TW200907077A - High-strength and high-electric conductivity copper alloy having excellent hot workability - Google Patents

High-strength and high-electric conductivity copper alloy having excellent hot workability Download PDF

Info

Publication number
TW200907077A
TW200907077A TW097110952A TW97110952A TW200907077A TW 200907077 A TW200907077 A TW 200907077A TW 097110952 A TW097110952 A TW 097110952A TW 97110952 A TW97110952 A TW 97110952A TW 200907077 A TW200907077 A TW 200907077A
Authority
TW
Taiwan
Prior art keywords
οοι
phase particles
strength
copper alloy
less
Prior art date
Application number
TW097110952A
Other languages
Chinese (zh)
Other versions
TWI384083B (en
Inventor
Masatoshi Eto
Original Assignee
Nippon Mining & Amp Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007093530A external-priority patent/JP5101149B2/en
Priority claimed from JP2007093467A external-priority patent/JP4950734B2/en
Application filed by Nippon Mining & Amp Metals Co Ltd filed Critical Nippon Mining & Amp Metals Co Ltd
Publication of TW200907077A publication Critical patent/TW200907077A/en
Application granted granted Critical
Publication of TWI384083B publication Critical patent/TWI384083B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a copper alloy for electronic parts composed of a Cu-Ni-P based alloy having satisfactory hot workability and exhibiting high strength, high electric conductivity and high thermal conductivity without impairing its bending workability.The high-strength and high-electric conductivity copper alloy having excellent hot workability, is a copper alloy having a composition containing, by mass, 0.50 to 1.00% Ni and 0.10 to 0.25% P so as to satisfy the ratio between the Ni content and the P content, Ni/P: 4.0 to 5.5, and 0.005 to 0.070% B, <=0.0050% O, and one or more selected from Fe, Co, Mn, Ti and Zr by <=0.05% in total, and the balance Cu with inevitable impurities, wherein regarding the sizes of the second phase grains, provided that the major axis is denoted as a and the minor axis is denoted as b, the second phase grains having a of 20 to 50 nm and the aspect ratio a/b of 1 to 5 occupy >=80% of the area ratio of all the second phase grains with the major axis a of >=5 nm included in the copper alloy. The copper alloy may optionally contain one or more selected from Sn and In by 0.01 to 1.0% in total.

Description

200907077 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種高強度、高導電性之電子設備零件 用銅合金,尤其係關於一種於小型、高集成化而成之半導 體備引線用及端子連接器用銅合金中,熱加工性優異、 不會破壞彎曲加工性而強度、導電性、導熱性特別優異之 電子零件用銅合金。 【先前技術】 銅及銅合金係作為連接器、引線端子等電子零件及軟 性電路(flexible circuit)基板用而廣泛用於多種用途之材 料’因應迅速發展之IT(Information Technology,資訊技 術)化的資訊設備之高功能化及小型化、薄壁化,要求進一 步之特性(強度、彎曲加工性、導電性)有所提高。 又,伴隨1C之高集成化,多使用消耗電力高之半導體 元件,對於半導體設備之引線框架〇ead frame)材料而言, 使用散熱性(導電性)優異之Cu_Ni_Si系或Cu_Fe_p、Cu_ Cr-Sn、Cu-Ni-P等析出型合金。 專利文獻1中揭示有一種調整Cu-Ni-P系合金中之200907077 IX. Description of the Invention: [Technical Field] The present invention relates to a high-strength, high-conductivity copper alloy for electronic equipment parts, and more particularly to a small-sized, highly integrated semiconductor backup lead and Among copper alloys for terminal connectors, copper alloys for electronic parts, which are excellent in hot workability and which do not deteriorate bending workability and are particularly excellent in strength, electrical conductivity, and thermal conductivity. [Prior Art] Copper and copper alloys are widely used in various applications as electronic components such as connectors and lead terminals, and flexible circuit substrates, in response to the rapid development of IT (Information Technology). The high functionality, miniaturization, and thinning of information equipment require further improvements in strength (strength, bending workability, and electrical conductivity). In addition, a high-power semiconductor device is used, and a lead-frame 〇ead frame material for a semiconductor device is used, and a Cu_Ni_Si system or Cu_Fe_p or Cu_Cr-Sn having excellent heat dissipation (electric conductivity) is used. , precipitation alloys such as Cu-Ni-P. Patent Document 1 discloses an adjustment in a Cu-Ni-P alloy.

Ni、P、Mg成分量而具備強度及導電性、耐應力緩和性之 合金。 【發明内容】 一般而言,於銅合金之鑄造、例如連續或者半連續鏵 造中’藉由模具而驟然、冷卻’除了鑷塊表層之數毫米(_) 的部分以外,其内部凝固需要花費時間。因此,在凝固時 200907077 及凝固後之冷卻過程中,所含有之超過了室溫中固溶至 母相(matrix)之固溶限度(soUd s〇lubiHty limh)界限的合金 元素,會於結晶晶界(grain boundary)及結晶粒内結晶化或 析出。尤其是對於在Cu-Ni_P系合金之結晶晶界結晶化或 析出的Ni-P化合物而言,其熔點低於母相Cu之熔點,因 此,因凝固中之不均一之應變等所產生之應力及外力,會 對Ni-P化合物之一部分造成破壞。而且,若於熱軋之加熱 時Νι-Ρ化合物軟化或液相化,則亦會在熱軋時產生裂紋。 这樣一來,Cu-Ni-P系合金中存在於鑄造時或熱加工時會 產生裂紋的問題,但專利文獻丨中並未意識到此問題的存 在。 本發明之目的在於提供一種由Cu-Ni_p系合金或Cu_ Ni-P-Mg系合金所構成之電子零件用銅合金,其係防止上 •p系合金之問題之產生、即防止在鱗造製程中或 熱加工製程中的加熱中或熱加卫中產生裂紋,且熱加工性 優異且不會破壞彎曲加工性而發揮高強度、高導電性及高 導熱性。 —本發明人等為了達成上述目的,反覆進行研究後發現: W採用下述構成便可獲得不會破壞彎曲加工性而具備優 ’、之熱加工性與優異之強度及導電性的Cu-Ni-P系合金及 Cu-Ni-P-Mg 系合金。 本發明係—種熱加工性優異之高強度高導電性銅合 八&quot;&quot;有Ni. 0.50%〜1.00%(本說明書中,表示成分比例 之/〇係貝夏百分比),P : 0.10%〜0.25%,Ni與p之含量比 6 200907077 率1^/?:4.〇〜5.5,且,6:0.0050/。~0.070%,〇:0〇〇5〇% 以下’Fe、Co、Mn、Ti、Zr中之1種以上之含量總計為〇 〇5% 以下、較佳為〇 _ 〇 3 %以下’且剩餘部分由c u及不可避免之 雜質所構成,其特徵在於: 針對第2相粒子大小,以長徑為a、以短徑為b時, 於最終冷軋前’長徑a為20 nm〜50 nm且縱橫比a/b為u 之第2相粒子相對於銅合金中所包含之所有第2相粒子 之面積總和占8〇。/〇以上(面積率Cl),且導電率為 45%IACS(Internati〇nal Annealed Copper Standard,國際退 火銅標準)以上。 又,本發明係一種熱加工性優異之高強度高導電性銅 合金’其含有 Ni: 0.50% 〜1.00%,p : 〇_1〇% 〜〇 25%,叫: 0.01 〜0.20%,Ni 與 P 之含量比率 Ni/p : 4.0〜5.5,且,B : 0.005〇/〇^0.070〇/〇,〇 : 〇.〇〇5〇〇/〇α Τ &gt; Fe ^ Co ^ Μη &gt; Ti &gt; Zr 中之1種以上之3里總汁為〇 〇5%以下、較佳$ 〇 以 下,且剩餘部分纟Cu及不可避免之雜質所構《,其特徵 在於:An alloy having strength, electrical conductivity, and stress relaxation resistance in terms of Ni, P, and Mg components. SUMMARY OF THE INVENTION In general, in the casting of a copper alloy, such as continuous or semi-continuous casting, it is required to "cure" and cool "with a few millimeters (_) of the surface layer of the block in the casting of the copper alloy. time. Therefore, in the cooling process during solidification of 200907077 and after solidification, the alloying elements exceeding the solid solution limit (soUd s〇lubiHty limh) which is solid solution to the matrix at room temperature will be crystallized. Gradation or precipitation in the grain boundary and crystal grains. In particular, the Ni-P compound which is crystallized or precipitated at the crystal grain boundary of the Cu-Ni_P-based alloy has a melting point lower than the melting point of the parent phase Cu, and therefore, the stress due to the uneven strain in the solidification or the like And external forces can cause damage to one part of the Ni-P compound. Further, if the Νι-Ρ compound is softened or liquid-phased upon heating by hot rolling, cracks may occur during hot rolling. As a result, the Cu-Ni-P alloy has a problem that cracks occur during casting or hot working, but the patent document is not aware of the existence of this problem. An object of the present invention is to provide a copper alloy for an electronic component comprising a Cu-Ni-p-based alloy or a Cu_Ni-P-Mg-based alloy, which prevents the problem of the upper p-alloy, that is, prevents the scale manufacturing process. Cracks are generated during heating or heat-warming in a medium or hot working process, and are excellent in hot workability, and exhibit high strength, high electrical conductivity, and high thermal conductivity without impairing bending workability. In order to achieve the above object, the inventors of the present invention have repeatedly conducted research and found that: W can obtain Cu-Ni having excellent hot workability and excellent strength and conductivity without impairing bending workability by the following constitution. -P alloy and Cu-Ni-P-Mg alloy. The present invention relates to a high-strength and high-conductivity copper alloy having excellent hot workability, and has a Ni. 0.50% to 1.00% (in the present specification, a component ratio is expressed as a percentage of a bismuth system), P: 0.10. %~0.25%, content ratio of Ni to p 6 200907077 Rate 1^/?: 4. 〇~5.5, and, 6:0.0050/. ~0.070%, 〇:0〇〇5〇% The content of one or more of 'Fe, Co, Mn, Ti, and Zr is 〇〇5% or less, preferably 〇_〇3% or less' and remaining Partly composed of cu and unavoidable impurities, characterized by: For the second phase particle size, when the long diameter is a and the short diameter is b, the long diameter a is 20 nm to 50 nm before the final cold rolling. Further, the total area of the second phase particles having an aspect ratio a/b of u with respect to all of the second phase particles contained in the copper alloy accounts for 8 Å. /〇 above (area ratio Cl), and the conductivity is 45% IACS (Internati〇nal Annealed Copper Standard). Further, the present invention is a high-strength, high-conductivity copper alloy excellent in hot workability, which contains Ni: 0.50% to 1.00%, p: 〇_1〇% to 〇25%, called 0.01 to 0.20%, Ni and The content ratio of P is Ni/p : 4.0 to 5.5, and B: 0.005 〇 / 〇 ^ 0.070 〇 / 〇, 〇: 〇. 〇〇 5 〇〇 / 〇 α Τ &gt; Fe ^ Co ^ Μ η &gt; Ti &gt The total juice in one or more of Zr is 〇〇5% or less, preferably less than 〇, and the remaining part of 纟Cu and unavoidable impurities are characterized by:

具有於最終冷乳前短徑兔1 &lt; Q ⑴姐仫b马10〜25 nm且縱橫比a/b為 2〜5 0之第2相粒子够| )上述弟2相粒子(Β)與長徑a為2〇 nm〜5 0 nm且縱橫比a/b未溢9夕贷〇 山 之第2相粒子(c)的總和相 對於銅合金中所包含之所有第 丨另弟2相粒子之面積總和占8〇0/〇 以上(面積率C2),且導電率為45%ια。以上。 本發明之銅合金,進而ς Β 進而Sn及ιη中之丨種以上總計含 有 0.01 %〜1.0%。 200907077 於本發日月中,藉由向Cu抓P系合金或Cu_Ni-p_Mg系 合金中添加特定量之B,而抑制Ni_p化合物向結晶晶界之 結晶化或析出’由此可改盖a只少· 又。日日界之向溫脆性(high temperature brittleness)並實現熱加工性之提高。 【實施方式】 接著,對本發明中限定銅合今之忐八“ ^ ^ 』口隹之成分組成之數值範圍 的理由及其作用一併進行說明。 [Ni 量]Has the short-diameter rabbit 1 in the final cold milk, Q (1) sister 仫b horse 10~25 nm and the aspect ratio a/b is 2~5 0 of the second phase particles enough |) the above two phase particles (Β) and The long diameter a is 2 〇 nm to 50 nm and the aspect ratio a/b is not overflowed. The sum of the second phase particles (c) of the 〇 〇 〇 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对 相对The sum of the areas accounts for more than 8 〇 0 / 〇 (area rate C2), and the conductivity is 45% ια. the above. The copper alloy of the present invention, in addition to ς and further among the species of Sn and ηη, contains 0.01% to 1.0% in total. 200907077 In the present day and the month, by adding a specific amount of B to the Cu-patch alloy or the Cu_Ni-p_Mg-based alloy, the crystallization or precipitation of the Ni_p compound to the crystal grain boundary is suppressed. Less · Again. The high temperature brittleness and the improvement of hot workability. [Embodiment] Next, the reason and the effect of limiting the numerical range of the composition of the constituents of the "B" of the copper in the present invention will be described together. [Ni amount]

Ni具有固溶於合金中以確保強度、耐應力緩和特性及 耐熱性(高溫下之咼強度維持)的作用,並且使與下述p之 化合物析出而有助於提高合金之強度。然而,若Ni之含 量未滿0.50%,則無法獲得所需之強度,另一方面若沁 之含量超過1.00%,則導電率會明顯降低,從而無法獲得 抗張強度(tensile strength)為650 MPa以上且導電率為 45%IACS以上之高強度高導電性。因此,本發明之合金之 Ni 含量為 0.50%〜1.00%。Ni has a function of solid-solution in the alloy to ensure strength, stress relaxation resistance, and heat resistance (maintenance of ruthenium strength at a high temperature), and precipitates a compound of the following p to contribute to improvement of the strength of the alloy. However, if the content of Ni is less than 0.50%, the required strength cannot be obtained. On the other hand, if the content of niobium exceeds 1.00%, the electrical conductivity is remarkably lowered, so that the tensile strength is not obtained at 650 MPa. The above conductivity is high strength and high conductivity of 45% IACS or more. Therefore, the alloy of the present invention has a Ni content of 0.50% to 1.00%.

[P量J 析出P與Ni之化合物以提高合金之強度及耐熱性。 右P含量未滿0.1 0%,則化合物之析出不充分,因此無法 獲得所需之強度。另-方面,若P +量超㉟G25%1會 皮裏Ni與p之含有平衡,導致合金中之p過剩,從而固 溶P量增加使得導電率明顯降低。因此,本發明之合金之 p 含量為 0.10%〜0.25〇/。。 [Ni/P 比 j 8 200907077 即使Ni與p之含量處於上述限定範圍内,但若Ni與 P之含有比率Ni/P不在第2相粒子之適當化學計量成分 (stoichiometric composition)比之範圍内,亦即,當 Ni/P 未 滿4.0時,p之固溶量會增加,而當Ni/p超過5 · 5時,則 Νι之固溶量會增加’從而導電率會明顯降低,故不佳。因 此,本發明之合金之Ni/p比為4 〇〜5 5,較佳為4.5〜5 〇。 [Mg 量] 析出Mg與Ni及p之化合物以提高合金之強度及耐熱 性。又,於下述方法中若不添加Mg來製造Cu_Ni_P系合 金,則獲得縱橫比a/b為丨〜5之接近粒狀的第2相粒子, =對於此,若添加Mg來製造Cu_Ni_p系合金,則獲得縱 橫比a/b為2〜50之纖維狀之第2相粒子。此種情況下,與 Ni、P為同量之Cu_Ni_P系合金相比,可達成高強度。進 而,該效果大於Mg固溶所獲得之強度提高的效果。 …、:而,若Mg含量未滿〇.〇1%,則無法獲得所需之強 度及耐熱性。另一方面’若叫含量超過Ο.,,。,則埶軋 時之加工性會明顯降低’並且導電率會明顯降低。而:, 目容易粗大化’且大小不符合下述條件的第2相 =夕,即不符合以長徑為a、以短徑為b時,縱橫比_ 二且短徑b為1〇〜“之第2相粒子⑻切 二長…2〇〜5〇㈣之第2相粒子⑹的第2相粒子 曰夕,從而會使(B)及⑹總計之面積率C2降低,故不佳。 因此,本發明之Cu屬_p_Mg系合金之⑽含 0·01%〜0·20%,較佳為 〇 〇2〜〇 15%。 Μ 200907077 [B量] B係抑制在Cu-Ni-P系合金或Cu_Ni-P-Mg系合金凝固 時或凝固後的冷卻過程及熱加工加熱時Ni-P化合物命姓曰 ^5 ΘΒ 晶界之結晶化或析出,從而提局合金之熱加工性。缺 …、 然而, 若B之含量未滿0.005°/。,則無法獲得熱加工性之改善效 果’另一方面,若B之含量超過0.07〇%,則會在熔解中或 凝固中產生Ni-P-B、B-P等化合物。該些含有B之化合物 於固溶化處理中不會固溶於Cu母相中,因此,於時效處 理中析出之Ni-P化合物減少,從而導致合金之強度降低。 進而,Ni-P-B、B-P等化合物會在製品中成為大小為5 至5〇 μιη之夾雜物殘留於製品中,從而引起製品之表面=1 陷、彎曲加工時之裂紋、鍍敷處理時之缺陷,故不佳。因 此,本發明之合金之B含量為〇·〇〇5%〜〇 〇7〇%以下,較佳 為 0.007%〜0.060%。 [Fe、Co、Mn、Ti 及 Zr 量] 。、〜、^及以中之任一個均易^生成化八 物,且於熔解或凝固中產生Fe_p、c〇_p、ip、Ti_p、/ρ 等化合物,而且,若於時效處理中該些化合物析出,則二P 系或Ni-P-Mg系之第2相粒子會 减從而導致合金之強 度降低。因此,Fe、、Mn、τ 及乙之早獨或2種以卜 之含罝為0.05%以下,以婢吾斗&gt; Λ 上 Γ 以總置计較佳為0.03%以下。 [〇量] 〇於合金中容易與ρ及 氧化物之狀態(Cu-P-O)而存在[P amount J precipitates a compound of P and Ni to improve the strength and heat resistance of the alloy. When the right P content is less than 0.10%, the precipitation of the compound is insufficient, so that the required strength cannot be obtained. On the other hand, if the P + amount exceeds 35G25%1, the balance of Ni and p in the skin will be balanced, resulting in an excess of p in the alloy, so that the amount of solid solution P increases and the conductivity is remarkably lowered. Therefore, the alloy of the present invention has a p content of 0.10% to 0.25 Å. . [Ni/P ratio j 8 200907077 Even if the content of Ni and p is within the above-defined range, if the Ni/P content ratio Ni/P is not within the range of the stoichiometric composition of the second phase particles, That is, when Ni/P is less than 4.0, the solid solution amount of p will increase, and when Ni/p exceeds 5 · 5, the solid solution amount of Νι will increase 'and the conductivity will be significantly lowered, so it is not good. . Therefore, the alloy of the present invention has a Ni/p ratio of 4 Torr to 5 5 , preferably 4.5 to 5 Å. [Mg amount] A compound of Mg and Ni and p is precipitated to increase the strength and heat resistance of the alloy. Further, in the following method, if Mg is not added to produce a Cu_Ni_P-based alloy, second-phase particles having an aspect ratio a/b of 丨~5 which is close to granular are obtained, and in this case, Mg is added to produce a Cu_Ni_p-based alloy. Then, a fibrous second phase particle having an aspect ratio a/b of 2 to 50 is obtained. In this case, high strength can be achieved compared to the same amount of Cu_Ni_P alloy in which Ni and P are the same. Further, this effect is greater than the effect of the strength increase obtained by the Mg solid solution. ...,: However, if the Mg content is less than 〇1%, the required strength and heat resistance cannot be obtained. On the other hand, if the content exceeds Ο.,. , the processability during rolling is significantly reduced, and the electrical conductivity is significantly reduced. And: the second phase = the size that does not meet the following conditions, that is, the length is a, the short diameter is b, the aspect ratio _ 2 and the short diameter b is 1 〇 ~ "The second phase particle (8) cuts the second phase particle of the second phase particle (6) of the second phase particle (8) and the second phase particle of the second phase particle (6), so that the area ratio C2 of the total of (B) and (6) is lowered, which is not preferable. Therefore, (10) of the Cu-based _p_Mg-based alloy of the present invention contains 0·01% to 0.20%, preferably 〇〇2 to 〇15%. Μ 200907077 [B amount] B-line inhibition in Cu-Ni-P The cooling process of the alloy or the Cu_Ni-P-Mg alloy during solidification or solidification and the crystallization or precipitation of the Ni-P compound at the grain boundary during hot working heating, thereby improving the hot workability of the alloy. However, if the content of B is less than 0.005°/, the effect of improving the hot workability cannot be obtained. On the other hand, if the content of B exceeds 0.07〇%, Ni is generated during melting or solidification. a compound such as PB or BP. The compounds containing B are not dissolved in the Cu mother phase in the solution treatment, and therefore, the Ni-P compound precipitated in the aging treatment is reduced, thereby guiding Further, the strength of the alloy is lowered. Further, a compound such as Ni-PB or BP may remain in the product as an inclusion having a size of 5 to 5 μm, which causes cracks in the surface of the product, and cracking during plating. The defect in the application treatment is not preferable. Therefore, the B content of the alloy of the present invention is 〇·〇〇5% to 〇〇7%, preferably 0.007% to 0.060%. [Fe, Co, Mn, The amount of Ti and Zr], ~, ^, and any of them are easy to generate, and the compounds such as Fe_p, c〇_p, ip, Ti_p, /ρ are generated during melting or solidification, and When these compounds are precipitated in the aging treatment, the second phase particles of the second P system or the Ni-P-Mg system are reduced to cause a decrease in the strength of the alloy. Therefore, Fe, Mn, τ, and B are early or two kinds. The content of the yttrium is 0.05% or less, and the Γ 斗 & Γ Γ Γ Γ Γ 较佳 较佳 较佳 较佳 较佳 较佳 。 。 。 。 。 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金 合金Exist

Cu發生反應,若在合金中以 ,則會妨礙Ni與ρ之化合物 10 200907077 工性劣化。 下’較佳為 之析出,使強度提高程度降低,並且使管曲加 因此,本發明之合金之〇含量為〇.〇〇5〇%以 0.0030〇/〇以下。 [Sn、In 量;|Cu reacts, and if it is in the alloy, it will hinder the deterioration of the properties of Ni and ρ compounds 10 200907077. The lower portion is preferably precipitated so that the degree of strength improvement is lowered, and the tube is added. Therefore, the niobium content of the alloy of the present invention is 〇.〇〇5〇% to 0.0030〇/〇 or less. [Sn, In amount; |

Sn及in中的任—者均無法使合金之導電性大幅度降 低,而主要具有精由固溶強化來提高強度之作用。因此, 視需要添加1種以上之該些金屬,但若以總量計S…n 之含量未$ 則無法獲得固溶強化所致之強度提高 之效果,另一方面,甚以她县 &gt;丄,工 右乂、,心量计添加1.0〇/〇以上,則合金之 導電率及彎曲加工性會明顯降低。因此,單獨添加:混合 添加2種以上之S η τ θ &amp; 口 及Ιη I為〜1.G%,以總量計較佳 為0.05%〜0.8%。再者,今此-主 一主 者6亥些70素於本發明_係有意添加之 几素,而並非為不可避免之雜質。 [第2相粒子之大小與面積率ci]None of Sn and in can greatly reduce the electrical conductivity of the alloy, and mainly has the effect of improving the strength by solid solution strengthening. Therefore, if one or more of these metals are added as needed, if the content of the total amount of S...n is not $, the effect of improving the strength due to solid solution strengthening cannot be obtained, and on the other hand, even her county&gt;丄, work right 乂,, heart rate meter added 1.0〇 / 〇 or more, the alloy's electrical conductivity and bending workability will be significantly reduced. Therefore, it is preferable to add two or more kinds of S η τ θ &amp; mouth and Ιη I to 〜1.G%, preferably 0.05% to 0.8% in total. Furthermore, today, the main one is more than 70 in the present invention, and is not an inevitable impurity. [The size and area ratio of the second phase particles ci]

本發明之第2相粒中包含析出物、結晶化物、夹雜物 於本發明之組成範圍内,通常Ni_p系析出物或川I g系析出物以外之析出物未析出,除了在固溶化處理中 之外亦在時效處理中將Ni_p系析出物及I :控2特定之大小。就其他第2相粒子而言二= 及鑄k中所產生之「結晶化物」(Ni_p、 U Nl_P-〇-Mg、Cu_Ni-p-〇-B、Cu-Ni-P-〇-B-Mg、Cu-S、 存在:§等乳化物或硫化物),但當該些結晶化物或夾雜物 ”大小超過100 nmq μιη之範圍,即使藉由固溶 200907077 化處理及時效處理亦無法控制成本發明之範圍内之大小。 因此’充分進行固溶化處理以使結晶化物或夾雜物不會殘 留於合金令,為了抑制夾雜物之生成而對p、B等之添加 里作出規疋’為了抑制氧化物(夾雜物)之生成而將〇之含 里規疋成較低。未能充分減少結晶化物或夾雜物之試樣中 的所有第2相粒子之面積率c i未滿8〇%,超出了本發明 之範圍。 當將第2相粒子之長徑為3(11111)將短徑為b(nm)時,本 發明之Ni-P系銅合金中,若長徑a未滿2〇 之第2相粒 I於最終冷中進行加工應變η=2以上之輕軋加工,則 第2相粒子會再固溶於銅中,從而使導電率降低,故不佳。 此處’加工應變η當將輥軋前之板厚設為%、將輥軋後之 板厚設為t時’係由η=Ιη(ν〇表示。另一方面,長徑&amp;為 2〇—nm以上之第2相粒子即使於最終冷軋中進行加工應變 η…上之輥軋加工亦不易再固溶,而以ι〇⑽以上之第 ;相=子的形式存在,並有助於析出強化及加工強化。長 =二71以上之第2相粒子於報乾前後大小之變化較 尤/、疋輥軋前之長徑a超過5〇 nm :::亦保7過一長徑,,於存 過5〇 _之第2相粒子之情況下, 公立々pq卩- τ I弟2相粒子之 ^ 大,從而無法獲得析㈣化及加工強化。 再者,上述長徑a及短徑b係所有 及敍僻々a $ 2相粒子之長徑 且值,該長徑及短徑是與親軋方向平行地 旱度垂直地切斷最終冷軋前之合金條,料剖面圖像 12 200907077 使用圖像解析裝置對所有 進行測定而成。 長“為5⑽以上之第2相粒子 根據上述說明,本發明之Ni_p 咕 糸銅》金之最終冷產丨益 之第2相粒子之較佳大小 、 Η系長徑a為2〇 nm〜5〇 _。 又,若以a/b來表示Ni_p系 縱橫比,則當a/b趙奶“主 ^金中之第2相粒子之 “ 時,若於最終冷軋進行η=2以上 之輥軋加工,則第2相粒子 上 降低。因此,最終冷耗前 攸而使導電率 ^ 〜之帛2相粒子线橫比a/b較佳 為1〜5,更佳為1〜3。 為了防止強度及導電率降低, 系銅合金之最終冷軋後之第2相粒發明… 且^為卜5。 卞于之a為10 nm〜50 nm 為了使本發明之Ni_p系 粒子之長庐.ΟΛ 金之最終冷軋前之第2相 a_,.工為nm〜5〇nm且縱橫比為a/b4丨〜卜將 時效處理前之輥軋加x庙- 將 、 輥軋加工應變η設為0.4以上,較佳t 以上並對時效處理時 佳》又為1 為,可使最蚁;^丨/ 間等進行適當調整。較佳 吏最κ冷軋之加工應變η== 〇·7〜ΐ 4左右。 '然而’因難以使所有第 較伟r阁 ^第2相粒子處於上述a及a/b之 ί ::,故處於長徑…且縱橫比a/b 例(面穑/圍的第2相粒子⑷相對於所有第2相粒子的比 t(面㈣ci)變得重要。再者,所謂「所有第2相粒Γ 疋指所有長徑a為5nm以上 U子」 述第2相如;⑴ 之第2相粒子。因此,若將上 广子(A)之面積總和相對^ ^ ^ ^ ^ 之合金中所有帛2相粒子處Μ終冷乾前 于之面積總和的比例設為面積率 13 200907077 ci,則本發明之面積率C1為80%以上。 所謂Ni-P系銅合金中之面積率Cl未滿祕之情況, 是指a超過50 nm之第2相粒子或未滿2〇⑽之第2相粒 子較多地存在之情況。例如,當a超過5〇 之第2相粒 子、或熔解鑄造時所產峰之社s扎队,、,丄 W座生之、Ό日日化物以未在熱軋前之加熱 或固溶化處理中固溶的狀態下殘留之1〇 粒蝴晶化物)較多地存在時,因有助於強度提高之::In the second phase particles of the present invention, precipitates, crystallized materials, and inclusions are included in the composition range of the present invention, and generally precipitates other than Ni_p-based precipitates or Chuan Ig-based precipitates are not precipitated, except for solid solution treatment. In addition to the middle and the aging treatment, the Ni_p system precipitates and the I: control 2 specific size. For other second phase particles, "crystals" (Ni_p, U Nl_P-〇-Mg, Cu_Ni-p-〇-B, Cu-Ni-P-〇-B-Mg) produced in the second and the casting k , Cu-S, exist: § such as emulsion or sulfide), but when the size of the crystallized compound or inclusion exceeds 100 nmq μηη, even if it is treated by solid solution 200907077, it can not control the cost invention. Therefore, the size of the range is such that the addition of the crystallized compound or the inclusions does not remain in the alloy, and the addition of p, B, etc. is suppressed in order to suppress the formation of inclusions. (Inclusions) are formed to lower the inclusions of the crucible. The area ratio ci of all the second phase particles in the sample which does not sufficiently reduce the crystallized or inclusions is less than 8〇%, which is beyond the present. When the long diameter of the second phase particles is 3 (11111) and the short diameter is b (nm), in the Ni-P copper alloy of the present invention, if the long diameter a is less than 2, the second When the phase grain I is subjected to a light rolling process with a processing strain η=2 or more in the final cold, the second phase particles are solid-dissolved in the copper to make the conductive It is not preferable. Here, 'the processing strain η is set to % when the thickness of the sheet before rolling, and the thickness of the sheet after rolling is set to t' is represented by η = Ιη (ν〇. The second phase particles having a long diameter &amp; 2 Å or more are hardly resolubilized even in the rolling process on the processing strain η... in the final cold rolling, and are more than ι 〇 (10) or more; The form exists and contributes to precipitation strengthening and processing strengthening. The second phase particles with length = 2 or more are more likely to change before and after the drying, and the long diameter a before rolling is more than 5 〇 nm ::: In the case of the second phase particle of 5〇_, the public 々pq卩- τ I brother 2 phase particle is large, and thus it is impossible to obtain analysis (four) and processing reinforcement. The long diameter a and the short diameter b are the long diameters of all and a few 2a $ 2 phase particles, and the long diameter and the short diameter are perpendicular to the dryness parallel to the pro-rolling direction and are cut off before the final cold rolling. Alloy strip, material cross-sectional image 12 200907077 All of the measurement is performed using an image analysis device. The second phase particles having a length of 5 (10) or more according to the above description, the present invention The preferred size of the second phase particles of Ni_p yttrium copper, which is the final cold yield of gold, and the long diameter a of the lanthanum system are 2 〇 nm~5 〇 _. Further, if the ratio of Ni_p is expressed by a/b Then, when a/b Zhao milk "the second phase particles in the main gold", if the final cold rolling is performed with η=2 or more, the second phase particles are lowered. Therefore, the final cooling loss is achieved. The front side 攸 and the conductivity ^ 2 phase particle line transverse ratio a / b is preferably 1 to 5, more preferably 1 to 3. In order to prevent the strength and electrical conductivity from decreasing, after the final cold rolling of the copper alloy The second phase grain invention... and ^ is a bu. The a is 10 nm to 50 nm. In order to make the Ni_p-based particles of the present invention, the second phase a_, before the final cold rolling of gold, is nm~5〇nm and the aspect ratio is a/b4.丨 卜 卜 将 时 时 时 时 前 前 前 前 前 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时Make appropriate adjustments. Preferably, the processing strain of the most κ cold rolling is η== 〇·7~ΐ 4 or so. 'However, it is difficult to make all the second virgins of the second phase particles in the above a and a / b ί ::, so the long diameter ... and the aspect ratio a / b example (face / circumference of the second phase The ratio (t) of the particles (4) to all of the second phase particles is important. In addition, "all second phase particles" mean that all long diameter a is 5 nm or more and U is the second phase. (1) The second phase particles. Therefore, if the total area of the upper squamron (A) is equal to the sum of the area of all the 帛2-phase particles in the alloy of ^^^^^ before the final lyophilization, the area ratio is 13 200907077 ci, the area ratio C1 of the present invention is 80% or more. The area ratio Cl in the Ni-P-based copper alloy is not full, and refers to the second phase particle of a exceeding 50 nm or less than 2 〇 (10) The second phase particles may be present in a large amount. For example, when a a second phase particle of more than 5 Å or a peak produced by melting and casting, the sW seat, the Ό日日化When there is a large amount of 1 〇 granules which are not left in the state of solid solution in the heating or solution treatment before hot rolling, the strength is improved:

為 20至50 nm之微細篦 八&amp; 微、弟2相拉子之分散間隔較大,故無 法藉由輥軋加卫中之加卫硬化而獲得所需之強度。另一方 面,a未滿20 nm之第2相粒子會因輥軋加工而再固溶, 從而導電率會明顯降低。 本發明之Ni-P-Mg系銅合金中,可於最終冷軋前生成 如下2種第2相粒子.具有a/b = 2〜5〇左右之較大縱橫比、 且為針狀及/或纖維狀之第2相粒子(B,)及a/b未滿2之粒 狀之第2相粒子(c,)。藉由使時效處理前之輥軋加工應變^ 未滿0_4、較佳為未滿〇.〗,而生成針狀及纖維狀之第2相 粒子(Β’),藉由使時效處理前之加工應變η為〇·4以上,而 生成粒狀之第2相粒子(C,)。若時效處理前之輥軋加工度η —0.4左右,則第2相粒子(Β’)與第2相粒子(c,)會一定程 度地混合存在,而若加工應變未滿〇4,則大部分為第2 相粒子(Β’),若加工應變為〇·4以上則大部分為第2相粒子 (C,)。 本發明之Ni-P-Mg系銅合金中,最終冷軋前之短徑b 未滿10 nm之第2相粒子,若進行加工應變η = 2以上之 14 200907077 取終冷幸L加工,則第2相粒子會破壞、分解而再固溶於銅 中,從而使導電率降低,故不佳。另一方面,最終冷乾前 之短徑為1〇 以上之第2相粒子,即使於加工應變η=2 以上之輥軋加工中亦不易再固溶,而以10 nm以上之第2 相粒子的形式存在’從而有助於析出強化及加工強化。尤 其是短徑b為20 nm以上之第2相粒子,其大小於棍乾前 後之變化較小,帛2相粒子不易因冷乾而破壞、固溶。另 一方面,輥札前之長徑a超過5〇 nm且短徑超過h 第2相粒子雖然於輕軋後亦保持其大小,但各個第2相教 子之體積較大’因此,銅合金中之第2相粒子之分散間隔 變得過大,從而難以獲得析出強化及加工強化。 根據上述說明,本發明中所謂Ni_p_Mg系銅合金之最 終冷軋前之第2相粒子,係指除了包含縱橫比_為Μ。 :短徑Μ 1〇一之第2相粒子⑼之外,還包括縱橫 比a/b未滿2且長徑3為2〇〜5〇nm之第”目粒子⑹。 為了使本發明之Ni-P-Mg系鋼合金之最終冷札前 2相粒子成為短徑^ 1〇〜25⑽且縱橫比_為2⑼之 第2相粒子(B),係使時效處理前之概札加工應 ==圭:未滿ο.1’並對時效處理時之溫度及時間等進 ^適虽调正。X,為了使本發明之Ni_p_Mg系銅合金 終冷軋前之第2相粒子成為長徑a為2〇〜5〇 i 9 ^ m且縱橫比a/b 滿之第2相粒子(C)’係使時效處理前之加工 〇·4以上,較佳為h5左右’並對時效處理、;: 進行適當調整。 R酿度及時間 15 200907077 然而’因難以使Νί-Ρ μ / _ _Mg系銅合金中之戶斤有第 子處於上述a及a/b之妒杜* 0第2相粒 之啟佳鞄圍内,故第2相粒子 之總計相對於所有長徑a為5nm以上之第2“ () 變得重要。因此,若將上” 之第2相粒子的比例 .χΐ. D ,述第2相粒子(B)及(C)之面積總 和相對於Ni-P-Mg系銅合金中 口宠甲之所有第2相粒子 和的比例設為面積率丁夂¢7槓〜、 積羊C2 ’則本發明之面積率C2 $ _以 上。 面積率C2未滿80%之情況,是指a超…出 且…超過25 nm之第2相粒子、長徑a未滿2〇 之 ^相粒子、短徑b未滿1〇 nm之第2相粒子及縱橫比^ 起過50之第2相粒子中的任一個較多地存在之情況。例 如,當=超過50 nm且短徑b超過25 nm之第之相粒子、 或熔解鑄坆時所產生之結晶化物以未於熱軋或固溶化處理 :口岭的狀悲、下殘留之! _ nm以上之Ni_p_Mg系粒子(結 :化物)較多地存在時,有助於提高強度之本發明所規定之 祀圍的微細之第2相粒子(B)及/或(c)之數量較少,且第2 相粒子之分散間隔增大,因此,無法藉由輥軋加工之加工 。更化獲知所需之強度。另-方面’由於長徑a未滿20 nm 或者紐徑b未滿1〇 nm之第2相粒子因輥軋加工而再固溶, 故热法獲得所需之導電率。 本發明之Ni-P-Mg系銅合金於時效處理前且最終冷軋 則為了使第2相粒子(B)及第2相粒子(〇之總和相對於 銅合金中之所有第2相粒子之面積總和占8〇%以上(面積率 C 2)’較佳為將時效處理前之輥軋加工應變η設為〇〜丨.5左 16 200907077 右’並對時效處理時之溫度及時間 了间進仃適當調整。 滿足上述本發明之要件之Cu_Ni p各人For the 20 to 50 nm fine 篦 八 &amp; micro and young 2 phase pullers have a large dispersion interval, so it is impossible to obtain the required strength by the hardening of the rolling and tempering. On the other hand, the second phase particles of a less than 20 nm are re-dissolved by the rolling process, so that the electrical conductivity is remarkably lowered. In the Ni-P-Mg-based copper alloy of the present invention, the following two kinds of second phase particles can be produced before the final cold rolling, and have a large aspect ratio of a/b = 2 to 5 Å, and are needle-shaped and/or Or fibrous second phase particles (B,) and second phase particles (c,) having a/b less than 2 grains. By making the strain of the rolling process before the aging treatment less than 0_4, preferably less than 〇., the needle-shaped and fibrous second phase particles (Β') are formed, and the processing before the aging treatment is performed. The strain η is 〇·4 or more, and the granular second phase particles (C,) are formed. If the rolling processing degree before the aging treatment is η -0.4 or so, the second phase particles (Β') and the second phase particles (c,) are mixed to some extent, and if the processing strain is less than 〇4, the diameter is large. The part is the second phase particle (Β'), and if the processing strain is 〇·4 or more, it is mostly the second phase particle (C,). In the Ni-P-Mg-based copper alloy of the present invention, the second phase particles having a short diameter b of less than 10 nm before the final cold rolling are subjected to a processing strain η = 2 or more; 200907077 The second phase particles are destroyed, decomposed, and solid-dissolved in the copper, so that the electrical conductivity is lowered, which is not preferable. On the other hand, the second phase particles having a short diameter of 1 〇 or more before the final lyophilization are less likely to be solid-solved even in the rolling process with a processing strain η=2 or more, and the second phase particles having a diameter of 10 nm or more. The form exists 'and thus contributes to precipitation strengthening and processing reinforcement. In particular, the second phase particles having a short diameter b of 20 nm or more have a small change in size before and after the stick, and the 帛2 phase particles are less likely to be destroyed by cold drying and solid solution. On the other hand, the long diameter a before the roll is more than 5 〇 nm and the short diameter exceeds h. The second phase particles retain their size even after the light rolling, but the volume of each second phase is larger. Therefore, in the copper alloy The dispersion interval of the second phase particles is excessively large, and it is difficult to obtain precipitation strengthening and processing strengthening. According to the above description, the second phase particles before the final cold rolling of the Ni_p_Mg-based copper alloy in the present invention means that the aspect ratio _ is Μ. : In addition to the second phase particles (9) having a short diameter Μ1, the first particle (6) having an aspect ratio a/b of less than 2 and a major axis 3 of 2 〇 to 5 〇 nm is included. To make the Ni of the present invention -P-Mg-based steel alloy is a second-phase particle (B) having a short diameter of 1 〇 to 25 (10) and an aspect ratio of 2 (9) before the final cold-rolling, and the processing of the second phase before the aging treatment is ==圭: Not full ο.1' and the temperature and time during the aging treatment are adjusted. X, in order to make the second phase particles before the final cold rolling of the Ni_p_Mg copper alloy of the present invention have a long diameter a 2〇~5〇i 9 ^ m and the aspect ratio a/b is full of the second phase particles (C)', so that the processing before the aging treatment is 4 or more, preferably about h5' and the aging treatment; Make appropriate adjustments. R Brewing and time 15 200907077 However, 'it is difficult to make Νί-Ρ μ / _ _Mg copper alloy in the family has the first son in the above a and a / b * Du * 0 second phase of the grain In the case of Kaijia, the total of the second phase particles is important for all the second "() with a long diameter a of 5 nm or more. Therefore, if the ratio of the second phase particles of the upper phase is χΐ. D , the total area of the second phase particles (B) and (C) is the same as that of the Ni-P-Mg copper alloy. The ratio of the two-phase particle sum is set to the area ratio 夂¢ 夂¢ 7 bar ~, the product sheep C2 'the area ratio of the invention C2 $ _ or more. When the area ratio C2 is less than 80%, it means that a super... and... Any of the second phase particles having a length of more than 25 nm, the phase particles having a long diameter a of less than 2 Å, the second phase particles having a short diameter b of less than 1 〇 nm, and the second phase particles having an aspect ratio of 50 More often, for example, when the first phase particles of more than 50 nm and the short diameter b exceeds 25 nm, or the crystals produced when the casting is melted, the crystallized material is not subjected to hot rolling or solution treatment: When there are many Ni_p_Mg-based particles (junctions) of _ nm or more, the fine second-phase particles (B) and/or the size of the present invention which contribute to the improvement of the strength are improved. Or the amount of (c) is small, and the dispersion interval of the second phase particles is increased. Therefore, the processing by the rolling process cannot be performed, and the required strength is further obtained. a second phase particle of less than 20 nm or a diameter of b less than 1 〇 nm is re-dissolved by rolling, so that the desired conductivity is obtained by a thermal method. The Ni-P-Mg-based copper alloy of the present invention is Before the aging treatment and finally cold rolling, in order to make the second phase particles (B) and the second phase particles (the total sum of the bismuth and the total area of all the second phase particles in the copper alloy account for 8% or more (area ratio C 2 ) It is preferable to set the rolling strain η before the aging treatment to 〇~丨.5 left 16 200907077 right 'and adjust the temperature and time during the aging treatment appropriately. The above requirements of the present invention are satisfied. Cu_Ni p everyone

Wl-P系合金或Cu-Ni-P-Wl-P alloy or Cu-Ni-P-

Mg系合金,可於通常業者在製 教化時所採用的錠(ingot)鑄 造、熱軋、固溶化處理、中間冷軋、時效處理、最終冷軋、 應力消除退火⑽ess relieving anneaUng)等中適當選擇加 熱溫度、時間、冷卻速度、親乾率笑 粃钆丰等而製造。例如,按照(1) 炫解、鑄造、⑺熱軋、(3)氧化皮(〇xide咖⑷去除、⑷冷 軋(厚度調整)、(5)固溶化處理、(6)冷軋、(7)時效處理、(8) 表面清洗處理(研磨或酸洗)、(9)冷軋(最終)、(丨〇)應力消除 退火之順序’重複或省略部分製程來製造。 對面積率C1或C2進行調整時之上述「時效處理前之 輥軋加工」相當於上述(6)。再者,時效處理前之加工應變 η=〇之情況相當於省略了(6)。本發明之第2相粒子之評 估係將(7)時效處理結束後之材料用作試樣。 [實施例] j_式樣I之_ i告 將電解銅(electrolytic copper)或者無氧銅(0Xygen_free copper)作為主原料’將鎳(Ni)、15%之p_Cu母合金、2。/〇之 B-Cu(B)、錫(Sn)、銦(In)、10%之 Fe-Cu(Fe)、10%之 c〇-Cu(Co)、25%之Mn-Cu(Mn)、海綿鈦(Ti)及海綿鍅(Zr)作為 副原料’於高頻熔解爐中在真空下或氬氣環境氣氛中熔 解’禱造成45x45x90 mm之旋。進行鍵之熱軋測試,在熱 軋中未產生裂紋之錠按照熱軋及固溶化處理、時效處理、 中間冷軋、時效處理、最終冷軋、應力消除退火之順序實 17 200907077 .!5 mm之平板。採取所獲得之板材 進行「強度」及「導電率」之評估。 施’從而獲得厚度為015 之各種試片進行測試,進^ 試樣π之繫造 將電解銅或者無氧鋼作為主原料,將鎳(Ni)、15%之 P-Cu母合金、1〇%之Mg Cu母合金(河幻、之母合Mg-based alloys can be suitably selected from ingot casting, hot rolling, solution treatment, intermediate cold rolling, aging treatment, final cold rolling, stress relief annealing (10) ess relieving anneaUng, etc., which are used by the industry in the process of education. It is manufactured by heating temperature, time, cooling rate, and affinity ratio. For example, according to (1) dazzle, casting, (7) hot rolling, (3) oxide scale (〇xide coffee (4) removal, (4) cold rolling (thickness adjustment), (5) solution treatment, (6) cold rolling, (7) Aging treatment, (8) surface cleaning treatment (grinding or pickling), (9) cold rolling (final), (丨〇) stress relief annealing sequence 'repeated or omitted part of the process to manufacture. For area ratio C1 or C2 The above-mentioned "rolling processing before aging treatment" in the adjustment is equivalent to the above (6). Further, the processing strain η = 前 before the aging treatment corresponds to the omission of (6). The second phase particle of the present invention The evaluation is based on (7) the material after the aging treatment is used as a sample. [Examples] j_Model I _ I will use electrolytic copper or oxygen-free copper (0Xygen_free copper) as the main raw material' Nickel (Ni), 15% p_Cu master alloy, 2/〇 B-Cu (B), tin (Sn), indium (In), 10% Fe-Cu (Fe), 10% c〇- Cu(Co), 25% Mn-Cu(Mn), titanium sponge (Ti) and sponge strontium (Zr) are used as auxiliary materials in the high-frequency melting furnace to melt under vacuum or argon atmosphere. Spinning of 5x45x90 mm. Perform hot rolling test of the key. The ingots which are not cracked during hot rolling are in the order of hot rolling and solution treatment, aging treatment, intermediate cold rolling, aging treatment, final cold rolling and stress relief annealing. 200907077 .! 5 mm flat plate. Take the obtained plate for "strength" and "conductivity" evaluation. Apply 'to obtain a test piece with a thickness of 015 for testing, and enter the sample π to make electrolytic copper. Or oxygen-free steel as the main raw material, nickel (Ni), 15% P-Cu master alloy, 1%% Mg Cu master alloy (he, the mother of the river)

Fe-Cu 母合金(Fe)、10% 之 金(B)、錫(Sn)、銦(In)、1〇%之 匚〇(:11母合金((:〇)、25%之]^11-&lt;:11母合金(河11)、海綿鈦(1^) 及海綿鍅(Zr)作為副原料,於高頻熔解爐中在真空下或氬 氣%丨兄氧氣中溶解’鑄造成45x45x90 mm之鍵。與上述試 樣1同樣地,進行錠之熱軋測試,對熱軋中未產生裂紋之 錠進行加工作成厚度為O.i5 mm之平板,進行測試並評估 「強度」及「導電率」。 较之熱加工性評估 熱加工性」係精由熱札來s平估。亦即,將旋切斷為Fe-Cu master alloy (Fe), 10% gold (B), tin (Sn), indium (In), 〇% 匚〇 (: 11 mother alloy ((: 〇), 25%] ^ 11 -&lt;:11 master alloy (river 11), titanium sponge (1^) and sponge enamel (Zr) as auxiliary materials, dissolved in a high-frequency melting furnace under vacuum or argon gas, 'molding into 45x45x90 In the same manner as the above sample 1, the hot rolling test of the ingot was carried out, and the ingot which did not cause cracks in the hot rolling was applied to a flat plate having a thickness of 0.5 μm, and the test was conducted to evaluate the "strength" and "conductivity". Rate. Compared with hot workability, the hot workability is evaluated by the heat of the heat.

為止進行3次熱軋測試。將藉由目測而確認到熱軋後之試 樣之表面及邊緣上產生裂紋的情況標註為“有裂紋”,將表 面及邊緣無裂紋而為平滑之表面的情況標註為“無裂紋,,。 本發明中’所謂熱加工性優異是指在上述評估中為「無 裂紋」之情況。 j式片^物性評估 強度」係藉由JIS Z 2241所規定之抗張測試而使用 1 3號;B試片來進行,測定抗張強度。 本發明中,所謂Cu-Ni-P系合金中之高強度,是指在 18 200907077Three hot rolling tests were performed up to this point. It was confirmed by visual inspection that the crack on the surface and the edge of the sample after hot rolling was marked as "cracked", and the case where the surface and the edge were smooth without cracks was marked as "no crack." In the present invention, the term "excellent hot workability" refers to the case of "no crack" in the above evaluation. The "strength of physical property evaluation" was measured by the tensile test according to JIS Z 2241 using No. 13 and B test pieces, and the tensile strength was measured. In the present invention, the high strength in the so-called Cu-Ni-P alloy refers to 18 200907077

上述評估中抗張強度為650 MPa以上,所謂Cu_Ni_p_M 系合金中之高強度是指抗張強度為750 MPa以上。 「導電率」係使用4端子法來測定試片之電阻,且γ %IACS來表示。本發明中,所謂高導電性是指在上述評估 中導電率為45%IACS以上。 穹曲加工性」係在90度W彎曲測試中進行評估。 測試依照CES-M0002-6,使用R_(M mm之夾具以'^ 之荷重進行90度彎曲加工。,彎曲部之評估係利用光學: 微鏡對中央部山表面之狀況進行觀察,將產生裂紋者標:主 為X’將產生褶皺者標註為△,將良好者標註為〇:細 與輥軋方向成直角(Good way)e f曲軸 ~?相教子之評仕 人與輥軋方向平行地且與厚度垂直地切斷最終冷乳 S金條’使用掃描式電子顯微鏡及穿透式 1。視野來觀察剖面之第2相粒 ;以 5〜5〇咖時,以50^立m立 田弟2相粒子之大小為 2、、 萬乜〜70萬倍之視野(約1.4&gt;&lt;10丨〇〜2.0&gt;&lt;1〇1〇 n m )進行拍攝,春箆?相私工 以… 子之大小為1〇〇〜2_⑽時, 紅〜10萬倍之視野(約1.0X1013〜2〇x1〇13 攝。對於所拍攝出之”之_ “ 1G nm)進行拍 公司聰咖製,商像解析裝置(有限 5㈣以上之第2/r ),分別對所有長徑a為 定。 目j子的長徑a、短徑b、及面積進行剛 该些長徑a為5 nm以上之 ⑽個,獲得所有 4目粗子中隨機地選擇 有第2相粒子之長徑之平均ata、短徑之平 19 200907077 =bta及根據該等所求出之平均縱橫比來分別作為 長徑a、短徑b及縱橫比a/^ 將長徑a為10nm〜5〇nm且縱橫比a/b為卜5之第2 ,粒子⑷之面積總和相對於自Ni_p系銅合金試樣工中所 擇出之所有1 〇〇個第2相粒子之面積總和的比例設為面 積率 Cl(°/〇)。 =再者’確認如下情況:藉由最終冷軋(通常加工應變η X上)Νι Ρ系銅合金試樣中之長徑為以下之第 2相粒子或長徑超過但縱橫比超過5之第2相粒子 會固溶’但2〇 nm m縱橫比為卜5之第2相粒子即使 於最終冷軋後亦可保持其長徑、短徑及縱橫比。又,因超 過200 nm之第2相粒子未固溶,故於最終冷軋後第2相 粒子之面積率C1亦幾乎未變化。 算出縱橫比a/b為2〜50且短徑μ 1〇〜25咖之第2 «子⑻之面積與縱橫比a/b未滿2且長徑a為2〇〜5〇咖 之第2相粒子(C)之面積的總和,相對於自系銅合 金試樣Π中所選擇出的所有⑽個第2相粒子之面積總和 的比例並表示為面積率C2(%)。 一再者’確認到如下情況:藉由最終冷軋(通常加工應變 η 2以上),Nl_p_Mg系銅合金試樣中之第2相粒子之長徑 a ^於20 nm或短徑b小於1〇 _之第2相粒子固溶而未 能硯察到’但短徑b為1〇 nm以上之第2相粒子於最終冷 札後亦保持其長徑、短徑及縱橫比。又,帛2相粒子之面 積率C2亦同樣於最終冷軋後幾乎未變化。 200907077 針對表1中所示之成分組成之銅合金試樣i,一併說 明本發明之Ni-P系銅合金之實施例與比較例。本發明之合 金實施例1〜9中’熱軋時未產生裂紋,具備優異之強度及 導電率。 另一方面’對比較例1 〇〜27之結果進行研究後發現, 比較例10〜13中,因未添加b或b量未滿規定量,故熱軋 中產生了裂紋。比較例14中,因Sn與In之添加量之總計 超過1.0%,比較例15中’因Sn之添加量之總計超過ι.0〇/ο , 故導電率降低。比較例i 6中,因Ni/P比較高而超出範圍, 故Ni之固溶量增加而發生導電率降低,且因第2相粒子 之量較少,故強度亦較低。比較例丨7中,因Ni/p比低於 適當之組成比,故P之固溶量增加而導電率降低。比較例 18中,因Ni及P之添加量低於本發明之規定範圍,故強 度較低。比較例19中,因Ni量高於本發明之規定範圍, 比較例20中,因P量高於本發明之規定範圍,故導電率 降低。比較例21中,因〇之含量超過〇 〇5〇%,故熔解時 會產生Cu-P-0之氧化物,從而第2相粒子量減少,強度 降低,且彎曲加工性劣化。比較例22中,因B之含量高 於本發明之規定範圍,故於熔解、鑄造時會生成Ni_p_B或 B-P等,而結晶化,因而第2相粒子量減少,強度與導電 率降低,且彎曲加工性亦劣化。比較例23及24中,因Fe、 Cu'Mn'Ti及Zr之含量高於本發明之規^範圍,故該些 疋素會與P生成化合物,因而第2相粒子量減少,強度較 低。刚25中,因第2相粒子之平均長徑高於本發明 21 200907077 之規疋靶園’故無法利用冷軋來提高強度 比較例26盥97 士 \叨5虫沒孕乂低。 之規定H、,因第2相粒子之平均長徑低於本發明 ί規疋乾圍’且比較例2”縱橫比亦超出本發明之規定 祀圍’故冷乾中第2相粒子會固溶,從而導電率較低。 22 導電率 %IACS 53.2 46.2 48.5 47.7 46.5 45.2 46.5 47.2 46.4 ※ ※ 31.2 32.5 34.4 38.8 62.5 2 m 30.1 ! 45.2 38.9 i 44.2 37.7 32.9 抗張強度 (Mpa) 1 652 1 V) 〇〇 745 770 832 , 850 1 810 770 1 828 ※ ※ ※ ※ m 00 842 584 JN Vi ο Ό S r- 630 I JQ 562 602 i 720 Ό Γ-» 彎曲 加工性 〇 〇 〇 〇 〇 〇 〇 〇 〇 ※ ※ ※ X X 〇 〇 〇 〇 Ο &lt;1 &lt;1 〇 〇 〇 〇 〇 第2相粒子 面積率 C(%) 00 «Ti Ον (N Os ON On ΓΛ 00 0C CTN ΙΛ&gt; σν ON ※ ※ ※ ss (N 〇\ 〇〇 ON ON 00 g On Os ο 〇 〇 in 縱橫比 a/b »T) Γη »Τ) (N - 二 〇 ※ ※ — - rn &lt;N p ρ ίΝ 二 ίΝ fS m· γΛ CS 平均長徑 a(nm) m fN ΓΛ 0'S (N r- Pi 〇 ※ ※ ※ &lt;N ON &lt;N \D Os ο ΓΟ CO 00 § V) 熱軋加工性 無裂紋 無裂紋 無裂紋 無裂紋 無裂纹 無裂紋 無裂紋 無裂紋 無裂紋 1產生裂紋1 1產生裂紋1 1產生裂紋1 1產生裂紋1 _舞裂紋」 無裂紋 無裂紋 無裂紋 1無裂紋1 無裂紋 無裂紋 無裂紋 無裂紋 _無裂紋」 無裂紋 無裂紋 無裂紋 無裂紋 含量之總計(wt%) Fe+Co+Mn +Ti+Zr 未滿0.01 1 未滿0.01 未滿0.01 ; 未滿0.01 i 未滿0.01 未滿〇.〇1 1 0.05 0.04 0.04 1未滿〇.〇1 I 未滿0.01 未滿0.01 1未滿〇.〇1 I 未滿0.01 1未滿o.oi I 1未滿o.oi 1 1未滿o.oi 1 1未滿o.oi 1 1未滿o.oi 1 未滿0.01 !未滿0.01 未滿0.01 0.33 0.42 !未滿0.01 未滿0.01 1未滿o.oi Sn+In 未滿o.oi 1 未滿0.01 1未滿0.01 0.21 0.50 0.46 未滿0.01 未滿0.01 ! 0.32 未滿0.01 未滿0.01 0.75 0.65 1.55 未滿0.01 未滿o.oi 1 未滿0.01 未滿0.01 未滿0.01 未滿0.01 1未滿o.oi 未滿0.01 未滿0.01 0.51 0.51 0.51 組成比 Ni/P 〇\ 七 — 卜 — Γ4 ID m rr 〇〇 — 寸· 寸· 寸· rn rr (N TJ·· — Γ-; 对· Ο) ^r &lt;N 寸· 12.5 — 寸· — r&gt;; 化學組成(wt%) 3 υ 剩餘部分 剩餘部分 Γ剩餘部分I 1剩餘部分1 1剩餘部分1 1剩餘部分1 1剩餘部分1 剩餘部分 1剩餘部分1 1剩餘部分1 1剩餘部分1 1剩餘部分1 剩餘部分 Γ剩餘部分1 1剩餘部分1 1剩餘部分I p剩餘部分1 Γ剩餘部分1 Γ剩餘部分1 1剩餘部分1 1剩餘部分 1剩餘部分I Γ剩餘部分1 1剩餘部分1 !剩餘部分 剩餘部分 剩餘部分 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.020 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 ! o.ooi 0.001 0.001 0.140 丨 0.001 0.001 | o.ooi 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 o.ooi I o.ooi 0.001 0.160 0.001 0.001 | o.ooi c 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.020 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.120 0.001 0.001 | o.ooi 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.02 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 I 0.001 | 0.001 0.001 0.11 0.001 0.001 1 o.ooi | o.ooi £ 0.001 0.001 0.001 0.001 0.001 0.001 0.05 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 o.ooi 0.001 0.120 0.001 1 o.ooi 0.001 | o.ooi 〇 0.0012 0.0018 0.0020 0.0030 0.0031 •n S 〇 d 0.0015 0.0012 0.0021 •Λ S 〇 d 0.0032 0.0021 0.0030 0.0022 0.0027 0.0025 0.0018 0.0015 0.0020 | 0.0033 1 0.0075 0.0040 0.0020 0.0027 ! 0.0019 0.0019 | 0.0019 £ 0.001 0.001 0.001 0.001 0.50 0.22 0.001 0.001 0.001 0.001 0.001 0.42 0.001 0.670 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.21 0.001 0.240 0.001 0.001 0.320 0.001 0.001 0.330 0.650 0.850 1.550 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.220 0.001 0.510 0.510 0.510 m 0.035 1 0.041 0.025 0.031 0.030 0.028 1 0.021 0.033 0.040 0.001 0.003 0.001 0.001 ! 0.041 0.035 0.035 0.040 0.033 0.042 0.051 0.034 | 0.085 0.036 0.025 丨 0.031 0.031 | 0.031 D- 0.15 0.19 0.17 0.19 0.18 0.16 0.16 0.15 0.16 :0.20 0.21 0.15 ! 0.17 0.17 0.18 0.12 0.23 0.08 0.12 0.35 0.13 | 0.14 0.15 0.16 0.18 0.18 | 0.18 2 0.61 0.93 0.75 0.87 0.85 0.83 0.72 0.72 0.75 0.88 0.92 0.65 0.72 「0.80 0.85 0.95 0.55 1 0.33 1.50 ;0.60 ! 0.66 | 0.70 0.77 0.75 0.85 0.85 0.85 〇 2: 一 &lt;N 寸 V5 卜 〇〇 ON 〇 二 CO 卜 00 On V» 寒舡丧墀佬球铖味赛^长^,※」*-^ 200907077 針對表2所示之成分組成之銅合金試樣n的各自的熱 軋加工性、第2相粒子及特性之評估結果,一併說明本發 明之Ni-P-Mg系銅合金之實施例與比較例。若處於^ 2〇 1250且b — 1〇〜25且a/b= 2〜50之範圍内,則相當於第 2相粒子(B) ’若處於a= 20〜50且b= 1〇〜50且a/b=丨〜2之 範圍内’則相當於第2相粒子。 本發明之合金實施例28〜38中,於熱軋時未產生裂紋, 且具備優異之強度及導電率。另一方面,若對比較例39〜Μ 之結果進行研究,則比較例39〜43中,因未添加B或B量 未滿規定量,故於熱軋中產生裂紋。比較例44中,因以 與In之添加量之總計超過丨.0%,比較例45中,因Sn之 添加量之總計超過1.0%,故導電率降低,且彎曲加工性劣 化。比杈例46中,因Mg之添加量高於本發明之規定範圍, 故於熱軋中產生裂紋。比較例47中,因Mg之添加量低於 本發明之規定範圍’故與Mg之外為相同級別之化學組成 的本發明例29相比較,強度較低。比較例48中,因Ni/P 比低於本發明之規定範圍,故P之固溶量增加從而導電率 較低。比較例49中,因Ni及P之添加量低於本發明之規 定範圍,故強度較低。比較例50中,因Ni量及Ni/P比超 出本發明之規定範圍,故導電率降低。比較例51中,因P 量高於本發明之規定範圍,且Ni/P比超出本發明之規定範 圍,故於熱軋中產生裂紋。 比較例52中,因〇之含量超過〇.〇5〇〇/0,故熔解時會 生成Cu-P-O之氧化物,從而第2相粒子量減少,強度與 24 200907077 導電率降低,且彎曲加工性亦劣化。 比較例53中,因B之含量高於本發明之規定範圍, 故於熔解、鑄造時會生成Ni-P-B或B-P筈,廿处b ^ ^ !、话ra化,藉 此第2相粒子量減少,強度與導電率降低,彎曲加工性亦 劣化。 比較例54至57中,因Fe、Co、Mn、Ti、Zr中之! 種以上的含量總計高於本發明之規定範圍,故第2相粒子 減少,而且,Fe、Co、Mn、Ti、Zr與P之結晶化物或第2 相粒子粗大地生成,第2相粒子之評估結果超出本發明之 規定範圍,因此強度降低。 比較例5 8中’因第2相粒子之短徑b低於本發明之規 疋範圍’故導電率降低。比較例5 9中’因第2相粒子之 短徑b高於本發明之規定範圍,故強度較低。比較例6〇 中,因第2相粒子之長徑a及短徑b低於本發明之規定範 圍,故強度與導電率較低。比較例61及62中,因第2相 粒子之長徑a及短徑b高於本發明之規定範圍,故冷軋來 所致之強度提升程度小,從而強度較低。 25 2 907 【二】 377 rsj in 赛 Ον »^4 «Τί σ; 一 卜 ο Μ 00 00 m — ο is »r&gt; &lt;Ν m ※ 寸 Ό vS r*l Ό Η m CS ο (Ν «η &lt;Ν ro ν&gt; Ρϊ i 卜 SO Γ-· Η ν&gt; =&quot;· 〇\ m •η »Τί 抗張 強度 (Mpa) v*&gt; v~&gt; 00 〇〇 00 ο m 00 ο s 00 ν*&gt; 00 j^· ο 00 m ※ ※ ※ ※ «Λ οο S 00 ※ ο 卜 ο ν〇 ir&gt; 00 卜 ※ Ό ν&gt; s &lt;Ν ν» fn ν% S s 00 00 Ό S &gt;r&gt; 彎曲 加工性 〇 〇 〇 0 〇 〇 〇 〇 〇 〇 〇 ※ ※ ※ ※ &lt;] &lt;] ※ 〇 〇 〇 ο ※ &lt;] &lt;1 0 ο 0 0 0 〇 〇 〇 〇 面積率 C(%) 00 〇 ΓΛ ΟΝ m On »Τ) σν 00 os § Ό Ο in ON 〇\ 00 ※ ※ ※ ※ ※ &gt;*〇 ON m Os ※ οο ο ο V* ON m 00 ※ 〇 ο «Τϊ ΓΟ ο Ο Ο ο Ο aJ 屮 ^1¾ S — (Ν 二 V» Ρ: ※ ※ ※ ※ cn ※ fS rs 二 ※ &lt;Ν (Ν rn ιη fS 00 V) m m (Ν ^r 二 mr 1糾 (N 姊 ^ ε' ir&gt; (N (Ν m m 00 m Os ΟΟ (Ν &lt;N &lt;N ※ ※ ※ ※ ※ s ※ fS ΟΝ fS &lt;N 00 ※ 〇 Μ 00 Ό 沄 § οο ο (Ν 00 ο ρ&gt;· ^ £ O ΜΊ IT) οο ο ο S Ό 沄 Ό Ρ; m Ο Ό ※ ※ ※ m ※ in Γ&lt;Ί ※ ON *τ&gt; 00 οο ΟΟ 00 in (Ν S ο Os 卜 s 熱軋 加工性 1產生裂紋1 1產生裂紋1 1產生裂紋1 1產生裂紋1 1產生裂紋1 1產生裂紋1 碟 碡 墉 0. 碳 碳 墉 m 墉 Fe+Co+ Mn+Ti+Zr 3 — ο ο 〇 ο 〇 〇 〇 O 2 s P s ο S ο 蠖 〇 ο 栈 ο 〇 m ο m 〇 〇 s ο ο s Ο ο 浅 〇 〇 〇 S 〇 o 栈 Ο 〇 ο 〇 栈 〇 〇 c&gt; d 栈 g ο 2 00 〇 〇 ο 〇 m ο 栈 〇 〇 m ήίϊ〇&quot; &lt; &lt; &lt; -&lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; 3 〇 5 ο ο 〇 S 〇 〇 〇 ο ο 2 ο ο φΊ •f ο 蠖 〇 ο 桟 ο 棵 rn rs 'sO 〇 ο ο Ο ο 〇 On jn 卜 寸 〇 ο 〇 d d ο ο ο in d Ό Ο ο ο c&gt; 〇 〇 4〇 5 ο ο ο 栈 栈 栈 Ο 〇 〇 二 二 m m 栈 栈 栈 栈 栈 η. m &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; 4 &lt; &lt; &lt; &lt; &lt; 3¾ 卜 ΓΟ ο CN Γ〇 V» m SO 卜 ON 00 ON 00 fN Os 00 〇\ ON 卜 «η ο (Ν 卜 卜 卜 卜 卜 ίζ TT — iri 寸· — — ur&gt; 寸 寸 寸 — fN — Tt· 寸 寸 Ί* 令 Φ Φ &lt;ς Φ Φ 令 令 3 u 命 诗· 赛· 蒂 命 w ;〇 诗· KS. 敢 赛· 命 % Μ Μ Μ Μ M 迤 逝 Μ 傘 傘 傘 傘 ¥ W W ¥ ¥ w ¥ W ¥ ¥ ¥ W W W W w W ¥ ¥ ¥ ¥ W ¥ W W w ¥ ¥ ¥ ¥ ¥ ¥ ¥ N | 0.001 | 0.001 , | 0.001 | 1 0.001 I 1 0.001 ι \ 0.001 1 \ 0.001 1 I ο.οοι 1 | 0.001 | 1 ο.οοι 1 1 0.020 1 1 0.001 ι \ 0.001 | 1 ο.οοι] 1 ο.οοι 1 | 0.001 | 1 0.001 ι 1 ο.οοι 1 1 0.001 ι | 0.001 | I ο.οοι 1 1 0.001 ι \ 0.001 1 1 ο.οοι 1 | 0.001 | 1 ο.οοΠ 1 ο.οοι 1 1 ο.οοι 1 1 0.001 I 1 0.110 ι | 0.001 | 1 0.001 ι I 0.001 | i ο.οοι 1 ο.οοι 1 p | 0.001 | 0.001 | 0.001 1 1 0.001 i 1 ο.οοι ι I ο.οοι I | ο.οοι | I ο.οοι 1 | 0.001 | 1 ο.οοι 1 1 0.020 1 1 ο.οοιΠ 1 ο.οοι | 1 ο.οοι 1 I ο.οοι 1 | 0.001 | 10.001 ι I ο.οοι 1 1 ο.οοι 1 I ο.οοΠ I ο.οοι | 丨 0.001] I ο.οοι 1 1 0.001 1 | 0.001 | | 0.001 1 1 ο.οοι 1 1 ο.οοι 1 1 0.020 ι 1 0.040] I 0.001 | 1 0.0011 :0.001 | ο.οοι 1 ο.οοι | c s I o.ool 1 0.001 | 0.001 1 1 Ο^ΟΜ 1 0.001 ι I ο.οοι I I ο.οοι I I ο.οοι | 1 ο.οοι 1 1 o.oio 1 1 0.0101 1 ο.οοι ] 1 ο.οοι I 1 ο.οοι 1 1 ο.οοι | 1 ο.οοΤΙ 1 ο.οοι 1 I ο.οοι | 1 ο.οοι 1 1 ο.οοι 1 I ο.οοι | 1 ο.οοι 1 1 ο.οοι 1 1 ο.οοι 1 [ο.οοΠ 1 ο.οοι | 1 0.020 1 1 ο.οοι 1 1 0.030 1 1 ο.οοι 1 | 0.001 | 1 ο.οοι 1 | 0.001 | ! 0.001 1 ο.οοι | 1 0.001 I o.ool | 0.001 1 ο.οοι 1 ο.οοι ! | 0.001 | | 0.001 I 丨 0.001 | | 0.030 1 1 0.030 ι 1 ο.οοι 1 1 ο.οοι 1 I ο.οοι 1 I ο.οοι 1 I ο.οοι 1 1 o.oio 1 1 ο.οοι 1 I ο.οοι | 1 ο.οοι 1 1 ο.οοι 1 | 0.001 | 1 ο.οοι 1 1 ο.οοι | | 0.001 1 1 0.001 I 1 ο.οοι 1 1 0.020 1 1 ο.ιιο 1 1 0.001 ι 1 ο.οοι 1 1 0.001 | ο.οοι 1 0.001 | 0.001 1 ο.οοι | 1 a) 4&gt; U- 1 o.ool : | 0.001 ! Ιο.οοι ι Ιο.οοι ι Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 | 0.040 | Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 I ο.οοι 1 10.001 | 丨 0.001 | 1 0.020 1 Ιο.οοι 1 Ιο.οοι | Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 I ο.οοι 1 | 0.001 1 Ιο.οοι 1 1 0.050 | 1 0.090 1 Ιο.οοι 1 1 0.0301 Ιο.οοι 1 Ιο.οοι ] Ιο.οοι 1 10.001 | I 0.001 1 ! ο.οοι | o 1 0.0010 | 0.0015 1 0.0018 m S ο ο 1 0.0030 ; 1 0.0031 ! 1 0.0025 ι | 0.0025 | | 0.0032 | 1 0.0019 ι 1 0.0021 1 1 0.0014 1 | 0.0022 | | 0.0029 | | 0.0031 | | 0.0019 1 1 0.0024 ι | 0.0019 | 1 0.0009 ι 1 0.0010 1 1 0.0028 ι 1 0.0022 ι | 0.0020 | | 0.0021 | 1 0.0072 ι | 0.0015 1 1 0.0023 ι ! 0.0030 1 0.0028 1 0.0020 ι 0.0018 1 0.0018 1 0.0018 | 0.0018 | 0.0018 | a 〇 〇 ο ο ο ο Co 1 0.280 ι 〇 〇 ο ο ο 〇 g 〇 〇 ο s 〇 ο ο 1 0.250 ι ο 〇 〇 ο 〇 ο ο ο ο ο ο 〇 〇 〇 〇 〇 ο ο ο ο 〇 〇 ο ο ο 〇 o 〇 〇 ο 〇 ο ο ο 〇 〇 ο 〇 ο ο ο ο ο ο 〇 〇 〇 eg I o.ool Ιο.οοι Ιο.οοι Ιο.οοι ; 丨 0.730; 10.001 1 1 0.340 ι Ιο.οοι | Ιο.οοι 1 Ιο.οοι 1 1 0.420 ι Ιο.οοι 1 10.001 | | 0.440 | | 0.7501 10.3101 10.7501 〇 寸· Ιο.οοι 1 Ιο.οοι 1 1 0.200 ι Ιο.οοι 1 10.001 | 1 ο.οοι | 10.001 1 1 ο.οοι 1 1 ο.οοι 1 Ιο.οοι 1 0.001 1 0.001 1 ο.οοι 1 0.001 1 ο.οοι 1 ο.οοι | ο.οοι | CQ | 0.025 | | 0.028 | 1 0.031 1 1 0.044 ι 1 0.061 ι 1 0.050 ι 1 0.038 1 | 0.041 | 1 0.031 1 1 0.033 ι 1 0.047 ι 1 ο.οοι 1 | 0.003 | | 0.001 | | 0.001 | | 0.002 | 1 0.035 1 | 0.044 ι 1 0.032 ι 1 0.025 ι 1 0.051 ι 1 0.035 ι | 0.045 | | 0.050 | 1 0.038 ι | 0.093 | 1 0.033 ι 1 0.052 ι 1 0.044 ι 0.056 ι :0.051 ι 0.051 ι 0.051 1 0.051 | 0.051 | I 0.Π0 : 1 0.020 ί 1 0.050 ι 1 0.090 ι 1 0.040 ι 1 0.110 1 1 0.090 1 | 0.130 | 1 0.140 ι 1 0.050 1 1 0.090 I 1 ο.ιιο 1 | 0.080 | 1 0.060 | 1 0.050 | 1 0.070 | 1 0.120 1 | 0.090 1 1 0.290 ι 10.001 1 1 0.100 1 1 0.070 ι | 0.090 | | 0.110 | 1 0.060 1 | 0.100 | 1 0.060 1 1 0.090 ι 1 0.080 1 1 0.100 ι 1 0.080 ι 1 0.080 ι | 0.080 | i 0.080 ι 0.080 | cu CN 〇 fN Ο 卜 ο ο Os Ο 00 ο Ό Ο Ο 寸 Os Ο ο ΐ/-&gt; ο 00 〇 o 00 〇 *Ti 〇 卜 00 〇 卜 ο 2 ο ο ο 〇 2 ο 卜 ο ο &gt;η 卜 ο 卜 卜 卜 〇 卜 〇 卜 〇 2 »n •ΤΊ 〇 Ό Ό Ο Ρ ο •Τ) Os ο σ\ ο r^&gt; ο 00 ο Ρ d fN ο ΟΟ 00 ο &lt;Ν σ\ ο ο ο 00 〇 〇\ o o (N σ\ 〇 〇 s ο &gt;S〇 00 〇 00 ο 00 «Λ ο m V» ο ΟΝ m ο § 〇 (Ν Ο 〇 ο ο (Ν Ο ο (Ν ο § ο g ο g 〇 § 〇 § 〇 〇 2 00 (N 〇\ (Ν &lt;Ν ΓΟ m Ό οο ο m 〇 寸 5 •Λ Μ (Ν «Λ m ν&gt; Ό οο «τ» 〇 V*} S (N 4僉驭荃 93 200907077 【圖式簡單說明】 益 /»»* 【主要元件符號說明】 t *»&gt; 27The tensile strength in the above evaluation is 650 MPa or more, and the high strength in the so-called Cu_Ni_p_M alloy means that the tensile strength is 750 MPa or more. "Electrical conductivity" is measured by the 4-terminal method using the 4-terminal method and expressed by γ % IACS. In the present invention, the term "high conductivity" means that the conductivity is 45% IACS or more in the above evaluation. The tortuous processability was evaluated in a 90 degree W bending test. The test is performed according to CES-M0002-6, using R_ (M mm fixture to perform 90 degree bending processing with a load of '^.) The evaluation of the bending portion uses optics: Micromirrors observe the condition of the central mountain surface, which will cause cracks. Marker: The main one is X', the wrinkle is marked as △, the good one is marked as 〇: the fine is perpendicular to the rolling direction (Good way) ef crankshaft ~? Xiangjiao's commentator is parallel to the rolling direction and Cut the final cold milk S gold bar perpendicularly to the thickness 'Using a scanning electron microscope and penetrating type 1. Viewing the second phase of the cross section; 5 to 5 〇 时, 50 立 立The size of the particles is 2, and the field of view of about 10,000 to 700,000 times (about 1.4 &gt;&lt;10丨〇~2.0&gt;&lt;1〇1〇nm) is taken, and the spring 箆? When the size is 1〇〇~2_(10), the red to 100,000 times of the field of view (about 1.0X1013~2〇x1〇13 photos. For the photographed "" 1G nm), the company's Congcai, the image analysis The device (limited to 5(4) and above 2/r) is determined for all the long diameters a. The long diameter a, the short diameter b, and the area of the head are just long. a is (10) or more of 5 nm or more, and the average ata of the long diameter of the second phase particles and the short-diameter flat 19 200907077 =bta and the average aspect ratio obtained according to the above are randomly selected among all the 4-mesh coarses. As the long diameter a, the short diameter b, and the aspect ratio a/^, the long diameter a is 10 nm to 5 〇 nm and the aspect ratio a/b is the second of the 5, and the total area of the particles (4) is relative to the self Ni_p copper. The ratio of the total area of all the 2nd phase 2 particles selected in the alloy sample work is set to the area ratio Cl (°/〇). = Again, the following conditions are confirmed: by final cold rolling (normal processing) In the strain η X, Νι Ρ copper alloy sample, the second phase particles having a long diameter or less, or the second phase particles having a long diameter but exceeding an aspect ratio of 5, are solid solution 'but 2 〇 nm m aspect ratio is The second phase particles of 5 retain their long diameter, short diameter, and aspect ratio even after final cold rolling. Moreover, since the second phase particles exceeding 200 nm are not solid-solved, the second phase particles after the final cold rolling The area ratio C1 is also almost unchanged. The aspect ratio a/b is 2 to 50 and the short diameter μ 1〇 to 25 is the second «sub (8) area and the aspect ratio a/b is less than 2 and the long diameter a The ratio of the sum of the areas of the second phase particles (C) of the 2nd to 5th coffee grains to the sum of the area of all the (10) second phase particles selected from the self-made copper alloy sample 并 is expressed as an area. The rate C2 (%). Again and again 'confirmed that the final diameter of the second phase particles in the Nl_p_Mg-based copper alloy sample was 20 nm or shorter by the final cold rolling (normally processing strain η 2 or more). The second phase particles having a diameter b of less than 1 〇 are solid-solved and fail to be observed. However, the second phase particles having a short diameter b of 1 〇 nm or more retain their long diameter, short diameter, and aspect ratio after the final cold slab. . Further, the area ratio C2 of the 帛2-phase particles hardly changed after the final cold rolling. 200907077 For the copper alloy sample i of the composition shown in Table 1, the examples and comparative examples of the Ni-P based copper alloy of the present invention are also shown. In the alloy examples 1 to 9 of the present invention, no crack occurred during hot rolling, and the strength and electrical conductivity were excellent. On the other hand, when the results of Comparative Examples 1 to 27 were examined, it was found that in Comparative Examples 10 to 13, since the amount of b or b was not added to a predetermined amount, cracks occurred during hot rolling. In Comparative Example 14, the total amount of addition of Sn and In exceeded 1.0%, and in Comparative Example 15, the total amount of addition amount of Sn exceeded ι.0 〇 / ο , so the electrical conductivity decreased. In Comparative Example i6, since Ni/P is relatively high and is out of range, the solid solution amount of Ni increases and the electrical conductivity decreases, and since the amount of the second phase particles is small, the strength is also low. In Comparative Example 7, since the Ni/p ratio was lower than the appropriate composition ratio, the solid solution amount of P increased and the electrical conductivity decreased. In Comparative Example 18, since the addition amount of Ni and P was lower than the range specified in the present invention, the strength was low. In Comparative Example 19, since the amount of Ni was higher than the predetermined range of the present invention, in Comparative Example 20, since the amount of P was higher than the predetermined range of the present invention, the electrical conductivity was lowered. In Comparative Example 21, since the content of cerium exceeds 〇 5 〇 %, an oxide of Cu-P-0 is generated during melting, so that the amount of the second phase particles is reduced, the strength is lowered, and the bending workability is deteriorated. In Comparative Example 22, since the content of B is higher than the predetermined range of the present invention, Ni_p_B, BP, or the like is formed during melting and casting, and crystallization is performed, so that the amount of the second phase particles is reduced, the strength and electrical conductivity are lowered, and the bending is performed. The workability is also degraded. In Comparative Examples 23 and 24, since the contents of Fe, Cu'Mn'Ti, and Zr were higher than the range of the present invention, the halogens formed a compound with P, and thus the amount of the second phase particles was reduced and the strength was low. . In the case of the second phase, since the average long diameter of the second phase particles is higher than that of the present invention 21 200907077, it is impossible to use cold rolling to increase the strength. The comparative example 26盥97 士叨5叨5 is not pregnant. In the case of H, since the average length of the second phase particles is lower than the average diameter of the present invention and the aspect ratio of Comparative Example 2 exceeds the specified range of the present invention, the second phase particles will be solidified in the cold drying. Dissolved, so the conductivity is low. 22 Conductivity% IACS 53.2 46.2 48.5 47.7 46.5 45.2 46.5 47.2 46.4 ※ ※ 31.2 32.5 34.4 38.8 62.5 2 m 30.1 ! 45.2 38.9 i 44.2 37.7 32.9 Tensile strength (Mpa) 1 652 1 V) 〇〇745 770 832 , 850 1 810 770 1 828 ※ ※ ※ ※ m 00 842 584 JN Vi ο Ό S r- 630 I JQ 562 602 i 720 Ό Γ-» Bending workability〇〇〇〇〇〇〇〇〇 ※ ※ ※ XX 〇〇〇〇Ο &lt;1 &lt;1 〇〇〇〇〇Second phase particle area ratio C(%) 00 «Ti Ον (N Os ON On ΓΛ 00 0C CTN ΙΛ&gt; σν ON ※ ※ ※ Ss (N 〇\ 〇〇ON ON 00 g On Os ο 〇〇in aspect ratio a/b »T) Γη »Τ) (N - 二〇※ ※ — - rn &lt;N p ρ ίΝ 二ίΝ fS m· ΛΛ CS mean length a (nm) m fN ΓΛ 0'S (N r- Pi 〇※ ※ ※ &lt;N ON &lt;N \D Os ο ΓΟ CO 00 § V) Hot rolling processability Crack no crack no crack no crack no crack no crack no crack no crack no crack 1 crack 1 1 crack 1 1 crack 1 _ dance crack no crack no crack no crack 1 no crack no No crack, no crack, no crack, no crack, no crack, no crack, no crack, total (wt%) Fe+Co+Mn +Ti+Zr less than 0.01 1 less than 0.01 less than 0.01; less than 0.01 i 0.01 Not full 〇.〇1 1 0.05 0.04 0.04 1Not full 〇.〇1 I Less than 0.01 Less than 0.01 1 Not full 〇.〇1 I Less than 0.01 1 Not full o.oi I 1Unfilled o.oi 1 1 under full o.oi 1 1 under full o.oi 1 1 under full o.oi 1 less than 0.01 ! under 0.01 less than 0.01 0.33 0.42 ! under 0.01 less than 0.01 1 under full o.oi Sn+In not Full o.oi 1 less than 0.01 1 less than 0.01 0.21 0.50 0.46 less than 0.01 less than 0.01 ! 0.32 less than 0.01 less than 0.01 0.75 0.65 1.55 less than 0.01 less than o.oi 1 less than 0.01 less than 0.01 less than 0.01 Less than 0.01 1 under full o.oi less than 0.01 less than 0.01 0.51 0.51 0.51 composition ratio Ni/P 〇\ 七 — 卜 — Γ 4 ID m rr — inch · inch · inch · rn rr (N TJ·· Γ-; · Ο) ^r &lt;N inch · 12.5 — inch · — r&gt;; chemical composition (wt%) 3 剩余 remaining part remaining Γ remaining part I 1 remaining part 1 1 remaining part 1 1 remaining part 1 1 remaining part 1 Remaining part 1 remaining part 1 1 remaining part 1 1 remaining part 1 1 remaining part 1 remaining part Γ remaining part 1 1 remaining part 1 1 remaining part I p remaining part 1 Γ remaining part 1 Γ remaining part 1 1 remaining part 1 1 remaining Part 1 Remaining part I Γ Remaining part 1 1 Remaining part 1 ! Remaining part of remaining part 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.020 0.001 0.001 0.001 0.001 0.001 0.001 ! o.ooi 0.001 0.001 0.140 丨0.001 0.001 O.ooi 0.001 0.001 0.001 0.001 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 o.ooi I o.ooi 0.001 0.160 0.001 0.001 | o.ooi c 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.020 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.120 0.001 0.001 | o.ooi 0.001 0.001 0. 001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 I 0.001 | 0.001 0.001 0.11 0.001 0.001 1 o.ooi | o.ooi £ 0.001 0.001 0.001 0.001 0.001 0.001 0.05 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 o.ooi 0.001 0.120 0.001 1 o.ooi 0.001 | o.ooi 〇0.0012 0.0018 0.0020 0.0030 0.0031 •n S 〇d 0.0015 0.0012 0.0021 •Λ S 〇d 0.0032 0.0021 0.0030 0.0022 0.0027 0.0025 0.0018 0.0015 0.0020 | 0.0019 0.0040 0.0020 0.0027 ! 0.0019 0.0019 | 0.0019 £ 0.001 0.001 0.001 0.50 0.22 0.001 0.001 0.001 0.001 0.001 0.42 0.001 0.670 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.21 0.001 0.240 0.001 0.001 0.320 0.001 0.001 0.330 0.650 0.850 1.550 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.220 0.001 0.510 0.510 0.510 m 0.035 1 0.041 0.025 0.031 0.030 0.028 1 0.021 0.033 0.040 0.001 0.003 0.001 0.001 ! 0.041 0.035 0.035 0.040 0.033 0.042 0.051 0.034 0.085 0.036 0.025 丨0.031 0.031 | 0.031 D- 0.15 0.19 0.17 0.19 0.18 0.16 0.16 0.15 0.16 :0.20 0.21 0.15 ! 0.17 0.17 0.18 0.12 0.23 0.08 0.12 0.35 0.13 | 0.14 0.15 0.16 0.18 0.18 | 0.18 2 0.61 0.93 0.75 0.87 0.85 0.83 0.72 0.72 0.75 0.88 0.92 0.65 0.72 "0.80 0.85 0.95 0.55 1 0.33 1.50 ;0.60 ! 0.66 | 0.70 0.77 0.75 0.85 0.85 0.85 〇2: One &lt;N inch V5 〇〇 〇〇 ON 〇二CO 00 On V» 舡 舡佬球铖味赛^长^,※”*-^ 200907077 The results of the evaluation of the hot rolling workability, the second phase particles and the characteristics of the copper alloy sample n of the composition shown in Table 2 are also explained. Examples and comparative examples of the Ni-P-Mg-based copper alloy of the present invention. If it is in the range of ^ 2〇1250 and b - 1〇~25 and a/b= 2~50, it corresponds to the second phase particle (B)' if it is at a=20~50 and b=1〇~50 And in the range of a/b=丨~2, it corresponds to the second phase particle. In Examples 28 to 38 of the alloy of the present invention, cracks were not generated during hot rolling, and excellent strength and electrical conductivity were obtained. On the other hand, when the results of Comparative Examples 39 to 进行 were examined, in Comparative Examples 39 to 43, since the amount of B or B was not added to a predetermined amount, cracks occurred during hot rolling. In Comparative Example 44, since the total amount of addition with In exceeded 丨.0%, in Comparative Example 45, since the total amount of addition of Sn exceeded 1.0%, the electrical conductivity was lowered and the bending workability was deteriorated. In Comparative Example 46, since the amount of Mg added was higher than the range specified in the present invention, cracks occurred in hot rolling. In Comparative Example 47, since the addition amount of Mg was lower than the predetermined range of the present invention, the strength was lower than that of the inventive example 29 having the same chemical composition other than Mg. In Comparative Example 48, since the Ni/P ratio was lower than the range specified in the present invention, the amount of solid solution of P increased and the conductivity was low. In Comparative Example 49, since the addition amount of Ni and P was lower than the range of the present invention, the strength was low. In Comparative Example 50, since the amount of Ni and the ratio of Ni/P exceeded the predetermined range of the present invention, the electrical conductivity was lowered. In Comparative Example 51, since the amount of P was higher than the range specified in the present invention, and the Ni/P ratio exceeded the range of the present invention, cracks occurred during hot rolling. In Comparative Example 52, since the content of cerium exceeded 〇.〇5〇〇/0, an oxide of Cu-PO was formed during melting, so that the amount of the second phase particles was reduced, the strength and the conductivity of 24 200907077 were lowered, and bending was performed. Sex also deteriorated. In Comparative Example 53, since the content of B is higher than the range specified in the present invention, Ni-PB or BP 会 is formed during melting and casting, and b ^ ^ ! is formed at the 廿, and then the amount of the second phase particles is obtained. The reduction, the strength and the electrical conductivity are lowered, and the bending workability is also deteriorated. In Comparative Examples 54 to 57, it was due to Fe, Co, Mn, Ti, and Zr! The total content of the above species is higher than the predetermined range of the present invention, so that the second phase particles are reduced, and the crystals of the Fe, Co, Mn, Ti, Zr and P or the second phase particles are coarsely formed, and the second phase particles are The evaluation results are outside the scope of the present invention, and thus the strength is lowered. In Comparative Example 5, the electric conductivity was lowered because the short diameter b of the second phase particles was lower than the range of the present invention. In Comparative Example 5, "the short diameter b of the second phase particles was higher than the range specified in the present invention, so the strength was low. In Comparative Example 6, since the major axis a and the minor axis b of the second phase particles are lower than the predetermined range of the present invention, the strength and electrical conductivity are low. In Comparative Examples 61 and 62, since the major axis a and the minor axis b of the second phase particles were higher than the predetermined range of the present invention, the degree of strength increase due to cold rolling was small, and the strength was low. 25 2 907 [2] 377 rsj in 赛Ον »^4 «Τί σ; 一卜οΜ 00 00 m — ο is »r&gt;&lt;Ν m ※ inchΌ vS r*l Ό Η m CS ο (Ν « η &lt;Ν ro ν&gt; Ρϊ i 卜 SO Γ-· Η ν&gt;=&quot;· 〇\ m •η »Τί Tensile strength (Mpa) v*&gt;v~&gt; 00 〇〇00 ο m 00 ο s 00 ν*&gt; 00 j^· ο 00 m ※ ※ ※ ※ «Λ οο S 00 ※ ο ο ν 〇 & ※ ※ & Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν S &gt;r&gt; Bending workability 〇〇〇0 〇〇〇〇〇〇〇※ ※ ※ ※ &lt;] &lt;] ※ 〇〇〇ο ※ &lt;] &lt;1 0 ο 0 0 0 〇〇〇〇 Area ratio C (%) 00 〇ΓΛ ΟΝ m On »Τ) σν 00 os § Ό Ο in ON 〇\ 00 ※ ※ ※ ※ ※ &gt;*〇ON m Os ※ οο ο ο V* ON m 00 ※ 〇ο «Τϊ ΓΟ ο Ο Ο ο Ο aJ 屮^13⁄4 S — (Ν二V» Ρ: ※ ※ ※ ※ cn ※ fS rs II ※ &lt;Ν (Ν rn ιη fS 00 V) mm (Ν ^r two mr 1 Correct (N 姊^ ε' ir&gt; (N (Ν mm 00 m Os ΟΟ (Ν &lt;N &lt;N ※ ※ ※ ※ ※ s ※ fS ΟΝ fS &lt;N 00 ※ 〇Μ 00 Ό 沄§ οο ο (Ν 00 ο ρ&gt;· ^ £ O ΜΊ IT) οο ο ο S Ό 沄Ό Ρ; m Ο Ό ※ ※ ※ m ※ in Γ&lt;Ί ※ ON *τ&gt; 00 οο ΟΟ 00 in (Ν S ο Os 卜 s heat Rollability 1 Cracks 1 1 Cracks 1 1 Cracks 1 1 Cracks 1 1 Cracks 1 1 Cracks 1 Disc 碡墉 0. Carbon 墉 m 墉Fe+Co+ Mn+Ti+Zr 3 — ο ο 〇 ο 〇〇〇O 2 s P s ο S ο 蠖〇ο οο 〇m ο m 〇〇s ο ο s Ο ο 浅 〇〇〇 〇 〇 〇 〇 〇〇 & & & & & & & & & & & & 2 00 〇〇ο 〇m ο 〇〇m ήίϊ〇&quot;&lt;&lt;&lt;&&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; 3 〇 f f f f 棵 棵ο c&gt; 〇〇4〇5 ο ο ο stack stack 〇〇 〇〇 22 mm stack stack η. m &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; 4 &lt;&lt;&lt;&lt;&lt;&lt; 33⁄4 卜ΓΟ ο CN Γ〇V» m SO 卜 ON 00 ON 00 fN Os 00 〇\ ON Bu «η ο (Ν 卜卜卜卜卜ζ TT — iri inch·—— ur> 寸 inch — fN — Tt· inch inch Ί* Let Φ Φ &lt;ς Φ Φ Order 3 u Life poetry · Sai·Ti Ming w; 〇 poetry · KS. 敢赛·命% Μ Μ Μ Μ M 迤 Μ Μ Umbrella umbrella Umbrella ¥ WW ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ I ο.οοι 1 | 0.001 | 1 ο.οοι 1 1 0.020 1 1 0.001 ι \ 0.001 | 1 ο.οοι] 1 ο.οοι 1 | 0.001 | 1 0.001 ι 1 ο.οοι 1 1 0.001 ι | 0.001 | I ο.οοι 1 1 0.001 ι \ 0.001 1 1 ο.οοι 1 | 0.001 | 1 ο.οοΠ 1 ο.οοι 1 1 ο.οοι 1 1 0.001 I 1 0.110 ι | 0.001 | 1 0.001 ι I 0.001 | i ο.οοι 1 ο.οοι 1 p | 0.001 | 0.001 | 0.001 1 1 0.001 i 1 ο.οοι ι I ο.οοι I | ο.οοι | I ο.οοι 1 | 0.001 | 1 ο.οοι 1 1 0.020 1 1 ο.οοιΠ 1 ο.οοι | 1 ο.οοι 1 I ο.οοι 1 | 0.001 | 10.001 ι I ο.οοι 1 1 ο.οοι 1 I ο.οοΠ I ο.οοι | 丨0.001] I ο.οοι 1 1 0.001 1 | 0.001 | | 0.001 1 1 ο.οοι 1 1 ο. Οοι 1 1 0.020 ι 1 0.040] I 0.001 | 1 0.0011 :0.001 | ο.οοι 1 ο.οοι | cs I o.ool 1 0.001 | 0.001 1 1 Ο^ΟΜ 1 0.001 ι I ο.οοι II ο.οοι II Ο.οοι | 1 ο.οοι 1 1 o.oio 1 1 0.0101 1 ο.οοι ] 1 ο.οοι I 1 ο.οοι 1 1 ο.οοι | 1 ο.οοΤΙ 1 ο.οοι 1 I ο.οοι | 1 ο.οοι 1 1 ο.οοι 1 I ο.οοι | 1 ο.οοι 1 1 ο.οοι 1 1 ο. Οοι 1 [ο.οοΠ 1 ο.οοι | 1 0.020 1 1 ο.οοι 1 1 0.030 1 1 ο.οοι 1 | 0.001 | 1 ο.οοι 1 | 0.001 | ! 0.001 1 ο.οοι | 1 0.001 I o. Ool | 0.001 1 ο.οοι 1 ο.οοι ! | 0.001 | | 0.001 I 丨 0.001 | | 0.030 1 1 0.030 ι 1 ο.οοι 1 1 ο.οοι 1 I ο.οοι 1 I ο.οοι 1 I ο. Οοι 1 1 o.oio 1 1 ο.οοι 1 I ο.οοι | 1 ο.οοι 1 1 ο.οοι 1 | 0.001 | 1 ο.οοι 1 1 ο.οοι | | 0.001 1 1 0.001 I 1 ο.οοι 1 1 0.020 1 1 ο.ιιο 1 1 0.001 ι 1 ο.οοι 1 1 0.001 | ο.οοι 1 0.001 | 0.001 1 ο.οοι | 1 a) 4&gt; U- 1 o.ool : | 0.001 ! Ιο.οοι ι Ιο.οο ι Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 | 0.040 | Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 I ο.οοι 1 10.001 | 丨0.001 | 1 0.020 1 Ιο .οοι 1 Ιο.οοι | Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 Ιο.οοι 1 I ο.οοι 1 | 0.001 1 Ιο.οοι 1 1 0.050 | 1 0.090 1 Ιο.οοι 1 1 0.0301 Ιο.οοι 1 Ιο.οοι ] Ιο.οοι 1 10.001 | I 0.001 1 ! .οοι | o 1 0.0010 | 0.0015 1 0.0018 m S ο ο 1 0.0030 ; 1 0.0031 ! 1 0.0025 ι | 0.0025 | | 0.0032 | 1 0.0019 ι 1 0.0021 1 1 0.0014 1 | 0.0022 | | 0.0029 | | 0.0031 | | 0.0019 1 1 0.0024 ι | 0.0019 | 1 0.0009 ι 1 0.0010 1 1 0.0028 ι 1 0.0022 ι | 0.0020 | | 0.0021 | 1 0.0072 ι | 0.0015 1 1 0.0023 ι ! 0.0030 1 0.0028 1 0.0020 ι 0.0018 1 0.0018 1 0.0018 | 0.0018 | 0.0018 | a 〇〇ο ο ο ο 1 〇〇 〇〇 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ο ο ο 〇 〇〇 〇 I I I I I I I I I I I I I I I I I I 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Οο.ιο οοοοο οοοοο οοοοοο | 10.001 1 1 ο.οοι 1 1 ο.οοι 1 Ιο.οοι 1 0.001 1 0.001 1 ο.ο Οι 1 0.001 1 ο.οοι 1 ο.οοι | ο.οοι | CQ | 0.025 | | 0.028 | 1 0.031 1 1 0.044 ι 1 0.061 ι 1 0.050 ι 1 0.038 1 | 0.041 | 1 0.031 1 1 0.033 ι 1 0.047 ι 1 ο.οοι 1 | 0.003 | | 0.001 | | 0.001 | | 0.002 | 1 0.035 1 | 0.044 ι 1 0.032 ι 1 0.025 ι 1 0.051 ι 1 0.035 ι | 0.045 | | 0.050 | 1 0.038 ι | 0.093 | 1 0.033 ι 1 0.052 ι 1 0.044 ι 0.056 ι :0.051 ι 0.051 ι 0.051 1 0.051 | 0.051 | I 0.Π0 : 1 0.020 ί 1 0.050 ι 1 0.090 ι 1 0.040 ι 1 0.110 1 1 0.090 1 | 0.130 | 1 0.140 ι 1 0.050 1 1 0.090 I 1 ο.ιιο 1 | 0.080 | 1 0.060 | 1 0.050 | 1 0.070 | 1 0.120 1 | 0.090 1 1 0.290 ι 10.001 1 1 0.100 1 1 0.070 ι | 0.090 | | 0.110 | 1 0.060 1 | 0.100 | 1 0.060 1 1 0.090 ι 1 0.080 1 1 0.100 ι 1 0.080 ι 1 0.080 ι | 0.080 | i 0.080 ι 0.080 | cu CN 〇fN Ο ο ο Os Ο 00 ο Ό Ο Ο O Os Ο ο ΐ/-&gt; ο 00 〇o 00 〇*Ti 〇 00 〇 ο 2 ο ο ο 〇2 ο οο ο &gt;η 卜 卜 卜 卜 卜 卜 » » » » » » » » » » » » » » » » » » » » » » » » » Ό Ο Ρ ο •Τ) Os ο σ ο ^ ^ f f f f f f f f f f 00 00 00 00 00 〇00 〇00 ο 00 «Λ ο m V» ο ΟΝ m ο § 〇 (Ν Ο 〇ο ο (Ν Ο ο (Ν ο § ο g ο g 〇§ 〇§ 〇〇2 00 (N 〇\ (Ν &lt;Ν ΓΟ m Ό οο ο m 〇 inch 5 •Λ Μ (Ν «Λ m ν> Ό οο «τ» 〇V*} S (N 4佥驭荃93 200907077 [Simple description] Benefits/»» * [Main component symbol description] t *»&gt; 27

Claims (1)

200907077 十、申謗專利範面: —1.-種熱加工性優異之高強度高導電性銅合金,i以 Ni : 0.50〇/o^.00〇/o , P ; 0.10〇/〇^25〇/〇 , A與P之含量比率Ni/p ·· 4.0〜5.5,且,B : G.嶋%邊〇7㈣, 〇 : 0.0050%以下,Fe、 含2:總計為〇. 〇 5 %以下, 質所構成,其特徵在於: Co ' Mn、Ti、Zr中之】種以上之 且剩餘部分由Cu及不可避免之雜 針對第2相粒子夬儿,&amp; Λ 乂長住為a、以短徑為b時, 方、取、、’V軋刖,長徑a為2〇 nm〜5〇 nm且縱橫比狂几為^ 之第2相粒子⑷相對於銅合金中所包含之所有第2相粒子 之面積總和占8G%以上,且導電率為45%IACS以上。 2. —種熱加工性優異之高強度高導電性銅合金,其以 質量比例計,含有Ni: 〇_5〇%〜1〇〇%,p: 〇1〇%〜Ο—。, Mg : 0.01〜0.20%,Ni與p之含量比率Ni/p : 4 〇〜5 $,且, B Co、Μη、Ti、 0-005%〜〇·〇7〇〇/。’ 〇 : 〇 〇〇5〇%以下,以 Zr中之1種以上之含量總計為〇〇5%以下,且剩餘部分由 Cu及不可避免之雜質所構成,其特徵在於: 具有於最終冷軋前短徑b為1〇〜25 nm且縱橫比a/b為 2〜50之第2相粒子(B),該第2相粒子(B)與長徑&amp;為 nm〜50 nm且縱橫比a/b未滿2之第2相粒子(c)的總和相 對於銅合金中所包含之所有第2相粒子之面積總和纟8〇% 以上,且導電率為45%iACS以上。 3.如申請專利範圍第i《2項之熱加工性優異之高強 度高導電性銅合金’其中’ Sn及In中i種以上總計含有 28 200907077 0.01%〜1.0%。 十一、圖式:200907077 X. Shenyi Patent Standard: -1.- High-strength and high-conductivity copper alloy with excellent hot workability, i with Ni: 0.50〇/o^.00〇/o, P; 0.10〇/〇^25 〇/〇, content ratio of A to P Ni/p ·· 4.0~5.5, and B: G.嶋% edge 〇7(4), 〇: 0.0050% or less, Fe, 2: total 〇. 〇5 % or less The composition of the mass is characterized in that: Co' Mn, Ti, and Zr are more than the above species, and the remainder is composed of Cu and unavoidable impurities for the second phase particles, &amp; Λ 乂 is a, short When the diameter is b, the second phase particles (4) having a long diameter a of 2 〇 nm to 5 〇 nm and an aspect ratio of ^ are compared with all the second parts included in the copper alloy. The sum of the area of the phase particles accounts for 8 G% or more, and the conductivity is 45% IACS or more. 2. A high-strength, high-conductivity copper alloy excellent in hot workability, which contains Ni: 〇_5〇%~1〇〇%, p: 〇1〇%~Ο- by mass ratio. , Mg : 0.01 to 0.20%, content ratio of Ni to p Ni/p : 4 〇 〜 5 $, and, B Co, Μη, Ti, 0-005%~〇·〇7〇〇/. 〇: 〇〇〇5〇% or less, the content of one or more of Zr is 〇〇5% or less in total, and the remainder is composed of Cu and unavoidable impurities, and is characterized by: having a final cold rolling The second phase particle (B) having a front short diameter b of 1 〇 to 25 nm and an aspect ratio a/b of 2 to 50, the second phase particle (B) and the long diameter &amp; nm nm to 50 nm and an aspect ratio The total of the second phase particles (c) having a/b less than 2 is 纟8〇% or more with respect to the total area of all the second phase particles contained in the copper alloy, and the electric conductivity is 45% iACS or more. 3. For example, the high-strength, high-conductivity copper alloy excellent in hot workability of the second item of the second item is contained in the 'Sn and In', and the total amount of the above-mentioned Sn and In is 28 200907077 0.01% to 1.0%. XI. Schema:
TW097110952A 2007-03-30 2008-03-27 High-strength, high-conductivity copper alloy with excellent hot workability TWI384083B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007093530A JP5101149B2 (en) 2007-03-30 2007-03-30 High strength and high conductivity copper alloy with excellent hot workability
JP2007093467A JP4950734B2 (en) 2007-03-30 2007-03-30 High strength and high conductivity copper alloy with excellent hot workability

Publications (2)

Publication Number Publication Date
TW200907077A true TW200907077A (en) 2009-02-16
TWI384083B TWI384083B (en) 2013-02-01

Family

ID=40151065

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097110952A TWI384083B (en) 2007-03-30 2008-03-27 High-strength, high-conductivity copper alloy with excellent hot workability

Country Status (2)

Country Link
KR (1) KR100994651B1 (en)
TW (1) TWI384083B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036341A (en) * 1989-06-02 1991-01-11 Dowa Mining Co Ltd High strength and high conductivity copper-base alloy
JP3465108B2 (en) * 2000-05-25 2003-11-10 株式会社神戸製鋼所 Copper alloy for electric and electronic parts
TW200702458A (en) * 2005-03-28 2007-01-16 Sumitomo Metal Ind Copper alloy and process for producing the same
US20090084473A1 (en) * 2005-07-07 2009-04-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet

Also Published As

Publication number Publication date
KR100994651B1 (en) 2011-01-24
TWI384083B (en) 2013-02-01
KR20080089282A (en) 2008-10-06

Similar Documents

Publication Publication Date Title
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI503425B (en) Copper alloy for electronic device, manufacturing method thereof, and rolled copper alloy for electronic device
JP4950734B2 (en) High strength and high conductivity copper alloy with excellent hot workability
TW200948990A (en) Cu-ni-si alloy to be used in electrically conductive spring material
TW200821394A (en) Copper alloy sheet material for electric and electronic instruments and method of producing the same
TW200902732A (en) Cu-Ni-Si-based alloy for electronic material
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
TW201229257A (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, and rolled copper alloy for electronic device
TW200946697A (en) Cu-ni-si-co-cr alloy for electronic material
JP7038823B2 (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
JP2013227600A (en) Cu-Ni-Si BASED COPPER ALLOY
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
TW201209181A (en) Copper-cobalt-silicon alloy for electrode material
TW201139704A (en) Cu-co-si alloy material
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP4937628B2 (en) Copper alloy with excellent hot workability
JP5101149B2 (en) High strength and high conductivity copper alloy with excellent hot workability
TW200907077A (en) High-strength and high-electric conductivity copper alloy having excellent hot workability
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP5079574B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
JP4750602B2 (en) Copper alloy with excellent hot workability

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees