TW200914818A - Inspecting apparatus and inspecting method - Google Patents

Inspecting apparatus and inspecting method Download PDF

Info

Publication number
TW200914818A
TW200914818A TW097127124A TW97127124A TW200914818A TW 200914818 A TW200914818 A TW 200914818A TW 097127124 A TW097127124 A TW 097127124A TW 97127124 A TW97127124 A TW 97127124A TW 200914818 A TW200914818 A TW 200914818A
Authority
TW
Taiwan
Prior art keywords
inspected
photographing
wafer
unit
inspection
Prior art date
Application number
TW097127124A
Other languages
Chinese (zh)
Inventor
Hiromasa Shibata
Naoshi Sakaguchi
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW200914818A publication Critical patent/TW200914818A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Abstract

Provided are an inspecting apparatus and an inspecting method by which positions of a wafer and an imaging section can be automatically adjusted. The upper horizontal surface of a Z stage (11) can be changed. A ? stage (12) rotates a wafer (31) held by suction by a wafer holder (13) at a prescribed rotation speed.An apex imaging section (14), an upper bevel imaging section (15) and a lower bevel imaging section (16) pick up the image of an end section of the wafer (31), and a monitoring image of the edge section side surface indicated by a is obtained. A line CCD (17) is composed of at least one row of CCDs arranged in the vertical direction to have a width sufficiently more than the thickness of the wafer (31), and picks up the image of the side surface of the wafer (31) for detecting the position and status of the wafer (31).; When the wafer (31) is warped or deformed, the position of the wafer (31) at the imaging position is changed. An inspection apparatus (1) adjusts the relative positions of the wafer (31) and the apex imaging section (14), based on the imaging data obtained by the CCD (17).

Description

200914818 九、發明說明: 【發明所屬之技術領域】 本發明’係有關檢查裝置及檢查方法,特別係有關可 用在檢查平板形狀之基板等之端部之檢查裝置及檢查方 法。 一 【先前技術】[Technical Field] The present invention relates to an inspection apparatus and an inspection method, and more particularly to an inspection apparatus and an inspection method which can be used for inspection of an end portion of a flat plate or the like. [Prior Art]

近年來,形成於半導體晶 年提高’且用在生產過程之晶 立冒加。在晶圓端部附近之缺陷 出之電路的良率。基於此,在 之觀察越形重要。 圓上之電路圖案的集成度逐 圓表面處理的物質種類亦有 管理,將影響到由晶圓所產 生產過程中於晶圓端部附近 因此,例如遂由複數個方向來觀察在半導體晶圓等平 板上之基板的端部周邊,以檢查是否有異物、膜的剝離、 膜内的氣泡、膜的回填、及切削痕等。 ^以往,用以進行該項檢查之檢查裝置,係以例如雷射 ^等來照射於被檢查物,俾使用其散射光來對半導體晶圓 v等平板狀基板的端部周邊進行異物檢測。 (專利文獻1)曰本特開平丨uhmo號公報 【發明内容】 a然而其問題在於,亦有要求不以雷射光等來照射於被 立—物以使用其散射光檢查異物,而是藉由被檢查物之端 F的擴大衫像’來觀察被檢查物之端部狀態者。 在此遂有將顯微鏡等設置在被檢查物之端部周邊, '彳于在被檢查物端部之擴大影像的想法。然而,在觀察 200914818 晶圓等厚度並不大的被檢查物之端部時,若逢被檢查物有 發生撓曲或歪斜等之情形,端面的位置(使平板狀之被檢查 物處於水平狀態時被檢查物端部之高度方向的位置)會有大 幅起伏。此時’有可能造成被檢查物之側面中央位置偏離 於由側面觀察被檢查物時所得到之擴大影像的視野中心, 在最壞的情形時,甚至會造成被檢查物由視野離開的情形。 本發明係有鑑於該種狀況所為,能輕易且確實的觀察 有發生撓曲或歪斜狀況之被檢查物的端部。In recent years, it has been formed in the semiconductor crystal growth and has been used in the production process. The yield of the circuit that is defective near the end of the wafer. Based on this, the observation is more important. The integration of the circuit pattern on the circle is also managed by the material type of the round surface treatment, which will affect the production process of the wafer near the end of the wafer. Therefore, for example, the semiconductor wafer is observed in a plurality of directions. The periphery of the end of the substrate on the flat plate is checked for foreign matter, peeling of the film, bubbles in the film, backfilling of the film, and cutting marks. In the past, the inspection apparatus for performing the inspection irradiates the inspection object with, for example, a laser beam, and uses the scattered light to detect foreign matter around the end portion of the flat substrate such as the semiconductor wafer v. (Patent Document 1) 曰本特开平丨uhmo号 [Summary of the Invention] However, there is a problem in that it is required not to irradiate a standing object with laser light or the like to inspect a foreign matter using the scattered light, but by The enlarged shirt of the end F of the inspection object is like 'to observe the end state of the inspection object. Here, there is an idea that a microscope or the like is placed around the end of the object to be inspected, and that the image is enlarged at the end of the object to be inspected. However, when observing the end of the inspection object such as the 200914818 wafer, if the inspection object is bent or skewed, the position of the end surface (the flat object is horizontal). There is a large fluctuation in the position in the height direction of the end of the object to be inspected. At this time, it is possible to cause the center position of the side surface of the object to be inspected to deviate from the center of the field of view of the enlarged image obtained when the object to be inspected is viewed from the side, and in the worst case, even if the object to be inspected is separated from the field of view. The present invention is made in view of such a situation, and it is possible to easily and surely observe the end portion of the test object in which the deflection or the skew occurs.

本發明之一側面之檢查裝置,具備··檢測手段(例如圖 1之線性ccrrn、線性CCD221、或位移計),用以檢測平 板形狀之被檢查物(例如圖丨之晶圓31)的端部位置(例如端 部之中央位置c或上下面的表面位置);攝影手段⑽如圖丄 之Apex攝影部14、上位攝影部15、及下位攝影部⑹,用 以拍攝該被檢查物之端部的觀察用影像;以及調整手段⑽ 如圖3之控制器51、圖3及圖1…載台驅動部63、圖An inspection apparatus according to one aspect of the present invention includes a detection means (for example, a linear ccrrn, a linear CCD 221, or a displacement meter of FIG. 1) for detecting the end of a flat object-shaped object (for example, wafer 31 of the figure). Position of the part (for example, the central position c of the end portion or the surface position of the upper and lower surfaces); the photographing means (10), as shown in the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit (6), for photographing the end of the object to be inspected Video for observation; and adjustment means (10) Controller 51, Fig. 3 and Fig. 1 of Fig. 3: stage drive unit 63, figure

^之攝影系統驅動部151、圖14之控制器241),根據該檢 測手段對該被檢查物 奶之鳊邛位置的檢測結果,調整該攝 手段拍攝該觀察用影傻本 ” ,^被檢查物與該攝影手段的相對 位置。 ”進#具備旋轉驅動手段⑽如圖^ f以該被檢查物之平面的大財央位置作為旋轉中心,以 相對該平面之垂直方向 ^ ^ ^ 乍為方疋轉軸的方向,將該被檢查物 以既疋之速度旋轉驅動. 轉驅動手浐所, ,〇檢測手段係設於可檢測由該旋 又疋轉驅動之該被檢查物端部之位置之位置, 6 200914818 且在該被檢查物大致旋轉〗周之期間,檢測出該被檢查物 知部之複數個位置,·該攝影手段係設於可拍攝由該旋轉驅 動手段所旋轉驅動之該被檢查物端部的位置,且係一較該 檢測手段位在該旋轉驅動手段旋轉該被檢查物之旋轉方向 的相對下游側的位置,在該被檢查物大致旋轉丨周的期間, 拍攝該被檢查物之複數個位置。 該調整手段,可進一步具備位置調整手段(例如圖〗及 圖丨3之Z載台及圖3和圖14的2載台驅動部63),用 以在相對該被檢查物之平面的垂直方向,調整該被檢查物 與该攝影手段的相對位置;根據該檢測手段對該被檢查物 之端部位置的檢測結果,控制該位置調整手段,以調整該 被檢查物與該側面攝影手段在相對該被檢查物平面的垂直 方向之相對位置。 該攝影手段,可包含側面攝影手段(例如圖1及圖13 之Apex攝影部i 4),用以從相對該被檢查物平面之水平方 向拍攝該被檢查物的側面;該位置調整手段,可調整該側 面攝影手段與該被檢查物在相對該被檢查物平面之垂直方 向的相對位置。 該攝影手段’可進一步包含平面攝影手段(例如圖1及 圖1 3之上位攝影部1 5及下位攝影部16),其係從相對於該 被檢查物平面之垂直上方或垂直下方之至少一方拍攝該被 檢查物之平面的端部;該位置調整手段,係調整該側面攝 影手段及該平面攝影手段與該被檢查物的相對位置手段。 該攝影手段,可進一步包含:平面攝影手段(例如圖1 200914818 及圖1 3之上位攝影部1 5及下位攝影部】6),其係從相對於 έ亥被檢查物平面之垂直上方或垂直下方之至少一方拍攝該 被檢查物之平面的端部;以及焦點調整手段(例如圖3、圖 12圖1 4之上位焦點控制部、及下位焦點控制部66), 用以控制該平面攝影手段對該被檢查物的攝影焦點的調 整,該檢測手段,能檢測該平面攝影手段所拍攝之該被檢 查物的該平面位置;該焦點調整手段,能根據該檢測手段 所檢測出之該平面位置,來控制該平面攝影手段對該被檢 查物之攝影焦點的調整。該檢測手段係由用以在第】範圍 内檢測該被檢查物之端部位置的第!範圍檢測手段(例如圖 13之線性CCD17)、以及用以在較該第!範圍大之第2範圍 内檢測該被檢查物之端部位置的第2範圍檢測手段(例如圖 13,線性CCD221)構成;該第!範圍檢測手段,能判斷在 邊第1範圍是否包含該被檢查物的端部;在該第丨範圍包 3 δ亥被檢查物端部時,該調整手段係根據該第丨範圍檢測 手段之檢測結果,調整該被檢查物與該攝影手段的相對位 若在^亥第1範圍未包含該被檢查物之端部時,該調整 + &能根㈣帛2範圍檢測手段之檢測結果’調整該被檢 ^勿與該攝影手段的相對位置。該檢測手段,係檢測該被 檢查物之端部位置及狀態(例如晶圓厚度、破損或缺口、異 物附著、或光阻的過塗等ρ 該檢測手段,能根據從相對於該被檢查物平面的水平 方向來觀察該被檢查物時’所檢測出之於側面邊界部分之 位置急劇變動’據以檢測該被檢查物之狀態的異常位置(例 200914818 如缺口或破損、異物附著、或光阻過塗等);該調整手段, 根據從該檢測手段對該被檢查物位置的檢測結果中,扣除 已檢測出之該異常位置之部分後的檢測結果,來調整該被 檢查物與該攝影手段的相對位置。該檢測手段,係檢測出 從相對於該被檢查物平面之水平方向觀察該被檢查物時於 側面之邊界部分的位置(例如,使用圖6所說明之微分波形 的急劇陡升及陡降的位置),據以檢測該被檢查物的位置。 該檢利手,可檢測該被檢查物之兩平面的位置(例 Γ如,使用圖6所說明之微分波形的急劇陡升及陡降的位 置)以作為彳之相對於該被檢查物平面之水平方向觀察該被 檢查物時的側面之邊界部分。 八可進步具備記錄手段(例如圖3、圖12、及圖14 之記錄部68)’用以記錄由該檢測手段所檢測出之該被檢查 物之兩平面的位置資訊。 、進步具備輸出手段(例如圖3、圖12、及圖14 ^之輸出部69) ’用以將由該檢測手段所檢測出之該被檢查物 I之兩平面的位置資訊,傳送至外部的裝置或傳送路徑。 、本發月之—側面之檢查方法,係用以檢查平板形狀之 被檢查物(例士〇園, 、 圖1之曰曰圓31)端部的檢查裝置之檢查方 去其匕s .檢測步驟,其係用以檢測該被檢查物之端部 位置(例如端部+ +丄 知。卩之中央位置c或上下面的表面位置)(例如, 圖10之步辨 5至步驟S8’圖15之步驟S48至步驟S51 的處理);古周敕 °°王v驟’係根據由該檢測步驟之處理所得到之 該被檢查物> # _ 端。卩位置的檢測結果,據以調整由攝影部(例 200914818 :拍1摄::Ρ6Χ攝影部14、上位攝影部15、及下位攝影部 硯$用影像時,該被檢查物與該攝影部的相對位置 (例,圖11之步驟S11的處理);以及攝影步驟,其係使用 已精該調整步驟之處理而調整過與該被檢查物間之相對位 置的該攝衫部’而拍攝該被檢查物之端部的該觀察用影像 (例如圖11之步驟S12的處理)。The photographic system driving unit 151 and the controller 241 of FIG. 14 adjust the detection result of the position of the object to be inspected according to the detection means, and adjust the shooting means to capture the observation shadow. " The relative position of the object and the photographing means. "Into # has a rotary driving means (10) as shown in Fig. f as the center of rotation of the plane of the object to be inspected as a center of rotation, with respect to the vertical direction of the plane ^ ^ ^ 乍 square In the direction of the rotating shaft, the object to be inspected is rotationally driven at a speed of the same speed. The driving device is driven, and the detecting means is disposed at a position where the end of the object to be inspected driven by the rotation and the rotation is detected. Position, 6 200914818, during the period in which the object to be inspected is substantially rotated, a plurality of positions of the object to be inspected are detected, and the photographing means is provided to be capable of photographing the object that is rotationally driven by the rotation driving means The position of the end portion of the inspection object is set at a position on the downstream side of the rotation direction of the inspection object by the rotation driving means, and the inspection object is photographed while the circumference of the inspection object is substantially rotated. The plurality of inspection object position. The adjustment means may further include position adjustment means (for example, the Z stage of FIG. 3 and FIG. 3 and the 2 stage driving part 63 of FIGS. 3 and 14) for perpendicular to the plane of the object to be inspected. And adjusting a relative position of the inspection object and the photographing means; and controlling the position adjustment means according to the detection result of the end position of the inspection object by the detecting means to adjust the inspection object to be opposite to the side photographing means The relative position of the plane of the object to be inspected in the vertical direction. The photographing means may include a side photographing means (for example, the Apex photographing section i 4 of FIGS. 1 and 13) for photographing the side surface of the object to be inspected from a horizontal direction with respect to the plane of the object to be inspected; The relative position of the side photographing means and the object to be inspected in the direction perpendicular to the plane of the object to be inspected is adjusted. The photographing means' may further include a planar photographing means (for example, the upper photographing unit 15 and the lower photographing section 16 of FIGS. 1 and 13), which is at least one of a vertical upper side or a lower vertical side with respect to the plane of the object to be inspected. The end portion of the plane of the object to be inspected is photographed; and the position adjusting means adjusts the side photographing means and the relative positional means of the plane photographing means and the object to be inspected. The photographing means may further include: a planar photographing means (for example, FIG. 1 200914818 and FIG. 1 3 upper photographing unit 15 and lower photographing section) 6), which is perpendicularly or vertically from the plane of the object to be examined. At least one of the lower sides captures an end of the plane of the object to be inspected; and a focus adjustment means (for example, the upper focus control unit and the lower focus control unit 66 of FIG. 3, FIG. 12 and FIG. 14) for controlling the planar photographing means Adjusting the photographic focus of the test object, the detecting means can detect the plane position of the object to be inspected by the plane photographic means; and the focus adjusting means can detect the plane position according to the detecting means To control the adjustment of the photographic focus of the object to be inspected by the planar photographic means. The detecting means is for detecting the position of the end of the object to be inspected within the range of the first object! Range detection means (such as the linear CCD 17 of Figure 13), and used in comparison! The second range detecting means (for example, Fig. 13, linear CCD 221) for detecting the end position of the object to be inspected in the second range is large; The range detecting means can determine whether or not the end portion of the object to be inspected is included in the first range; and the detecting means is based on the detecting of the third range detecting means when the third range of the object is included in the third range As a result, if the relative position of the test object and the photographing means is adjusted, if the end portion of the test object is not included in the first range of the object, the detection result of the adjustment + & root (4) 帛 2 range detecting means is adjusted. The detected position is not relative to the photographing means. The detecting means detects the position and state of the end of the object to be inspected (for example, wafer thickness, damage or chipping, foreign matter adhesion, or overcoating of the photoresist), and the detecting means can be based on the object to be inspected. In the horizontal direction of the plane, when the object to be inspected is observed, the position detected by the side boundary portion is sharply changed. The abnormal position of the state of the object to be inspected is detected (for example, 200914818 such as notch or damage, foreign matter adhesion, or light) The adjustment means adjusts the object to be inspected and the photographing based on the detection result of the detected position of the object to be inspected from the detection means, and the detection result of the detected abnormal position is subtracted The relative position of the means. The detecting means detects the position of the boundary portion on the side surface when the object is viewed from the horizontal direction with respect to the plane of the object to be inspected (for example, the sharp waveform of the differential waveform described using FIG. 6 is used. The position of the object to be inspected is detected according to the position of the object to be inspected. The hand can detect the position of the two planes of the object to be inspected (for example, The position of the sharp rise and the steep drop of the differential waveform described with reference to Fig. 6 is the boundary portion of the side surface when the object is inspected in the horizontal direction with respect to the plane of the object to be inspected. (For example, the recording unit 68 of FIGS. 3, 12, and 14) is used to record the position information of the two planes of the object to be inspected detected by the detecting means. The progress has an output means (for example, FIG. 3 and FIG. 12, and the output portion 69 of FIG. 14) is used to transmit the position information of the two planes of the object I to be inspected by the detecting means to an external device or a transmission path. The inspection method is for inspecting the inspection device of the inspection device at the end of the inspection object (such as the 〇 〇 ,, 曰曰 31 31 31 31 31 31 31 31 . . . . . . . . . . . . . . . . . . . . . The end position of the object to be inspected (for example, the end + + knowing. The central position c of the crucible or the upper and lower surface positions) (for example, step 5 of FIG. 10 to step S8', step S48 to step S51 of FIG. Treatment); ancient Zhou 敕 ° ° Wang v sudden 'root The result of the detection of the object to be inspected by the processing of the detection step ># _ end is adjusted by the imaging unit (for example, 200914818: 1st shot: Ρ6Χ, the imaging unit 14, the upper imaging unit 15, And the lower photography unit 砚 $ when the image is used, the relative position of the object to be inspected (for example, the processing of step S11 in FIG. 11); and the photographing step, which is adjusted using the processing of the adjustment step. The observation portion of the end portion of the inspection object is imaged by the camera portion ' at a position relative to the inspection object (for example, the processing of step S12 in Fig. 11).

根據本發明的一側面之檢 檢查物的端部進行檢查,特別 的位置,因此,可根據檢測結 相對位置已經過調整之狀態下 之觀察用影像。 【實施方式】 查方法’可對平板形狀之被 疋,可檢測被檢查物之端部 果,在與被檢查物端部間之 進行攝影,進而取得所拍攝 乂下參照附圖以說明本發明的實施形態。 參照圖1以說明檢查裝置i。 。檢查裝置1的構成中包含:z載台u、0載台12、晶The end portion of the inspection object according to the one side of the present invention is inspected at a special position, and therefore, the observation image can be adjusted in accordance with the state in which the relative position of the detection knot has been adjusted. [Embodiment] The inspection method can detect the shape of the flat plate, detect the end of the object to be inspected, and take a picture between the end of the object to be inspected, and obtain the image. The embodiment. The inspection device i will be described with reference to Fig. 1 . . The configuration of the inspection device 1 includes: z stage u, 0 stage 12, crystal

保持具13、Apex攝影部14、上位攝影部15、下位攝影 、及線性 CCD17。 Z載台1 1可根據後述之控制器的控制,而變更其上 水平面的高度。 _ Θ載台12被搭載於z載台丨丨之上部水平面上,係進 仃旋轉驅動,以使搭載於其上部之晶圓保持具13以既定速 度旋轉。β載台12的旋轉係由在圖1中未予圖示之編碼器 戶斤檢測,將檢測結果供應至後述之控制器。 晶圓保持具13被搭載於Θ载台12上,在其上部水平 200914818 面可供吸附保持作為被檢查物之 -同以既定之速度旋轉。 %與”台12 入㈣㈣部分)攝影部14,係由高度大 之水平面的位詈料、^± 致等同晶圓3 1 位置’對被裝餘㈣料具13之曰门 端部以例如數+拉士士以 之日日圓3 1的 致十倍左右的倍率實施攝影, 所示之端邱也丨 、 取件在圖中α 之糕4側面的觀察用影像。Α 所示般地拍攝晶圓h ^ 爾〜4 14可如圖2 攝日日圓31之端部側面的觀察用影像。 上位攝影部15,係從與晶圓31之水平 的上部,對被裝载於晶圓保持具13之晶圓3 ^定距離 數十倍左右之倍率實施攝影,以取得在圖中::= 邛上面(表面)的觀察用影像。又, 後述處理中所求出之曰^ 可根據在 果,來Μ二上側的表面位置的檢測結 不 木δ周整焦點位置。 下位攝影部16,係從與 的下邱,妯壯π 疋水+面相隔既定距離 下。卩對被裝載於晶圓保持具13之s S] u & & 如數十倍左右之倍率實施❹ 之曰曰圓31的端部以例 邱τ 羊實施攝影’以取得在圖中α所示之端 邛下面(背面)的觀察用影像。 後述處理中所求出之日圓31 Τ位攝影部16可根據在 果,來調整焦點位置^ <下側的表面位置的檢測結 比b 攝5^14、上位攝影部15、及下位攝影部16, ^由破柱體21a所支撐之攝影部支樓部21支撐。柱體 a,被固定於未圖示之固定座之上。 說明中’檢查裝置!係藉由上位攝影部15及 卜位攝影部1 6,從鱼晶厠w , …圓1之水平面隔開既定距離之上部 200914818 及下部,來取得晶圓31之端 檢查裝置1亦可僅且有卜純 察用影像。相較於此, 丨罜丹有上位攝影部〗5 任—方,或者,亦可不且亡t 或下位攝影部16之 刀J不具有上位攝影部15The holder 13, the Apex photographing unit 14, the upper photographing unit 15, the lower photographing, and the linear CCD 17 are provided. The Z stage 1 1 can change the height of the upper level according to the control of the controller to be described later. The cymbal stage 12 is mounted on the upper surface of the z stage, and is driven to rotate so that the wafer holder 13 mounted on the upper portion thereof rotates at a predetermined speed. The rotation of the β stage 12 is detected by an encoder (not shown) in Fig. 1, and the detection result is supplied to a controller to be described later. The wafer holder 13 is mounted on the crucible table 12, and is held at the upper level of the level of 200914818 to be held as an object to be inspected and rotated at a predetermined speed. % and "Taiwan 12 into (4) (4) part) Photographing section 14 is based on the position of the height of the horizontal plane, the equivalent of the wafer 3 1 position 'to the remaining (four) of the end of the tool 13 to the number of + Rashis carried out photography with a magnification of about ten times that of the Japanese yen on the day of the Japanese yen. The end of the picture shows Qiu Qiu, and the image of the observation of the side of the cake 4 in the figure. The circle h ^ er ~ 4 14 can be used as an observation image on the side of the end portion of the Japanese yen 31 as shown in Fig. 2. The upper photographing portion 15 is mounted on the wafer holder 13 from the upper portion of the level with the wafer 31. The wafer 3 is photographed at a magnification of about several tens of times to obtain an observation image in the figure::= 邛 top (surface). Further, the 求出^ obtained in the processing described later may be based on the fruit. The detection of the surface position on the upper side of the second side is not the whole focus position of the δ. The lower photography unit 16 is separated from the lower jaw, the π π 疋 water + surface at a given distance. The 卩 pair is loaded on the wafer to maintain With 13 s S] u && 3,000 times the magnification of the end of the 31 曰曰 31 31 31 31 31 31 31 31 The image "obtains an observation image on the lower side (back surface) of the end shown by α in the figure. The yen 31 obtained by the processing described later can be adjusted according to the result of the focus. ^ < The detection level of the surface position is supported by the photographing unit branch portion 21 supported by the broken column 21a, and the column a is fixed to the unillustrated portion. Above the fixed seat. In the description, the 'inspection device!' is separated from the upper surface of the predetermined distance by the upper surface of the fish crystal toilet w and the position of the circle 1. The end inspection device 1 for obtaining the wafer 31 may have only a video for inspection. In contrast, the photographic unit of the upper part of the 丨罜 〗 〗 5 任 , , 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或Knife J does not have the upper photography unit 15

Apex攝影部14、 及下位攝釤部 具有用以對晶圓之端部之減田及下位攝影部16, — 卩之觀察用影像實施攝影的昭明功 靶。該照明可為落射昭 m功 , 月亦可為除此之外者。又,昭、明 先可為擴放光’亦可為具有The Apex photographing unit 14 and the lower photographing unit have a Zhaominggong target for performing photographing of the observation image of the subtraction field and the lower photographing unit 16 of the wafer. The illumination can be an off-projection, and the month can be other than that. In addition, Zhao and Ming may first be used to expand light.

方法,可根據攝影目的或作為觀二先…此等之照明 類而適當選擇。 硯察用w像所需要的影像種 線性C C D1 7拍摄曰fii 2 1认/ . 攝日aSI 31的側面,將攝影資料供應至後 述的控制器。在晶圓31有發生撓曲或歪斜之情形時,晶圓 η之端部位置會往2載台"的可移動方向變動。又,在晶 ° ^有毛生缺口、破損、異物、或光阻過塗等異常情 況。在後述之控制器,可藉由線性CCD17的攝影資料,檢 測晶圓3 1的位置或狀態。 線性CCD17的攝影範圍,具有較晶圓31的厚度充分大 的見度,係由將畫素並列於縱向之至少丨列ccd所構成。 線性CCD1 7的攝影中心,與扁平之晶圓3丨在側面之高度方 向的中央,成大致等高。又,線性CCD17,相較於在圖中 由α所示之Apex攝影部14、上位攝影部15、及下位攝影 部16對晶圓3丨的攝影位置,位在相對於晶圓3丨之旋轉方 向的上游方向,亦即,若0載台12朝左轉,由晶圓31之 中、4刀觀之’係設置於Apex攝影部14、上位攝影部15、 及下位攝影部16對晶圓3 1的攝影位置的右側。換言之, 12 200914818 觀察用影像的攝影位置’相較於線性ccm7之攝影位置, 係位在相對於晶圓31之旋轉方向的下游方向。 ’、泉:CCD17之構成方式,只要具有至少一列縱向排 列、且寬度較晶圓31厚度充分大之CCD即已足夠。又例如, 以具有2維排列之cCD取代線性(:(:£)17者亦可。 藉Apex攝影部14拍攝晶圓31之側面時,較期望者, 係使圖2中晶圓3!之厚度的中央^到表示晝面中央部的 線段L以供攝影。然而,在觀察晶圓31等厚度並不大之被 f 檢查物的端部時,若是被檢查物有發生撓曲或歪斜,可能 會使端面位置大幅的起伏,造成晶圓31之厚度的中央c偏 離於表示畫面中央部的線段L,最壞的情形,可能造成晶圓 31之側面像之一部分落到視野外。因此,檢查裝置丨,係 能根據線性CCD17之攝影資料,檢測線段L與晶圓31之 厚度之中央C的差分△〇:,以調整晶圓31與Apex攝影部 14的相對位置。 再者’檢查裝置1可根據線性CCD 1 7之攝影資料,檢 ί /測晶圓3 1之上下面的表面位置,換言之,可檢測由側面觀 察晶圓31時之晶圓31的邊緣位置。又,檢查裝置1可根 據晶圓31之邊緣位置、或晶圓31之厚度之中央c等之檢 測結果’調整上位攝影部15及下位攝影部16的焦點。 根據線性CCD17對晶圓31所攝得影像因而檢測出的差 分△(:’後述之圖3所示的控制器17,根據圖3所示之0載 台驅動部61之旋轉資訊來計算時點,將控制訊號傳送至圖 3所示之Ζ載台驅動部63。Ζ載台驅動部63乃根據控制訊 13 200914818 諕,變更Z載台11之上面高度。藉此,可恆常地使晶圓μ 之厚度之中央C位在Apex攝影部14視野的大致中心。又’ 檢查裝置1可取得幀框率(frame rate)較高之動晝像以作為 觀察用影像。 ’ 例如,0載台12亦能以一定之角速度在左右之任一旋 轉方向旋轉。在此情形,由於在攝影處理時晶圓3丨並非靜 止,因此線性CCD17或Apex攝影部14等之快門速度必須 有某種程度的提早設定。相較於此,例如,亦可使Θ载a 12以既定角度、既定之角速度在左右任一旋轉方向旋轉之 後使其暫時停止。在此情形,由線性CCD1 7所進行之用以 檢測晶圓3 1位置或狀態而做的攝影,以及Apex攝影部 上位攝影部15、及下位攝影部16對晶圓31端部的攝影處 理’可在晶圓3 1停止之狀態下實施。 藉此構成,利用Θ載台12之旋轉而使晶圓31大致旋 轉1周,嚴格說來係在丨次旋轉之外,再旋轉由線性cCDi7 之攝影位置至Apex攝影部14等之攝影位置的對應角度, 而忐同時執行對晶圓3 1之撓曲或起伏等之狀態檢測,以及 在根據該狀態之檢測結果而調整過之位置實施晶圓Μ端部 的攝影處理。藉此,相較於先使晶圓3丨旋轉丨周以檢測晶 圓31之撓曲或起伏等之狀態,之後再旋轉丨周以實施晶= 3 1端部之攝影處理者,可減少為觀察晶圓3丨所進行之步驟。 除了圖1所說明之線性CCD17的攝影處理、z载台 及Θ載台12的驅動控制之外,還有Apex攝影 Ά 上位 攝衫部15、及下位攝影部丨6之照明驅動、對焦的控 200914818 攝影處理,和根據於其等資料之檢查結果的輸出等,乃是 f既疋之控制器所控制。控制器可設置在例如圖1之z載 口 11的内部,設置於外部者亦可。 以下參照圖3之方塊圖,說明控制器對於檢查裝置i 的控制。 0载台驅動部61的構成中包含:用以使Θ載台12旋 轉驅動的馬達等,以及用以驅動其等之驅動器等。控制器 ,51控制Θ載台驅動部61,使0載台12旋轉驅動。0載台 f丨2的旋轉驅動,係由編碼器62所檢測,將檢測結果供應至 控制器5 1。 〜 控制器51-邊控制Θ載台驅動部…"載台12旋轉 驅動,一邊取得由線性CCD17所攝得之影像,又根據於此, 檢測出在線性CCD17之攝影位置之晶圓31在高度方向的位 Z載台驅動部63的構成中包含:用以變更z載台η 在上部水平面之高度之馬達等,以及用以驅動其等之: 器等。 莉 又,控制器51控制Apex攝影部14、上位攝影部Η、 =下位攝影部16,使其相對於Θ載台12之旋轉驅動而以適 當決定之既定間隔,分別從各自之方向拍攝晶圓3ι端部之 觀察用影像。 照明驅動部64根據控制器51的控制,驅動用以藉由 攝影部14、上位攝影部15、及下位攝影部16拍攝晶 圓3 1端部之照明。 15 200914818 控制器5 1根據線性CCD 1 7所攝得之影像,運算以上位 攝影部15及下位攝影部16拍攝晶圓31時的最佳焦點位 置,將運算結果供應至上位焦點控制部65及下位焦點控制 部66。 上位焦點控制部65,例如係由上位攝影部15來控制在 内部具有之光學系統的位置’據以進行由上位攝影部⑴白 攝晶圓時的對焦控制。又,下位焦點控制部66,例如係 由下位攝影部16來控财㈣具有之光學线的位置 ’以進行由下位攝影部16拍攝晶圓31時的對焦控制。 接著,控制器5丨係使用由線性ccm7所取得之 處理結果’或是由Apex攝影部14、上位攝影部Η 位攝影部16所攝得之勸疚用县< 後 下 檢查結果並且輸出。…象,產生晶圓31之端部的 上:二記憶體67,係用以暫時保存由如攝影部Η 料。4 15、及下位攝影部16所攝得之觀察用影像的資 / . σ己錄部68,孫爾丨v说/日η rsi 镍去 ’、用取仔日日圓31端部之檢查結果日a 之:,例如,可為硬碟或半導體記憶體等;亦:記 移式輔助媒介與可供收送資訊的驅動器。‘"、文裳 路連:出:::以有線或無線方式與外部機器或既定之網 記錄有各資訊(例如晶圓3〗:二果:二裝置,可舉例為, 施之處理步驟一 步驟貝讯、對晶圓3】所 “里資訊、或用以管理所製造之晶圓 16 200914818 資 至 關 晶 訊等)的裝置或伺服器等。將檢查裝4 k檢查結果供應 該種裝置或飼服器,使用者可藉此而易於取得晶圓之相 資訊(例如存有不良晶片之資訊),而易於找出製造出不良 片之原因。 ^顯示部70係根據控制器η的控制,使晶圓31端部之 檢查結果顯示於例如液晶顯示器或CRT顯示器等。 圖4之功能方塊圖,係用以說明控制器5丨所具有的功 能。亦即,如果能具備有可供實現圖4所示各功能之個別 硬體,在此情形,就可取代取代控制器51,使檢查裝置工 具有相同功能。 微分處理部1 〇 1係接收來自線性CCD 1 7之線性CCD的 攝負料。圖5所示之例係表示,由線性ccd 1 7所供應之 個幀框之CCD,在各晝素之受光強度(所供應之訊號的電 壓強度)的分布之一例。微分處理部1〇1對該分布實施微分 地理將微分處理結果示於圖6。如圖6所示,微分波形中, 在由端部側面觀察晶圓3 1時之邊緣部分即圖中之a及b的 位置’微分波形會急劇地陡降及陡升、或陡升及陡降。又, 在邊緣部分以外的微分值大致為0。微分處理部1 〇 1將微分 處理結果供應至異常部分檢測部102及邊緣位置檢測部 103 〇 異常部分檢測部102,監視由微分處理部1〇1所供應之 曰曰圓3 1端部之各位置的微分處理結果,並抽出在微分波形 虽中’相對於0載台12之旋轉而有急劇陡升及陡降之位置 的瞬間變化部分。又,異常部分檢測部102係將有急劇陡 17 200914818 升及陡降之位置的瞬間變化部分,視為檢測出之異常部 分’例如缺口、破損、異物附加、或光阻的過塗等。 具體而言’異常部分檢測部102係將複數個位置之微 分波形記錄於内部,當急劇陡升及陡降的位置在既定範圍 内的移動達到間值以上時,則可檢測出其係缺口、破損等 2的.、常刀。上述靶圍以及閾值的設定’可根據經驗 S貫驗來設定可供檢測缺口或破損等之適當數值,亦可由 使用者來變更範圍及間值的設^。異常部分檢測部102,係 將異常部分之檢測結果供應至相對位置誤差運算部106、上 下位焦點位置計算部11Q、㈣記憶體記錄控制部…、圖 表產生部1 1 5、及記錄/顯示//輸出控制部"6。 邊緣檢测部103,根據微分處理部1〇1所供應之微分處 :里、结山果中有急劇陡升及陡降的位置,檢測由側面觀察晶圓 1端部時的邊緣位置,亦即檢測晶圓3 ^的上下表面位置。 邊緣位置檢測冑1〇3將檢測結果供應至晶圓厚度算出部 104、中央位置檢測部1〇5、上下位焦點位置運算部η。、 圖表產生部115、及記錄,顯示,輸出控制部ι… 曰晶圓厚度算出部104’根據邊緣位置檢測部1〇3所供應 之晶圓3丨之表面位置的檢測結果,檢測出晶 將檢測結果供應至圖表產生部115。 的厚度 曰:央位置檢測部105’根據邊緣位置檢測部ι〇3所供應 ^晶圓31之邊緣位置的檢測結果,將邊緣位置的中央 二:檢測出之晶圓31的厚度之中央部分,亦即視為圖2所 不曰曰圓31之厚度之中央c的位置。中央位置檢測部⑼將 200914818 晶圓31之厚度之中央€的位置檢測結果,供應至相對位置 誤差計算部106、上下位焦點位置計算部11〇、及圖表產生 部 1 1 5。 相對位置誤差計算部1〇6根據令央位置檢測部1〇5所 供應之晶圓31之厚度之中央部分的位置檢測結果,檢測線 段L(即已使用圖2說明過之用以表示八⑽攝影部μ之攝 影畫面在高度方向中央之線段)與晶目31之厚度之中央c 間的差分ΔΟ將檢測結果供應至相對位置誤差記錄部1〇7。 相對位置誤差§己錄部i 〇7則記錄由相對位置誤差運算 部106所供應之、表示畫面中央部之線段L與晶圓31之厚 度之中央C間的差分△C。 立相對位置驅動控制部1〇8,讀出存在相對位置誤差記錄 邛107之差分△ C,供應至z載台驅動部〇。此外,若是作 為差刀Δ C之運算對象之位置,在從線性7之攝影位 置來到Apex攝影部! 4等之攝影範圍内的這段期間,在z 载台U之上面位置有移動時,相對位置驅動控制部1〇8, 乃疋 > ,,、、孩位置在移動期間(即,由線性ccd丨7之攝影位置 ^及至ApeX攝影部14等之攝影位置之移動期間)於Z載 台11之上面位置的移動歷程,對於由相對位置誤差記錄部 ⑽所讀出之該位置的差分Δ(:進行修正’然、後將修正後的 差分△ C供應至Ζ載台驅動部63。 >編碼器輸出取得部109,取得編碼器62對於0載台Η 之旋轉的檢測結果,供應至相對位置驅動控制部丨〇8、及上 下位焦點位置資訊供應部丨丨2。 19 200914818 上下位焦點位置運算部110根據邊緣位置檢測部ι〇3 所供應之晶圓31之表面位置的檢測結果,以及,由中央位 置檢測部1〇5所供應之晶圓31之厚度的中央位置之檢測結 果,運算出由上位焦點控制部6 5所控制之上位攝影部丄$ 的焦點位置,以及由下位焦點控制部66所控制之下位焦點 位置,供應至上下位焦點位置記錄部u j。 亦即,當預先得知線性CCD17的各畫素與上位攝影部 15及下位攝影部16之相對位置係呈固定時,上下位焦點位 置運算部1 1 〇乃根據邊緣位置檢測部1 03所供應之晶圓3 i 之表面位置的檢測結果,運算上位攝影部15的焦點位置, 以及下位焦點位置。又,假若線性C c d 1 7之各畫素與上位 攝影部15及下位攝影部16的相對位置並非固定時,上下 位焦點位置運算部11 〇,則是根據晶圓3 i之厚度之中央位 置之檢測結果的變動性,而對邊緣位置檢測部1〇3所供應 之晶圓31之表面位置的檢測結果進行校正,藉以運算上位 , 攝影部1 5之焦點位置’及下位焦點位置。此外,上下位焦 I 點位置運算部110,亦可使用由相對位置誤差運算部106所 异出之差分AC,來校正所供應之晶圓31之表面位置的檢 測結果正。 上下位焦點位置記錄部1 1 1 ’係記錄由上下位焦點位置 運算部110所供應之晶圓3丨在被攝影時之上面及下面位置 之運算結果。 上下位焦點位置資訊供應部112,從上下位焦點位置記 ♦ °卩1 11所§己錄之晶圓3 1在被攝影時其上面及下面位置的 20 200914818 讀出與現在藉Apex攝影部 圓3 1之位罟如芳組由t 丨将〜 < 日日 65及… 後分別供應至上位焦點控制部 下位焦點控制部66。此外,若是 CCD17之攝㈤w , ^象之位置在由線性 這段期間ΓΓ 6Χ攝影部14等之攝影範圍内的 号生Z載台之上面位置移動之情形時,相對 :置驅動&制部108,則是參照該位置在移動期間由 之攝如位置移動至Apex攝影部等之攝影位 的期間)於Z載台㈣上面位置之移動歷程,以進行校正處 理’然後將&正後之值供應i上位焦點控制冑Μ及下位焦 點控制部66。 … 此外’相對位置誤差運算部⑽或上下位焦點位置運 异部110,亦可從異常部分檢測部1〇2接收異常部分的檢測 結果,然後對缺口、破損、異物、或光阻過塗等之異常部 刀知取不運算相對位置誤差或上下位焦點位置的作法,或 者,亦可雖進行運算但將其結果視為無效。 例如,就缺口、破損、異物、或光阻之過塗等異常部 分而言,欲將Apex攝影部14之視野中心與晶圓31之厚度 的中央c重疊,或是欲將上位攝影部丨5及下位攝影部^ 6 之焦點控制成重疊時,並無法正確的攝得觀察用影像。相 較於此,若是對缺口或破損等之異常部分並未進行相對位 置誤差或上下位焦點位置的運算,或者是,儘管有進行運 具但將其結果視為無效,藉此就能避免該問題發生。 攝影資料取得部113,係取得Apex攝影部14、上位攝 影部1 5、及下位攝影部! 6之攝影影像,供應至幀框記憶體 21 200914818 記錄控制部114及記錄/顯示/輸出控制部ιΐ6。 幀框記憶體記錄控制部i 14,係用以控制由攝影資料取 得部113所供應之Apex攝料14、上位攝影部Η、及下 位攝影部16之攝影影像對幀框記憶體67的記錄。又,幀 框記憶體記錄控制部114由異常部分檢測部1〇2接收異常 部分之檢測結果,並從龍記憶體67讀出與缺口、破損、 異物、或絲過塗等|常部分相對應的影像,然後供應至 記錄/顯示/輸出控制部11 6。 /The method can be appropriately selected according to the purpose of photography or as an illumination class of these two. Observing the image type required for the w image Linear C C D1 7 Shooting 曰fii 2 1 recognize / . On the side of the day aSI 31, the photographic material is supplied to the controller described later. When the wafer 31 is deflected or skewed, the end position of the wafer η changes to the movable direction of the two stages. In addition, there are abnormalities such as chipping, damage, foreign matter, or photoresist overcoating in the crystal. In the controller to be described later, the position or state of the wafer 31 can be detected by the photographic data of the linear CCD 17. The photographing range of the linear CCD 17 has a visibility sufficiently larger than the thickness of the wafer 31, and is composed of at least the array ccd in which the pixels are arranged in the longitudinal direction. The photographing center of the linear CCD 17 is substantially equal to the center of the flat wafer 3 in the height direction of the side surface. Further, the linear CCD 17 is rotated relative to the wafer 3 in comparison with the photographing position of the wafer 3 by the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16 indicated by α in the figure. In the upstream direction of the direction, that is, when the 0 stage 12 is turned to the left, the wafers 31 are disposed in the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16 on the wafer. 3 1 to the right of the shooting position. In other words, 12 200914818 the photographing position of the observation image is compared with the photographing position of the linear ccm 7 in the downstream direction with respect to the rotation direction of the wafer 31. ??? Spring: The configuration of the CCD 17 is sufficient as long as it has at least one column of longitudinally arranged CCDs having a width sufficiently larger than the thickness of the wafer 31. For example, it is also possible to replace the linearity with a cCD having a two-dimensional arrangement (: (: £) 17). When the side of the wafer 31 is photographed by the Apex photographing unit 14, it is more desirable to make the wafer 3 in Fig. 2 The center of the thickness is a line segment L indicating the central portion of the facet for photographing. However, when the end of the object to be inspected such as the wafer 31 is not large, if the object to be inspected is deflected or skewed, There may be a large undulation of the end face position, causing the center c of the thickness of the wafer 31 to deviate from the line segment L indicating the central portion of the screen, and in the worst case, one of the side images of the wafer 31 may fall outside the field of view. The inspection device 检测 can detect the difference Δ〇 between the line segment L and the center C of the thickness of the wafer 31 based on the photographic data of the linear CCD 17 to adjust the relative position of the wafer 31 and the Apex photographing portion 14. Further, the inspection device 1 Detecting/measuring the surface position above and below the wafer 31 according to the photographic data of the linear CCD 107, in other words, detecting the edge position of the wafer 31 when the wafer 31 is viewed from the side. Further, the inspection apparatus 1 Depending on the edge position of the wafer 31, or the wafer 31 The detection result of the center c of the thickness "the focus of the upper imaging unit 15 and the lower imaging unit 16 is adjusted. The difference Δ detected by the linear CCD 17 on the image captured by the wafer 31 (: 'Control shown in Fig. 3, which will be described later) The controller 17 calculates the timing based on the rotation information of the 0 stage driving unit 61 shown in Fig. 3, and transmits the control signal to the cassette driving unit 63 shown in Fig. 3. The stage driving unit 63 is based on the control signal 13 200914818 諕, the height of the upper surface of the Z stage 11 is changed. Thereby, the center C of the thickness of the wafer μ can be constantly placed at the approximate center of the field of view of the Apex imaging unit 14. Further, the inspection device 1 can obtain the frame rate ( The frame rate is higher as the image for observation. ' For example, the 0 stage 12 can also be rotated at any angular velocity in either of the left and right directions. In this case, the wafer is 3 摄影 during the photographic processing. It is not stationary, so the shutter speed of the linear CCD 17 or the Apex photographing unit 14 or the like must be set to some extent early. In contrast, for example, the load a 12 can be rotated at a predetermined angle and a predetermined angular velocity. After the direction is rotated, make it temporary In this case, the photographing by the linear CCD 17 for detecting the position or state of the wafer 31, and the photographing of the end of the wafer 31 by the Apex photographing unit upper photographing unit 15 and the lower photographing unit 16 are performed. The process 'can be performed in a state where the wafer 31 is stopped. By this configuration, the wafer 31 is rotated substantially by one rotation by the rotation of the crucible stage 12, and strictly speaking, it is rotated in addition to the one-time rotation, and then rotated by linear. The photographing position of the cCDi7 is at a corresponding angle to the photographing position of the Apex photographing unit 14 or the like, and the state detection of the deflection or the undulation of the wafer 31 is simultaneously performed, and the position adjusted according to the detection result of the state is performed. Photographic processing at the end of the wafer. Thereby, compared with the state in which the wafer 3 is rotated about the circumference to detect the deflection or undulation of the wafer 31, and then the circumference of the wafer is rotated to perform the processing of the crystal = 31, the reduction can be reduced to Observe the steps taken by the wafer. In addition to the photographic processing of the linear CCD 17 illustrated in FIG. 1, the driving control of the z stage and the cymbal stage 12, there are also illumination control and focus control of the Apex photographic upper photographic portion 15 and the lower photographic portion 丨6. 200914818 Photographic processing, and the output of inspection results based on its data, etc., are controlled by the controller of the 疋. The controller can be disposed, for example, inside the z port 11 of Fig. 1, and can be disposed outside. The controller's control of the inspection device i will be described below with reference to the block diagram of FIG. The configuration of the 0 stage drive unit 61 includes a motor or the like for rotationally driving the turntable 12, a driver for driving the same, and the like. The controller 51 controls the pallet drive unit 61 to rotationally drive the 0 stage 12. The rotational drive of the 0 stage f 丨 2 is detected by the encoder 62, and the detection result is supplied to the controller 51. ~ controller 51-side control Θ stage drive unit..." The stage 12 is rotationally driven to acquire an image captured by the linear CCD 17, and based on this, the wafer 31 at the photographing position of the linear CCD 17 is detected. The configuration of the position Z stage driving unit 63 in the height direction includes a motor or the like for changing the height of the z stage η at the upper horizontal plane, and a device for driving the same. Further, the controller 51 controls the Apex photographing unit 14, the upper photographing unit Η, and the lower photographing unit 16 to photograph the wafers from the respective directions at appropriate intervals with respect to the rotational driving of the crucible table 12. 3 ι end observation image. The illumination drive unit 64 drives illumination for capturing the end of the crystal 31 by the photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16 under the control of the controller 51. 15 200914818 The controller 5 1 calculates the optimal focus position when the upper imaging unit 15 and the lower imaging unit 16 capture the wafer 31 based on the image captured by the linear CCD 17 , and supplies the calculation result to the upper focus control unit 65 and Lower focus control unit 66. The upper focus control unit 65 controls, for example, the position of the optical system provided therein by the upper imaging unit 15 to perform focus control when the upper imaging unit (1) whitens the wafer. Further, the lower focus control unit 66 controls the position of the optical line (4) which is controlled by the lower imaging unit 16 to perform focus control when the wafer 31 is imaged by the lower imaging unit 16. Next, the controller 5 uses the processing result obtained by the linear ccm7 or the inspection result counted by the Apex photographing unit 14 and the upper photographing unit photographing unit 16 and outputs the result. ..., the upper portion of the end of the wafer 31 is produced: two memory 67 for temporary storage by, for example, the photographic department. 4 15 and the video of the observation image taken by the lower photography department 16 . σ 录 录 68, Sun Erzhen v said / day η rsi nickel to ', with the day of the end of the day 31 a: For example, it can be a hard disk or a semiconductor memory; also: a removable auxiliary medium and a drive for receiving information. '", Wenshang Lulian: Out::: Record information with external machines or established networks by wire or wireless (for example, wafer 3): 2: 2 devices, for example, the processing steps One step of the device, the wafer 3, the information, or the device or server used to manage the manufactured wafer 16 200914818 to the company, etc. The device or the feeding device can be used for the user to easily obtain the phase information of the wafer (for example, information on the defective wafer), and it is easy to find out the reason for manufacturing the defective film. ^ The display portion 70 is based on the controller η Control, so that the inspection result of the end of the wafer 31 is displayed on, for example, a liquid crystal display or a CRT display, etc. The functional block diagram of Fig. 4 is used to explain the functions of the controller 5, that is, if it is available The individual hardware that realizes each function shown in Fig. 4 can replace the controller 51 in this case, so that the inspection device tool has the same function. The differential processing unit 1 接收1 receives the linear CCD from the linear CCD 17. Negative material. The example shown in Figure 5 is The CCD of the frame frame supplied by the linear ccd 1 7 is an example of the distribution of the received light intensity (the voltage intensity of the supplied signal) of each element. The differential processing unit 1〇1 performs differential geography on the distribution to differentiate the processing. The results are shown in Fig. 6. As shown in Fig. 6, in the differential waveform, the edge portion of the wafer 31 when viewed from the side of the end portion, that is, the position of a and b in the figure, the differential waveform sharply drops and rises sharply. Further, the differential value other than the edge portion is substantially 0. The differential processing unit 1 供应1 supplies the differential processing result to the abnormal portion detecting portion 102 and the edge position detecting portion 103, and the abnormal portion detecting portion 102 The differential processing result at each position of the end of the circle 31 is supplied by the differential processing unit 1〇1, and the sharp waveform is sharply risen and steeped with respect to the rotation of the 0 stage 12 in the differential waveform. In addition, the abnormal portion detecting unit 102 regards the instantaneous change portion of the position where the steep rise 17 200914818 is raised and steeply dropped as the detected abnormal portion such as a notch, damage, foreign matter addition, or Photoresist Specifically, the abnormal portion detecting unit 102 records the differential waveform of a plurality of positions inside, and detects that the position of the sharply rising and steeply falling positions within a predetermined range is equal to or greater than the intermediate value. It is a notch, a damage, etc. 2, a normal knife. The above-mentioned target circumference and threshold setting ' can be set according to the empirical S test to determine the appropriate value for detecting the gap or breakage, and the user can change the range and the value. The abnormal portion detecting unit 102 supplies the detection result of the abnormal portion to the relative position error calculating unit 106, the upper and lower focus position calculating unit 11Q, the (four) memory recording control unit, the chart generating unit 1 15 , and Record/display//output control section "6. The edge detecting unit 103 detects the edge position when the end portion of the wafer 1 is viewed from the side, based on the position where the differential processing unit 1〇1 supplies the differential portion: the inside and the node has a sharp rise and a steep drop. That is, the upper and lower surface positions of the wafer 3 ^ are detected. The edge position detection 胄1〇3 supplies the detection result to the wafer thickness calculation unit 104, the center position detection unit 〇5, and the upper and lower focus position calculation unit η. The graph generating unit 115 and the recording and display output control unit ι... The wafer thickness calculating unit 104' detects the crystal based on the detection result of the surface position of the wafer 3丨 supplied from the edge position detecting unit 1〇3. The detection result is supplied to the chart generating unit 115. Thickness 曰: The central position detecting unit 105' detects the edge position of the wafer 31 supplied from the edge position detecting unit ι3, and sets the center of the edge position: the central portion of the thickness of the wafer 31 detected. That is, it is regarded as the position of the center c of the thickness of the circle 31 in Fig. 2 . The center position detecting unit (9) supplies the position detection result of the center of the thickness of the wafer 31 of the 200914818 to the relative position error calculating unit 106, the upper and lower focus position calculating unit 11A, and the graph generating unit 1 15 . The relative position error calculating unit 1〇6 detects the line segment L based on the position detection result of the central portion of the thickness of the wafer 31 supplied from the central position detecting unit 1〇5 (that is, has been described using FIG. 2 to indicate eight (10). The difference ΔΟ between the line segment of the photographing portion of the photographing unit μ in the center in the height direction and the center c of the thickness of the crystallite 31 is supplied to the relative position error recording unit 1〇7. The relative position error § the recorded portion i 〇 7 records the difference ΔC between the line segment L indicating the center portion of the screen and the center C of the thickness of the wafer 31 supplied from the relative position error calculating unit 106. The vertical relative position drive control unit 1〇8 reads out the difference ΔC of the relative position error record 邛107 and supplies it to the z stage drive unit 〇. In addition, if it is the position of the calculation target of the difference knives Δ C, it comes to the Apex photography department from the shooting position of the linear 7! During the period of the photography range of 4, etc., when there is movement on the upper position of the z stage U, the relative position drive control unit 1〇8, 疋>, ,, and the child position during the movement (ie, by linear The movement history of the CCD position of the ccd 丨 7 and the movement position of the photographing position of the ApeX photographing unit 14 and the like, and the difference Δ of the position read by the relative position error recording unit (10) : The correction is performed. Then, the corrected difference Δ C is supplied to the load stage drive unit 63. > The encoder output acquisition unit 109 obtains the detection result of the rotation of the encoder 62 for the 0 stage, and supplies it to the relative The position drive control unit 丨〇8 and the upper and lower focus position information supply unit 丨丨2. 19 200914818 The upper and lower focus position calculation unit 110 detects the surface position of the wafer 31 supplied from the edge position detecting unit ι3, The detection result of the central position of the thickness of the wafer 31 supplied from the central position detecting unit 1〇5 calculates the focus position of the upper imaging unit 丄$ controlled by the upper focus control unit 65, and the lower focus. control The lower focus position controlled by the portion 66 is supplied to the upper and lower focus position recording portion uj. That is, when the relative positions of the pixels of the linear CCD 17 and the upper photographing portion 15 and the lower photographing portion 16 are fixed in advance, The bit focus position calculating unit 1 1 calculates the focus position and the lower focus position of the upper photographing unit 15 based on the detection result of the surface position of the wafer 3 i supplied from the edge position detecting unit 103. Further, if the linear C cd When the relative positions of the respective pixels of the 117 and the upper photographic unit 15 and the lower photographic unit 16 are not fixed, the vertical focus position calculating unit 11 变动 is the variability of the detection result based on the central position of the thickness of the wafer 3 i The detection result of the surface position of the wafer 31 supplied from the edge position detecting unit 1A3 is corrected, whereby the upper position, the focus position ' and the lower focus position of the photographing unit 15 are calculated. In addition, the upper and lower focus I point positions are calculated. The calculation unit 110 may correct the detection result of the surface position of the supplied wafer 31 by using the difference AC that is different from the relative position error calculation unit 106. The position recording unit 1 1 1 'records the calculation result of the upper and lower positions of the wafer 3 supplied by the upper and lower focus position calculation unit 110 at the time of being photographed. The upper and lower focus position information supply unit 112, from the upper and lower focus Position record ♦ °卩1 11 § Recorded wafer 3 1 When it is photographed, its upper and lower position 20 200914818 Read and now borrow Apex photography department round 3 1 position 罟如芳组 by t 丨~ < Days 65 and ... are respectively supplied to the upper focus control unit lower focus control unit 66. Further, if the CCD 17 is photographed (f) w, the position of the image is within the range of the period of the linear period ΓΓ 6 Χ the photographing unit 14 or the like In the case where the upper position of the Z-stage is moved, the relative drive & unit 108 refers to the period during which the position is moved to the photographing position of the Apex photographing unit or the like during the movement. The movement history of the position of the stage (4) is subjected to the correction processing 'and then the value of the sum is supplied to the upper focus control unit 胄Μ and the lower focus control unit 66. Further, the 'relative position error calculation unit (10) or the upper and lower focus position shifting unit 110 may receive the detection result of the abnormal portion from the abnormal portion detecting unit 1〇2, and then apply the notch, the damage, the foreign matter, or the photoresist overcoating. The abnormal portion knife knows not to calculate the relative position error or the position of the upper and lower focus positions, or may perform the calculation but invalidate the result. For example, in the case of an abnormal portion such as a notch, a breakage, a foreign matter, or a overcoat of a photoresist, the center of the field of view of the Apex photographing unit 14 is overlapped with the center c of the thickness of the wafer 31, or the upper photographing unit is desired to be 丨5. When the focus of the lower photography unit ^ 6 is controlled to overlap, the observation image cannot be accurately captured. In contrast, if the relative position error or the upper and lower focus positions are not calculated for the abnormal portion such as the notch or the breakage, or the result is regarded as invalid, the result can be avoided. The problem has occurred. The photographing material acquisition unit 113 acquires the Apex photographing unit 14, the upper photographing unit 15 and the lower photographing unit! The photographic image of 6 is supplied to the frame memory 21, and the recording control unit 114 and the recording/display/output control unit ΐ6 are provided. The frame frame memory recording control unit i14 is for controlling the recording of the frame image memory 67 by the captured image of the Apex material 14, the upper image capturing unit 及, and the lower image capturing unit 16 supplied from the photographic data acquiring unit 113. Further, the frame frame memory recording control unit 114 receives the detection result of the abnormal portion by the abnormal portion detecting unit 1〇2, and reads out from the dragon memory 67 corresponding to the normal portion such as the notch, the breakage, the foreign matter, or the over-coating. The image is then supplied to the recording/display/output control unit 116. /

圖表產生部115根據來自異常部分檢測部1〇2之異常 部分的檢測結果、來自邊緣位置檢測冑1〇3之邊緣位置的 檢測結果、來自晶圓厚度算出部1〇4之晶圓厚度運算結果、 來自中央位置檢測冑i 05之中央位置的檢測結果、以及各 檢測結果所得到之晶圓31之切口之相對應的外周位置,將 ㈣察到之晶圓31之撓曲、起伏、及晶圓厚度等資訊作成 圖表,供應至記錄/顯示/輪出控制部丨丨6。 具體而言,圖表產生部115,以使晶® 31之切口位置 成為。度之方式而予以初始化。例如’亦可邊使晶圓”旋 轉1周邊驅動線性CCD17,檢測出與切口相對應之邊緣位 置:變動,據以檢測切口的位置。又,囷表產生部"5,係 在=圓31之各外周位置之線性CCD17的攝影結束後,產生 在晶圓31方走II !周的各外周位置之狀態圖纟,供應至記錄 /顯示/輪出控制部116。 亦(7圖表產生部11 5,根據來自中央位置檢測部i k 中央位置的檢測結果,如圖7所示,將晶圓31旋轉360 22 200914818 度時晶圓3 1 > + jk Λν X® _ / 中央位置的位移予以圖表化,供應至記錄/The graph generating unit 115 calculates the wafer thickness calculation result from the wafer thickness calculating unit 1〇4 based on the detection result of the abnormal portion from the abnormal portion detecting unit 1〇2, the detection result from the edge position of the edge position detecting unit 〇1〇3. The detection result from the central position of the central position detecting 胄i 05 and the corresponding peripheral position of the slit of the wafer 31 obtained by each detection result, (4) the deflection, undulation, and crystal of the wafer 31 observed. Information such as the thickness of the circle is plotted and supplied to the recording/display/rounding control unit 丨丨6. Specifically, the graph generating portion 115 is such that the slit position of the crystal wafer 31 is made. Initialize by way of degree. For example, 'the wafer can be rotated by 1 to drive the linear CCD 17 around the periphery, and the edge position corresponding to the slit is detected: the change is made to detect the position of the slit. Further, the surface generating portion "5 is tied at =31 After the completion of the photographing of the linear CCD 17 at each of the outer peripheral positions, a state map of each outer peripheral position of the wafer 31 is performed, and is supplied to the recording/display/rounding control unit 116. (7) The graph generating unit 11 5, according to the detection result from the central position of the central position detecting unit ik, as shown in FIG. 7, the wafer 31 is rotated 360 22 200914818 degrees when the wafer 3 1 > + jk Λν X® _ / the displacement of the central position is plotted Supply, supply to record /

顯不/輸出控制邱]t A m @ ώ〜 °ρ 116。又,圖表產生部115,根據來自晶 :又舁出部104之晶圓厚度之算出結果,如圖8所示, 丘4 1旋轉360度時晶圓3 1之厚度的變化予以圖表化, 二:至5己錄/顯示/輸出控制部116。又,圖表產生部"5, 乂 Α自邊緣位置檢測部j 〇3之邊緣位置的檢測結果,如 斤丁將晶圓3 1旋轉36〇度時晶圓3 1之邊緣位置的 位移予以圖表化。 士圖表產生部115,在產生圖7、圖8、圖9所示之 =時’亦可將缺口或破損等部分予以直接顯示,亦可根 豕Λ自異常部分檢測部1〇2之異常部分的檢測結果,將缺 或皮知等異常部分以強調之方式而予顯示,或是在顯示 時無視於異常部分。又,圖表產生部115所產生之圖表的 異常部分,亦可由使用者來設定其顯示方法。 。己錄/顯不/輪出控制冑"6 ’係將邊緣位置檢測部 0二所檢測之在晶圓3 !側面的上下表面位置,由攝影資料 取%· β 113所供應之由Apex攝影部i 4、上位攝 及下位攝影部16所攝得的觀察用影像,由餘記憶體吃錄 控制部m所供應之與缺口、破損等異常部分相對、 察用影像’以及由圖表產生部115所供應之在圖7、圖8、 圖9所示的圖表等内容記錄於記錄部⑼,或由輸出部 其他裝置等輸出,或是顯示於顯示部70。 < “在檢查裝置1,係使0載台12以既定之速度旋轉驅 藉此從線性CCD 1 7之塭旦ί、.息试仏® ’ Η之攝衫、邊緣位置之檢測、根據檢測之 23 200914818 邊緣位置來算屮h> 莫、…"相對位置或上下位焦點位置、根據算出結 =嶋對位置或上下位焦點位置、乃至各種檢測結果 及輪出等,係並行的實施。亦即,在藉由線性ccm7 對晶圓31端部位置“攝影後,❹载台η的旋轉驅動’ 在该位置α移動至Apex攝影部14、上位攝影部15、及下 位攝如4 16的攝影位置之期間,係實施邊緣位置的檢測、 以及根據檢測出之邊緣位置來運算相對位置或上下位焦點 位置。又’當該位置α已移動至Apex攝影部14、上位攝影 部15、及下位攝影部16的攝影位置時,則是控制八⑽攝 影部14與晶圓31之相對位置、或是上下位的焦點,由複 數個方向拍攝晶圓31之端部。又’在此時,係以並行處理 之方式,對於與該位置相異之點,亦即較位置以立在旋轉 方向之下游側的點(例如,當0載台12左轉時,由晶圓Μ 的中央所見時,係位在右側之點)以線性CCD17進行攝影處 理,或基於此而進行運算處理。 接著,參照圖10及圖1 1之流程圖,來說明檢查裝置i 所實施之晶圓端部的檢查處理1。 如上述,檢查裝置1中,係以既定之速度使0載台12 旋轉驅動’藉此而並行的實施攝影、檢測、運算、與結果 的輸出等’但在此係為了易於理解起見而使用流程圖之順 序’說明對於晶圓3 1端部之〇;點所進行之檢查處理。 在步驟S1,控制器51係控制0載台驅動部6丨而開始 0載台12的旋轉驅動。 在步驟S2 ’控制器51係控制線性CCD 17,對晶圓3 1 24 200914818 之端部的既定位置α進行攝影。 在步驟S3,控制 CCD17所供應之^ ° 51的微分處理部1G1,係對線性 處理(如圖5所干者^之攝影影像的受光強度曲線實施微分 處理物:到圖6所說明的微分波形。微分 邊緣位置檢測部103。、,。果供應至異常部分檢測部⑽及 在步驟S4,控制哭Λ β 八未β °° 之異常部分檢測部102係監視撤 分處理部1〇1所供應 你i視微 有劇烈變動,例如,有結果’判斷微分咐 m . ,,、、,"、劇陡升及陡降的位置在既定範 圍内之移動達到閾值以上。 牡兄疋I已 ^ ^ S4判斷成微分波形有發生變動時,在步驟 =器51的異常部分檢測部102係檢測出相對應㈣ 為異常部分。又’異常部分檢測部1〇2將異常邛八 的檢測結果供應至相對將異^分 置運算部"〇、_0體=:6、上下位焦點位 丨貝己隱體记錄控制部i 14、圖表產生 115、及記錄/顯示/輸出控制部116。 ° 若在步驟S4判斷成微分波形並無變動時,或在步驟S5 的處理結束之後,處理係移動至步驟%。 在步驟S6,控制器51之邊緣位置檢測部ι〇3,係根 微分處理冑1()1所供應之在微分處理結果中微分波形有魚 劇陡升及下降的位置,檢測出晶圓31的邊緣位置。又,= 緣位置檢測部1〇3將檢測結果供應至晶圓厚度算出部1〇4 中央位置檢測部1〇5、上下位焦點位置運算部ιι〇、圖表產 生部1 1 5、及記錄/顯示^/輸出控制部丨16。 25 200914818 在步驟S7,控制器5 1之晶圓厚度算出部j 〇4,係根據 邊緣位置檢測部103所供應之對晶圓31表面位置的檢測結 果檢測出曰曰圓厚度,然後將檢測結果供應至圖表產生部 115° 在v驟S8,控制器5 1之中央位置檢測部j 〇5,係根據 邊緣位置檢測部103所供應之對晶圓31表面位置的檢測結 果核測在曰曰圓3 1端部之厚度的中央位置。厚度之中央位 置,亦即圖2所示晶圓31之厚度之中央C的位置。又,中 、置檢測。卩105 ’將檢測結果供應至相對位置誤差運算部 106、上下位焦點位置運算部11〇、及圖表產生部115。 在步驟S9,由控制器5】之相對位置誤差運算部^⑽, 算出線段L與晶圓31之厚度之中央。間的差分然後 :檢:結果供應至相對位置誤差記錄部1〇7且予記錄。又, 抆制态51之上下位焦點位置運算部’根據由邊緣位置 檢測部1〇3所供應之對晶圓31表面位置的檢測結果,算出 在晶圓31端部之既定位置α之上位攝影部的焦點位 置,及下位攝景彡部16的焦點位置,並將運算結果供應至上 下位焦點位置記料lu。此時,上下位焦點位置運算部 二亦可根據曰曰圓31厚度之中央部分之位置的檢測結果 或是差分△C,據以校正運算結果。 此外,由步驟半既 至步驟S 9之處理所耗的時間,較由 線性CCD17拍攝既定位置α起算及至由—攝影部㈣ 攝既定位置α為止所耗時間短。 在步驟SH)’控制器51之相對位置驅動控制部⑽, 26 200914818 係根據由編碼器輸出 屮,φ _ 侍邛109所件到之編碼器62的輸 出’來判斷晶圓31之端邱之既〜仏班 u. Λ Δ ^卩之既疋位置〇:,是否已被移動至 將由Apex攝影部Μ m ςΐΛ 予攝衫之檢查對象位置。當在步 驟S1〇判斷晶圓31端邱 Δ ^ 端0卩之既疋位置〇:尚未被移動至將由Display/output control Qiu]t A m @ ώ~ °ρ 116. Further, the graph generating unit 115 graphically changes the thickness of the wafer 3 1 when the mound 4 1 is rotated by 360 degrees, based on the calculation result of the wafer thickness from the crystal and the ejecting portion 104. : Up to 5 recorded/displayed/output control unit 116. Further, the graph generation unit "5, the detection result of the edge position of the edge position detecting unit j 〇3, is shown as a graph of the displacement of the edge position of the wafer 31 when the wafer 3 1 is rotated by 36 degrees. Chemical. The chart generation unit 115 may directly display a portion such as a notch or a break when the ? shown in FIG. 7, FIG. 8, and FIG. 9 is generated, or may be based on an abnormal portion of the abnormal portion detecting portion 1〇2. The detection result indicates that the abnormal part such as the missing or the skin is displayed in an emphasized manner, or the abnormal part is ignored in the display. Further, the abnormality of the graph generated by the graph generating unit 115 may be set by the user. . The recorded/displayed/rounded control 胄"6' is the position of the upper and lower surfaces of the side of the wafer 3! detected by the edge position detecting unit 0, and is photographed by Apex from the photographic data. The observation image captured by the upper portion i and the lower image capturing unit 16 is opposite to the abnormal portion such as the notch or the damage supplied by the remaining memory recording control unit m, and the image of the image is generated and the chart generating unit 115 The contents of the charts and the like shown in FIG. 7, FIG. 8, and FIG. 9 are recorded in the recording unit (9), outputted from other devices in the output unit, or displayed on the display unit 70. < "In the inspection apparatus 1, the 0 stage 12 is rotated at a predetermined speed to thereby drive from the linear CCD 1 7 , and the detection of the edge position, according to the detection. 23 200914818 Edge position to calculate 屮h> Mo, ... " relative position or upper and lower focus position, according to the calculation of the knot = 嶋 position or upper and lower focus position, and even various detection results and rotation, etc., parallel implementation. That is, after the end position of the wafer 31 by the linear ccm7 is "photographed, the rotational driving of the stage η" is moved to the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit 4 at the position α. During the photographing position, the detection of the edge position is performed, and the relative position or the up and down focus position is calculated based on the detected edge position. Further, when the position α has moved to the photographing positions of the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16, the relative position of the eight (10) photographing unit 14 and the wafer 31 or the upper and lower positions is controlled. Focus, the end of the wafer 31 is photographed in a plurality of directions. Also, at this time, in a parallel processing manner, a point different from the position, that is, a position closer to the downstream side in the rotation direction (for example, when the 0 stage 12 is turned left, the crystal is used) When the center of the circle is seen, the point on the right side is photographed by the linear CCD 17, or arithmetic processing is performed based on this. Next, the inspection process 1 of the wafer end portion by the inspection device i will be described with reference to the flowcharts of FIGS. 10 and 11. As described above, in the inspection apparatus 1, the 0 stage 12 is rotationally driven at a predetermined speed, thereby performing imaging, detection, calculation, and output of results in parallel, but the present invention is used for ease of understanding. The sequence of the flow chart 'describes the entanglement of the end of the wafer 31; the inspection process performed by the point. In step S1, the controller 51 controls the 0 stage driving unit 6 to start the rotational driving of the stage 12 . At step S2', the controller 51 controls the linear CCD 17, and photographs the predetermined position α of the end of the wafer 3 1 24 200914818. In step S3, the differential processing unit 1G1 of the camera 51 supplied by the CCD 17 is controlled to perform a differential processing on the received light intensity curve of the photographic image as shown in Fig. 5: the differential waveform described in Fig. 6 The differential edge position detecting unit 103 is supplied to the abnormal portion detecting unit (10), and in step S4, the abnormal portion detecting unit 102 that controls the crying 8 未β°° is monitored by the detaching processing unit 1〇1. You have a dramatic change, for example, there is a result of 'determining the differential 咐m. , , , , , and , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , When S4 determines that the differential waveform has changed, the abnormal portion detecting unit 102 of the step=51 detects that the corresponding (4) is an abnormal portion. Further, the abnormal portion detecting unit 1〇2 supplies the detection result of the abnormal 邛8 to The calculation unit "〇, _0 body=: 6, upper and lower focus position 丨 隐 隐 隐 隐 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 It is determined in step S4 that the differential waveform does not change. Or, after the processing of step S5 ends, the processing system moves to step %. In step S6, the edge position detecting portion ι3 of the controller 51, the root differential processing 胄1()1 is supplied in the differential processing result. The differential waveform has a sharp rise and fall position of the fish, and the edge position of the wafer 31 is detected. Further, the edge position detecting unit 1〇3 supplies the detection result to the wafer thickness calculation unit 1〇4. The center position detecting unit 1〇 5. The upper and lower focus position calculation unit ιι〇, the graph generation unit 1 1 5, and the recording/displaying/output control unit 丨16. 25 200914818 In step S7, the wafer thickness calculation unit j 〇4 of the controller 51 The thickness of the circle is detected based on the detection result of the surface position of the wafer 31 supplied from the edge position detecting unit 103, and then the detection result is supplied to the chart generating portion 115. At step S8, the central position of the controller 51 is detected. The portion j 〇 5 is configured to check the center position of the thickness of the end portion of the circle 31 based on the detection result of the surface position of the wafer 31 supplied from the edge position detecting unit 103. The center position of the thickness, that is, FIG. 2 Showing the position of the center C of the thickness of the wafer 31 Further, the detection is performed, and the detection result is supplied to the relative position error calculation unit 106, the upper and lower focus position calculation unit 11A, and the graph generation unit 115. In step S9, the controller 5 is relatively The position error calculation unit (10) calculates the center of the thickness of the line segment L and the wafer 31. Then, the difference is detected: the result is supplied to the relative position error recording unit 1〇7 and is recorded. Further, the lower position of the 51 state 51 The focus position calculation unit 'calculates the focus position of the upper photographing unit at the predetermined position α of the end portion of the wafer 31 based on the detection result of the surface position of the wafer 31 supplied from the edge position detecting unit 1〇3, and the lower position The focus position of the crotch portion 16 is supplied to the upper and lower focus position records lu. At this time, the upper and lower focus position calculating unit 2 can correct the calculation result based on the detection result of the position of the central portion of the thickness of the circle 31 or the difference ΔC. Further, the time taken from the half of the step to the processing of the step S9 is shorter than the time taken by the linear CCD 17 to take the predetermined position α and the time taken by the photographing unit (4) to the predetermined position α. In step SH), the relative position of the controller 51 drives the control unit (10), 26 200914818 to judge the end of the wafer 31 based on the output of the encoder 62 from the encoder output 屮, φ _ 邛 邛 109 The position of the 仏 u Δ 卩 卩 卩 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , When it is determined in step S1, the position of the wafer 31 is 邱 Δ ^ terminal 0 疋: the position has not been moved to be

Apex攝影部μ蓉& &值 S1ft .. 予攝衫之檢查對象位置時,則重複步驟 1〇的處理,直到判斷 至檢查對象位置;^。w 的既疋位置α已移動 — ,.、、 右在步驟Sl0判斷晶圓31端部之既 疋α已被移動至檢查對象位置時,處理則進至步驟 S 1 1 〇 在步驟S 1 1,才允制哭ς 1认上处· ,^ &制益51的相對位置驅動控制部108從 :對位置誤差記錄部107讀出與晶圓31之既定位置“目對 -的差刀△ c ’然後供應至ζ載台驅動部63。ζ載台驅動部 係根據控制器51所供應之差分^,將2載台η往差 分AC會成為0的方向驅動,以變更晶圓3i的高度,進而 調整在晶圓31端部之既定位之晶圓31與—攝影部 14的相對位置。 又除了調整晶圓3 1與Apex攝影部14之相對位置外, 亦調整上位攝影部15及下位攝影部16的焦點。控制器幻 之上下位焦點位置資訊供應香"12從上下位焦點位置記錄 部1"讀出與既定位置“相對應之晶圓31於上面及下面位 置的運算結果,然後分別供應至上位焦點控制部Μ及下位 焦點控制部66。又’由上位焦點控制部65調整上位攝影部 15之焦點’由下位焦點控制部⑼調整下位攝影部 隹 •點 〇 “、、 27 200914818 此外’當作為對象之位置從線性CCD 17之攝影位置到 達Apex攝影部14等之攝影範圍内的這段期間,z載台" 之上面位置有移動之情开> 時,相對位置驅動部丨〇8則是表 照Z載台11在此期間之上面位置的移動歷程,以進行校正 處理’然後輸出校正後的數值。 在步驟S12, Apex攝影部14、上位攝影部15、及下位 攝影部!6,分別由各自之方向拍攝晶圓31端部之既定位置 α,將攝影結果供應至控制器$ 1。 在步驟S13,由控制器51之攝影資料取得冑⑴,取 得Apex攝影部14、上位攝影部15、及下位攝影部μ對曰 圓η端部之既定位置㈣攝影輯。又,攝影資料取得二曰 :"將既定位置α之攝影影像供應至巾貞框記憶體記 二Π4’及記錄/顯示/輸出控制部"6。_記憶體記錄 =“114將攝„料取得部ιΐ3所供應之攝影影像,暫 t的5己錄在幀框記憶體6 7。 C. 係根控制器51之幀框記憶體記錄控制部114, 果,::二檢測部广所供應之異常部分的檢測結 異常部分。曰a 31端部之既定位有否缺口或破損等 或破損等異1 31 ^之既定位置α有缺口 ^ 、 〇刀夺在步驟Sl5,控制器51之幀框卞陪 =錄控制部114將會㈣框記憶體心憶 相對應之影傻以於& 抽出及讀取 錄/¾干/於中 常部分之影像資訊’然後供應至纪 /鴻不/輸出控制部116。 〜主》己 28 200914818 當在步驟S14判斷在晶圓31端部之既定位置“並未有 缺口或破㈣異常部分時,或在結束步驟si5之處理之後, 處理則進至步驟S 1 6。 在步驟S16,控制器51之記錄/顯示/輸出控制部 116 ’係對邊緣位置檢測部1〇3所測出之在晶圓31側面的 下表面位置,以及由攝影資料取得部⑴所供應之Aw 攝影部14、上位攝影部15、及下位攝影部16之攝影影像, 執订對記錄部68之記錄、於顯示部7()之顯示、以及由輸 出部69之輸出等動作。 在步驟S17,控制y夕阁主立, A ^ 彳态51之圖表產生部115根據所供應 '、貧訊’判斷是否已結束對晶圓31旋轉1周的觀察用影像 之攝影:當在步驟S17判斷對晶圓31旋轉】周的觀察用影 像之攝影尚未結束,則是使處理回到步驟S2,以重複實施 在此之後的處理。t在步驟S17判斷對晶圓31旋轉i周之 觀察用影像的攝影已經結束時’處理則進至步驟S18。 在步驟S18,由控制器51之圖表產生部115,產生已 藉圖7、圖8、圖9說明過之圖表,然後供應至記錄〜 /輸出控制部116。各自之圖表係分別根據來自異常部分 心之異常部分之檢測結果、來自邊緣位置檢測部⑻之邊 緣位置的檢測結果、來自晶圓厚度算出部-之晶圓厚产 :算出結果、以及來自令央位置檢測部1〇5之中央位置: 才欢測結果所產生ij 在步驟S18,控制器51之記錄/顯示/輸出控制部 ⑴,係將f貞框記憶體記錄控制部U4所供應之與異常部分 29 200914818 (如缺口、破損等)相對應的影像 ^ 粑叼汾诼貝讯,以及圖表產生部115 所供應之圖表類的檢杳社吴印絲 〇果。己錄於記錄部68,或由輸出 部09在其他裝置等輸出、乃至 貝不於顯不部70,而結束處 理。 藉此處理,利用0葡A 1 2 a 戰口 之疑轉驅動而使裝載於晶圓 保持/、13之晶圓3 1旋轉,並弈以始以η 、 得並先以線性CCD17實施攝影處 理以檢測晶圓3 1的位置或狀熊。 乂狀L 接者係根據檢測出之晶圓 31之位置或狀態調整ζ載台11的 / 戰1 σ丄1的上面尚度,以調整相對於Apex Photography Department μ Rong && value S1ft .. When the position of the inspection object of the shirt is checked, the processing of step 1〇 is repeated until it is judged to the position of the inspection object; The 疋 position α of w has moved —, ., and right. When it is judged in step S10 that the 疋α of the end of the wafer 31 has been moved to the inspection target position, the processing proceeds to step S 1 1 〇 at step S 1 1 The relative position drive control unit 108 from the position error recording unit 107 reads the difference knife Δ from the predetermined position of the wafer 31 to the position error recording unit 107. c ' is then supplied to the stage driving unit 63. The stage driving unit drives the two stages n to the direction in which the differential AC is 0 in accordance with the difference supplied from the controller 51 to change the height of the wafer 3i. Further, the relative positions of the wafer 31 positioned at the end of the wafer 31 and the photographing unit 14 are adjusted. In addition to adjusting the relative positions of the wafer 31 and the Apex photographing unit 14, the upper photographing unit 15 and the lower position are also adjusted. The focus of the photographing unit 16. The controller upper and lower focus position information supply incense "12 reads the calculation result of the wafer 31 at the upper and lower positions corresponding to the predetermined position from the upper and lower focus position recording unit 1" Then supplied to the upper focus control unit Μ and the lower focus control unit 66, respectively.Further, 'the focus of the upper photographing unit 15 is adjusted by the upper focus control unit 65'. The lower photographing unit is adjusted by the lower focus control unit (9), and the point is "," 27, 2009, 18,818, and the position is reached from the photographing position of the linear CCD 17 In the period of the photographing range of the Apex photographing unit 14 and the like, when the position of the upper side of the z stage " is moved, the relative position driving unit 8 is the Z-stage 11 during this period. The movement history of the upper position is subjected to the correction processing 'and then the corrected value is output. In step S12, the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit!6 respectively photograph the end of the wafer 31 from the respective directions. The predetermined position α is supplied to the controller $1. In step S13, 胄(1) is obtained from the photographic data of the controller 51, and the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit μ are obtained. The fixed position of the end (4) photography series. In addition, the photographic data obtained the second line: " The photographic image of the predetermined position α is supplied to the frame memory memory record 2Π4' and the recording/display/output control unit"6. Remember Recalling the volume record = "114 will capture the photographic image supplied by the material acquisition unit ι ΐ 3, and the temporary t 5 is recorded in the frame frame memory 67. C. The frame frame memory recording control unit 114 of the root controller 51, Fruit::: The detection part of the abnormal part supplied by the second detection unit is abnormal. The position of the end of the 曰a 31 is notched or damaged, or the damage is different. 1 31 ^ The predetermined position α has a gap ^, Sickle In the step S15, the frame of the controller 51 is recorded, and the recording control unit 114 will (4) the memory of the memory of the memory of the memory box to & extract and read the video information of the recording/drying/normal portion. 'There is then supplied to Ji Ji/Hong No/Output Control Unit 116. ~Main" 28 200914818 When it is determined in step S14 that the predetermined position at the end of the wafer 31 "has no gap or broken (four) abnormal portion, or at the end step After the processing of si5, the processing proceeds to step S16. In step S16, the recording/display/output control unit 116' of the controller 51 detects the lower surface position of the side surface of the wafer 31 measured by the edge position detecting portion 1A3, and is supplied by the photographic material acquiring portion (1). The photographed image of the Aw photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16 is used to perform the recording on the recording unit 68, the display on the display unit 7 (), and the output from the output unit 69. In step S17, the y 阁 阁 立 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , When it is determined in S17 that the imaging of the observation image for the rotation of the wafer 31 has not been completed, the process returns to step S2 to repeat the processing thereafter. When it is judged in step S17 that the imaging of the observation image for the i-turn of the wafer 31 has been completed, the processing proceeds to step S18. In step S18, the graph generation unit 115 of the controller 51 generates the maps which have been described with reference to Figs. 7, 8, and 9, and supplies them to the recording/output control unit 116. Each of the graphs is based on the detection result from the abnormal portion of the abnormal portion, the detection result from the edge position of the edge position detecting portion (8), and the wafer thickness from the wafer thickness calculating portion: the calculation result, and the command from the center The central position of the position detecting unit 1〇5: The result of the result of the joyful result is ij. In step S18, the recording/display/output control unit (1) of the controller 51 supplies the abnormality and the abnormality supplied by the frame memory control unit U4. Part 29 200914818 (such as gaps, breakages, etc.) corresponding to the image ^ 粑叼汾诼 讯, and the charts produced by the chart generation section 115 of the inspection company Wu Yinsi results. The recording unit 68 is already recorded, or the output unit 09 outputs the other device or the like, and the processing unit 70 ends the processing. By this processing, the wafer 3 held on the wafer holding/13 is rotated by the suspected driving of the 0 Portuguese A 1 2 a battle port, and the photographic processing is first performed with the linear CCD 17 by η. To detect the position or shape of the wafer 31. The braided L-connector adjusts the upper degree of the warhead 1 σ 丄 1 according to the position or state of the detected wafer 31 to adjust relative to

Apex攝影部14之晶圓3 1 ή6々r罢 拉, 的位置。藉此,可輕易且確實的 、;有發生撓曲或歪斜之被檢查物觀察其端部。 又,檢查裝置1亦可根據線段L與晶圓31之厚度之中 :c間的差分^的運算結果,將z載台u之上面高度固 疋,然後調整Apex攝影部14、上位攝影部15、及下位攝 影部16^立置,以取代調整z載自u之上面高度之方式。 接著將參照圖12之方塊圖,以說明另一以控制器5丄 控制檢查裝置1的相異示例,該例係將Z載台11的位置予 乂固疋,根據差分△ c運算結果調整Apex攝影部14、上位 攝影部15、及下位攝影部16的位置。 。此外,對於與圖3之例相對應之部分,係賦與同一符 =並適時的省略其說明。亦即,係取代z載台驅動部63而 >、備有攝影系統驅動部丨s丨,但除此之外則基本上與圖3 例具有相同構成。 ,立攝衫系統驅動部15 1係根據控制器5 1的控制而移動攝 办。卩支撐部21的位置,藉以調整由攝影部支撐部21所支 30 200914818 撐的Apex攝影部14、上位攝影部i5、 位置。亦即,在以圖4㈣之功攝影部16的 1明之功此方塊®中’藉由相對仿 置驅動控制部108的處理而控制驅動者俜攝& hi括^ 動有係攝影部驅動部 15卜俾以其取代Z載台驅動部63。在此情形,z載二u 之上面高度被固;t’乃是根據差分Δ(:的運算結果,將° 攝影部Μ、上位攝影部15、及下位攝影部16的位置調整 成使差分△(]之值成為〇。 又,檢查裝置i中,亦可僅讓Apex攝影部14由攝^ 部支撑部21所支撐,並根據線段L與晶圓31之厚度中^ 之差分K的運算結果,藉由攝影系統驅動系統ΐ5ι :調整 Apex攝影部14的位置。在此情形,上位攝影部Η及下位 攝影部丨6,係藉由與攝影部支揮部21相異之構件而被柱體 2ia所支撐,以固定其位置。又,在此情形,z載台η之 上面高度亦被固定。接著,係按照晶圓3丨之上下表面位置 的檢測結果等,來調整上位攝影部15及下位攝影部Μ之 各光學系統的焦點。Apex Photographic Department 14 wafer 3 1 ή 6々r pull, position. Thereby, it is possible to easily and surely observe the end of the object to be inspected with deflection or skew. Further, the inspection apparatus 1 can fix the height of the upper surface of the z stage u based on the calculation result of the difference between the line segment L and the thickness of the wafer 31: c, and then adjust the Apex imaging unit 14 and the upper imaging unit 15 And the lower photography department 16^ is placed upright instead of adjusting the height of z from the upper surface of u. Next, referring to the block diagram of Fig. 12, another example of controlling the inspection apparatus 1 by the controller 5丄 will be described. This example preliminarily fixes the position of the Z stage 11, and adjusts Apex according to the result of the difference Δc operation. The positions of the photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16. . Further, for the portion corresponding to the example of Fig. 3, the same character is assigned and the description thereof is omitted as appropriate. In other words, instead of the z stage driving unit 63, the imaging system driving unit 丨s丨 is provided, but otherwise the configuration is basically the same as that of the example of Fig. 3. The vertical shirt system driving unit 15 1 moves the camera in accordance with the control of the controller 51. The position of the support portion 21 is adjusted to adjust the position of the Apex photographing unit 14 and the upper photographing unit i5 supported by the photographing portion support portion 31. In other words, in the block of the function of the photographing unit 16 of Fig. 4 (4), the driver is controlled by the process of the pseudo-push drive control unit 108 to control the driver's photographing unit and the unit. The reference numeral 15 replaces the Z stage driving portion 63. In this case, the height of the upper surface of the z-loading u is fixed; t' is the position of the imaging unit Μ, the upper imaging unit 15, and the lower imaging unit 16 adjusted to a difference Δ based on the calculation result of the difference Δ(:: Further, in the inspection apparatus i, only the Apex photographing unit 14 may be supported by the photographing portion supporting portion 21, and the calculation result of the difference K between the thickness of the line segment L and the wafer 31 may be used. The position of the Apex photographing unit 14 is adjusted by the photographing system drive system ΐ5ι. In this case, the upper photographing unit and the lower photographing unit 6 are column-by-members by members different from the photographing portion of the branch portion 21. 2ia is supported to fix the position. In this case, the height of the upper surface of the z stage η is also fixed. Then, the upper photographing unit 15 is adjusted according to the detection result of the lower surface position of the wafer 3丨 and the like. The focus of each optical system of the lower photography department.

此外,在使用圖1所說明之檢查裝置丨中,係藉由含 有寬度較被檢查物(即晶圓31)之厚度充分大且呈縱排之 CCD的線性CCD17,來檢測晶圓31在水平方向之位置或其 狀態等,然而,檢查裝置在晶圓31之撓曲或歪斜較線性 CCD17之寬度為大時,並無法正確的進行位置調整❶因此, 亦可備有複數個寬度相異之線性CCD,以對應於具有較大 撓曲或歪斜之晶圓3 1。 以下參照圖13,以說明備有複數個寬度相異之線性 31 200914818 CCD的檢查裝置201。 此外,與圖1之例相對應的部分,係賦與同一符號, 並適時的省略其說明。 亦即’在圖13之檢查裝置201 ’具有新設的線性 CCD221 ’除此之外則基本與使用圖1所說明之檢杳裝置1 具有相同外觀構成。 線性CCD22 1之構成中,至少包含i列其所具攝影範圍 車父線性CCD17充分大且呈縱排之CCD。線性CCD221係被 ί 設置於線性CCD17對晶圓31之攝影位置,與Apex攝影部 14'上位攝影部15、及下位攝影部16對晶圓31的攝影位 置(如圖中α所示)之間。線性CCD221,係在以線性cCD17 無法拍攝晶圓31之邊緣部分之至少一部分時,則採取與線 性CCD17相同的方式而拍攝晶圓31之側面,並將攝影資料 供應至後述之控制器,以供觀察晶圓31的位置或狀態。此 外’線性CCD17之晝素間距較線性CCD221的晝素間距為 , 細。亦即,線性CCD17較線性CCD221具有較高之解析度 I 供檢測晶圓3 1的位置或狀態。 線性CCD22 1之構成,只要有寬度較線性CCd丨7之寬 度充分大之至少一列呈縱向排列的CCD即可◦又,亦可具 備2維排列之CCD以取代線性CCD221。 接著,參照圖14之方塊圖,以說明控制器對檢查裝置 201的控制。 此外,與圖3之例相對應的部分,係賦與同—符號並 適當省略其說明。 ;” 32 200914818 亦即,檢查裝置201具有使用2個線性CCD之控制器 24 1,以取代控制器5 1,俾用以檢測晶圓3 1在水平方向的 位置或其狀態等,所能取得之輸出並不僅只於線性 CCD17 ’亦包含線性CCD221之輸出,除此之外,基本上與 使用圖3所說明之檢查裝置1具有同樣功能。 控制器241,與使用圖4說明過之控制器5 j的情形具 有相同的功能,係根據在微分處理部1〇1中線性CCDi7的 攝影資料之微分結果,來判斷晶圓31之端部是否亦有落在 線性CCD17的攝影範圍外的部分.接著,僅針對晶圓3ι 端部亦有落在線性CCD17之攝影範圍外之情形時’方使線 性C C D 2 2 1驅動以對晶圓3 1之側面攝影。 例如,因晶圓31之撓曲或歪斜所致,使晶圓3丨之位 置位在較基準位置為高或低之位置時,以及晶圓3 1較厚之 h形時’在使用圖2說明過之線性CCD 1 7之攝影影像中, ’忍有一部分的晶圓3 1之側面像會落在視野之外。在此情 形,以微分處理部101所得到之微分波形的急劇陡升及陡 P牛係發生在1個位置以下。在此情形,控制器24丨乃驅動 、泉性CCD22 1,以對於在晶圓3 1侧面之相對應的位置實施 攝衫’對δ亥攝景> 之分布進行微分。又’控制器241乃根據 其微分結果來檢測異常部分,或調整晶圓3 i與Apex攝影 部14之相對位置,或是運算上位攝影部15及下位攝影部 1 6的焦點位置’然後產生檢查結果並予以記錄、輸出、及 續示。 繼而參照圖1 5之流程圖,以說明檢查裝置2〇丨所實施 33 200914818 之晶圓端部檢查處理2。此外,出纟士;^卜 此外由於在結束步驟S52的處理 之後’處理,係接續於在圖]〗p % 0日、典七> 貝仏社囿11已5兒明過之步驟S10的處理 後,因而省略其說明。 檢查裝置201亦盘檢杳步罟丨妞 揿亘在置1相同地以既定速度而使 Θ載台12旋轉驅動,俾並行的實施攝影、檢測、運算、及Further, in the inspection apparatus 说明 described with reference to Fig. 1, the wafer 31 is detected to be horizontal by a linear CCD 17 having a CCD having a width larger than the thickness of the object to be inspected (i.e., the wafer 31) and being longitudinally aligned. The position of the direction or its state, etc. However, when the deflection or skew of the wafer 31 is larger than the width of the linear CCD 17, the position adjustment cannot be performed correctly. Therefore, a plurality of widths may be provided. Linear CCD to correspond to wafer 31 with greater deflection or skew. Referring now to Figure 13, an inspection apparatus 201 is provided which is provided with a plurality of linear 31 200914818 CCDs having different widths. It is to be noted that the same reference numerals are given to the parts corresponding to the example of Fig. 1, and the description thereof will be omitted as appropriate. That is, the inspection apparatus 201 of Fig. 13 has a new linear CCD 221', and basically has the same external configuration as the inspection apparatus 1 described with reference to Fig. 1. Among the configurations of the linear CCD 22 1 , at least the CCD having the imaging range of the i-column and the longitudinal linear CCD 17 is sufficiently large and arranged in a vertical row. The linear CCD 221 is disposed at the photographing position of the linear CCD 17 on the wafer 31, and between the Apex photographing unit 14' upper photographing unit 15 and the lower photographing unit 16 on the photographing position of the wafer 31 (shown by α in the figure). . In the linear CCD 221, when at least a part of the edge portion of the wafer 31 cannot be captured by the linear cCD 17, the side of the wafer 31 is taken in the same manner as the linear CCD 17, and the photographic material is supplied to a controller to be described later. The position or state of the wafer 31 is observed. In addition, the pixel spacing of the linear CCD 17 is smaller than that of the linear CCD 221. That is, the linear CCD 17 has a higher resolution I than the linear CCD 221 for detecting the position or state of the wafer 31. The linear CCD 22 1 may be configured such that a CCD having a width larger than the width of the linear CCd 丨 7 and having at least one column arranged vertically is used, and a two-dimensionally arranged CCD may be provided instead of the linear CCD 221 . Next, referring to the block diagram of Fig. 14, the controller controls the inspection device 201. It is to be noted that the portions corresponding to the examples of Fig. 3 are given the same reference numerals and their descriptions are omitted as appropriate. 32 200914818 That is, the inspection device 201 has a controller 24 1 using two linear CCDs instead of the controller 51, for detecting the position of the wafer 31 in the horizontal direction or its state, etc. The output is not only the output of the linear CCD 17' but also the output of the linear CCD 221, except that it basically has the same function as the inspection apparatus 1 described using Fig. 3. The controller 241, and the controller described using Fig. 4 The case of 5 j has the same function, and it is judged whether or not the end portion of the wafer 31 also falls outside the photographing range of the linear CCD 17 based on the differential result of the photographic data of the linear CCD i7 in the differential processing unit 101. Then, only when the end of the wafer 3 ι falls within the photographing range of the linear CCD 17, the linear CCD 2 2 1 is driven to photograph the side of the wafer 31. For example, due to the deflection of the wafer 31 Or caused by skew, when the position of the wafer 3 is at a position higher or lower than the reference position, and when the wafer 31 is thicker than the h shape, the photography of the linear CCD 17 described in FIG. 2 is used. In the image, 'bearing a part of the wafer 3 1 The side image falls outside the field of view. In this case, the sharp rise and the steep P cow of the differential waveform obtained by the differential processing unit 101 occur at one or less positions. In this case, the controller 24 is driven, The spring CCD 22 1 differentiates the distribution of the 'sharp view' for the corresponding position on the side of the wafer 31. Further, the controller 241 detects the abnormal portion based on the differential result, or The relative position of the wafer 3 i and the Apex photographing unit 14 is adjusted, or the focus position of the upper photographing unit 15 and the lower photographing unit 16 is calculated. Then, the inspection result is generated and recorded, output, and continued. Referring to FIG. A flow chart for explaining the wafer end inspection process 2 of the inspection device 2 33 33 200914818. In addition, the singer is also spliced by the processing after the processing of the step S52 is completed. 〗 〖p % 0, 七 七 、 仏 仏 仏 已 已 已 已 已 已 已 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤Rotating the crucible 12 at a given speed , Serve parallel photography embodiment, detection, computation, and

結果的輸出等,且,右此fg] :):¾兔7 P 士人Ttn A 隹此Π樣為了易於理解起見,而依序 示出對於晶圓3 1端部之點α進行之檢查處理。 在步驟S4卜控制器241係控制0載台驅動部61,以 f 開始Θ載台1 2的旋轉驅動。 在步驟S42,控制器241係控制線性CCDi7,拍攝晶 圓31端部之既定位置^;。 在步驟S43,控制器241之微分處理部1〇1,對於線性 CCD 17所供應之、在點α之攝影影像之受光強度曲線實施 微分處理(如圖5所示),以得到圖6所說明之微分波形。 在步驟S44,控制器241之微分處理部1〇1,根據於所 得到之微分波形是否存有2個急劇陡升及陡降之位置,據 1/以判斷由第1線性CCD(即線性CCD17)可否拍攝晶圓31之 既定位置α之端部。 假若在步驟S44係判斷成,線性CCD17對晶圓31之 既疋位置(2之端部將會有至少一部分無法予以攝影,在此 情形則將處理前行至步驟S45。在步驟S45,控制器241係 控制著作為第2線性CCD之線性CCD221,以對於晶圓3 i 之端部攝影。 此外,假若在步驟S44係判斷成,藉由線性ccD17可 34 200914818 對晶圓31之既定位置α之端部攝影,在此情形,並不以線 性CCD221拍攝晶圓3 1之既定位置以。亦即,線性Output of the result, etc., and right this fg] :): 3⁄4 rabbit 7 P 士人Ttn A 隹This sample shows the check of the point α of the end of the wafer 3 1 for the sake of easy understanding. deal with. In step S4, the controller 241 controls the 0 stage driving unit 61 to start the rotational driving of the stage 12 by f. In step S42, the controller 241 controls the linear CCD i7 to capture the predetermined position of the end of the crystal 31. In step S43, the differential processing unit 1〇1 of the controller 241 performs differential processing (as shown in FIG. 5) on the received light intensity curve of the photographic image supplied from the linear CCD 17 to obtain the description of FIG. 6. The differential waveform. In step S44, the differential processing unit 1〇1 of the controller 241 determines whether the position of the two sharp rises and the steep drops is based on the obtained differential waveform, and judges that the first linear CCD (i.e., the linear CCD 17) is judged by 1/. Whether the end of the predetermined position α of the wafer 31 can be photographed. If it is determined in step S44 that the linear CCD 17 is at the position of the wafer 31 (at least a portion of the end portion of 2 cannot be photographed, in this case, the processing proceeds to step S45. At step S45, the controller The 241 series controls the linear CCD 221 of the second linear CCD to photograph the end portion of the wafer 3 i. Further, if it is determined in step S44, the predetermined position α of the wafer 31 can be determined by the linear ccD17 34 200914818. End photography, in this case, the predetermined position of the wafer 31 is not photographed by the linear CCD 221. That is, linear

之攝影處理,僅是侷限於以線性CCD17並無法對端部全體 實施攝影之位置,方有進行之。在驅動線性CCD221之情形 時,即使解析度較低,亦可檢測出晶圓31的邊緣位置。藉 此,就算是在晶圓3丨有較大撓曲或歪斜之情形時,在此之 後,仍可將Apex攝影部14、上位攝影部15、及下位攝影 部16對晶圓31端部之攝影範圍或焦點作最佳化設定。另 -方面,藉線性CCD17即可檢測晶圓31之邊緣位置之情形 時,由於線性CCD17具有充分的解析度,因而可提高晶圓 31之邊緣位置的檢測精度,以及缺口或破損等異常部分的 檢測精度。 在步驟S46,控制器241之微分處理部ι〇ι,係對於線 性CCD221所供應之之攝影影像之受光強度曲線實施 微分處理(如圖5所示),得到圖6已說明之微分波形。 假若在步驟S44係判斷成,藉線性ccdi7可對晶圓Μ :端部攝影時’控…41之微分處理部ι〇ι,係將線性 cm7之攝影資料之分布態的微分處理結果,供應至異常 檢:102及邊緣位置檢測部1〇3。又,在結束步驟 ccJ:理後’控制1 241的微分處理部101,將線性 CD22 1之攝影資料 部分檢_ 處理結果,供應至異常 ^ 邊緣位置檢測部1 〇 3。 :而’在步驟S47至步驟吻中,係實施與圖ι〇之步 ^ 步驟S9相同的處理。接著,在結束步驟S52的處 35 200914818 理後,將處理前行至圖11之步驟S10。 而作如上述,在檢查裝置201,係藉Θ以12之旋轉驅動 已裝载之晶圓31旋轉,先實施線性CCD17之攝影處理 以檢測晶圓3 i的位置或狀態。又,若是藉線性c C D i 7並無 =檢測日日圓31的位置或狀態’則實施線性CCD221之攝影 处理’根據檢測出之晶圓31的位置或狀態,調整z載台n 的高度。藉此處理,以調整相對於—攝影部i4 1的位置。猎此,就算是具有大的撓曲或歪斜之被 一 亦此輕易且確實的觀察其端部。 又’在檢查裝置!及檢查裝置2〇1之任一者,亦可藉 'P 69將利用邊緣位置檢測部103所檢測出之晶圓 之邊緣位置的檢測結果,輸出至其他裝置。因此,亦可 』可取得檢查展置i或檢查裝置2G1所輸出之晶圓Μ之 資訊之其他裝置,來檢測出晶圓31之端部與一 =4的相對位置,俾進行各種驅動控制以供調整晶圓 ^與Apex攝影部14的相對位置,或是檢測出上下位 之’、、、點位置以控制上下位的對焦。 又’在上述說明中’係以晶圓3〗來料被檢查物 二^理所當然的,被檢查物只要是形狀較薄者即可, 养^ ’只要是形狀較線性ccm7之寬度要薄者,即可 曰欢m或檢查裝置2G1來進行對其端部的觀察。 藉著將二成:::處理’能以軟體來控制。該項軟體,係 :將構成該軟體之程式槽’載入已經組裝了專 心,以及將各種程式槽載入,而可供實施各項功能,例 36 200914818 如可從記錄媒體將其載入泛用之個人電腦等。 該記錄媒體的構成方式可舉例為,以有別於電腦之媒 介而可將程式提供至使用者之各種記錄有程式的磁性記憶 體(含軟碟)、光碟(包含CD_R〇M,即C〇mpact Disk-ReadThe photographic processing is limited to the position where the linear CCD 17 cannot perform photographing of the entire end portion. In the case of driving the linear CCD 221, the edge position of the wafer 31 can be detected even if the resolution is low. Thereby, even in the case where the wafer 3 has a large deflection or skew, after that, the Apex photographing unit 14, the upper photographing unit 15, and the lower photographing unit 16 can be placed on the end of the wafer 31. The photographic range or focus is optimized. On the other hand, when the linear CCD 17 can detect the edge position of the wafer 31, since the linear CCD 17 has sufficient resolution, the detection accuracy of the edge position of the wafer 31 and the abnormal portion such as a notch or breakage can be improved. Detection accuracy. In step S46, the differential processing unit ι〇ι of the controller 241 performs differential processing on the received light intensity curve of the photographic image supplied from the linear CCD 221 (as shown in Fig. 5) to obtain the differential waveform described with reference to Fig. 6. If it is determined in step S44, the linear ccdi7 can be used to supply the wafer Μ: the differential processing unit ι〇ι of the control image 41 at the end of the photographing, and the differential processing result of the distribution state of the photographic data of the linear cm7 is supplied to Abnormality detection: 102 and edge position detecting unit 1〇3. Further, in the end step ccJ: the differential processing unit 101 of the control 1 241, the photographic data partial detection result of the linear CD 22 1 is supplied to the abnormality ^ edge position detecting unit 1 〇 3. : ' In the step S47 to the step kiss, the same processing as the step ^ step ^ step S9 is performed. Next, after the end of step S52 is completed, the process proceeds to step S10 of Fig. 11. As described above, in the inspection apparatus 201, the loaded wafer 31 is rotated by the rotation of 12, and the photographing process of the linear CCD 17 is first performed to detect the position or state of the wafer 3 i. Further, if the linear c c D i 7 is not = the position or state of the day 31 is detected, the image processing of the linear CCD 221 is performed. </ RTI> The height of the z stage n is adjusted based on the position or state of the detected wafer 31. This is processed to adjust the position with respect to the photographing unit i41. Hunting this, even if it has a large deflection or skew, it is easy and sure to observe its end. Also' in the inspection device! Further, the detection device 2〇1 may output the detection result of the edge position of the wafer detected by the edge position detecting unit 103 to another device by the 'P69'. Therefore, it is also possible to obtain another device for inspecting the information of the wafer defect output by the display i or the inspection device 2G1, and detecting the relative position of the end portion of the wafer 31 to a = 4, and performing various driving controls. The position of the wafer and the Apex photographing unit 14 is adjusted, or the position of the upper and lower positions is detected to control the focus of the upper and lower positions. In the above description, it is a matter of course that the object to be inspected is processed by the wafer 3, and the object to be inspected may be as thin as a shape, and the width of the object is thinner than the width of the linear ccm7. The end of the observation can be performed by using the m or the inspection device 2G1. By using 20%::: processing can be controlled by software. The software is: the program slot that constitutes the software is loaded and assembled, and various program slots are loaded, and various functions can be implemented. Example 36 200914818 If it can be loaded from the recording medium Use a personal computer, etc. The recording medium can be exemplified by a magnetic memory (including a floppy disk) and a compact disk (including CD_R〇M, ie C〇) which can be provided to the user by a program different from the medium of the computer. Mpact Disk-Read

Only Memory)、DVD(即 Digital Versatile Disk)、光磁性碟、 或半導體記憶體等所構成之整合式記憶體(package 等。 此外’本發明之實施範圍並不偈限於上述實施形態, ( 在不脫離本發明要旨之範圍内,可進行各種變更。 【圖式簡單說明】 圖1係用以說明檢查裝置i之外觀圖。 圖2係圖1之檢查裝置中由Apex攝影部所攝得影像的 圖例。 圖3係用以說明圖1之檢查裝置之方塊圖。 圖4係用以說明圖3之控制器功能的功能方塊圖。 圖5係由線性CCD所取得之受光強度之分布態之圖。 圖6係對圖5之分布態進行微分而得到之波形之圖。 圖7係作為檢查結果而產生之圖表之說明圖。 圖8係作為檢查結果而產生之圖表之說明圖。 圖9係作為檢查結果而產生之圖表之說明圖。 圖1 〇係用以說明晶圓端部檢查處理1之流程圖。 圖11係用以說明晶圓端部檢查處理1之流程圖。 圖12係用以說明在檢查裝置具有相異功能之一構成例 之方塊圖。 37 200914818 圖1 3係用以說明檢查裝置之外觀圖。 圖1 4係用以說明圖1 3之檢查裝置之方塊圖。 圖1 5係用以說明晶圓端部檢查處理2之流程圖。 【主要元件符號說明】 1 檢查裝置 11 Z載台 12 β載台 14 Apex攝影部 15 上位攝影部 16 下位攝影部 17 線性CCD 31 晶圓 51 控制器 63 Z載台驅動部 65 上位焦點控制部 66 下位焦點控制部 68 記錄部 69 輸出部 70 顯示部 151 攝影系統驅動部 201 檢查裝置 221 線性CCD 241 控制器 38Integrated memory (such as Only Memory), DVD (Digital Versatile Disk), magneto-optical disk, or semiconductor memory, etc. In addition, the scope of implementation of the present invention is not limited to the above embodiment, (in the case of Various changes can be made within the scope of the gist of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an external view for explaining an inspection apparatus i. Fig. 2 is an image of an inspection apparatus of Fig. 1 taken by an Apex photographing unit. Figure 3 is a block diagram for explaining the function of the controller of Figure 1. Figure 4 is a functional block diagram for explaining the function of the controller of Figure 3. Figure 5 is a diagram of the distribution of the received light intensity obtained by a linear CCD. Fig. 6 is a diagram showing a waveform obtained by differentiating the distribution state of Fig. 5. Fig. 7 is an explanatory diagram of a graph generated as a result of the inspection. Fig. 8 is an explanatory diagram of a graph generated as a result of the inspection. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart for explaining the wafer end inspection process 1. Fig. 11 is a flow chart for explaining the wafer end inspection process 1. Fig. 12 is a flowchart To illustrate the inspection The device has a block diagram of one of the different functions. 37 200914818 Figure 1 3 is used to illustrate the appearance of the inspection device. Figure 1 is a block diagram for explaining the inspection device of Figure 13. The flow chart of the wafer end inspection process 2 will be described. [Description of main component symbols] 1 Inspection device 11 Z stage 12 β stage 14 Apex imaging unit 15 Upper imaging unit 16 Lower imaging unit 17 Linear CCD 31 Wafer 51 Control 63 Z stage drive unit 65 upper focus control unit 66 lower focus control unit 68 recording unit 69 output unit 70 display unit 151 photography system drive unit 201 inspection device 221 linear CCD 241 controller 38

Claims (1)

200914818 十、申請專利範圍: ^一種檢查裝置,具備: 檢測手段,用以檢測平板形狀之被檢查物的端部位置. 攝影手段,用以拍攝該被檢查物之端部的觀察用影 調整手段,根據該檢測手段對該被檢查物之端部位置 的檢測結果,調整該攝影手段拍攝該觀察用影像時該被檢 查物與該攝影手段的相對位置。 ί 2.如申請專利範圍第丨項之檢查裝置,其進—步具備旋 轉驅動手段,係以該被檢查物之平面的大致中央位置作為 旋轉中心,以相對該平面之垂直方向作為旋轉轴方向,: 既定速度旋轉驅動該被檢查物; 該檢測手段係設於可檢測由該旋轉驅動手段所旋轉驅 動之該被檢查物端部之位置狀態之位置,且在該被檢查物 大致旋轉1周之期間,檢測出該被檢查物端部之複數個位 置; 該攝影手段係設於可拍攝由該旋轉驅動手段所旋轉驅 動之該被檢查物端部的位置,且係一較該檢測手段位在咳 旋轉驅動手段旋轉該被檢查物之旋轉方向的相對下游侧的 位置’在該被檢查物大致旋# i周的期間,拍攝該被檢查 物之複數個位置。 3.如申請專利範圍第i項之檢查裝置,其中該調整手 段,進-步具備有位置調整手段’用以在相對該被檢查物 之平面的垂直方向,調整該被檢查物與該攝影手段的相對 39 200914818 位置; 根據該檢測手段對該被檢查物之端部位置的檢測蜂 果,控制該位置調整手段,以調整該被檢查物與該攝影手 #又在相對該被檢查物平面的垂直方向之相對位置。 4.如申請專利範圍第3項之檢查裝置,其中該攝影手段 包含側面攝影手段,用以從相對該被檢查物平面之水平方 向拍攝該被檢查物的側面; 該位置調整手段,可調整該側面攝影手段與該被檢查 物在相對該被檢查物平面之垂直方向的相對位置。 5·如申請專利範圍第4項之檢查裝置,其中該攝影手段 ^ —步包含平面冑影手段,係從相對於該被檢查物平面之 垂直上方或垂直下方之至少一方拍攝該被檢查物之平面的 端部; 旦該位置調整手段,係調整該側面攝影手段及該平面攝 心手又與該被檢查物的相對位置。 6.如申請專利範圍第4項之檢查裝置,其中該攝影手段 進—步包含: 平面攝衫手段,其係從相對於該被檢查物平面之垂直 亡方或垂直下彳之至少—方拍冑該被檢查物之平面的端 焦點調整手段, 物的攝影焦點的調整 用以控制該平面攝影手段對該被檢查 該檢測手段, 查物的該平面位置 係檢測該平面攝影手段所拍攝之該被檢 40 200914818 該焦點調整手段,係根據該檢測手段所檢測出之該平 面位置,來控制該平面攝影手段對該被檢查物之攝影隹點 的調整。 μ ” 7·如申請專利範圍第1項之檢查裝置 —/、中该檢測手段 係由用以在第1範圍内檢測該被檢查物之端部位置的第1 範圍檢測手段、以及用以在較該帛!範圍大之第2範圍内 檢測該被檢查物之端部位置的第2範圍檢測手段構成; 該第1範圍檢測手段,係判斷在該第i範圍是否包含 該被檢查物的端部; 在該第1範圍包含該被檢查物端部時,該調整手段係 根據該第1範圍檢測手段之檢測結果,調整該被檢查物與 該攝影手段的相對位置; 若在D亥第1範圍未包含該被檢查物之端部時,該調整 手段係根據該第2範圍檢測手段之檢測結果,調整該被檢 查物與該攝影手段的相對位置。 8·如申請專利範圍第丨項之檢查裝置’其中該檢測手 段’係檢測該被檢查物之端部位置及狀態。 9.如申請專利範圍第8項之檢查裝置,其中該檢測手 段,係根據從相對於該被檢查物平面的水平方向來觀察該 被檢查物時,所檢測出之於側面邊界部分之位置急劇變 動,據以檢測該被檢查物之狀態的異常位置; 該調整手段,根據從該檢測手段對該被檢查物位置的 檢測結果中’扣除已檢測出之該異常位置之部分後的檢測 結果’來調整該被檢查物與該攝影手段的相對位置。 41 200914818 w•如申請專利範圍第1項之檢查裝置,其中該檢測手 段,係根據從相對於該被檢查物平面之水平方向檢測出在 觀察該被檢查物時於側面之邊界部分的位置,據以檢㈣ 被檢查物的位置。 &amp; 11·如申請專利範圍第10項之檢查裝置,其中該檢測手 段,係檢測該被檢查物之兩平面的位置,以作為從相對於 »亥破檢查物平面之水平方向觀察該被檢查物 界部分。 «两·^違 丨2.如申請專利範圍第u項之檢查裝置,其進—步且備 讀手段,用以記錄由該檢測手段所檢測出之該被檢查物 之兩平面的位置資訊。 13.如申請專利範圍第u項之檢查裝置,其進一步具備 2手段’用以將由該檢測手段所檢測出之該被檢查物之 千面的位置資訊,傳送至外部的裝置或傳送路徑。 部的S':二檢查方法’係用以檢查平板形狀之被檢查物端 置之檢查方法,其包含以下步驟: 檢測步驟,用以檢測該被檢查物之端部位置. 檢杳驟,係根據由該檢測步驟之處理所得到之該被 用部位置的檢測結果’據以調整由攝影部對觀察 以及」象進傾影時,該被檢查物與該攝影部的相對位置; 驟之處理而調整過與 ’拍攝該被檢查物之 攝影步驟’係使用已藉該調整步 亥被檢查物間之相對位置的該攝影部 端邻的該觀察用影像。 42200914818 X. Patent application scope: ^ An inspection device having: means for detecting the end position of the object to be inspected in the shape of a flat plate. Photographic means for observing the end of the object to be inspected According to the detection result of the end position of the inspection object by the detecting means, the relative position of the inspection object and the photographing means when the photographing means captures the observation image is adjusted. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> And: rotating the object to be inspected at a predetermined speed; the detecting means is disposed at a position at which a position state of the end of the object to be inspected by the rotation driving means is detected, and the object to be inspected is rotated substantially for one week And detecting a plurality of positions of the end of the object to be inspected; the photographing means is disposed at a position at which an end of the object to be inspected that is rotationally driven by the rotation driving means is photographed, and is a bit smaller than the detecting means The cough rotation driving means rotates the position on the downstream side in the rotation direction of the inspection object. During the period in which the inspection object is substantially rotated, the plurality of positions of the inspection object are imaged. 3. The inspection apparatus of claim i, wherein the adjustment means further includes a position adjustment means for adjusting the inspection object and the photographing means in a vertical direction with respect to a plane of the inspection object Relative 39 200914818 position; detecting the bee fruit of the end position of the object to be inspected according to the detecting means, controlling the position adjusting means to adjust the object to be inspected and the photographer hand to be opposite to the plane of the object to be inspected The relative position in the vertical direction. 4. The inspection apparatus of claim 3, wherein the photographing means comprises a side photographing means for photographing a side surface of the object to be inspected from a horizontal direction with respect to the plane of the object to be inspected; the position adjusting means is adjustable The side photographing means and the relative position of the object to be inspected in a direction perpendicular to the plane of the object to be inspected. 5. The inspection apparatus of claim 4, wherein the photographing means comprises a planar shadowing means for photographing the object to be inspected from at least one of a vertical upper side or a lower vertical direction with respect to the plane of the object to be inspected. The end portion of the plane; the position adjusting means adjusts the side photographing means and the relative position of the plane engraving hand to the object to be inspected. 6. The inspection apparatus of claim 4, wherein the photographing means further comprises: a flat photographing means for at least a square shot from a vertical dead or a vertical lower jaw relative to a plane of the object to be inspected The end focus adjustment means of the plane of the object to be inspected, the adjustment of the photographic focus of the object is used to control the planar photographic means to detect the detected means, and the plane position of the object is detected by the plane photographic means Test 40 200914818 The focus adjustment means controls the adjustment of the photographing point of the object to be inspected by the plane photographing means based on the plane position detected by the detecting means. μ "7. The inspection device of the first application of the patent scope - /, wherein the detection means is a first range detecting means for detecting the position of the end of the inspection object in the first range, and The second range detecting means for detecting the position of the end of the object to be inspected in the second range of the larger range; the first range detecting means determining whether or not the end of the object is included in the i-th range When the first range includes the end of the inspection object, the adjustment means adjusts the relative position of the inspection object and the photographing means based on the detection result of the first range detecting means; When the range does not include the end of the inspection object, the adjustment means adjusts the relative position of the inspection object and the photographing means based on the detection result of the second range detecting means. The inspection device 'where the detection means' detects the position and state of the end of the object to be inspected. 9. The inspection device of claim 8 wherein the detection means is based on relative to the object to be inspected When the object to be inspected is observed in the horizontal direction of the plane, the position of the side boundary portion detected is abruptly changed, and an abnormal position of the state of the object to be inspected is detected, and the adjustment means is based on the detection means. In the detection result of the inspection object position, the detection result of the portion of the detected abnormal position is subtracted to adjust the relative position of the inspection object to the photographing means. 41 200914818 w•If the inspection of the scope of the patent application is the first item In the apparatus, the detecting means detects the position of the object to be inspected based on the position of the boundary portion on the side surface when the object to be inspected is observed from the horizontal direction with respect to the plane of the object to be inspected. The inspection apparatus according to claim 10, wherein the detecting means detects the positions of the two planes of the object to be inspected as the boundary portion of the object to be inspected from a horizontal direction with respect to the plane of the inspection object «二·^violation 2. If the inspection device of the scope of application of the patent scope is item [u], the method of reading and reading is used to record the detection means. The position information of the two planes of the object to be inspected is detected. 13. The inspection device of claim u, further comprising 2 means 'for the object to be inspected by the detecting means The position information of the surface is transmitted to an external device or a transmission path. The S': second inspection method is a method for inspecting the end of the object to be inspected, and includes the following steps: a detection step for detecting The position of the end portion of the object to be inspected is based on the detection result of the position of the part to be used obtained by the processing of the detecting step, and the image is observed by the photographing unit and the image is tilted. The relative position of the object to be inspected and the photographing unit is adjusted, and the photographing step of photographing the object to be inspected is adjusted to use the photographing portion adjacent to the relative position between the objects to be inspected. This observation image. 42
TW097127124A 2007-07-18 2008-07-17 Inspecting apparatus and inspecting method TW200914818A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186568A JP2010107195A (en) 2007-07-18 2007-07-18 Inspection device and inspection method

Publications (1)

Publication Number Publication Date
TW200914818A true TW200914818A (en) 2009-04-01

Family

ID=40259743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097127124A TW200914818A (en) 2007-07-18 2008-07-17 Inspecting apparatus and inspecting method

Country Status (3)

Country Link
JP (1) JP2010107195A (en)
TW (1) TW200914818A (en)
WO (1) WO2009011417A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649554B (en) * 2017-03-13 2019-02-01 日商斯庫林集團股份有限公司 Inspection method and inspection device
TWI683381B (en) * 2018-09-07 2020-01-21 台灣積體電路製造股份有限公司 Semiconductor manufacturing system, edge detection device and method of detecting an edge bevel removal area of a semiconductor wafer
CN111971782A (en) * 2018-04-13 2020-11-20 耐瑟思远株式会社 Wafer edge region inspection device and inspection method
US11639898B2 (en) 2017-04-18 2023-05-02 Corning Incorporated Substrate edge test apparatus, system, and method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012025242B1 (en) 2010-04-06 2018-04-17 Nippon Soda Co., Ltd. METHOD FOR PRODUCTION OF A SUBSTITUTED AMINO-6- METHYLOPYRIDINE-N-oxide derivative
JP5699468B2 (en) * 2010-07-16 2015-04-08 ウシオ電機株式会社 Adjusting the distance between the projection lens and the workpiece
JP2012117918A (en) * 2010-12-01 2012-06-21 Toray Eng Co Ltd Device and method for observation and evaluation of end part of sheet material
JP2012132811A (en) * 2010-12-22 2012-07-12 Toray Eng Co Ltd Apparatus and method for observing and evaluating end part of sheet material
CN102183198B (en) * 2011-03-15 2012-08-22 清华大学 Device for measuring film thickness of silicon slice
CN102183880A (en) * 2011-05-11 2011-09-14 武汉东羽光机电科技有限公司 Quick pre-locating device for base plate of light emitting diode (LED) automatic exposure machine
JP2013024713A (en) * 2011-07-20 2013-02-04 Toray Eng Co Ltd Device and method for observing and evaluating sheet material end
KR101275863B1 (en) * 2011-08-24 2013-06-17 한미반도체 주식회사 Wafer inspection device
US9645097B2 (en) * 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
JP6474275B2 (en) * 2015-02-19 2019-02-27 株式会社ディスコ Processing equipment
US10984524B2 (en) * 2017-12-21 2021-04-20 Advanced Ion Beam Technology, Inc. Calibration system with at least one camera and method thereof
CN110890288B (en) * 2018-09-07 2022-07-26 台湾积体电路制造股份有限公司 Semiconductor manufacturing system, edge detection device, and method for detecting removal region
CN109142226A (en) * 2018-10-30 2019-01-04 深圳鹏瑞智能科技有限公司 A kind of display screen multi-angle automatic optical detection device
CN109954685A (en) * 2019-04-10 2019-07-02 青岛泰萌自动化设备有限公司 A kind of visual inspection machine
TWI756555B (en) * 2019-07-31 2022-03-01 超能高新材料股份有限公司 An alignment device for semiconductor wafer inspection
CN110729216A (en) * 2019-10-21 2020-01-24 华虹半导体(无锡)有限公司 Wafer position detection device and wafer position detection method
CN112697703A (en) * 2019-10-22 2021-04-23 超能高新材料股份有限公司 Wafer defect detection and alignment device
CN115791807B (en) * 2023-01-09 2023-05-30 苏州高视半导体技术有限公司 Device for detecting wafer defect

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101141A (en) * 1994-10-03 1996-04-16 Nippon Steel Corp Flaw sensing method and device for edge of steel band
JPH0972859A (en) * 1995-09-06 1997-03-18 Nippon Steel Corp Detection apparatus for edge flaw of steel strip
JPH0972858A (en) * 1995-09-06 1997-03-18 Nippon Steel Corp Detection apparatus for edge flaw of steel strip
JPH10340450A (en) * 1997-06-06 1998-12-22 Sony Tektronix Corp Disk surface test device
JP2000111485A (en) * 1998-10-07 2000-04-21 Mitsubishi Rayon Co Ltd Apparatus and method for inspection of defect on outer circumferential side face of disk
JP2001124704A (en) * 1999-10-29 2001-05-11 Yokogawa Electric Corp Board surface-inspecting device
JP3823794B2 (en) * 2000-10-03 2006-09-20 Jfeスチール株式会社 Thin plate shape control device and thin plate shape control method
DE102005014593A1 (en) * 2005-03-31 2006-10-05 Leica Microsystems Semiconductor Gmbh Optical inspection system for disk-shaped objects e.g. semiconductor wafers, has inspection modules for performing macro-inspection and micro-inspection of structured surface, boundary area, extended edge and rear of disk-shaped objects
JP4701803B2 (en) * 2005-04-14 2011-06-15 コニカミノルタオプト株式会社 Optical film inspection method and inspection apparatus
JP2007240264A (en) * 2006-03-07 2007-09-20 Olympus Corp Observation device and flaw inspection device of edge face

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649554B (en) * 2017-03-13 2019-02-01 日商斯庫林集團股份有限公司 Inspection method and inspection device
US11639898B2 (en) 2017-04-18 2023-05-02 Corning Incorporated Substrate edge test apparatus, system, and method
TWI822675B (en) * 2017-04-18 2023-11-21 美商康寧公司 Substrate edge test apparatus, system, and method
CN111971782A (en) * 2018-04-13 2020-11-20 耐瑟思远株式会社 Wafer edge region inspection device and inspection method
TWI683381B (en) * 2018-09-07 2020-01-21 台灣積體電路製造股份有限公司 Semiconductor manufacturing system, edge detection device and method of detecting an edge bevel removal area of a semiconductor wafer

Also Published As

Publication number Publication date
JP2010107195A (en) 2010-05-13
WO2009011417A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
TW200914818A (en) Inspecting apparatus and inspecting method
JP4597936B2 (en) Breast imaging device
JP6464013B2 (en) Imaging apparatus and method
TWI495866B (en) Appearance inspection device
EP3230787B1 (en) Microscope system, control method thereof, and program
TW201000888A (en) High resolution edge inspection
TWI475218B (en) Observation device and observation method
JP2008295424A (en) Method for counting number of colony
CN101501831A (en) Disc wafer inspecting device and inspecting method
JP2010225940A5 (en) Position detection apparatus, exposure apparatus, position detection method, exposure method, and device manufacturing method
JP5887895B2 (en) Apparatus and method for detecting flaw on surface of inspection object
JP4287646B2 (en) Image reading device
TW200842348A (en) Automatic outline inspection system
TW200931556A (en) Probe apparatus and probing method
JP5173983B2 (en) Breast imaging device
CN111243990A (en) System and method for positioning and detecting number of round crystal
TWI673502B (en) Electronic component transport apparatus and electronic component inspection apparatus
PT2011139061W (en) Method for aligning semiconductor materials
TW200839912A (en) Method and device for checking the shift of the wafer backside marking inspection
JP5316924B2 (en) Observation apparatus and observation method
JP2006261501A (en) Wafer id reader and wafer id reading method
CN111369509B (en) Product detection compensation method and device, product monitoring system and storage medium
TWI374279B (en)
JP4165319B2 (en) Computer tomography method and apparatus
JP6229438B2 (en) Inspection device and inspection method for outer periphery of semiconductor wafer