TW200907569A - Radiation-sensed resin composition, layer insulation film, microlens and forming method thereof - Google Patents

Radiation-sensed resin composition, layer insulation film, microlens and forming method thereof Download PDF

Info

Publication number
TW200907569A
TW200907569A TW097117831A TW97117831A TW200907569A TW 200907569 A TW200907569 A TW 200907569A TW 097117831 A TW097117831 A TW 097117831A TW 97117831 A TW97117831 A TW 97117831A TW 200907569 A TW200907569 A TW 200907569A
Authority
TW
Taiwan
Prior art keywords
resin composition
compound
radiation
weight
group
Prior art date
Application number
TW097117831A
Other languages
Chinese (zh)
Other versions
TWI437365B (en
Inventor
Masaaki Hanamura
Chihiro Uchiike
Takahiro Iijima
Kenichi Hamada
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200907569A publication Critical patent/TW200907569A/en
Application granted granted Critical
Publication of TWI437365B publication Critical patent/TWI437365B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The invention relates to a radioactive ray sensibility resin composition, a layer insulating file and a lenticule and forming method thereof. The invention relates to a radioactive ray sensibility resin composition, be characterised in that containing: [A] a copolymer of the unsaturated compound selected from at least one of (a1) unsaturated carboxylic acid and unsaturated carboxylic acid anhydride and at least one radical selected from the epoxy ethanyl and oxygen heterocyclic ring butyl; [B] 1, 2-diazonium quinonoid compound; and [C] the compound with the ester ring epoxy ethanyl and without the carboxyl. The radioactive ray sensibility resin composition has a high sensibility, which can form a great pattern shape of the development even the developing procedure is over the optimal developing time; the invention can easily form the layer insulating film or the lenticule with a great tight.

Description

200907569 九、發明說明 【發明所屬之技術領域】 本發明係關於一種敏輻射線性樹脂組成物、層間絕緣 膜及微透鏡以及此等之形成方法。 【先前技術】 於薄膜電晶體(以下,記爲「TFT」)型液晶顯示元 件或磁頭元件、積體電路元件、固體攝影元件等之電子零 件中一般係爲使配製成層狀的配線之間絕緣,設置有層間 絕緣膜。形成層間絕緣膜之材料宜用以得到必需之圖案形 狀之步驟數少,而且具有充分的平坦性,故可廣泛地使用 敏輻射線性樹脂組成物(參照特開200 1 -3 54822及特開 200 1 -343743 ) ° 上述電子零件之中,例如TFT型液晶顯示元件係於上 述層間絕緣膜之上形成透明電極膜,進一步,經過於其上 形成液晶配向膜之步驟而製造,故層間絕緣膜係在透明電 極膜之形成步驟中曝露於高溫條件下,或曝露於電極之圖 型形成所使用的光阻之剝離液,故必須對此等充分的耐 性。 又,近年,TFT型液晶顯示元件係進一步在於要求大 尺寸化、高亮度化、高精細化、高速應答化、薄型化等之 傾向,要求於此等所使用之層間絕緣膜形成用組成物爲高 感度,所形成之層間絕緣膜係被要求較以往更低介電率、 高透過率等之高性能化。 -5- 200907569 另外,就傳真機、電子影印機、固體照相元件等之在 玻璃上之濾色膜之成像光學系或光纖連結器的光學系材料 而言,可使用具有3~ l〇〇//m左右的透鏡徑的微透鏡、或 規則地排列此等複數微透鏡之微透鏡陣列。 微透鏡或微透鏡陣列之形成係形成相當於透鏡之圖型 狀薄膜後,藉由加熱處理此而熔融流動,直接利用來作爲 透鏡的方法,或使熔融流動之透鏡圖型形成掩罩而藉乾蝕 刻於基底轉印透鏡形狀之方法等。前述透鏡圖型的形成係 廣泛地使用敏輻射線性樹脂組成物(參照特開平6- 1 8 702 及特開平6-136239)。 形成如上述之微透鏡或微透鏡陣列的元件係除去其後 配線形成部分之黏合墊上的各種絕緣膜,故形成平坦化膜 及蝕刻用光阻膜後,使用所希望之掩罩而進行曝光、顯像 而除去黏合墊部分之鈾刻光阻膜,然後,藉蝕刻除去平坦 化膜或各種絕緣膜而供給至露出黏合墊部分的步驟,因 此,微透鏡或微透鏡陣列中係在平坦化膜及蝕刻光阻膜的 成膜步驟以及蝕刻步驟中必須爲耐溶劑性或耐熱性。 使用來用以形成如此之微透鏡的敏輻射線性樹脂組成 物係高感度,又,從其所形成之微透鏡具有所希望的曲率 半徑者,要求高耐熱性、高透過率等。 如此做法所得到之層間絕緣膜或微透鏡係在形成此等 之際的顯像步驟中,若顯像時間較最適時間僅少許地過 剩,於圖型與基板之間浸透顯像液而易產生剝離,故必須 嚴密地控制顯像時間,就製品的良率而言有問題。 -6 - 200907569 如此地,當從敏輻射線性樹脂組成物形成層間絕緣膜 或微透鏡時作爲組成物係被要求高感度,又,即使在顯像 步驟中顯像時間較特定時間過剩時產生圖型之剝離而顯示 良好的密著性,且從其所形成之層間絕緣膜係被要求高耐 熱性、高耐溶劑性、低介電率、高透過率等,另外,形成 微透鏡時係就微透鏡被要求良好的熔融形狀(所希望的曲 率半徑)、高耐熱性、高耐溶劑性、高透過率等,但,滿 足如此之要求的敏輻射線性樹脂組成物係自以往即未爲人 知。 【發明內容】 發明之揭示 本發明係依據如以上之事情而成者。是故,本發明之 目的係提供一種敏輻射線性樹脂組成物,其係具有高的輻 射線感度’且具有在顯像步驟中即使超過最適顯像時間亦 可形成良好的圖型形狀之顯像邊緣,可容易地形成密著性 優之圖型狀薄膜。 本發明之另一目的在於提供一種敏輻射線性樹脂組成 物,其係當使用於層間絕緣膜之形成時係可形成高耐熱 性、高耐溶劑性、高透過率、低介電率之層間絕緣膜, 又,當使用於微透鏡之形成時係可形成具有高的透過率與 良好的溶融形狀之微透鏡。 本發明之再另一目的係在於提供一種使用上述敏輻射 線性樹脂組成物而形成層間絕緣膜及微透鏡的方法。 200907569 本發明之再另一目的在於提供一種藉本發明的方法所 形成之層間絕緣膜及微透鏡。 本發明之再另一目的及優點係從以下之說明明顯可 知。 若依本發明,本發明之上述目的及優點,第1係可藉 由含有如下之敏輻射線性樹脂組成物來達成: [A] 含有(al)選自由不飽和羧酸及不飽和羧酸酐所 構成之群的至少一種、以及 (a2)具有選自由環氧乙烷基及氧雜環丁基所構成之 群的至少一種之基的不飽和化合物 而成之不飽和化合物的共聚物(以下稱爲「共聚物 [A]」)、 [B] l,2-醌二疊氮化合物(以下稱爲「[B]成分」)、 以及 [C] 具有脂環式環氧乙烷基且不具有羧基之化合物 (以下稱爲「[C]成分」)。 本發明之上述目的及優點,第2係 可藉由以下述之記載順序含有以下之步驟的層間絕緣膜及 微透鏡之形成方來達成: (1 )使上述之敏輻射線性樹脂組成物的塗膜形成於 基板上之步驟; (2 )於該塗膜之至少一部分上照射輻射線之步驟; (3 )顯像步驟;及 (4 )加熱步驟。 -8- 200907569 進一步本發明之上述目的及優點,第3係 可藉由以上述方法所形成之層間絕緣膜及微透鏡來達成。 用以實施發明之最佳形態 以下,詳述有關本發明之敏輻射線性樹脂組成物。 共聚物[A] 本發明之敏輻射線性樹脂組成物所含有的共聚物[A] 係可藉由使含有: (al)選自由不飽和羧酸及不飽和羧酸酐所構成之群 的至少一種(以下稱爲「化合物(a 1 )」)、以及 (a2)具有選自由環氧乙烷基及氧雜環丁基所構成之 群的至少一種之基的不飽和化合物(以下稱爲「化合物 (a2 )」)而成之不飽和化合物較佳係在溶劑中聚合起始 劑的存在下進行自由基聚合來製造。 化合物(a I )係選自由不飽和羧酸及不飽和羧酸酐所 構成之群的至少一種之自由基聚合性化合物,可舉例如不 飽和單羧酸、不飽和二羧酸、不飽和二羧酸之酸酐、多價 羧酸的單[(甲基)丙烯醯氧基烷基]酯、於兩末端具有羧 基與羥基之聚合物的單(甲基)丙烯酸酯、具有羧基之多 環式不飽和化合物及其酸酐等。 此等之具體例係就不飽和單羧酸而言可舉例如丙烯 酸、甲基丙烯酸、巴豆酸等; 就不飽和二羧酸而言可舉例如馬來酸、富馬酸、檸康 -9- 200907569 酸、中康酸、衣康酸等; 就不飽和二竣酸之酸酐而言可舉例如上述例示作爲不 飽和二羧酸之化合物的酸酐等; 就多價羧酸之單[(甲基)丙烯醯氧烷基]酯而言可舉 例如琥珀酸單[2 -(甲基)丙烯醯氧乙基]、酞酸單[2 -(甲 基)丙烯醯氧乙基]等; 就於兩末端具有羧基與羥基之聚合物的單(甲基)丙 烯酸酯而言可舉例如ω-羥基聚己內酯單(甲基)丙烯酸 酯等; 就具有羧基之多環式不飽和化合物及其酸酐而言可舉 例如5-羧基雙環[2.2.1]庚-2-烯、5,6-二羧基雙環[2.2.1] 庚-2-烯、5-羧基-5-甲基雙環[2.2·1]庚_2·烯、5_羧基-5-乙 基雙環[2.2.1]庚-2-烯、5-羧基-6-甲基雙環[2.2.1]庚-2-烯、5-羧基-6-乙基雙環[2.2.1]庚-2-烯、5,6-二羧基雙環 [2.2_1]庚-2-烯酸酐等。 此等之中,宜使用不飽和單羧酸、不飽和二羧酸之酸 酐,就共聚合反應性、對於鹼水溶液之溶解性及取得容易 而言,尤宜使用丙烯酸、甲基丙烯酸或馬來酸酐。此等之 化合物(al )係可單獨或組合而使用。 化合物(a2)係具有選自由環氧乙烷基及氧雜環丁基 所構成之群的至少一種之基的自由基聚合性不飽和化合 物。 含有環氧乙烷基之不飽和化合物就提高共聚合反應性 及所得到之層間絕緣膜或提高微透鏡之耐熱性、表面硬度 -10- 200907569 而言,較宜使用例如丙烯酸縮水甘油基酯、甲基丙烯酸縮 水甘油基酯、α -乙基丙烯酸縮水甘油基酯、α-正丙基丙 烯酸縮水甘油基酯、α-正丁基丙烯酸縮水甘油基酯、丙 烯酸-3,4-環氧基丁酯、甲基丙烯酸- 3,4-環氧基丁酯、丙烯 酸-6,7-環氧基庚酯、甲基丙烯酸-6,7-環氧基庚酯、α-乙 基丙烯酸-6,7-環氧基庚酯、鄰-乙烯基苯甲基縮水甘油基 醚、間乙烯基苯甲基縮水甘油基醚、對乙烯基苯甲基縮水 甘油基醚等。此等之中,宜使用甲基丙烯酸縮水甘油基 酯、甲基丙烯酸-6,7-環氧基庚酯、鄰-乙烯基苯甲基縮水 甘油基醚、間乙烯基苯甲基縮水甘油基醚、對乙烯基苯甲 基縮水甘油基醚、3,4-環氧基環己基甲基丙烯酸酯等。 就含有氧雜環丁基之不飽和化合物而言,可舉例如具 有氧雜環丁基之(甲基)丙烯酸酯等。 就上述具有氧雜環丁基之(甲基)丙烯酸酯而言,可 舉例如3-((甲基)丙烯醯氧基甲基)氧雜環丁烷、3-((甲基)丙烯醯氧基甲基)-2 -甲基氧雜環丁烷、3-((甲基)丙烯醯氧基甲基)-3 -乙基氧雜環丁烷、3-((甲基)丙烯醯氧基甲基)-2-三氟甲基氧雜環丁烷、3-((甲基)丙烯醯氧基甲基)-2-五氟乙基氧雜環丁烷、3-((甲基)丙烯醯氧基甲基)-2-苯基氧雜環丁烷、3-((甲基)丙烯醯氧基甲基)-2,2-二氟甲基氧雜環丁烷、 3-((甲基)丙烯醯氧基甲基)_2,2,4-三氟甲基氧雜環丁 烷、3-((甲基)丙烯醯氧基甲基)-2,2,4,4_四氟甲基氧 雜環丁烷、3-(2-(甲基)丙烯醯氧基乙基)氧雜環丁 -11 - 200907569 烷、3-(2-(甲基)丙烯醯氧基乙基)-2-乙基氧雜環丁 烷、3-(2-(甲基)丙烯醯氧基乙基)-3-乙基氧雜環丁 烷、3-(2-(甲基)丙烯醯氧基乙基)-2-三氟甲基氧雜環 丁烷、3-(2-(甲基)丙烯醯氧基乙基)_2_五氟乙基氧雜 環丁烷、3-(2-(甲基)丙烯醯氧基乙基)-2-苯基氧雜環 丁烷、3-(2-(甲基)丙烯醯氧基乙基)-2,2-二氟氧雜環 丁烷、3-(2-(甲基)丙烯醯氧基乙基)-2,2,4-三氟氧雜 環丁烷、3-(2-(甲基)丙烯醯氧基乙基)-2,2,4,4-四氟 氧雜環丁烷、 2-((甲基)丙烯醯氧基乙基)氧雜環丁烷、2-((甲基)丙烯醯氧基甲基)-3-甲基氧雜環丁烷、2-((甲基)丙烯醯氧基甲基)-4 -乙基氧雜環丁烷、2-((甲基)丙烯醯氧基甲基)-3-三氟甲基氧雜環丁烷、2-((甲基)丙烯醯氧基甲基)-3-五氟乙基氧雜環丁烷、2_ ((甲基)丙烯醯氧基甲基)-3-苯基氧雜環丁烷' 2-((甲基)丙烯醯氧基甲基)-3,3-二氟氧雜環丁烷、2-((甲基)丙烯醯氧基甲基)-3,3,4-三氟氧雜環丁烷、2-((甲基)丙烯醯氧基甲基)-3,3,4,4-四氟氧雜環丁烷、 2- (2-(甲基)丙烯醯氧基乙基)氧雜環丁烷、2-(2-(甲基)丙烯醯氧基乙基)-3-乙基氧雜環丁烷、2-(2-(甲基)丙烯醯氧基乙基)-4-乙基氧雜環丁烷、2-(2-(甲基)丙烯醯氧基乙基)-3-三氟甲基氧雜環丁烷、2-(2-(甲基)丙烯醯氧基乙基)-3-五氟乙基氧雜環丁烷、 2-(2-(甲基)丙烯醯氧基乙基)-3-苯基氧雜環丁烷、2- -12- 200907569 (2-(甲基)丙嫌酿氧基乙基)-3,3 -二錄氧雑環丁院、2· (2-(甲基)丙烯醯氧基乙基)-3,3,4 -三氟氧雜環丁烷、 2- (2-(甲基)丙烯醯氧基乙基)-3,3,4,4-四氟氧雜環丁 烷等。 此等之化合物(a2 )係可單獨或組合而使用。 當製造共聚物[A]時所使用之不飽和化合物係亦可爲 只由上述化合物(a 1 )及化合物(a2 )所構成之不飽和化 合物,或化合物(al)及化合物(a2)之外亦可進一步含 有其他之不飽和化合物(以下謂「化合物(a3 )」)之不 飽和化合物。 化合物()係只要爲上述化合物(al ) 、 ( a2 )以 外之自由基聚合性不飽和化合物即可,並無特別限制,可 舉例如甲基丙烯酸烷酯、丙烯酸環狀烷酯、甲基丙烯酸環 狀烷酯、具有羥基之甲基丙烯酸酯、丙烯酸環狀烷酯、甲 基丙烯酸芳酯、丙烯酸芳酯、不飽和二羧酸二酯、雙環不 飽和化合物、馬來醯亞胺化合物、不飽和芳香族化合物、 共軛二烯、以下述式(I) R1BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation sensitive linear resin composition, an interlayer insulating film, and a microlens, and a method of forming the same. [Prior Art] In an electronic component such as a thin film transistor (hereinafter referred to as "TFT") type liquid crystal display element, a magnetic head element, an integrated circuit element, or a solid-state imaging element, wiring is formed into a layer. Inter-insulation, provided with an interlayer insulating film. The material for forming the interlayer insulating film is preferably used in a small number of steps for obtaining a necessary pattern shape, and has sufficient flatness, so that a sensitive radiation linear resin composition can be widely used (refer to JP-A-200 1 - 3 54822 and JP-A 200). 1 - 343743 ) ° Among the above electronic components, for example, a TFT-type liquid crystal display element is formed on the interlayer insulating film to form a transparent electrode film, and further, a step of forming a liquid crystal alignment film thereon is performed, so that the interlayer insulating film is In the step of forming the transparent electrode film, it is exposed to a high temperature condition, or the pattern of the electrode exposed to the electrode forms a stripping liquid for use, and therefore sufficient resistance must be obtained. In addition, in recent years, the TFT-type liquid crystal display device is required to have a large size, a high brightness, a high definition, a high-speed response, and a thinner thickness. The composition for forming an interlayer insulating film used in the above is required. The high-sensitivity, the interlayer insulating film formed is required to have higher performance such as lower dielectric constant and high transmittance than conventional ones. -5- 200907569 In addition, for optical systems such as facsimile machines, electronic photocopiers, solid photographic elements, and the like, the optical system of the color filter film on the glass can be used with 3~1〇〇/ A microlens having a lens diameter of about /m, or a microlens array in which the plurality of microlenses are regularly arranged. The formation of the microlens or the microlens array is formed by forming a pattern-like film corresponding to the lens, and then melt-flowing by heat treatment, directly using the lens as a lens, or forming a mask pattern of the melted flow to form a mask A method of dry etching a shape of a substrate transfer lens or the like. The formation of the aforementioned lens pattern is widely used as a linear radiation-sensitive resin composition (refer to JP-A-6-8 702 and JP-A-6-136239). The element forming the microlens or the microlens array as described above removes various insulating films on the bonding pads of the subsequent wiring forming portions. Therefore, after forming a planarizing film and a photoresist film for etching, exposure is performed using a desired mask. The uranium engraved photoresist film of the adhesive pad portion is removed by development, and then the planarization film or various insulating films are removed by etching to supply the portion to expose the adhesive pad portion. Therefore, the microlens or microlens array is attached to the planarization film. And the film forming step of the etching photoresist film and the etching step must be solvent resistance or heat resistance. The sensitive radiation linear resin composition used to form such a microlens has high sensitivity, and the microlens formed therefrom has a desired radius of curvature, and high heat resistance, high transmittance, and the like are required. In the development step of forming the interlayer insulating film or the microlens system obtained in this way, if the development time is only slightly excessive in the optimum time, the imaging solution is easily permeated between the pattern and the substrate. Since it is peeled off, it is necessary to strictly control the development time, and there is a problem in terms of the yield of the product. -6 - 200907569 In this way, when an interlayer insulating film or a microlens is formed from a sensitive radiation linear resin composition, high sensitivity is required as a composition, and even when a developing time is excessive in a developing step, a pattern is generated. The type is peeled off to exhibit good adhesion, and the interlayer insulating film formed therefrom is required to have high heat resistance, high solvent resistance, low dielectric constant, high transmittance, etc., and when forming a microlens, The microlens is required to have a good melt shape (a desired radius of curvature), high heat resistance, high solvent resistance, high transmittance, etc., but a linear radiation-sensitive resin composition satisfying such requirements has not been known since. . SUMMARY OF THE INVENTION The present invention has been made in accordance with the above matters. Therefore, an object of the present invention is to provide a radiation sensitive linear resin composition which has a high radiation sensitivity and which has a good pattern shape even if the optimum development time is exceeded in the developing step. The edge can easily form a pattern-like film excellent in adhesion. Another object of the present invention is to provide a radiation sensitive linear resin composition which can be used for forming an interlayer insulating film to form an interlayer insulating film having high heat resistance, high solvent resistance, high transmittance, and low dielectric constant. The film, in addition, when used for the formation of a microlens, can form a microlens having a high transmittance and a good molten shape. Still another object of the present invention is to provide a method of forming an interlayer insulating film and a microlens using the above-mentioned radiation-sensitive linear resin composition. Still another object of the present invention is to provide an interlayer insulating film and a microlens formed by the method of the present invention. Still another object and advantages of the present invention will be apparent from the following description. According to the present invention, the above objects and advantages of the present invention can be attained by the following linear radiation-sensitive resin composition: [A] containing (al) selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides a copolymer of at least one of the constituent groups and (a2) an unsaturated compound having an unsaturated compound selected from the group consisting of at least one of an ethylene oxide group and an oxetanyl group (hereinafter referred to as a copolymer) "copolymer [A]"), [B] 1,2-quinonediazide compound (hereinafter referred to as "[B] component"), and [C] have an alicyclic oxirane group and have no A compound of a carboxyl group (hereinafter referred to as "[C] component"). The above objects and advantages of the present invention can be attained by the formation of an interlayer insulating film and a microlens in the following steps in the following order: (1) Coating of the above-mentioned sensitive radiation linear resin composition a step of forming a film on the substrate; (2) a step of irradiating the radiation on at least a portion of the film; (3) a developing step; and (4) a heating step. -8- 200907569 Further, the above objects and advantages of the present invention can be attained by the interlayer insulating film and the microlens formed by the above method. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the sensitive radiation linear resin composition of the present invention will be described in detail. Copolymer [A] The copolymer [A] contained in the radiation sensitive linear resin composition of the present invention can be obtained by containing: (al) at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides. (hereinafter referred to as "compound (a 1 )") and (a2) an unsaturated compound having at least one selected from the group consisting of an oxiranyl group and an oxetanyl group (hereinafter referred to as "a compound" The unsaturated compound (a2)") is preferably produced by radical polymerization in the presence of a polymerization initiator in a solvent. The compound (a I ) is at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and examples thereof include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, and unsaturated dicarboxylic acids. An acid anhydride, a mono[(meth)acryloxyalkylene ester of a polyvalent carboxylic acid, a mono(meth)acrylate having a polymer having a carboxyl group and a hydroxyl group at both terminals, and a polycyclic ring having a carboxyl group. Saturated compounds and their anhydrides, and the like. Specific examples of such an unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, and the like; and examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, and citrine-9. - 200907569 Acid, mesaconic acid, itaconic acid, etc.; as the acid anhydride of the unsaturated dicarboxylic acid, for example, an acid anhydride of the compound exemplified as the unsaturated dicarboxylic acid, etc.; The propylene oxyalkylene ester may, for example, be succinic acid mono [2-(methyl) propylene oxyethyl], decanoic acid mono [2-(methyl) propylene oxiranyl], etc.; The mono(meth)acrylate having a polymer having a carboxyl group and a hydroxyl group at both terminals may, for example, be an ω-hydroxypolycaprolactone mono(meth)acrylate; or a polycyclic unsaturated compound having a carboxyl group; The acid anhydride thereof may, for example, be 5-carboxybicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene or 5-carboxy-5-methylbicyclo[ 2.2·1]heptan-2-ene, 5-carboxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-ethylbicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo [2.2_1] hept-2-ene anhydride and the like. Among these, an acid anhydride of an unsaturated monocarboxylic acid or an unsaturated dicarboxylic acid is preferably used, and in terms of copolymerization reactivity, solubility in an aqueous alkali solution, and ease of use, acrylic acid, methacrylic acid or mala is particularly preferably used. Anhydride. These compounds (al) can be used singly or in combination. The compound (a2) is a radical polymerizable unsaturated compound having at least one selected from the group consisting of an ethylene oxide group and an oxetanyl group. The oxiranyl group-containing unsaturated compound is preferably used to increase the copolymerization reactivity and the obtained interlayer insulating film or to improve the heat resistance and surface hardness of the microlens-10-200907569, for example, glycidyl acrylate, Glycidyl methacrylate, glycidyl α-ethyl acrylate, glycidyl α-n-propyl acrylate, glycidyl α-n-butyl acrylate, 3,4-epoxy acrylate Ester, 3,4-epoxybutyl methacrylate, -6,7-epoxyheptyl acrylate, -6,7-epoxyheptyl methacrylate, α-ethyl acrylate-6, 7-epoxyheptyl ester, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, and the like. Among these, glycidyl methacrylate, -6,7-epoxyheptyl methacrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl group are preferably used. Ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexyl methacrylate, and the like. The unsaturated compound containing an oxetanyl group may, for example, be a (meth) acrylate having an oxetanyl group. The above (meth) acrylate having an oxetanyl group may, for example, be 3-((meth)acryloxymethyl)oxetane or 3-((meth)acryl oxime). Oxymethyl)-2-methyloxetane, 3-((meth)acryloxymethyl)-3-ethyloxetane, 3-((meth) propylene oxime Oxymethyl)-2-trifluoromethyloxetane, 3-((meth)propenyloxymethyl)-2-pentafluoroethyloxetane, 3-((A) Acryloxymethyl)-2-phenyloxetane, 3-((meth)acryloxymethyl)-2,2-difluoromethyloxetane, 3 -((Meth)acryloxymethyl)_2,2,4-trifluoromethyloxetane, 3-((meth)acryloxymethyl)-2,2,4, 4_tetrafluoromethyloxetane, 3-(2-(methyl)propenyloxyethyl)oxetane-11 - 200907569 alkane, 3-(2-(methyl)propene oxime Benzyl)-2-ethyloxetane, 3-(2-(methyl)propenyloxyethyl)-3-ethyloxetane, 3-(2-(methyl) ) propylene methoxyethyl)-2-trifluoromethyl oxetane, 3-(2-(methyl) propylene oxime Oxyethyl)_2_pentafluoroethyloxetane, 3-(2-(methyl)propenyloxyethyl)-2-phenyloxetane, 3-(2-( Methyl)propenyloxyethyl)-2,2-difluorooxetane, 3-(2-(methyl)propenyloxyethyl)-2,2,4-trifluoroox Cyclobutane, 3-(2-(methyl)propenyloxyethyl)-2,2,4,4-tetrafluorooxetane, 2-((meth)propenyloxyethyl Oxetane, 2-((meth)acryloxymethyl)-3-methyloxetane, 2-((meth)acryloxymethyl)-4-B Oxycyclobutane, 2-((meth)acryloxymethyl)-3-trifluoromethyloxetane, 2-((meth)acryloxymethyl)-3 - pentafluoroethyl oxetane, 2-((meth) propylene methoxymethyl)-3-phenyl oxetane ' 2-((methyl) propylene methoxymethyl)- 3,3-Difluorooxetane, 2-((meth)acryloxymethyl)-3,3,4-trifluorooxetane, 2-((meth)acrylofluorene Oxymethyl)-3,3,4,4-tetrafluorooxetane, 2-(2-(methyl)propenyloxyethyl)oxetane, 2-(2-( methyl) Eneoxyethyl)-3-ethyloxetane, 2-(2-(methyl)propenyloxyethyl)-4-ethyloxetane, 2-(2- (Meth)acryloxyethyl)-3-trifluoromethyloxetane, 2-(2-(methyl)propenyloxyethyl)-3-pentafluoroethyloxycyclohexane Butane, 2-(2-(methyl)acryloxyethyl)-3-phenyloxetane, 2- -12- 200907569 (2-(methyl)-propyl oxyethyl )-3,3-di-n-oxindole, 2·(2-(methyl)acryloxyethyl)-3,3,4-trifluorooxetane, 2-(2- (Meth)acryloxyethyl)-3,3,4,4-tetrafluorooxetane and the like. These compounds (a2) can be used singly or in combination. The unsaturated compound used in the production of the copolymer [A] may be an unsaturated compound composed only of the above compound (a 1 ) and the compound (a2), or a compound (al) and a compound (a2). Further, an unsaturated compound of another unsaturated compound (hereinafter referred to as "compound (a3)") may be further contained. The compound () is not particularly limited as long as it is a radically polymerizable unsaturated compound other than the above compounds (a1) and (a2), and examples thereof include alkyl methacrylate, cyclic alkyl acrylate, and methacrylic acid. Cyclic alkyl ester, methacrylate with hydroxyl group, cyclic alkyl acrylate, aryl methacrylate, aryl acrylate, unsaturated dicarboxylic acid diester, bicyclic unsaturated compound, maleimide compound, no Saturated aromatic compound, conjugated diene, with the following formula (I) R1

-13- 200907569 (式(I)中’ R1係氫原子或碳數1~ 4之烷基,R2〜R6係 分別獨立地爲氫原子、經基或碳數1〜4之院基,B係單 鍵、-COO-、或- C〇NH-,m爲〇〜3之整數。但,R2〜R6 之至少一個爲羥基)所示之具有酚性羥基之不飽和化合 物; 具有四氫呋喃骨架、呋喃骨架、四氫吡喃、吡喃骨架 或以下述式(II)-13- 200907569 (In the formula (I), R1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R2 to R6 are each independently a hydrogen atom, a base group or a carbon number of 1 to 4, and a B system. a single bond, -COO-, or -C〇NH-, m is an integer of 〇~3. However, at least one of R2 to R6 is a hydroxyl group-containing unsaturated compound having a phenolic hydroxyl group; having a tetrahydrofuran skeleton, furan Skeleton, tetrahydropyran, pyran skeleton or by the following formula (II)

(II) (式(II)中,R7爲氫原子或甲基) 所示之骨架的不飽和化合物; 及其他之不飽和化合物。 此等之具體例,就甲基丙烯酸烷酯而言,可舉例如甲 基丙烯酸酯、乙基甲基丙烯酸酯、正丁基甲基丙烯酸酯、 第二丁基甲基丙烯酸酯、第三丁基甲基丙烯酸酯、2-乙基 己基甲基丙烯酸酯、異癸基甲基丙烯酸酯、正月桂基甲基 丙烯酸酯、十三碳基甲基丙烯酸酯、正硬脂基甲基丙烯酸 酯等; 就丙烯酸環狀烷酯而言,可舉例如甲基丙烯酸酯、異 丙基丙烯酸酯等; 就甲基丙烯酸環狀烷酯而言,可舉例如環己基甲基丙 烯酸酯、2-甲基環己基甲基丙烯酸酯、三環[ 5.2.1.02 6]癸- -14- 200907569 8-基甲基丙烯酸酯、三環[5·2·1.〇2.6]癸-8_基氧乙基甲基丙 烯酸酯、異冰片基甲基丙烯酸酯等; 就具有羥基之甲基丙烯酸酯而言,可舉例如羥基甲基 甲基丙烯酸酯、2 -羥基乙基甲基丙烯酸酯、3_羥丙基甲基 丙烯酸酯、4_羥基丁基甲基丙烯酸酯、二乙二醇單甲基丙 烯酸酯、2,3-二羥丙基甲基丙烯酸酯、2-甲基丙烯基乙基 葡萄糖苷、4 -羥苯基甲基丙烯酸酯等; 就丙烯酸環狀烷酯而言,可舉例如環己基丙烯酸酯、 2 -甲基環己基丙烯酸酯、三環[5.2.1.02·6]癸-8 -基丙烯酸 酯、三環[5.2.1.026]癸-8-基丙烯酸酯氧乙基丙烯酸酯、異 冰片基丙烯酸酯等; 就甲基丙烯酸芳酯而言,可舉例如苯基甲基丙燒酸 酯、苯甲基甲基丙烯酸酯等; 就丙烯酸芳酯而言,可舉例如苯基丙烯酸酯、苯甲基 丙烯酸酯等; 就不飽和二羧酸二酯而言,可舉例如馬來酸二乙酯、 富馬酸二乙酯、衣康酸二乙酯等; 就雙環不飽和化合物而言,可舉例如雙環[2.2.1]癸-2-烯、5-甲基雙環[2.2.1]癸_2_烯、5-乙基雙環 稀、5 -甲氧基雙環[2.2.1]癸-2 -嫌、5 -乙氧基雙環[2.2.1] 癸-2-烯、5,6-二甲氧基雙環[2.2.1]癸-2-烯' 5,6_二乙氧基 雙環[2.2.1]癸-2-烯、5-第三丁氧基羰基雙環[2.2丨]癸_2_ 嫌、5 -環己氧基幾基雙環[2.2.1]癸-2-嫌、5 -苯氧基羯基雙 環[2.2_1]癸-2-烯、5,6-二(第三丁氧基幾基)雙環[2.2.1] -15- 200907569 癸-2 -烯、5,6 -二(環己氧羰基)雙環[2.2.1]癸-2 -烯、5-(2,-羥乙基)雙環[2·2.1]癸_2_烯、5,6-二羥基雙環[2.2.1] 癸-2-烯、5,6-二(羥基甲基)雙環[2.2.1]癸-2-烯、5,6-二 (2,-羥乙基)雙環[2·2.1]癸·2-烯、5 -羥基-5-甲基雙環 [2.2.1]癸-2 -烯、5_羥基乙基雙環[2.2.1]癸-2 -烯、5 -羥 甲基-5-甲基雙環[2.2.1]癸-2-烯等; 就馬來醯亞胺化合物而言,可舉例如N-苯基馬來醯 亞胺、N -環己基馬來醯亞胺、N_苯甲基馬來醯亞胺、N-(4-羥苯基)馬來醯亞胺、N- ( 4-羥基苯甲基)馬來醯亞 胺、N-琥珀醯亞胺二基-3-馬來醯亞胺苯甲酸酯、N-琥珀 醯亞胺二基-4 -馬來醯亞胺丁酸酯、N -琥珀醯亞胺二基- 6-馬來醯亞胺戊酸酯、N-琥珀醯亞胺二基-3-馬來醯亞胺丙 酸酯、N- ( 9-丙烯二基)馬來醯亞胺等; 就不飽和芳香族化合物而言’可舉例如苯乙烯、α _ 申基苯乙烯、間-甲基苯乙烯、對甲基苯乙烯、乙嫌基甲 苯、對甲氧基苯乙烯等; 就共軛二烯而言,可舉例如1,3_丁二烯、異戊二嫌、 2,3-二甲基-1,3-丁二烯等; 就具有以上述式(I )所示之酚性經基的不飽和化合 物而言,可舉例如分別以下述式(1 )〜(5 ) -16- 200907569(II) an unsaturated compound of a skeleton represented by (in the formula (II), R7 is a hydrogen atom or a methyl group); and other unsaturated compounds. Specific examples of such an alkyl methacrylate include methacrylate, ethyl methacrylate, n-butyl methacrylate, second butyl methacrylate, and tert-butyl methacrylate. 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, tridecyl methacrylate, n-stearyl methacrylate, etc.; Examples of the ester include methacrylate, isopropyl acrylate, and the like; and examples of the cyclic alkyl methacrylate include cyclohexyl methacrylate and 2-methylcyclohexyl methacrylate. , 三环[ 5.2.1.02 6]癸- -14- 200907569 8-yl methacrylate, tricyclo[5·2·1.〇2.6]癸-8_yloxyethyl methacrylate, isobornyl A methacrylate or the like; in the case of a methacrylate having a hydroxyl group, for example, hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 4 _hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2,3- Hydroxypropyl methacrylate, 2-methylpropenylethyl glucoside, 4-hydroxyphenyl methacrylate, etc.; as the cyclic alkyl acrylate, for example, cyclohexyl acrylate, 2-methyl Cyclohexyl acrylate, tricyclo[5.2.1.02·6]癸-8-yl acrylate, tricyclo[5.2.1.026] 癸-8-yl acrylate oxyethyl acrylate, isobornyl acrylate, etc.; Examples of the aryl methacrylate include phenylmethyl propionate, benzyl methacrylate, and the like; and examples of the acrylate acrylate include phenyl acrylate and phenyl methacrylate. The unsaturated dicarboxylic acid diester may, for example, be diethyl maleate, diethyl fumarate or diethyl itaconate; and the bicyclic unsaturated compound may, for example, be bicyclic. [2.2.1] anthracene-2-ene, 5-methylbicyclo[2.2.1]癸_2-ene, 5-ethylbicyclic dilute, 5-methoxybicyclo[2.2.1]癸-2 - , 5-ethoxybicyclo[2.2.1]non-2-ene, 5,6-dimethoxybicyclo[2.2.1]non-2-ene' 5,6-diethoxybicyclo[2.2. 1] indole-2-ene, 5-tributoxycarbonylbicyclo[2.2丨]癸_2_ suspicion, 5 - Hexyloxybicyclo[2.2.1]indole-2-iso, 5-phenoxyindenylbicyclo[2.2_1]indol-2-ene, 5,6-di(t-butoxy)yl double ring [2.2.1] -15- 200907569 癸-2 - aene, 5,6-di(cyclohexyloxycarbonyl)bicyclo[2.2.1]non-2-ene, 5-(2,-hydroxyethyl)bicyclo[ 2·2.1]癸_2_ene, 5,6-dihydroxybicyclo[2.2.1]non-2-ene, 5,6-di(hydroxymethyl)bicyclo[2.2.1]non-2-ene, 5,6-bis(2,-hydroxyethyl)bicyclo[2·2.1]癸·2-ene, 5-hydroxy-5-methylbicyclo[2.2.1]non-2-ene, 5-hydroxyethyl Bicyclo[2.2.1]non-2-ene, 5-hydroxymethyl-5-methylbicyclo[2.2.1]non-2-ene, etc.; as the maleimide compound, for example, N- Phenylmaleimide, N-cyclohexylmaleimide, N-benzylmethylmaleimide, N-(4-hydroxyphenyl)maleimide, N-(4-hydroxyl Benzyl)maleimide, N-succinimide diyl-3-maleimide benzoate, N-succinimide diyl-4-maleimide butyrate , N-succinimide diyl-6-maleimide valerate, N-succinimide diyl-3-maleimide propionate, N-(9-propylenediyl) horse In the case of an unsaturated aromatic compound, for example, styrene, α-styrene styrene, m-methyl styrene, p-methyl styrene, ethyl benzene, p-methoxybenzene Ethylene or the like; as the conjugated diene, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, etc.; The phenolic ketone-based unsaturated compound represented by I) may, for example, be represented by the following formula (1) to (5) -16 to 200907569, respectively.

R1 1) R1 crR1 1) R1 cr

NH R2 2 R5/L^p^R3 R4NH R2 2 R5/L^p^R3 R4

O R1 0、 (CH2)r cr Ό R2 r5"^V^^r3 R4 3) ,R2 R4 (4) R1 R2 R4 (5) (式(1)〜(5)中,n爲1至3之整數,R1〜R6之定義 分別相同於上述式(I )) -17- 200907569 所示之化合物等; 就具有四氫呋喃骨架之不飽和化合物而言,可舉例如 四氫糠基(甲基)丙烯酸酯、2_甲基丙烯醯氧-丙酸四氫糠 基酯、3-(甲基)丙烯醯氧基四氫呋喃-2_酮等; 就具有呋喃骨架之不飽和化合物而言,可舉例如2 -甲 基-5-(3-呋喃基)-1-戊烯-3-酮、糠基(甲基)丙烯酸 醋、1-咲喃-2 -丁基-3-烧-2 -嗣、1-咲喃-2-丁基-3-甲氧基_ 3 -烯-2 -嗣、6- (2 -呋喃基)-2 -甲基-1-己烯-3 -酮、6-(2-呋喃基)-己-1-烯-3-酮、丙烯酸2-(2-呋喃基)-1-甲基-乙基酯、6- (2 -呋喃基)-6 -甲基-1-庚烯-3-酮等; 作爲具有四氫吡喃骨架之不飽和化合物,例如有(四 氫吡喃-2-基)甲基甲基丙烯酸酯、2,6-二甲基-8-(四氫吡 喃-2-基氧基)-辛-1-烯-3-酮、2 -甲基丙烯酸四氫吡喃-2-基酯、1-(四氫吡喃-2-氧基)-丁基-3-烯-2-酮等; 就具有吡喃骨架之不飽和化合物而言’可舉例如4-(L4 -二噁-5-氧-6-庚烯基)-6 -甲基-2-二吡咯基甲酮、4-(1,5 -二噁-6-氧-7-辛烯基)-6 -甲基-2-二吡咯基甲酮等; 就具有以上述式(II)所示之骨架的不飽和化合物而 言,可舉例如乙二醇單元之重覆數目爲2〜10之聚乙二醇 單(甲基)丙烯酸酯、丙二醇單元之重覆數目爲2〜10的 聚丙二醇單(甲基)丙烯酸酯等; 就其他之不飽和化合物而言,可舉例如丙烯腈、甲基 丙烯腈、氯化乙烯、偏氯乙烯、丙烯醯胺、甲基丙烯醯 胺、醋酸乙烯酯等。 -18- 200907569 此等之中’宜使用丙烯酸烷酯、甲基丙烯酸烷酯、甲 基丙烯酸環狀烷酯、丙烯酸環狀烷酯、具有羥基之甲基丙 烯酸酯、丙烯酸環狀烷酯、馬來醯亞胺化合物、不飽和芳 香族化合物或以上述式(I)所示之酚性羥基之不飽和化 合物或具有四氫呋喃骨架 '呋喃骨架、四氫吡喃骨架、吡 喃骨架或以上述式(II )所示之骨架的不飽和化合物; 及其他之不飽和化合物,就共聚合反應性及對於鹼顯像液 之溶解性而Η,尤宜爲苯乙烯、第三丁基甲基丙烯酸酯、 三環[5_2_1.02'6]癸-8-基甲基丙烯酸酯、正月桂基甲基丙烯 酸酯、對甲氧基苯乙烯、2-甲基環己基丙烯酸酯、Ν-苯基 馬來醯亞胺、Ν-環己基馬來醯亞胺、Ν- (3,5-二甲基-4-羥 基苯甲基)甲基丙烯醯胺、四氫糠基(甲基)丙烯酸酯、 乙二醇單元之重覆單元數目爲2〜10的聚乙二醇單(甲 基)丙烯酸酯、3-(甲基)丙烯醯氧四氫呋喃-2-酮、4-羥 基苯甲基(甲基)丙烯酸酯、4-羥基苯基(甲基)丙烯酸 酯、鄰羥基苯乙烯、對羥基苯乙烯或α -甲基-對羥基苯乙 嫌。 此等之化合物(a3 )係可單獨或組合而使用。 本發明所使用之共聚物[A]係衍生自化合物(a 1 )之 構成單元,依據衍生自化合物(al) 、(a2)及(a3)所 衍生之重覆單元的合計,宜含有5〜40重量%,尤宜含有 5~ 25重量%。若使用此構成單兀不足5重量%的共聚物, 於顯像步驟時難溶解於鹼水溶液,另外,超過4 0重量%之 共聚物係有對於鹼水溶液之溶解性太大的傾向。 -19- 200907569 本發明所使用之共聚物[A]係衍生自化合物(a2 )之 構成單元,依據衍生自化合物(a 1 ) 、( a2 )及(a3 )所 衍生之重覆單元的合計,宜含有10〜80重量%,尤宜含有 3 0〜80重量%。若此構成單元不足10重量%時’係所得到 之層間絕緣膜或微透鏡的耐熱性、表面硬度及耐剝離液性 有降低之傾向,另外,此構成單元之量超過80重量%時係 敏輻射線性樹脂組成物之保存安定性有降低之傾向。 本發明所使用之共聚物[A]係衍生自化合物(a3 )之 構成單元,依據衍生自化合物(a 1 ) 、( a2 )及(a3 )所 衍生之重覆單元的合計,宜含有1〇〜60重量°/。,尤宜含有 1 5〜5 0重量%。若此構成單元不足1 〇重量%,敏輻射線性 樹脂組成物之保存安定性有不足之傾向’另外’若此構成 單元之量超過6 0重量%時’有時所得到之層間絕緣膜或微 透鏡的耐熱性、表面硬度及耐剝離液性有不足之傾向’ 在本發明所使用的共聚物[A]之較佳具體例可舉例如 甲基丙烯酸/三環[5.2.1.02·6]癸烷-8-基甲基丙烯酸酯/2 -甲 基環己基丙烯酸酯/甲基丙烯酸縮水甘油基酯/N_ ( 3,5 -二 甲基-4-羥基苯甲基)甲基丙烯醯胺共聚物、甲基丙烯酸/ 四氫糠基甲基丙烯酸酯/甲基丙烯酸縮水甘油基酯/N -環己 基馬來醯亞胺/月桂基甲基丙烯酸酯/ α -甲基-P -羥基苯乙 烯共聚物、苯乙烯/甲基丙烯酸/甲基丙烯酸縮水甘油基酯/ (3-乙基氧雜環丁烷-3-基)甲基丙烯酸酯/三環[5_2_1_026] 癸烷_8_基甲基丙烯酸酯共聚物、甲基丙烯酸/三環 [5.2.1.02 6]癸烷-8-基甲基丙烯酸酯/ Ν-環己基馬來醯亞胺/ -20- 200907569 甲基丙嫌酸縮水甘油基酯/苯乙烯共聚物、甲基丙稀酸酯/ 3,4-環氧基環己基甲基(甲基)丙烯酸酯/苯乙烯/三環 [5.2.1.02.6]癸烷-8-基甲基丙烯酸酯共聚物等。 本發明所使用之共聚物[A]的苯乙烯換算重量平均分 子量(以下,稱爲「Mw」)宜爲2xl〇3~ lxl〇5,更宜爲5 xlO3〜5xl04。若Mw爲不足2xl03,有時顯像邊緣變成不 充分,所得到之塗膜的殘膜率等會降低’所得到之層間絕 緣膜或微透鏡的圖型形狀、耐熱性等差’另外,若超過1 X 1〇5,有時感度會降或圖型形狀差。又’ 與聚苯乙烯換 算數目平均分子量(以下’稱爲「Μη」)之比的分子量分 布(以下稱爲「Mw/Mn」)宜爲5.0以下,更宜爲3.0以 下。若Mw/Mn超過5.0,所得到之層間絕緣膜或微透鏡的 圖型形狀差。含有上述的共聚物[A ]之敏輻射線性樹脂組 成物係進行顯像時不產生顯像殘留,可容易地形成特定的 圖型形狀。 於共聚物[A]之製造所使用的溶劑可舉例如醇、醚、 甘醇醚、乙二醇烷基醚乙酸酯、二乙二醇、丙二醇單烷基 醚、丙二醇烷基醚乙酸酯、丙二醇烷基醚丙酸酯、芳香族 烴、酮、酯等。 此等之具體例,就醇而言,可舉例如甲醇、乙醇、苯 甲基醇、2-苯基乙基醇、3_苯基-1-丙醇等; 就醚而言,可舉例如四氫呋喃等; 就甘醇醚而言,可舉例如乙二醇單甲基醚、乙二醇單 乙基酸等; -21 - 200907569 乙二醇烷基醚乙酸酯而言’可舉例如甲基溶纖劑乙酸 酯、乙基溶纖劑乙酸酯、乙二醇單丁基醚乙酸酯、乙二醇 單乙基醚乙酸酯等; 就乙二醇而言,可舉例如二乙二醇單甲基醚、二乙二 醇單乙基醚、二乙二醇二甲基醚、二乙二醇二乙基醚、二 乙二醇乙基甲基醚等; 就丙二醇單烷基醚而言,可舉例如丙二醇單甲基醚、 丙二醇單乙基醚、丙二醇單丙基醚、丙二醇單丁基醚等; 就丙二醇烷基醚乙酸酯而言,可舉例如丙二醇甲基醚 乙酸酯、丙二醇乙基醚乙酸酯、丙二醇丙基醚乙酸酯、丙 二醇丁基醚乙酸酯等: 就丙二醇烷基醚丙酸酯而言,可舉例如丙二醇甲基醚 丙酸酯、丙二醇乙基醚丙酸酯、丙二醇丙基醚丙酸酯、丙 二醇丁基醚丙酸酯等; 就芳香族烴而言,可舉例如甲苯、二甲苯等; 就酮而_ ’可舉例如甲乙嗣、環己嗣、4 -經基-4-甲 基-2-庚酮等; 就酯而言,可舉例如醋酸甲酯、醋酸乙酯、醋酸丙 酯、醋酸丁酯、2 -羥基丙酸乙酯、2 -羥基-2-甲基丙酸甲 酯、2-羥基-2-甲基丙酸乙酯、羥基醋酸甲酯、羥基醋酸乙 酯、羥基醋酸丁酯、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳 酸丁酯、3 -羥基丙酸甲酯、3 -羥基丙酸乙酯、3 -羥基丙酸 丙酯、3_羥基丙酸丁酯、2 -羥基-3-甲基丁酸甲酯、甲氧基 醋酸甲酯、甲氧基醋酸乙酯、甲氧基醋酸丙酯、甲氧基醋 -22- 200907569 酸丁酯、乙氧基醋酸甲酯、乙氧基醋酸乙酯、乙氧基醋酸 丙酯、乙氧基醋酸丁酯、丙氧基醋酸甲酯、丙氧基醋酸乙 酯、丙氧基醋酸丙酯、丙氧基醋酸丁酯、丁氧基醋酸甲 酯、丁氧基醋酸乙酯、丁氧基醋酸丙酯、丁氧基醋酸丁 酯、2_甲氧基丙酸甲酯、2_甲氧基丙酸乙酯、2 -甲氧基丙 酸丙酯、2-甲氧基丙酸丁酯、2-乙氧基丙酸甲酯、2-乙氧 基丙酸乙酯、2-乙氧基丙酸丙酯、2-乙氧基丙酸丁酯、2-丁氧基丙酸甲酯、2 -丁氧基丙酸乙酯、2 -丁氧基丙酸丙 酯、2-丁氧基丙酸丁酯、3 -甲氧基丙酸甲酯、3 -甲氧基丙 酸乙酯、3 -甲氧基丙酸丙酯、3 -甲氧基丙酸丁酯、3-乙氧 基丙酸甲酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸丙酯、3-乙氧基丙酸丁酯、3 -丙氧基丙酸甲酯、3 -丙氧基丙酸乙 酯、3-丙氧基丙酸丙酯、3-丙氧基丙酸丁酯、3-丁氧基丙 酸甲酯、3 -丁氧基丙酸乙酯、3 -丁氧基丙酸丙酯、3 -丁氧 基丙酸丁酯等。 此等之溶劑中宜爲乙二醇烷基醚乙酸酯、二乙二醇、 丙二醇單烷基醚或丙二醇烷基醚乙酸酯,尤宜爲二乙二醇 二甲基醚、二乙二醇乙基甲基醚、丙二醇甲基醚、丙二醇 乙基醚、丙二醇甲基醚乙酸酯或3-甲氧基丙酸甲酯。 共聚物[A]之製造所使用的聚合起始劑係可使用一般 已知作爲自由基聚合起始劑者。可舉例如2,2 ’ -偶氮雙異 丁腈、2,2’ -偶氮雙_( 2,4 -二甲基戊腈)、2,2,_偶氮雙-(4 -甲氧基-2,4 -二甲基戊腈)等之偶氮化合物; 過氧化苯甲醯基、過氧化月桂醯基、第三丁基過氧化 -23- 200907569 三甲基乙酸酯、ι,ι’-雙-(過氧化第三丁基)環己烷等之 有機過氧化物; 過氧化氫等。當使用過氧化物作爲自由基聚合起始劑 時,亦可使用過氧化物及還原劑而形成氧化還原型起始 劑。 在共聚物[A]之製造中’爲調製分子量,可使用分子 量調節劑。其具體例可舉例如氯仿、四溴化碳等之鹵化 烴; 正己基硫醇、正辛基硫醇、正十二碳烷基硫醇、第 三-十二碳烷基硫醇、硫甘醇酸等之硫醇化合物; 二甲基黃原硫醚、二異丙基黃原二硫醚等之黃原化合 物; 蔥品油烯(terpinolene) 、α-甲基苯乙烧雙體等。 [Β]成分 在本發明所使用之[Β]成分係藉輻射線之照射產生羧 酸之1,2-醌二疊氮化合物,可使用酚性化合物或醇性化合 物(以下,稱爲「母核」)與1,2-萘醌二疊氮磺酸鹵化物 之縮合物。 上述母核可舉例如三羥基二苯甲酮、四羥基二苯甲 酮、五羥基二苯甲酮、六羥基二苯甲酮、(聚羥基苯基) 烷及其他之母核。 此等之具體例就三羥基二苯甲酮而言係可舉例如 2,3,4-三羥基二苯甲酮、2,4,6-三羥基二苯甲酮等; -24- 200907569 就四羥基二苯甲酮而言,可舉例如2,2’,4,4’-四羥基 二苯甲酮、2,3,4,3’-四羥基二苯甲酮、2,3,4,4’-四羥基二 苯甲酮、2,3,4,2’-四羥基-4’-甲基二苯甲酮、2,3,4,4’-四羥 基-3’-甲氧基二苯甲酮等; 就五羥基二苯甲酮而言,可舉例如2,3,4,2’,6’-五羥基 二苯甲酮; 就六羥基二苯甲酮而言,可舉例如 2,4,6,3’,4’,5’-六 羥基二苯甲酮、3,4,5,3’,4’,5’-六羥基二苯甲酮等; 就(聚羥基苯基)烷而言,可舉例如雙(2,4-二羥基 苯基)甲烷、雙(對羥基苯基)甲烷、三(對羥基苯基) 甲烷、1,1,1 -三(對羥基苯基)乙烷、雙(2,3,4-三羥基苯 基)甲烷、2,2-雙(2,3,4-三羥基苯基)丙烷、1,1,3-三 (2,5-二甲基-4-羥基苯基)-3-苯基丙烷、4,4’-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]叉乙烯基]雙酚、雙(2,5-二甲基-4-羥基苯基)-2-羥基苯基甲烷、3,3,3’,3’-四甲基-1,1,-螺雙茚-5,6,7,5,,6,,7,-己醇、2,2,4-三甲基-7,2’,4’-三 經基黃院(flavan )等; 就其他之母核而言,可舉例如2-甲基-2- ( 2,4-二羥基 苯基)-4-(4-羥基苯基)-7-羥基香豆素、2-[雙{ (5-異丙 基-4-羥基-2-甲基)苯基}甲基]、1-{1-(3-{1-(4-羥基苯 基)-1-甲基乙基}-4,6 - 一·經基本基)-1-甲基乙基}-3-(1_ (3-{1-(4-羥基苯基)-1-甲基乙基}-4,6-二羥基苯基)-1-甲基乙基)苯、4,6 -雙{1-(4 -羥基苯基)-1-甲基乙基}-1,3-二羥基苯等。 -25- 200907569 又’將上述例示之母核的酯鍵變更成醯胺鍵之1,2 -萘 醌二疊氮磺酸醯胺類亦適宜使用例如2,3,4-三羥基二苯甲 酮-I,2-萘醌二疊氮-4-磺酸醯胺等。 此等之母核中,宜爲 2,3,4,4’ -四羥基二苯甲酮或 4,4’-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]叉乙烯基]雙 酚。 就鹵化1,2-萘醌二疊氮磺酸宜爲氯化1,2-萘醌二疊氮 磺酸,其具體例可舉例如氯化1,2-萘醌二疊氮-4-磺酸及氯 化1,2-萘醌二疊氮-5-磺酸,其中,宜使用氯化1,2-萘醌二 疊氮-5-磺酸。 在縮合反應中,對於酚性化合物或醇性化合物中之 OH基數,宜使用相當於30〜85莫耳%,更宜使用相當於 50〜70莫耳%之鹵化1,2-萘醌二疊氮磺酸 縮合反應係可依公知之方法而實施。 此等之[B]成分係可單獨使用或組合2種以上而使 用。 [B]成分之使用比率係相對於共聚物[A] 1〇〇重量份’ 較佳係5〜100重量份,更宜爲10〜50重量份。此比率不 足5重量份時,對於成爲顯像液之鹼水溶液的輻射線之照 射部分與未照射部分之溶解度的差小’有時圖型化變難’ 又,有時所得到之層間絕緣膜或微透鏡的耐熱性及耐溶劑 性不充分。另外,此比率超過1 〇 〇重量份時’有時在輻射 線照射部分中於前述鹼水溶液之溶解度不充分’進行顯像 變困難。 -26- 200907569 [C]成分 本發明所使用之[c]成分係具有脂環式環氧乙烷基且 不具有殘基(或酸酐基)之化合物。此處,脂環式環氧乙 院基係意指具有脂環式構造及環氧乙院基構造之兩者的 基。脂環式環氧乙烷基較佳係具有脂環式構造與構成此之 碳原子之中結合於鄰接之兩個碳原子的氧原子之原子團, 其例可舉例分別以下述式(111 -1 ) ~ ( IΠ - 3 )所示之基 等。O R1 0, (CH2)r cr Ό R2 r5"^V^^r3 R4 3) , R2 R4 (4) R1 R2 R4 (5) (in the formulas (1) to (5), n is 1 to 3 The integers, R1 to R6, are the same as defined in the above formula (I)) -17-200907569, and the unsaturated compound having a tetrahydrofuran skeleton, for example, tetrahydroindenyl (meth) acrylate 2, methacryloyloxy-propionic acid tetrahydrofurfuryl ester, 3-(meth) propylene decyloxytetrahydrofuran-2-one, etc.; and as the unsaturated compound having a furan skeleton, for example, 2 - Methyl-5-(3-furyl)-1-penten-3-one, mercapto (meth)acrylic acid vinegar, 1-indolyl-2-butyl-3-carbo-2-indole, 1- Ethyl-2-butyl-3-methoxy-3-ene-2-indole, 6-(2-furyl)-2-methylhexene-3-one, 6-(2- Furyl)-hex-1-en-3-one, 2-(2-furyl)-1-methyl-ethyl acrylate, 6-(2-furyl)-6-methyl-1-heptane An ene-3-one or the like; as an unsaturated compound having a tetrahydropyran skeleton, for example, (tetrahydropyran-2-yl)methyl methacrylate, 2,6-dimethyl-8-(four Hydropyran-2-yloxy)-oct-1-en-3-one, 2 - Tetrahydropyran-2-yl methacrylate, 1-(tetrahydropyran-2-yloxy)-butyl-3-en-2-one, etc.; in the case of an unsaturated compound having a pyran skeleton 'For example, 4-(L4-dioxa-5-oxo-6-heptenyl)-6-methyl-2-dipyrrolyl ketone, 4-(1,5-dioxin-6-oxygen- 7-octenyl)-6-methyl-2-dipyrrolidone or the like; and as the unsaturated compound having a skeleton represented by the above formula (II), for example, repeating of an ethylene glycol unit a polyethylene glycol mono(meth)acrylate having a number of 2 to 10, a polypropylene glycol mono(meth)acrylate having a repeating number of 2 to 10, and the like; as for other unsaturated compounds, Examples are acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, vinyl acetate, and the like. -18- 200907569 Among these, 'alkyl acrylate, alkyl methacrylate, cyclic alkyl methacrylate, cyclic alkyl acrylate, methacrylate with hydroxyl group, cyclic alkyl acrylate, horse An imine compound, an unsaturated aromatic compound or an unsaturated compound having a phenolic hydroxyl group represented by the above formula (I) or having a tetrahydrofuran skeleton 'furan skeleton, a tetrahydropyran skeleton, a pyran skeleton or the above formula ( II) the unsaturated compound of the skeleton shown; and other unsaturated compounds, in terms of copolymerization reactivity and solubility in the alkali developing solution, particularly preferably styrene, tert-butyl methacrylate, tricyclic [5_2_1.02'6]癸-8-yl methacrylate, n-lauryl methacrylate, p-methoxystyrene, 2-methylcyclohexyl acrylate, fluorene-phenyl maleimide , Ν-cyclohexylmaleimide, Ν-(3,5-dimethyl-4-hydroxybenzyl)methacrylamide, tetrahydrofurfuryl (meth) acrylate, ethylene glycol unit Polyethylene glycol mono(meth)acrylate, 3-(A) with a repeating unit number of 2~10 Acryloxytetrahydrofuran-2-one, 4-hydroxybenzyl (meth) acrylate, 4-hydroxyphenyl (meth) acrylate, o-hydroxystyrene, p-hydroxystyrene or α-methyl - P-hydroxybenzene is suspected. These compounds (a3) can be used singly or in combination. The copolymer [A] used in the present invention is derived from the constituent unit of the compound (a 1 ), and preferably contains 5 to 5 based on the total of the repeating units derived from the compounds (al), (a2) and (a3). 40% by weight, particularly preferably 5 to 25% by weight. When the copolymer having a constitution of less than 5% by weight is used, it is difficult to dissolve in an aqueous alkali solution in the developing step, and more than 40% by weight of the copolymer tends to have too much solubility in an aqueous alkali solution. -19- 200907569 The copolymer [A] used in the present invention is derived from the constituent unit of the compound (a2), based on the total of the repeating units derived from the compounds (a 1 ), ( a2 ) and (a3 ), It is preferably contained in an amount of 10 to 80% by weight, particularly preferably 30 to 80% by weight. When the constituent unit is less than 10% by weight, the heat resistance, surface hardness, and peeling resistance of the interlayer insulating film or the microlens obtained tend to decrease, and the amount of the constituent unit exceeds 80% by weight. The storage stability of the radiation linear resin composition tends to decrease. The copolymer [A] used in the present invention is derived from the constituent unit of the compound (a3), and preferably contains 1 依据 based on the total of the repeating units derived from the compounds (a 1 ), (a2) and (a3). ~60 weight ° /. It is especially suitable to contain 1 5 to 50% by weight. If the constituent unit is less than 1% by weight, the storage stability of the radiation sensitive linear resin composition tends to be insufficient. In addition, if the amount of the constituent unit exceeds 60% by weight, the interlayer insulating film or the micro layer obtained may be obtained. The heat resistance, the surface hardness, and the peeling resistance of the lens are insufficient. The preferred example of the copolymer [A] used in the present invention is, for example, methacrylic acid/tricyclic [5.2.1.02·6]. Alkan-8-ylmethacrylate/2-methylcyclohexyl acrylate/glycidyl methacrylate/N_(3,5-dimethyl-4-hydroxybenzyl)methacrylamide , methacrylic acid/tetrahydrofurfuryl methacrylate/glycidyl methacrylate/N-cyclohexylmaleimide/lauryl methacrylate/α-methyl-P-hydroxystyrene Copolymer, styrene/methacrylic acid/glycidyl methacrylate/(3-ethyloxetan-3-yl)methacrylate/tricyclo[5_2_1_026] decane_8_yl group Acrylate copolymer, methacrylic acid/tricyclo[5.2.1.0 6 6]decane-8-yl methacrylate / Ν-cyclohexylmalayiya Amine / -20- 200907569 Methyl acrylate acid glycidyl ester / styrene copolymer, methyl acrylate / 3,4-epoxycyclohexylmethyl (meth) acrylate / styrene / three Ring [5.2.1.02.6] decane-8-yl methacrylate copolymer and the like. The styrene-equivalent weight average molecular weight (hereinafter referred to as "Mw") of the copolymer [A] used in the present invention is preferably 2xl 〇 3 to lxl 〇 5, more preferably 5 x 10 3 to 5 x 10 4 . When Mw is less than 2x10, the development edge may be insufficient, and the residual film ratio of the obtained coating film may be lowered, etc., and the pattern shape and heat resistance of the obtained interlayer insulating film or microlens may be lowered. More than 1 X 1〇5, sometimes the sensitivity will drop or the shape of the pattern will be poor. Further, the molecular weight distribution (hereinafter referred to as "Mw/Mn") of the ratio of the number average molecular weight (hereinafter referred to as "Μη") to the polystyrene is preferably 5.0 or less, more preferably 3.0 or less. If Mw/Mn exceeds 5.0, the resulting interlayer insulating film or microlens has a poor pattern shape. The sensitive radiation linear resin composition containing the above copolymer [A] does not cause development residue upon development, and can easily form a specific pattern shape. The solvent used in the production of the copolymer [A] may, for example, be an alcohol, an ether, a glycol ether, an ethylene glycol alkyl ether acetate, a diethylene glycol, a propylene glycol monoalkyl ether or a propylene glycol alkyl ether acetate. Ester, propylene glycol alkyl ether propionate, aromatic hydrocarbon, ketone, ester, and the like. Specific examples of such an alcohol include methanol, ethanol, benzyl alcohol, 2-phenylethyl alcohol, and 3-phenyl-1-propanol; and examples of the ether include Tetrahydrofuran or the like; as the glycol ether, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl acid, etc.; -21 - 200907569 ethylene glycol alkyl ether acetate Base cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoethyl ether acetate, etc.; in the case of ethylene glycol, for example Diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, etc.; The alkyl ether may, for example, be propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether or propylene glycol monobutyl ether; and as the propylene glycol alkyl ether acetate, for example, propylene glycol A Ethyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate, etc.: Examples of the propylene glycol alkyl ether propionate include a diol methyl ether propionate, a propylene glycol ethyl ether propionate, a propylene glycol propyl ether propionate, a propylene glycol butyl ether propionate, etc., and an aromatic hydrocarbon, for example, toluene, xylene, etc.; The ketone may be exemplified by, for example, methyl ethyl hydrazine, cyclohexyl hydrazine, 4- peroxy-4-methyl-2-heptanone; and the ester may, for example, be methyl acetate, ethyl acetate or propyl acetate. , butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, hydroxyl Butyl acetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate Ester, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, methoxy vinegar-22- 200907569 butyl acrylate, ethoxylate Methyl acetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, propyl propionate, propoxy vinegar Butyl ester, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butyl butoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate , propyl 2-methoxypropionate, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate , butyl 2-ethoxypropionate, methyl 2-butoxypropionate, ethyl 2-butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate , methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate , ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate , propyl 3-propoxypropionate, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate , butyl 3-butoxypropionate, and the like. Such solvents are preferably ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether or propylene glycol alkyl ether acetate, particularly diethylene glycol dimethyl ether, diethyl Glycol ethyl methyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol methyl ether acetate or methyl 3-methoxypropionate. As the polymerization initiator used in the production of the copolymer [A], those generally known as radical polymerization initiators can be used. For example, 2,2 '-azobisisobutyronitrile, 2,2'-azobis-(2,4-dimethylvaleronitrile), 2,2,-azobis-(4-methoxy) Azo compounds such as benzyl-2,4-dimethylvaleronitrile; benzoyl peroxide, lauric acid peroxide, tert-butylperoxy-23-200907569 trimethyl acetate, ι, An organic peroxide such as ι'-bis-(t-butylperoxy)cyclohexane; hydrogen peroxide or the like. When a peroxide is used as the radical polymerization initiator, a peroxide and a reducing agent may be used to form a redox type initiator. In the production of the copolymer [A], 'the molecular weight is adjusted, and a molecular weight regulator can be used. Specific examples thereof include halogenated hydrocarbons such as chloroform and carbon tetrabromide; n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, tri-dodecyl mercaptan, and sulfur a thiol compound such as an alkyd; a xanthogen compound such as dimethylxanthine thioether or diisopropylxanthogen disulfide; terpinolene or α-methyl benzene acetonitrile. [Β] component In the [Β] component used in the present invention, a 1,2-quinonediazide compound of a carboxylic acid is produced by irradiation with radiation, and a phenolic compound or an alcoholic compound (hereinafter referred to as "mother" may be used. a condensate of a core with a 1,2-naphthoquinonediazidesulfonic acid halide. The above-mentioned mother nucleus may, for example, be trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl) alkane or the like. Specific examples of such a trihydroxybenzophenone include, for example, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, and the like; -24-200907569 The tetrahydroxybenzophenone may, for example, be 2,2',4,4'-tetrahydroxybenzophenone, 2,3,4,3'-tetrahydroxybenzophenone, 2,3,4 , 4'-tetrahydroxybenzophenone, 2,3,4,2'-tetrahydroxy-4'-methylbenzophenone, 2,3,4,4'-tetrahydroxy-3'-methoxy a benzophenone or the like; in the case of pentahydroxybenzophenone, for example, 2,3,4,2',6'-pentahydroxybenzophenone; in the case of hexahydroxybenzophenone, For example, 2,4,6,3',4',5'-hexahydroxybenzophenone, 3,4,5,3',4',5'-hexahydroxybenzophenone, etc.; The hydroxyphenyl) alkane may, for example, be bis(2,4-dihydroxyphenyl)methane, bis(p-hydroxyphenyl)methane, tris(p-hydroxyphenyl)methane or 1,1,1-three ( p-Hydroxyphenyl)ethane, bis(2,3,4-trihydroxyphenyl)methane, 2,2-bis(2,3,4-trihydroxyphenyl)propane, 1,1,3-tri 2,5-Dimethyl-4-hydroxyphenyl)-3-phenylpropane, 4,4'-[1-[4-[1-[4- Phenyl]-1-methylethyl]phenyl]p-vinyl]bisphenol, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane, 3,3, 3',3'-tetramethyl-1,1,-spirobiguanidine-5,6,7,5,6,7,-hexanol, 2,2,4-trimethyl-7,2 ', 4'-three radix flavan, etc.; for other mother nucleus, for example, 2-methyl-2-(2,4-dihydroxyphenyl)-4-(4-hydroxyl Phenyl)-7-hydroxycoumarin, 2-[bis{(5-isopropyl-4-hydroxy-2-methyl)phenyl}methyl], 1-{1-(3-{1- (4-hydroxyphenyl)-1-methylethyl}-4,6-a-based base-1-methylethyl}-3-(1_(3-{1-(4-hydroxybenzene) ))-1-methylethyl}-4,6-dihydroxyphenyl)-1-methylethyl)benzene, 4,6-bis{1-(4-hydroxyphenyl)-1-methyl Ethyl}-1,3-dihydroxybenzene and the like. -25- 200907569 Further, '1,2-naphthoquinone diazidosulfonate decylamine which changes the ester bond of the above-exemplified parent core to a guanamine bond is also preferably used, for example, 2,3,4-trihydroxydiphenyl Keto-I, 2-naphthoquinonediazide-4-sulfonic acid decylamine and the like. In such a mother nucleus, it is preferably 2,3,4,4'-tetrahydroxybenzophenone or 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methyl Ethylethyl]phenyl]p-vinyl]bisphenol. The halogenated 1,2-naphthoquinonediazidesulfonic acid is preferably 1,2-naphthoquinonediazidesulfonic acid chloride, and specific examples thereof include 1,2-naphthoquinonediazide-4-sulfonate. Acid and 1,2-naphthoquinonediazide-5-sulfonic acid, wherein 1,2-naphthoquinonediazide-5-sulfonic acid is preferably used. In the condensation reaction, it is preferred to use 30 to 85 mol% for the OH group in the phenolic compound or the alcohol compound, and it is more preferable to use a halogenated 1,2-naphthoquinone stack corresponding to 50 to 70 mol%. The sulfonic acid condensation reaction can be carried out by a known method. These components [B] can be used singly or in combination of two or more. The use ratio of the component [B] is preferably from 5 to 100 parts by weight, more preferably from 10 to 50 parts by weight, per 1 part by weight of the copolymer [A]. When the ratio is less than 5 parts by weight, the difference in solubility between the irradiated portion and the unirradiated portion of the aqueous solution which is the aqueous solution of the developing solution is small, and the pattern may become difficult. Further, the interlayer insulating film may be obtained. Or the heat resistance and solvent resistance of the microlens are insufficient. In addition, when the ratio exceeds 1 〇 〇 by weight, it may be difficult to perform development in the radiation irradiated portion where the solubility of the aqueous alkali solution is insufficient. -26-200907569 [C] Component The component [c] used in the present invention is a compound having an alicyclic oxiranyl group and having no residue (or an acid anhydride group). Here, the alicyclic epoxy-based system means a group having both an alicyclic structure and an epoxy-based structure. The alicyclic oxirane group preferably has an alicyclic structure and an atomic group constituting an oxygen atom bonded to two adjacent carbon atoms among the carbon atoms, and examples thereof are as follows: (111 -1) ) The base shown by ~ ( I Π - 3 ).

具有如此之脂環式環氧乙烷基之[C]成分係可舉例如 (cl)具有脂環式環氧乙烷基且不具有羧基之不飽化合物 (以下稱爲「化合物(c 1 )」)及(c2 )不具有脂環式環 氧乙烷基且不具有羧基之不飽化合物(以下稱爲「化合物 (c2 )」)的共聚物(以下稱爲「共聚物(C )」)、具 胃脂環式環氧乙烷基且不具有羧基之其他的化合物等。 可使用來用以合成共聚物[C]之化合物(c 1 )係可舉 例如 3,4-環氧基環己基甲基(甲基)丙烯酸酯、3,4-環氧 基環己基乙基(甲基)丙烯酸酯、3,4·環氧基環己基正丙 基(甲基)丙烯酸酯、3,4-環氧基環己基異丙基(甲基) -27- 200907569 丙烯酸酯、卜乙烯基·2,3-環氧基環己烷、〗-乙烯基_3,4_環 氧基環己烷、卜烯丙基_2,3_環氧基環己烷、烯丙基- 3,4-環氧基環己烷等。此等之化合物中,就聚合性之面宜使用 3,4-環氧基環己基甲基(甲基)丙烯酸酯。 化合物(c2 )係上述例示來作爲化合物(a2 )及 (a3 )之不飽和化合物中,可使用不相當於化合物(c 1 ) 之化合物。其中,較宜使用丙烯酸烷酯、甲基丙烯酸烷 酯、甲基丙烯酸環狀烷酯、馬來醯亞胺化合物、不飽和芳 香族化合物、具有以上述式(1 )所示之酚性羥基的不飽 和化合物,或縮水甘油基骨架、四氫呋喃骨架、呋喃骨 架、四氫呋喃骨架、吡喃骨架或具有以上述式(II)所示 之骨格的不飽和化合物,就共聚合反應性而言,尤宜爲縮 水甘油基甲基丙烯酸酯、對乙烯基苯甲基縮水甘油基醚、 苯乙烯、第三丁基甲基丙烯酸酯、三環[5.2.1.02·6]癸烷- 8-基甲基丙烯酸酯、正月桂基甲基丙烯酸酯、對甲氧基苯乙 烯、2-甲基己基甲基丙烯酸酯、N-苯基馬來醯亞胺、N-環 己基馬來醯亞胺、N-( 3,5 -二甲基-4-羥基苯甲基)甲基丙 烯醯胺、四氫糠基(甲基)丙烯酸酯、乙二醇單元的重複 數目爲2〜10的聚乙二醇單(甲基)丙烯酸酯、3-(甲 基)丙烯醯氧基四氫咲喃-2-酮、4 -羥基苯甲基(甲基)丙 烯酸酯、4 -羥基苯基(甲基)丙烯酸酯、鄰羥基苯乙烯、 對羥基苯乙烯或α -甲基-對羥基苯乙烯。 共聚物[C ]係衍生自化合物(c 1 )之構成單元,依據 衍生自化合物(c 1 )及(c2 )所衍生之重覆單元的合計, -28- 200907569 宜含有5〜90重量%,尤宜含有ι〇〜80重量%。此構成單 元不足5重量%時,係所得到之層間絕緣膜或微透鏡的耐 熱性、表面硬度及耐剝離液性有降低之傾向,另外,此構 成單元之量超過90重量%時係敏輻射線性樹脂組成物之保 存安定性有降低之傾向。 共聚物[C]的苯乙烯換算重量平均分子量(Mw)宜爲 2xl03〜5xl04 ,更宜爲 5xl03〜3xl04。 共聚物[C]係可依據上述之共聚物[a]的合成方法,藉 由使化合物(c 1 )及(C2 )在溶劑中、聚合起始劑之存在 下進行自由基聚合來製造。 又’共聚物[C]係就具有環氧乙烷基而言與上述共聚 物[A]共通’但共聚物[C]就不具有鹼可溶性而言,與共聚 物[A]相異。 在本發明中可使用來作爲[C]成分之具有脂環式環氧 乙烷基且不具有羧基之其他的化合物,可舉例如分別以下 述式(6 )〜(8 )The [C] component having such an alicyclic oxirane group is, for example, (cl) an unsaturated compound having an alicyclic oxiranyl group and having no carboxyl group (hereinafter referred to as "compound (c 1 )" And (c2) a copolymer of an unsaturated compound having no alicyclic oxirane group and having no carboxyl group (hereinafter referred to as "compound (c2)") (hereinafter referred to as "copolymer (C)") Other compounds having a gastric alicyclic oxirane group and having no carboxyl group. The compound (c 1 ) which can be used to synthesize the copolymer [C] is, for example, 3,4-epoxycyclohexylmethyl (meth) acrylate or 3,4-epoxycyclohexylethyl group. (Meth) acrylate, 3,4. epoxycyclohexyl n-propyl (meth) acrylate, 3,4-epoxycyclohexyl isopropyl (methyl) -27- 200907569 Acrylate, Bu Vinyl·2,3-epoxycyclohexane, 〖-vinyl_3,4-epoxycyclohexane, allyl-2, 3-epoxycyclohexane, allyl- 3,4-epoxycyclohexane and the like. Among these compounds, 3,4-epoxycyclohexylmethyl (meth) acrylate is preferably used in terms of polymerizability. The compound (c2) is exemplified as the unsaturated compound of the compounds (a2) and (a3), and a compound which does not correspond to the compound (c1) can be used. Among them, an alkyl acrylate, an alkyl methacrylate, a cyclic alkyl methacrylate, a maleimide compound, an unsaturated aromatic compound, and a phenolic hydroxyl group represented by the above formula (1) are preferably used. An unsaturated compound, or a glycidyl skeleton, a tetrahydrofuran skeleton, a furan skeleton, a tetrahydrofuran skeleton, a pyran skeleton or an unsaturated compound having a skeleton represented by the above formula (II), in terms of copolymerization reactivity, particularly preferably Glycidyl methacrylate, p-vinylbenzyl glycidyl ether, styrene, tert-butyl methacrylate, tricyclo[5.2.1.06·6]decane-8-yl methacrylate, first month Citrine methacrylate, p-methoxystyrene, 2-methylhexyl methacrylate, N-phenyl maleimide, N-cyclohexylmaleimide, N-(3,5 - dimethyl-4-hydroxybenzyl)methacrylamide, tetrahydroindenyl (meth) acrylate, ethylene glycol unit repeat number of 2 to 10 polyethylene glycol mono (methyl) Acrylate, 3-(meth)propenyloxytetrahydrofuran-2-one, 4-hydroxybenzene Yl (meth) acrylate, 4 - hydroxyphenyl (meth) acrylate, o-hydroxystyrene, p-hydroxy styrene or [alpha] - methyl - p-hydroxy styrene. The copolymer [C] is derived from the constituent unit of the compound (c 1 ), and it is preferably contained in an amount of 5 to 90% by weight based on the total of the repeating units derived from the compounds (c 1 ) and (c2). It is especially preferable to contain ι 〇 80% by weight. When the amount of the constituent unit is less than 5% by weight, the heat resistance, surface hardness, and peeling resistance of the interlayer insulating film or the microlens obtained tend to be lowered, and when the amount of the constituent unit exceeds 90% by weight, the radiation is sensitive. The storage stability of the linear resin composition tends to decrease. The styrene-equivalent weight average molecular weight (Mw) of the copolymer [C] is preferably 2 x 10 3 to 5 x 10 4 , more preferably 5 x 10 3 to 3 x 10 4 . The copolymer [C] can be produced by subjecting the compounds (c 1 ) and (C2) to radical polymerization in the presence of a polymerization initiator in accordance with the synthesis method of the above copolymer [a]. Further, the copolymer [C] is copolymerized with the above copolymer [A] in the case of having an oxirane group, but the copolymer [C] is different from the copolymer [A] in that it does not have alkali solubility. In the present invention, other compounds having an alicyclic oxiranyl group and having no carboxyl group as the component [C] can be used, for example, the following formulas (6) to (8), respectively.

-29- ch2-c—o- II 〇 o--29- ch2-c-o- II 〇 o-

200907569 CH——C——0-200907569 CH——C——0-

II o 0H——C——0-II o 0H——C——0-

II o ch2-c-II o ch2-c-

II oII o

(8) (式(7)中之a、b、c及d分別獨立地爲1〜20之整數) 所示的化合物。 此等之化合物的市售品可舉例如Celloxide 202 1 P、 Celloxide 3 000、Epolead GT401 、ΕΗΡΕ 3 15 0、ΕΗΡΕ 3150Ε(以上,Daicel化學工業(股)製)等。 本發明之敏輻射線性樹脂組成物係相對於聚合物 [A] 1 00重量份宜含有[C]成分卜40重量份,尤宜含有5〜 30重量份。當[C]成分之含量不足1重量份時’係所得到 之層間絕緣膜或微透鏡的耐熱性、表面硬度及耐剝離液性 有降低之傾向,另外,[C]成分之含量超過40重量份時, 可看到對於鹼顯像液之溶解性降低之傾向° -30- 200907569 其他之成分 本發明之敏輻射線性樹脂組成物係含有上述共聚物 [A]、[B]成分及[C]成分作爲必要成分,但其他依需要而可 含有[D]感熱性酸生成化合物、[E]具有至少一個之乙烯性 不飽和雙鍵之聚合性化合物、[F]共聚物[A]及共聚物[C]以 外之環氧樹脂、[G]密著助劑或[H]界面活性劑。 上述[D]感熱性酸生成化合物係可使用用以更提昇所 得到之層間絕緣膜或微透鏡的耐熱性或硬度。其例係可舉 例如硫鎗鹽、苯並噻唑鎗鹽、銨鹽、磷鎗鹽等之鎗鹽。 上述硫鍚鹽之例可舉例如烷基硫鑰鹽、苯甲基硫鑰 鹽、二苯甲基硫鎗鹽、取代苯甲基硫鍚鹽、苯並噻唑鎗鹽 等。 此等之具體例就烷基硫鑰鹽而言,可舉例如 4 -乙醯 苯基二甲基硫鐵六氟銻酸鹽、4 -乙醯氧基苯基二甲基硫 鑰六氛砷酸鹽、二甲基_4-(苯甲基氧幾基氧)苯基硫 鑰六氟銻酸鹽、二甲基-4-(苯甲醯氧)苯基硫鑰六氟 銻酸鹽、二甲基-4-(苯甲醯基氧)苯基硫鑰六氟砷酸 鹽、二甲基-3 -氯-4 -乙醯氧乙醯苯基硫鑰六氟鍊酸鹽 等; 苯甲基硫鎗鹽可舉例如苯甲基-4_羥基苯基甲基硫 鑰六氟銻酸鹽、苯甲基-4-羥基苯基甲基硫鏺六氟磷酸 鹽、4 -乙醯氧基苯基苯甲基甲基硫鎗六氟銻酸鹽、苯甲 基-4-甲氧基苯基甲基硫鑰六氟銻酸鹽、苯甲基-2-甲 -31 - 200907569 基-4 -羥基苯基甲基硫鐺六氟銻酸鹽、苯甲基-3 -氯-4 -羥基苯基甲基硫鑰六氟砷酸鹽、4 -甲氧基苯甲基-4-羥 基苯基甲基硫鑰六氟磷酸鹽等; 二苯甲基硫鑰鹽可舉例如二苯甲基-4 -羥基苯基硫 鑷六氟銻酸鹽、二苯甲基-4 -羥基苯基硫鎗六氟磷酸 鹽、4 -乙醯氧基苯基二苯甲基硫鎗六氟銻酸鹽、二苯甲 基-4 -甲氧基苯基硫鐵六氟^弟酸鹽、_苯甲基-3 -氯-4 -羥基苯基硫鑷六氟砷酸鹽、二苯甲基-甲基-4 -羥 基-5-第三丁基苯基硫鑰六氟砷酸鹽、苯甲基-4 -甲氧基 苯甲基-4-羥基苯基硫鑰六氟磷酸鹽等; 取代苯甲基硫鑰可舉例如對氯苯甲基-4 -羥基苯基 甲基硫鑰六氟銻酸鹽、對硝基苯甲基-4 -羥基苯基甲基 硫鎗六氟銻酸鹽、對氯苯甲基-4 -羥基苯基甲基硫鐵六 氟磷酸鹽、磷酸鹽苯甲基-3 -甲基-4 -羥基苯基甲基硫 鑰六氟銻酸鹽、3 ,5 -二氯苯甲基-4 -羥基苯基甲基硫鎗 六氟銻酸鹽、鄰氯苯甲基-3-氯-4-羥基苯基甲基硫鑰 六氟銻酸鹽等; 苯並噻唑鎗鹽可舉例如3 -苯甲基苯並噻唑鑰、六氟 銻酸鹽、3 -苯甲基苯並噻唑鑰磷酸鹽、3 -苯甲基苯並噻 唑鑰四氟硼酸鹽、3 -(對甲氧基苯甲基)苯並噻唑鐵六 氟銻酸鹽、3 -苯甲基-2 -甲基硫苯並噻唑鐵六氟銻酸 鹽、3 -苯甲基-5 -氯苯並噻唑鑰六氟銻酸鹽等。 此等之中,宜使用硫鐵或苯並噻唑鐵,尤宜使用4 -乙醯氧基苯基二甲基硫鑰六氟砷酸鹽、苯甲基-4 -羥基 -32- 200907569 苯基甲基硫鑰六氟銻酸鹽、4 -乙醯氧基苯基苯甲基甲基 硫鎗六氟銻酸鹽、二苯甲基—4 -羥基苯基硫鎗六氟銻酸 鹽、4-乙醯氧基苯基苯甲基硫鑰六氟銻酸鹽或3_苯甲基 苯並噻唑鑰六氟銻酸鹽。 此等之市售品可舉例如Sun_aid SI — L85、SI -L110、 SI- L145、 SI- L150、 SI- L160 (以上,三新化學 工業(股)製)等。 在本發明之敏輻射線性樹脂組成物中的[D ]成分的使 用比率係相對於共聚物[A ] 1 0 0重量份,宜爲2 0重量份以 下’更宜爲5重量份以下,[D]成分之使用量超過20重量 份時係在塗膜形成步驟中析出物會析出,有時於塗膜形成 造成阻礙。 具有上述[E]至少一個的乙烯性不飽和雙鍵之聚合性 化合物(以下’有時稱爲「( E )成分」可適宜舉例單官 能(甲基)丙烯酸酯、2官能(甲基)丙烯酸酯或3官能 以上之(甲基)丙儲酸醋。 上述單官能(甲基)丙烯酸酯係可舉例如2 -羥乙基 (甲基)丙烯酸酯、卡必醇(甲基)丙烯酸酯、異冰片基 (甲基)丙烯酸酯、3 -甲氧基丁基(甲基)丙烯酸酯、 2 -(甲基)丙烯醯氧基乙基-2-羥丙基酞酸酯等。此等 之市售品可舉例如Aronix M - 101、M - 111、M - 114 (以 上’東亞合成(股)製)、KAYARAD TC - 110S、TC-120S (以上’日本化藥(股)製)、viscoat 158、2311 (以上,大阪有機化學工業(股)製)等。 -33- 200907569 上述2官能(甲基)丙烯酸酯係可舉例如乙二醇(甲 基)丙稀酸醋、1,6 -己二醇二(甲基)丙嫌酸酯,1,9一 壬二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸 醋、四乙二醇二(甲基)丙烯酸酯、雙苯氧基乙醇芴二丙 嫌酸酯、雙苯氧基乙醇芴二丙烯酸酯等。此等之市售品可 舉例如 Aronix M - 210、M - 240、M - 6200 (以上,東亞 合成(股)製)、KAYARAD HDDA、HX-220、R-604 (以 上’日本化藥(股)製)、Viscoat260、312、335HP (以 上’大阪有機化學工業(股)製)等。 上述3官能以上之(甲基)丙烯酸酯可舉例如三羥甲 基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸 酯、三((甲基)丙烯醯氧基乙基)磷酸酯、季戊四醇四 (甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二 季戊四醇六(甲基)丙烯酸酯等,其市售品可舉例如 Aronix M - 309、M - 400、M - 405、M - 450、M - 7100、 Μ - 803 0、Μ - 8 060 (以上,東亞合成(股)製)、 KAYARAD TMPTA、DPHA、DPCA - 20、DPCA - 30、 DPCA - 60、DPCA - 1 20 (以上,日本化藥(股)製)、 Viscoat 295、300、360、GPT、3PA、400 (以上,大阪有 機化學工業(股)製)等。 此等之中,宜使用3官能以上之(甲基)丙烯酸酯’ 其中尤宜爲三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇 四(甲基)丙烯酸酯或二季戊四醇六(甲基)丙烯酸酯 等。 -34- 200907569 此等之單官能、2官能或3官能以上之(甲基)丙嫌 酸酯係可單獨或組合而使用。 在本發明之敏輻射線性樹脂組成物中的[E ]成分之使 用比率係相對於共聚物[A ] 1 〇 〇重量份’宜爲5 0重量份以 下,更宜爲30重量份以下。藉由以如此之比率含有[E]成 分,可提昇從本發明之敏輻射線性樹脂組成物所得到之層 間絕緣膜或微透鏡之耐熱性及表面硬度。若此使用量超過 5 〇重量份,在於基板上形成敏輻射線性樹脂組成物之塗膜 的步驟中有時產生膜粗糙。 上述[F]共聚物[A]及共聚物[C]以外之環氧樹脂(以下 有時稱爲「[F]成分」係只要不影嚮相溶性,不受其種類 限定。 較佳係可舉例如雙酚A型環氧樹脂、酚酚醛清漆型環 氧樹脂、甲酚酚醛清漆型環氧樹脂、縮水甘油基酯型環氧 樹脂、縮水甘油基胺型環氧樹脂、雜環式環氧樹脂、縮水 甘油基(甲基)丙烯酸酯進行(共)聚合之樹脂等。此等 之中,尤宜爲雙酚A型環氧樹脂、甲酚酚醛清漆型環氧樹 脂、或縮水甘油基酯型環氧樹脂。 在本發明之敏輻射線性樹脂組成物中的[F]成分之使 用比率係相對於共聚物[A] 100重量份,宜爲30重量份以 下。藉由以如此之比率含有[F]成分,可進一步提昇從本 發明之敏輻射線性樹脂組成物所得到之保護膜或保護膜之 耐熱性及表面硬度。若此比率超過3 0重量份,在於基板 上形成敏輻射線性樹脂組成物之塗膜時,有時塗膜之膜厚 -35- 200907569 均一性不充分。 又,上述之共聚合[A]、共聚物[C]亦可稱爲「環氧樹 脂」,但,「F」成分就不具有鹼可溶性而言係與共聚物 [A]相異’就不具有脂環式環氧乙烷基而言,與共聚物 相異。 於本發明之敏輻射線性樹脂組成物中爲提昇塗佈性, 可含有[G]界面活性劑。此處’ [G]界面活性劑係可適宜使 用氟系界面活性劑、聚矽氧系界面活性劑或非離子系界面 活性劑。 氟系界面活性劑之具體例可舉例如1,1,2,2 -四氟辛基 (1,1,2,2 -四氟丙基)醚、1,1,2,2 -四氟辛基己基醚、八 乙二醇二(1,1,2,2 -四氟丁基)醚、六乙二醇 (1,1,2,2,3,3 -六氟戊基)醚、八丙二醇二(i,l,2,2 -四 氟丁基)醚、六丙二醇二(1,1,2,2,3,3 -六氟戊基)醚、 全氟十二碳基磺酸鈉、1,1,2,2,8,8,9,9,10,10 -十氟十二碳 烷、1,1,2,2,3,3 -六氟癸烷等之外,尙有氟烷基苯磺酸 鈉、氟烷基氧乙烯基醚、碘化氟烷基銨、氟烷基聚氧乙烯 基醚、全氟烷基聚氧乙醇、全氟烷基烷氧基酯、氟系烷基 酯等。此等之市售品可舉例如BM - 1000、BM - 1100 (以 上,BM Chemie 公司製)、Megafack F142D、F172、 F173、F183、F178、F191、F471 (以上,大日本油墨化學 工業(股)製)、Fluorad FC - 170C、FC - 171、FC -430、FC-431(以上,住友 3M (股)製)、Sarflon S -112、S - 113、S - 131、S - 141、S - 145、S - 382、SC - -36- 200907569 101、SC - 102、SC - 103、SC - 104、SC - 105、SC - 106 (以上,旭硝子(股)製)、Eftop EF301、3 0 3、3 5 2 (以 上,新秋田化成(股)製)等。 上述聚矽氧系界面活性劑係可舉例如 DC3PA、 DC7PA 、 FS - 1265 、 SF - 8428 、 SH11PA 、 SH21PA 、 SH28PA ' SH29PA、SH30PA、SH - 190、SH - 193、SZ-6032 (以上,Toray Dow Corning Silicone (股)製)、 TSF - 4440、TSF - 4300、TSF - 4445、TSF - 4446、TSF -4460 、 TSF - 445 2 (以上,Momentive Performance materials Japan合同公司製)等之商品名所市售者。 上述非離子系界面活性劑係可舉例如聚氧乙烯月桂基 醚、聚氧乙烯硬脂基醚、聚氧乙烯油基醚等之聚氧乙烯烷 基醚; 聚氧乙烯辛基苯基醚、聚氧乙烯壬基苯基醚等之聚氧 乙烯芳基醚; 聚氧乙烯二月桂酸酯、聚氧乙烯二硬脂酸酯等之聚氧 乙烯二烷基酯等之外,(甲基)丙烯酸酯系共聚物 Polyflow NO.57、95 (以上,共榮公司化學(股)製) 等。 此等之界面活性劑係可單獨或組合兩種類以上而使 用。 在本發明之敏輻射線性樹脂組成物中,此等之[G]界 面活性劑係相對於共聚物[A] 1 00重量份宜使用5重量份以 下,更宜使用2重量份以下。若[G]界面活性劑之使用量 -37- 200907569 超過5重量份,於基板上形成塗膜時,有時易產生塗膜之 膜感。 進一步在本發明之敏輻射線性樹脂組成物中係爲提昇 與基體之黏著性,可使用[H]黏著助劑。 [H]黏著助劑宜使用官能性矽偶合劑,可舉例如具有 羧基' 甲基丙烯醯基、異氰酸酯基、環氧乙烷基等之反應 性取代基的矽烷偶合劑。具體上可舉例如三甲氧基甲矽烷 基安息香酸、r -甲基丙烯氧基丙基三甲氧基矽烷、乙烯 基乙醯氧基矽烷、乙烯基三甲氧基矽烷、r -異氰酸酯丙 基三乙氧基砂院、7 -環氧丙氧基丙基三甲氧基砂院、 /3- (3,4-環氧基環己基)乙基三甲氧基矽烷等。 在本發明之敏輻射線性樹脂組成物中,此等之[H]黏 著助劑係相對於共聚物[A] 1 00重量份宜使用20重量份以 下,更宜使用1〇重量份以下之量。若黏著助劑之量超過 2〇重量份,在顯像步驟中有時易產生顯像殘留。 敏輻射線性樹脂組成物 本發明之敏輻射線性樹脂組成物係可由使上述共聚物 [A]、[B]成分及[C]成分以及如上述任意地添加之其他的成 分均一地混合來調製。一般,本發明之敏幅射線性樹脂組 成物係宜溶解於適當的溶劑而以溶液狀態來使用。例如, 藉由以特定之比率,使共聚物[A]、[B]成分及[C]成分以及 任意地添加之其他的成分混合來調製溶液狀態的敏幅射線 性樹脂組成物。 -38- 200907569 於本發明之敏輻射線性樹脂組成物的調製所使用的溶 劑係可使用共聚物[A]、[B]成分及[C]成分以及任意地添加 之其他的各成分均一地溶解且與各成分不反應者。 如此之溶劑係可舉例如可使用來用以製造上述共聚物 [A]之溶劑所例示者同樣者。 如此之溶劑中,從各成分之溶解性、與各成分之反應 性、塗膜形成之容易性等而言,宜使用醇、甘醇醚、乙二 醚烷基醚乙酸酯、酯或二乙二醇。此等之中,尤宜使用苯 甲基醇、2 -苯基乙醇、3 —苯基—1-丙醇、乙二醇單丁 基醚乙酸酯、二乙二醇單乙基醚乙酸酯、二乙二醇二乙基 醚、二乙二醇乙基甲基醚、二乙二醇二甲基醚、丙二醇單 甲基醚、丁二醇單甲基醚乙酸酯、甲氧基丙酸甲酯或乙氧 基丙酸乙酯。 進一步’爲提高前述溶劑以及膜厚之面內均一性,亦 可倂用高沸點溶劑。可倂用之高沸點溶劑係可舉例如N _ 甲基甲醯胺、Ν,Ν -二甲基甲醯胺、N -甲基甲醯苯胺、 Ν -甲基乙醯胺、ν,Ν -二甲基乙醯胺、Ν -甲基吡咯烷 酮、二甲基亞颯、苯甲基乙基醚、二己基醚、丙酮基丙 酮、異佛爾酮、己酸、辛酸、1-辛醇、1-壬醇、醋酸苯 甲醋、安息香酸乙酯、草酸二乙酯、馬來酸二乙酯、7-丁內醋、碳酸乙烯酯、碳酸丙烯酯、苯基溶纖劑乙酸酯 等。此等之中,宜爲N -甲基吡咯烷酮、丁內酯或 N,N -二甲基乙醯胺。 就本1發明之敏輻射線性樹脂組成物的溶劑而言,倂用 -39- 200907569 高沸點溶劑時,其使用量係相對於溶劑全量爲宜5 0重量% 以下,宜爲40重量%以下,更宜爲30重量%以下。筒沸 點溶劑之使用量若超過此使用量’有時塗膜之膜厚均一 性、感度及殘膜率會降低。 調製本發明之敏輻射線性樹脂組成物作爲溶液狀態 時,於溶液中占有之溶劑以外的成分(亦即共聚物[A]、 [B]成分及[C]成分以及任意地添加之其他的成分之合計 量)之比率(固形分濃度)係依使用目的或所希望之膜厚 的値等而可任意地設定,但宜爲 5〜50重量%,更宜爲 1 0〜4 0重量%,最宜爲1 5〜3 5重量%。 如此做法所調製之組成物溶液係使用孔徑0.2 μ m左 右的微孔過濾器等而過濾後可供給使用。 層間絕緣膜、微透鏡之形成 其次’使用本發明之敏輻射線性樹脂組成物,敘述有 關形成本發明之層間絕緣膜、微透鏡的方法。本發明之層 間絕緣膜或微透鏡之形成方法係以如下之順序含有以下之 步驟。 (1 )使本發明之敏輻射線性樹脂組成物的塗膜形成 於基板上之步驟; (2 )於該塗膜之至少一部分上照射輻射線之步驟; (3 )顯像步驟;及 (4 )加熱步驟。 以下’說明有關本發明之層間絕緣膜或微透鏡的形成 -40- 200907569 方法之各步驟。 (1 )使本發明之敏輻射線性樹脂組成物的塗膜形成於基 板上之步驟 於上述(1 )之步驟中,將本發明之組成物溶液塗佈 於基板表面,較佳係進行預烘烤以除去溶劑,形成敏輻射 線性樹脂組成物之塗膜。 可使用之基板的種類係可舉例如玻璃基板、矽基板、 及於此等之表面形成各種金屬之基板等。 組成物溶液的塗佈方法並無特別限定,而可採用例如 噴塗法、輥塗法、旋轉塗佈法(旋塗法)、模縫式塗佈 法、桿塗佈法、噴墨法等之適當方法,尤其,宜爲旋塗法 或模縫式塗佈法。預烘烤之條件係亦依組成物溶液所含有 的各成分之種類、使用比率等而異,但可爲例如以60〜 1 1 0 °C、3 0秒〜1 5分鐘左右。 所形成之塗膜的膜厚就預烘烤後之値,形成層間絕緣 膜時係例如爲3 ~ 6 // m,形成微透鏡時係例如爲〇. 5〜3 // m 〇 (2 )對該塗膜之至少一部分照射輻射線之步驟 於上述(2)之步驟係於所形成之塗膜介由具有特定 圖型之掩罩’而照射輻射線後’使用顯像液而進行顯像處 理以除去輻射線之照射部分,俾進行圖型化。此時所使用 之輕射線可舉例如紫外線、遠紫外線、X線、荷電粒子束 -41 - 200907569 等。 上述紫外線可舉例如g線(波長43 6nm ) 、i線(波 長3 65nm )等。遠紫外線係可舉例如KrF準分子雷射等。 X線可舉例如同步輻射線等。荷電粒子束可舉例如電子束 等。 此等之中,宜爲紫外線,其中尤宜含有g線及i線之 中的至少一者之輻射線。 曝光量係形成層間絕緣膜時,宜爲5 0〜1 5 00 J/m2,形 成微透鏡時宜爲50~ 2 00 0J/m2。 (3 )顯像步驟 使用於顯像處理之顯像液係可使用例如氫氧化鈉、氫 氧化鉀、碳酸鈉、矽酸鈉、準矽酸鈉、氨、乙胺、正丙 胺、二乙胺、二乙基胺基乙醇、二正丙胺、三乙胺、甲基 二乙基胺、二甲基乙醇胺、三乙醇胺、氫氧化四甲基銨、 氫氧化四乙基銨、吡咯、六氫吡啶、1 ,8 -二偶氮雙環 [5.4.0] - 7 -十一碳烯、1,5 -二偶氮雙環[4.3.0] - 5 -壬烷 等之鹼(鹼性化合物)的水溶液。又,可使用於上述鹼的 水溶液中添加適當量甲醇、乙醇等之水溶性有機溶劑或界 面活性劑之水溶液、或溶解本發明之組成物的各種有機溶 劑作爲顯像液。 顯像方法係可使用例如盛液法、浸漬法、搖動浸漬 法、噴灑法等之適當方法。較佳之顯像時間係依組成物之 組成而異,但可爲例如3 0〜1 20秒。 -42- 200907569 又,以往所知之敏輻射線性樹脂組成物係若顯像時間 從最適値超過20〜25秒’因於所形成之圖型產生剝離’ 必須嚴密地控制顯像時間’但本發明之敏輻射線性樹脂組 成物時,從最適顯像時間之超過時間即使爲3 0秒以上’ 亦可形成良好的圖型,有製品良率上之優點。 (4 )加熱步驟 如上述般所實施之(3 )顯像步驟後,對於被圖型化 之薄膜,較佳係進行例如以流水洗淨之清洗處理,進一 步,較佳係藉由以高壓水銀燈等對全面照射(後曝光)輻 射線,俾進行殘留於該薄膜中之1,2 -醌二疊氮化合物的 分解處理後,使此薄膜藉加熱板、烘箱等之適當加熱裝置 進行加熱處理(後烘烤處理),俾進行該薄膜之硬化處 理。 在上述後曝光步驟中之曝光量係宜爲 2000〜 5〇OOJ/m2。又,在此硬化處理之加熱溫度例如爲120~ 250 °C。加熱時間係依加熱機器之種類而異,但例如於加熱板 上進行加熱處理時,爲5〜3 0分鐘,在烘箱中進行加熱處 理時爲30〜90分鐘。此時,亦可使用進行2次以上之加 熱步驟的階段烘烤法。 如此做法,於基板之表面上可形成作爲目的之層間絕 緣膜或微透鏡對應之圖型狀薄膜。 如上述般做法所形成之層間絕緣膜及微透鏡係從後述 之實施例明顯可知密著性、耐熱性 '耐溶劑性、透明性等 -43- 200907569 之各性能優者。 層間絕緣膜 如上述般做法所形成之本發明的層間絕緣膜’係對基 板之密著性良好,耐溶劑性及耐熱性優,具有高的透過 率,介電率低者,故可適宜使用來作爲電子零件之層間絕 緣膜。 微透鏡 如上述般做法所形成之本發明的微透鏡,係對基板之 密著性良好,耐溶劑性及耐熱性優,具有高的透過率與良 好的熔融形狀者,故可適宜使用來作爲固體照相元件。 本發明之微透鏡的形狀如圖1 ( a )所示般,爲半凸透 鏡狀。 【實施方式】 實施例 共聚物[A]的合成例 合成例A - 1 於具備冷却管、攪拌機之燒瓶中,饋入2,2’ -偶氮雙 (2,4 -二甲基戊腈)7重量份及二乙二醇乙基甲基醚220 重量份。繼而,饋入甲基丙烯酸 20重量份、三環 [5.2.1.〇2’6]癸烷-8 -基甲基丙烯酸酯15重量份、N -環 己基馬來醯亞胺20重量份、甲基丙烯酸縮水甘油基酯30 -44 - 200907569 重量份、本乙嫌15重量份及^ -甲基苯乙烯偶體3重量 份後’進行氮取代後,徐緩地開始攪拌。使溶液之溫度上 昇至7 0 °C ’保持此溫度4小時,俾得到含有共聚物[a - j ] 之聚合物溶液。此聚合物溶液之固形分濃度(謂於聚合物 溶液的全重量占有之聚合物重量的比例,以下相同)爲 3 2.0重量%。 共聚物[A - 1]之聚苯乙烯換算重量平均分子量 (Mw)爲10000’分子量分布(Mw/Mn)爲2.3。 合成例2 於具備冷却管、攪拌機之燒瓶中,饋入2,2,—偶氮雙 (2,4 -二甲基戊腈)8重量份及二乙二醇乙基甲基醚220 重量份。繼而’饋入甲基丙烯酸20重量份、3,4 -環氧基環 己基甲基甲基丙烧酸酯45重量份、苯乙稀1〇重量份、三 環[5.2.1.02’6]癸烷-8 -基甲基丙烯酸酯25重量份及α _ 甲基苯乙烯偶體3重量份後,進行氮取代後,徐緩地開始 攪拌。使溶液之溫度上昇至70°C,保持此溫度4小時,俾 得到含有共聚物[A - 2 ]之聚合物溶液。此聚合物溶液之固 形分濃度爲31.9重量%。 共聚物[A- 2]之聚苯乙烯換算重量平均分子量 (Mw)爲8800,分子量分布(Mw/Mn)爲2.4。 共聚物[C]的合成例 合成例C - 1 -45- 200907569 於具備冷却管、攪拌機之燒瓶中,饋入2,2,—偶氮雙 (2,4 -二異丁腈)8重量份及二乙二醇乙基甲基醚22〇重 量份。繼而’饋入3,4-環氧基環己基甲基甲基丙烯酸酯5〇 重量份、對乙烯基苯甲基縮水甘油基醚50重量份及^ 一 甲基苯乙烯偶體4重量份後’進行氮取代後,徐緩地開始 攪拌。使溶液之溫度上昇至80°C,保持此溫度4小時,俾 得到含有共聚物[C - 1 ]之聚合物溶液。此聚合物溶液之固 形分濃度爲1 . 8重量%。 共聚物[C - 1]之聚苯乙烯換算重量平均分子量 (Mw)爲8000,分子量分布(Mw/Mn)爲2.4。 合成例C - 2 於具備冷却管、攪拌機之燒瓶中,饋入2,2,-偶氮雙 (2,4 -二異丁腈)8重量份及二乙二醇乙基甲基醚220重 量份。繼而,饋入3,4-環氧基環己基甲基甲基丙烯酸酯50 重量份、對羥基苯基甲基丙烯酸酯50重量份、及α -甲 基苯乙烯偶體4重量份後,進行氮取代後,徐緩地開始攪 拌。使溶液之溫度上昇至80°C,保持此溫度4小時,俾得 到含有共聚物[C - 2 ]之聚合物溶液。此聚合物溶液之固形 分濃度爲3 2.1重量%。 共聚物[C- 2]之聚苯乙烯換算重量平均分子量 (Mw)爲8400,分子量分布(Mw/Mn)爲2.4。 合成例C - 3 -46 - 200907569 於具備冷却管、攪拌機之燒瓶中,饋入2,2’ -偶氮雙 (2,4 -二異丁腈)8重量份及二乙二醇乙基甲基醚220重 量份。繼而,饋入3,4 -環氧基環己基甲基甲基丙烯酸酯50 重量份、苯乙烯50重量份及α -甲基苯乙烯偶體4重量 份後’進行氮取代後,徐緩地開始攪拌。使溶液之溫度上 昇至80°C,保持此溫度4小時,俾得到含有共聚物[C - 3] 之聚合物溶液。此聚合物溶液之固形分濃度爲3 1 . 1重量 %。 共聚物[C - 3]之聚苯乙烯換算重量平均分子量 (Mw)爲8000,分子量分布(Mw/Mn)爲2.4。 <敏輻射線性樹脂組成物之調製> 實施例1 就共聚物[A]而言,係使含有於上述合成例A-1所合 成之聚合物[A - 1]的溶液相當於聚合物[A - 1] 100重量份 (固形分)之量,就[B]成分而言,係氯化4,4’ - [1 - [4 -[1-[4-羥基苯基]-1-甲基乙基]苯基]叉乙基]雙酚(1.0 莫耳)與氯化1,2 -萘醌二疊氮_5_磺酸(2.0莫耳)之 縮合物[B - 1]25重量份及就[C]成分而言,係使含有於上 述合成例C-1所合成之共聚物[C - 1 ]的溶液相當於聚合物 [C - 1]30重量份(固形分)之量進行混合,以固形分濃度 成爲30重量%之方式以二乙二醇乙基甲基醚進行稀釋後, 以口徑〇 . 2 # m之過濾薄膜進行過濾,以調製敏輻射線性 樹脂組成物之溶液(s - 1 )。 -47- 200907569 實施例2〜4、比較例1〜3 在實施例1中,除使用分別如表〗記載之種類、量作 爲聚合物[A]、[B]成分及[C]成分以外,其餘係與實施例1 同樣做法而實施,調製敏輻射線性樹脂組成物之溶液 (S-2)〜(S-4)及(s-l)~ (s-3) ° 又,在實施例4中,係於如聚合物[A]、[B]成分及[C] 成分之外,進一步添加於表1記載之種類及量之[H]之黏 著助劑。在實施例4中之[B]成分的記載係表示2種類之 1,2 -醌二疊氮化合物。又’在比較例3中係於聚合物[A ] 及[B]成分之外’進一步添加於表1記載之種類及量之[F] 成分。 實施例5 在實施例1中,進一步添加[G]SH - 28PA ( Toray Dow Corning Silicone (股)製)、使用二乙二乙基甲基 醚/丙二醇單甲基醚乙酸酯之混合溶液(重量比=6/4)作爲 稀釋溶劑及使溶液之固形分濃度爲2 〇重量%以外,其餘係 與實施例1同樣做法而實施,調製敏輻射線性樹脂組成物 之溶液(S - 5 )。 -48- 200907569 1嗽 其他之成分 量 (重量份) 1 1 1 Τ—Η 1 1 種類 1 1 1 g 〇 1 1 Ξ [C诚分 量 (重量份) 1 1 1 種類 [C-1] [C-2] f—1 m 1 U [C —4] 1 1 r—Η 1 υ 1 1 1 [B]成分 里 (重量份) <N in CM (N 10/10 (N m (N tn (N (N 種類 1 1 '1 r—Η ώ 1 1 1—1 ώ rT ώ 1—1 ώ [B-l] [B-l] [B-ll 『B-ll 量 (重量份) 100 ο O ο o 〇 100 o 種類 ΓΑ-11 1—1 < ι· ·π < 1 < r—1 1—H < [A-ll ΓΑ-21 ΓΑ-11 組成物 之名稱 (S-1) r? (S-3) (S-4) (n (s-1) (s-2) 實施例1 實施例2 實施例3 實施例4 實施例5 比較例1 比較例2 比較例3 -49- 200907569 表1中’成分之簡稱係分別爲以下之意義。 共聚物[A] [A - 1]: 以合成例A - • 1所合成之共聚物[A - 1] [A - 2]: 以合成例A - 2所合成之共聚物[A - 2] [B]成分 [B - 1]:氯化 4,4’ - [1 — [4 -[卜[4 -羥基苯基]-1 — 甲基乙基]苯基]叉乙基]雙酚(1.0莫耳)與氯化1,2 -萘 醌二疊氮-5 -磺酸(2.0莫耳)之縮合物 [B-2]: 2,3,4,4’-四羥基二苯甲酮(1.0莫耳)與氯 化1,2 -萘醌二疊氮_ 5 -磺酸(2.44莫耳)之縮合物 [C]成分 [C - 1]:以合成例C - 1所合成之共聚物[C - 1] [C - 2]:以合成例C - 2所合成之共聚物[C - 2] [C - 3]:以合成例C - 3所合成之共聚物[C - 3] [C - 4] : Epolead GT401 ( Daicel 化學工業(股) 製) 其他之成分 [F]:酚酚醛清漆型環型環氧樹脂 EP152 ( Japan Epoxy Resin (股)製) [G] : SH - 28PA ( Toray Dow Corning (股)製) -50- 200907569 [Η] : 7 -環氧丙氧基丙基二甲氧基砂院 <作爲層間絕緣膜之性能評估> 實施例6 - 10、比較例4〜6 使用如上述般所調製之敏輻射線性樹脂組成 下般評估作爲層間絕緣膜之各種的特性。 [感度之評估] 於矽基板上,有關實施例6〜9及比較例4〜 旋塗器而分別塗佈表2記載之組成物後,以9 0 °C 上預烘烤2分鐘,形成膜厚3.0//m之塗膜。有 1 〇係藉模縫式塗佈器進行塗佈,以1 5秒鐘到達< 法而進行真空乾燥後,以9 0 °C於加熱板上預烘烤 形成膜厚3.0/zm之塗膜。(8) A compound represented by (in the formula (7), a, b, c and d are each independently an integer of from 1 to 20). Commercial products of such compounds include, for example, Celloxide 202 1 P, Celloxide 3 000, Epolead GT401, ΕΗΡΕ 3 15 0, ΕΗΡΕ 3150 Ε (above, manufactured by Daicel Chemical Industry Co., Ltd.). The radiation sensitive linear resin composition of the present invention preferably contains 40 parts by weight of the [C] component, and particularly preferably 5 to 30 parts by weight, based on 100 parts by weight of the polymer [A]. When the content of the [C] component is less than 1 part by weight, the heat resistance, surface hardness, and peeling resistance of the interlayer insulating film or the microlens obtained tend to decrease, and the content of the [C] component exceeds 40% by weight. In the case of a portion, the tendency to lower the solubility of the alkali developing solution is observed. -30-200907569 Other components The sensitive radiation linear resin composition of the present invention contains the above copolymer [A], [B] component and [C The component is an essential component, but may contain, as needed, a [D] thermosensitive acid generating compound, [E] a polymerizable compound having at least one ethylenically unsaturated double bond, [F] copolymer [A], and copolymerization. An epoxy resin other than [C], [G] adhesion aid or [H] surfactant. The above [D] thermosensitive acid generating compound can be used to further improve the heat resistance or hardness of the obtained interlayer insulating film or microlens. Examples thereof include gun salts of sulphur gun salt, benzothiazole gun salt, ammonium salt, and phosphor gun salt. Examples of the above sulfonium salt include alkylsulfonyl salt, benzyl sulfide salt, diphenylmethylsulfonium salt, substituted benzylsulfonium salt, benzothiazole gun salt and the like. Specific examples of such alkylsulfonyl salts include, for example, 4-ethoxyphenyl dimethylsulfuric hexafluoroantimonate, 4-ethoxycarbonyl phenyl dimethyl sulfonate Acid salt, dimethyl 4-(benzyloxy oxy) phenyl sulfonium hexafluoroantimonate, dimethyl-4-(benzyl oxime) phenyl sulfonium hexafluoroantimonate, Dimethyl-4-(benzimidyloxy)phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-ethoxythiazide phenylsulfonium hexafluorocatelate, etc.; benzene The methylsulfur gun salt may, for example, be benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate or 4-ethyloxonium oxide. Phenylphenylmethylmethylsulfide hexafluoroantimonate, benzyl-4-methoxyphenylmethylsulfonium hexafluoroantimonate, benzyl-2-methyl-31 - 200907569 4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyl Phenylmethylsulfide hexafluorophosphate or the like; a diphenylmethylsulfide salt may, for example, be diphenylmethyl-4-hydroxyphenylsulfonium hexafluoroantimonate or diphenylmethyl-4hydroxyl Phenylsulfur gun hexafluorophosphate, 4-ethoxylated phenyl diphenylmethylsulfide hexafluoroantimonate, diphenylmethyl-4-methoxyphenylsulfuric iron hexafluorophosphate _Benzylmethyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, benzhydryl-methyl-4-hydroxy-5-t-butylphenylsulfide hexafluoroarsenate, Benzyl-4-methoxybenzyl-4-hydroxyphenylsulfonium hexafluorophosphate; etc.; substituted benzylsulfide can be, for example, p-chlorobenzyl-4-hydroxyphenylmethylsulfide Hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfur hexafluoroantimonate, p-chlorobenzyl-4-hydroxyphenylmethylsulfate hexafluorophosphate, phosphate Benzyl-3-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfone hexafluoroantimonate, adjacent Chlorobenzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroantimonate; etc.; benzothiazole gun salt may, for example, be 3-benzylbenzothiazole, hexafluoroantimonate, 3 - Benzylbenzothiazole molybdate, 3-benzylbenzothiazole molybdate, 3-(p-methoxybenzyl)benzothiazole iron Fluoride, 3-benzyl-2-(methylthiobenzothiazolyl iron hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazole hexafluoroantimonate, and the like. Among them, iron iron or benzothiazole iron should be used, and 4-ethoxymethoxyphenyldimethylsulfonium hexafluoroarsenate, benzyl-4-hydroxy-32-200907569 phenyl group is particularly preferably used. Methyl sulfonium hexafluoroantimonate, 4-ethoxymethoxyphenylbenzylmethylsulfide hexafluoroantimonate, diphenylmethyl-4-hydroxyphenylsulfur hexafluoroantimonate, 4 - ethoxylated phenyl phenyl sulfonium hexafluoroantimonate or 3-benzyl benzothiazole hexafluoroantimonate. Such commercially available products include, for example, Sun_aid SI-L85, SI-L110, SI-L145, SI-L150, SI-L160 (above, Sanshin Chemical Industry Co., Ltd.). The use ratio of the component [D] in the radiation sensitive linear resin composition of the present invention is preferably 20 parts by weight or less, and more preferably 5 parts by weight or less, relative to the copolymer [A] 100 parts by weight, [ When the amount of the component D is more than 20 parts by weight, precipitates may be precipitated in the coating film forming step, which may hinder the formation of the coating film. A polymerizable compound having at least one of the above-mentioned [E] ethylenically unsaturated double bonds (hereinafter referred to as "(E) component" may be exemplified as monofunctional (meth) acrylate, bifunctional (meth) acrylate An ester or a trifunctional or higher (meth) acrylate acid vinegar. The monofunctional (meth) acrylate may, for example, be 2-hydroxyethyl (meth) acrylate or carbitol (meth) acrylate. Isobornyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-(meth) propylene oxiranyl ethyl hydroxypropyl phthalate, etc. Commercially available products include, for example, Aronix M-101, M-111, M-114 (above 'East Asia Synthetic Co., Ltd.), KAYARAD TC-110S, TC-120S (above 'Nippon Chemical Co., Ltd.), viscoat 158, 2311 (above, Osaka Organic Chemical Industry Co., Ltd.), etc. -33- 200907569 The bifunctional (meth) acrylate type may, for example, be ethylene glycol (meth) acrylate vinegar, 1,6- Hexanediol di(methyl)propane phthalate, 1,9-nonanediol di(meth) acrylate, polypropylene glycol di(methyl) propyl Sour vinegar, tetraethylene glycol di(meth) acrylate, bisphenoxyethanol hydrazine dipropionate, bisphenoxyethanol hydrazine diacrylate, etc. Such commercially available products are, for example, Aronix M - 210, M-240, M-6200 (above, East Asia Synthetic Co., Ltd.), KAYARAD HDDA, HX-220, R-604 (above 'Nippon Chemical Co., Ltd.), Viscoat 260, 312, 335 HP (above' The above-mentioned trifunctional or higher (meth) acrylate may, for example, be trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, or tris(( Methyl) propylene methoxyethyl) phosphate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc., and commercially available products are, for example, Aronix M - 309, M - 400, M - 405, M - 450, M - 7100, Μ - 803 0, Μ - 8 060 (above, East Asia Synthetic Co., Ltd.), KAYARAD TMPTA, DPHA, DPCA - 20, DPCA-30, DPCA-60, DPCA-1 20 (above, Nippon Kayaku Co., Ltd.), V Iscoat 295, 300, 360, GPT, 3PA, 400 (above, Osaka Organic Chemical Industry Co., Ltd.), etc. Among these, it is preferable to use a trifunctional or higher (meth) acrylate. Methylpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate or dipentaerythritol hexa(meth)acrylate. -34- 200907569 These monofunctional, bifunctional or trifunctional or higher (meth)propionic acid esters may be used singly or in combination. The use ratio of the component [E] in the radiation sensitive linear resin composition of the present invention is preferably 50 parts by weight or less, more preferably 30 parts by weight or less based on the copolymer [A ] 1 〇 〇 by weight. By containing the [E] component in such a ratio, the heat resistance and surface hardness of the interlayer insulating film or microlens obtained from the sensitive radiation linear resin composition of the present invention can be improved. If the amount used exceeds 5 parts by weight, film roughness may occur in the step of forming a coating film of the radiation-sensitive linear resin composition on the substrate. The epoxy resin other than the above [F] copolymer [A] and the copolymer [C] (hereinafter sometimes referred to as "[F] component" is not limited as long as it does not affect compatibility, and is preferably limited. For example, bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolac type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, heterocyclic epoxy Resin, glycidyl (meth) acrylate, (co)polymerized resin, etc. Among these, bisphenol A type epoxy resin, cresol novolac type epoxy resin, or glycidyl ester is particularly preferable. The use ratio of the [F] component in the radiation sensitive linear resin composition of the present invention is preferably 30 parts by weight or less based on 100 parts by weight of the copolymer [A]. By being contained in such a ratio The component [F] further improves the heat resistance and surface hardness of the protective film or the protective film obtained from the sensitive radiation linear resin composition of the present invention. If the ratio exceeds 30 parts by weight, a sensitive radiation linear resin is formed on the substrate. When the composition is coated, sometimes the film thickness of the coating film -35- 200907569 Uniformity is insufficient. Further, the above copolymerization [A] and copolymer [C] may also be referred to as "epoxy resin", but the "F" component does not have alkali solubility and is copolymerized. The substance [A] is different from the copolymer in that it does not have an alicyclic oxirane group. In the sensitive radiation linear resin composition of the present invention, the coating property may be improved to include a [G] interface. An active agent. Here, a fluorine-based surfactant, a polyoxyn surfactant, or a nonionic surfactant can be suitably used as the [G] surfactant. Specific examples of the fluorine-based surfactant include, for example, 1. 1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl)ether, 1,1,2,2-tetrafluorooctylhexyl ether, octaethylene glycol di(1,1 , 2,2-tetrafluorobutyl)ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl)ether, octapropylene glycol di(i,l,2,2-tetrafluoro Butyl)ether, hexapropanediol bis(1,1,2,2,3,3-hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 1,1,2,2,8,8, 9,9,10,10-decafluorododecan, 1,1,2,2,3,3-hexafluorodecane, etc., with sodium fluoroalkylbenzenesulfonate, An alkyl oxy vinyl ether, a fluoroalkyl ammonium iodide, a fluoroalkyl polyoxy vinyl ether, a perfluoroalkyl polyoxyethylene, a perfluoroalkyl alkoxy ester, a fluoroalkyl ester, etc. Commercially available products include, for example, BM-1000, BM-1100 (above, BM Chemie), Megafack F142D, F172, F173, F183, F178, F191, and F471 (above, manufactured by Dainippon Ink Chemical Industry Co., Ltd.). Fluorad FC - 170C, FC-171, FC-430, FC-431 (above, Sumitomo 3M (share) system), Sarflon S-112, S-113, S-131, S-141, S-145, S- 382, SC - -36- 200907569 101, SC-102, SC-103, SC-104, SC-105, SC-106 (above, Asahi Glass Co., Ltd.), Eftop EF301, 3 0 3, 3 5 2 ( Above, the new Akita Chemicals Co., Ltd.). The polyoxo-based surfactant may, for example, be DC3PA, DC7PA, FS-1265, SF-8428, SH11PA, SH21PA, SH28PA 'SH29PA, SH30PA, SH-190, SH-193, SZ-6032 (above, Toray Dow) Commercially available under the trade names of Corning Silicone Co., Ltd., TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-445 2 (above, Momentive Performance materials Japan contract company) . The nonionic surfactant may, for example, be a polyoxyethylene alkyl ether such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether or polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether; a polyoxyethylene aryl ether such as polyoxyethylene nonylphenyl ether; a polyoxyethylene dialkyl ester such as polyoxyethylene dilaurate or polyoxyethylene distearate, or the like (meth) Acrylate copolymer Polyflow No. 57, 95 (above, Co., Ltd.). These surfactants can be used singly or in combination of two or more types. In the radiation sensitive linear resin composition of the present invention, the [G] surfactant is preferably used in an amount of 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the copolymer [A]. When the amount of the [G] surfactant used is more than 5 parts by weight and the coating film is formed on the substrate, the film feel of the coating film may easily occur. Further, in the sensitive radiation linear resin composition of the present invention, the adhesion to the substrate is improved, and [H] an adhesion aid can be used. The [H] adhesion aid is preferably a functional oxime coupling agent, and examples thereof include a decane coupling agent having a reactive substituent such as a carboxy 'methacryl fluorenyl group, an isocyanate group or an oxiranyl group. Specific examples thereof include trimethoxymethyl decyl benzoic acid, r - methacryloxypropyl trimethoxy decane, vinyl ethoxy decane, vinyl trimethoxy decane, and r - isocyanate propyl triethyl. Oxygen sands, 7-glycidoxypropyltrimethoxy sands, /3-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, and the like. In the sensitive radiation linear resin composition of the present invention, the [H] adhesion aid is preferably used in an amount of 20 parts by weight or less based on 100 parts by weight of the copolymer [A], more preferably 1 part by weight or less. . If the amount of the adhesion aid exceeds 2 parts by weight, development residue may easily occur in the development step. Sensitive Radiation Linear Resin Composition The sensitive radiation linear resin composition of the present invention can be prepared by uniformly mixing the above copolymer [A], [B] component and [C] component and the other components arbitrarily added as described above. In general, the radiation sensitive resin composition of the present invention is preferably dissolved in a suitable solvent and used in a solution state. For example, a photosensitive radiation-sensitive resin composition in a solution state is prepared by mixing the copolymer [A], [B] component, and [C] component and other components arbitrarily added at a specific ratio. -38- 200907569 The solvent used for the preparation of the sensitive radiation linear resin composition of the present invention can be uniformly dissolved using the copolymers [A], [B] and [C] components and optionally other components. And do not react with each component. Such a solvent may, for example, be the same as those exemplified for the solvent used for the production of the above copolymer [A]. Among such solvents, alcohol, glycol ether, ethylene ether alkyl ether acetate, ester or two are preferably used from the solubility of each component, the reactivity with each component, and the ease of formation of a coating film. Ethylene glycol. Among these, benzyl alcohol, 2-phenylethanol, 3-phenyl-1-propanol, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate are particularly preferably used. Ester, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, butanediol monomethyl ether acetate, methoxy Methyl propionate or ethyl ethoxypropionate. Further, in order to improve the in-plane uniformity of the solvent and the film thickness, a high boiling point solvent can also be used. Examples of the high-boiling solvent which can be used include N-methylformamide, hydrazine, hydrazine-dimethylformamide, N-methylformamide, hydrazine-methylacetamide, ν, Ν- Dimethylacetamide, Ν-methylpyrrolidone, dimethyl hydrazine, benzyl ethyl ether, dihexyl ether, acetonyl acetone, isophorone, hexanoic acid, octanoic acid, 1-octanol, 1 - decyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, 7-butyrolactone, ethylene carbonate, propylene carbonate, phenyl cellosolve acetate, and the like. Among these, it is preferably N-methylpyrrolidone, butyrolactone or N,N-dimethylacetamide. In the solvent of the sensitive radiation linear resin composition of the present invention, when the high-boiling solvent of -39-200907569 is used, the amount thereof is preferably 50% by weight or less, preferably 40% by weight or less, based on the total amount of the solvent. More preferably, it is 30% by weight or less. If the amount of the solvent used in the barrel boiling point exceeds the amount used, the film thickness uniformity, sensitivity, and residual film ratio of the coating film may be lowered. When the sensitive radiation linear resin composition of the present invention is prepared as a solution, components other than the solvent occupied in the solution (that is, the copolymer [A], [B] component, and [C] component, and other components added arbitrarily The ratio (solid content concentration) may be arbitrarily set depending on the purpose of use or the desired film thickness, but is preferably 5 to 50% by weight, more preferably 10 to 40% by weight. Most preferably 1 5 to 3 5 wt%. The composition solution prepared in this manner is filtered by using a micropore filter having a pore size of about 0.2 μm or the like and then supplied. Formation of Interlayer Insulating Film and Microlens Next, a method of forming the interlayer insulating film and the microlens of the present invention will be described using the sensitive radiation linear resin composition of the present invention. The method of forming the interlayer insulating film or the microlens of the present invention comprises the following steps in the following order. (1) a step of forming a coating film of the sensitive radiation linear resin composition of the present invention on a substrate; (2) a step of irradiating radiation on at least a portion of the coating film; (3) a developing step; and (4) ) heating step. The following describes the steps of the method for forming the interlayer insulating film or microlens of the present invention -40-200907569. (1) a step of forming a coating film of the sensitive radiation linear resin composition of the present invention on a substrate. In the step (1) above, the composition solution of the present invention is applied to the surface of the substrate, preferably pre-baked. Bake to remove the solvent to form a coating film of the radiation sensitive linear resin composition. The type of the substrate that can be used is, for example, a glass substrate, a tantalum substrate, or a substrate on which various metals are formed on the surface. The coating method of the composition solution is not particularly limited, and for example, a spray coating method, a roll coating method, a spin coating method (spin coating method), a die coating method, a rod coating method, an inkjet method, or the like can be employed. A suitable method, in particular, is preferably a spin coating method or a die coating method. The pre-baking conditions vary depending on the type of each component contained in the composition solution, the use ratio, and the like, but may be, for example, 60 to 110 ° C for 30 seconds to 15 minutes. The film thickness of the formed coating film is pre-baked, and the interlayer insulating film is, for example, 3 to 6 // m, and the microlens is, for example, 〇. 5~3 // m 〇(2) The step of irradiating at least a portion of the coating film with radiation is performed by using the developing liquid after the formed coating film is irradiated with radiation through a mask having a specific pattern in the step (2). The treatment is performed to remove the irradiated portion of the radiation, and the pattern is patterned. The light rays to be used at this time may, for example, be ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams -41 - 200907569, and the like. The ultraviolet rays may, for example, be a g-line (wavelength of 43 6 nm), an i-line (wavelength of 3 65 nm), or the like. The far ultraviolet ray may, for example, be a KrF excimer laser or the like. The X line may be, for example, a synchrotron radiation. The charged particle beam may, for example, be an electron beam or the like. Among these, ultraviolet rays are preferable, and it is preferable to contain radiation of at least one of the g-line and the i-line. When the exposure amount is formed as an interlayer insulating film, it is preferably from 50 to 1 500 J/m2, and when the microlens is formed, it is preferably from 50 to 200 0 J/m2. (3) Developing step The developing liquid used for developing treatment may use, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium citrate, ammonia, ethylamine, n-propylamine, diethylamine. , diethylaminoethanol, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, hexahydropyridine An aqueous solution of a base (basic compound) of 1,8-diazobicyclo[5.4.0]-7-undecene, 1,5-diazobicyclo[4.3.0]-5-decane or the like . Further, an aqueous solution of a water-soluble organic solvent such as methanol or ethanol or an aqueous solution of an interfacial surfactant or various organic solvents which dissolve the composition of the present invention may be added to the aqueous solution of the above-mentioned alkali as a developing solution. As the developing method, a suitable method such as a liquid-filling method, a dipping method, a shaking dipping method, a spraying method, or the like can be used. The preferred development time varies depending on the composition of the composition, but may be, for example, 30 to 1 20 seconds. -42- 200907569 In addition, the known radiation-sensitive linear resin composition has a development time of more than 20 to 25 seconds from the optimum ' 'Because of the formed pattern, the peeling must be strictly controlled. In the case of the inductive radiation linear resin composition of the invention, even if it is more than 30 seconds from the optimum imaging time, a good pattern can be formed, which has the advantage of product yield. (4) The heating step is carried out after the (3) development step as described above, and the patterned film is preferably subjected to a cleaning treatment such as washing with running water, and further preferably by a high pressure mercury lamp. After the total irradiation (post-exposure) radiation is applied, the ruthenium is subjected to decomposition treatment of the 1,2-quinonediazide compound remaining in the film, and then the film is heated by a suitable heating device such as a hot plate or an oven ( After the post-baking treatment, the film is subjected to a hardening treatment. The exposure amount in the above post-exposure step is preferably from 2,000 to 5,000 Å/m2. Further, the heating temperature in the hardening treatment is, for example, 120 to 250 °C. The heating time varies depending on the type of the heating machine, but is, for example, 5 to 30 minutes for heat treatment on a hot plate and 30 to 90 minutes for heat treatment in an oven. In this case, a stage baking method in which the heating step is performed twice or more may be used. In this way, a patterned film corresponding to the purpose of the interlayer insulating film or the microlens can be formed on the surface of the substrate. The interlayer insulating film and the microlens system formed as described above are excellent in various properties such as adhesion, heat resistance, solvent resistance, transparency, and the like from the examples described later. The interlayer insulating film of the present invention formed as described above has good adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high transmittance, and has a low dielectric constant, so that it can be suitably used. It is used as an interlayer insulating film for electronic parts. The microlens of the present invention formed as described above is excellent in adhesion to a substrate, excellent in solvent resistance and heat resistance, and has high transmittance and good melt shape, so that it can be suitably used as a microlens. Solid photographic element. The shape of the microlens of the present invention is a semi-convex mirror shape as shown in Fig. 1(a). EXAMPLES Synthesis Example of Copolymer [A] Synthesis Example A - 1 In a flask equipped with a cooling tube and a stirrer, 2,2'-azobis(2,4-dimethylvaleronitrile) was fed. 7 parts by weight and 220 parts by weight of diethylene glycol ethyl methyl ether. Then, 20 parts by weight of methacrylic acid, 15 parts by weight of tricyclo[5.2.1.〇2'6]nonane-8-yl methacrylate, and 20 parts by weight of N-cyclohexylmaleimide were fed. Glycidyl methacrylate 30 -44 - 200907569 parts by weight, 15 parts by weight of the present invention, and 3 parts by weight of the ?-methylstyrene coupler, after the nitrogen substitution, the stirring was started slowly. The temperature of the solution was raised to 70 ° C. This temperature was maintained for 4 hours, and a polymer solution containing the copolymer [a - j ] was obtained. The solid content concentration of the polymer solution (that is, the ratio of the weight of the polymer occupied by the total weight of the polymer solution, the same below) was 3 2.0% by weight. The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer [A-1] was 10,000' molecular weight distribution (Mw/Mn) of 2.3. Synthesis Example 2 In a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2,-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were fed. . Then, '20 parts by weight of methacrylic acid, 45 parts by weight of 3,4-epoxycyclohexylmethylmethylpropionate, 1 part by weight of styrene, and 3 ring [5.2.1.02'6]癸After 25 parts by weight of the alk-8-yl methacrylate and 3 parts by weight of the α-methylstyrene coupler, after nitrogen substitution, stirring was slowly started. The temperature of the solution was raised to 70 ° C, and the temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [A - 2 ]. The polymer solution had a solid concentration of 31.9% by weight. The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer [A-2] was 8,800, and the molecular weight distribution (Mw/Mn) was 2.4. Synthesis Example of Copolymer [C] Synthesis Example C - 1 -45- 200907569 In a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2,-azobis(2,4-diisobutyronitrile) was fed. And diethylene glycol ethyl methyl ether 22 parts by weight. Then, after feeding 5 parts by weight of 3,4-epoxycyclohexylmethyl methacrylate, 50 parts by weight of p-vinylbenzyl glycidyl ether and 4 parts by weight of methyl styrene. 'After the nitrogen substitution, the stirring started slowly. The temperature of the solution was raised to 80 ° C, and the temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [C - 1 ]. The solid solution concentration of the polymer solution was 1.8% by weight. The copolymer [C-1] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw/Mn) of 2.4. Synthesis Example C-2 In a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2,-azobis(2,4-diisobutyronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were fed. Share. Then, 50 parts by weight of 3,4-epoxycyclohexylmethyl methacrylate, 50 parts by weight of p-hydroxyphenyl methacrylate, and 4 parts by weight of α-methylstyrene, were fed. After the nitrogen is replaced, the stirring is slowly started. The temperature of the solution was raised to 80 ° C, and the temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [C - 2 ]. The polymer solution had a solid concentration of 32.1% by weight. The copolymer [C-2] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,400 and a molecular weight distribution (Mw/Mn) of 2.4. Synthesis Example C - 3 -46 - 200907569 In a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2'-azobis(2,4-diisobutyronitrile) and diethylene glycol ethyl group were fed. 220 parts by weight of the ether. Then, after feeding 50 parts by weight of 3,4-epoxycyclohexylmethyl methacrylate, 50 parts by weight of styrene, and 4 parts by weight of α-methylstyrene, 'the nitrogen substitution is started slowly. Stir. The temperature of the solution was raised to 80 ° C, and the temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [C - 3]. The solid solution concentration of the polymer solution was 31. 1% by weight. The copolymer [C-3] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw/Mn) of 2.4. <Preparation of Sensitive Radiation Linear Resin Composition> Example 1 For the copolymer [A], the solution containing the polymer [A-1] synthesized in the above Synthesis Example A-1 corresponds to a polymer [A - 1] 100 parts by weight (solids), for the component [B], is 4,4' - [1 - [4- [4-[4-hydroxyphenyl]-1- Condensate of methylethyl]phenyl]p-ethyl]bisphenol (1.0 mol) with 1,2-naphthoquinonediazide-5-sulfonic acid (2.0 mol) [B - 1]25 In the case of the component [C], the solution containing the copolymer [C-1] synthesized in the above Synthesis Example C-1 corresponds to 30 parts by weight of the polymer [C-1] (solid content). The amount is mixed, and after diluting with diethylene glycol ethyl methyl ether in such a manner that the solid content concentration is 30% by weight, it is filtered by a filtration membrane having a diameter of 〇. 2 # m to modulate the linear composition of the radiation sensitive resin. Solution (s - 1 ). -47-200907569 Examples 2 to 4 and Comparative Examples 1 to 3 In Example 1, except for the types and amounts described in Tables, the components [A], [B], and [C] were used. The rest were carried out in the same manner as in Example 1 to modulate the solutions (S-2) to (S-4) and (sl) to (s-3) of the radiation-sensitive linear resin composition. Further, in Example 4, Further, in addition to the components [A], [B] and [C] of the polymer, an adhesion aid of [H] of the type and amount described in Table 1 is further added. The description of the component [B] in Example 4 indicates two types of 1,2-quinonediazide compounds. Further, in Comparative Example 3, the components [A] and [B] were added to the components [A] and the components [F] described in Table 1. Example 5 In Example 1, a mixed solution of [G]SH-28PA (manufactured by Toray Dow Corning Silicone Co., Ltd.) and diethyldiethylmethyl ether/propylene glycol monomethyl ether acetate was further added ( The solution (S - 5 ) of the radiation-sensitive linear resin composition was prepared in the same manner as in Example 1 except that the weight ratio was 6/4) as the diluent solvent and the solid content concentration of the solution was 2% by weight. -48- 200907569 1嗽Other components (parts by weight) 1 1 1 Τ—Η 1 1 Type 1 1 1 g 〇1 1 Ξ [C Cheng component (parts by weight) 1 1 1 Type [C-1] [C -2] f-1 m 1 U [C —4] 1 1 r—Η 1 υ 1 1 1 [B] component (parts by weight) <N in CM (N 10/10 (N m (N tn ( N (N species 1 1 '1 r - Η ώ 1 1 1 - 1 ώ rT ώ 1-1 ώ [Bl] [Bl] [B-ll 『B-ll quantity (parts by weight) 100 ο O ο o 〇100 o Species ΓΑ-11 11-1 < ι· ·π < 1 < r-1 1 H-lt; [A-ll ΓΑ-21 ΓΑ-11 The name of the composition (S-1) r? (S -3) (S-4) (n (s-1) (s-2) Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Comparative Example 2 Comparative Example 3 -49- 200907569 Table 1 The abbreviations of the 'components' are as follows. Copolymer [A] [A - 1]: Copolymer [A - 1] [A - 2] synthesized in Synthesis Example A - 1 : Synthesis Example A - 2 synthesized copolymer [A - 2] [B] component [B - 1]: chlorinated 4,4' - [1 - [4 - [bu [4 - hydroxyphenyl]-1 - methyl b Phenyl]p-ethyl]bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid ( 2.0 molar) condensate [B-2]: 2,3,4,4'-tetrahydroxybenzophenone (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid (2.44 mole) condensate [C] component [C-1]: copolymer synthesized in Synthesis Example C-1 [C-1] [C-2]: copolymerization synthesized in Synthesis Example C-2 [C - 2] [C - 3]: Copolymer synthesized in Synthesis Example C-3 [C - 3] [C - 4] : Epolead GT401 (made by Daicel Chemical Industry Co., Ltd.) Other Ingredients [F ]: Phenolic novolac type ring type epoxy resin EP152 (made by Japan Epoxy Resin Co., Ltd.) [G] : SH - 28PA (made by Toray Dow Corning Co., Ltd.) -50- 200907569 [Η] : 7 -epoxy Oxypropyl dimethoxy sand litter <performance evaluation as interlayer insulating film> Examples 6 - 10, Comparative Examples 4 to 6 Using the sensitive radiation linear resin composition prepared as described above, it was evaluated as interlayer insulation. Various properties of the film. [Evaluation of Sensitivity] The compositions described in Table 2 were applied to the substrates of Examples 6 to 9 and Comparative Examples 4 to 4, respectively, and then prebaked at 90 ° C for 2 minutes to form a film. A coating film of 3.0/m thick. 1 〇 was coated by a die-stitch coater, vacuum-dried in 15 seconds to reach the < method, and pre-baked on a hot plate at 90 ° C to form a film thickness of 3.0/zm. membrane.

在各別中所得到之塗膜,介由具有特定之圖 掩罩而以(股)Cannon製PLA - 501 F曝光機( 銀燈)使曝光時間作爲曝變量而進行曝光後,使 表2之濃度的氫氧化四甲基銨水溶液而在25 °C中 度0.4重量%之顯像液時係80秒,使用濃度2.38 顯像液時係5 0秒,分別以盛液法進行顯像。然 水進行流水洗淨1分鐘後,進行乾燥,俾於基板 型狀薄膜。此時,硏究3.0 // m之線與間隙(1 〇 間隙/圖型完成溶解所需之最小曝光量。使此値 而表示於表2。可謂此値爲1000J/m2以下時感度J 物,如以 6係使用 於加熱板 關實施例 ).51 〇 r r 做 2分鐘, 型的圖型 超高壓水 用記載於 ,使用濃 重量%之 後以超純 上形成圖 對1 )的 作爲感度 薄良好。 -51 - 200907569 [顯像邊緣之評估] 於矽基板上,有關實施例6〜9及比較例4〜6 旋塗器而分別塗佈表2記載之組成物後,以90 °C於 上預烘烤2分鐘,俾形成膜厚3.0/zm之塗膜。有 例1 〇係藉模縫式塗佈器進行塗佈,以1 5秒鐘到達 做法而進行真空乾燥後,以9 0 °C於加熱板上預烘;):: 鐘,形成膜厚3.0//m之塗膜。 在各別中所得到之塗膜,介由具有3.0 /z m之 隙(10對1)的圖型之掩罩而以(股)Cannon製 5 0 1 F曝光機(超高壓水銀燈),以相當於以上述 之評估]」所測定之感度的値之曝光量進行曝光, 載於表2之濃度的氫氧化四甲基銨水溶液而在2 5 °C 顯像時間作爲變量而以盛液法進行顯像。然後以超 行流水洗淨1分鐘後,進行乾燥,俾於基板上形成 薄膜。此時’硏究線幅寬成爲3.0 // m所需之顯像 以此作爲最適顯像時間而表示於表2。又,從最適 間進一步繼續顯像時’測定3 · 0 // m之線/圖型被剝 之時間’作爲顯像邊緣而表示於表2。顯像邊緣之1 秒以上之時,顯像邊緣可謂良好。 [耐溶劑性之評估] 於矽基板上’有關實施例6〜9及比較例4〜6 旋塗器而分別塗佈表2記載之組成物後,以9〇〇c於 係使用 加熱板 關實施 0.5t〇rr f 2分 線與間 PLA - 「[感度 使用記 中,以 純水進 圖型狀 時間, 顯像時 離爲止 直爲3 0 係使用 加熱板 -52- 200907569 上預烘烤2分鐘,以形成塗膜。有關實施例1 〇係藉模縫 式塗佈器進行塗佈,以15秒鐘到達0.5torr做法而進行真 空乾燥後,以90°C於加熱板上預烘烤2分鐘,以形成塗 膜。 在各別中所得到之塗膜,使用(股)Cannon製 PLA - 5 01 F曝光機(超高壓水銀燈)而積分照射量成爲 3000J/m2之方式曝光後於潔淨烘箱內以220 °C加熱1小 時,俾於基板上形成膜厚約3.Ομιη之硬化膜。 測定此硬化膜之膜厚(Τ 1 )。然後,使形成此硬化膜 之矽基板,浸漬於被溫度控制於70 °C之二甲基亞颯中20 分鐘後’測定該硬化膜之膜厚(11 ),算出以浸漬求出之 膜厚變化率{|tl - ΤΙ |/Τ1 }χ100[%]。結果表示於表2。此値 爲5 %以下時,耐溶劑性可謂良好。 又,在耐溶劑性之評估中係不需要所形成之膜的圖型 化’故輻射線照射步驟及顯像步驟係省略,只進行塗膜形 成步驟、後曝光步驟及加熱步驟而進行評估。 [耐熱性之評估] 於矽基板上分別與上述[耐溶劑性之評估]同樣做法而 形成硬化膜,測定所得到之硬化膜的膜厚(T2 )。然後, 使此硬化膜基板於潔淨烘箱內以240 °C追加烘烤1小時 後,測定該硬化膜之膜厚(t2 ),算出以追加烘烤之膜厚 變化率{|t2 - T2|/T2}xl00[%]。結果表示於表2。此値爲 5 %以下時,耐溶劑性可謂良好。 -53- 200907569 又’在耐熱性之評估中係不需要所形成之膜的圖型 化’故只進行塗膜形成步驟、後曝光步驟及加熱步驟而進 行評估。 [透明性之評估] 在上述之[耐溶劑性的評估]中,除使用玻璃基板 [Corning7059 ( Corning公司製)]取代矽基板外,其餘係 與[耐溶劑性的評估]同樣做法而於玻璃基板上形成硬化 膜。使具有此硬化膜之玻璃基板的光線透過率利用分光光 度計「1 50 - 20型雙光束((股)日立製作所製)」而以 400~ 800nm之範圍的波長進行測定。其時之最低光線透 過率的値表示於表2中。此値爲9 0 %以上時,透明性可謂 良好。 又,在透明性之評估中係不需要所形成之膜的圖型 化’故只進行塗膜形成步驟、後曝光步驟及加熱步驟而進 行評估。 [比電阻率之評估] 於硏磨之SUS製基板上,有關實施例6〜9及比較例 4〜6係使用旋塗器而分別塗佈表2記載之組成物後,以 9 0°C於加熱板上預烘烤2分鐘,以形成膜厚3.0 // m之塗 膜。有關實施例1 0係藉模縫式塗佈器進行塗佈,以1 5秒 鐘到達0.5torr做法而進行真空乾燥後,以90°C於加熱板 上預烘烤2分鐘’以形成膜厚3 · 〇 # m之塗膜。 -54- 200907569 在各別中所得到之塗膜,使用(股)Cannon製 PLA - 501 F曝光機(超高壓水銀燈)而積分照射量成爲 3 000J/m2之方式曝光後於潔淨烘箱內以22(rc加熱1小 時,俾於基板上形成膜厚硬化膜。 分別對於此硬化膜’藉蒸鍍法形成Pt/Pd電極圖型而 製作介電率測定用試樣。有關各基板,使用橫河惠普 (股)製 HP16451B 電極及 HP4284A、precison LCR 計而 於l〇kHz之頻率藉CV法測定比介電率。結果表示於表 2。此値爲3 _ 5 %以下時,比介電率可謂良好。 又’在比介電率之評估中係不需要所形成之膜的圖型 化’故只進行塗膜形成步驟、後曝光步驟及加熱步驟而進 行評估。 -55- 200907569 (N« 比介電率 Ο rn ΓΟ 透明性 (%) σν <N ON ON m 〇\ ON 耐熱性 膜厚變化率 (%) (Ν (N <N CN (N 卜 00 耐溶劑性 膜厚變化率 (%) m m m m m 卜 00 ο 顯像邊緣 丨 邊緣 (秒) IT) ^T) iTi CN in (N 最適顯像時間 (秒) § § § § g § 感度評價 感度 (J/m2) 500 550 450 550 500 700 1,200 550 顯像液濃度 (重量%) 寸 o 寸 o 1 2.38 寸 o 寸 o 寸 〇 寸 o 寸 Ο 組成物 之名稱 (S-l) (S-3) (S-4) (n 1 /—s (s-2) cn 實施例6 實施例7 實施例8 實施例9 實施例10 比較例4 比較例5 比較例6 -56- 200907569 <作爲微透鏡之性能評估> 實施例1 1〜1 4,比較例7〜9 使用如上述所調製之敏輻射線性樹脂組成物,如以下 般,評估作爲微透鏡之各種特性。又,有關耐溶劑性之評 估、耐熱性之評估及透明性之評估。係欲參照作爲上述層 間絕緣膜之性能評估的結果。 [感度之評估] 於矽基板上,使用旋塗器而分別塗佈表3記載之組成 物後,以90 °C於加熱板上預烘烤2分鐘,以形成膜厚2.0 "m之塗膜。在所得到之塗膜上介由具有特定之圖型的圖 型掩罩而以(股)Nikon製NSR 1 75 5i7A縮小投影曝光機 (ΝΑ = 0.50、λ =3 65nm )使曝光時間作爲變量而進行曝 光’使用記載於表3之濃度的氫氧化四甲基銨水溶液而在 2 5 °C中,以盛液法進行顯像1分鐘。然後以水進行洗淨, 進行乾燥’俾於基板上形成圖型狀薄膜。此時,硏究0.8 β m之線與間隙(1對丨)的間隙線寬成爲〇. 8 # m所需 之最小曝光量。使此値作爲感度而表示於表3。可謂此値 爲2000J/m2以下時感度爲良好。 [顯像邊緣之評估] 於矽基板上’使用旋塗器而分別塗佈表3記載之組成 物後’以9〇°C於加熱板上預烘烤2分鐘,俾形成膜厚2.0 //m之塗膜。在所得到之塗膜上介由具有特定之圖型的圖 -57- 200907569 型掩罩而使用(股)Nikon製NSRl 75 5i7A縮小投影曝光 機(ΝΑ = 0.50、λ =3 65nm ) ’以相當於以上述「[感度之 評估]」所測定之感度的値之曝光量進行曝光,使用記載 於表3之濃度的氫氧化四甲基錢水溶液而在25 °C中’以盛 液法進行顯像1分鐘。然後以水進行洗淨’進行乾燥’俾 於基板上形成圖型狀薄膜。此時,硏究〇·8 " m之線與間 隙(1對1 )的間隙線寬成爲〇. 8 // m所需之顯像時間作 爲最適顯像時間而表示於表3。又’從最適顯像時間進一 步繼續顯像時,測定0.8 // m之圖型被剝離爲止之時間 (顯像邊緣),作爲顯像邊緣而表示於表3。此値爲3 0秒 以上之時,顯像邊緣可謂良好。 [微透鏡之形成] 於矽基板上,使用旋塗器而分別塗佈表3記載之組成 物後,以90 °C於加熱板上預烘烤2分鐘,而形成膜厚2.0 之塗膜。在所得到之塗膜上介由具有4.0/zm點/2.0 # m間隙圖型的圖型掩罩而藉(股)Nikon製NSR 1 75 5 i7A 縮小投影曝光機(ΝΑ = 0·50、λ =3 6 5nm ),以相當於以上 述「[感度之評估]」所測定之感度的値之曝光量進行曝 光,就表3之感度評估中之顯像液濃度而言使用所記載的 氫氧化四甲基銨水溶液而在2 5 °C中,以盛液法進行顯像1 分鐘。然後以水進行洗淨,進行乾燥,俾於基板上形成圖 型狀薄膜。使用(股)Cannon製PLA - 501 F曝光機(超 高壓水銀燈)而積分照射量成爲3 000J/m2之方式曝光。 -58- 200907569 然後以加熱板以160°C加熱10鐘後進一步以23 0°C加熱l〇 分鐘而使圖型熔融流動,以形成微透鏡。 將所形成之微透鏡的底部(接觸於基板之面)之尺寸 (直徑)及截面形狀表示於表3中。微透鏡底部之尺寸超 過4.0/im,不足5.0/zm時,可謂良好。又’若此尺寸成 爲5.0 /z m以上,鄰接之透鏡間接觸的狀態,不佳。又’ 截面形狀在表示於圖1之模式圖中如(a )之半凸透鏡形 狀時爲良好,如(b )之略梯形上之情形爲不良。 -59- 200907569 £ 微透鏡之形狀 截面形狀 $ 底部之尺寸 (//m) cn 寸· (N 寸* 寸· 寸· — (N 顯像邊緣 邊緣 (秒) 〇 〇 yr) cn ο (N 最適顯像時間 (秒) § § Ο § § 感度評價 感度 (J/m2) 1,000 1,100 900 ι___ 1,100 1,400 2,400 1,100 顯像液濃度 (重量%) 寸 〇 寸 〇 1 2.38 ι_ 寸 Ο 寸 o 寸 Ο 寸 ο 組成物 之名稱 (S-1) (S-2) (S-3) (S-4) (s-1) I cn 實施例11 實施例12 實施例13 實施例14 比較例7 比較例8 比較例9 -60- 200907569 發明之效果 本發明之敏輻射線性樹脂組成物,係具有高的輻射線 感度,且具有在顯像步驟中即使超過最適顯像時間亦可形 成良好的圖型形狀之顯像邊緣,可容易地形成密著性優之 圖型狀薄膜。 從上述組成物所形成之本發明的層間絕緣膜,係對基 板之密著性良好,耐溶劑性及耐熱性優,具有高的透過 率,介電率低者,故可適宜使用來作爲電子零件之層間絕 緣膜。 又從上述組成物所形成之本發明的微透鏡,係對基板 之密著性良好,耐溶劑性及耐熱性優,且具有高的透過率 與良好的熔融形狀者,故可適宜使用來作爲固體照相元件 等之微透鏡。 【圖式簡單說明】 圖1係微透鏡之截面形狀的模式圖。 -61 -The coating film obtained in each case was exposed to the exposure time as an exposure variable by a PLA-501 F exposure machine (silver lamp) manufactured by Cannon, having a specific pattern mask, and then subjected to exposure. The concentration of the aqueous solution of tetramethylammonium hydroxide was 80 seconds at a moderate concentration of 0.4% by weight of the developer solution at 25 ° C, and 50 seconds after the use of a concentration of 2.38 developer solution, and development was carried out by a liquid-filling method. After the water was washed with running water for 1 minute, it was dried and baked on a substrate-shaped film. At this time, look at the line and gap of 3.0 // m (1 〇 gap / pattern to complete the minimum exposure required for dissolution. This is shown in Table 2. It can be said that the sensitivity is 1000 J/m2 or less. For example, if the 6 series is used for the heating plate, the example).51 〇rr is used for 2 minutes, and the type of ultra-high pressure water is described as the sensitivity thin after forming the figure pair 1) on the ultra-pure after using the concentrated weight%. good. -51 - 200907569 [Evaluation of development edge] On the substrate, the compositions described in Table 2 were applied to the spin coaters of Examples 6 to 9 and Comparative Examples 4 to 6, respectively, and then preliminarily applied at 90 °C. After baking for 2 minutes, the crucible was formed into a film having a film thickness of 3.0/zm. In the case of Example 1, the enamel was coated by a die-stitch coater, vacuum-dried after reaching the practice in 15 seconds, and pre-baked on a hot plate at 90 ° C;):: clock, forming a film thickness of 3.0 //m coating film. The coating film obtained in each case was passed through a mask having a pattern of 3.0 / zm (10 to 1) and a 50 1 F exposure machine (ultra-high pressure mercury lamp) made of Cannon. The exposure was carried out at the exposure amount of the sensitivity measured by the above evaluation, and the aqueous solution of tetramethylammonium hydroxide in the concentration shown in Table 2 was used as a variable at a temperature of 25 ° C as a variable. Visualization. Then, it was washed with a running water for 1 minute, dried, and a film was formed on the substrate. At this time, the image required for the width of the line to be 3.0 // m is shown in Table 2 as the optimum development time. Further, when the development is further continued from the optimum, the "measurement of the line of 3 · 0 / m / the time when the pattern is peeled off" is shown in Table 2 as the development edge. When the development edge is more than 1 second, the development edge is good. [Evaluation of Solvent Resistance] The compositions described in Table 2 were applied to the spinners of Examples 6 to 9 and Comparative Examples 4 to 6 on the substrate, and then the heating plates were used at 9 〇〇c. Implement 0.5t〇rr f 2 split line and inter-PLA - "[Sensitivity use note, pure water enters the pattern shape time, when the image is displayed, it is straightforwardly 3 0. Use the heating plate -52- 200907569 to pre-bake 2 minutes to form a coating film. About Example 1 The enamel was coated by a die-stitch coater, vacuum-dried after reaching 15 Torr for 15 seconds, and then pre-baked on a hot plate at 90 ° C. 2 minutes to form a coating film. The coating film obtained in each case was exposed to light by using a PLA- 5 01 F exposure machine (ultra-high pressure mercury lamp) manufactured by Cannon and integrating the irradiation amount to 3000 J/m 2 . The film was heated at 220 ° C for 1 hour in an oven to form a cured film having a film thickness of about 3. Ομιη on the substrate. The film thickness of the cured film was measured (Τ 1 ). Then, the ruthenium substrate on which the cured film was formed was immersed in After measuring the temperature of the dimethyl sulfoxide at 70 ° C for 20 minutes, the film thickness of the cured film was measured (11) The film thickness change rate {|tl - ΤΙ | / Τ 1 } χ 100 [%] obtained by immersion was calculated. The results are shown in Table 2. When the 値 is 5% or less, the solvent resistance is good. In the evaluation, the patterning of the formed film is not required. Therefore, the radiation irradiation step and the development step are omitted, and only the coating film forming step, the post-exposure step, and the heating step are performed for evaluation. [Evaluation of heat resistance] A cured film was formed on the substrate in the same manner as in the above [Evaluation of Solvent Resistance], and the film thickness (T2) of the obtained cured film was measured. Then, the cured film substrate was added at 240 ° C in a clean oven. After baking for 1 hour, the film thickness (t2) of the cured film was measured, and the film thickness change rate {|t2 - T2|/T2} xl00 [%] by additional baking was calculated. The results are shown in Table 2. When the amount is 5 % or less, the solvent resistance is good. -53- 200907569 - In the evaluation of heat resistance, the patterning of the formed film is not required. Therefore, only the coating film forming step, the post-exposure step, and the heating step are performed. Evaluation. [Evaluation of transparency] In the above [Evaluation of Solvent Resistance] A glass substrate (Corning 7059 (manufactured by Corning)) was used instead of the ruthenium substrate, and a cured film was formed on the glass substrate in the same manner as [evaluation of solvent resistance]. The light transmittance of the glass substrate having the cured film was obtained. The measurement was carried out at a wavelength in the range of 400 to 800 nm by a spectrophotometer "1 50 - 20 type double beam (manufactured by Hitachi, Ltd.)". The 光线 of the lowest light transmittance at that time is shown in Table 2. When the enthalpy is 90% or more, the transparency is good. Further, in the evaluation of the transparency, the patterning of the formed film was not required. Therefore, only the coating film forming step, the post-exposure step, and the heating step were carried out for evaluation. [Evaluation of specific resistivity] On the SUS substrate of honing, Examples 6 to 9 and Comparative Examples 4 to 6 were applied to the compositions described in Table 2 using a spin coater, and then 90 ° C was applied. It was prebaked on a hot plate for 2 minutes to form a coating film having a film thickness of 3.0 // m. Example 10 was coated by a die-stitch coater, vacuum-dried after reaching a 0.5 torr method for 15 seconds, and then pre-baked on a hot plate at 90 ° C for 2 minutes to form a film thickness. 3 · 〇# m coating film. -54- 200907569 The film obtained in each case was exposed in a clean oven using a PLA-501 F exposure machine (Ultra High Pressure Mercury Lamp) manufactured by Cannon and an integral irradiation amount of 3 000 J/m2. (The rc was heated for 1 hour, and a film thickness-hardened film was formed on the substrate. A Pt/Pd electrode pattern was formed by vapor deposition on the cured film, and a dielectric constant measurement sample was prepared. For each substrate, Yokogawa was used. The Hewlett-Packard HP16451B electrode and HP4284A, precison LCR measured the specific dielectric ratio by the CV method at a frequency of l〇kHz. The results are shown in Table 2. When the 値 is 3 _ 5 % or less, the specific dielectric ratio is Good. Moreover, in the evaluation of the specific dielectric ratio, the patterning of the formed film is not required. Therefore, only the coating film forming step, the post-exposure step, and the heating step are performed for evaluation. -55- 200907569 (N« ratio Dielectric ratio Ο rn ΓΟ Transparency (%) σν <N ON ON m 〇\ ON Heat resistance film thickness change rate (%) (Ν (N < N CN (N 00 solvate film thickness change rate ( %) mmmmm 00 ο image edge 丨 edge (seconds) IT) ^T) iTi CN in (N Optimum imaging time (seconds) § § § § g § Sensitivity evaluation sensitivity (J/m2) 500 550 450 550 500 700 1,200 550 Imaging liquid concentration (% by weight) Inch o inch o 1 2.38 inch o inch o inch inch o inch Ο composition name (S1) (S-3) (S-4) (n 1 /-s (s-2) cn Example 6 Example 7 Example 8 Example 9 Example 10 Comparative Example 4 Comparative Example 5 Comparative Example 6 - 56 - 200907569 <As performance evaluation of microlenses> Example 1 1 to 1 4, Comparative Examples 7 to 9 Using the sensitive radiation linear resin composition prepared as described above, as follows, Evaluation of various characteristics as microlenses. Further, evaluation of solvent resistance, evaluation of heat resistance, and evaluation of transparency are referred to as results of performance evaluation of the above interlayer insulating film. [Evaluation of sensitivity] on a substrate The composition described in Table 3 was applied separately using a spin coater, and then prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film having a film thickness of 2.0 " m. On the obtained coating film The projection exposure machine is reduced by NSR 1 75 5i7A made by Nikon via a pattern mask with a specific pattern (ΝΑ = 0.50, λ = 3 65 nm) Exposure was carried out using the exposure time as a variable. The development was carried out by a liquid-filling method at 25 ° C for 1 minute using an aqueous tetramethylammonium hydroxide solution having a concentration shown in Table 3. Then, it is washed with water and dried to form a pattern-like film on the substrate. At this time, the gap line width of the line of 0.8 β m and the gap (1 pair of 丨) is considered to be the minimum exposure amount required by # 8 # m. This enthalpy is shown in Table 3 as sensitivity. It can be said that the sensitivity is good when the 値 is 2000 J/m 2 or less. [Evaluation of development edge] On the substrate, the composition described in Table 3 was applied by using a spin coater, and then pre-baked on a hot plate at 9 ° C for 2 minutes to form a film thickness of 2.0. The coating film of m. On the obtained coating film, a NSRl 75 5i7A NSKl 75 5i7A reduction projection projection machine (ΝΑ = 0.50, λ = 3 65 nm ) was used in a mask of the type -57-200907569 having a specific pattern. Exposure was carried out on the exposure amount of the sensitivity measured by the above-mentioned "[Evaluation of Sensitivity]", and the aqueous solution of tetramethylammonium hydroxide having the concentration shown in Table 3 was used to carry out the liquid phase method at 25 ° C. Like 1 minute. Then, it is washed with water and dried to form a pattern-like film on the substrate. At this time, the gap line width between the line and the gap (1 to 1) of 〇·8 " m becomes 〇. 8 // m The required development time is shown in Table 3 as the optimum development time. Further, when the development was continued from the optimum development time, the time until the pattern of 0.8 // m was peeled off (developing edge) was measured, and it is shown in Table 3 as the development edge. When the 値 is more than 30 seconds, the development edge is good. [Formation of Microlens] The composition described in Table 3 was applied onto a tantalum substrate by a spin coater, and then prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film having a film thickness of 2.0. On the obtained coating film, NSR 1 75 5 i7A made by Nikon was used to reduce the projection exposure machine through a pattern mask having a 4.0/zm dot/2.0 #m gap pattern (ΝΑ = 0·50, λ =3 6 5 nm ), and exposure is performed at an exposure amount equivalent to the sensitivity measured by the above [[Evaluation of Sensitivity], and the hydrogen peroxide described is used for the concentration of the developing liquid in the sensitivity evaluation of Table 3. The aqueous solution of tetramethylammonium was used for development for 1 minute at 25 ° C in a liquid-filled method. Then, it is washed with water, dried, and formed on a substrate to form a pattern-like film. Exposure was carried out by using a PLA-501 F exposure machine (ultra-high pressure mercury lamp) manufactured by Cannon and integrating the irradiation amount to 3 000 J/m2. -58- 200907569 Then, the plate was heated at 160 ° C for 10 minutes, and further heated at 230 ° C for 1 minute to melt the pattern to form a microlens. The dimensions (diameter) and cross-sectional shape of the bottom of the formed microlens (the surface in contact with the substrate) and the cross-sectional shape are shown in Table 3. The size of the bottom of the microlens exceeds 4.0/im, which is good when it is less than 5.0/zm. Further, if the size is 5.0 / z m or more, the state of contact between adjacent lenses is not good. Further, the cross-sectional shape is good when it is in the shape of a semi-convex lens as shown in (a) in the pattern diagram of Fig. 1, and the case of a trapezoid on (b) is bad. -59- 200907569 £ Micro-lens shape cross-sectional shape $ bottom size (//m) cn inch · (N inch * inch · inch · — (N development edge edge (seconds) 〇〇yr) cn ο (N optimum Imaging time (seconds) § § Ο § § Sensitivity evaluation sensitivity (J/m2) 1,000 1,100 900 ι___ 1,100 1,400 2,400 1,100 Imaging liquid concentration (% by weight) Inch inch 〇1 2.38 ι_ inch Ο inch o inch Ο inch ο Name of the composition (S-1) (S-2) (S-3) (S-4) (s-1) I cn Example 11 Example 12 Example 13 Example 14 Comparative Example 7 Comparative Example 8 Comparison Example 9 -60-200907569 Effect of the Invention The sensitive radiation linear resin composition of the present invention has high radiation sensitivity and has a good pattern shape even if the optimum development time is exceeded in the developing step. The pattern-like film which is excellent in adhesion can be easily formed on the edge. The interlayer insulating film of the present invention formed from the above composition has good adhesion to the substrate, and is excellent in solvent resistance and heat resistance. Transmittance, low dielectric constant, so it can be used as an interlayer of electronic parts The microlens of the present invention formed from the above composition is excellent in adhesion to a substrate, excellent in solvent resistance and heat resistance, and has high transmittance and good melt shape, and thus is suitable. It is used as a microlens such as a solid photographic element. [Simplified illustration of the drawing] Fig. 1 is a schematic view showing the cross-sectional shape of the microlens.

Claims (1)

200907569 十、申請專利範圍 1. 一種敏輻射線性樹脂組成物,其特徵在於含有: [A] 含有(ai)選自由不飽和羧酸及不飽和羧酸酐所 構成之群的至少一種、以及 (a2)具有選自由環氧乙烷基及氧雜環丁基所構成之 群的至少一種之基的不飽和化合物 而成之不飽和化合物的共聚物、 [B] l,2-醌二疊氮化合物、以及 [C] 具有脂環式環氧乙烷基且不具有羧基之化合物。 2. 如申請專利範圍第1項之敏輻射線性樹脂組成物’ 其中[C]具有脂環式環氧乙烷基且不具有竣基之其他的化 合物爲(cl)具有脂環式環氧乙烷基且不具有羧基之不飽 和化合物及(c2)不具有脂環式環氧乙院基且不具有竣基 之不飽化合物的共聚物、或以下述式(6)〜(8)200907569 X. Patent application scope 1. A sensitive radiation linear resin composition comprising: [A] containing (ai) at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and (a2) a copolymer of an unsaturated compound having an unsaturated compound selected from the group consisting of at least one of an oxiranyl group and an oxetanyl group, [B] 1,2-quinonediazide compound And [C] a compound having an alicyclic oxiranyl group and having no carboxyl group. 2. The sensitive radiation linear resin composition as claimed in claim 1 wherein [C] has an alicyclic oxiranyl group and has no sulfhydryl group, and the other compound (cl) has an alicyclic epoxy An unsaturated compound having an alkyl group and no carboxyl group, and (c2) a copolymer having no alicyclic epoxy group and an unsaturated compound having no mercapto group, or the following formulas (6) to (8) -62- 200907569 H2 cl a. CH H2 c όό όό- - - Γ c=〇 c=〇 cyo cyo H2) (c 5 H (c 5 H2) (c 5 H (c c-=oc-^oc-yoc-yo ο ο ο ο /Λ/Λνχ/Λ 2 2 2 2 CHCHCHCH -ca-(b-(o-(d-62- 200907569 H2 cl a. CH H2 c όό όό- - - Γ c=〇c=〇cyo cyo H2) (c 5 H (c 5 H2) (c 5 H (c c-=oc-^oc- Yoc-yo ο ο ο ο /Λ/Λνχ/Λ 2 2 2 2 CHCHCHCH -ca-(b-(o-(d 8 (式(7)中之a、b、c及d分別獨立地爲1~20之整數) 之任一種所示的化合物。 3 .如申請專利範圍第1或2項之敏輻射線性樹脂組成 物,其爲使用於層間絕緣膜的形成上。 4 . 一種層間絕緣膜之形成方法,其特徵在於以下述之 記載順序含有以下之步驟: (1 )使如申請專利範圍第1或2項之敏輻射線性樹 脂組成物的塗膜形成於基板上之步驟; (2 )於該塗膜之至少一部分上照射輻射線之步驟; (3 )顯像步驟; -63- 200907569 (4 )加熱步驟。 5·—種層間絕緣膜,係藉由如申請專利範圍第4項之 方法來形成。 6. 如申請專利範圍第1或2項之敏輻射線性樹脂組成 物,其爲使用於微透鏡之形成上。 7. —種微透鏡之形成方法,其特徵在於以下述之記載 順序含有以下之步驟: (1 )使如申請專利範圍第1或2項之敏輻射線性樹 脂組成物的塗膜形成於基板上之歩驟; (2 )對該塗膜之至少一部分照射輻射線之步驟; (3 )顯像步驟;及 (4 )加熱步驟。 8 . —種微透鏡,係藉由如申請專利範圍第7項之方法 來形成。 -64-8 (a compound in which a, b, c, and d in the formula (7) are each independently an integer of 1 to 20). 3. The radiation sensitive linear resin composition of claim 1 or 2, which is used for the formation of an interlayer insulating film. 4. A method of forming an interlayer insulating film, comprising the steps of: (1) forming a coating film of a radiation-sensitive linear resin composition according to claim 1 or 2 on a substrate; a step of (2) irradiating radiation on at least a portion of the coating film; (3) a developing step; -63-200907569 (4) a heating step. 5. An interlayer insulating film is formed by the method of claim 4 of the patent application. 6. The sensitive radiation linear resin composition of claim 1 or 2, which is used for the formation of a microlens. 7. A method of forming a microlens, comprising the steps of: (1) forming a coating film of a radiation sensitive linear resin composition according to claim 1 or 2 on a substrate; And (2) a step of irradiating at least a portion of the coating film with radiation; (3) a developing step; and (4) a heating step. 8. A microlens formed by the method of claim 7 of the patent application. -64-
TW097117831A 2007-05-16 2008-05-15 Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like TWI437365B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130723A JP4905700B2 (en) 2007-05-16 2007-05-16 Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them

Publications (2)

Publication Number Publication Date
TW200907569A true TW200907569A (en) 2009-02-16
TWI437365B TWI437365B (en) 2014-05-11

Family

ID=40124824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097117831A TWI437365B (en) 2007-05-16 2008-05-15 Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like

Country Status (4)

Country Link
JP (1) JP4905700B2 (en)
KR (1) KR101409552B1 (en)
CN (1) CN101308327B (en)
TW (1) TWI437365B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673569B (en) * 2014-08-27 2019-10-01 日商東京應化工業股份有限公司 Photosensitive resin composition for interlayer insulating film, interlayer insulating film and production method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574087B2 (en) * 2009-01-28 2014-08-20 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and method for producing the same
JP5333581B2 (en) * 2010-02-25 2013-11-06 日立化成株式会社 Negative photosensitive resin composition, interlayer insulating film and method for forming the same
JP2012012602A (en) * 2010-07-05 2012-01-19 Lg Chem Ltd Alkali-soluble resin polymer and negative photosensitive resin composition containing the same
CN102375349A (en) * 2010-08-18 2012-03-14 无锡华润上华半导体有限公司 Method for verifying concentration of developer solution
JP5433654B2 (en) * 2011-08-31 2014-03-05 富士フイルム株式会社 Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
KR101909072B1 (en) * 2011-08-31 2018-10-18 후지필름 가부시키가이샤 Photosensitive resin composition, cured film, method for forming cured film, organic el display device, and liquid crystal display device
CN102786662B (en) * 2012-08-03 2014-07-23 京东方科技集团股份有限公司 Macromolecular photosensitizer with diazonium group as well as preparation method thereof and photoresist composition
JP2014058598A (en) * 2012-09-14 2014-04-03 Showa Denko Kk Photosensitive resin for patterning
JP6607109B2 (en) * 2016-03-22 2019-11-20 Jsr株式会社 Cured film, display element, cured film forming material, and cured film forming method
CN108037634B (en) * 2017-12-27 2021-08-24 杭州福斯特电子材料有限公司 Laser direct imaging positive photosensitive water-soluble solder-resisting dry film and application

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075301A (en) * 1993-06-15 1995-01-10 Tosoh Corp Photosensitive composition for formation of microlens
JP2005031642A (en) * 2003-06-19 2005-02-03 Chisso Corp Positive radiation-sensitive polymer composition, thin film using the composition and element using the thin film
JP4168443B2 (en) * 2003-07-30 2008-10-22 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4363161B2 (en) * 2003-10-28 2009-11-11 Jsr株式会社 Radiation-sensitive resin composition, and method for forming interlayer insulating film and microlens
JP4337602B2 (en) * 2004-03-31 2009-09-30 日本ゼオン株式会社 Radiation-sensitive composition, laminate, method for producing the same, and electronic component
KR20050113351A (en) * 2004-05-27 2005-12-02 주식회사 동진쎄미켐 Photosensitive resin composition
JP2006039269A (en) * 2004-07-28 2006-02-09 Sumitomo Chemical Co Ltd Radiation sensitive resin composition
JP4696761B2 (en) * 2005-08-02 2011-06-08 住友化学株式会社 Radiation sensitive resin composition
JP4687315B2 (en) * 2005-08-04 2011-05-25 東レ株式会社 Photosensitive resin composition, cured film formed therefrom, and element having cured film
JP4687359B2 (en) * 2005-10-03 2011-05-25 Jsr株式会社 Radiation sensitive resin composition and formation of interlayer insulating film and microlens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673569B (en) * 2014-08-27 2019-10-01 日商東京應化工業股份有限公司 Photosensitive resin composition for interlayer insulating film, interlayer insulating film and production method thereof

Also Published As

Publication number Publication date
CN101308327A (en) 2008-11-19
TWI437365B (en) 2014-05-11
CN101308327B (en) 2013-01-02
JP2008286936A (en) 2008-11-27
KR101409552B1 (en) 2014-06-19
JP4905700B2 (en) 2012-03-28
KR20080101743A (en) 2008-11-21

Similar Documents

Publication Publication Date Title
TWI437365B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
JP4207604B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for forming them
JP4656316B2 (en) Interlayer insulating film, microlens, and manufacturing method thereof
KR101421299B1 (en) Radiation-sensitive resin composition, interlayer insulation film and microlens, and process for producing them
KR100776121B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
TW200949441A (en) Photosensitive resin composition, interlayer insulating film, and method for processing microlens
KR20090067036A (en) Radiation sensitive resin composition, and interlayer insulation film and method for producing the same
JP4677871B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
TWI510857B (en) Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like
TWI451194B (en) Radiosensitive resin composition, interlayer insulation film, microlens and methods for manufacturing them
TWI361951B (en)
TWI430026B (en) Sensitive linear resin composition, interlayer insulating film and microlens, and the like
JP2006301365A (en) Radiation sensitive resin composition, interlayer insulation film and microlens
TWI282905B (en) Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those
TWI425315B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
JP2007101759A (en) Radiation-sensitive resin composition, and formation of interlayer insulation film and microlens
TWI394000B (en) Radiation sensitive resin composition, radiation sensitive dry film, interlayer dielectric film and a forming method thereof, and microlens and a forming method thereof
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens