TW200914166A - Spherical copper fine powder and process for production of the same - Google Patents

Spherical copper fine powder and process for production of the same Download PDF

Info

Publication number
TW200914166A
TW200914166A TW097123005A TW97123005A TW200914166A TW 200914166 A TW200914166 A TW 200914166A TW 097123005 A TW097123005 A TW 097123005A TW 97123005 A TW97123005 A TW 97123005A TW 200914166 A TW200914166 A TW 200914166A
Authority
TW
Taiwan
Prior art keywords
copper
fine powder
powder
spherical
micropowder
Prior art date
Application number
TW097123005A
Other languages
Chinese (zh)
Other versions
TWI370033B (en
Inventor
Takahiro Haga
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW200914166A publication Critical patent/TW200914166A/en
Application granted granted Critical
Publication of TWI370033B publication Critical patent/TWI370033B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

A spherical copper fine powder characterized by having a mean particle diameter of 0.05 to 0.25 μm; and a process for the production of spherical copper fine powder through disproportionation, characterized by adding copper suboxide to an aqueous medium containing an additive consisting of a natural resin, a polysaccharide, or a derivative thereof to prepare a slurry, adding a 5 to 50% aqueous solution of an acid to the slurry at once within 15 minutes, and then subjecting the resulting slurry to disproportionation. The process enables speedy, efficient and stable production of metallic copper particles controlled in particle shape or particle size, particularly copper fine powder having smaller particle sizes.

Description

200914166 九、發明說明: 【發明所屬之技術領域】 本發明,係關於一種可迅速有效,且穩定地製造受到 控制之粒形或粒度之球狀金屬鋼粒子(特別是更微細200914166 IX. Description of the Invention: [Technical Field] The present invention relates to a spherical metal steel particle (especially finer) capable of rapidly and efficiently and stably producing a controlled grain shape or particle size

狀銅微粉末)之製造方法、及以該製造方法㈣彳K 銅微粉末。 ’ 【先前技術】 銅粉末之製造方法中,自以往具有電解法及霧化法。 以此等之方法所製造之銅粉末,係適用於含油軸承、電刷 等粉末冶金用用途,但近年來,對於被預料需求將大增之 塗料、膠漿(paste)、樹脂等之導電 τ〜守电填枓用途,係期待一種 具更微小之粒子且粒度粒形受到控制者。 適口此等之用途之更微細之金屬銅粒子之製造方法, 雖然具有⑴銅鹽水溶液之加麼氫還原法、⑺銅鹽水溶液之 添加化學藥品還原法、( (J有機銅鹽之熱分解法等,但 設備費用及加工費用高的問 艰又為了控制既定之粒形 粒度,而有產率不佳、思土^ 士 叫 h 不#易引起表面氧化、或藥品費高等缺 點’故皆非為較佳之方法。 / Λ ’ V知使氧化亞銅粒子與酸反應之方法,可有效 控制生成之金屬钿軲1 , 另 子之粒形與粒度,且可藉由控管ΡΗ 值 皿度、平均停留期問望+ c & & u間專之反應條件,來調整既定之粒 y又 迈咼純度之金屬銅微粒子。 又’亦可藉由選擇反廂值生 如,參照專利文獻〇 件,传到鍵狀等之凝結粉(例 200914166 匕專利文獻’係公pg於昭和6G年,為當時銅粉末製造 技術之最高水準的技術。 此技術之内容,係' D-種銅粒子之製造方法,係藉由 使氧化:銅粒子與酸反應,以生成銅鹽水溶液與金層銅粒 子並藉由進行固液分離,以回收金屬銅粒子,其特徵在 ;邊以可得到對應於待生產之金屬銅粒子之目標粒度 的既疋平均停留期間的流量’連續地使稀酸(川咖acid)溶 液流入反應槽中,一邊以可將反應槽之PH值維持在既定 之值的添加速度添加氧化亞銅粒子,於液溫以下使其 J並以對應於上述溶液流入量之速度將所生成之金屬 銅粒子聚體排出,自以此方式所排出之金屬銅粒子毁體經 由固液分離手段回收金屬銅粒子,藉此製造受到控制之粒 度的金屬銅粒子,2)—種金屬銅粒子之製造方法,係藉由 使氧化亞銅粒子與酸反應,以生成銅鹽水溶液與金屬銅粒 子,亚藉由進行固液分離以回收金屬銅粒子,其特徵在於, 一邊維持可得到既定之粒子形狀及粒度之液溫,一邊使反 應進行。 然而’最近係要求此種銅粉末更微粉末化且均一化, 且要求迅速之製造技術。因此,本發明人提出一種銅微粉 之製方法’其特徵在於’係於將氧化亞銅添加於包含 天然樹脂、多醣類或其衍生物之添加劑之水性介質中,進 行利用酸之不對稱反應(disproportionation reaction)製造銅 微粉末時’使不對稱反應開始溫度在1(TC以下(參照專利 文獻2)。 200914166 係極為有效的方 "m〜3.0# m 程 此方法可迅速製造微細之銅微粉末, 法…:而,其銅微粉末之平均粒徑僅〇 5 度,故需尋求可更微細化之方法。 專利文獻1 :日本特開昭60_333〇4號公報 專利文獻2 _·日本特開·5·256()12號公報 【發明内容】 制止 之目的’在於提供—種可迅速有效4穩定地 ad控制之粒形或粒度之球狀金屬銅粒子(特別是更 微細之銅微粉末)之球狀銅微粉末之製造方法、及以該製 造方法所製得之球狀銅微粉末。 本發明提供: 種球狀銅微粉末,其特徵在於,銅微粉末之平均 粒徑在0.05# m以上、〇 25"m以下。 )種士 ”所°己載之球狀銅微粉末,其中,銅微粉末 之比表面積(BET)在2.5mvg以上、150mvg以下。 此處之球狀,係指各個銅粒子之短徑與長徑之比在i 5〇 /以下特別疋120%以下者而言。因此,短徑與長徑之 比超過1 50%者’具有扁平之形狀’而不將此稱之為球狀。 本發明’如混合有扁平之銅微粉末時,該量佔全體之 20%以下,較佳在1〇%以下,更佳在以下。實質上, 車又佳為不含有此種扁平之銅微粉末。 又,本發明提供: 3) —種以不對稱反應所進行之銅微粉末之製造方法, 係將氧化亞銅添加於包含天然樹脂、多醣類或其衍生物之 200914166 η、、加d的水性介質中,以製作漿體,然後於15分鐘以内 -人冰加5〜50%酸水溶液於此漿體,以進行不對稱反應。 冰加J可使用天然橡膠類或明膠類。此添加劑之具 體例’可為松香、明膠、膠(心)、羧甲織維素(CMC)、 澱粉、糊精、阿拉伯膠、酪蛋白。 上述氧化亞銅之漿體濃度在5〇〇g/L以下較為適當, ^系係在300g/L以下來實施。可適當選擇此聚體濃度, 並無特別限制。若使氧化亞銅之㈣濃度為極端低的濃度 時,則由於反應將不舍彳隹# ,, _ ^ , 个會進仃,故僅會造成成本之增加。 莫耳比(酸的規定數/锻體之莫耳數),較佳以⑽〜 2·〇〇來實知。莫耳比若在等量(1())以上的話,則反應將不 會有問題。即使過量添加,'亦不會因此而提升效果。相反 地’若酸濃度過高時,由於預料在將酸添加於氧化亞銅衆 體的時候,發熱置會提高,反應系之溫度會上升,對微粉 末化會造成不利’因此會有不利於成本方面之虞。 另一方面,當酸濃度低時 降低,因此亦不利於微粉末化 /漿體之莫耳數),較佳在i.00 ’由於結果會造成反應速度 。因此’莫耳比(酸之規定數 〜2,00 〇 於性介質中,進行利用酸之不對稱反應製造銅微粉 切’較佳使不對稱反應開始溫度在呢以下。此係有利 方;形成微細之銅微粉末。 並且,此酸水溶液, 在15分鐘以内一次添加 以以下的球狀銅微粉末 總括地添加係非常重要。亦即, 。藉此,可得到平均粒徑在0.25 。藉此迅速之添加所進行之不對 200914166 稱反應可製得微細之球狀銅粉。此短時間之 銅微粉末之製造有效之理由,並未必明確。 然而,係認為此短時間之不對稱反應 銅粒子之成長的作用。因此,為了# 仃抑制 0马了微細化,短時間之飨 添加較為有效。酸水溶液之添加時間,較佳在 : 的短時間,特佳則是在1分鐘以内。 内 並且’本發明提供: 4) -種如3)所記載之銅微粉末之製造方法,盆中 對在不對稱反應㈣得之㈣粉末^進行固液分離與水 ”然後對其進行利用驗溶液之還原處理,並且再對所 :之微粉末装體反覆進行固液分離與水洗淨,以得到銅粉 末。此利㈣溶液之還原處理,係藉由將殘留於所得之銅 微粉末之氧化物與未反應之氧化亞銅加以還原,對銅粒子 之化學組成之均一化具有效果。 5) -種如3)或4)所記載之銅微粉末之製造方法,立中, 於對上述微粉末«反覆進行固液分離與水洗淨的途中, 進行利用酸之酸化處理。 〜此利用酸之酉义化處理,於進行防錄處理時,可更加提 高防鏽效果。 、)種如3) 5)中任一者所記載之銅微粉末之製造方 ,、中於最後進行水洗淨處理後’將銅粉末加以過濾’ 並且對其進行真空乾燥1得到銅粉末。 7)-種如3)〜6)中任—者所記載之賴粉末之製造方 法其中,銅微物末之平均粒徑纟〇〇5"爪以上、〇 200914166 Π1以下。 之銅微粉末之製造方 2-5m2/g 以上、15m2 8)—種如3)〜7)中任一者所記載 法’其中’銅微粉末之比表面積(be 丁)在 / g以下。 本發明之銅微粉末之製造方法 表具有使粒形為球狀, 可任意控制粒度,可迅速有效且 t,v „ 力双且穩疋地製造更微細之銅微 粉末之優異效果。 【實施方式】 氧化亞銅粒子,只要是例如代t t ^ 疋例如從銅鹽水溶液經由氯化亞 銅寺之公知方法所製得者即 有即了亦即,由於所使用之氧化 亞銅粒子之粒度與藉由本發 « 工万法所製得之金屬銅粒子 之粒度間並無直接的關係,因 U此亦可使用粗粒之氧化亞銅 粒子。 酉夂雖然通常係使用硫酸,但亦可使用頌酸、鱗酸、 -曰-並無特別必要對酸之種類加以特定。於使用硫酸之 情形,不對稱反應,係藓 精由以下之反應式,生成硫酸銅水 溶液與金屬銅粒子。A method for producing a copper-like fine powder) and a method for producing the same (4) 彳K copper fine powder. [Prior Art] In the method for producing copper powder, an electrolysis method and an atomization method have been conventionally used. The copper powder produced by such a method is suitable for powder metallurgy applications such as oil-impregnated bearings and brushes, but in recent years, the conductive τ of paints, pastes, resins, etc., which are expected to be greatly increased in demand ~ Shougang filling application, is expected to have a smaller particle size and particle size control is controlled. A method for producing finer metal copper particles suitable for such use, (1) a hydrogen solution reduction method for a copper salt aqueous solution, (7) a chemical solution reduction method for a copper salt aqueous solution, ((J organic copper salt thermal decomposition method) Etc., but the difficulty of equipment and processing costs is high, in order to control the predetermined grain size, but the yield is not good, the soil is not easy to cause surface oxidation, or high drug costs, etc. It is a preferred method. / Λ 'V knows how to react the cuprous oxide particles with the acid, which can effectively control the formation of the metal 钿轱1, the particle shape and particle size of the other, and can be controlled by the value of the vessel. The average stay period asks for the specific reaction conditions between + c && u to adjust the metal granules of the given y and yin purity. Also, by selecting the anti-cavity, refer to the patent literature〇 The piece is passed to the coagulated powder such as the key (Example 200914166 匕 Patent Document ' is a public pg in Showa 6G, which is the highest level of technology for copper powder manufacturing technology at that time. The content of this technology is 'D-type copper particles Manufacturing method Oxidation: copper particles are reacted with an acid to form a copper salt aqueous solution and gold layer copper particles and are subjected to solid-liquid separation to recover metallic copper particles, which are characterized by obtaining a target corresponding to the metallic copper particles to be produced. The flow rate of the particle size of the average residence time is continuously flowing the dilute acid (Chuancha acid) solution into the reaction tank, and the cuprous oxide particles are added at an addition rate at which the pH of the reaction tank can be maintained at a predetermined value. Below the liquid temperature, J is discharged at a rate corresponding to the inflow amount of the solution, and the metal copper particles discharged from the metal copper particles discharged in this manner are recovered by solid-liquid separation means. The method for producing a controlled particle size of copper metal particles, and 2) a method for producing a metal copper particle by reacting a cuprous oxide particle with an acid to form a copper salt aqueous solution and a metal copper particle, and further performing solid-liquid solution Separation to recover metal copper particles, wherein the reaction is carried out while maintaining a liquid temperature at which a predetermined particle shape and particle size are obtained. However, The copper powder is more pulverized and uniformized, and requires rapid manufacturing techniques. Therefore, the inventors propose a method for producing copper micropowder, which is characterized by 'addition of cuprous oxide to a natural resin, a polysaccharide or In the aqueous medium of the additive of the derivative, when the copper micropowder is produced by the disproportionation reaction of the acid, the asymmetric reaction initiation temperature is set to 1 (TC or less (refer to Patent Document 2). 200914166 is extremely effective. Fang"m~3.0# m This method can quickly produce fine copper micro-powder, the method...:, the average particle size of the copper micro-powder is only 〇5 degrees, so it is necessary to find a method that can be more refined. [Patent Document 2] Japanese Patent Laid-Open No. 60-333 No. 4 Patent Document 2 _·Japanese Patent Laid-Open No. 5/256(12) [Summary of the Invention] The purpose of the suppression is to provide a particle that can be quickly and effectively controlled 4 stably. A method for producing a spherical copper fine powder of spherical metal particles of a shape or a particle size (particularly, a finer fine copper powder), and a spherical copper fine powder obtained by the production method. The present invention provides: a spherical copper fine powder characterized in that the average particle diameter of the copper fine powder is 0.05 or more and 〇 25 " m or less. a spherical copper micropowder in which the copper micropowder has a specific surface area (BET) of 2.5 mvg or more and 150 mvg or less. The spherical shape herein refers to the short diameter and length of each copper particle. The ratio of the diameter is i 5 〇 / or less, especially 120% or less. Therefore, the ratio of the short diameter to the long diameter exceeds 150%, and the shape has a flat shape, which is not referred to as a spherical shape. When the flat copper micropowder is mixed, the amount is 20% or less, preferably 1% or less, more preferably the following. In essence, the car preferably does not contain such a flat copper micropowder. Further, the present invention provides: 3) a method for producing a copper micropowder by an asymmetric reaction, wherein cuprous oxide is added to 200914166 η, including a natural resin, a polysaccharide or a derivative thereof In an aqueous medium, a slurry is prepared, and then an aqueous solution of 5 to 50% acid is added to the slurry in 15 minutes or less to carry out an asymmetric reaction. Ice rubber can be used as a natural rubber or gelatin. Specific examples 'may be rosin, gelatin, gum (heart), carboxy acetoin (CMC), starch, Dextrin, gum arabic, casein. The above-mentioned cuprous oxide has a slurry concentration of 5 〇〇g/L or less, and the system system is 300 g/L or less. The concentration of the polymer can be appropriately selected, and there is no particular Restriction. If the concentration of (4) of cuprous oxide is extremely low, the reaction will not be reluctant #,, _ ^, and will only increase the cost. Mo Erbi (acidic The number of moirties/number of forgings is preferably (10) to 2·〇〇. If the molar ratio is equal to or greater than (1 ()), the reaction will not be problematic. , 'It will not improve the effect. On the contrary, if the acid concentration is too high, it is expected that when the acid is added to the cuprous oxide body, the heat generation will increase and the temperature of the reaction system will rise. It will cause disadvantages. Therefore, it will be detrimental to the cost. On the other hand, when the acid concentration is low, it is lower, so it is also not conducive to the micronization / the molar number of the slurry), preferably at i.00 ' The result is a reaction rate. Therefore, 'Morbi' (the number of acids is ~2,00 〇 in the medium) In the middle, the use of the asymmetric reaction of the acid to produce the copper micropowder is preferably 'the asymmetric reaction starting temperature is below. This is advantageous; the fine copper micropowder is formed. Moreover, the aqueous acid solution is added once in 15 minutes. It is very important to add the following spherical copper micropowders in a comprehensive manner. That is, it is possible to obtain an average particle diameter of 0.25. By this rapid addition, the reaction of 200914166 can be carried out to obtain fine spherical copper. Powder. The reason why this short-time copper micropowder is effective is not necessarily clear. However, it is considered that the short-term asymmetric reaction of copper particles grows. Therefore, in order to suppress the 马Adding time is more effective. The addition time of the aqueous acid solution is preferably within a short period of time, and particularly preferably within 1 minute. And the present invention provides: 4) a method for producing a copper micropowder as described in 3), in which the (a) powder is subjected to solid-liquid separation and water in an asymmetric reaction (4) and then subjected to use The solution is subjected to a reduction treatment, and the fine powder package is repeatedly subjected to solid-liquid separation and water washing to obtain a copper powder. The reduction treatment of the solution (4) is carried out by remaining the obtained copper fine powder. The reduction of the oxide and the unreacted cuprous oxide has an effect on the homogenization of the chemical composition of the copper particles. 5) A method for producing a copper micropowder as described in 3) or 4), The micro-powder «will be acid-treated by acid in the middle of repeated solid-liquid separation and water washing. ~ This is treated with acid, which can improve the anti-rust effect when anti-recording treatment is performed. 3) The production of the copper fine powder described in any one of 5), after the final water washing treatment, 'filtering the copper powder' and vacuum drying 1 to obtain a copper powder. Such as 3) ~ 6) in the middle - the recorded powder In the production method, the average particle diameter of the copper micro-powder is &5"claw or more, 〇200914166 Π1 or less. The production of the copper micropowder is 2-5 m2/g or more, 15 m2 8)-like 3)~7 In the method described in any one of the methods, the specific surface area (be) of the copper micropowder is less than /g. The method for producing the copper micropowder of the present invention has a spherical shape and can be arbitrarily controlled in particle size. It is fast and effective, and t, v „ force double and stable to produce the superior effect of finer copper micro-powder. [Embodiment] The cuprous oxide particles are obtained by, for example, a known method of a copper salt aqueous solution via a cuprous chloride solution, that is, the cuprous oxide particles are used, that is, because of the cuprous oxide particles used. The particle size is not directly related to the particle size of the metallic copper particles produced by the method of the present invention, since coarse particles of cuprous oxide particles can also be used. Although sulphuric acid is usually used, citric acid, scaly acid, and strontium may be used. It is not particularly necessary to specify the type of acid. In the case of using sulfuric acid, the asymmetric reaction is based on the following reaction formula to form a copper sulfate aqueous solution and metallic copper particles.

Cu2〇+H2S〇4=Cu 丨 +CuS04+H20 若增大酸對氧化亞銅之添加比例,則反應系之阳值 :曰牛低&之’ pH值將會升高,因此,可藉由酸或氧化 亞銅的添加比例,來控制pH值。 為了避免在反應中生成雜質沈殿,為了不使氧化亞 鋼殘留使反應迅速進行,係將pH值維持在以下(較佳 維持在1 · 0附近)。 200914166 時,係於包含天:::銅广不對稱反應來製造銅微粉末 護膠體)之水性介質中:::或其竹生物之添加劑(保 發明其中之—大特徵。仃利用酸之不對稱反應。此係本 此添加劑(保護膠體),具有 具有降低粒子彼此之拯縮相* 卞成長的功犯,且 做此之接觸頻率的作用。 粒子之製造。 口此有助於微細 上述添加劑,大'盆ιν工& +且〃 然橡勝類或明膠類有效。進一 . 更用权香、明膠、膠、魏甲織維 素(CMC) '殿粉、糊样 ’ 、、、’· _、阿拉伯膠、酪 用膠時,可進行平均粒徑、贫自㈣疋田使 有抑制凝集效果。 以下之微粉末化’具 :應中之液溫,於製造金屬銅微粒子時,係使其在3〇 L以下,較佳在丨〇 〇Γ 。液溫超過30°C時,金屬銅微 杻子彼此會有凝集連結的傾 ,^ _ ,,^ , 尤其,為了謀求微細化, i 較佳係使不對稱反應開始 e _、w ώ + 概度在1〇C以下。可藉由降低此 反應〉皿度,來有效抑制粒 J τ卞珉長,而可更加微粉末化。 此lot以下之溫度,如果Cu2〇+H2S〇4=Cu 丨+CuS04+H20 If the ratio of acid to cuprous oxide is increased, the positive value of the reaction system: yak low & 'pH will increase, so you can borrow The pH is controlled by the ratio of the addition of acid or cuprous oxide. In order to avoid the formation of impurities in the reaction, the pH is maintained below (preferably maintained at around 1.0) in order to prevent the reaction from proceeding without leaving the oxidized steel. 200914166, in the aqueous medium containing the day::: copper broad asymmetric reaction to make copper micro-powder protective colloids::: or its bamboo biological additives (to protect the invention - large features. Symmetrical reaction. This is an additive (protective colloid) which has the function of reducing the growth of the particles and the growth frequency of the particles. The manufacture of the particles. , large 'pots ιν工& + and 〃 橡 橡 橡 或 或 或 或 或 或 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡. · _, Acacia gum, yoghurt rubber, can be average particle size, lean from (four) Putian to inhibit the agglutination effect. The following micro-powdering: with the liquid temperature should be in the production of metal copper particles, It is preferably 3 〇 L or less, preferably 丨〇〇Γ. When the liquid temperature exceeds 30 ° C, the metal copper micro rafts are agglomerated and connected to each other, ^ _ , , ^ , in particular, in order to achieve miniaturization, i Preferably, the asymmetric reaction starts e _, w ώ + the probability is below 1 〇 C This reaction can be reduced by> dish degrees, effective to inhibit grain Bian Min J τ long, but may be more of a fine powder. This lot less of the temperature, if

果了以的活’若持續至反應結 束,則更具有效果。亦 W 便反應,皿度為超過30〇c之溫度。 此時’將著眼於金屬銅泳立+ ,扪拉子彼此凝集連結之事實,而欲得 到特殊之粒形者。以,卜μ 士 4 方式’可藉由反應溫度,來控制生 成之金屬銅粒子之粒形月柘电 丄於 ,, 及粒度。本發明係包含此種溫度控 制之全部。 又,本發明於進行梟仆 氧化亞銅之利用酸之不對稱反應製 200914166 造銅微粉末時,她杯沾 予〜'括地添加該酸水溶液係非常重要。亦即, 在15刀釦以内,較佳 A ,— 刀鲠M内,更佳在1分鐘以内 一-人外加。藉此,可得到 銅微粉末。 仏在以下之球狀 ^此迅料加所騎之不對稱反應,可 =二亦即,藉由加快酸的添加速度,可使核發生優 於粒子成長,使銅粉末更加微細化。 此短時間之不對稱反應,被認為係在進行抑制銅粒子 '長之作用。為了微細化,短時間之總括添加為必要不可 或缺。 -本發明之平均粒徑,以更小之值為佳,為小於平均粒 徑(〇5。)之值的DlG之實績值為〇〇6"m,為粒度分布之最 小值的Dmin更小。然而,為濕式反應之不對稱法,由於〇 μ 係可製得之下限值,因此將平均粒徑設定在〇.出。 為粒度分布之最小值的D一由於更小,因此含有更"微 細之銅微粉末。由此,由於推測濕式反應之不對稱法,Μ M m左右為可製得之下限,因此將平均粒徑之下限定為〇 〇5 // m。 另一方面,平均粒徑越小,比表面積則會有變越大的 傾向,未必為成比例者。又,比表面積之實測值與理論值 亚不相同。 若將銅微粉末假設為正圓形,銅之真密度為8 / cm3 ’以平均粒徑(DJ為直徑,由體積、表面積、質量算 出比表面積時,則Ds〇 = 0 ·05 // m,理論比表面積為} 3 12 200914166If the activity is continued until the reaction is completed, it is more effective. Also, W will react, and the dish is at a temperature of more than 30 〇c. At this time, the company will focus on the fact that the metal bronzes are standing +, and the scorpions are agglutinating each other, and those who want to get a special grain shape. The particle size of the produced metallic copper particles can be controlled by the reaction temperature to determine the particle size of the produced copper particles. The present invention encompasses all of such temperature control. Further, in the present invention, it is important to carry out the asymmetric reaction of the acid by the use of the cuprous oxide of the copper oxide. In the case of the copper micropowder, it is very important to add the acid aqueous solution to the cup. That is, within 15 knives, preferably A, - 鲠 M, preferably within 1 minute, one person plus one. Thereby, a copper fine powder can be obtained.仏 以下 以下 以下 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 不对称 不对称 不对称 不对称 不对称 不对称 不对称 不对称 不对称 不对称 不对称This short-term asymmetric reaction is believed to be responsible for the inhibition of copper particles. In order to miniaturize, the addition of short time is necessary and necessary. - the average particle diameter of the present invention is preferably smaller, and the value of DlG which is less than the average particle diameter (〇5.) is 〇〇6" m, and the Dmin which is the minimum value of the particle size distribution is smaller. . However, for the asymmetric method of the wet reaction, since the lower limit can be obtained by the 〇 μ system, the average particle diameter is set at 〇. Since D, which is the minimum value of the particle size distribution, is smaller, it contains a finer "fine copper micropowder. Thus, since the asymmetric method of the wet reaction is presumed, the ΜM m is the lower limit that can be obtained, so the average particle diameter is limited to 〇 〇 5 // m. On the other hand, the smaller the average particle diameter, the larger the specific surface area tends to be, and it is not necessarily proportional. Moreover, the measured value of the specific surface area is not the same as the theoretical value. If the copper micropowder is assumed to be a perfect circle, the true density of copper is 8 / cm3 'in terms of the average particle diameter (DJ is the diameter, and the specific surface area is calculated from the volume, surface area, mass), then Ds〇 = 0 · 05 // m , the theoretical specific surface area is} 3 12 200914166

粒偟(d50)與比表面積之關係,若平 恐阳,平均 越小,則會有理論值盥眚、目,丨& I ^ 右十均极徑 ,值與實測值相同的傾向 由於若平均粒徑較大昧^ 此係破過為是 對比表面積造成較大的影響,㈣^取表二之;3凸等)會 態,尺寸的影響會變得較大 、目較於表面狀 ^ s支仵較大,理論值與實測值會相等。 知上所述,若# n ju. 不,_ 使D5G之下限值為〇.〇^m,則可預粗 到比表面積之上限將為15〇 J 了預枓The relationship between the granules (d50) and the specific surface area, if the average is smaller, the smaller the average, the theoretical value 盥眚, 目, 丨 & I ^ 右 极 极 极 极, the value of the same as the measured value is due to The average particle size is larger 昧^ This system is broken to cause a large influence on the contrast surface area. (4) Take the second table; 3 convex and so on), the influence of the size will become larger, and the surface will be larger. The s branch is large, and the theoretical value and the measured value will be equal. Knowing that, if # n ju. No, _ makes the lower limit of D5G 〇.〇^m, then it can be pre-thickened to the upper limit of the specific surface area will be 15〇 J.

/ g左右。因此,將BET 表面積之上限定為l5.〇m2/g。 比 以此方式所製得之古J似 " 超微細球狀銅粉末,有可能會在办 軋中或液體中發生凝隹。缺尤 二 、广“ 疑集然而,此凝集體,可藉由在水溶 液中施加超音波等之手P, 谷 ^ , 再:人使其分散。而其應理解前 k係取早期之粒子為平均 在〇.25"m以下之球狀銅微 寸刀末 右糟由以粉碎之车❿卡. 手奴來進行微細化,則將無法得到 球狀之微細銅粉末。 當分批使反應進杆_,, 寻 可將酸添加於氧化亞銅粒子激 體’或相反地亦可將惫h . 7 乳化亞鋼粒子或氧化亞銅粒子漿體添 加於酸溶液。 ’' 無論任何一種情开彡,ό(;_/g or so. Therefore, the upper BET surface area is defined as l5.〇m2/g. Compared with the ultra-fine spherical copper powder produced in this way, it is possible to cause coagulation during rolling or liquid. The lack of special two, wide "suspicion, however, this aggregate, by applying ultrasonic waves in the aqueous solution of the hand P, valley ^, and then: people to make it dispersed. And it should be understood that the former k is taken from the early particles On average, the ball-shaped copper micro-inch knife below 〇.25"m is badly made by the smashing car. If the hand slave is used for refinement, the spherical fine copper powder will not be obtained. Rod _,, can be added to the cuprous oxide particle stimulator' or vice versa. 惫h. 7 emulsified steel particles or cuprous oxide particle slurry can be added to the acid solution. ''彡,ό(;_

If t ’所得之金屬銅粒子皆為高純度, 且富有表面活性。因茈,料,、, … u此,對Μ固液分離所製得之金屬銅粒 子方c(以適當的防錄處王里你 , 处理後’加以乾燥。圖1係顯示球狀銅 微粉末之製造流程之概要。 如圖1所7F ’係經由添加劑之溶解—衆體化(將氧化亞 銅添加於包含添加劑夕斗#人匕 之水性;丨質中,以製作漿體之步驟)— 13 200914166 不對稱反應(酸水溶液之添加)>洗淨—防鏽—過濾—乾燥 —散解—分級之步驟,來進行製造。 實施例 接著,說明本發明之實施例。又,實施例係僅為一例, 本發明並非限制於此等實施例。亦即,在本發明之技術思 想的範圍内’包含實施例以外之全部態樣或變形。 (實施例1) 將膠8g溶解於7公升的純水,一邊攪拌,—邊添加氧 化亞銅1000g使其懸浮,然後將氧化亞銅漿體冷卻至71。 漿體中之氧化亞銅量約143g/L。 接著,在1分鐘内添加冷卻至7t的稀硫酸(濃度24% : 9N,莫耳比(酸水溶液/漿體:l5)2〇〇〇cc。對所生成之銅 微粉末進行洗淨防鏽處理後,加以乾燥,得到42〇g的銅 微粉末。 反應係在添加後,約1分鐘内結束。以此方式所製得 之球狀銅微粉末的FE-SEM照片示於圖2。如圖2所示, 銅微粉末的平均粒徑為0.09^m。可知在1分鐘内添加冷 卻之稀硫酸,對銅微粉末化極為有效。比表面積bet為 6_66m2/g。此實施例i,於其他實施例之條件中為特佳 之例。 (實施例2〜8) 顯示使用松香、明膠、 叛甲織維素(CMC)、澱粉 糊 精、阿拉伯膠、酷蛋白作為添加劑時之實施例 了改變添加劑以外,其餘全部皆以與實施例j 。此時,除 相同之條件 200914166 來生成鋼粉束 但貫施例1之 (比較例l〜q 。其結果’上述之添加劑,全部皆為有效 「膠」之添加’可得到最佳的結果。 田選擇聚乙二醇(p〇lyethyleneglyc〇1,PEG)作為添加劑 ^不冰加時’檢查銅微粉末化。其結果示於比較例1〜2。 匕才其他條件’全部皆與以實施例"目同之條 銅粉末。且έ士里 L从,, 士 /、、、°果,比較例1之添加劑並不有效,且在不添 加時’亦得到鋼粉末之粒徑變大且BET比表面積亦小的銅 粉’結果不佳。 對上述之實施例及比較側之球狀銅微粉末,測量其平 均粒徑及fcf·矣t议 v 積。平均粒徑’係藉由雷射繞射散射式粒 度刀布測!法所測得,採用重量累積粒徑〇5。之值。比表 面積則是以BET法所測得。 以上之實施例1〜8及比較例1〜2之結果示於表卜 15 200914166 [表i] 添加制 --—--- 酸添加時間 反應開始 溫度°c 平均粒徑 μχη BET比表面積 mVg 實施例1 膠 ------- 1 分 __ 7 0.09 6.66 實施例2 松香 同 同 0.21 4.67 實施例3 明膠 同 同 0.20 4.56 實施例4 CMC 同 同 0.18 5.05 實施例5 j殿粉 同 同 0.19 4.95 實施例6 糊精 同 同 0.20 4.66 實施例7 阿拉伯膠 同 同 0.25 4.00 實施例8 酪蛋白 同 同 0.19 4.85 比較例1 PEG 同 一 同 _ 7.32 6.46 比較例2 無添加 同 _ 同 _ 4.90 4.50 CMC ·叛甲織維素,peg :聚乙 醇 i (實施例9〜12、16) 接者,以具代表性之實施例1作為基準,將改變酸添 加時間時的結果_元协鲁& 0 .. 木顯不於貫施例9〜12。此時,使酸添加時 間從5秒鐘改變至15分鐘。此時1 了改變酸添加時間 以外’全部皆以與實施们相同之條件來生成銅粉末。发 結果’酸添加時間較短者’可得到銅粉末之粒徑較小,咖 =表面積亦小的銅粉末。㈣酸添加時間亦會影響粒徑之 小與BET比表面積’因此酸添加時間,盡量越短越好 在不花費時間進行添加下,較佳為大概在b分鐘以内添 16 200914166 加。其結果’即使是使用松香、明膠、竣甲織維辛(CMC)、 澱粉、糊精、阿拉伯膠、酪蛋白之添加劑時亦相同。 (比較例3〜4) 接著,將以酸添加時間為非本發明條件之16分鐘、8〇 分鐘所進行時之例顯示於比較例3、比㈣4。此時,除 I改變酸添加時間外,全部皆以與實施例丨相同的條件來 粒末。於比較例3、比較例”,皆得到銅粉末之 ' — 且BET比表面積亦小的銅粉末,結果並不佳。 實把例9〜12及比較例3〜4之結果示於表2。 實施例 實施例9 實施例10 實施例11 ------ 實施例12 --—--- 實施例16 ---- 比較例 比較例4 [表2] 添加劑:膠,反應開始溫度:7。〇 平均粒徑 酸添加時間 BET比表面積m2/g 分鐘 0.09 6.66 3分鐘 2分鐘 30秒 5秒 15分鐘 16分鐘 80分鐘 0.18 0.15 0.09 0.08 0.20 0.40 0.80 4.39 4.94 6.70 6.75 6.15 3.80 3.50 17 200914166 (實施例13〜17) 接著’以具代表性之實施例1 彳乍為基準,將改變反應 開始溫度時的結果顯示於實施例1〜 1 /。此時,反雁關始 溫度係在0〜3(rC内變化。此時, '' 、 咏f改變反應開始溫度 以外’全部皆以與實施例㈠目同的條件來生成銅粉末。 結果,反應開始溫度較低者,可得到銅粉末之粒徑較 小,BET比表面積較大的銅粉末。該結果,於使用松香、 明膠、羧甲織維素(CMC)、殿粉,、阿拉伯膠、路蛋 白之添加劑時,亦相同。 (比較例5) 接著,將以反應開始溫度為非本發明條件之5〇它所進 行時之例顯示於比較例5。此時,除了改變反應開始溫度 以外^全部皆以與實施例1相同的條件來生成銅粉末。結 果’付到銅粉末之粒徑變大,且BET比表面積亦小的銅粉 末,結果並不佳。 實施例13〜17及比較例5之結果示於表3。 18 200914166 [表3]The metal copper particles obtained from If t ' are high purity and surface active. Because of this, material,,, ... u, the metal copper particles prepared by the separation of solid and liquid liquid c (to the appropriate anti-recording place, you, after treatment) to dry. Figure 1 shows the spherical copper micro Summary of the manufacturing process of the powder. As shown in Fig. 1, 7F 'is dissolved by the additive - massification (addition of cuprous oxide to the water containing the additive 夕 # 匕 匕 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 ) ) ) ) ) ) ) ) ) ) ) ) — 13 200914166 Asymmetric reaction (addition of acid aqueous solution) > Washing - rust prevention - filtration - drying - dispersing - grading steps to manufacture. EXAMPLES Next, examples of the invention will be described. The present invention is not limited to the embodiments, that is, all the aspects or modifications other than the examples are included within the scope of the technical idea of the present invention. (Example 1) 8 g of glue was dissolved in 7 Liters of pure water, while stirring, adding 1000 g of cuprous oxide to suspend it, and then cooling the cuprous oxide slurry to 71. The amount of cuprous oxide in the slurry is about 143 g/L. Next, add in 1 minute. Cooled to 7t of dilute sulfuric acid (concentration 24%: 9N, Moer ratio (acid aqueous solution/slurry: l5) 2 〇〇〇 cc. The resulting copper fine powder was washed and rust-proofed, and then dried to obtain 42 〇g of copper fine powder. The FE-SEM photograph of the spherical copper fine powder obtained in this manner is shown in Fig. 2. As shown in Fig. 2, the average particle diameter of the copper fine powder is 0.09 μm. The addition of cooled dilute sulfuric acid in minutes is extremely effective for copper micronization. The specific surface area bet is 6-66 m 2 /g. This example i is a particularly good example in the conditions of other examples. (Examples 2 to 8) In the case of rosin, gelatin, smectin (CMC), starch dextrin, gum arabic, and cool protein as additives, the modification of the additive is the same as in the embodiment j. At this time, except for the same condition 200914166 To produce a steel powder bundle, but according to Example 1 (Comparative Examples 1 to q. The result of the above-mentioned additives, all of which are effective "gel addition" can give the best results. Field selection polyethylene glycol (p 〇lyethyleneglyc〇1, PEG) as an additive ^ not ice plus 'check The results are shown in Comparative Examples 1 to 2. The other conditions are all the same as in the example " the same copper powder. And the gentleman L is from,,,,,,,,,,, The additive of Comparative Example 1 was not effective, and when it was not added, 'the copper powder having a large particle diameter and a small BET specific surface area was also obtained. The result was poor. The spherical copper of the above examples and the comparative side. The micropowder is measured for its average particle size and fcf·矣t. v. The average particle size is measured by the laser diffraction scattering particle size measurement method using the weight cumulative particle size 〇5. The specific surface area is measured by the BET method. The results of the above Examples 1 to 8 and Comparative Examples 1 to 2 are shown in Table 15 200914166 [Table i] Addition----- Acid addition time reaction starting temperature °c Average particle size μχη BET specific surface area mVg Example 1 Glue ------- 1 point __ 7 0.09 6.66 Example 2 Rosin same as 0.21 4.67 Example 3 Gelatin same as 0.20 4.56 Example 4 CMC Same as 0.18 5.05 Example 5 j Hall powder same as 0.19 4.95 Example 6 Dextrin is the same as 0.20 4.66 Example 7 Gum arabic is the same as 0.25 4.00 Example 8 Casein is the same as 0.19 4.85 Comparative Example 1 PEG is the same as _ 7.32 6.46 Comparative Example 2 No addition is the same as _ Same _ 4.90 4.50 CMC · Rebellion, peg: polyethanol i (Examples 9 to 12, 16), with representative example 1 as a benchmark, will change the acid addition time results _ Yuan Xiu Lu & 0. Wood is not consistent with examples 9 to 12. At this time, the acid addition time was changed from 5 seconds to 15 minutes. At this time, except for changing the acid addition time, all of the copper powders were produced under the same conditions as those of the examples. As a result, the result of 'the acid addition time is shorter' gives a copper powder having a small particle diameter and a small surface area. (4) The acid addition time also affects the small particle size and the BET specific surface area. Therefore, the acid addition time is as short as possible. When it is not time-consuming to add, it is preferable to add 16 200914166 to about b minutes. The results were the same even when using additives such as rosin, gelatin, woven weaving (CMC), starch, dextrin, gum arabic, and casein. (Comparative Examples 3 to 4) Next, an example in which the acid addition time was carried out for 16 minutes and 8 minutes without the conditions of the present invention was shown in Comparative Example 3 and Comparative Example (4). At this time, all of the same conditions as in Example 来 were used except for the change of the acid addition time. In Comparative Example 3 and Comparative Example, copper powder of the copper powder was obtained, and the BET specific surface area was also small, and the results were not good. The results of Examples 9 to 12 and Comparative Examples 3 to 4 are shown in Table 2. EXAMPLES Example 9 Example 10 Example 11 ------ Example 12 ------ Example 16 ---- Comparative Example Comparative Example 4 [Table 2] Additive: Glue, reaction starting temperature: 7. 〇 average particle size acid addition time BET specific surface area m2 / g minutes 0.09 6.66 3 minutes 2 minutes 30 seconds 5 seconds 15 minutes 16 minutes 80 minutes 0.18 0.15 0.09 0.08 0.20 0.40 0.80 4.39 4.94 6.70 6.75 6.15 3.80 3.50 17 200914166 (implementation Examples 13 to 17) Next, the results of changing the reaction initiation temperature are shown in Examples 1 to 1 based on a representative Example 1 彳乍. At this time, the reverse geese temperature is 0 to 3 (The change in rC. At this time, '', 咏f change the reaction start temperature, 'all of them are produced under the same conditions as in the embodiment (I). The result is that the copper powder is obtained by the reaction starting temperature being lower. Copper powder with a small diameter and a large BET specific surface area. The result is the use of rosin, The same applies to the additives of gelatin, carboxymethyl serotonin (CMC), temple powder, gum arabic, and road protein. (Comparative Example 5) Next, the reaction starting temperature is 5 〇 which is not the condition of the present invention. An example of the time is shown in Comparative Example 5. At this time, except that the reaction initiation temperature was changed, all of the copper powder was produced under the same conditions as in Example 1. As a result, the particle size of the copper powder was increased, and the BET specific surface area was increased. The copper powder was also small, and the results were not good. The results of Examples 13 to 17 and Comparative Example 5 are shown in Table 3. 18 200914166 [Table 3]

士上迷所不,藉由本發明之條 加於含右;姑& 千亦即將氧化亞銅添 力於3有天然樹脂、多醣類或其 質中,贺祚人士 ^ 之添加劑的水性介 ^ 製作含有氧化亞銅10〜30〇s/Ij > # 漿體,於3八於内 A 滠體’然後在此 3刀4里内一次添加莫耳 耳數)為100〜20n < 斗t(酸之規定數/聚體之莫 2.00、5〜50%之酸水溶洛 應,可犋$1丨私/+ &,合液’進行不對稱反 了侍到較佳之球狀銅微粉末。 可得到微粉末之平均粒徑 銅微粉末。vu & ·25以m以下之球狀 此等球狀銅微粉末之比矣^ 、比 在4.〇m2/g以上。 比表面積(BET)皆 産業上之可利用性 藉由本發明所製得 均一,不僅適合作末’粉末之粒徑小且 為塗料、膠漿、,丄承及電刷用之粉末,亦適合作 对月9荨之導電性填料。 19 200914166 【圖式簡單說明】 圖1,係顯示球狀銅微粉末之製造流程之概要。 圖2,係球狀銅微粉末之FE-SEM照片。 【主要元件符號說明】 益 \ 20The fascination of the fascination is added by the article of the present invention to the right; the cum & thousand is also the addition of cuprous oxide to the natural resin, polysaccharide or its essence, and the water-based agent of the additive ^ Production containing cuprous oxide 10~30〇s/Ij >#浆体, in 3八内内 A 滠体' then add the number of moles in this 3 knives 4) to 100~20n < t (acid number / polymer of 2.00, 5 ~ 50% of acid water soluble Luo, can be 犋 $1丨 private / + &, liquid 'for asymmetrical reverse to serve the better spherical copper micro powder The average particle size of the fine powder copper micropowder can be obtained. vu & 25 is less than m in the spherical shape of the spherical copper micropowder, the ratio is 4m2 / g or more. Specific surface area (BET The industrial availability is uniform by the present invention, and is not only suitable for use as a powder having a small particle size and being used for coatings, glues, crepe and brushes, and is also suitable for use in the month of the month. Conductive filler 19 200914166 [Simple description of the diagram] Figure 1 shows an outline of the manufacturing process of spherical copper micropowder. Figure 2 shows the FE of spherical copper micropowder. - SEM photo. [Main component symbol description] Benefit \ 20

Claims (1)

200914166 十、申請專利範圍: 1 · 一種球狀銅微粉末,其特徵在於: 銅微粉末之平均粒徑在0.05 e m以上、0.25 // m以下。 2.如申睛專利範圍第1項之球狀銅微粉末,其中,銅 微粉末之比表面積(BET)在2.5m2/g以上、15.〇m2/g以 下。 3 . 一種球狀銅微粉末之製造方法,其特徵在於: 係將氧化亞銅添加於包含天然樹脂、多醣類或其衍生 物之添加劑的水性介質中,以製作漿體,然後於15分鐘 以内一次添加5〜50%酸水溶液於此漿體,以進行不對稱 反應。 4. 如申請專利範圍第3項之球狀銅微粉末之製造方 法’其中’係對在不對稱反應後所得之銅微粉末漿體進行 口液/7離與水洗淨,然後對其進行利用鹼溶液之還原處 理,並且再對所得之微粉末漿體反覆進行固液分離與水洗 淨’以得到銅粉末。 5. 如申請專利範圍第4項之球狀銅微粉末之製造方 法’其中’於對該微粉末漿體反覆進行固液分離與水洗淨 的途中’進行利用酸之酸化處理。 6·如申請專利範圍第4或5項之球狀銅微粉末之製造 方法’其中,於最後進行水洗淨處理後,將銅粉末加以過 濾,並且對其進行真空乾燥,以得到銅粉末。 7 ·如申請專利範圍第3至5項中任一項之球狀銅微粉 末之製造方法,其中’銅微粉末之平均粒徑在〇 〇5 # m以 21 200914166 上、0.25//m以下。 8.如申請專利範圍第3至5項中任一項之球狀銅微粉 末之製造方法,其中,銅微粉末之比表面積(BET)在2.5m2 /g以上、15.0m2/g以下。 十一、圖式: 如次頁 22200914166 X. Patent application scope: 1 · A spherical copper micropowder characterized in that the average particle size of the copper micropowder is 0.05 e m or more and 0.25 // m or less. 2. The spherical copper fine powder according to the first aspect of the invention, wherein the copper micropowder has a specific surface area (BET) of 2.5 m 2 /g or more and 15. 〇 m 2 /g or less. 3. A method for producing a spherical copper micropowder, characterized in that: cuprous oxide is added to an aqueous medium containing an additive of a natural resin, a polysaccharide or a derivative thereof to prepare a slurry, and then in 15 minutes. A slurry of 5 to 50% acid aqueous solution was added thereto at a time to carry out an asymmetric reaction. 4. The method for producing a spherical copper micropowder according to item 3 of the patent application 'where' is to carry out oral/7-ion and water-washing of the copper micro-powder slurry obtained after the asymmetric reaction, and then carry out the same The reduction treatment with an alkali solution is carried out, and the obtained fine powder slurry is repeatedly subjected to solid-liquid separation and water washing to obtain a copper powder. 5. The method for producing a spherical copper micropowder according to item 4 of the patent application' wherein the 'micro-powder slurry is repeatedly subjected to solid-liquid separation and water washing' is acidified by acid. 6. The method for producing a spherical copper fine powder according to claim 4 or 5, wherein after the final water washing treatment, the copper powder is filtered and vacuum dried to obtain a copper powder. The method for producing a spherical copper fine powder according to any one of claims 3 to 5, wherein the average particle diameter of the 'copper fine powder is 〇〇5 #m to 21 200914166, 0.25//m or less . The method for producing a spherical copper fine powder according to any one of claims 3 to 5, wherein the copper fine powder has a specific surface area (BET) of 2.5 m 2 /g or more and 15.0 m 2 /g or less. XI. Schema: as the next page 22
TW097123005A 2007-06-28 2008-06-20 Spherical copper fine powder and process for production of the same TW200914166A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169869 2007-06-28

Publications (2)

Publication Number Publication Date
TW200914166A true TW200914166A (en) 2009-04-01
TWI370033B TWI370033B (en) 2012-08-11

Family

ID=40185528

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097123005A TW200914166A (en) 2007-06-28 2008-06-20 Spherical copper fine powder and process for production of the same

Country Status (6)

Country Link
US (1) US20100192728A1 (en)
JP (2) JP5235193B2 (en)
KR (2) KR20120116013A (en)
CN (1) CN101687253A (en)
TW (1) TW200914166A (en)
WO (1) WO2009001710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468241B (en) * 2010-03-31 2015-01-11 Jx Nippon Mining & Metals Corp Silver - plated copper powder and its manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462189B (en) 2008-08-01 2013-05-29 Lab Impex Systems Ltd Method and apparatus for measuring radioactivity
JP2011174144A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Fine powder of copper and method for producing the same
JP6031571B2 (en) * 2010-09-30 2016-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP5820202B2 (en) 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP2012126942A (en) * 2010-12-14 2012-07-05 Jx Nippon Mining & Metals Corp Fine spherical copper powder and method for producing the same
JP5960543B2 (en) * 2012-08-08 2016-08-02 古河機械金属株式会社 Method for producing copper fine particles, and method for producing conductive paste
JP2014034697A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP5872063B2 (en) * 2012-11-26 2016-03-01 三井金属鉱業株式会社 Copper powder
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
EP3345696B1 (en) * 2015-09-03 2023-06-07 Dowa Electronics Materials Co., Ltd. Phosphorus-containing copper powder and method for producing the same
JP6561100B2 (en) * 2017-10-04 2019-08-14 Jx金属株式会社 Method for producing surface-treated copper fine particles
JP6549298B1 (en) * 2018-09-21 2019-07-24 Jx金属株式会社 Pulverizable copper powder and method for producing the same
WO2023126830A1 (en) 2021-12-27 2023-07-06 Tata Steel Limited A method of producing spherical copper powder and a product thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701426B2 (en) * 1999-12-01 2011-06-15 Dowaエレクトロニクス株式会社 Copper powder and copper powder manufacturing method
KR100743844B1 (en) * 1999-12-01 2007-08-02 도와 마이닝 가부시끼가이샤 Copper powder and process for producing copper powder
JP4185267B2 (en) * 2001-07-25 2008-11-26 三井金属鉱業株式会社 Copper powder, method for producing the copper powder, copper paste using the copper powder, and printed wiring board using the copper paste
JP4204849B2 (en) * 2002-11-12 2009-01-07 Dowaエレクトロニクス株式会社 Production method of fine copper powder
JP4242176B2 (en) * 2003-02-25 2009-03-18 石原産業株式会社 Copper fine particles and method for producing the same
JP2005023417A (en) * 2003-07-04 2005-01-27 Fukuda Metal Foil & Powder Co Ltd Production method of ultra-fine copper powder
JP4085049B2 (en) * 2003-08-21 2008-04-30 Jfeミネラル株式会社 Copper alloy powder for conductive paste, method for producing copper alloy powder for conductive paste excellent in oxidation resistance, copper alloy powder for inkjet, and method for producing the same
JP4868329B2 (en) * 2004-03-09 2012-02-01 Jx日鉱日石金属株式会社 Method for producing copper fine powder
JP4662760B2 (en) * 2004-12-22 2011-03-30 三井金属鉱業株式会社 Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP4687599B2 (en) * 2006-07-26 2011-05-25 住友金属鉱山株式会社 Copper fine powder, method for producing the same, and conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468241B (en) * 2010-03-31 2015-01-11 Jx Nippon Mining & Metals Corp Silver - plated copper powder and its manufacturing method

Also Published As

Publication number Publication date
JPWO2009001710A1 (en) 2010-08-26
JP2013057128A (en) 2013-03-28
CN101687253A (en) 2010-03-31
KR20120116013A (en) 2012-10-19
JP5235193B2 (en) 2013-07-10
US20100192728A1 (en) 2010-08-05
WO2009001710A1 (en) 2008-12-31
KR20100024431A (en) 2010-03-05
TWI370033B (en) 2012-08-11

Similar Documents

Publication Publication Date Title
TW200914166A (en) Spherical copper fine powder and process for production of the same
TWI304003B (en)
JP5032005B2 (en) High crystal silver powder and method for producing the high crystal silver powder
TWI316430B (en)
TWI295666B (en)
JP5155393B2 (en) Spherical cuprous oxide aggregate particle composition and method for producing the same
JP2012511627A5 (en)
TW201139012A (en) Fine silver-plated copper powder and method for producing same
TW201027578A (en) Valve metal and valve metal oxide agglomerate powder and process for production thereof
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
JP2010265520A (en) Tantalum powdery mixture, method for producing the same, tantalum pellet, and method for producing the same
TW201210944A (en) Silver particles and a process for making them
JP2010534280A (en) Method for producing copper particle composition
JP2004169081A (en) Metal powder and its manufacturing method
JP2016011448A (en) Fine particle, method for producing fine particle, and fine particle dispersion solution
JP4144856B2 (en) Method for producing silver powder comprising ultrathin plate-like silver particles
JP2012126942A (en) Fine spherical copper powder and method for producing the same
TWI231512B (en) Solid electrolytic condenser and method of making same
TW200902193A (en) Method of producing fine particle copper powders
JP5163843B2 (en) Method for producing silver fine particles
JP5912663B2 (en) Cobalt-plated copper fine powder, conductive paste produced using cobalt-plated copper fine powder, and method for producing cobalt-plated copper fine powder
CN109622986A (en) A kind of preparation method of copper-based modification infusorial earth
JP7229779B2 (en) METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE
JP6958434B2 (en) Metal particle agglomerates and a method for producing the same, and a paste-like metal particle agglomerate composition and a method for producing a bonded body using the same.
WO2020013188A1 (en) Base metal plating film