TW200911406A - Stainless steel or stainless steel alloy for diffusion bonding - Google Patents

Stainless steel or stainless steel alloy for diffusion bonding Download PDF

Info

Publication number
TW200911406A
TW200911406A TW097120218A TW97120218A TW200911406A TW 200911406 A TW200911406 A TW 200911406A TW 097120218 A TW097120218 A TW 097120218A TW 97120218 A TW97120218 A TW 97120218A TW 200911406 A TW200911406 A TW 200911406A
Authority
TW
Taiwan
Prior art keywords
plate
stainless steel
uns
inches
thickness
Prior art date
Application number
TW097120218A
Other languages
English (en)
Inventor
Mark Crockett
John W Lane
Vincent Kirchhoff
Marcel E Josephson
Hong P Gao
Bhaswan Manjunath
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200911406A publication Critical patent/TW200911406A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment

Description

200911406 九、發明說明: 【相關申請案】
本發明係與下列各案相關:2 0 〇 4年5月1 8曰公告之 Mark Crockett等人的美國專利第6,73 6,370號;2003年7 月12曰申請之Crockett等人之美國專利申請第10/617,950 號,目前為待審,且為美國專利第6,736,3 70號之部分連 續案;2006年8月23曰申請之美國專利申請第11/5〇9,5〇7 號,目前為待審,且為美國專利申請第^/617,950號之分 割案;2006年10月3曰申請之美國專利申請序號第 11/542,829號,目前為待審’且為美國專利申請第 1 0/617,950號之分割案;2006年10月17曰申請之美國專 利申請序號第1 1/582,748號’目前為待審’且為美國專利 申請第1 0/61 7,950號之分割案;以及2006年10月24曰 申請之美國專利申請序號第1 1 /586,1 03號,目前為待審, 且為美國專利申請第I。,6 1 7,950號之分割案。在此將上述 各案併入以做為參考。
【發明所屬之技術領域】 本發明係有關於一種生雇 用的流體輸送系統之方法’其 腐蝕性環境中。該流體輸送系 部分的流體輸送系统元件 vonded)。該方法可用來生康 輸送系統,其中所使用的起始 在半導體處理設備中特別有 中該流體輸送系統常暴露在 統之一識別特徵在於至少一 係經擴散接合(diffusion 種也可用於其他產業的流體 材料係經選擇以利特定的終
200911406 端用途。該流體輸送系統可包含整合式流 過濾器、壓力感測器、流體熱感測器 sensors)、層流元件、壓力調節器、控制β 以及止回閥(checkvalves),其可以不同程 輸送系統網路架構的結構中。 【先前技術】 此部分描述與所揭示之本發明實施例 物。並無意,無論是明示或暗示,使在此 合法構成先前技藝。 在通常依賴流體處理之化學處理中, 處理的流體有毒、有害並且可能與建構材 生反應時,改善的系統洩漏可靠度以及該 審慎整合至構成該流體處理系統之網路 的。此外,用於該流體處理中的所有部件 至該總流體流量網路架構中是很重要的, 可靠度,提供一小尺寸,並允許具彈性之 導體處理之應用中,例如,該等流體部件 出確保該流體輸送系統製程的潔淨度之特 製造的固態元件不會受到污染,並不會影 度。 如在相關的2 0 0 4年5月1 8日核准予 並且專利名稱為「擁有動態金屬座及圓椎 片閥(Diaphragm Valve With Dynamic 體部件,例如為 (fluidic thermal 丨、流量限制器、 度整合至該流體 有關的背景標的 所述之背景技藝 並且尤其是當欲 料或環境空氣產 流體處理設備之 架構中是最重要 設備皆完善整合 以確保系統洩漏 控制。在例如半 設備也必須展現 定能力,以使所 響其效能及可靠 Crockett 等人, 狀圓盤彈簧之膜 Metal Seat And 200911406
Coned Disk Springs )」之美國專利第6,73 6,3 7 0號中所述, 為確保該流體輸送設備不會產生微粒,流體流動通道的内 部表面平滑並且沒有可磨損並做為微粒來源的尖角是很重 要的。此外,形成該等流體流動通道的材料不會被通過該 等流體流動通道的流體所腐蝕,並且該等通道中沒有可容 許腐蝕且在該流體流動系統關閉進行維修時做為有害材料 的來源之死角也是很重要的。
在半導體處理設備中,該流體流動系統不會發生洩漏 是關鍵性的;此外,流體輸送系統通常使用例如氫氣和氦 氣之氣體。氫氣是最輕的元素,並且在自然界中係以無色、 無味、高度可燃氣體之H2分子型態存在。從一配管系統之 小孔所洩漏的氫氣可點燃,並以近乎不可見的藍色火焰燃 燒,這對於在附近行走的人而言是非常危險的。氦氣也是 一種重量輕的小原子,其因為其小原子尺寸、擴散性及高 流動性,故常用於洩漏測試。雖然氦氣的洩漏不如氫氣的 洩漏般危險,但該流體流動系統必須適於容納氦氣而無實 質洩漏。一般的半導體產業之氦氣洩漏標準是在一大氣壓 之壓差下為低至約lxl〇_9 cc/sec的氦氣。可符合此氦氣洩 漏要求的流體流動系統是防止讓環境暴露在通常極具毒性 及腐蝕性的製程流體中之能力的象徵。因為所輸送的眾多 流體之毒性,非常高的系統洩露可靠度及長的使用壽命(避 免關機及替換部件的需要)是極重要的。小型的設計以及合 理的成本也是重要的。 在相關的Crockett等人於2003年7月12曰提出申請 7 200911406 之專利名稱為「擁有動態金屬座閥及其他元件之微機械整 合流體輸送系統(Micromachined Integrated Fluid Delivery System With Dynamic Metal Seat Valve And Other Components)」之美國專利申請案第10/617,950號中,提 供關於擁有高水準的元件整合度之整合流體系統的一般概 念,其不但容許改善的功能性’也在製造上有可觀的成本 撙節。如在,9 5 0專利申請案中所述,由於減少製造成本, 加上模組化程度的適切平衡,可能藉由置換整合模組而非 關閉該系統以進行個別元件裝置(其在本設計中是該整合 模組的一部分)之長時間維護及修復操作來減少流體流動 系統的維修費用。 在擁有一整合式控制系統之流體流動裝置及通道的整 合式網路架構方面,對於較高整合度、操作簡易度有恆常 的需要。除了效能及處理優勢之外,該整合式流體流動系 統的成本必須有競爭性。這表示各流體處理裝置、内連接 網路架構及整合式控制系統的製造方法在工具製造上必須 可輕易調整以因應大量生產、可變的生產要求及符合成本 效益的 NRE(Non-recurring Engineering ;非重複性工程) 費用’本發明在所有這些領域中提供實質上的優勢。 有許多關於常用於半導體產業以傳送流體往返半導體 處理室和與該處理室並用的設備之這—類的氣棒(gas sticks)之美國專利。這些氣棒通常是利用加工抗腐蝕材料 塊製出。關於氣棒之美國專利的某些範例包含·· 1 994年4 月19日核准之專利名稱為「液態流量控制器(LiquicI Flow δ 200911406
Controller)」之美國專利第5,303,731號,其描述擁有機 器加工在其内之導管的流體流量控制器之主體單元;丨9 9 7 年2月2 5曰核准之專利名稱為「整合式氣體分配盤 (Integrated Gas Panel)」之美國專利第 5,605,179 號,其
描述複數個個別的氣體製程模組,其係利用複數個位於其 間的襯墊連結在一起;其中該等模組係經連結在一起而使 每一個模組各自的埠彼此流體連通,以形成一連通管或 埠;1 998年3月24曰核准之專利名稱為「擁有垂直淨化 器之質流控制器(Mass Flow Controller with Vertical Purifier )」的美國專利第5,730,181號,其描述含有淨化器 金屬單元、質流計量單元、以及閥門單元之淨化器,其中 該等單元之間的密封係利用一 ”z”形密封件,並且每一個單 元皆擁有經機器加工的流體流動導管在其中。1 9 9 8年 11 月1 7曰核准之專利名稱為「整合式氣體分配盤之建構單元 (Building Blocks for Integrated Gas Panel)」之美國專利 第5,8 3 6,3 5 5號,其描述含有複數個不同單元之氣體分配 盤,其中氣體管線由堆疊的單元取代之,而堆疊單元擁有 一系列以不同方向定位的導管,其係經設計以與其他單元 並用以形成一流體通道;1 9 9 9年1 1月3 0日核准之專利名 稱為「氣體分配盤(Gas Panel )」的美國專利第5,992,463 號,其描述一單件式歧管主體,其擁有至少一個在氣流的 一般方向上延伸之橫向側壁。該橫向側壁包含至少一個主 動元件位址(即一主動元件將附接在此位址),該位址擁有 一主動元件位於其上(一系列的開口及導管係經機器加工 9 200911406 至該歧管内) 這些氣棒通常包含利用機器加工抗腐蝕材料塊製出之 元件和歧管。此類氣棒的製造成本可觀’並且該等機器加 工的歧管常是流體流經該機器加工製程所造成的粗糙表面 或轉角附近時產生微粒的來源》 軸向負載(axially loaded)的擴散接合技術係經發展 、用於製這例如·熱父換器,例如扇葉之氣體渦輪引擎氣 翼丄和I縮機葉片H用於氣,態或液g樣本分析之分 離管柱裝Ϊ。用於軸向負載擴散接合之技術與所製造的裝 置緊密關聯。該等擴散接合條件取決於欲擴散接合的材 料所裝造的裝置之形狀的複雜度、以及該擴散接合裝置 的效能標丨。基於獲得均句地擴散接合之物件所具有的困 難度,"該應料可時可使用使—裝置的元件結合在一 起的其他方法,例如銅焊或施加膠黏劑。
除了轴向負載擴散接合之外,也可用另一種形式的擴 散接合來製造層壓部件。熱均壓(HIP)據稱特別適於不同材 料的接合。例如為氮化梦、英高合金9。9 ( 州)、 沃斯田鋼(austenitic steel)、肥粒鋼⑽出“ “Μ”、氧化 ° 氧化結經基構灰石(zlrc〇nia-hydr〇xyapatite)之不 同材料冑稱係利用H J p技術來接合。可取得關於用於工 ' Μ用這類的燒結碳化物的結合之一系列的出版文 獻。有時候會建議使用ΗΙΡ擴散接合技術做為軸向負載擴 _ —的另種選擇。但是,HIP擴散接合(一種均壓負載 /,Γ )站要不樣的、更複雜的配件。兩種製程皆落在擴散 10
200911406 接合的廣義範_内。 擴散接合技術常使用中間層來確保該等配接面之間 良好接觸,並且確保從該接合製程得到接近該材料的體 度(bulk strength)之接合強度。同時,在該元件設計 求高公差(t ο 1 e r a n c e )的情況中並不建議使用中間層。 本發明係有關於擴散接合基板,其包含流體流動 管。這些流體流動導管較佳地係由經钱刻的平板形成, 些平板係經設計以在需要時經合併以產生形狀複雜的流 流動導管,並且在導管轉彎或扭曲時產生圓滑表面,以 納安裝在或包含在該基板内的裝置。該等擴散接合基板 供減少死角並產生較少微粒的優勢;但是,該擴散接合 程需要審慎控制製程材料及處理條件,以產生可接受的 合部件。 對於上述文件及將擴散接合描述為一種特定裝置用 製造技術之其他出版品和專利的詳細審閲,則可清楚得 所用的製造方法大幅度取決於執行該裝置功能所要求的 置設計,以及建構該裝置的材料。在本例中,該裝置可 是任何流體流動裝置,其係用來做為半導體製造設備的 部分。 【發明内容】 本發明係有關於一種鋼及鋼合金的擴散接合方法, 製造一種流體輸送系統。雖然一般可用該方法來接合鋼及 合金部件,但對於擴散接合流體輸送部件最迫切的需求組 的 強 要 導 該 體 容 提 製 接 之 知 裝 以 以 鋼 之
200911406 一係存在於半導體產業中,因為常在該產業中處理的流體 有腐蝕性及毒性。用於半導體流體輸送系統之最重要的流 流動裝置之一是氣棒(gas stick ),其供應製程氣體至一 導體處理室。為了說明,本發明係以氣棒製造的觀點來 述,但熟知技藝者,在讀過本揭示之後,可設想出許多其 可用於半導體製造,及要求超高純度之其他產業的流體流 裝置,其中可用本發明教示來製造裝置。 在一典型實施例中,該擴散接合方法使用複數個不銹 或不銹鋼合金平板,以形成如要求般執行之流體流動處理 構。該擴散接合方法需要許多特定步驟以確保該擴散接合 體流動處理結構會提供半導體處理設備中所要求的類型 抗姓性及高抗漏能力(leak integrity)。該方法步驟中包含 下操作: 選擇欲擴散接合以形成一流體流動處理結構之平板, 中該平板呈現一化學組成及結構,該化學組成及結構可提 針對欲在該流體處理結構中流動之流體的機械強度、化學 容性、抗蝕性及高抗漏能力之適當平衡; 圖案蝕刻或圖案機器加工該平板,以在該平板表面中 生一凹部,或一通孔,或其組合; 在經過圖案蝕刻或圖案機器加工之至少一區域中進 電拋光或磨料流動機器加工(abrasive flow machining); 細磨或研磨該平板之一接合表面或多個接合表面,以 供介於約0.5微英吋Ra至約3 5微英吋Ra之表面粗糙度 以可產生一期望流體流動處理結構之方式而將該些 具 體 半 描 他 量 鋼 結 流 之 如 其 供 相 產 行 提 y 平 12 200911406 板相對於彼此對齊;以及
使該些平板經受足以造成當使用單軸擴散接合時而測 得之介於約〇 · 7 5 %和約3 %間之壓迫(c r u s h )的壓力,其中 該些平板具有介於約0 · 5微英吋Ra至約3 5微英吋Ra之間 的接合表面粗糙度,並且在介於約900°C至約1 075°C的溫度 下,及介於約1000 psi至約7000 psi的壓力下處理一段介 於約1小時至約8小時的時間。當該等平板在約1 〇 7 5。(:的 溫度下接合時,該等平板内的塊材晶粒尺寸在根據 ASTM E-1 1 2-96 (2004)測試時約是0.5,這相當於302微来平均直 徑。根據相同的測試方法,沿著該接合線的晶粒尺寸約是 8 · 5 ’這相當於1 8.9微米平均直徑。使用此擴散接合技術而 接合的平板’其具有位於該測試片(c 〇 u ρ ο η )頸部中心之接 合線,而測試該平板的抗張強度(tensile strength )係提供 該等接合樣品之如下機械性質:平均1 3,1 〇 〇磅的尖峰負載, 平均75,200 psi之抗張強度,平均29,6〇〇 psi之〇 2%偏位 降伏強度(offset yield strength),以及平均75之斷裂伸長率 (elongation percent at break)。這些性質是以機械強度的觀 點來看可接受的部件之象徵。 典型地’當使用單轴接合來擴散接合不銹鋼或不銹鋼合 金時’該等接合表面的表面粗糙度係介於約1微英吋Ra至 、..勺1 6微英对Ra,並且該等平板係在介於約$ 〇 〇至約丨〇 〇 〇 C的肌度下,以及介於約1〇〇〇卩以至5〇〇〇 ρ"的壓力下處 理丰又介於約2小時至、約6小時的時間。更典$地,該等接 合表面的表面粗糙度係介於約2微英吋Ra至約I 〇微英吋 13 200911406 R a ’並且該等平板係在介於約9 5 0 C至約9 8 5 °C的溫度下, 並且在介於3000psi至3500psi的壓力下處理一段介於約3 小時至約4小時的時間。 可使用的鋼及鋼合金之種類取決於該流體輸送系統的 終端用途。顯不出特別有用的某些代表性鋼及詞合金包含不 銹鋼 316L(或 UNSS31603)、不銹鋼 317L(或 UNSS31703)、 不錄鋼 317LN(或 UNS S3 1 726)、Avesta® 254SMO(或 UNS S3 1 254)、Avesta® A16XN(或 N08367)、Duplex® 2205(或 UNS S32205)、及 Duplex® 2507(或 UNS R30003),上述僅 做為範例而不做為限制。但是,重要的是,就我們所知,這 些材料並無法在軋鋼機產出的型態下直接使用。若欲將該些 材料用在擴散接合上而不在該等接合層之間使用界面層,則 必須對該些材料進行特定處理。在欲用來製造該流體流動處 理設備之片料的買主之要求下,此特定處理可在軋鋼機,或 在碾磨或拋光現場執行。 可要求不銹鋼316L符合SEM卜F2〇規格中與化學組 成、機械性要求、晶粒尺寸、失雜物評級(inciusi〇n ratings)、 以及抗腐蝕性筛選有關之要求。就流體輸送應用而言,我們 判定符合這些SEMI_F2G規格之特定要件可輕後續處理會 在最^成本下成功接合。此特定處理/選擇之應用僅關於 316L不錢鋼’而並未針對上列之其他合金或鋼。 >關於上述之其他不錄鋼,就要求更高的應^言,建議 這些不錄鋼被處理/撰楼w Λ / 擇乂付合上面關於不銹鋼316L所述 之相同的SEMI-F20規格。此冰 & t Λ 匕外’取決於應用,較適當的是, 14 200911406 接合部件可符合根據SEMI-F77所測得之大於l〇t:的關鍵痕 触溫度(critical pitting temperature)值,以及根據 ASTM G-48F所測得(以利用傾斜! 3°的剖面製備之樣品)之在界面 處 2 0±1°C 之關鍵間隙溫度(critical crevice temperature)。 關於上述所有的不銹鋼,建議沿著該接合線的晶粒尺寸 是在根據ASTM E112之約5(63_5微米平均直徑)或更細小的 範圍内。在坯料階段的ASTM E45之建議夾雜物要求為:A 型夾雜物薄(thin) =1.5或更低,並且重(heavy) =1.〇或 更低;B型夾雜物薄=1.〇或更低,並且重= ι_〇或更低;€型 夾雜物薄=1.0或更低,並且重=1.0或更低;以及D型失雜 物薄=1.5或更低,並且重=ι.〇或更低。也建議ASTM-240 之機械性要求。當該應用係用於高度腐蝕環境時,該材料應 符合根據 ASTM A262 之實施#的粒間腐蚀要求 (intergranular corrosion requirement) ° 必須處理欲擴散接合的鋼或鋼合金之配接面(mating surface )以提供低於1 〇 Ra微英吋之表面粗糙度。典型地, 該表面粗糙度係介於約3 Ra微英吋和約1 0 Ra微英ιι于之 間’並且更典型地,該表面粗糙度係介於約5 R a微英p寸和 約1 0 Ra微英吋之間。 雖然僅需拋光該等平板之接合表面,以得到構成所製造 之流體流動部件的平板之擴散接合,但在欲擴散接合之配接 面獲得期望表面粗糙度之整體製程之一部分可包含_電抛 光製程(或提供等效結果之機械拋光),其拋光圖案化通道表 面和通孔表面以及欲接合之平板的主表面。這些表面的抛光 15 200911406 對於減少可由在該流體流動設備(元件)經定位使用後流經 這些表面的流體所產生之微粒上是有幫助的。用來獲得10 微英叶Ra或更低的平板表面粗縫度之方法的詳細描述隨後 提出的「實施方式」中描述。 除了表面粗糙度之外,為了獲得良好的擴散接合,欲接 合的平板之整體平坦度應為±0.001英吋,並且在任4平方英 吋面積内為±0.0005英吋。就單軸負載擴散接合方法而言,
在未受限情況下(unrestrained condition),該平板的整體平 行性(parallelism)應是±〇.〇〇1英吋,並且在任4平方英时面 積内為±0.0005英吋,其中未受限表示該部件的移動並未因 失钳或其他限制方法而受到實體限制。此外,若使用觸止塊 (stop block )和堆疊,則就單軸負載而言,該平板的厚度 公差應是±0· 005英吋。一旦該等平板上的表面處理已經完 成在擴散接合内部邊緣處的去毛邊(deburring)需要0.005 英吋的最大半徑。 除了表面粗縫度之外’欲擴散接合的配接面之清潔度必 肩審慎控制。該等配接面的氧化是特別有害的。欲擴散接合 的不銹鋼板通常係利用一個n步驟的製程進行清潔,並且 常包含第12個步驟以除去在周圍條件(ambient condition) 下傾向於形成在該等平板表面上的自然氡化層。執行如下之 '月步驟:1 )將該蓉伞把,.*、、办+ 平板反包在—驗性去脂劑(d e g r e a s e r ) 中。此種去脂劑之—疒s r i 祀例疋Enbond Q527™或依據功能性觀 點之等效物;2)在# 丁
„ 周圍,皿度下將該等平板牽曳通過2 200 K ^姆-公分的水之喑霖+、、夺、主 、務或次 >貝浴;3)將該等平板浸潰在一酸 16 200911406 性録刻溶液内達2分鐘,其中該酸性钱刻溶液係由! % (體 積百分比)-5%(體積百分比)的氣氣酸、〗5% (體積百分 比)_25% (體積百分比)的頌酸、以及剩餘體積百分比之 DI(去離子)水組成;4)在周圍溫度下將該等平板通b 2 0 0 K歐姆-公分的水之啥兹十、夺、圭
之噴霧或次潰浴;5)在室溫下以g 4M 歐姆-公分的水而動力噴灑(pGwerspraying)該等平板達一 段〇_5分鐘至4分鐘的時間;6)將該等平板浸潰在_酸性清 潔溶液内達約2至約I 5分鐘,並由兮缺α 刀鐘其中該酸性清潔溶液係由40% (體積百分比)-60% (體積百分比)的硝酸、並以〇ι水補 足剩餘體積百分比所组成;7)在周圍溫度下將該等平板牽良 通過2 200K歐姆-公分的水之噴霧或浸潰浴;8)在室溫下以 2 4M歐姆-公分的水而動力噴灑該等平板達一段〇 5分鐘至 4分鐘的時間;9)將該等平板浸潰在2M歐姆_公分的1 =達 一段10分鐘至30分鐘的時間;1〇)將該等平板浸潰在4M 歐姆-公分的水中達一段丨〇分鐘至3〇分鐘的時間;以及 在一黑光(black light)下檢查該等平板之鬆散微粒。若微粒 濃度不符合依經驗決定之特定擴散接合製程的可容許水 準’則可能需要重複該清潔製程。 在大部分情況中,因為該清潔表面在暴露於周圍氡氣下 時之自然氧化’故執行一額外的步驟是適當的:12)利用雷 射剝離法或例如電子A擊或離子賤射之其他動力製裎以除 去原生氧化物。建議此雷射剝離法在一惰性氣體下執行,並 且該擴散接合處理的環境也是一惰性氣體環境,直到所有平 板皆已堆疊並且點焊(tac we】ded)就定位為止,以避免該 17 200911406
等接合表 可量 用離子層 鉻、姑、 鈮、鉀、 NH4+。下: 量測:(F· 陰離子和 表示的總 量測。我 面清潔度 若要 F72内所 圍氧氣產 是無法接 境下堆疊 即開始堆 用該HIP 快執行真 接直到施 適當的, 始部分期 空氣擴散 容器内。 面在該擴散接合製程之前氧化。 測清潔品質以追蹤離子污染物。如下陽離子物種係 析儀量測:銘、録、_、鋇、嫂、秘、蝴、鑛、#5 > 銅嫁、錯、金、鐵ϋ、H、#、Μ、、銻、 銀鈉、锶、钽、鉈、錫、鈦、Μ、鋅、鍅、及 之陰離子物種係用ICPMS(感應耦合電漿質譜儀) )、(C1 )、(N02-)、(Br-)、(n〇3.)、(s〇4-)、及(ρ〇4)·3。 陽離子的總質量和會產生以每單位面積之微克量 離子污染’並且可符合SEMASPEC 90 1 20399B-STD 們判定總離子污染低於每平方英吋0.33微克的表 係適用於高品質接合。 達到高品質接合,形成厚度大於約1 〇埃(以SEMI 述之方去測量)之層的自然鈍化氧化物(其係從周 的氧化鉻和乳化鐵及其他金屬氧化物)在平板上 受的。就單軸擴散接合而言,當不可能在非氧化環 該等部件時,則重要的是,在除去該等氧化物後立 疊該等平板’並且盡快開始該擴散接合製程。就使 接合技術之擴散接合而言,重要的是,在清潔後盡 空外圍焊接,並且較佳地在一惰性環境中執行該焊 加真空為止。在可能之狀態下,1 〇'6托耳的真空是 以從該等接合區域除去氧氣。在HIP接合製程的初 間無法得到真空的情況中,則可能允許讓任何受制 通,該金屬,並在該HIP週期期間排出至該HIP 但是,無論特定環境條件為何’會需要在最初實驗 18 200911406 判定可容忍度。若必須在清潔後及擴散接合前存放平板,該 等平板需要打包裝入以惰性氣體壓力填充的袋子内,以保護 該接合表面直到使用為止。 在使用單軸負載擴散接合時’重要的是,設計欲擴散接 合的平板/薄片以使該擴散接合製程期間發生的尺寸變化 在圖案化該等爭板時被計算在内。熟知技藝者,鑑於欲在該 等平板之接合期間應用的處理條件,可計算在個別平板内的
預期圖案移動應疋^ 乂、,並且可調整該平板内的圖案尺寸以 做適當補償。例如’假設在整個接合期間有均勻的膨脹及 3%的壓迫,則可估計預期的尺寸變化。在此隨後討論壓迫。 欲擴散接合的材料平板需在該擴散接合製程期 並保持在定位。在此間隨後描述的實施例中’在該等平板外 部周圍點焊期間,該等平板係利用對位銷保持在定位。 該等平板之單轴負載擴散接合期間所使用的壓力、温 度、和時間條件係經設計以達到某程度的壓迫量。其中壓迫 係定義為組合之平板在厚度上的縮減。/〇。壓迫是一個需控制 之-重要量’以增強在-已知的固定麼力下之接合品質。通 常,本發明設計擴散接合的墨返量係介於約〇·75%至約 3.5%。 擴散接合層的界面之空隙宗痒广.,,. 丨承在度(void density)也是重 要的。空隙密度是檢驗該接合物 •w仟之剖面時在接合層界面所 觀察到的空隙量之度量。恭們划— 我們判疋使用在此所述之單軸負載 擴散接合方法中之約1 . 5 %和3 ^ .0 /〇之間的壓迫所獲得的高品 隙係以100: 貝接合會產生低於10%的空隙密纟其令該空 19 200911406 的放大倍率查看該等接合層的剖面來測量,並且該空隙密 係沿著該界面長度之線總長度内的斷裂長度總合,再除以 野内該界面的總長度,然後乘以1 00。 可設計一擴散接合流體流動歧管(在一氣棒中使用的 類之一例)之入口及出口埠,以與目前在技藝中所用的既 模組單元種類回溯相容(backward compatible )。此外, 設計使功能性流體流動裝置能夠連接在該擴散接合流體 動歧管表面上所需的密封構件,以與此功能性流體流動裝 接合。 【實施方式】 做為細節描述的開端,應注意到,如在此說明書及 屬申請專利範圍所使用者,單數形式”一”、及''該”包含 數個指涉對象,除非上下文清楚指定其他意涵。在使用「 屬」或「金屬的(metallic)」之用詞時,了解到這包含 屬合金。在本發明各處對於本發明之了解有重要性的其 用詞在上下文中定義。 當在此使用"大約” 一字時,這是想要表示所表達的 稱值係精破至± 1 〇 %以内。 本發明係有關於一種擴散接合、節省空間的整合式 體輸送系統,其特別是用於半導體處理設備中之氣體分 上。該擴散接合流體輸送系統可包含例如但不限於為整 式裝置,包含過濾器及淨化器、壓力感測器、壓力調節㈣ 流體熱感測器、層流元件、開/關閥、質流控制器、以 度 視 種 存 可 流 置 附 複 金 金 他 標 流 配 合 ·> 及 20 200911406 止回閥。該等整合式流體處理裝置在該擴散接合的整合式 流體輸送系統中可以是在線式(in line);或者,該等流體 處理裝置可表面黏著在一擴散接合歧管上,該歧管含有許 多流體流動通道;或者,該等流體處理裝置和流體輸送系 統可包含模組單元的組合,其係以各種順序連接以提供特 別功能。無論設計為何,本發明包含經擴散接合以在該等 擴散接合層之間產生密封(leak tight)接合之複數個層。 用來形成該多層結構之該等層係圖案化層,其中一圖 案的第一部分可貫穿一層’而該圖案的第二部分係存在至 該層内之一標稱深度,但並不貫穿該層。在某些情況中, 所有的圖案皆可貫穿一層,而在其他情況中,所有的圖案 皆存在至該層内之一標稱深度。 部分部件裝置結構,且在某些情況中之整個裝置結構 係利用圖案化鋼及鋼合金層製造’其係利用擴散接合來黏 著。較佳地’但並非必要(取決於設計),整合在一般流體 處理結構中之一部件裝置或該部件裝置的一部分係同時與 該一般流體處理結構(通常是一歧管)擴散接合。一整合式 流體輸送系統網路架構通常包含使用至少一個氣體分配通 道的組件’其中該組件包含使用已經擴散接合在一起的複 數個(即’至少兩個)金屬層(通常是平板)之結構。該等金 屬層通常係由選自由不銹鋼316(或UNS S31600)、不銹鋼 316L(或 UNS S 3 1 603 )、不銹鋼 317L(或 UNS S31703)、不 銹鋼 317LN(或 UNS S3 1 726)、Avesta®254SMO(或 UNS S3 1 254)、Avesta®A1 6XN(或 N08367)、沃斯田一肥粒 21 200911406
Duplex®2205(或 UN S S 3 2 2 0 5 )、以及 D up 1 e χ ® 2 5 0 7 (或 UN S S32750)所組成之群族的沃斯田不銹鋼來製造。該等金屬層 (板)也可由固溶強化型(solid solution strengthened )的 Iconel®625(或 UNS N06625)、Hastell〇y®C22(或 UNS N06022)、Elgiloy®(或UNS R30003)及基本上與這些材料 等效的其他含鋼材料,及其組合物來製造。藉由基本上等 效,想要表示在此所述之製程條件可用來擴散接合該含鋼 材料,當該接合溫度和壓力經調整以達到1 0 %或更低的界 面空隙密度(在1 0 0 %放大倍率之界面的剖面圖上)。
Avesta®254SMO (或 UNS S3 1 254 )及 Avesta®A 1 6XN (或UNS N08367)為沃斯田不鏽鋼,且由於其高鉬含量, 故對於痕钱 (pitting corrosion)和裂縫腐餘(crevice corrosion)具有高抗性。Duplex®2205 (或 UNS S32205 ) 為最常用的肥粒鐵不鏽鋼/沃斯田不鏽鋼,乃因為其具有絕 佳的抗蝕性及高強度。Duplex®2507 (或 UNS 32750)為 具有高鉻、钥及錄含量的超級雙相(superduplex)不鏽鋼, 其係針對高強度及高抗蝕性之應用而設計的。鋼對於氯化 物應力腐餘開裂(chloride stress corrosion crackin)具有 絕佳抗性,以及低的熱膨脹係數。Iconel®625 (或 UNS N06625 )及 Hastelloy® (或 N06022 )係已知具有高強度 及較佳之抗蝕性。Elgiloy® (或UNS R3 0003 )具有絕佳之 抗蚀性及疲勞應力(fatigue stress)特性。所有的這些鋼 可以使用上述方法而擴散接合。下方的表1顯示出不銹鋼 316、不銹鋼 316L、不銹鋼 327、不銹鋼 317L、不銹麵 22 200911406 317LN、A v e s t a ® 2 5 4 S Μ Ο、Avesta® A 1 6XN、Duplex®2205 及D u p 1 e x ® 2 5 0 7的比較數據。熟悉該技術領域者必定能夠 選擇可以使用在本發明中之相似材料。 表1 抗腐蝕、可擴散接合之含鋼材料的關鍵元素含量: 鐵是剩餘之元素含量
鋼 碳 % 猛 % 鎳 % 硫 % 矽 % 鉻 % 鉬 % 磷 % 氮 % 銅 % 3 1 6 UNS 3 16 0 0 0.08 最大 2.00 最大 10.00 至 14.00 0.030 最大 1.00 最大 16.00 至 18.00 2.00 至 3.00 0.045 最大 —— —— 3 1 6L UNS 3 16 0 3 0.030 最大 2.00 最大 10.00 至 14.00 0.030 最大 1.00 最大 16.00 至 18.00 2.00 至 3.00 0.045 最大 —— —— 3 1 6L SEMI F20 0.030 最大 1,5 最大 11.00 至 14.00 0.010 最大 0.75 最大 16.00 至 18.00 2.00 至 3.00 0.045 最大 0.10 最大 —— 3 17 UNS s 3 17 0 0 0.08 最大 2.00 最大 11.00 至 15.00 0.030 最大 1.00 最大 18.00 至 2 0.00 3.00 至 4.00 0.045 最大 —— —— 3 1 7L UNS s 3 17 0 3 0.03 最大 2,00 最大 11.00 至 15.00 0.030 最大 1.00 最大 18.00 至 2 0.00 3.00 至 4.00 0.045 最大 —— —— 3 17 LN UNS s 3 17 5 3 0.03 最大 2.00 最大 11.0 至 15.0 0.30 最大 1.00 最大 18.00 至 2 0.00 3.00 至 4.00 0.045 最大 0.10 至 0.22 — 254 SMO UNS s 3 12 5 4 0.02 最大 1.00 最大 17.50 至 18.50 0.01 最大 0.80 最大 19.50 至 2 0.50 6.00 至 6.50 0.03 最大 0.18 至 0.22 0.50 至 1.00 23 200911406 A 1 6 XN UNS N 0 8 3 6 7 0.030 最大 2.00 最大 2 3.50 至 2 5.50 0.030 最大 1.00 最大 2 0.0 至 2 2.0 6.00 至 7.00 0.040 最大 0.18 至 0.25 —— Duplex ® 2205 UNS s 3 2 2 0 5 0.030 最大 2.0 最大 4.5 6至5 0.020 最大 1.00 最大 2 2.0 至 2 3.0 3.0 至 3.5 0.03 最大 0.14 至 0.20 —— Duplex ® 2 5 0 7 UNS s 3 2 7 5 0 0.030 最大 1.20 最大 6.0 至 S.0 0.020 最大 0.80 最大 2 4.0 至 2 6.0 3.0 至 5.0 0.035 最大 0.24 至 0.32 —— 建議 0.010 最大 0 . 4 最大 10.0 至 15.0 0.004 最大 0.40 最大 17.4 至 18.0 2.5 至 3.0 0.020 最大 0.10 最大 ——
在上面提供的每一種鋼配方中,量最大的成分(通常是 材料之上述剩餘成分)是鐵(Fe),其係該組合物之重量百分 比的剩餘部分。所述之所有百分比皆為重量百分比。 雖然可使用上面提供的任何配方,但建議的配方提供 改善的結果,如:較低含量的錳、矽、或硫輔助夾雜物最 小化;以及,較高的鉻及鉬含量提供改善的抗蝕性。 可存在於含鋼材料内,並且由 SEMI F20設下最大限 制,以用於半導體生產設備内的其他成分包含:0.3 0 %的 最大銅含量、0.05 %的最大銳含量、0.01 %的最大銘含量; 0.0 2 %的最大鈣含量;0.0 2 %的最大鈦含量,以及0.0 2 %的 最大ί西含量。符合S Ε ΜI - F 2 0關於硫含量和銅含量之規格 的材料對於半導體裝置製造應用是特別有幫助的。就擴散 接合應用而言,我們判定低碳含量,例如S 0.0 1 0 % (重量 百分比),對於在長時間冷卻周期期間防止敏化 (sensitization)而言是重要的(在後方討論)。避免碳支撑 24
200911406 結構與該不銹鋼之接觸亦十分重要,因其在高溫接合製 期間會增加碳濃度並影響對於腐蝕之敏感度。 鋼或鋼合金内的晶粒尺寸對於維持機械強度而言是 要的。擁有依據ASTM E1 12之5 (63 5微米平均直徑)或 微細的晶粒尺寸是有利的。小晶粒也較不易於在晶粒邊 處析出碳化鐵,此種碳化物在該處會降低抗触性。若擴 接合期間之溫度太高,而且碳含量太高,則大晶粒會成I 並且即使因為大尺寸晶粒的成長而可產生良好的接合, 材料強度會較低並且抗蝕性會惡化。該”低碳”沃斯田不 鋼的優勢在於其在一段特定時間内承受一特定溫度水準 間維持抗姓性的能力,其和碳含量成反比。此特性在鋼 產業中稱為「敏化(sensitization)」。因此,最小化該不 鋼内的碳並且最小化該擴散接合的冷卻時間是非常重 的。需時一整天的冷卻周期可能使該敏化區内的部件承 太多時間,並且可能造成敏化材料。快速冷卻時間,在 分鐘至幾個小時的等級,對於在上表中所示的碳含 (0.08%重量百分比或更低,並且通常約 0.02%重量百分 或更低)是較適當的。第6圖示出用來擴散接合上述鋼鐵 主要參數、溫度、壓力、和時間的圖式。第6圖也顯示 若碳含量過高,會發生敏化的區域。 若該鋼鐵含有有意或無意添加的污染物(識別為夾 物)所造成的缺陷,此種夹雜物可能是腐姓的起始點, 能產生強度較低的材料,並且可能是洩漏的根本原因, 甚至一般地抑制高品質接合。依據 S Ε ΜI F 2 0,必須符 程 重 更 界 散 5 但 銹 期 鐵 銹 要 受 30 量 比 之 出 雜 可 或 合 25 200911406 astm E45下的夾雜物要求,而使得鋼坯階段. 薄“hin) =1.5或更低’並且重(―) 型失雜物 型夹雜物薄=1·〇或更低,並且重吃〇或更低’C 4更低;β 或更低’並且㈣,。或更低;…型失=雜物薄 或更低,並且重=1.〇或更低。 雜物薄叫乃 為達到高品皙接人,v ^上 貝接0必須處理欲擴散接合夕,
的該或該等配接面,以提供低於ι〇 ^微鋼或鋼合 通常表面粗糙度範圍在約…微英时和:二表面粗 :呀之間’並且更典型地,表面粗縫 a微 时和約10 Ra微英叶之間。 '力5。微英 面粗糙产Μ / η 為了在擴放接合之前得到此表 利用。常在從軋鋼機接收欲接合的該等表面之後, J用研磨、細磨、冷軋、或電拋 伤太以丄 此表面處理 係在所有的將_案機器加…或……或穿過欲 接合的平板表面之後進行;在產生對位孔之後(但在嵌入對 位梢之前)進行,·在欲產生埋頭孔(c〇unterb〇re)之區域内 的任何表面處理之後進行·’以及’在電拋光孔洞及通道之 後進行。 研磨(lapping )係一種藉由在拋光化合物的存在下將 一材料薄片/平板置於旋轉表面之間來拋光平坦材料的方 & °能夠執行研磨的設備,例如但不限於為營業處在伊利 論州 Mt. Prospect 之 Lapmaster 公司取得之 Lapmaster M〇del 56。另一種選擇,細磨(fine grinding)’其與研磨 的區別在於其使用研磨盤而不是使用拋光化合物’其中鑽 石研磨微粒係接合在移動的研磨盤上。此製程擁有增加製 26
200911406 造產量的優勢。例如碾磨系統,其也輔助符合表 平坦度、厚度及平行性的要求(其中平行性就單 的多平板堆疊而言是重要的),以及止動塊技術 之低0.0 0 1英吋厚公差,其常用於單軸擴散接 行細磨的設備例如但不限於可從 Lap mas ter Melchiorre ELC 1 200。 達到所要求的表面粗糙度之另一種方法是 在使用高度拋光滾輪時能夠提供精細表面粗糙 非常有效率的製程,並且能夠符合對於薄片/ 度、厚度、及平行性的要求。此外,該冷軋製 執行多道次軋製來添加差排(dislocation)。此種 排會在高溫接合製程期間初始新的晶粒成長, 小晶粒的量。四重軋機(4 - h i g h r ο 11 i n g m i 11 ) 求,並且若要求進一步的精確度,建議使用廿重 或荀茲曼壘幸昆冷軋機(sendzimermill)。最後, 在一預先形成表面上的金屬在熱或冷狀態下 面。 雖然僅需研磨、細磨、冷軋、或紋理化該 板之接合表面以得到構成所製造之流體流動部 擴散接合,但在欲擴散接合的配接面上得到預 度的整體製程之一部分可包含電拋光製程,其 光該等圖案化通道表面和通孔表面,如上所述 面的拋光在減少該流體流動裝置(部件)設置就 流經這些表面的流體所產生的微粒方面也是有 :面粗梭度、 轴擴散接合 •(隨後描述) 合。能夠執 公司取得之 冷軋。冷軋 度。冷軋是 平板之平坦 程能夠藉由 材料中的差 藉此增加較 能夠符合需 軋機(z mill) 可利用形成 紋理化該表 等薄片/平 件之平板的 期表面粗糙 也可用來拋 般。這些表 定位後可由 幫助的。目 27 200911406 前技藝中’已知拋光流體流動部件之内部表面的其 法’並且我們目前正在發展特別設計以改善擴散接合 • 流動裝置之内部表面的方法。 * 除了表面粗糙度之外,為得到良好的擴散接合, 合的平板之整體平坦度應是±0.001英吋,並且在任2 英叫面積内為± 〇 · 〇 〇 〇 5英吋,或在一限制情況下更大。 轴擴散接合而言,該平板的整體平行性應是±0001英叫 f 且在任2英吋或更大面積内為±0.0005英吋。此外,就 多部件堆疊和使用止動塊技術的單軸擴散接合而言,該 的厚度公差應是±0·0005英吋。就HIP擴散接合而言, 在所有表面上的均勻壓力負載,該平板的厚度公差和平 要求並不相關。一旦該等平板上的表面處理已經完成, 政接合邊緣處的去毛邊(deburring)不應超過最大半徑! 英吋。 除了表面粗糙度,必須控制欲擴散接合的配接面 潔度。雖然熟知技藝者可依經驗發展一清潔製程,其 Q 供擴散接合所需之特別清潔的表面,但我們已發展出 得特別好之清潔製程。執行如下清潔步驟: . 1.將該等平板浸泡在一驗性去腊劑(d e g r e a s e r ) 此種去脂劑之一範例是Enbond Q527™或依據功能 點之等效物。 2. 在周圍溫度(arnbient temperature)下將該等 牵曳通過S200 K歐姆-公分的水之喷霧或浸潰浴 3·將該等平板浸潰在一酸性蝕刻溶液内2分鐘, 他方 流體 欲接 平方 就單 ,並 擁有 平板 因為 行性 在擴 3.005 之清 可提 執行 中。 性觀 平板 〇 其中 28 200911406 該酸性蝕刻溶液係由1 % (體接^、 、15積百分比)-5% (體積百 分比)的氫氟酸、1 5 % (體積百八 頁白刀比)-25% (體積百分 比)的硝酸、以及剩餘體積百公4 a '刀比之DI(去離子)水組成。 4.在周圍溫度下將該等平板奎 攸T戈通過g 2〇〇κ歐姆-公 分的水之噴霧或浸潰洛。 的水而動力噴灑(power 分鐘至4分鐘的時間。 5.在室溫下以^4Μ歐姆-公分 spraying )該等平板達一段〇5
6.將該等平板浸潰在一酸性清潔溶液内約2至約15 分鐘,其中該酸性清潔溶液係由4〇%(體積百分比)·6〇% (體積百分比)的硝酸、並以DI水補足體積百分比所 組成。 7.在周圍溫度下將該等平板牽曳通過^2〇〇κ歐姆-公 分的水之噴霧或浸漬浴。 8 ·在至溫下以2 4 Μ歐姆-公分的水而動力喷灑該等平 板達一段0.5分鐘至4分鐘的時間。 9.將該等平板浸潰在2 μ歐姆-公分的水中達一段1 〇 分鐘至3 0分鐘的時間。 1 0.將該等平板浸潰在4 Μ歐姆-公分的水中達一段1 0 分鐘至3 0分鐘的時間。 1】·在一黑光(black light)下檢查該等平板之鬆散微粒。 在大部分情況中,因為周圍氧氣的存在下原生氧化物 在該清潔的薄片/平板表面上之形成,故在擴散接合之前必 /員先除去該等氧化物。這需要一額外步驟: 29 200911406 u•利用雷射剝離法(laserablati〇n),或一般之動力製 程,來除去原生氧化物。此雷射剝離法應在一惰性氣體 - 下執行,並且該擴散接合處理區的環境也應在一惰性氣 - 體環境下’直到所有平板皆已堆疊並點焊(tack welded) 就疋為止以避免該等接合表面在該擴散接合製程之 前氧化。 f、 纟單軸負載擴散接合的情況中’設計欲擴散接合的平 板中之圖案以使得該擴散接合製程期間發生的尺寸變化在 圖案化該等平板時被計算在内是重要的。例如一通孔的位置 和尺寸會因為該擴散姑L人 ’、 接5製程期間由於在接合溫度下施加 的壓力而揭’微變動。熟知技藝者,鑑於欲在該等平板之接合 期間應用的處理條件’可計算在個別平板内的預期圖案移動 應是多少’並且可調整該平板内的圖案尺寸以做適當補償。 例如’假設在整個接合期間有均勻的膨脹及3%的壓迫 (crush),則可估計預期的尺寸變化。使用Hip技術的擴散 ^ 接合而不需什具因為壓力的施加之尺寸改變,因為該壓力係 從所有方向平均地施加。 . 欲擴散接合的材料平板上之圖案需對齊並在該擴散接 合製程期間保持在定位。在此間隨後描述的實施例中,在該 等平板外邙周圍點焊期間,該等平板係利用對位銷而保持在 疋位。右该等對位銷係由與欲接合之該等平板相同的材料製 成,其在接合期間可保持就定位。若使用HIp擴散接合技 術’則該等對位銷所用之孔洞不應延伸通過整個平板厚度, 30 200911406 並且該等孔洞應含有一通道,因此空氣不會在真空焊接之前 被囿限在該對位銷之下。 對於該等鋼板的機械要求,如在ASTMA240中所陳述 以及SEMI F20所要求者是:抗張強度(tensUe strength) 农小值 70 ksi(485 Mpa)(49_2 Kgf/mm2); 〇_2%偏移下之降 伏強度(yield strength)最小值 25 ksi( 1 70Mpa)( 1 7.6 Kgf/mm2);伸長度是2英吋或5〇毫米,最小4〇% ;以及 硬度最大值係217畢氏硬度或95洛氏硬度B。 該等平板之擴散接合期間所使用的壓力、溫度、和時 間條件係經設計’以當該等配接面的表面粗糙度範圍在約 0.5微英叶Ra至約1〇微英吋Ra時’可達到範圍在約〇. 75〇/〇 和約3%之間的壓迫量(定義為被接合之平板的高度之縮減 比例)°通常所用的壓迫量係在約1 5 %至2.5 %範圍内。第6 圖之處理圖式600在軸602示出以psi計的壓力、在軸606 示出以C计的溫度’以及在轴604示出以小時計的時間。平 板堆疊係如第2 C圖中所示者,其隨後在此討論。一旦平板 堆疊的溫度在約9701,則將該堆疊在約3,5〇() psi的壓力 下保持段約4小時的熱煉時間(soak time)以達到良好的擴 政接口 。然後以提供可接受的產品之速率來冷卻該平板堆 " 仁疋’後來發現為了改善抗姓性,該平板堆疊應該更快 速冷卻’以最小化耗費在該敏化區上的時間。 在接合後’該材料應符合如SEMI F20關於ASTM A262 的實施E才ψ* Μ疳AT γ . 〈杻間腐钱(intergranular corrosion)需求。測量 "敏化條件下(6 7 7 °C下1小時)執行。此類型的測試通常 31 200911406 被金屬製造產業用來做為腐蝕性之薛選試驗。
如前所述,雖然可能將圖案機器加工至欲擴散接合的 金屬層内,但更經濟的做法是將圖案蝕刻至該層内,在大部 分情況中,係使用在金屬處理技藝中已知的化學蝕刻類型或 在半導體技藝中已知的電漿蝕刻類型。當欲將該圖案完全蝕 刻穿過一金屬層時,該金屬層的厚度通常在約0.0005英吋 至約0.06英吋範圍内;更典型地,約0.002英吋至約0.05 英吋;最典型地,約0.025英吋。當欲利用電腦數控銑製法 (CNC milling )來機器加工該圖案時,該金屬板或層的厚 度在約0· 060英吋至約0.3 75英吋範圍内,更典型地約0· 1 2 5 英吋至約0.3 1 2 5英吋,並且最典型地,約0.2 5 0英吋。使 用一系列擴散接合的薄金屬層容許在一基板内形成更複雜 的流體流動導管以及更複雜的裝置部件,同時控管該擴散接 合的基板或裝置内之内表面粗糙度。該流體流動導管的内部 表面粗糙度之平滑度係藉由使用磨料流動加工來除去在該 機器加工圖案化製程期間產生的任何起伏(waviness )(其 中起伏是指長波長表面起伏,通常是該等層之厚度的等級) 以及在該等平板之對齊和堆疊期間產生的内部間隙之該流 體流動導管的内表面之處理來改善。 一金屬板/層通常包含一系列通孔及盲溝槽和通道, 因此,當該等層以一特定方式堆疊時,一對齊的通孔組合在 該堆疊内提供特定的預期内部形狀。該等内部形狀包含通道 或其他功能性裝置結構。該等通孔通常是圓形或橢圓形,以 最小化突出的尖銳邊和角,該些尖銳邊和角可在該流體輸送 32 200911406 系統的操作期間磨損並 產生該等通孔、盲溝槽和通製法來 常可能會有角落及粗 "專内狀在接合前非 蝕刻、電化學蝕刻:丄誘等金屬層有利地係利用化學 電化學蝕刻通常提供:交 來進灯圖案蝕刻。化學蝕刻或 方法可以是沉模同 產力。圖案化層/平板的其他 h..、放電機器力口工⑷ e ^ eIecU〇-discharge — )、或超音波擾 ㈣e f ㈣刻、脈衝電化學機器加工、:::l化干機…、電 而不做為限制。 或其、,且口,上述僅做為範例 某些上述劁拉+ 擾乱該平板的平^因此料内引起某程度的應力量,其會 法應經過設計鹿/用來圖案化該等平板的任何方 一後續去除步驟〇 產生’或是需要在該平板上執行 應力確保該最:部if超音波處理。從該等平板除去 流體流動歧管^ 的度,例如第2A-2F圖所示類型的 平滑的表面,::刻.來除去金屬會傾向於在通孔上提供較 染源。在該電化興助減少來自該流體處理網路架構的微粒污 中,在除去::學敍刻係在微影光罩的輔助下執行之實例 該擴散接合製::之後’:電化學處理方法可用來降低欲在 擴散接合。利用月間接°的表面之粗糙度’進而容許較佳的 内產生波浪狀化學金屬去除技術之等向㈣刻在深孔 波攪動研磨料拗為減八兹等波浪狀特徵結構,使用超音 該電化學蝕刻;?屬气除的各向異性(anisotropy)’其在 x私期間提供與該金屬表面垂直之優先材料 33 200911406 射出。 在某些情況中,當欲在其上執行微影圖案化的金屬 厚度超過0.06英吋時,電腦數控加工該圖案進入該金屬内 然後在符合上述要求的加工層上產生表面粗糙度可能是 實際的。 多種部件裝置,例如層流裝置、質流控制器或流量 測裝置、流量限制器、開/關閥門、止回閥、過濾器、 力調節器、以及壓力感測器(例如並且不做為限制),可 少部分併入上述多層結構中。在某些情況中,當包含裝 元件在該多層結構中為不實際時,則一部分的部件裝置 表面黏著在該流體處理網路架構上。下面提供的該示範 實例係有關於圖案化鋼板的擴散接合,藉以形成可與"頂 黏著"裝置所連接之流體流動歧管,或是有關於圖案化鋼 的擴散接合,該圖案化鋼板包含整合式裝置結構,其為 擴散接合配置/結構的一部分。 第1圖示出一擴散接合製程之製程流程圖1 〇〇,其大 而言是本發明方法的代表。取決於所用材料及該擴散接合 構的終端用途,可不使用第1圖所示的某些步驟。在某些 況中,可購買已經過製程流程圖1 0 0上所列的一部分步驟 理過之基板材料。 參見第1圖,從在此早先描述過的抗蝕性材料之種 中選擇欲用來形成基板之坯料(步驟 1 0 2 )。該坯料的角 可經切割而成為圓形(步驟 1 0 4 )。然後,通常將該坯料 造為一材料平板,並成為可進行熱軋的尺寸,藉此從材料 板 , 較 感 壓 至 置 可 性 部 板 該 體 結 情 處 類 落 鍛 坯 34 200911406 料成為材料平板或薄片。熱軋該材料板( 使用技藝令已知技術而將材料坯料變成為 所期望之厚度的平板或薄片。通常,在熱教 該等平板之末端(步驟108)。在平板製備 中已知技術而酸洗並退火(較佳地在真空中 驟Π0)。隨後,細磨或冷軋該平板(步驟] 以改善平坦度、平行性和表面粗糙度。在該 112)之後,該表面粗糙度範圍係介於約2 W微英吋Ra。接著將經過冷軋或細磨過的 火(步驟114)。可在該真空退火製程(步塌 欲在擴散接合處理(步驟134)之前用於堆 孔(步驟11 6 )。然後在該平板上的埋頭孔 超音波處理(未示出)該等平板,其令會在擴 置的製造期間需要用到埋頭孔。然後,對該 進行圖案蝕刻,或圖案機器加工及去毛邊。 當欲產生的圖案之深度,或一開口欲 約0.06英吋至約〇·1〇英吋時,則加工該圖 責的。當欲產生的圖案之深度’或一開口欲 從約0.0005英吋至約〇 1〇(並且更典型地 干蝕刻或電漿蝕刻欲處理之該等平板通常g 於生產者規格,該平板厚度的精確度會改變 產在熱軋時具有厚度公差約+0.025英吋至 板,以及當熱軋之後進行細磨時具有厚度 吋至-0.001英吋的平板,或當熱軋之後進行 少驟 1 0 6 ),其係 擁有冷乳或礙磨 ‘程序後,會修整 之後,利用技藝 退火)該平板(步 丨1 2 )至最終厚度 冷軋程序(步驟 微英吋Ra至約 平板進行真空退 s 1 1 4 )後,產生 疊及對齊的對位 位置處選擇性地 散接合結構或裝 :等材料平板1 1 8 蝕穿的厚度超過 案通常是較不昂 姓穿的厚度範圍 0.06)英吋時,化 t較經濟的。取決 卜’但生產者可生 - 0·025 英叶的平 公差為+0.001英 •冷軋或雙盤碾磨 35 200911406 時具有厚度公差為+0.005英时至n 片/平板進, _〇·005英吋的平板。對鋼薄 工及去毛邊,$上、+. > έ ^ 片/平板進行圖案化機器加 ll8中。 步驟係示於第I圖之步驟 或者,除了加工或圖案钱列+ 法之外,可"鑄、Α · x或上面直接描述的其他方
J 缚造(coined)”、戎 a 防,L 造該平板,以…墨或冷成形、或熱閉模锻 1人、', 提供該等圖案化特徵結構。 在該等平板進行圖案化(步 滋可护+ i ^驟11 8 )之後,該等特徵結 構了月b而要經由氧化鋁纖 +'土 π处 行電抛光(步驟叫,以在並未由步驟118或122中的; 處之該等孔和通道上提供較精細的表面粗链度。能夠切 割-孔,並且例如提供5微英对R…〇微英叶以的表面 粗糙度之製程為脈衝電化學加工 '鑄造、及電化學蝕刻。 。如第1圖之步驟120所示者,在擴散接合之前,該等 平板的表面通常利用技藝中已知的技術類型而被電拋光,藉 以平滑化該等圖案化平板内之孔和通道的表面。通常,對欲 擴散接合的整個平板進行電拋光’因此不止該平板的圖案化 區域被電拋光,並且該平板的整個表面也會被電拋光。因為 擴散接合界面處的氧化物形成會造成不佳的接合,故重要的 是’要注意到太厚的氧化物層’其可能在電拋光期間產生, 並會抑制良好的接合。因此’當該氧化物層厚度不大於4 〇 A (埃)時’則可接受使用初電抛光(as-electropolished)的 表面來進行擴散接合。擁有10埃至4〇埃厚的氧化物層是可 接受的。移除該氧化物層至1 〇埃或更薄的厚度是有利的(以 36
200911406
增強圖案化之内部流動通道上的抗蝕性 A ;§在向於 °c的溫度下執行擴散接合,並且該接合表面上的氧化 低於約40埃時,該氧化物層在受壓下被壓迫至一不 態’該氧化物層並不顯著影響該界面處的接合品質。 在電拋光之後,使該等平 接面經受細磨及/或研磨(步驟122),藉此除去焉 厚度超過該預期最終厚度的0.003英吋内之厚产,』 等配接面的表面粗糙度係經處理至範圍從約5微英 約1 0微英吋R a之粗縫度。然後例如可真空退火該等 驟1 24 )以減輕由研磨所引發的應力。選擇性地,或 磨’在有足夠的剩餘材料之前提下,可用一細磨製程 該等平板(步驟126)’以獲得0.0005英吋的平坦度、 英对的平行性(就單軸擴散接合而言),以及±〇 〇〇〇5 的厚度’並擁有預期的表面粗糙度。現在,該等薄片 並準備好繼續進行檢測及擴散接合。 然後利用座標量測儀(步驟1 2 8 )以及光學掃描 1 3 0 )來檢測該等平板。在該等薄片/平板之檢測(步 和1 3 0 )之後,則清潔該等平板。 在檢測該等平板(步驟1 2 8和1 3 0 )之後,則以 述的方式清潔該等平板;藉由壓接定位該些銷,並使 氮而使該些銷暫時縮小以裝設至該等對位孔内,藉以 銷定位,以及堆疊該等平板以進行接合(步驟丨3 2 ) 該等堆疊的平板(步驟! 32 ),以使該些銷留置在定 點焊係用來在堆疊操作期間,以及在施加壓力時出現 約 95 0 物薄膜 穩定狀 接合配 終平板 且將該 j* Ra 至 F板(步 取代研 來處理 0.0005 英吋内 已製備 (少驟 .驟 1 2 8 先前描 用液態 將該些 。點焊 位上。 不平均 37 200911406 負載的情形下,用來保持該等平板不動。該等平板係在平板 之間的界面外圍處’且在該堆疊每一側之3或4個位置上進 行點焊。隨後,該等平板可使用液壓而進行單軸擴散接合(步 驟1 34 )。在第2A-2F圖所示類型之流體流動歧管之製造中,
Ο 該等不錢鋼板係成對堆疊,因為存在有頂板及底板。在堆疊 時可以有任意數量的多重接合平板。在此情況中,每一個多 重堆疊平板稱為一平板組。在單一個擴散接合爐(furnace ) 週期中可接合多個平板組。每一個平板組係由分隔板以及負 載重配塊(load redistribution block)分隔開。一般來說, 該負載重配塊係2-5英吋厚,並且對於厚度、平坦、及平行 的公差與該部件平板有相同要求。該等分隔板防止該平板組 與該重配塊接合。肖等分隔板可由自或不_鋼製&,但必須 塗覆有例如氧化釔的材料,以避免該等部件黏附在通常是石 墨之該等重配塊上。氧化釔可經電子東濺鍍沉積以製造強力 附著在該分隔板上的薄膜。該負載重配塊係用來將接合負載 平均地重新分配在下—個堆疊平板組上。由於一平板組擁有 :散在整個平板组上之高及低負载點(由孔及無孔所界 足),故該負載重配塊將負冑平均&重新分配在該下一個部 件上。該負載重配塊和負載重配圓錐體係由石墨製成。 使用-組觸止塊(stop bl〇ck)來限制該等平板组上的 壓迫。該等觸止塊也由石墨製成’其係執行若干功能。首先, 該等觸止塊限制施加至該等部件上的壓迫量。該觸止塊尺寸 係經選擇以在達到壓迫時降低至少、5〇%的負載。再者,一旦 接合後,該等觸止塊會造成均句負載,因此肇因於厚度、平 38 200911406 坦度、及平行性的變異則會在整個負載表面上重新分配。 組 以 散 於 排 步 行 及 何 〇 步 步 至 研 執 部 邊 爐内之整組部件係用來確保高品質接合。該等平板 係連同分隔板、負載重配塊、以及觸止塊而堆疊進入該爐 各個這些部件之平坦度、以及平行性公差累計必須最佳化 以確保該等平板組上之均勻橫向負載。必須控管厚度公差 達到精準的壓迫%。 f
在該等平板擴散接合後,利用座標量測儀執行該擴 接合的尺寸檢測(步驟1 3 6 ),以查看在接合之前已存在 該等平板内的所有圖案是否在接合期間(步驟1 3 4 )適當 列,以提供可接受的成品結構。 在該擴散接合結構之擴散接合(步驟1 3 4 )和檢測( 驟1 3 6 )之後,選擇性地,在隨後會製作埋頭孔的位置執 超音波處理(步驟 138)。接著執行鑽孔、去毛邊、磨光 刻螺紋(t a p p i n g)(步驟 1 4 0 ),以提供終端用途所需之任 外部裝配或連結點。若執行超音波處理則不需要進行磨光 在接合之後進行的鑽孔、去毛邊、磨光和刻螺紋( 驟1 40 )之後,該接合結構的内部表面可經磨料流動加工( 驟142 )至可接受的粗糙度,其通常係在約5微英吋Ra 約1 0微英吋Ra範圍内。該技術領域所熟知之技術「擠壓 磨(Extrude Hone)」是在 Extrude Hone所製造的設備中 行,而其為可用之磨料流動加工的方法之一。 當該擴散接合結構包含多於一個部件時,定位個別 件的尺寸,將該等部件由該結構切下,並且所切下部件的 緣係經去毛邊(步驟1 44 )。在該等部件從一結構分離之後 39 200911406 並且在電拋光之前,鈍化並清潔該等個別部件(步驟1 4 6 )。 在此情況中,”鈍化”表示強化表面處的鉻至約 2 0埃的深 度,以產生一氧化銘表面,進而具有改善的抗姓性。當該製 造平板是 3 1 6 L不銹鋼時,此材料需要鉻鈍化,若是例如 Inconel®625和Hastelloy®C22之其他材料,則不需要此種 鈍化以獲得較佳的抗蝕性。應執行清潔以使該部件不包括有 處理期間所產生的微粒。
然後標記每一個部件(步驟1 4 8 )。可用雷射或其他清 潔的標記方法來執行上述之部件標記。在標記之後,對每一 個部件進行壓力及洩漏測試(步驟1 5 0 )以確定所有平板皆 適當地擴散接合並且適於使用。可用氦氣來進行洩漏測試, 並且可使用氮氣來進行壓力測試。洩漏測試應符合利用氦氣 之1 e·9 atm cc/s的要求。該等部件的最終檢測選擇性地包含 超音波成像及/或X射線(步驟1 5 2 )。兩種方法皆提供該 接合界面的定性量測。超音波掃描提供該界面的表面圖 (surface map ),其係藉由投射超音波通過該部件,然後測 量反射訊號的振幅而得。較高振幅反射是該界面處之空隙的 效果,並且可產生接合品質的2D圖。X射線與該界面處的 空隙反應以提供接合品質的指示。可使用任一或兩種方法在 採樣的基礎上分析接合品質。 將通過最終檢測的部件裝入一密封袋中、裝箱、並運 送(步驟 1 5 4 )。裝袋可保護該等部件在使用前的運送及儲 存期間不受到暴露。 可在製造製程期間視需求而重複製程流程圖1 〇 〇中的 40 200911406 任何步驟(步驟1 5 6 )。
例示實施例 範例 1 级 生產 此實施例係用於半導體處理之類型的氣棒之 (first level production)。擴散接合兩個材料板以產生 „ 流體流動通道之抗腐蝕、防漏的歧管,該等通道< γ β在表面 頂部黏著”在該歧管外表面上的各個裝置。擁有黏著# gas 含有 上的裝置之歧管,其在半導體產業中稱為 氣棒 stick )」。用來生產該歧管的材料板係利用CNC(電膽 教控) 加工設備來進行加工,以在欲擴散接合以形成該政 的讨 料板内產生開口及/或通道。 ^ 冰镇2A園 在第2A至2F圖中示出在本例中生產的歧官。弟 π後的政
示出在穿過該頂板200而加工製作開口(通孔)2〇4之伙 管之頂板200。開口的圖案係基於欲與完成的氣棒政管表 2〇2連接之裝置(未示出)。頂板200的厚度2 0 6(t)是0.130 英吋。頂板200的寬度208(w)是1.3 80英吋。頂板2〇〇的長 度210(1)是12.537英叶。每一個開口 2〇4的直徑212(d)是 0.177英叫。建構頂板200的材料是不錢鋼316L,因為這是 目前市面上可得之具有較佳抗蝕性的不銹鋼材料之一。 第2B圖示出在加工製作通道224至該底板220表面 222内之後的歧管之底板220。底板220中之該等通道224 的圖案也取決於欲與完成的氣棒政官表面202連接之裝 置。底板220的厚度226(t)是〇.23〇央呀。底板220的寬度 41 200911406 228(W)是l·3 80英吋。底板220的長度230(1)是1 2.537英吋。 該等通道的通道長度230(cl)會改變’其係取決於與欲和完 成的氣棒歧管連接之裝置並用所需之通道。排除該等通道的 終點半徑(end radius ),該通道長度230範圍介於約〇3〇5 英吋至約0.840英叶之間。該通道的深度(ed)23 2(並非示出 所有通道)在該通道中心係約0.1 90英吋。建構底板22〇的 材料也是不銹鋼31 6L。 第2C圖示出頂板
擁有存在於頂板200之頂表面202上的開口 2〇4。此組件在 通過第1A和1B圖所示之預備步驟1〇2至134後進行擴散 接合。該擴散接合係經執行,其中該組件接受該爐中之真 空,並擠壓於兩個平板之間。在接合期間,在頂部及底部負 栽重配板和該組件之間係使用以電子束塗覆有氧化:的 31吒不錢鋼之分隔板,以容許輕鬆地將該接合组件從該接 合期間使用之該堆疊石墨負載重配塊 Λ 屬上移除。第7圖示出擴 政接合期間的一般處理條件。在擴崭极人w 、 Τ φ顆放接合期間’將真空爐保 待在 9.7 Χ 托耳(Torr)至 2 χ 1〇- m. 托耳。轴向施加的 氅力約為930 psi。擴散接合該組件 γ 1干之保持溫度約為ι,075 ,並且保持時間約為5小時。低於 » , 」y 3 υ C的溫度盔法搜 务接合表面處的氧化物,而此揮發4 ’、’、 焊t在3亥接合製程中是有幫助 、。關於最大接合溫度’就316L不錢彻而a V „ . , +銹鋼而言,高於約985 的溫度增加被接合的平板内之晶私士 _ 合伞4 也一 日日粒成長,因此降低該等接 平板之總強度。在範例1中,該伴技,& 且柄π 4 保持溫度係高於所欲者, 及拫據先前描述的ASTM測試方法推γ ,Β, 進仃測試時,該塊材的晶 42 200911406 粒尺寸高於所欲音(約〇·5 ’即約302微米的平均晶粒直 、、&必1 〇 7 5 °C的保持溫度係高於所欲’但該擴散接合 徑)))。雖然丄, A L 办^ w晳和拽漏測試是可接受的。 部件的機械性貨 第2D圖系出與第2A至2C圖所示者稍微不一樣的設 β 城者改道之一毒性 SDS(toxicSDSw/divert)。 計,此設計是攞名 人& #榛政管260 ’圖中係示出頂表面262 ’其已 該擴散接合的乳 人一祕進行進一步的加工。開口(通孔)2〇4保持如 在擴散接合之攸
U U ®的狀態。圍繞開口 2 0 4的區域2 6 4已經過硬化 原始圖案加> 處理並加工以提供一密封件的配接面,該密封件係用於開口 204和表面黏著在開口 204上之裝置(未示出)之間°螺 '紋孔 266係經加工至接合的氣棒歧管260内’以容許表面黏著在 開口 204上的裝置(未示出)之附接° 第2Ε圖示出該擴散接合氣棒歧管260 ’其示出該底表 面282,該底表面282已在擴散接合之後進行進—步的加 工。額外的開口(通孔)2 3 2、2 3 5、2 3 7保持如原始圖案加工 的狀態。圍繞開口 232、235、237的區域264已經經過加工 通過擴散接合的氣棒歧管260之底表面282’並在237處使 流體流出該氣棒。圍繞開口 2 3 2、2 3 5、2 3 7的區域2 7 0已經 經過硬化處理至300維克(vickers)或更大,以使能加工一密 封件(未示出)之配接面,該密封件係用於開口 232、23 5、23 7 以及連接至該淨化氣體系統(未示出)以及一下游歧管(未示 出)或至—製程腔室(未示出)的裝置(未示出)之間。該300維 克硬度確保一頂部黏著密封件會經歷塑勝形變而非基板或 該頂部黏著元件上相對的埋頭孔。增加埋頭孔區域内的硬度 43 200911406 之一方法是在該頂板内形成該等孔之前執行該表面之超音 波衝擊(ultrasonic peening )。若在切割該等孔之後才執行 該超音波衝擊’則會使材料在超音波衝擊期間流入該孔内, 而影響孔的輪廉。再次’螺紋孔2 6 6係存在於擴散接人的氣 棒歧管260上,以容許表面黏著在第2D圖所示之開口 2〇4 上的裝置(未示出)之附接。然後根據ANSI(NFPA)T26.1以 高至約11,000 psi的壓力對該氣棒進行水壓測試,且不偵測 該接合界面處的任何洩漏。 第2F圖示出擁有許多連接在歧管260頂表面上的部件 裝置之氣棒歧管260。這些部件包含手動閥282、三口閥 284、過濾器286、轉換器288、二口閥290、MFC(質流控制 器)292、三口閥294及二口閥296。第2F圖所示類型的氣 棒通常是用於半導體產業中的氣棒類型。 範例2 第3A圖示出用來製造擴散接合氣棒和測試圖案之頂板 300,其中有兩個氣棒佈局在單一個頂板300的上表面302 上。開口(通孔)304係完全穿過頂板300,且會成為每一個 成品氣棒(未示出)的一部分。開口 306不會成為該等氣棒的 一部分,但係用來做為測量會在單軸擴散接合該頂板3 0 0 至第3 B圖所示之該底板3 2 0期間發生之橫向孔位移的參考 點。對位孔係定位在3 0 1。這些孔係用來與位於第3 B圖之 底板320上的銷相配。開口 307係用來做測試圖案,以用於 隨後的接合輪廓之剖面分析。 44 200911406
第3B圖示出用來製造擴散接合氣棒之底板320,其與 第3 A圖所示之頂板3 0 0對應。再次,有兩個氣棒佈局在單 一個底板320的上表面322上。加工的通道324係用來與隨 後會連接至該擴散接合氣棒(未示出)的表面之各個裝置並 用。加工的通道3 2 3和3 2 5也分別含有通孔3 3 3和3 3 5,其 係用來提供至一淨化系統或一分流(divert flow )系統之連 接。加工的通道3 2 7係用來使氣體透過通孔3 3 7流出該氣 棒。開口 3 0 6不會成為該等氣棒的一部分,但係用來做為測 量會在單軸擴散接合第3A圖所示之該頂板300至第3B圖 所示之該底板3 2 0期間發生之橫向孔位移的參考點。對位孔 係定位在3 4 1,其中銷係壓接至該等孔内。該等銷係用來與 該頂板3 0 0内的孔對齊。加工的通道3 2 8係用來做測試圖 案,以用於隨後的接合輪廓之剖面分析。 第3 C圖示出欲擴散接合以形成兩個氣棒及一些測試圖 案的初始結構之頂板3 00和底板3 20之組件。關於範例1 所施加的該等擴散接合技術和該等製程條件在範例2上重 複使用。 第3 D圖示出含有頂板3 0 0和底板3 2 0之擴散接合結構 3 40。該接合結構340包含用於一第一氣棒342和一第二氣 棒344的圖案化開口。進一步加工該接合結構340之頂表面 3 0 2以提供一密封件之配接面,該密封件係用在通孔開口 3 04和表面黏著在開口 3 06上之裝置(未示出)之間。將埋頭 孔346加工至接合的氣棒結構340内,以容許表面黏著在開 口 304上之裝置(未示出)之附接。 45 200911406 第3E圖示出擁有氣棒342和344佈 上之擴散接合結構340,並伴隨有測試片 和356 °利用—銑床從該單一平板切下該 片。該等氣棒隨後根據ANSI(NFPA) T2.6 psi的壓力進行水壓測試,並且預期會符 範(歹 第4A圖係形成一多層基板430之初 分離圖’多層基板430包含一可完全整 450(在第4C和4D圖中示出)。第4A圖 一流體流動網路之空間内形成一可完全| 該流體流可在流體通過該網路架構 (Hltered iniine)。該等層 408 至 416 之 407,該狹縫407内會放置一可燒結介質 態(green state)的可燒結介質44 8係設置 上的一區塊或經塑形的結構405内,因此 縮時,該可燒結介質448會通過所有的衫 該等狹缝組成的空間,其如第4C和4D I 第4B圖示出一擴散接合多層基核 圖,其乔出該頂層422、流體入口 432和 4B圖也經標記以示出剖面標誌A_A ° 第4C圖係多層基板結構430之概 結構43〇的擴散接合期間,該可燒結介 定在流體入口 4 3 2和流體出口 4 3 4之間 局在該上表面302 350 、 352 、 354 、 等氣棒和該等測試 • 1以高至約11,〇 〇 〇 合汽漏要求。 始結構4 0 0的簡要 合的在線式過濾器 係用來示出如何在 卜合的過濾器,以使 時在線上被過濾 各者皆包含一狹缝 448。通常,生坯 於層406之上表面 當所有的層均被壓 L缝407,並填充由 11所示。 .430之概要頂視 流體出口 4 3 4。第 要剖面圖。在多層 質448被迫填充界 的空間。該燒結介 46 200911406 質形成一在線式過濾器4 5 〇 ’以濾除可進入多層結構4 3 0 之流體流動通道43 6内的微粒。多層結構430可以是一更 大的多層結構(未示出)的一部分’或者例如為閥門的部件 裝置(未示出),其可連接在流體入口 432和流體出口 434 上。 在第4C和4D圖(其係剖面Α-Α之更為立體的視圖) 中示出的層404和420可由ELGILOY®製造’以在擴散接 合結構430之後提供一硬密封表面。該結構内的其他層可 以是例如但不限於為系列3 1 6 L不銹鋼。E L GIL Ο Υ層的厚 度例如但不限於為在0.004英叫·之範圍内,相較於不鑛鋼 層,其厚度通常例如但不限於為在約〇 . 〇 2 5英叶範圍内。 ELGILOY的成分在表1中歹U出。 雖然第4A至4D圖所示之在線式過濾器的設計係取自 相關的Crockett等人於2003年7月12曰提出申請之美國 專利申請案第1 0/6 1 7,950號’但如下的擴散接合製程條件 係基於後來的研究成果’其係本發明之標的物。該擴散接 合係經執行,其中該組件接受該爐中之環境,並在兩個平板 之間受到擠壓。在接合期間,於該等頂部及底部負載重配板 和該組件之間係使用以電子束塗覆氡化釔的316l不銹鋼之 分隔板,以容許輕鬆地將該接合組件從該接合期間使用之該 堆疊石墨負載重配塊上移除。在擴散接合期間,將爐保持在 9.7 X 10托耳至2 x 10 4托耳。所施加的壓力約為1 〇〇〇 psi。擴散接合該組件之保持溫度範圍介於983。〇和95〇tjc之 間。低於肖950。〇:的溫度無法揮發接合表面處#氧化物,而 47 200911406 此揮發在該接合製程中是有幫助的。關於最大接合溫度,就 3 1 6 L不銹鋼而言,高於約9 8 5 °C的溫度增加受到接合的平板 内之晶粒成長,因此降低該等接合平板之總強度。溫度在1 小時内以8 · 3 °C /分鐘的速率從室溫攀升至5 0 0 °C,並且以 3.2°C /分鐘從500°C攀升至目標溫度。保持目標±l〇°C之穩 定溫度4小時。起初的冷卻速率係每分鐘1 0 °C,並隨著溫 度降低而減缓。可取得氬氣冷卻氣體以用來增加冷卻速率。
範例 4 第5 A-5E圖示出一壓力感測器5 00之各種視圖,其係 可利用化學蝕刻和在此所述之擴散接合技術製備,並且可 完全整合至一半導體設備之氣體通道分配系統内的部件裝 置。 第5A圖示出該壓力感測器500之概要立體視圖,其 包含封閉側502 ;流體入口(或出口)侧504,其具有供流體 進出之開口 5 0 6 ; —吸氣幫浦5 3 0,位於該單元頂部;電氣 接觸銷5 3 2 ;蓋5 2 8 ;以及間隔物5 2 6,其會在稍後關於第 5 F圖中描述。 第5B圖係第5A圖所示之壓力感測器500的封閉側 5 0 2之概要側視圖,其具有示於其上之剖面標記A - A。第 5 D圖係第5 B圖所示之壓力感測器5 0 0之剖面A - A之概要 圖式。 第5 C圖係第5 A圖所示之壓力感測器5 0 0之側5 0 4的 概要側視圖,其包含供流體流入通道 5 1 5之入口(或出口 48 200911406 5 0 6)。第5 E圖係第5 C圖所示之壓力感測器之剖面B - B的 概要圖式。
第5D圖,為第5B圖之剖面A-A之視圖,詳細示出 擴散接合各層(其在第5F圖中示出)以形成一壓縮的整合 結構之後,壓力感測器5 0 0之一部分元件間的關係。更詳 細地說,第5 D圖示出流體可進入(或離開)之流體流動通道 5 1 5,其中通道5 1 5在多層組件5 1 4 (例如第5 F圖中所示 者)内的圖案化開口被接合在一起時產生。接近壓力感測 器500之外基部510是一狹缝513,該狹缝513在僅一部 分的流體量被引導朝向該感測區時可抵銷該流體流的體積 改變效應。被送至該感測區之該部分流體流(未示出)係通 過層516内的開口 517(在第5D圖示出)而至金屬膜片520 下方的第一室5 1 9。開口 5 1 7輔助預防突然的流體流量變 動。該流體施加在金屬膜片5 2 0上的壓力係使得金屬膜片 5 2 0 (通常是由相對薄(通常約 0 · 0 0 3 英吋厚)的材料層製 造,例如 ELGILOY®)變形,並往上進入具有雙電極 544 和546存在於其下表面上之介電絕緣(通常是陶瓷)盤524 下方的第二室523,其然後透過開口 525而通往(未示出) 盤5 24的上表面,在此,其係由電氣接觸銷5 32接觸。該 電氣絕緣盤524形成一電容器的一部分,並與金屬膜片520 結合,且當膜片5 2 0變形時,改變該電容器内的元件之間 的間距,而通過該電氣絕緣盤5 2 4上之該等電極的電流量 改變。此電流的改變係為可被監控之壓力改變的指標。同 樣在第5D圖示出的是:層512(其包含狹縫513);形成開 49 200911406 口 506(導管515)之四個熔接層;含有開口 517的層516, 該等開口 5 1 7提供與膜片5 2 0之流體接觸;包含開口 /第 一室519之層518;包含開口 /第二室523之層522;以及 容許在陶瓷盤524上形成一第三室529的間隔物526。吸 氣幫浦5 3 0在陶瓷盤524上的第三室529内維持真空。該 真空是作用為遠低於感測壓力的參考壓力,因此壓力改變 僅是該膜片的一側。在該第三室5 2 9使用真空係容許預校 正的絕對壓力之讀出,而非讀出相對於環境壓力之壓力。 可將該壓力感測器設計為使室5 2 9内的壓力實質上高 於所感測到的壓力,在此情況中,室5 2 9内的壓力會使該 膜片5 2 0往下方產生變形,此外,則不需要吸氣幫浦5 3 0。 若期望針對特定應用的話,該壓力感測器也可用來做為壓 力計(相對於大氣壓)。 第5 E圖係第5 A圖所示之壓力感測器5 0 0的側5 0 4之 概要側視圖,並且為第5 C圖之剖面B - B。此壓力感測器 500之視圖係示出開口 525,且室529和523透過開口 525 而連接並保持在真空下。 第5 F圖係第5 A圖所示之壓力感測器5 0 0的分解概要 立體圖,其示出構成該可完全整合的壓力感測器之個別部 件層。明確地說,底層5 1 0形成該壓力感測器5 0 0的外基 部。層5 1 2包含狹縫5 1 3,該狹縫5 1 3會抵銷體積改變效 應,以減少當過量流體通過狭縫5 2〗時,該感測器5 0 0内 的流體(未示出)通過層 5 1 6内的開口 5 1 7 時之壓降 (pressure drop)的量。該等狹缝521與513結合作用以 50 200911406
幫助控制體積效應,且因此協助控制通過開口 5 1 7的流體 之壓力效應。此外,狹縫5 2 1通常係用來連接至一流體流 動網路内的流動通道。層5 1 8係用來形成位於膜片5 2 0下 方以及開口 517(流體通過其中)上方之第一室519。第一 室5 1 9内的流體壓抵膜片5 2 0,其造成部分的膜片5 2 0變 形,而膜片520係與形成在層522内的第二室523接觸。 一電氣絕緣(通常是陶瓷)盤524包含存在於其下側542的 電氣接點544和546,如第5G圖所示。這些接點通過盤 524上表面内的開口(未示出)以提供第5D圖所示之電氣接 觸銷5 3 2之接觸點。這些接觸銷5 3 2係利用電氣絕緣孔5 3 8 與壓力感測器500之一般金屬主體為電氣隔離。間隔物526 内部的厚度係足夠厚,以在盤 524表面上方產生第三室 529,而盤524係透過開口 525而與室523連接。該蓋528 形成壓力感測器5 0 0的主要上部外表面,並包含開口 5 2 7, 利用一絕緣孔(例如一玻璃絕緣體)而絕緣之電氣接觸銷 5 3 2係通過該開口 5 2 7以接觸盤5 2 4上表面上的電氣接點 (未示出)。利用位於蓋528上表面上的吸氣幫浦530(通 常由鈦製成)而在一特定溫度下於第三室529及第二室523 内維持穩定態真空。 該多層壓力感測器5 0 0内的金屬層之典型厚度是約 0.025英吋。大多數該等層係不銹鋼(通常是系列400不銹 鋼)。該膜片520的厚度通常是約 0.003英吋,並且係用 ELGILOY®或類似的鎳/鈷/鉻合金製成,其提供更”類彈 性(s p r i n g 1 i k e ) ”的特性。電氣接觸銷5 3 2通常是由銅製 51 200911406 成’而吸氣幫浦5 3 0通常含有例如鈦之材 至529和第二室523吸去自由流體分子。 雖然第5Α至5F圖所示之在線式壓力 取自相關的Crockett等人於2003年7月 美國專利申請案第1〇/617,95〇號,但隨後 條件係基於後來的研究成果’其係本發明 散接合可以執行,其中該組件可接受該爐年 個平板之間受到擠壓。在接合期間,應在該 載重配板和該組件之間使用以電子束塗覆肩 銹鋼之分隔板,以容許輕鬆地將該接合组件 用之該堆疊石墨負載重配塊上移除。在擴崩 爐保持在9.7 X 10-6托耳至2 χ 1〇_4托耳'。 至少為1 000 psi。可擴散接合該組件之保持 98。'和95。。。之間。低於約95〇。。的溫度無 處的氧化物,而此揮發在該接合製程中是有 大接合溫度,就316L不銹鋼而言,高於約 加受到接合的平板内之晶粒成長,因此降低 總強度。預期在本例中有相同效應。溫度肩 的速率在約1小時的時間内攀升至約5〇〇t>c 。(:/分鐘的速率從5OOt攀升$ B加 ,v I目標溫度。 ±l〇t:持續2至4小時。起初的冷卻速率力 鐘’並隨著溫度降低而減緩。可At 月b的話,應 體以增加冷卻速率。 關於抗腐姓金屬層的擴散接合,當每 料,其會從第三 感測器的設計係 .2日提出申請之 的擴散接合製程 之標的物。該擴 之環境,並在兩 等頂部及底部負 L化釔的3 1 6 L不 從該接合期間使 接合期間,應將 所施加的壓力應 溫度範圍係介於 法揮發接合表面 幫助的。關於最 9 8 5 °C的溫度增 該等接合平板之 以8.3。(: /分鐘 ’並且以約3.2 應保持穩定溫度 ^是約1 Ot: /分 吏用氬氣冷卻氣 -個金屬層皆為 52 200911406 3 1 6 L系列不銹鋼,或大多數的金屬層是3 1 6 L系列不銹鋼 結合在較低擴散接合溫度下接合之材料層時,擴散接合通 常係在約925°C至約980°C範圍内的溫度,約1,〇〇〇 psi至約 1 5,000 psi範圍内的壓力下執行一段約1小時至約6小時範 圍内的時間。當擴散接合3 1 6L系列不銹鋼層和ELGILOY® 層之組合時,擴散接合係在約9 2 5 °C至約9 8 0 °C範圍内的溫 度,約4,000 psi至約15,000 psi範圍内的壓力下執行一段 約2小時至約6小時範圍内的時間。
提供上述實施例以使熟知技藝者能夠了解在此所揭 示及主張的概念,並且並非意圖限制本發明之範圍。熟知 技藝者,鑒於本應用之揭示,可延伸該等概念及材料,其 可用於該等多層流體通道、感測器、促動器、及閥之各元 件,而與下面所主張之本發明的標的物對應。 【圖式簡單說明】 第1A圖係一製程流程圖的第1頁,其示出可用來製 備一擴散接合流體流動通道(例如一氣棒)之基本步驟, 其僅做為範例而不做為限制。 第1B圖係一製程流程圖的第2頁,其示出可用來製 備一擴散接合流體流動通道(例如一氣棒)之基本步驟, 其僅做為範例而不做為限制。 第1C圖係一製程流程圖的第3頁,其示出可用來製 備一擴散接合流體流動通道(例如一氣棒)之基本步驟, 其僅做為範例而不做為限制。 53 200911406 第2 A圖係欲擴散接合至一底板上以形成一基板的圖 案化材料之頂板的簡要圖。該基板可用來做為一氣棒之流 體流動系統的一部分,該氣棒係可用來做為半導體製程設 備之一部分的類型。此第2A圖示出該頂板内的通孔,其 可應用在單軸擴散接合上,但無法用於使用HIP接合技術 的擴散接合上。 第2 B圖係欲接合至第2 A圖的頂板上之圖案化材料之 底板的簡要圖。 第 2 C圖係用於一氣棒之基板的頂板和底板的組件之 簡要圖,該氣棒係可用來做為半導體製程設備之一部分。 第2D圖示出該擴散接合氣棒組件之簡要視圖,其強 調該組件的頂表面,該頂表面被隨後加工以在該頂表面上 提供密封裝置,並提供此裝置之附接。 第2E圖示出該擴散接合氣棒組件之簡要視圖,其強 調該組件的底表面,以顯示用於裝置附接之加工以及供淨 化氣體進出該氣棒組件之開口,以及製程氣體出口。
第2F圖示出各裝置元件安裝在該氣棒頂部之後的擴 散接合氣棒。 第3 A圖示出一材料板,其係經圖案化以做為用來製 造兩個氣棒及會產生測試圖案(測試片)之空白區(未加工 區)的材料頂板。 第3 B圖示出一材料板,其係經圖案化以做為用來製 造兩個氣棒、位於左上角之測試圖案、及會產生另外的測 試圖案(測試片)之空白區(未加工區)的材料底板。 54 200911406 第3 C圖示出第3 A和3 B圖所示之材料頂板和材料底 板的組件。 第3 D圖示出將材料頂板及底板之組件擴散接合成為 可切割出兩個氣棒基板之接合基板。此圖式也示出在該頂 板表面上所做的額外加工,以提供欲連結至每一個氣棒頂 部之裝置密封界面和附接孔。也示出會產生另外的測試圖 案(測試片)之其他空白區(未加工區)。
第3 E圖示出該擴散接合氣棒基板的頂視圖,其具有 待從該擴散接合基板切下的兩個氣棒及多個測試片的佈局 之圖示。 第4A圖係用於形成包含可完全整合的在線式過濾器 之多層結構4 3 0的初始結構4 0 0之簡要分離圖。此結構4 0 0 係取自讓與本發明之受讓人的先前技藝,並且包含在本應 用中以提供可利用此間所述擴散接合技術執行的操作之更 完整的呈現。 第4 B圖係示出由初始結構4 0 0產生之多層結構4 3 0 的概要頂示圖,其具有示於其上之剖面標記A-A。 第4 C圖係示出包含一可完全整合之微粒在線式過濾 器4 5 0之多層結構4 3 0的A - A剖面線之概要剖面圖。 第4 D圖係多層結構4 3 0之更為立體的四分之三側視 圖,並示出在線式過濾器450之入口 432及出口 434。 第5 A圖係可完全整合在一多層流體處理網路架構中 之類型的可整合式多層壓力感測器5 5 0之概要立體圖式。 第5 B圖係第5 A圖所示之壓力感測器5 0 0之側5 0 2的 55 200911406 概要側視圖,其具有示於其上之剖面樣記A-A。 第5 C圖係第5 A圖所示之壓力感測器5 0 0之側5 0 4的 概要側視圖,其具有示於其上之剖面標記B - B。 第5D圖係第5B圖所示之壓力感測器500之剖面A-A 的概要圖式。 第5 E圖係第5 C圖所示之壓力感測器5 0 0之剖面B - B 的概要圖式。
第5 F圖係第5 A圖所示之壓力感測器5 0 0的分解立體 圖,示出組成該可完全整合的壓力感測器之個別元件層。 第5G圖係該陶瓷盤524底側542的放大圖,示出該 中心電極5 4 4和該外部電極5 4 6。 第6圖係示出用於擴散接合在此所述之抗腐蝕鋼的類 型之主要處理參數之一範例組的圖式,其中當該擴散接合 部件係用於半導體流體流動系統應用時,可預期該些處理 參數可提供有利的物理特性。 第7圖係示出用來擴散接合316L不銹鋼之主要處理 參數之第二範例組之圖式,其中在洩漏測試及測試機械性 質時,處理參數提供一令人滿意的部件。這些處理參數在 範例1中示出。 【主要元件符號說明】 100 流程圖 102、 104、 106、 108、 110、 112、 114、 116 步驟 200 > 300 頂板 56 200911406 202 ' 222 表面 204、232、235、237、304、306、307 ' 517、525、527 開 ci 206 ' 226 厚度 208 、228 寬度 210、 230 長度 212 直徑 220、 320 底板 224 ' 323、 324、 325、 327 > 328 通道 232 深度 240 組件 260 氣棒歧管 262 頂表面 264 ' 270 區域 266 螺紋孔 282 底表面/閥 284 > 294 三口閥 286 過淚、 器 288 轉換器 290 ' 296 二口 閥 292 MFC/質流控制 301、 341 對位 孔 302 ' 322 上表面 333 ' 3 3 5 ' 337 通孔 340 擴散接合結構 342 ' 344 氣棒 346 埋頭孔 350 ' 3 52、 3 54、 356 測試片 400 初始結構 405 結構 407 狹缝 4〇4、406、408、410、412、414、416、420' 512、516、518 522 層 422 頂層 430 多層基板 432 流體入口 434 流體出口 436 通道 448 介質 450 過遽器 500 壓力感測器 57 200911406 502 封閉側 504 側 506 開口 /出口 /入口 5 10 外基部/底層 5 13 ' 521 狹縫 5 14 組件 5 15 通道/導管 5 19 第一室 520 膜片 523 第二室 524 盤 526 間隔物 528 蓋 529 (第三)室 530 吸氣幫浦 532 銷 538 絕緣孔 542 下側 544 ' 546 電極/接點 600 圖式 602 、 604 、 606 軸
58

Claims (1)

  1. 200911406 十、申請專利範圍: 1. 一種製備可經擴散接合以形成能夠在一半導體製造設 備中運作之一流體流動處理結構之不銹鋼或不銹鋼合金平 板(s h e e t )的方法,該方法包含:
    U 選擇一含不銹鋼材料,該材料係選自由不銹鋼 316L 或 UNS3 1 600、不銹鋼 316L 或 UNS 3 1 603、不銹鋼 317L 或 UNS 31703、不銹鋼 317LN 或 UNS 31726、Avesta® 254SMO 或 UNS S3 1 254、Avesta® A16XN 或 N083 67、沃 斯田—肥粒(austenitic-ferritic) Duplex® 2205 或 UNS 32205、Duplex® 25 07 或 UNS S32750'Inconel® 625 或 UNS N06625、Hastelloy®C22 或 UNSN06022、Elgiloy® 或 UNS R 3 0 0 0 3、及其混合物所組成之群族; 處理該含不銹鋼材料之該平板,藉此,欲擴散接合之 該平板的表面展現出約35微英吋Ra或更低之一表面粗糙 度;以及 處理該含不錄鋼材料之該平板的接合表面,以除去表 面氧化物’藉此’該些接合表面上的該些氧化物之一厚度 為4 0埃(A )或更低。 2.如申請專利la圍第1項所述之方法,其中欲擴散接合之 該平板的該表面係經處理,以具有介於約〇 5微英吋Ra〜 約35微英吋Ra之間的一表面粗糙度。 59 200911406 3.如申請專利範圍第2項所述之方法,其中 面係經處理以具有介於約3微英吋R a〜約 之間的一表面粗糙度。 4.如申請專利範圍第1項所述之方法,其中 料之該平板係經處理以除去表面氧化物,藉 表面上的該些氧化物之一厚度為20埃或更4
    5 .如申請專利範圍第4項所述之方法,其中 料之該平板係經處理以除去表面氧化物,藉 表面上的該些氧化物之一厚度為10埃或更4 6. 如申請專利範圍第1項所述之方法,其中 自由不銹鋼316或UNS31600、不銹鋼316L 不銹鋼317L或UNS31703、不銹鋼317LNi 或其混合物所組成的群族,並且其中晶粒尺 〇 63.5微米或更低。 7. 如申請專利範圍第1項所述之方法,其中 理以在該平板内產生至少一凹部或至少一通 8.如申請專利範圍第7項所述之方法,其中 或至少一通孔,或其組合係經處理以在該凹 該平板之該表 1 〇微英吋Ra 該含不銹鋼材 此,該些接合 ^ 0 該含不銹鋼材 此,該些接合 % ° 該不銹鋼係選 或 UNS 3 1 603、 炎 UNS3 1 726、 寸平均直徑為 該平板係經處 .孔,或其組合。 該至少一凹部 部表面或該通 60 200911406 孔表面上獲得1 0微英σ寸R a或更低的一表面粗縫度。 9.如申請專利範圍第8項所述之方法,其中該凹部表面或 該通孔表面上之該表面粗糙度係介於2微英吋Ra〜10微 英对Ra。
    10.如申請專利範圍第7、或8、或9項所述之方法,其中 該處理以在該凹部表面上獲得該表面之步驟係利用電解拋 光 (electropolishing) 製程或超音波能量化漿· (ultrasonic-energized slurry)來執行。 1 1 .如申請專利範圍第1項所述之方法,其中該平板的邊緣 係經處理以提供0 _ 00 5英吋的一最大半徑。 1 2.如申請專利範圍第1項所述之方法,其中該平板係經處 理以提供±0_ 001英吋的一整體平坦度(flatness),並且在 任4平方英吋面積内提供±0.0005英吋的一平坦度。 1 3 .如申請專利範圍第1 2項所述之方法,其中該平板係經 處理以提供±0.001英吋的一整體平行性(parallelism),並 且在任4平方英吋面積内提供±0.0005英吋的一平行性。 1 4.如申請專利範圍第1項所述之方法,其中該平板係經處 61 200911406 理以提供約+ 0.025 英吋至一0.025 英吋的一厚度公差 (tolerance ) ° 1 5 .如申請專利範圍第1 4項所述之方法,其中該平板係經 處理以提供一最終平板厚度,且該最終平板厚度係在超過 一預期最終平板厚度的0.0 0 3英吋内。
    1 6.如申請專利範圍第1項所述之方法,其中該平板係經處 理以提供±0.005 英吋的一厚度公差,且為未受限 (unrestrained ) ° 1 7.如申請專利範圍第1項所述之方法,其中該平板係經選 擇以符合根據2007年5月生效的ASTM E45之一夾雜物要 求(inclusions requirement),其中該夾雜物要求包含如 下:A型夾雜物薄(thin) =1.5或更低,並且重(heavy) = 1.0或更低;B型夾雜物薄=1.0或更低,並且重=1.0或更 低;C型夾雜物薄=1.0或更低,並且重=1.0或更低;以及 D型夾雜物薄=1.5或更低,並且重=1.0或更低。 1 8.如申請專利範圍第1項所述之方法,其中在該處理該平 板之步驟之後,係使得欲擴散接合的該平板之表面展現出 約1 0微英吋Ra或更低的一表面粗糙度,並且該平板的邊 緣係經處理以提供0.0 0 5英吋的一最大半徑。 62 200911406 19.如申請專利範圍第1項所述之方法,其中該平板係經選 擇以具有7〇ksi的一最小抗張強度(tensilestrength)、25 ksi的一最小降伏強度(yieid strength)、40%的2英〇寸内 之最小伸長度(elongation),以及217布氏硬度(Brinell) 的一最大硬度。 2 0 ·如申請專利範圍第1項所述之方法,其中該平板係經清 潔至一表面清潔度,藉此’該平板之一表面上存在有每平 方英吋低於0 · 3 3微克之一總離子污染。 2 1 如申請專利範圍第1項所述之方法,其中該含不銹鋼材 料之該平板係符合根據2007年5月生效的AS TM A2 62之 實施 #E( Practice#E)的粒間腐餘(intergranular corrosion) 要求,其係在約 680 °C下處理 1小時後於一敏化 (sensitized )條件下執行。 22. —種含不銹鋼材料之平板’該材料係選自由不銹鋼316 或 UNS31600、不錄鋼 316L 或 UNS 31603、不錄鋼 317L 或UNS31703、不銹鋼317LN或UNS31726、或其混合物所 組成的群族,並且該平板之晶粒尺寸平均直徑為約63.5微 米或更低(根據2〇〇7年5月生效的ASTME112),該平板 的至少一表面具有約3 5微英叶R a或更低之一粗糖度,且 63 200911406 該平板具有40埃或更低之一表面氧化物厚度。 2 3 ·如申請專利範圍第22項所述之平板,其中該平板之一 表面具有介於約0.5微英吋Ra〜約3 5微英吋Ra之間的一 表面粗縫度。
    2 4 ·如申請專利範圍第2 3項所述之平板,其中該平板之該 表面具有介於約2微英吋Ra〜約1 0微英吋Ra之間的一表 面粗糖度。 2 5.如申請專利範圍第22項所述之平板,其中該平板之一 表面的一氧化物厚度為20埃或更低。 2 6.如申請專利範圍第2 5項所述之平板,其中該氧化物厚 度為1 〇埃或更低。 2 7.如申請專利範圍第2 2項所述之平板,其中該平板具有土 0.001英吋的一整體平坦度,並且在任4平方英吋面積内 具有±0.0005英吋的一平坦度。 2 8.如申請專利範圍第2 7項所述之平板,其中該平板具有土 0.001英吋的一整體平行性,並且在任4平方英吋面積内 具有±0.0005英吋的一平行性。 64 200911406 2 9.如申請專利範圍第2 2項所述之平板,其中該平板具有 約+ 0.025英吋至一0.025英吋的一厚度公差。 3 0.如申請專利範圍第2 2項所述之平板,其中該平板具有土 0.005英忖的一厚度公差,且為未受限(unrestrained)。
    65
TW097120218A 2007-05-31 2008-05-30 Stainless steel or stainless steel alloy for diffusion bonding TW200911406A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/756,320 US20080296354A1 (en) 2007-05-31 2007-05-31 Stainless steel or stainless steel alloy for diffusion bonding

Publications (1)

Publication Number Publication Date
TW200911406A true TW200911406A (en) 2009-03-16

Family

ID=40086987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097120218A TW200911406A (en) 2007-05-31 2008-05-30 Stainless steel or stainless steel alloy for diffusion bonding

Country Status (3)

Country Link
US (2) US20080296354A1 (zh)
TW (1) TW200911406A (zh)
WO (1) WO2008150483A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371467B2 (en) 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
US7297247B2 (en) * 2003-05-06 2007-11-20 Applied Materials, Inc. Electroformed sputtering target
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
WO2011143268A1 (en) 2010-05-10 2011-11-17 Waters Technologies Corporation Pressure sensing and flow control in diffusion- bonded planar devices for fluid chromatography
JP6088724B2 (ja) * 2010-08-31 2017-03-01 ユニ・チャーム株式会社 吸収体の製造装置、及び通気性部材の製造方法
DE102011109944B4 (de) * 2011-08-10 2018-10-25 Bürkert Werke GmbH Fertigungsverfahren für Mikroventile
FR2984782B1 (fr) * 2011-12-23 2014-09-26 Commissariat Energie Atomique Procede d'assemblage par soudage diffusion d'une piece en acier a forte teneur en carbone avec une piece en acier ou en alliage de nickel a faible teneur en carbone, et assemblage ainsi obtenu.
DE112014001875T5 (de) 2013-04-09 2015-12-24 Aktiebolaget Skf Lagerteil und sein Herstellungsverfahren
WO2015046091A1 (ja) * 2013-09-27 2015-04-02 独立行政法人産業技術総合研究所 ステンレス鋼部材の接合方法およびステンレス鋼
CN104191085B (zh) * 2014-09-01 2016-03-30 山东大学 一种铝-钢-铝添加准晶中间层的低温扩散连接方法
US10458716B2 (en) 2014-11-04 2019-10-29 Roccor, Llc Conformal thermal ground planes
JP6129140B2 (ja) * 2014-11-05 2017-05-17 日新製鋼株式会社 拡散接合用ステンレス鋼材
CN105750706A (zh) * 2014-12-19 2016-07-13 上海凯泉泵业(集团)有限公司 一种超级奥氏体不锈钢焊接工艺以及后续热处理工艺
CN105642844B (zh) * 2016-01-07 2018-03-13 山西太钢不锈钢股份有限公司 一种2205双相不锈钢锭的铸造方法
US11059278B2 (en) * 2016-02-28 2021-07-13 Roccor, Llc Two-phase thermal management devices, methods, and systems
US11380557B2 (en) * 2017-06-05 2022-07-05 Applied Materials, Inc. Apparatus and method for gas delivery in semiconductor process chambers
DE112018003711T5 (de) * 2017-07-19 2020-04-02 Cummins Emission Solutions Inc. Reduzierung von Ablagerungen durch Innenoberflächenveredelung
JP2019151901A (ja) * 2018-03-05 2019-09-12 日鉄日新製鋼株式会社 ステンレス鋼材
JP7067998B2 (ja) * 2018-03-28 2022-05-16 日鉄ステンレス株式会社 ステンレス鋼材
CN109487174A (zh) * 2018-11-30 2019-03-19 山西太钢不锈钢股份有限公司 一种兼顾高温强度与低温韧性的双相不锈钢板材制造方法
CN115287463A (zh) * 2022-06-15 2022-11-04 东北大学 一种电渣重熔n06625镍基合金焊材用渣系、制备方法及使用方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1098629A (en) * 1964-08-06 1968-01-10 Applied Controls Ltd Connector unit
US3664887A (en) * 1969-04-14 1972-05-23 Pennwalt Corp Process for increasing corrosion resistance of conversion coated metal
US3789498A (en) * 1971-11-01 1974-02-05 Ambac Ind Method of diffusion bonding
JPS6036356B2 (ja) * 1981-07-13 1985-08-20 株式会社日立製作所 拡散接合法
US4570675A (en) * 1982-11-22 1986-02-18 General Electric Company Pneumatic signal multiplexer
US4581624A (en) * 1984-03-01 1986-04-08 Allied Corporation Microminiature semiconductor valve
US4603801A (en) * 1984-07-24 1986-08-05 The Garrett Corporation Diffusion bonding of mechanically held components by hot isostatic pressure
JPS63115970A (ja) * 1986-10-31 1988-05-20 Motoyama Seisakusho:Kk ダイヤフラム弁
US4732312A (en) * 1986-11-10 1988-03-22 Grumman Aerospace Corporation Method for diffusion bonding of alloys having low solubility oxides
US5070607A (en) * 1989-08-25 1991-12-10 Rolls-Royce Plc Heat exchange and methods of manufacture thereof
US5385204A (en) * 1989-08-25 1995-01-31 Rolls-Royce Plc Heat exchanger and methods of manufacture thereof
FR2661214B1 (fr) * 1990-04-19 1992-07-03 Snecma Plaque de raccordement electrohydraulique pour regulateur de turbomachine.
US5505256A (en) * 1991-02-19 1996-04-09 Rolls-Royce Plc Heat exchangers and methods of manufacture thereof
US5253796A (en) * 1991-07-01 1993-10-19 Rockwell International Corporation Retort for gas diffusion bonding of metals under vacuum
US5401583A (en) * 1991-08-02 1995-03-28 Rockwell International Corporation Gas manifolding for super plastic forming and diffusion bonding of truss core sandwiches
GB9122874D0 (en) * 1991-10-29 1991-12-11 Rolls Royce Plc A method of manufacturing an article,a method of diffusion bonding and a vacuum chamber
US5303731A (en) * 1992-06-30 1994-04-19 Unit Instruments, Inc. Liquid flow controller
JP3379070B2 (ja) * 1992-10-05 2003-02-17 忠弘 大見 クロム酸化物層を表面に有する酸化不動態膜の形成方法
EP0672084B2 (en) * 1992-11-30 2007-03-07 Bulk Chemicals, Inc. A method and composition for treating metal surfaces
US5423123A (en) * 1993-10-04 1995-06-13 Rockwell International Corporation Method of making impingement/film cooling panels
GB2289429B (en) * 1994-05-10 1997-01-22 Rolls Royce Plc Hollow component manufacture
US5730181A (en) * 1994-07-15 1998-03-24 Unit Instruments, Inc. Mass flow controller with vertical purifier
US5567868A (en) * 1995-01-23 1996-10-22 Hewlett-Packard Company Planar manifold assembly
US5605179A (en) * 1995-03-17 1997-02-25 Insync Systems, Inc. Integrated gas panel
US5755428A (en) * 1995-12-19 1998-05-26 Veriflow Corporation Valve having metal-to metal dynamic seating for controlling the flow of gas for making semiconductors
DE19629217A1 (de) * 1996-07-19 1998-01-22 Eckehart Schulze Hydraulikventil
US5992463A (en) * 1996-10-30 1999-11-30 Unit Instruments, Inc. Gas panel
US5836355A (en) * 1996-12-03 1998-11-17 Insync Systems, Inc. Building blocks for integrated gas panel
US6062246A (en) * 1997-04-08 2000-05-16 Hitachi Metals Ltd. Mass flow controller and operating method thereof
US5997708A (en) * 1997-04-30 1999-12-07 Hewlett-Packard Company Multilayer integrated assembly having specialized intermediary substrate
US5888390A (en) * 1997-04-30 1999-03-30 Hewlett-Packard Company Multilayer integrated assembly for effecting fluid handling functions
US5935430A (en) * 1997-04-30 1999-08-10 Hewlett-Packard Company Structure for capturing express transient liquid phase during diffusion bonding of planar devices
AU7666798A (en) * 1997-06-03 1998-12-21 Chart Marston Limited Heat exchanger and/or fluid mixing means
GB9716288D0 (en) * 1997-08-02 1997-10-08 Rolls Laval Heat Exchangers Li Improvements in or relating to heat exchanger manufacture
US6221235B1 (en) * 1998-11-30 2001-04-24 Faraday Technology Marketing Group Llc Removal of sacrificial cores by electrochemical machining
JP3544488B2 (ja) * 1999-03-23 2004-07-21 新日本製鐵株式会社 ステンレス極薄箔
US7033553B2 (en) * 2000-01-25 2006-04-25 Meggitt (Uk) Limited Chemical reactor
JP4418571B2 (ja) * 2000-04-11 2010-02-17 シーケーディ株式会社 高温対応ガス制御バルブ
US6357760B1 (en) * 2000-05-19 2002-03-19 Michael Doyle Ring seal
US6251779B1 (en) * 2000-06-01 2001-06-26 United Microelectronics Corp. Method of forming a self-aligned silicide on a semiconductor wafer
JP3392813B2 (ja) * 2000-07-07 2003-03-31 エスエムシー株式会社 二方弁
US7141812B2 (en) * 2002-06-05 2006-11-28 Mikro Systems, Inc. Devices, methods, and systems involving castings
US6457236B1 (en) * 2001-06-05 2002-10-01 Agilent Technologies, Inc. Apparatus and method for restricting fluid flow in a planar manifold
JP3748055B2 (ja) * 2001-08-07 2006-02-22 信越化学工業株式会社 ボイスコイルモータ磁気回路ヨーク用鉄合金板材およびボイスコイルモータ磁気回路用ヨーク
US6736370B1 (en) * 2002-12-20 2004-05-18 Applied Materials, Inc. Diaphragm valve with dynamic metal seat and coned disk springs
AU2003303439A1 (en) * 2002-12-20 2004-07-22 Applied Materials, Inc. Micromachined intergrated fluid delivery system
US20050017055A1 (en) * 2003-07-24 2005-01-27 Kurz Douglas L. Electrochemical fuel cell component materials and methods of bonding electrochemical fuel cell components
US20060039788A1 (en) * 2004-01-08 2006-02-23 Arnold James E Hardface alloy
US20050161381A1 (en) * 2004-01-27 2005-07-28 Norman Wesley M. Tortuous path in diffusion bonded plates for fluid handling
ES2380231T3 (es) * 2005-08-31 2012-05-09 Fmc Corporation Producción por autooxidación de peróxido de hidrógeno mediante oxidación de un microreactor

Also Published As

Publication number Publication date
US20080296354A1 (en) 2008-12-04
US20090072009A1 (en) 2009-03-19
WO2008150483A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
TW200911406A (en) Stainless steel or stainless steel alloy for diffusion bonding
US7798388B2 (en) Method of diffusion bonding a fluid flow apparatus
US7984891B2 (en) Manufacture of an integrated fluid delivery system for semiconductor processing apparatus
US8017028B2 (en) Method of increasing etchability of metals having chemical etching resistant microstructure
Kazakov Diffusion bonding of materials
US8387228B2 (en) Clad alloy substrates and method for making same
Basuki et al. Optimization of solid-state diffusion bonding of Hastelloy C-22 for micro heat exchanger applications by coupling of experiments and simulations
CN102905836B (zh) 具有扩散结合且表面改性的构件的层析设备
CN108120545B (zh) 膜片、使用膜片的压力传感器、膜片的制造方法
JP5950791B2 (ja) 耐食性Ni基合金とアルミニウムまたはアルミニウム合金からなる複合部材
WO2024077654A1 (zh) 一种316L不锈钢表面的WC-Ni耐磨涂层及其制备方法
WO2020022046A1 (ja) アルミナ分散強化銅のろう付接合方法
JP6606661B1 (ja) アルミナ分散強化銅のろう付接合方法
Zilio et al. Characterization of compact heat exchangers manufactured by laser powder bed fusion technology
Che et al. Optimization of laser cladding process for additive repair of high temperature and high pressure valve sealing surface
US20220013342A1 (en) Backing plate, sputtering target, and production methods therefor
Walker et al. Single and double reaction layer formation using reduced active element containing brazing filler metals.
Atkinson et al. HIP diffusion bonding of austenitic to ferritic steels
Abbatiello et al. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151
Zadorozhnyi Strength of metal–piezoceramic structures produced by diffusion bonding
Drennen et al. TOPICAL REPORT ON LMFBR INSTRUMENTATION: STRAIN GAGES. PHASE I. HIGH-TEMPERATURE STRAIN GAGE DEVELOPMENT PROGRAM. TASK 1. LITERATURE AND FIELD SURVEY.
Chang et al. Self-welding evaluation of stellite 6 and stellite 156 in flowing sodium.[850-1140/sup 0/F at stresses from 6000-16000 psi]
JPH11106854A (ja) 摺動材用合金及び該合金を使用した機器