-2]之聚 合物溶液。 共聚物[a-2]之換算成聚苯乙烯之重量平均分子量爲 7,500,分子量分布(Mw/Mn )爲2_5。另外,此處所得聚 合物溶液之固成分濃度爲31.6重量%。 <敏輻射線性樹脂組成物之調製> 實施例1 使含有以上述合成例1合成之聚矽氧烷[A-1]之溶液 以相當於聚矽氧烷[A-1] 100重量份(固成分)之量與10 重量份之作爲成分[B]之4,4,— [1一 [4 一 [1 一 [4 一羥基苯基 ]—1—甲基乙基]苯基]亞乙基]雙酚(1.0莫耳)與1,2 — 萘醌重氮基一 5 —磺醯氯(2.0莫耳)之縮合物(B-1)混 合’且以使固成分濃度成爲30重量%添加二乙二醇乙基 甲基醚並經均勻溶解後,以孔徑0.2 /X m之薄膜過濾器過 濾’調製敏輻射線性樹脂組成物之溶液(S-1 )。 實施例2〜7,比較例卜2 於實施例1中,除使用表1中所述之種類、量之[A] 成分及[B]成分以外,如實施例丨般進行,調製敏輻射線 性樹脂組成物之溶液(S - 2 )〜(S - 7 )以及(s -1 )〜(s - 2 -64- 200915005 又’於實施例2、3中,[B ]成分之記載係分別倂用兩 種以上之1,2 ~重氮醌化合物。又,實施例5中除[A]成分 與[B]成分外另添加[C]敏熱性酸產生化合物,實施例6中 除[A]成分及[B]成分外另添加[E]成分。 實施例8 實施例7中,除使之溶解於二乙二醇乙基甲基醚/丙 二醇單甲基醚乙酸酯=6/4 (重量比)中使固成分濃度成爲 2〇重量%,進而添加[F]界面活性劑以外,如實施例1般 進行以調製敏輻射線性樹脂組成物之溶液(S-8 )。 表1 組成物種 類 [A] 成分 [B]成分 其他成分 種類 重量份 種類 重量份 種類 重量份 實施例1 (S-1) [A-1] 100 ΓΒ-11 10 • _ 實施例2 (S-2) [A-1] 100 [B-ll/fB-21 5/5 - 實施例3 (S-3) ΓΑ-11 100 [Β-11/ΓΒ-31 5/5 - - 實施例4 (S-4) [A-2] 100 ΓΒ-11 10 實施例5 (S-5) [A-2] 100 ΓΒ-11 10 [C-1] 1 實施例6 (S-6) [A-2] 100 ΓΒ-11 10 [E-l] 5 實施例7 (S-7) [A-3] 100 『B-ll 10 - _ 實施例8 (S-8) [A-3] 100 ΓΒ-11 10 [F-l] 0.1 比較例1 (s-1) [a-1] 100 ΓΒ-11 10 - _ 比較例2 (s-2) [a-2] 100 ΓΒ-11 10 - - 表1中成分簡寫意義分別如下: [B-1]: 4,4’ 一 [1 一 [4-[1 一 [4 一羥基苯基]—1 一甲基 -65- 200915005 乙基]苯基]亞乙基]雙酚(1.0莫耳)與1,2-萘醌重氮基 一 5—磺醯氯(2.0莫耳)之縮合物 [B-2]: 4,4”,4” 一亞乙基參(苯酚)(1.0莫耳)與 1,2 -萘醌重氮基一 5 -磺醯氯(2.0莫耳)之縮合物 [B-3]: 2,3,4,4’ —四羥基二苯甲酮(1.0莫耳)與1,2 一萘醌重氮基一 5 -磺酸酯(2.44莫耳) [C-l] : SUNAID SI—L85(三新化學(股)製造) [E-l]: EPICOT 154(日本環氧樹脂(股)製造) [F-l]: SH—28PA (東麗•道康寧矽氧(股)製造) <作爲層間絕緣膜之性能評價> 實施例9〜16,比較例3〜4 使用如上述般製備之敏輻射線性樹脂組成物,如下列 般評價作爲層間絕緣膜之各種特性。 [敏感度之評價] 在矽基板上使用旋轉塗佈器,於實施例9〜15及比較 例3~4分別塗佈表2中所述之組成物後,在加熱板上於 100 °C下預烘烤2分鐘,形成膜厚4.0/zm之塗膜。實施例 1 6係以狹縫模嘴塗佈器進行塗佈,在室溫下於1 5秒內減 壓至0.5 Torr餾除溶劑後,於加熱板上在1 〇〇 °C下預烘烤2 分鐘,形成膜厚4.0//m之塗膜。 所得塗膜上分別介以具有特定圖案之圖案光罩,以 Canon (股)製造之PLA-501F曝光機(超高壓水銀燈) -66- 200915005 ,改變曝光時間進行曝光後,在25 t以2.38重量%四甲 基氫氧化銨水溶液中以溢液法進行顯像8 0秒。接著以超 純水進行1分鐘沖水喜淨,經乾燥在矽基板上形成圖案。 此時,調查使3.0//m之線與間隔(line and space) (10 對1 )之間隔·圖案完全溶解所需之最小曝光量。以該最 小曝光量作爲敏感度列於表2。 [顯像裕度之評價] 在矽基板上使用旋轉塗佈器,於實施例9〜15及比較 例3〜4分別塗佈表2中所述之組成物後,在加熱板上於 l〇〇t下預烘烤2分鐘,形成膜厚4.0# m之塗膜。實施例 1 6係以狹縫模嘴塗佈器進行塗佈,在室溫下於1 5秒內減 壓至0.5T〇rr餾除溶劑後,於加熱板上在100°C下預烘烤2 分鐘,形成膜厚4.0 // m之塗膜。 所得塗膜分別介以具有3.0 # m之線與間隔(1 0對1 )之圖案之光罩,使用Canon (股)製造之PLA-501F曝 光機(超高壓水銀燈),以上述針對「敏感度評價」調查 之敏感度値相當之曝光量進行曝光,且在25 °C下於2.38 重量%四甲基氫氧化銨水溶液中改變顯像時間以溢液法進 行顯像。接著以超純水進行1分鐘沖水洗淨後,經乾燥在 矽基板上形成圖案。此時,以使線寬度爲3//m所需之顯 像時間作爲最適顯像時間且列於表2。另外’自最適之顯 像時間繼續顯像時,測定至3.0 // m之線·間隔剝落爲止 之時間作爲顯像裕度且列於表2。 -67- 200915005 [耐溶劑性之評價] 在矽基板上使用旋轉塗佈器,於實施例9〜15及比較 例3〜4分別塗佈表2中所述之組成物後,在加熱板上於 1 0 〇 °C下預烘烤2分鐘’形成塗膜。實施例1 6係以狹縫模 嘴塗佈器進行塗佈,在室溫下於15秒內減壓至0.5 To rr 餾除溶劑後,於加熱板上在1 0 (TC下預烘烤2分鐘,藉此 形成塗膜。 所得塗膜分別以Canon (股)製造之PLA-501F曝光 機(超高壓水銀燈),經累積照射量成爲3,000J/m2之方 式加以曝光,使該矽基板在清潔烘箱中於220°C下加熱1 小時,獲得膜厚約3 · 0 /z m之硬化膜。測定所得硬化膜之 膜厚(T1)。接著,使形成該硬化膜之矽基板浸漬在溫度 控制在70 °C之二甲基亞颯中20分鐘後,測定該硬化膜浸 漬後膜厚(tl ),且計算出浸漬之膜厚變化率{ | tl - T1 | /Τ1}χ100[%]。結果列於表2。 又,由於耐溶劑性評價中不需要對形成之膜圖案化, 因此省略掉幅射線照射步驟以及顯像步驟,僅進行塗膜形 成步驟、後曝光步驟及加熱步驟後供評價。 [耐熱性之評價] 與上述[耐溶劑性之評價]同樣在矽基板上形成硬化膜 ,測定所得硬化膜之膜厚(Τ2 )。接著,使附有該硬化膜 之基板在清潔烘箱內於240 °C下繼續烘烤1小時後,測定 -68- 200915005 該硬化膜繼續烘烤後之膜厚(t2) ’計算出繼續烘烤後之 膜厚變化率{| t2 - T2| /T2}xl〇〇[%]。結果列於表2。 [透明性之評價] 於上述[耐溶劑評價]中,取代矽基板而使用玻璃基板 「CONING 7095」(康寧公司製)以外,同樣地在玻璃基 板上形成硬化膜。使用分光光度計「150_2〇型雙光束( double beam)」((股)日立製作所)於400~800nm範 圍之波長測定具有該硬化膜之玻璃基板之光線透過率。此 時最低光線透過率之値列於表2。 [比介電率之評價] 與經硏磨之SUS304製基板上,於實施例9〜15以及 比較例3〜4,使用旋轉塗佈器分別塗佈表2中所述之組成 物後,在加熱板上於1 〇〇 °C下預烘烤2分鐘,形成膜厚 3.0 y m之塗膜。實施例1 6係以狹縫模嘴塗佈器進行塗佈 ,在室溫下於15秒內減壓至0.5 Torr (約66.6Pa)餾除溶 劑後,於加熱板上在1 〇〇°C下預烘烤2分鐘,形成膜厚 3.0〆m之塗膜。 所得塗膜分別以Canon (股)製造之PLA-50 1F曝光 機(超高壓水銀燈),以累積照射量爲3,000J/m2之方式 曝光後,使各基板在清潔烘箱中於22 0 °C下加熱1小時, 在基板上形成硬化膜。以蒸鍍法在該硬化膜上形成Pt/Pd 電極圖案,製備測定介電率用之樣品。在該基板上使用橫 -69- 200915005 河.Hewlett-Packard (股)製造之 HP 1 645 1 B 電極及 HP4284A Pireshijon LCR 計,以 CV 法測定頻率 i〇kHz 下 之比介電率。結果列於表2。 又,由於介電率評價中形成之膜不需要圖案化,因此 省略掉輻射線照射步驟以及顯像步驟,僅進行塗膜形$ # 驟、後曝光步驟及加熱步驟供評價。 表2 組成物種 類 感度 (J/m2) 顯像裕度 耐溶劑性 耐熱性 透明性 (%) 比介 電率 最適顯像 時間(秒) 顯像限 度(秒) 膜厚變化 率(%) 膜厚變 化率(%) 實施例9 (S-1) 500 80 60 3.0 2.1 97 3.0 實施例10 (S-2) 450 80 50 2.9 2.0 97 3.0 實施例11 (S-3) 480 80 60 2.7 1.9 97 3.0 實施例12 (S-4) 500 80 60 3.1 2.3 97 3.0 實施例13 (S-5) 500 80 60 2.9 2.1 97」 3.0 實施例14 (S-6) 500 80 60 2.9 2.2 97 3.0 實施例15 (S-7) 500 80 60 3.0 2.0 97 3.0 實施例16 (S-8) 500 80 60 2.9 2.2 97 3.0 比較例3 (s-1) 500 80 30 6.0 6.0 97 3.0 比較例4 (s-2) 2500 80 60 2.5 2.2 97 3.5 <作爲微透鏡之性能評價> 實施例17〜23,比較例5〜6 使用如上述般調製之敏輻射線性樹脂組成物,如下評 價作爲微透鏡之各種特性。又耐溶劑性評價、耐熱性評價 、透明性評價係參照作爲上述層間絕緣膜之性能評價結果 -70- 200915005 [敏感度之評價] 於矽基板上使用旋轉塗佈器分別塗佈表3中所記載之 組成物後,在加熱板上於loot下預供烤2分鐘,形成膜 厚2.0/zm之塗膜。所得塗膜介以具有特定圖案之圖案光 罩,以Nikon (股)製造之NSR1755i7A縮小投影曝光機 (NA = 0.50 - λ = 3 6 5 ηιη ),改變曝光時間加以曝光,且在 2 5 t於2 · 3 8重量%四甲基氫氧化銨水溶液中以溢液法顯 像1分鐘。接著以水洗滌,經乾燥在矽基板上形成圖案。 調查0.8 // m線及間隔(1對1 )之空間線寬成爲〇. 8 # m 所需之最小曝光量。以該最小曝光量作爲敏感度且列於表 3中。 [顯像裕度之評價] 於矽基板上使用旋轉塗佈器分別塗佈表3中所記載之 組成物後,在加熱板上於1 0 0 °C下預烘烤2分鐘,形成膜 厚2.0/zm之塗膜。所得塗膜介以具有特定圖案之圖案光 罩’以Nikon (股)製造之NSR1755i7A縮小投影曝光機 (ΝΑ = 0.50,λ=3 6 5ηιη ),以與上述「敏感度之評價」所 調查之敏感度値相當之曝光量進行曝光,且在25°C以表3 中所記載濃度之四甲基氫氧化銨水溶液中以溢液法顯像1 分鐘。接著以水洗滌,經乾燥在矽基板上形成圖案。以 〇.8 // m線及間隔(1對1 )之間隔線寬成爲0.8 β m之必 要顯像時間作爲最適顯像時間且列於表3中。又,自最適 -71 - 200915005 顯像時間繼續顯像時,測定至0.8 // m之圖案剝落爲止之 時間(顯像裕度)且列於表3中 [微透鏡之形成] 於矽基板上使用旋轉塗佈器分別塗佈表3中所述之組 成物後,在加熱板上於l〇〇°C下預烘烤2分鐘,形成膜厚 2.0μ m之塗膜。所得塗膜介以具有4.0以m點· 2.0/z m間 隔圖案之圖案光罩,以Nikon (股)製造之NSR1755i7A 縮小投影曝光機(ΝΑ = 0.50,λ = 3 65ηηι ),以與上述「敏 感度之評價」調查之敏感度値相當之曝光量進行曝光,在 25 °C於2.38重量%之四甲基氫氧化銨水溶液中以湓液法 顯像〗分鐘。接著以水洗滌,經乾燥,在矽基板上形成圖 案。隨後,以Canon (股)製造之PLA-501F曝光機(超 高壓水銀燈),以累積照射量成爲3,000J/m2之方式曝光 。隨後在加熱板上於160°C下加熱10分鐘後,進一步在 230°C下加熱10分鐘,且使圖案經熔融流動化並形成微透 鏡。 所形成微透鏡之底部(與基板接觸之面)尺寸(直徑 )及剖面形狀示於表3。微透鏡之底部尺寸超過4.0 /z m 未達5.0 時,較佳。該尺寸爲5.0 μπι以上時,爲鄰接 透鏡彼此間接觸之狀態,而較不佳。又,剖面形狀爲圖1 中所示之模式圖,爲(a )之半凸透鏡形狀時爲良好,於 (b )般之略爲梯形形狀之情況爲不佳。 又,比較例5中,由於熔融流動化之微透鏡圖案分別 -72- 200915005 與鄰接之圖案接觸’因此無法進行底面直徑之測定以及剖 面形狀之評價。 表3 組成物 種類 敏感度 (J/m2) 顯像裕度 微透鏡形狀 顯像液濃 度(重量%) 最適顯像 時間(秒) 顯像限度 (秒) 底部尺寸 rmm) 剖面形狀 實施例17 (S-1) 1250 2.38 60 50 4.4 (a) 實施例18 (S-2) 1125 2.38 60 40 4.3 (a) 實施例19 (S-3) 1200 2.38 60 50 4.2 (a) 實施例20 (S-4) 1250 2.38 60 50 4.4 (a) 實施例21 (S-5) 1250 2.38 60 50 4.4 (a) 實施例22 (S-6) 1250 2.38 60 50 4.3 (a) 實施例23 (S-7) 1250 2.38 60 50 4.1 (a) 比較例5 (s-1) 1250 2.38 60 20 無法測定 無法評價 比較例ό (s-2) 5300 0.40 60 50 4.1 (a) 發明效果 本發明之敏輻射線性樹脂組成物在未達2 5 0 °C之燒成 條件下亦可形成對基板之密著性亦良好、耐溶劑性與耐熱 性優異、具有高透過率、介電率低之層間絕緣膜。 又,本發明之敏輻射線性樹脂組成物可容易地形成具 有高的敏輻射線敏感度,具有於顯像步驟中即使超過最適 顯像時間仍可形成良好圖案形狀之顯像裕度,且密著性優 異之圖案狀薄膜。 又,由上述組成物形成之本發明微透鏡爲與基板之密 著性良好、耐溶劑性與耐熱性優異且具有高的透過率與良 好熔融形狀之微透鏡,而可適宜使用作爲固體攝影件之微 -73- 200915005 透鏡。 【圖式簡單說明】 圖1爲微透鏡之剖面形狀之模式圖。 -74-Momentap, Perfoemance · Materials Contract Manufacturing Co., Ltd., etc. As the nonionic surfactant, for example, a polyoxyethylene alkyl ether such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether or polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether; Polyoxyethylene aryl ethers such as polyoxyethylene nonylphenyl ether; polyoxyethylene dialkyl esters such as polyoxyethylene dilaurate and polyoxyethylene distearate; (meth)acrylic copolymerization The product POLYFLON Νο·57, 95 (manufactured by Kyoeisha Chemical Co., Ltd.). These surfactants may be used singly or in combination of two or more. The amount of the [F] surfactant to be used is preferably 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the component [A]. When the amount of the [F] surfactant is more than 5 parts by weight, when the coating film is formed on the substrate, the film of the coating film is likely to be rough. In order to improve the adhesion to the substrate in the sensitive radiation linear resin composition of the present invention, [G] an auxiliary agent may be used. The [G] adjunct agent is preferably a functional decane coupling agent, and examples thereof include a decane coupling agent having a reactive substituent such as a carboxyl group, a methacryl group, an isocyanate group or an epoxy group. Specifically, it may, for example, be trimethoxydecyl benzoic acid, r-methacryloxypropyltrimethoxydecane-54-200915005, vinyltriethoxydecane, etidyltrimethoxydecane, r monoisocyanate propyl triethoxy decane, r - glycidoxypropyl trimethoxy decane, /3 - (3, 4-epoxycyclohexyl) ethyl trimethoxy decane, and the like. The amount of the [G]-substituting auxiliary agent is preferably 20 parts by weight or less, more preferably 10 parts by weight or less based on 100 parts by weight of the component [A]. If the amount of the auxiliary agent exceeds 20 parts by weight, development of the image may be liable to occur in the developing step. The radiation sensitive resin composition of the present invention can be prepared by uniformly mixing the above [A] component and [B] component and the other components added as described above. The sensitive radiation resin composition of the present invention is preferably used in the form of a solution dissolved in a suitable solvent. For example, by mixing the [A] component and the [B] component and any other components added arbitrarily in a specific ratio, a photosensitive radiation-sensitive resin composition in a solution state can be prepared. The solvent used in the preparation of the radiation sensitive resin composition of the present invention is such that the components of the component [A] and the component [B] and the components of the other components which are arbitrarily formulated are uniformly dissolved, and are not reacted with the respective components. These solvents are exemplified by the same solvents as those listed above for the synthesis of the above-mentioned solvent of the polyoxan [A] which is preferably used as the component [A]. Among these solvents, alcohols, glycol ethers, ethyl alcohol-based ethers, vinegars, and ethylene are preferably used from the viewpoints of solubility of each component, reactivity with each component, and ease of formation of a coating film. alcohol. Among these, it is preferred to use a benzyl alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol, ethylene glycol monobutyl ether-55-200915005 acetate, diethylene glycol monoethyl Ethyl ether acetate, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3 Methyl methoxypropionate or ethyl 2-ethoxypropionate, or a mixture of two or more thereof. The solvent of the photosensitive radiation composition of the present invention is used in a ratio of 'the solvent to the high-boiling solvent', and the ratio of use thereof to the total amount of the solvent is preferably 50% by weight or less, more preferably 40% by weight or less. More preferably, it is 30% by weight or less. When the ratio of use of the high-boiling solvent exceeds the amount used, the film thickness uniformity, sensitivity, and residual film ratio of the coating film may be lowered. When the photosensitive radiation resin composition of the present invention is prepared into a solution state, the ratio of the components other than the solvent (that is, the total amount of the [A] component and the [B] component and any other components added) in the solution ( The solid content concentration may be arbitrarily set depending on the purpose of use and the desired film thickness, etc., but is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, still more preferably 15 to 35% by weight. The composition solution thus prepared can also be used by filtration using a micropore filter having a pore size of about 0.2 μm. Formation of interlayer insulating film and microlens Next, a method of forming the interlayer insulating film or microlens of the present invention using the radiation sensitive resin composition of the present invention will be described. The method for forming an interlayer insulating film or a microlens of the present invention comprises the following steps of the following sequence: (1) a step of forming a coating film of the sensitive radiation linear resin composition of the present invention on a substrate, -56- 200915005 (2) a step of irradiating at least a portion of the coating film with radiation, (3) a step of developing a coating film after irradiation of the radiation, and (4) a step of heating the coating film after the development. Hereinafter, each step of the method of forming the interlayer insulating film or the microlens of the present invention will be described in detail. (1) In the step (1) of forming the coating film of the photosensitive radiation resin composition of the present invention on the substrate, the composition solution of the present invention is applied onto the surface of the substrate, preferably via prebaking. The solvent is removed to form a coating film of the radiation sensitive resin composition. Examples of the substrate which can be used are, for example, a glass substrate, a ruthenium substrate, and a substrate on which various metals are formed. The coating method of the composition is not particularly limited, and for example, a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, an inkjet method, or the like can be employed. The method. In particular, spin coating or slit die coating is preferred. The prebaking conditions vary depending on the type of each component, the ratio of use, and the like. For example, the film thickness of the coating film formed at 30 to 1 10 ° C for 30 seconds to 15 minutes is expressed by 値 after prebaking, and in the case of forming an interlayer insulating film, For example, it is preferably 3 to 6 /zm, and in the case of forming a microlens, it is preferably, for example, 〇·5 to 3 /zm. (2) a step of irradiating at least a portion of the coating film with a radiation -57- 200915005 In the step (2), at least a portion of the coating film formed as described above is irradiated with radiation. Part of the illuminating radiation of the coating film can be carried out by, for example, irradiating the ray through a reticle having a specific pattern. Subsequently, patterning is performed by removing the irradiated portion of the radiation by performing development processing using a developing liquid. The radiation used at this time is exemplified by, for example, ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, and the like. The ultraviolet rays are exemplified by radiation such as a g-line (wavelength of 4 6 nm) and an i-line (wavelength of 3 65 nm). The far ultraviolet rays are exemplified by, for example, a KrF excimer laser or the like. The X line is exemplified by, for example, a synchrotron radiation. The charged particle beam is exemplified by, for example, an electron beam or the like. Among these, ultraviolet rays are preferred, and among them, radiation containing one or both of the g-line and the i-line is particularly preferable. The irradiation amount (exposure amount) of the radiation is preferably 50 to 1,500 J/m 2 in the case of forming an interlayer insulating film, and preferably 50 to 2,000 J/m 2 in the case of forming a lens. (3) Step of developing the coating film after irradiation of the radiation: The developing solution used in the development process of the step (3) may be, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate or hemiplegia. Sodium, ammonia, ethylamine, n-propylamine, diethylamine, diethylamine ethanol, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethyl Ammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0] An aqueous solution of a base such as 5-oxane (basic compound). Further, in the above-mentioned alkaline aqueous solution -58-200915005, a water-soluble organic solvent such as methanol or ethanol and an organic surfactant or an organic solvent in which the composition of the present invention is dissolved may be added as a developing liquid. As the developing method, a suitable method such as an overflow method, a dipping method, a shaking dipping method, or a rinsing method can be used. The development time at this time differs depending on the composition of the composition, and may be, for example, between 30 and 12 seconds. Further, in the past, the sensitive radiation ray resin composition is peeled off due to the pattern formed when the development time exceeds the optimum temperature of 20 to 25 seconds, so it is necessary to strictly control the development time 'but the sensitivity of the present invention In the case of the ray-based resin composition, a good pattern can be formed even when the optimum development time exceeds 30 seconds, and thus there is an advantage in the yield of the finished product. (4) Step of heating the film after development After the developing step of the step (3) as described above, the patterned film is preferably washed with tap water, for example, for washing. Further, it is preferred that the 1,2 -diaziridine remaining in the film is subjected to decomposition treatment by a comprehensive irradiation radiation (post exposure) such as a high pressure mercury lamp, and then heated by a heating means such as a hot plate or an oven. The film is subjected to heat treatment (post-baking treatment), and the film is subjected to a hardening treatment. The exposure amount in the above post-exposure step is preferably 2,000 to 5,00 J/m2. Further, the firing temperature of the hardening treatment is, for example, 120 ° C or more and less than 250 ° C. The heating time varies depending on the type of heating equipment, for example, 5 to 30 minutes for heat treatment on a hot plate and 30 to 90 minutes for heat treatment in an oven. In this case, a stage baking method in which two or more heating steps are performed can be used. Further, when a coating film of a photosensitive material composed of polyoxyalkylene which is known as a high heat-resistant material is formed on a base of -59 to 200915005, it is necessary to perform high temperature treatment at 250 ° C or higher, but In the case of the sensitive radiation linear resin composition of the present invention, the treatment temperature may be less than 250 ° C, further 240 ° C or less, and further 230. (The following, therefore, has an advantage in the step of forming a display element. Accordingly, a patterned film can be formed on the surface of the substrate for the purpose of the interlayer insulating film or the microlens. The interlayer insulating film is formed as described above. The interlayer insulating film of the present invention can be suitably obtained by the following examples, and is excellent in adhesion to a substrate, excellent in solvent resistance and heat resistance, and has an interlayer insulating film having high transmittance and low dielectric constant. As an interlayer insulating film of an electronic component, the microlens of the present invention formed as described above can be understood from the examples described later, and has excellent adhesion to a substrate, excellent solvent resistance and heat resistance, and high light. The microlens which is a solid-state imaging element can be applied to a microlens having a good transmittance and a good melt shape. The shape of the microlens of the present invention is a semi-convex lens shape as shown in Fig. 1(a), and exhibits good condensing characteristics. EXAMPLES The synthesis examples and examples shown below are more specifically described by the present invention, -60-200915005, but the present invention is not limited by the following examples. Synthesis Example Synthesis Example 1 In a 500 ml three-necked flask of a device fractionating tube, a 33.3-ethylethyldimethoxy sand pot and 72.1 g of dimethyldimethoxy group were added thereto, and 76.8 g of diethylene glycol methylethyl group was added thereto. The ether was stirred by a dissolved stone stirrer for 30 minutes, and 43.3 g of ion-exchanged water containing 1.4 g of oxalic acid was added thereto in a temperature of 30 minutes. Then, after reacting at 40 ° C for 2 hours, The solution was depressurized to 10 Torr (about 1.) at 40 ° C for 1 minute, and the by-product A was distilled off by maintaining the reduced pressure for 60 minutes, and the reaction solution was heated to 1 0 in 1 hour. °C, and reacted at 1 °C for 2 hours. The resulting reaction solution was cooled. 'Firstly, 47.2 g of 3-propyl propyltrimethoxy decane was continuously added over 30 minutes, followed by continuous addition within 30 minutes. 10.8 g of ion-exchanged water of oxalic acid, the reaction was carried out at 60 ° C under reduced pressure to distill off methanol and water from the reaction solution, and the solid concentration was determined by adding diethyl ether (the polyoxane in the solution) The weight is 40% by weight, and a solution containing polyoxyalkylene [A-1] is obtained. [A-1] is converted into polyphenylene. The weight average molecular weight Mw of ethylene was Synthesis Example 2. 39.3 g of 2-hydroxydecane was injected into a 500-neck three-necked flask of the apparatus, and the solution was magnetic 40 〇 C. The reaction was continuously added, 3 3 x 1 03 Pa Alcohol. Then distill off the water to 60 ° C glyceroloxy 〇 · 4 g for 3 hours. Glycol methyl ratio ) 成 2 2,600 ° 克 3 锍-61 - 200915005 propyl methoxide The base decane and 119.0 g of phenyltrimethoxydecane' were added thereto to dissolve 76.8 g of diethylene glycol methyl ethyl ether to dissolve the resulting solution by a magnetic stirrer for 30 minutes and to raise the temperature to 40 °C. 43.3 g of ion-exchanged water containing 1.4 g of oxalic acid was continuously added thereto in 30 minutes. Then, after reacting at 40 ° C for 2 hours, the obtained reaction solution was depressurized to 1 Torr Torr at 40 ° C for 1 minute by maintaining the by-product at 60 ° minutes under the reduced pressure. Methanol. Subsequently, the reaction solution was heated to 100 °C in 1 hour, and the reaction was continued at 100 ° while maintaining water for 2 hours. The resulting reaction solution was cooled to 60 ° C, and 49.3 g of 2-(3',4'-epoxycyclohexyl)ethyltrimethoxydecane was continuously added over 30 minutes, followed by continuous addition of hydrazine in 30 minutes. 4 g of ion exchange water of 4 g of oxalic acid was further reacted at 60 ° C for 3 hours. Methanol and water were distilled off from the reaction solution under reduced pressure, and a solution containing polyoxyxane [A-2] was obtained by adding diethylene glycol methyl ethyl ether to a solid concentration of 40% by weight. The weight average molecular weight Mw of the polyoxyalkylene [A-2] converted to polystyrene was 2,500. Synthesis Example 3 55.7 g of 3-(3'-ethyloxetane-3'-yl)propyltrimethoxydecane and 66.1 g of trimethoxydecylalkyl group were injected into a 500 ml three-necked flask of a device fractionator. Propyl-2-(4'-hydroxyphenyl)propyl sulfide and 40.3 g of methyltrimethoxydecane were added thereto to dissolve 139.7 g of methyl isobutyl ketone, and the resulting solution was stirred with a magnet stirrer. Allow to warm to 60 ° C. 54.0 g of ion-62-200915005 exchanged water containing 1.0 g of triethylamine was continuously added thereto in one hour. Then, after carrying out the reaction at 60 ° C for 3 hours, the resulting reaction solution was allowed to cool to room temperature. Subsequently, it was washed twice with 200 g of a 1% by weight aqueous solution of oxalic acid, followed by washing with 200 g of ion-exchanged water. The alcohol and water were distilled off from the obtained organic layer under reduced pressure, and the solid concentration was 40% by weight by adding diethyl dimethyl ether ethyl methyl ether to obtain a solution containing polyoxyalkylene [A-3]. The weight average molecular weight Mw of polyoxyalkylene [A-3] converted to polystyrene was 2,400. Comparative Synthesis Example 1 Into a 500 ml three-necked flask of a device fractionating tube, 88" g of methyltrimethoxydecane and 69.4 g of phenyltrimethoxydecane were injected, and 1 3 8 · 9 g of diacetone alcohol was added thereto to dissolve The resulting solution was stirred with a magnet stirrer while 54.0 g of ion-exchanged water containing 0.2 g of phosphoric acid was continuously added over 30 minutes. Then, the mixture was reacted at 40 ° C for 30 minutes, and then warmed to 100 ° C over 1 hour, and the reaction was carried out for 2 hours while distilling off methanol and water. Subsequently, 'diacetone alcohol and γ-butyrolactone were added, and the solid content was 35% by weight diluted with diacetone alcohol/γ-butyrolactone = 90% (weight ratio) to obtain a polysiloxane containing a polysiloxane. -Ι] solution. The weight average molecular weight Mw of the polyoxyalkylene [a-Ι] converted to polystyrene was 2,900. Comparative Synthesis Example 2 In a reaction flask equipped with a condenser and a mixer, 8 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol B were fed. Methyl ether, followed by continuous feeding of 20 parts by weight of styrene, 20-63-200915005 parts of methacrylic acid, 40 parts by weight of glycidyl methacrylate and 20 parts by weight of methacrylic acid tricyclo [ 5.2.1 · 02'6] 癸-8-yl ester, and after nitrogen replacement, began to slowly stir. The temperature of the solution was raised to 7 ° C, and maintained at this temperature for 5 hours to obtain a polymer solution containing the copolymer [a-2]. The weight average molecular weight of the copolymer [a-2] converted to polystyrene was 7,500, and the molecular weight distribution (Mw/Mn) was 2-5. Further, the solid concentration of the polymer solution obtained here was 31.6% by weight. <Preparation of Sensitive Radiation Linear Resin Composition> Example 1 A solution containing the polyaluminoxane [A-1] synthesized in the above Synthesis Example 1 was made to correspond to 100 parts by weight of polyoxyalkylene [A-1] (solid content) and 10 parts by weight of the component [B] as 4,4,-[1 -[4 -[1 -[4-hydroxyphenyl]-1-methylethyl]phenyl] Ethyl]bisphenol (1.0 mol) is mixed with 1,2-naphthoquinonediazide-5-sulfonyl chloride (2.0 mol) condensate (B-1) to make the solid concentration 30 weight After adding diethylene glycol ethyl methyl ether and uniformly dissolving, the solution (S-1) of the radiation sensitive linear resin composition was filtered by a membrane filter having a pore size of 0.2 /X m. Examples 2 to 7, Comparative Example 2 In Example 1, except that the types and amounts of the components [A] and [B] described in Table 1 were used, the sensitization of the radiation was modulated as in Example ,. The solutions of the resin composition (S - 2 ) ~ (S - 7 ) and (s -1 ) ~ (s - 2 - 64 - 200915005 - in the examples 2, 3, the contents of the [B] component are respectively Two or more kinds of 1,2~diazonium compounds are used. Further, in addition to the [A] component and the [B] component, the [C] thermosensitive acid generating compound is added in Example 5, except for [A] in Example 6. The component [E] and the component [B] were additionally added with the component [E]. Example 8 In Example 7, except that it was dissolved in diethylene glycol ethyl methyl ether / propylene glycol monomethyl ether acetate = 6 / 4 ( In the weight ratio), the solid content concentration was changed to 2% by weight, and further, the [F] surfactant was added, and a solution (S-8) of the linear radiation-sensitive resin composition was prepared as in Example 1. Table 1 Composition Species [A] Ingredients [B] Ingredients Other component types Weight parts Types Parts by weight Types and parts by weight Example 1 (S-1) [A-1] 100 ΓΒ-11 10 • _ Example 2 (S-2) [A -1] 100 [B-ll/fB-21 5 /5 - Example 3 (S-3) ΓΑ-11 100 [Β-11/ΓΒ-31 5/5 - - Example 4 (S-4) [A-2] 100 ΓΒ-11 10 Example 5 ( S-5) [A-2] 100 ΓΒ-11 10 [C-1] 1 Example 6 (S-6) [A-2] 100 ΓΒ-11 10 [El] 5 Example 7 (S-7) [A-3] 100 『B-ll 10 - _ Example 8 (S-8) [A-3] 100 ΓΒ-11 10 [Fl] 0.1 Comparative Example 1 (s-1) [a-1] 100 ΓΒ -11 10 - _ Comparative Example 2 (s-2) [a-2] 100 ΓΒ-11 10 - - The abbreviations of the components in Table 1 are as follows: [B-1]: 4, 4' One [1 A [4 -[1 -[4-hydroxyphenyl]-1 monomethyl-65- 200915005 ethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5- Sulfonium chloride (2.0 mol) condensate [B-2]: 4,4",4" ethylene (phenol) (1.0 mol) and 1,2-naphthoquinonediazide 5- Sulfonium chloride (2.0 mol) condensate [B-3]: 2,3,4,4'-tetrahydroxybenzophenone (1.0 mol) and 1,2 naphthoquinonediazide-5- Sulfonate (2.44 mol) [Cl] : SUNAID SI-L85 (manufactured by Sanshin Chemical Co., Ltd.) [El]: EPICOT 154 (made by Nippon Epoxy Resin) [Fl]: SH-28PA (East) Korea• <Performance Evaluation of Interlayer Insulating Film> Examples 9 to 16, Comparative Examples 3 to 4 The radiation-sensitive linear resin composition prepared as described above was evaluated as interlayer insulation as follows. Various properties of the film. [Evaluation of Sensitivity] The composition described in Table 2 was applied to each of Examples 9 to 15 and Comparative Examples 3 to 4 using a spin coater on a crucible substrate, and then placed on a hot plate at 100 ° C. The film was prebaked for 2 minutes to form a coating film having a film thickness of 4.0/zm. Example 1 6 was coated with a slit die coater, and the solvent was distilled off to 0.5 Torr at room temperature for 15 seconds, and then prebaked on a hot plate at 1 ° C. After 2 minutes, a coating film having a film thickness of 4.0/m was formed. The obtained coating film was respectively interposed with a pattern mask having a specific pattern, and a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon (Korea) -66-200915005, and the exposure time was changed to be exposed, and the weight was 2.38 at 25 t. The development was carried out by an overflow method in an aqueous solution of % tetramethylammonium hydroxide for 80 seconds. Then, it was washed with ultrapure water for 1 minute, and dried to form a pattern on the ruthenium substrate. At this time, the minimum exposure amount required to completely dissolve the pattern of the line/space (10 to 1) and the pattern of 3.0//m was investigated. The minimum exposure is used as the sensitivity as listed in Table 2. [Evaluation of development margin] The composition described in Table 2 was applied to each of Examples 9 to 15 and Comparative Examples 3 to 4 using a spin coater on a crucible substrate, and then dried on a hot plate. Prebaking at 〇t for 2 minutes to form a coating film having a film thickness of 4.0 #m. Example 1 6 was coated with a slit die coater, and the solvent was distilled off to 0.5 T rr at room temperature for 15 seconds, and then prebaked on a hot plate at 100 ° C. 2 minutes, a film having a film thickness of 4.0 // m was formed. The obtained coating film was interposed with a mask having a pattern of 3.0 #m line and space (10 to 1), and a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon was used for the above-mentioned "sensitivity". Evaluation The sensitivity of the investigation was exposed to a corresponding exposure amount, and the development time was changed by an overflow method in a 2.38 wt% aqueous solution of tetramethylammonium hydroxide at 25 °C. Then, it was washed with ultrapure water for 1 minute, and then dried to form a pattern on the ruthenium substrate. At this time, the development time required for the line width of 3/m was taken as the optimum development time and is shown in Table 2. In addition, when the image development was continued from the optimum imaging time, the time until the line of 3.0 // m and the interval peeling off was measured as the development margin and is shown in Table 2. -67-200915005 [Evaluation of Solvent Resistance] The composition described in Table 2 was applied to each of Examples 9 to 15 and Comparative Examples 3 to 4 by using a spin coater on a crucible substrate, and then on a hot plate. Pre-bake at 1 0 〇 ° C for 2 minutes to form a coating film. Example 1 6 was coated with a slot die coater, and the solvent was distilled off to 0.5 To rr at room temperature for 15 seconds, and then pre-baked at 10 °C on a hot plate. In the minute, the coating film was formed. The obtained coating film was respectively exposed by a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon, and the exposure amount was 3,000 J/m 2 to expose the substrate. The film was heated in an oven at 220 ° C for 1 hour to obtain a cured film having a film thickness of about 3 · 0 /zm. The film thickness (T1) of the obtained cured film was measured. Then, the substrate on which the cured film was formed was immersed in temperature control. After 20 minutes in the dimethyl hydrazine at 70 ° C, the film thickness (tl ) after the immersion of the cured film was measured, and the film thickness change rate of the immersion { | tl - T1 | / Τ 1} χ 100 [%] was calculated. Further, since it is not necessary to pattern the formed film in the evaluation of the solvent resistance, the falling radiation irradiation step and the development step are omitted, and only the coating film forming step, the post-exposure step, and the heating step are performed. Evaluation [Evaluation of heat resistance] As in the above [Evaluation of Solvent Resistance], hard is formed on the tantalum substrate. Film, the film thickness of the obtained cured film was measured (Τ2). Then, the substrate with the cured film was baked in a cleaning oven at 240 ° C for 1 hour, and then -68-200915005, the cured film continued to be baked. The film thickness after (t2) 'calculated the film thickness change rate after continuous baking {| t2 - T2| /T2}xl 〇〇 [%]. The results are shown in Table 2. [Evaluation of transparency] In the evaluation of the solvent resistance, a cured film was formed on the glass substrate in the same manner as the glass substrate "CONING 7095" (manufactured by Corning Co., Ltd.), and a spectrophotometer "150_2〇 double beam" was used. (Hitachi, Ltd.) measured the light transmittance of the glass substrate having the cured film at a wavelength in the range of 400 to 800 nm. The lowest light transmittance at this time is shown in Table 2. [Evaluation of specific dielectric ratio] and warp On the SUS304 substrate, the compositions described in Table 2 were applied to each of Examples 9 to 15 and Comparative Examples 3 to 4 using a spin coater, and then preheated on a hot plate at 1 ° C. Baking for 2 minutes to form a coating film having a film thickness of 3.0 μm. Example 1 6 is a slit die The applicator was coated, and the solvent was distilled off to a pressure of 0.5 Torr (about 66.6 Pa) at room temperature for 15 seconds, and then prebaked on a hot plate at 1 ° C for 2 minutes to form a film thickness. Coating film of 3.0 〆m. The obtained coating film was respectively exposed by a PLA-50 1F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon, and the substrate was exposed in a cleaning oven with a cumulative irradiation amount of 3,000 J/m 2 . The film was heated at 22 ° C for 1 hour to form a cured film on the substrate. A Pt/Pd electrode pattern was formed on the cured film by a vapor deposition method to prepare a sample for measuring the dielectric constant. The specific dielectric constant at a frequency of i 〇 kHz was measured by a CV method using an HP 1 645 1 B electrode manufactured by Hewlett-Packard Co., Ltd. and a HP 4284A Pireshijon LCR meter on the substrate. The results are shown in Table 2. Further, since the film formed in the dielectric constant evaluation does not need to be patterned, the radiation irradiation step and the development step are omitted, and only the coating film shape, the post-exposure step, and the heating step are evaluated. Table 2 Composition type sensitivity (J/m2) Development margin Solvent resistance Heat resistance transparency (%) Specific dielectric imaging time (seconds) Development limit (seconds) Film thickness change rate (%) Film Thickness change rate (%) Example 9 (S-1) 500 80 60 3.0 2.1 97 3.0 Example 10 (S-2) 450 80 50 2.9 2.0 97 3.0 Example 11 (S-3) 480 80 60 2.7 1.9 97 3.0 Example 12 (S-4) 500 80 60 3.1 2.3 97 3.0 Example 13 (S-5) 500 80 60 2.9 2.1 97" 3.0 Example 14 (S-6) 500 80 60 2.9 2.2 97 3.0 Example 15 (S-7) 500 80 60 3.0 2.0 97 3.0 Example 16 (S-8) 500 80 60 2.9 2.2 97 3.0 Comparative Example 3 (s-1) 500 80 30 6.0 6.0 97 3.0 Comparative Example 4 (s-2) 2500 80 60 2.5 2.2 97 3.5 <Performance evaluation as microlenses> Examples 17 to 23, Comparative Examples 5 to 6 Using the sensitive radiation linear resin composition prepared as described above, various characteristics as microlenses were evaluated as follows. Further, the evaluation of the solvent resistance, the evaluation of the heat resistance, and the evaluation of the transparency were carried out as the evaluation results of the performance of the interlayer insulating film - 70 - 200915005 [Evaluation of the sensitivity] The coatings were applied to the substrate by using a spin coater. After the composition was described, it was pre-baked on a hot plate at a loot for 2 minutes to form a coating film having a film thickness of 2.0/zm. The obtained coating film was interposed with a pattern mask having a specific pattern, and the NSR1755i7A reduced projection projection machine (NA = 0.50 - λ = 3 6 5 ηιη) manufactured by Nikon, changed the exposure time to be exposed, and was exposed at 25 tons. 2 · 3 8 wt% aqueous solution of tetramethylammonium hydroxide was developed by an overflow method for 1 minute. It is then washed with water and dried to form a pattern on the ruthenium substrate. Investigate the spatial linewidth of 0.8 // m line and interval (1 to 1) to 〇. 8 # m The minimum exposure required. The minimum exposure amount is taken as the sensitivity and is listed in Table 3. [Evaluation of development margin] The composition described in Table 3 was applied to the substrate by using a spin coater, and then baked on a hot plate at 100 ° C for 2 minutes to form a film thickness. 2.0/zm coating film. The obtained coating film was subjected to a NSR1755i7A reduction projection exposure machine (ΝΑ = 0.50, λ = 3 6 5 ηιη) manufactured by Nikon Co., Ltd. with a pattern of a specific pattern to be sensitive to the above-mentioned "Evaluation of Sensitivity". The exposure was carried out at a similar exposure amount, and the solution was developed by an overflow method at 25 ° C for 1 minute in an aqueous tetramethylammonium hydroxide solution of the concentration shown in Table 3. It is then washed with water and dried to form a pattern on the ruthenium substrate. The necessary imaging time of the line width of 〇.8 // m line and interval (1 to 1) is 0.8 β m as the optimum imaging time and is listed in Table 3. In addition, when the development time is continued from the optimum -71 - 200915005 development time, the time until the pattern of 0.8 // m is peeled off (development margin) is measured and listed in Table 3 [formation of microlenses] on the germanium substrate. The composition described in Table 3 was applied separately using a spin coater, and then prebaked on a hot plate at 1 ° C for 2 minutes to form a coating film having a film thickness of 2.0 μm. The obtained coating film was passed through a pattern mask having a pattern of 4.0 dots per second at 2.0 mm intervals, and the NSR1755i7A reduced projection projection machine (ΝΑ = 0.50, λ = 3 65ηηι) manufactured by Nikon was used to be in contact with the above-mentioned "sensitivity. Evaluation The sensitivity of the investigation was exposed to a corresponding exposure amount, and the solution was visualized by sputum method at 25 ° C in a 2.38 wt% aqueous solution of tetramethylammonium hydroxide. It is then washed with water and dried to form a pattern on the ruthenium substrate. Subsequently, the PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon was exposed in such a manner that the cumulative irradiation amount became 3,000 J/m2. Subsequently, after heating at 160 ° C for 10 minutes on a hot plate, it was further heated at 230 ° C for 10 minutes, and the pattern was melt-fluidized to form a micro lens. The dimensions (diameter) and cross-sectional shape of the bottom (the surface in contact with the substrate) of the formed microlens are shown in Table 3. It is preferred that the bottom size of the microlens exceeds 4.0 /z m and does not reach 5.0. When the size is 5.0 μm or more, the adjacent lenses are in contact with each other, which is not preferable. Further, the cross-sectional shape is a pattern shown in Fig. 1, which is good in the case of the semi-convex lens shape of (a), and is not preferable in the case of (b) a slightly trapezoidal shape. Further, in Comparative Example 5, since the melt-fluidized microlens pattern was in contact with the adjacent pattern, respectively, -72-200915005, the measurement of the diameter of the bottom surface and the evaluation of the cross-sectional shape could not be performed. Table 3 Composition type sensitivity (J/m2) Development margin Microlens shape developing solution concentration (% by weight) Optimal development time (seconds) Development limit (seconds) Bottom size rmm) Profile shape Example 17 ( S-1) 1250 2.38 60 50 4.4 (a) Example 18 (S-2) 1125 2.38 60 40 4.3 (a) Example 19 (S-3) 1200 2.38 60 50 4.2 (a) Example 20 (S- 4) 1250 2.38 60 50 4.4 (a) Example 21 (S-5) 1250 2.38 60 50 4.4 (a) Example 22 (S-6) 1250 2.38 60 50 4.3 (a) Example 23 (S-7) 1250 2.38 60 50 4.1 (a) Comparative Example 5 (s-1) 1250 2.38 60 20 Unable to measure Uncomparable Comparative Example ό (s-2) 5300 0.40 60 50 4.1 (a) Effect of the Invention The sensitive radiation linear resin composition of the present invention The material can also form an interlayer insulating film which is excellent in adhesion to a substrate, excellent in solvent resistance and heat resistance, and has high transmittance and low dielectric constant under firing conditions of less than 250 °C. Further, the sensitive radiation linear resin composition of the present invention can be easily formed to have high sensitivity to radiation sensitivity, and has a development margin which can form a good pattern shape even if the optimum development time is exceeded in the developing step, and is dense. A pattern-like film with excellent properties. Moreover, the microlens of the present invention formed of the above-mentioned composition is a microlens which is excellent in adhesion to a substrate, excellent in solvent resistance and heat resistance, and has high transmittance and good melt shape, and can be suitably used as a solid image member. Micro-73- 200915005 Lens. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the cross-sectional shape of a microlens. -74-

Claims (1)

200915005 十、申請專利範圍 1. 一種敏輻射線性樹脂組成物,其特徵爲含有: [A] 具有選自由環氧乙烷基及氧雜環丁烷基所組成之 群組之至少一種基及可加成反應於環氧乙烷基或氧雜環丁 烷基之官能基之聚矽氧烷,以及 [B] 1,2-重氮醌化合物。 2·如申請專利範圍第1項之敏輻射線性樹脂組成物 ,其中[A]聚矽氧烷爲含有下列矽烷化合物之水解縮合物 (al)具有選自由環氧乙烷基及氧雜環丁烷基所組成 之群組之至少一種基與水解性基之矽烷化合物,以及 (a2)具有可加成反應於環氧乙烷基或氧雜環丁烷基 之官能基與水解性基之矽烷化合物。 3 ·如申請專利範圍第1項之敏輻射線性樹脂組成物 ,其中[A]聚矽氧烷中可加成反應於環氧乙烷基或氧雜環 丁烷基之官能基爲羥基、锍基或胺基。 4 -如申請專利範圍第2項之敏輻射線性樹脂組成物 ,其中[A]聚矽氧烷中可加成反應於環氧乙烷基或氧雜環 丁烷基之官能基爲羥基、锍基或胺基。 5 ·如申請專利範圍第1〜4項中任一項之敏輻射線性 樹脂組成物,其係用於形成層間絕緣膜。 6 · —種形成層間絕緣膜之方法,其特徵爲包含依下 列所述順序之下列步驟: (1 )在基板上形成申請專利範圍第5項之敏輻射線 -75- 200915005 性樹脂組成物之被覆膜之步驟, (2 )對該被覆膜之至少一部份照射輻射線之步驟, (3 )使輻射線照射後之被覆膜顯像之步驟,及 (4)加熱該顯像後之被覆膜之步驟。 7. —種層間絕緣膜,其特徵爲藉由申請專利範圍第6 項之方法所形成。 8 ·如申請專利範圍第1 ~4項中任一項之敏輻射線性 樹脂組成物,其係用於形成微透鏡。 9. 一種微透鏡之形成方法,其特徵爲包含依下列所 述順序之下列步驟: (1 )在基板上形成申請專利範圍第8項之敏輻射線 性樹脂組成物之被覆膜之步驟, (2 )對該被覆膜之至少一部份照射輻射線之步驟, (3 )使輻射線照射後之被覆膜顯像之步驟,及 (4)加熱該顯像後之被覆膜之步驟。 10. —種微透鏡,其特徵爲藉由申請專利範圍第9項 之方法所形成。 -76-200915005 X. Patent application scope 1. A sensitive radiation linear resin composition characterized by: [A] having at least one group selected from the group consisting of an oxiranyl group and an oxetane group, and The polyoxyalkylene which is added to the functional group of the oxiranyl group or the oxetane group, and the [B] 1,2-diazonium compound. 2. The sensitive radiation linear resin composition of claim 1, wherein the [A] polyoxane is a hydrolysis condensate (al) containing the following decane compound having an oxirane group and an oxetane selected from the group consisting of a decane compound having at least one group of a group consisting of an alkyl group and a hydrolyzable group, and (a2) a decane having a functional group capable of addition reaction to an oxiranyl group or an oxetane group and a hydrolyzable group Compound. 3. The sensitive radiation linear resin composition of claim 1, wherein the functional group which can be added to the oxiranyl group or the oxetane group in the [A] polyoxane is a hydroxyl group, a hydrazine Base or amine group. 4 - a radiation sensitive linear resin composition as claimed in claim 2, wherein the functional group which can be added to the oxiranyl group or the oxetane group in the [A] polyoxane is a hydroxyl group, a hydrazine Base or amine group. The sensitive radiation linear resin composition according to any one of claims 1 to 4, which is used for forming an interlayer insulating film. 6 - A method of forming an interlayer insulating film, comprising the following steps in the following order: (1) forming a sensitive radiation line of the fifth aspect of the patent application on the substrate - 75 - 200915005 resin composition a step of coating a film, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a step of developing a coating film after irradiation of the radiation, and (4) heating the image The step of coating the film afterwards. 7. An interlayer insulating film characterized by being formed by the method of claim 6 of the patent application. The sensitive radiation linear resin composition according to any one of claims 1 to 4, which is used for forming a microlens. A method of forming a microlens, comprising the steps of: (1) forming a coating film of a radiation sensitive linear resin composition of claim 8 on a substrate, ( 2) a step of irradiating at least a portion of the coating film with radiation, (3) a step of developing a coating film after irradiation of the radiation, and (4) a step of heating the coating film after the developing . 10. A microlens characterized by the method of claim 9 of the patent application. -76-
TW097122312A 2007-06-14 2008-06-13 Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like TWI444775B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157845A JP4947300B2 (en) 2007-06-14 2007-06-14 Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them

Publications (2)

Publication Number Publication Date
TW200915005A true TW200915005A (en) 2009-04-01
TWI444775B TWI444775B (en) 2014-07-11

Family

ID=40188340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097122312A TWI444775B (en) 2007-06-14 2008-06-13 Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like

Country Status (4)

Country Link
JP (1) JP4947300B2 (en)
KR (1) KR101411046B1 (en)
CN (1) CN101324755B (en)
TW (1) TWI444775B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI432895B (en) * 2010-12-01 2014-04-01 Chi Mei Corp Photo-sensitive polysiloxane composition and protecting film formed therefrom
CN103959168B (en) * 2011-11-29 2017-07-04 默克专利有限公司 Negative-type photosensitive silicone composition
JP5333696B1 (en) * 2012-03-26 2013-11-06 東レ株式会社 Photosensitive black resin composition and resin black matrix substrate
KR102115811B1 (en) * 2013-03-12 2020-05-27 제이에스알 가부시끼가이샤 Gate insulation film, composition, cured film, semiconductor device, manufacturing method for the semiconductor device, and display device
CN105355721B (en) * 2015-12-09 2017-09-29 苏州徕士达新材料科技有限公司 A kind of synthesis preparation method of solar cell diffusion barrier separation layer
JP6607109B2 (en) * 2016-03-22 2019-11-20 Jsr株式会社 Cured film, display element, cured film forming material, and cured film forming method
KR102310794B1 (en) * 2016-05-19 2021-10-12 롬엔드하스전자재료코리아유한회사 Photosensitive resin composition and cured film prepared therefrom
TWI700319B (en) * 2018-05-04 2020-08-01 新應材股份有限公司 Positive photosensitive composition and wafer dicing method using the same
DE102018214229A1 (en) 2018-07-30 2020-01-30 Evonik Operations Gmbh Thioether silanes, process for their preparation and their use
JP2023087657A (en) * 2021-12-13 2023-06-23 住友化学株式会社 Lens manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288857A (en) * 1990-04-06 1991-12-19 Nippon Telegr & Teleph Corp <Ntt> Resist material and photosensitive resin composition
JPH0551458A (en) * 1991-08-23 1993-03-02 Fujitsu Ltd Organosilicon polymer and method for producing semiconductor device using the same polymer
JP3783512B2 (en) 2000-02-29 2006-06-07 Jsr株式会社 Radiation-sensitive resin composition and interlayer insulating film formed therefrom
EP1662322B1 (en) * 2004-11-26 2017-01-11 Toray Industries, Inc. Positive type photo-sensitive siloxane composition, curing film formed by the composition and device with the curing film
KR101142999B1 (en) * 2005-02-03 2012-05-08 주식회사 삼양이엠에스 Photoresist composition, method for forming a pattern using the same, and method for manufacturing thin film transistor array panel using the same

Also Published As

Publication number Publication date
JP2008310044A (en) 2008-12-25
CN101324755B (en) 2012-10-03
JP4947300B2 (en) 2012-06-06
KR20080110537A (en) 2008-12-18
KR101411046B1 (en) 2014-06-30
CN101324755A (en) 2008-12-17
TWI444775B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
TWI393746B (en) Siloxane resin composition and the method for manufacturing the same
TWI444775B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
TWI490642B (en) Positive photosensitive resin composition, cured film formed from same and device having cured film
JP4849251B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
TWI528112B (en) Positive photosensitive siloxane composition
TWI438573B (en) Radiation-sensitive composition, interlayer insulation film and micro-lens, and forming method thereof
TWI467247B (en) A method for forming a hardening resin composition, a protective film and a protective film
TWI430025B (en) Photosensitive resin composition, interlayer insulating film, and method for processing microlens
TWI437365B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
JP6123620B2 (en) Radiation-sensitive resin composition, display element insulating film, method for forming the same, and display element
TW201426191A (en) Photosensitive polysiloxane composition and uses thereof
TW201529668A (en) Method for manufacturing cured film of display element, radiation-sensitive resin composition and application thereof, and heating apparatus
TWI361951B (en)
TWI451194B (en) Radiosensitive resin composition, interlayer insulation film, microlens and methods for manufacturing them
TWI510857B (en) Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like
TW200947132A (en) Positive radiation-sensitive resin composition, microlens, and method for forming microlens
TWI628233B (en) Positive photosensitive resin composition, cured film, and optical device
TWI338190B (en)
TWI425315B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
TWI282905B (en) Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those
TW201829553A (en) Photosensitive resin composition and cured film prepared therefrom
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens
TWI394000B (en) Radiation sensitive resin composition, radiation sensitive dry film, interlayer dielectric film and a forming method thereof, and microlens and a forming method thereof
TW201809866A (en) Photosensitive resin composition and cured film prepared therefrom
TW201942678A (en) Positive-type photosensitive resin composition, cured film thereof, and solid-state imaging element having same