TW200902207A - Laser processing apparatus - Google Patents

Laser processing apparatus Download PDF

Info

Publication number
TW200902207A
TW200902207A TW097119012A TW97119012A TW200902207A TW 200902207 A TW200902207 A TW 200902207A TW 097119012 A TW097119012 A TW 097119012A TW 97119012 A TW97119012 A TW 97119012A TW 200902207 A TW200902207 A TW 200902207A
Authority
TW
Taiwan
Prior art keywords
laser
electron microscope
lens
scanner
laser light
Prior art date
Application number
TW097119012A
Other languages
Chinese (zh)
Other versions
TWI343850B (en
Inventor
Yoshitaka Iwashita
Kenichi Ijima
Masasi Naruse
Atsuhiro Kaneda
Nobutaka Kobayashi
Takaaki Iwata
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW200902207A publication Critical patent/TW200902207A/en
Application granted granted Critical
Publication of TWI343850B publication Critical patent/TWI343850B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)

Abstract

An objective of the present invention is to obtain a laser processing apparatus capable of reducing difference of processing quality due to two laser lights in simultaneous multi-points irradiation type laser processing apparatus, to increase processing quality. A laser processing apparatus of the present invention includes: a first polarizing means (21) dividing one laser light L into two laser lights Lα, Lβ having different light paths, a galvano scanner (23a) arranged on the light path of the laser light Lα, scanning the laser light Lα in a first direction on an XY table (11), a galvano scanner (23b) arranged on the light path of the laser light Lβ, scanning the laser light Lβ in a second direction on the XY table (11) which is different from the first direction, a second polarizing means (25) mixing the two laser lights Lα, Lβ, a pair of main galvano scanners (26) scanning the laser lights Lα, Lβ in a third direction and a forth direction on the XY table (11) which are different from each other, and an fθ lens (28) respectively focusing the laser lights Lα, Lβ from the main galvano scanner (26) in predetermined positions.

Description

200902207 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種以對印刷基板等被加工物進行開孔 加工為主要目的之雷射加工裝置,尤其有關一種以提升生 產性為目的之同時多點照射型雷射加工裝置。 【先前技術】 習知技術中,已提案有一種為了謀求提升生產性而將 來自雷射光源的一束雷射光分光成兩束而能夠同時加工兩 個孔的雷射加工裝置(參照例如專利文獻1)。在該雷射加 工裝置中,係以第1偏光裝置將一束雷射光分光成兩束雷 射光,再導引至使該兩束雷射光的光路大致一致的第2偏 光裝置。此時,經第1偏光裝置而分光的雷射光之中的一 方的雷射光(以下稱為主光束)係經由一組鏡片(轉向鏡, bend mirror.)而被導引至第2偏光裝置。此外.,另一方的 雷射光(以下稱為副光束)係在藉由一對第1電鏡掃描器 (galvano scanner)群而沿著互不平行的2轴方向進行掃描 ' 後被導引至第2偏光裝置而混合。通過第2偏光裝置的兩 束雷射光係藉由一對第2電鏡掃描器群而沿著互不平行的 2轴方向進行掃描,再入射於fe透鏡,而照射至工作台上 的被加工物。在此,由於副光束係藉由第1電鏡掃描器群 而進行掃描,與通過一組鏡片而來的主光束相比,副光束 的角度存在有若干偏離,因此通過透鏡後的主光束與 副光束便分別照射在工作台上的相異位置。藉此,便能夠 以一個f0透鏡同時加工兩個孔,而提升生產性。 4 320239 200902207 除此之外,尚提案有另一種雷射加工裝置,係以第1 偏光裝置將一束雷射光分光成兩束雷射光,並藉由一對電 鏡掃描器使各束雷射光朝2軸方向進行掃描,再將兩束雷 射光導引至第2偏光裝置,之後再以一個ίθ透鏡同時加 - 工兩個孔而使生產性提升(參照例如專例文獻2)。 ' 此外,亦有在專利文獻1揭示的雷射加工裝置中產生 用以在目的位置進行孔加工的各電鏡掃描器的角度指令值 之技術(參照例如專利文獻3)。 專利文獻1 :國際公開第03/041904號公報 專利文獻2 :日本特開2005-230872號公報 專利文獻3 :國際公開第03/080283號公報 【發明内容】 (發明所欲解決之課題) 然而,在專利文獻1所記載的雷射加工裝置中,經分 光之一方的副光束侧係經由合計兩組(亦即4台)的電鏡掃 描器,比主光束側的一組(2台)多。而由於電鏡掃描器係 使鏡片部旋轉而使用,與經由固定鏡片的情形相比較不穩 定,因此經由較多上述電鏡掃描器的副光束必然有加工品 質容易惡化的問題點。 而且,關於副光束,係藉由設置在與透鏡的前焦 點位置(f Θ遂鏡前的光束掃描理想位置)隔有距離之位置 的第1電鏡掃描器群而使光束進行掃描。因此,若從ίθ 透鏡的前焦點位置到第1電鏡掃描器群的距離愈遠,則由 於ίθ透鏡的特性,加工孔品質(加工孔真圓度與焦點餘裕 5 320239 200902207 度)會有惡化的傾向,結果便有對被加工物進行加工的加工 孔品質亦惡化之問題點。 此外,專利文獻所2記載的雷射加工裝置係經第1偏 光裝置分光成兩束的雷射光皆非經由固定鏡片而是經由電 鏡掃描器而進行掃描之構成,由於在f 0透鏡與電鏡掃描 器之間需要有設置第2偏光裝置的空間,因此不論哪一種 雷射光皆在與f <9透鏡的前焦點位置隔有距離之位置進行 掃描。結果便有不論哪一種雷射光的加工孔品質皆惡化的 問題點。 而且,在如專利文獻1所記載的雷射加工裝置之構成 中,由於光學系統複雜,因此在專利文獻3所記載之為了 控制光束位置而必須進行的各電鏡掃描器之角度指令值等 的調校(calibration)作業中,亦有在試加工時需要較多的 點數而花費時間的問題點。 本發明係鑒於上述而研創者,其目的在於獲得一種降 低同時多點照射型雷射加工裝置中因兩束雷射光所造成的 加工品質之差距,而能夠謀求加工品質的提升之雷射加工 裝置。此外,本發明的另一目的在於獲得一種能夠容易地 進行控制用來照射雷射光的加工位置所需要的調校作業之 雷射加工裝置。 (解決課題的手段) 為了達成上述目的,本發明的雷射加工裝置係對配置 於工作台上的被加工物上的兩點以上同時照射雷射光以進 行加工之雷射加工裝置,該雷射加工裝置係具備:第1偏 6 320239 ZUUyU22U7 (光裝置,係將一束雷射光分光成光 射光;第1電鏡掃描器,係配置 相異的第1與第2雷 上,且使前述第丨 刖述第1雷射光的光路 掃描;第2電鏡掃::先剛述工作台上的…方向進行 上’且使前述第2雷朝=置在前述第2雷射光的光路 .向相異的第2方向;$朝前, 上之與前述第1方 第1及第2雷射光·主::弟2偏光裝置,係混合前述 電鏡掃描器所組成 :掃描器,係由—對第3及第4 前述工作台上^目異的述第1及第2雷射光朝 0透鏡,係使來自前 /、 4方向進行掃描;以及f 射光分別聚光於前述被加^ =插器的前述第1及第2雷 (發明的效果) 务上的預定位置。 依據本發明,係机 _ ·.射光皆是經由3 二第1偏光裝置分光的任何雷 持同時多點照射:生^掃插器之構成,因此具有能夠在維 【實施方式】 性下提升加工品質之效果。 以下,參照附圖,经 較佳實施形態。另說明本發明的雷射加工裝置的 定者。 ,本發明並非由下述的實施形態 實施形態1 在進行本發明帝 雷射加工裝置構成二工裝置的說明前,先針對: 時多點照射型雷t要進行說明。第14圖係習知你 備:XY ^乍台口工1置的構造圖。雷射加工裝置/ ’係载置印刷基板等被加工物212 320239 7 200902207 能夠在水平面(χγ平面)内移動;以及光學系統,係用以將 自未圖示的雷射振盪器射出的雷射光L照射於ΧΥ工作台 211上的被加工物212。其中,在第14圖中,以載置被加 工物212的ΧΥ工作台211的面為水平面,以在水平面内相 - 互正交的兩軸為X軸與Υ轴,以與該X軸與Υ軸兩者垂直 的軸為Ζ軸。 光學系統係具備:第1偏光裝置222,係由偏光分束 鏡(beam splitter)等構成,將自未圖示的雷射振盪器射出 的雷射光L分光成兩束雷射光La、Lb;第2偏光裝置223, 係由偏光分束鏡等構成,將經第1偏光裝置222分光且行 進於不同光路而來的兩束雷射光La、Lb混合(mix),並導 引至大致相同的光路;以及ίθ透鏡228,係將來自第2偏 光裝置223的經混合的雷射光La、Lb聚光於被加工物212 上。另外,以使經分光的兩束雷射光La、Lb在第1偏光裝 置222與第2偏光裝置223之間的光路長度成為相同之方 式構成。此外,以前述第2偏光裝置223將兩束雷射光La、 Lb混合的理由係,為了使用一個透鏡228來同時加工 兩個孔。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing apparatus mainly for the purpose of performing hole drilling on a workpiece such as a printed substrate, and more particularly to an object for improving productivity. Multi-point illumination type laser processing device. [Prior Art] In the prior art, a laser processing apparatus capable of simultaneously processing two holes by splitting a laser beam from a laser light source into two beams in order to improve productivity is known (refer to, for example, the patent document) 1). In the laser processing apparatus, a laser beam is split by a first polarizing means into two beams of laser light, and is guided to a second polarizing means for substantially matching the optical paths of the two beams of laser light. At this time, one of the laser beams split by the first polarizing means (hereinafter referred to as a main beam) is guided to the second polarizing means via a set of lenses (bend mirrors). In addition, the other laser light (hereinafter referred to as a sub-beam) is guided by a pair of first galvano scanners in a non-parallel two-axis direction. 2 polarized devices are mixed. The two laser beams passing through the second polarizing device are scanned in a two-axis direction that is not parallel to each other by a pair of second electron microscope scanner groups, and are incident on the fe lens to be irradiated onto the workpiece on the table. . Here, since the sub beam is scanned by the first electron microscope scanner group, there is a slight deviation in the angle of the sub beam compared to the main beam passing through a group of lenses, so the main beam and the pair passing through the lens The beams are illuminated at different locations on the table. Thereby, it is possible to simultaneously process two holes with one f0 lens to improve productivity. 4 320239 200902207 In addition, another laser processing device is proposed, which uses a 1st polarizing device to split a laser beam into two beams of laser light, and a pair of electron microscope scanners to make each beam of laser light The two-axis direction is scanned, and then two laser beams are guided to the second polarizing means, and then two holes are simultaneously added by one ίθ lens to improve productivity (refer to, for example, Special Document 2). Further, in the laser processing apparatus disclosed in Patent Document 1, there is a technique of generating an angle command value of each of the electron microscope scanners for performing hole processing at the target position (see, for example, Patent Document 3). Patent Document 1: International Publication No. 03/041904, Patent Document 2: JP-A-2005-230872, Patent Document 3: International Publication No. 03/080283 (Summary of the Invention) However, In the laser processing apparatus described in Patent Document 1, the sub-beam side of one of the split beams passes through a total of two sets (that is, four sets) of electron microscope scanners, which is larger than one set (two sets) on the main beam side. On the other hand, since the electron microscope scanner is used to rotate the lens portion, it is unstable compared with the case of passing through the fixed lens. Therefore, the sub-beam passing through many of the above-described electron microscope scanners necessarily has a problem that the processed product is easily deteriorated. Further, regarding the sub beam, the light beam is scanned by the first electron microscope scanner group disposed at a position spaced apart from the front focal point position of the lens (the ideal position of the beam scanning front of the mirror). Therefore, if the distance from the front focus position of the ίθ lens to the first electron microscope scanner group is farther, the quality of the machined hole (the roundness of the machined hole and the focus margin 5 320239 200902207 degrees) may deteriorate due to the characteristics of the ίθ lens. As a result, there is a problem that the quality of the processed hole for processing the workpiece is also deteriorated. Further, in the laser processing apparatus described in Patent Document 2, the laser beams split by the first polarizing means are not scanned via the fixed mirror but are scanned by the electron microscope scanner, and are scanned by the f 0 lens and the electron microscope. A space for the second polarizing means is required between the devices, so that any kind of laser light is scanned at a position spaced apart from the front focus position of the f <9 lens. As a result, there is a problem that the quality of the processed holes of any type of laser light deteriorates. Further, in the configuration of the laser processing apparatus described in Patent Document 1, since the optical system is complicated, the angle command value of each of the electron microscope scanners necessary for controlling the position of the light beam described in Patent Document 3 is adjusted. In the calibration work, there are also problems in that it takes a lot of points during trial processing and takes time. The present invention has been made in view of the above, and an object of the present invention is to provide a laser processing apparatus capable of reducing processing quality by reducing the difference in processing quality caused by two laser beams in a simultaneous multi-point laser processing apparatus. . Further, another object of the present invention is to obtain a laser processing apparatus capable of easily performing a calibration operation required for controlling a processing position for irradiating laser light. (Means for Solving the Problem) In order to achieve the above object, a laser processing apparatus according to the present invention is a laser processing apparatus that simultaneously irradiates laser light at two or more points on a workpiece placed on a table to perform processing. The processing apparatus includes: a first offset 6 320239 ZUUyU22U7 (an optical device that splits a laser beam into a light beam; and a first electron microscope scanner that arranges the first and second mines, and the first The optical path scan of the first laser light is described; the second electron mirror scan: the first direction of the workbench is performed, and the second ray is placed on the optical path of the second laser light. The second direction; $ forward, the first and the first first and second laser light, the main: brother 2 polarizing device, which is composed of the above-mentioned electron microscope scanner: the scanner is made up of - the third and On the fourth stage, the first and second laser light are directed toward the zero lens, and the first and second laser beams are scanned from the front/four directions; and the f-rays are respectively condensed on the first portion of the added 1 and 2nd thunder (effect of the invention) a predetermined position on the service. According to the present invention, the machine _ ·. All of them are split by the three-second first polarizing means, and the multi-point simultaneous illumination: the structure of the raw sweeper has the effect of improving the processing quality in the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION The laser processing apparatus of the present invention will be described. The present invention is not limited to the following embodiment. Before the description of the apparatus for constructing a second laser apparatus according to the present invention, For: Multi-point illumination type lightning t is to be explained. Figure 14 is a schematic diagram of the structure of XY ^乍台口工1. Laser processing equipment / 'system mounting substrate 212 320239 7 200902207 is capable of moving in a horizontal plane (χγ plane); and an optical system for irradiating laser light L emitted from a laser oscillator (not shown) to the workpiece 212 on the pallet 211. In Fig. 14, the surface of the boring table 211 on which the workpiece 212 is placed is a horizontal plane, and the two axes orthogonal to each other in the horizontal plane are the X-axis and the Υ-axis, and the X-axis and the Υ-axis. The vertical axis of the two is the Ζ axis. The first polarizing device 222 is configured by a beam splitter or the like, and splits the laser light L emitted from a laser oscillator (not shown) into two laser beams La and Lb; The polarizing device 223 is configured by a polarizing beam splitter or the like, and mixes the two laser beams La and Lb which are split by the first polarizing device 222 and travels on different optical paths, and is guided to substantially the same optical path; And the ίθ lens 228 condenses the mixed laser light La and Lb from the second polarizing device 223 on the workpiece 212. Further, the two beams of laser light La and Lb that are split are in the first polarizing device. The optical path length between the 222 and the second polarizing means 223 is the same. Further, the reason why the two types of laser light La, Lb are mixed by the second polarizing means 223 is to simultaneously process two holes by using one lens 228.

為了易於了解,係說明在雷射光L、La、Lb的光路上 配置鏡片221a至221d與電鏡掃描器224a、224b、226a、 226b,俾使雷射光L、La、Lb的光路成為與上述所設定的 X轴、Y軸、Z軸的任一者大致平行的情形。此情形下,為 了以90度的角度折彎(反射)雷射光L的光路,配置在光路 上的鏡片221a至221d係配置成例如相對於圖中所示之XYZ 8 320239 200902207 座標系統的任一軸形成45度的角度。此外,在由第i偏光 裝置222反射的雷射光Lb的光路上係設有用以將雷射光 Lb朝2軸方向進行掃描並導引至第2偏光裂置223 S 一對 電鏡掃描器224a、224b。電鏡掃描器224a係以令鏡片225a 的旋轉軸成為X軸方向之方式配置,電鏡掃插器224b係以 令鏡片225b的旋轉軸成為Y轴方向之方式配置。藉由使電 鏡掃描器224a進行掃描,便能夠使雷射光让朝χγ3工作台 上的X軸方向進行掃描,藉由使電鏡掃描器以处進二 掃描,便能夠使雷射光Lb朝XY工作a91i, 進行掃描。 作。川上的γ軸方向 置有^自偏光裝置223 W透鏡⑽之間係設 置有將來“ 2偏光裝置223 _混合 h i.. 2軸方向進行掃描並導引至被加先a 器226a、226b。電鏡掃描器孤係^= 一對電鏡掃描 軸成為Z軸方向之方式配置,電鏡 m27a的旋轉 227b的旋轉軸成為^跳b係以令鏡片 器226a進行掃描,便能夠使雷—置1由使電鏡掃描 川上的X轴方向進行掃描,藉由使工作台 掃描,便能多句使雷射光La、Lb朝 蛛描器進行 方向進行掃描。 工作台211上的Y: '下針對如上述構造的雷射加 明。將自未圖示的雷射錄器射出的^的動作進行: 調整至45度的方向,該雷㈣光L的偏光方1 反射而入射於第1偏光裝置222。第】鏡片221a、22. $ 1偏光裝置222係: 320239 9 200902207 ,該雷射光分光成偏光方向與入射面成垂直的p波之雷射 光、及偏光方向與入射面成平行的s波之雷射光。 穿透第1偏光裝置222的雷射光(以下稱為主光束)La 係經由兩個鏡片221c、222ld而被導引至第2偏光裝置 223另方面’經第1偏光裝置222反射的雷射光(以下 牙冉副光束)Lb係藉由電鏡掃描器224a、2241)朝2轴方向進 行掃描後被導引至第2偏光裝置223。此處 ,主光束La係 怪4地在同樣的位置被導亏丨至第2偏光裝置223 ,而副光 束Lb係藉由控制電鏡掃插器22乜、224b的擺角來調整入 射於第2偏光裝置223的位置與角度。 ^之後,主光束La係由第2偏光裝置223反射,副光束 =係穿透第2偏光裝£ 223 ’藉此,兩束雷射光La、Lb係 行進於大致相同的光路而被導引至電鏡掃描器 226b。接著’在藉由電鏡掃描器2脱、22此而朝2轴方向 進行掃描後被導引至透鏡228,而分別聚光於被加工物 t 上的預定位置’以實施加卫。此時,藉由使電鏡掃描 器224a、mb、226a、2咖進行掃描,便能夠將主光束 U ,剎光束Lb照射於被加工物212上的任意相異兩點。 :寺知描區域内的孔之加I全部結束後,藉由使χγ工作台 1朝圖中的ΧΥ方向移動,便能夠實施下〆個掃描區域的 加工。 此處,使第1組的電鏡掃描器224a、224b分別成為某 =角度時’則經分光的雷射光Lb會在第2偏光裝置挪以 描、,曰出相同的執跡而加工相同的位置。現在,假設有兩 10 320239 200902207 加工孔位置…,首先,只要藉由第2 任-者H 2轴方向進行掃描以加工其中 孔加工i /)的孔位置’則主光束La便在該位置A進行 朝2軸方—要精由们組電鏡掃插器2恤、224b再 朝Z軸方向並從孔位置A往另— 二 描,則副光束叫更對另-孔位置Bit^的方向進行掃 第2:=在具有第14圖的構成之雷射加工裝置中, 26a' 226b^"^ L = 器224a、224b的功能係能夠視為如上述從 觀位置B之差分掃描,而容易於直覺上理解其 二:卜’實際上便如同其功能1 1組電鏡掃描器 所掃a描的tT8㈣角係比第2組電鏡掃描器226a、226b 、然而在上述的雷射加工裝置巾,經分光之一方的副 光束係、i由合計2組(亦即4台)、較多的電鏡掃描哭 2—24a、224b、226a、2。而由於電鏡掃描器係使鏡片; 方疋轉而使用’與經由固定鏡片的情形相比較不穩^,因此 畐:]光束:b:斤進行的加工必然有加工品質(此處所指之加工 扣質係‘掃插區域内的孔的真圓性·焦點餘裕度等加工孔 品質、:及加工位置精度偏差這兩點)容易惡化的問題點。 此=彳文透鏡228的前焦點位置到使光束進行掃插的 最遠的電鏡掃#器224a之長距離亦是加工品質(尤其是加 工孔品質)惡化的原因之一。 因此,本發明提供一種雷射加工裝置,其構成係設計 320239 11 200902207 為雖然兩束雷射光的加工品質比習知雷射加工裝置中的主 光束的加工品質差,但能夠使兩束雷射光的加工品質比習 知雷射加工裝置中的副光束的加工品質佳。以下,說明本 發明雷射加工裝置。 第1圖係本發明的雷射加工裝置的實施形態1的構成 圖第2圖係第1圖的雷射加工裝置的w透鏡的前焦點 位置附近的電鏡掃描器的配置關係圖。該雷射加工裝置係 ^備:χγ工作台u,係載置印刷基板等被加工物12,且 月匕多^在水平面(χγ平面)内移動;雷射振盡器2〇,係射出雷 射光L ;光學系統,係用以將從雷射振盪器2〇射出的雷射 光L照射於π工作台11上的被加工物12 ; CCKCharge-Ccmpled Device;電荷耦合元件)攝影機等攝 像裝置29,係在試加工時對XY工作台11上的加工位置進 仃攝衫,以及控制部3〇,係控制雷射振堡器29、構成光學 系統的後述電鏡掃插器23a、23b、26a、撕的鏡片角度、 ,像裝置29。其中’在第丨圖中,以載置被加工物i2 Λ Y工作13 11的面為水平面,以在水平面内相互正交的 車i。為Χ軸與Υ轴,以與該Χ軸與Υ軸兩者垂直的軸為ζ 等構ui'先係’、備.第1偏光裝置21,係由偏光分束 、構成’將從雷射振盪器n ^ 盗20射出的雷射光L·予以分光; 叫規片22a至22f,係、, 反射而導引至纽.帝 光的雷射光“、L々予 電鏡掃描哭 〆鏡掃描器23a、23b(以下,將該 平钿态23a、23b稱A %办 ,、、、—電鏡掃描器23a、23b),係 320239 12 200902207 各光路的雷射光La:、L/5在χγ工作台1;1上朝相異的方向 進行掃描;第2偏光裝置25,係由偏光分束鏡等構成,將 經第1偏光裝置21分光且行進於不同光路而來的兩束雷射 光La:、L/3予以混合並導引至大致相同的光路;電鏡掃描 器26a、26b(以下,將該等電鏡掃描器26a、26b稱為主電 鏡掃描器26a、26b) ’係使來自第2偏光裝£ 25之經混合 =雷射光La、LM XY工作台11±朝相異的方向進行掃 七田,以及Μ透鏡28 ’係將經混合的雷射光^ 於被加工物12上。在此,副電鎊# 卢聚先 申請專利範圍記載的第係對應 電鏡掃描器26a、26b係對應第3、’同樣地,主 另外,為了簡單起見,係就下述^電鏡掃描器。 fR光路上的鏡片22a至22f與電鏡掃二進行說明:配置 26b係以將雷射光L、La、Lb以田盗23a、23b、26a、 目的,而酉己置成例如相對於圖中所广的角度折彎(反射)為 軸形成45度的角度,俾使雷射光、丨取座標系統的任 為與X轴、γ軸、ζ軸中任—者大 /a、L/5的光路成 如下:穿透第1偏光裝置21的雷:仃。此外,光路構成 ^偏光農置25。並且構成為使心= $在第1偏光裝置21與第2偏 '兩束雷射光La 成為相同。 、置Μ之間的光路長z 置25反射,被第i偏光裝置21 _ La係被第2偏光裝 第2德,置25。並且構成為使麵分2雷射光W係穿无 > 偏光裝置21輿篦?.低土此 成為相同 在本實施形態1中 配 兩束雷射光La、LyS的光路=裝置U分心 果2 f的個數v 320239 13 200902207 ,^鏡掃#器23a、23b的個數皆係配置成在兩光路相等。此 ,、為了使兩束雷射光La、L万不會出現特性上的差異, 亦對電鏡掃描器的配置方法研擬對策。亦即,從Γθ透鏡 = 23a、23b的配置位置之光路長度皆係設 • 在兩光路相等。 I亦即’穿透第1偏光裝置21的雷射光(以下稱為α光 片的第2偏光裝置25的光路上係設有η(η為自然數: 至22c)及一個電鏡掃描器23a。此外,經第 偏光裝置2 \反射的雷射光(以下稱為万光束W之至第2 至22f\及/光路上係設有Ω(η為自然數)片的鏡片(22d 片。夢由上T鏡掃描器23b。而在第1圖的情況中,『3 片及電鏡#Ϊ構成,由於在兩光路上配置㈣數目的鏡 ..此通過兩光路上的雷射光的品質便成 此外,在本實施形態丨中, 「圖所示者’主電鏡掃描器26a細=7#ι圖與第2 以軸方向之方式配置’主電鏡掃二鏡上:的旋轉減 的旋轉軸成為Μ方向之26b^使鏡片^ *雷射進行㈣的前述電 27a、27b較佳為比私+以、去诗描态26a、26b的鏡片 實際上是不可能^ 、鏡28的前焦點位置F。然而 董與上述狀況接近的情形。亦即,ίΐί片,因此考慮儘 鏡片^與電鏡掃描器白在^鏡掃描器㈣的 鏡28的前焦點位置ρ之位置 训儘量接近於⑺透 —主電鏡掃描器26a、26b, 320239 14 200902207 俾使連結電鏡掃描器26a的鏡片27a的中心 描器26b的鏡片27b的中心位置之直線的中、、置與電鏡掃 透鏡28的前焦點位置F。但此時,考虑到u點成為f 0 26a、26b各自的鏡片27a、27b會進行二主電鏡掃描器 該等鏡片27a、27b兩者間不會發生干涉==必須以使 27a、27b(電鏡掃描器26a、26b)間之距離2二選擇兩鏡片 在第2 ®所㈣财係考麵電 27a的旋轉予以固定、使電鏡掃描哭2讣:6a的鏡片 形,如此一來,雷射光La、L/3往f° 仃旋轉時的情 便沿著Y軸方向改變。相反地,考慮:=的入射位置 鏡27b的旋轉予以固定、使電鏡掃描界兄插器26b的 情形,如此一來,雷、射光La、“往并進仃旋轉時的 置便沿著X轴方向改變。如此由^28的入射位 咖進订知描,便能夠改變雷射光& 26a、 的入射位置(入射角度)。 透鏡28 此外’光學系統係如第」圖 鏡掃描器孤與石光束L/?用的電=束k用的電 向係以不會成為相 古 見知描态2訃的掃描方 (假設為理想的⑺透鏡)以使鏡在…圖的例中, 方向的方式配置電鏡掃描器23a,俾:的旋轉軸成為以由 掃插器23a的掃# 俾使α光束La用的電鏡 作^ 其編為χ方㈣在^ 的電鏡掃描哭2Vl田态23b,俾使々光束用 」3b的㈣方向在緊接其後處係為Z方向而 320239 15 200902207 在χγ工作台η上則成為γ方向。亦即,藉由使電鏡掃描 器23a進行掃描,便能夠使雷射先L_xY工作台^上 的X軸方向進行掃描’藉由使電鏡掃描器挪進行掃描, 便能夠使雷射光⑻主Η工作台u上的γ轴方向進行掃 描。 控制部30係進行求取主電鏡掃插器脱、服及副電 鏡掃描器23a、23b的鏡片角度I; 作業,具有控制用以將雷射先La^孔位置之關係的調校 之主電鏡掃描器26及副電鏡掃# 射於加工孔位置 之功能。關於該控制部30所進^^23a、23b的鏡片角度 業係在實祕||4進彳f制。㈣ 接著’針對具有上述構成的For the sake of easy understanding, it is explained that the lenses 221a to 221d and the electron microscope scanners 224a, 224b, 226a, and 226b are disposed on the optical paths of the laser beams L, La, and Lb, so that the optical paths of the laser beams L, La, and Lb are set as described above. Any of the X-axis, the Y-axis, and the Z-axis is substantially parallel. In this case, in order to bend (reflect) the optical path of the laser light L at an angle of 90 degrees, the lenses 221a to 221d disposed on the optical path are disposed, for example, with respect to any axis of the coordinate system of the XYZ 8 320239 200902207 shown in the drawing. Form an angle of 45 degrees. Further, on the optical path of the laser light Lb reflected by the i-th polarizing means 222, the laser light Lb is scanned in the two-axis direction and guided to the second polarizing split 223 S. A pair of electron microscope scanners 224a, 224b . The electron microscope scanner 224a is disposed such that the rotation axis of the lens 225a is in the X-axis direction, and the electron microscope scanner 224b is disposed such that the rotation axis of the lens 225b is in the Y-axis direction. By scanning the electron microscope scanner 224a, it is possible to scan the laser light in the X-axis direction on the χ3 gamma table, and by causing the SEM scanner to perform the second scanning, the laser light Lb can be operated toward the XY a91i. , to scan. Work. In the γ-axis direction of the Kawakami, there is a self-polarizing device 223. The lens (10) is provided with a future "2 polarizing device 223_mixing h i.. 2 axis direction scanning and guiding to the pre-added a 226a, 226b. Electron microscopy scanner orbital ^= A pair of electron microscope scanning axes are arranged in the Z-axis direction, and the rotation axis of the rotation 227b of the electron microscope m27a is turned into a b-type to scan the lens unit 226a, so that the lightning can be set to The electron microscope scans the X-axis direction of the upper part of the river, and by scanning the table, the laser light La and Lb can be scanned in the direction of the spider. The Y: ' on the table 211 is as follows. The laser is emitted. The operation of the laser beam emitted from a laser recorder (not shown) is adjusted to a direction of 45 degrees, and the polarization side 1 of the light (four) light L is reflected and incident on the first polarizing means 222. Lens 221a, 22. $1 polarizing device 222: 320239 9 200902207, the laser beam is split into a laser beam of a p-wave having a polarization direction perpendicular to the incident surface, and a laser beam of an s-wave having a polarization direction parallel to the incident surface. Laser light that penetrates the first polarizing device 222 (hereinafter referred to as main The beam is guided to the second polarizing device 223 via the two lenses 221c and 222ld. In addition, the laser light (hereinafter referred to as the sub-beam) Lb reflected by the first polarizing device 222 is passed through the electron microscope scanner 224a. 2241) Scanning in the two-axis direction is guided to the second polarizing means 223. Here, the main beam La is guided to the second polarizing means 223 at the same position, and the sub beam Lb is borrowed. The position and angle incident on the second polarizing means 223 are adjusted by controlling the swing angles of the SEM sweepers 22A and 224b. After that, the main beam La is reflected by the second polarizing means 223, and the sub beam = the second penetration. Polarization device 223 'By this, the two laser beams La and Lb travel to substantially the same optical path and are guided to the electron microscope scanner 226b. Then, 'by the electron microscope scanner 2, 22 and 2 directions After scanning, it is guided to the lens 228, and is respectively condensed at a predetermined position on the workpiece t to perform the reinforcement. At this time, by scanning the electron microscope scanners 224a, mb, 226a, 2, Any difference between the main beam U and the brake beam Lb that is irradiated onto the workpiece 212 Point: After the hole addition I in the temple description area is completed, the χγ table 1 is moved in the ΧΥ direction in the figure, so that the next scanning area can be processed. Here, the first group is made. When the electron microscope scanners 224a and 224b are at a certain angle = respectively, the laser beam Lb that has been splitted is moved to the second polarizing device, and the same position is processed and the same position is processed. Now, assume that there are two 10 320239 200902207 Machining hole position... First, as long as the hole position is scanned by the 2nd - H 2 axis direction to process the hole position of the hole machining i /), the main beam La is directed to the 2 axis at the position A - To fine-tune the group of electron microscope sweeper 2 shirts, 224b and then to the Z-axis direction and from the hole position A to the other two, the sub-beam is called to sweep the direction of the other-hole position Bit^ 2:= In the laser processing apparatus having the configuration of Fig. 14, the functions of the 26a' 226b^"^ L = 224a, 224b can be regarded as the differential scanning from the above-mentioned position B, and it is easy to intuitively understand the second : Bu 'actually like its function 1 1 group of electron microscope scanner scan t t8 (four) angle system than the second The electron microscope scanners 226a and 226b, however, in the laser processing apparatus described above, the sub beam system of one of the split beams, i is a total of two groups (that is, four units), and a plurality of electron microscope scans cry 2-24a, 224b , 226a, 2. And because the electron microscope scanner makes the lens; the use of the square is not as stable as the case of fixing the lens, so the beam: b: kg processing must have processing quality (the processing buckle referred to here) The problem of the quality of the hole in the sweeping area, the roundness of the hole, the quality of the hole, and the difference in the accuracy of the machining position is likely to deteriorate. The long distance between the front focus position of the 彳 lens 228 and the farthest SEM sweep 224a for sweeping the light beam is also one of the causes of deterioration in processing quality (especially the quality of the processing hole). Accordingly, the present invention provides a laser processing apparatus having a configuration of 320239 11 200902207. Although the processing quality of the two laser beams is inferior to that of the conventional laser processing apparatus, two laser beams can be made. The processing quality is better than that of the secondary beam in the conventional laser processing apparatus. Hereinafter, the laser processing apparatus of the present invention will be described. 1 is a configuration of a first embodiment of a laser processing apparatus according to the present invention. FIG. 2 is an arrangement diagram of an electron microscope scanner in the vicinity of a front focus position of a w lens of the laser processing apparatus of FIG. The laser processing apparatus is equipped with a χ gamma table u, which is to mount a workpiece 12 such as a printed circuit board, and the moon 匕 ^ moves in a horizontal plane (χ γ plane); the laser oscillating device 2 〇 emits a ray The light beam L is an optical system for irradiating the laser light L emitted from the laser oscillator 2 onto the workpiece 12 on the π table 11; a CCK Charge-Ccmpled Device; a charge coupled device; In the trial processing, the processing position is applied to the processing position on the XY table 11, and the control unit 3 is configured to control the laser vibrator 29, the electron microscope sweepers 23a, 23b, 26a, which are constituting the optical system, and the tearing. The lens angle, like the device 29. In the figure, in the figure, the surface on which the workpiece i2 Λ Y is operated 13 11 is a horizontal plane, and the vehicle i is orthogonal to each other in the horizontal plane. For the Χ axis and the Υ axis, the axis perpendicular to both the Χ axis and the Υ axis is ζ 构 先 ' ' ' ' ' , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The laser light emitted by the oscillator n ^ thief 20 is split; the gauges 22a to 22f are, and are reflected and guided to the light of the light of the light of the light of the light of the light. , 23b (hereinafter, the flat state 23a, 23b is called A%,,, - electron microscopy scanners 23a, 23b), is 320239 12 200902207 laser light La:, L/5 of each optical path in the χ γ table 1 1 is scanned in a different direction; the second polarizing means 25 is composed of a polarization beam splitter or the like, and two laser beams La:, L which are split by the first polarizing means 21 and travel on different optical paths are formed. /3 is mixed and guided to substantially the same optical path; the electron microscope scanners 26a, 26b (hereinafter, the electron microscope scanners 26a, 26b are referred to as main electron microscope scanners 26a, 26b) are arranged to be loaded from the second polarizer. 25 mixed = laser light La, LM XY table 11 ± sweeping in the opposite direction, and Μ lens 28 ' will be mixed laser light ^ In the work item 12, here, the first-system corresponding electron microscope scanners 26a and 26b described in the patent application scope of the second group are corresponding to the third, 'samely, in addition, for the sake of simplicity, the following electron microscopes are used. Scanners. The lenses 22a to 22f on the fR optical path are described with the SEM scan: the arrangement 26b is used to set the laser light L, La, Lb to the thief 23a, 23b, 26a, and the target is set, for example, relative to the figure. The wide angle bend (reflection) in the middle forms an angle of 45 degrees for the axis, so that the laser light, the coordinate system of the zooming system and any of the X axis, the γ axis, and the x axis are larger / a, L/5 The optical path is as follows: Ray: 穿透 that penetrates the first polarizing device 21. Further, the optical path constitutes a polarizing farm 25, and is configured to make the heart = $ in the first polarizing device 21 and the second biasing beam The same is true. The optical path length z between the frames is reflected by 25, and the second polarizer 21__ is attached to the second polarizer by the second polarizer, and is set to 25. The surface is divided into two laser beams. > Polarizing device 21 舆篦?. Low soil, this is the same as in the first embodiment, the optical path of the two laser beams La, LyS is distracted. The number of 2 f v 320239 13 200902207 , ^ the number of mirrors 23a, 23b are configured to be equal in the two optical paths. Therefore, in order to make the two beams of laser light La, L million will not appear in the characteristics For the difference, the countermeasures for the configuration of the electron microscope scanner are also studied. That is, the optical path lengths from the arrangement positions of the Γθ lenses = 23a and 23b are set to be equal to the two optical paths. Ii is the 'penetrating first polarizing device 21' The laser light (hereinafter referred to as the second polarizing means 25 of the alpha light sheet) is provided with η (n is a natural number: 22c) and an electron microscope scanner 23a. In addition, the laser light reflected by the first polarizing means 2 (hereinafter referred to as the 10,000-beam to the 2nd to 22f\ and/or the optical path is provided with a lens of Ω (n is a natural number) (22d piece. The T mirror scanner 23b. In the case of Fig. 1, "3 pieces and an electron microscope #Ϊ are formed, and since the number of mirrors is arranged on the two optical paths, the quality of the laser light passing through the two optical paths becomes additional. In the present embodiment, "the main electromagnet scanner 26a shown in the figure" is thin = 7 #ι 图 and the second axis is arranged in the axial direction. The main axis of the mirror is rotated. 26b^Making the lens ^*the laser (4) of the aforementioned electric 27a, 27b is preferably a private focus, and the lens of the poems 26a, 26b is actually impossible, the front focus position F of the mirror 28. Dong is close to the above situation. That is, ίΐ片, so consider the position of the lens and the electron microscope scanner white in the front focus position ρ of the mirror 28 of the mirror scanner (4) as close as possible to (7) through-main scanning The mirrors 26a, 26b, 320239 14 200902207 enable the mirror of the central scanner 26b of the lens 27a of the electron microscope scanner 26a The middle of the straight line of the center position of the piece 27b is placed at the front focus position F of the scanning mirror 28. However, in this case, the two main electron microscope scanners are performed in consideration of the lenses 27a and 27b in which the point u becomes f 0 26a and 26b. The lenses 27a, 27b do not interfere with each other. == The distance between the 27a, 27b (the electron microscope scanners 26a, 26b) must be selected to select the two lenses in the 2nd (4) financial system. Rotate to fix, make the electron microscope scan cry 2: 6a lens shape, so that the laser light La, L / 3 to f ° 仃 when the rotation of the situation changes along the Y-axis direction. Conversely, consider: = The rotation of the incident position mirror 27b is fixed, so that the electron microscope scans the boundary inserter 26b, so that the thunder, the light beam La, "the stool when rotating in the forward direction" changes along the X-axis direction. Thus by ^28 The incident position of the incident coffee can change the incident position (incident angle) of the laser light & 26a. The lens 28 is also used for the optical system such as the first mirror scanner and the stone beam L/? = The electric direction of the bundle k is not the scanning side of the two-dimensional description (assumed to be ideal (7) The lens is arranged such that the mirror is arranged in the direction of the image, and the scanning axis of the mirror is 23a. The rotation axis of the mirror is made by the electron mirror for the alpha beam La by the sweep of the sweeper 23a. Fang (4) scans the 2Vl field state 23b in the electron microscope of ^, so that the 々 beam is in the Z direction with the "4" direction in the "4" direction and 320239 15 200902207 becomes the γ direction on the χγ table η. By scanning the electron microscope scanner 23a, the X-axis direction of the laser first L_xY table can be scanned. By scanning the electron microscope scanner, the laser light (8) can be made to work on the table u. The upper gamma axis direction is scanned. The control unit 30 performs the method of obtaining the lens angle I of the main SEM sweeper and the sub-electron scanners 23a and 23b; and the main electron microscope for controlling the relationship of the position of the laser for the first hole. The function of the scanner 26 and the sub-electron mirror sweep # at the processing hole position. Regarding the lens angles of the control units 30, the lens angles are in the order of ||4. (iv) then 'for the above composition

說明。從雷射振盪器20振簠出的ί::工裝置的動作進行 裝置21而分光成穿透側的雷射田、、L#藉由第1偏光 石。穿透側的雷射光(亦即α光東α及反射側的雷射光L %至22c及-個α光束用的電^係經由—些固定鏡片 第2偏光裝置25。同樣地,反射11 23a而被導引至 沒亦經由另一些固定鏡片咖 田射光(亦即/3光束)L ,插器23d而被導引至第2欠個嶋用的電 進置,的各雷射光La、L/5係藉:置上'經由第2偏光 =仃知插,並通過Μ透鏡28 電鏡掃插器26a、26b 、:點。接著’加工被加工物i2:此:射於被加工物12上 2及主電鏡掃插器26a、26b =二,副電鏡掃播器23a、 °"疋好的加工資訊來控制鏡片^由控制部30所預先 320239 16 200902207 在此 工 ,弁二夠以本實施形態1的雷射加工扭 25:=理由。在第1偏光裝置21與第 ^間刀先的兩雷射光“ 偏光裴置 置射度偏差與加卫孔品質這兩個點。Μ加工點位 加工點位置精確声 相對於理想位置的誤2 糸在力二點的位置偏差,係 騎々成該加L置精確度 要t的角度偏 貫施形態卜α光束u :八要原因。藉由本 :描器,少於習知例的副光束Lb所經由π由】台電鏡 加工位置精確度之偏差。 4 口,因此改差 另一方的加工孔σ折 一 使電鏡掃描器在掃描=邊使4高度變化-邊 孔的真圓性程度内進行婦描而進行加工時的加工 的Z軸範圍愈大,焦點度^ 斷為佳 在此,Z軸係指,含有副雷;^愈:;加福品質會愈好。 掃插器23盘主電描盜23a、23b、第2電鏡 /、主電鏡知描器26a、26b、及切透鏡 ,且為具有朝與相對於XY工作二Η的上. 的方向(Ζ軸方向)平行之方向移動賴構之零件群。垂直 般“ ’到加1點前之親所插 夕,所傳播雷射光的品質(真圓性 ,而:=忍 :束:質惡化,。-,加上:;亦== 兄的平面右嚴格來說,凹凸形狀在縱及横方向上大多 320239 17 200902207 不同,而傳播於複數片之此種鏡片的雷射光的光束的擴散 角度或聚光點的z位置在縱及橫方向上會有極大差異。具 體而5,電鏡掃描器的鏡片係設計成特殊形狀的鏡片,且 亦有平面度較差者,因此,當光路上存在有複數個電鏡婦 —描器時,在加工點的光束品質惡化會變得非常地顯著。 第3 1圖係加工孔品質佳之狀態的示意圖。第3—2圖 係加工孔品質差之狀態的示意圖。如第3_丨圖所示,當傳 播雷射光L的鏡片與電鏡的片數較少時,由於依以圖中所 示的座標軸為基準的XZ平面及γζ平面剖切雷射光L時的 形狀係-致,因此焦點高度相等,光東恆常地為真圓,不 論在焦點附近的Z轴的哪處剖切,雷射光七皆為圓形。然 而,如第3-2圖所示,當傳播雷射光匕的鏡片與電鏡的片 數較多時,依以圖中所示的座標軸為基準的χζ平面及γζ 平面剖切雷射光L時的形狀並不一致。亦即,焦點高度(ζ 軸)不同。結果’在與焦點位置附近之2轴垂直之方向剖切 雷射光L時,係呈楕圓形狀。在第3_2圖中,係顯示由於 光束的擴散角度與聚光位置在縱及橫方向不同,因此雷射 光L從橫橢圓變化至縱橢圓時的情形。 第4圖係顯示加工孔品質的—評價方法例之圖。加工 孔品質的評價方法係藉由求取ζ.轴範圍來進行評價,該ζ 轴範圍係當使Ζ軸高度變化而形成加工孔時,加工孔的形 狀的真圓度成為預定的百分比以上者。亦即,該2車由範圍 係加工孔品質被視為佳之範圍。此外,該ζ轴範圍愈廣, 加工愈容易進行。 320239 18 200902207 - 第5_1圖係顯示習知的第14圖的雷射加工裝置 束與副光束的加工孔品質被判斷為佳之範圍的一光 第5一2圖係顯示本實施形態1的雷射加工裝置的α光束 光束的加工孔品質被判斷為佳之範圍的一例之圖、 第5-1圖所示,左土 τ丄 目无’如 ,挪a、226b的個t二束上中’傳播雷射光的電鏡掃描器 雷射光的電鏡掃插而在副光束⑪中’傳播 達4個。因此,僅田^ &、2扑、226&、2勘的個數係多 ,雷射光的力u !個電鏡掃描器226a、226b的主 224a、224b、22 al較^但傳播於4個電鏡掃描器 媒a、226b的副雷射光Lb的加工孔口所2 極鈿地低。相對於 一 札口口貝郃 鏡掃描器的數目為q ''圖所不’傳播雷射光的電 品質皆比第5]圖所個^光束^及沒光束W的加工孔 加工孔品質還佳 白知雷射加工裝置的副光束Lb的 的範圍大致同等,且兩雷射光的加工品質被判定為佳 工的加工孔品質成_重兑的範圍(亦即以兩雷射光所加 雷射加工裝置之情形之Z、軸範谓)係比第5-1圖的習知 之一方的雷射光的先束,亦即,藉由改善光束品質較差 置的加工孔品質。此外扣質j便能夠改善整體雷射加工裝 23a、23b之離ίθ透鏡邡隨^第1圖所示的副電鏡掃描器 加工孔品質愈益改善兄。亦7前焦點位置 F的配置距離愈短, 形恶1的構成’由於在傳播如第1圖所示,藉由本實施 路個別配置—個副電鏡1光束光束w的各光 位置接近洳焦點位薏F, 烈3、23b,且能夠將其配置 因此能夠改善加工孔品質。除此 320239 19 200902207 之外,由於離前焦點位置f 設置距離相等,因此以兩雷射^电鏡掃描器23a、23b的 加工孔品質會同等。 、 α、L/5進行加工所得的 依據本實__、卜經分 僅經由3台電鏡掃細,且 雷射* La、LvS皆 ,位置F到光束-之最遠心透鏡28的前焦點 離,藉此,能夠在維持 電鏡知插器23a、23b的距 產性之情況下解決習知的5||的同時多點照射型相同的生 此外,由於兩雷射:束的加工品質劣化的問題。 能夠擴大可進行加工品質f的加工品質成為同等,因此 具有能夠在比習知雷射加工^工之Z轴高度的範圍,而 加工之效果。 x更寬廣之條件範圍下進行 實施形態2 丁 第6圖係本發明的 圖,第7'1圖係第6圖的雷二裝置.的實施形態2的構成 主電鏡掃描器之從χ輪方向^工裝置的副電鏡掃插器歲 圖係第6圖的雷射加工裝硯看時的配置關係圖,第 以描器的配置關係圖的=的前焦點仅置附近 於,使貫施形態Ms _ 射加工裝置的特徵在 的旋轉軸相對於2輛傾 電鏡掃描器26a的鏡片 電鏡掃描器23a、23b亦 =0而進行配置。此外,副 音傾倒達角度Θ進行配置。=、〃二施形態1的情形的位置跟 的鏡片24a、24b、27a該等電鏡掃描器23a、23b、2f 構系統。並且,於實施形軸係分別構成同一個直角座 …的兩光路内的鏡片22b與副 320239 20 200902207 電鏡掃描器23a之間、以及鏡片 _ 之間各配置有兩個鏡片22g至22 •,與副電鏡掃描器23t 示的XYZ座標系統變更成比該座“=等缝片係將圖中所 的直f座標系統用者。其中,比鏡 振盪器20側的光路係構成為與 §、22i更靠近雷射 XYZ直角座標系統的χ輛、^作台為基準而設的 是由於為了調整加卫點高度而的你—轴平行。這 在本實施形態2的情形中二二/於⑺平面成直角。 26a以傾斜的狀態配置在電鏡二、徵為,使電鏡掃描器 而言,如第7-i圖至第7_2圖所=26卜斜下側。具體 形1的配置位置相比,僅使電與。弟2圖所示的實施 Y軸正方向傾斜達角度Θ而進行㊣器、在以面内朝 以鏡片27a、27b的可動範圍 。藉由如此的傾斜, 離,則能使兩個鏡片27a、27b之二兩者不會發生干涉的距 情形縮小。結果,透鏡28的前曰隹的矩離比實施形態1的 的光束掃插理想位置)與兩個鏡片&點位置㈤透鏡28前 亦能夠比實施形態〗 a、27b之間的距離 射光的力^。^2^:=,而_升雷 角度Θ,亦使電鏡掃插器概、231)歲^插器263傾斜達 態1的配置位置相比,在YZS ^第2圖所示的實施形 <9而進行配置。 单由正方句傾斜達角度 在如上述使電鏡掃描器23a、 使各電鏡掃描器咖、23卜2 、6a傾斜的情形下’ 作台π切陶Ια、_ ^掃描時錢工 石向會成為輿X軸及y 320239 21 200902207 轴平行的方向。 依據本實施形態2,除了有實施形態1的效果之外, 由於使主電鏡掃描器26a、26b接近配置於ίθ透鏡28的 前焦點位置F,因此與實施形態1相比,具有能夠進一步 提升加工孔品質之效果。 實施形態3 在貫施形態2中’為了使光束位置不會因Z軸的上下 調整機構(藉由使加工頭部分動作而調整焦點位置之構造) 進行的動作而變化,而必須於光路途中設置與z轴平行的 光軸’而有針對—光路,在第i分光(第K光裝置21)之 後的鏡片,比實施形態i多了兩片以上之問題。因此,在 本實施形悲3’係針對將在第丨分光之後的鏡片數設計成 與實施形態1相同的片數之情形進行說明。 第8圖係本發明的雷射加卫裝置的實施形態3的構成 圖該田射加工裝置的特徵在於,在實施形態i的第工圖 中,以僅使電鏡掃描器26a在電鏡掃描器的斜下侧傾 斜的狀恝進行配置。該電鏡掃描 _態2㈣U = ^⑽的配置位置係與實 ㈣R,因此省略其說明。- 角产Θ進行配/施3 ’僅使電鏡掃描器26a傾斜達 ^ 11 χγζ χ 任一軸成平行。因此,能夠使光 軸的 調整機構所進行的動作而變化。Ζ軸的上下 320239 22 200902207 在本實施形態3的情料,使各電 26a、26b進行掃描時在χγ工 23a 23bDescription. The operation of the work device that is vibrated from the laser oscillator 20 is performed by the device 21 to split the laser field on the penetrating side, and L# is the first polarizer. The laser light on the penetrating side (that is, the alpha light east alpha and the reflective side laser light L% to 22c and the - alpha light beam are passed through the fixed lens second polarizing means 25. Similarly, the reflection 11 23a And the laser light La, L is guided to the electric light that is not guided by the other fixed lens field (ie, /3 beam) L and the plug 23d to the second underlying electric input. /5 is based on: 'passing through the second polarized light = knowing the insertion, and passing the Μ lens 28 to the electron mirror sweepers 26a, 26b, :: point. Then 'processing the workpiece i2: this: shooting on the workpiece 12 2 and the main electron microscope sweeper 26a, 26b = two, the secondary electron microscope sweeper 23a, ° " good processing information to control the lens ^ by the control unit 30 in advance 320239 16 200902207 work here, the second is enough Laser processing twist 25 of the first embodiment: = reason. The two laser beams in the first polarizing device 21 and the first inter-blade "the polarized light are placed at two points of the deviation of the illuminance and the quality of the reinforced hole. The error of the precise position of the machining point relative to the ideal position 2 位置 The positional deviation at the two points of the force, the riding angle is the angle of the acceleration The shape of the alpha beam u: eight reasons. By this: the scanner, less than the sub-beam Lb of the conventional example, the deviation of the positional accuracy by the π-electrode mirror. 4 ports, thus changing the other processing hole σ 一 使 使 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电The shaft system refers to the sub-ray; the more: the better the quality of the Jiafu. The 23-disc main electroscope 23a, 23b, the 2nd electron microscope / the main electroscope mirror 26a, 26b, and the cutting lens, and In order to have a group of parts that move in a direction parallel to the direction of the upper side (the x-axis direction) with respect to the XY, the vertical "" to the eve of the addition of 1 point, the laser light is transmitted. Quality (true roundness, and: = forbearance: bundle: quality deterioration, .-, plus:; also == brother's plane right strictly speaking, the concave and convex shape in the vertical and horizontal directions are mostly 320239 17 200902207 different, and spread The diffusion angle of the beam of the laser light of the lens of the plurality of lenses or the z position of the condensing point in the longitudinal and lateral directions There will be great differences. Specifically, the lens of the SEM scanner is designed as a specially shaped lens, and there are also poor flatness. Therefore, when there are multiple electron microscopes on the optical path, at the processing point The deterioration of the beam quality will become very noticeable. Fig. 3 is a schematic diagram showing the state in which the quality of the processing hole is good. Fig. 3-2 is a schematic diagram showing the state of the poor quality of the processing hole. As shown in Fig. 3_丨, when the lightning is propagated When the number of lenses of the light beam L and the number of electron microscopes is small, since the shape of the XZ plane and the γ pupil plane based on the coordinate axis shown in the figure is the same when the laser light L is cut, the focus height is equal, and the optical height is equal. Often the true circle, regardless of where the Z-axis is near the focus, the laser light is round. However, as shown in Fig. 3-2, when the number of lenses and electron microscopes for propagating the laser beam is large, the laser plane L is cut by the pupil plane and the γζ plane based on the coordinate axis shown in the figure. The shapes are not consistent. That is, the focal height (ζ axis) is different. As a result, when the laser light L is cut in a direction perpendicular to the two axes in the vicinity of the focus position, it is rounded. In Fig. 3-2, it is shown that the laser beam is changed from the horizontal ellipse to the vertical ellipse because the diffusion angle of the light beam and the condensing position are different in the longitudinal and lateral directions. Fig. 4 is a view showing an example of the evaluation method for the quality of the machined hole. The evaluation method of the quality of the machined hole is evaluated by determining the range of the ζ axis, which is a case where the roundness of the shape of the machined hole becomes a predetermined percentage or more when the height of the Ζ axis is changed to form a machined hole. . That is, the quality of the 2 cars is considered to be a good range. In addition, the wider the range of the boring axis, the easier the processing. 320239 18 200902207 - Fig. 5_1 shows a laser of the first embodiment in which the processing hole quality of the laser beam and the sub-beam of the conventional laser beam is judged to be a good range. The processing hole quality of the α beam beam of the processing device is judged as a good example of the range, and the 5-1 figure shows that the left soil τ 丄 无 ' 如 如 挪 挪 挪 挪 挪 挪 挪 、 、 、 The electron microscope scanning of the laser light of the laser beam is 'propagated' in the sub beam 11 by four electron-scanning. Therefore, only the number of fields ^ & 2, 226 & 2, and the number of surveys are many, the power of the laser light !, the main 224a, 224b, 22 al of the electron microscope scanners 226a, 226b are better than 4 The processing apertures 2 of the sub-laser light Lb of the electron microscope scanners a, 226b are extremely low. Compared with the number of shell mirror scanners, the electric quality of the laser light is better than that of the processing hole of the beam and the beam W of the 5th figure. The range of the sub beam Lb of the Baizhi laser processing device is approximately the same, and the processing quality of the two lasers is determined to be the range of the processing hole quality of the gong (re-recognition range) (ie, laser processing with two lasers) In the case of the device, Z, the axis is a pre-beam of one of the conventional laser light of the first aspect, that is, by improving the quality of the processed hole with poor beam quality. In addition, the buckle quality j can improve the overall laser processing equipment 23a, 23b from the ίθ lens, and the quality of the processing hole of the sub-electron scanner shown in Fig. 1 is improved. 7, the shorter the arrangement distance of the front focus position F, the configuration of the shape 1 is due to the propagation as shown in Fig. 1, and the respective positions of the beam beams w of the sub-electron mirror 1 are close to the focus position.薏F, 烈3, 23b, and can be configured so that the quality of the machined hole can be improved. In addition to this 320239 19 200902207, since the distances from the front focus position f are equal, the quality of the machined holes of the two laser mirrors 23a, 23b is equal. , α, L / 5 processing based on the actual __, Bu Jing points only through 3 electron microscopy, and the laser * La, LvS, position F to the beam - the farthest focus of the telecentric lens 28 Therefore, it is possible to solve the conventional 5|| while the conventional electron beam interceptors 23a and 23b are in the same productivity, and the same multi-point irradiation type can be produced, and the processing quality of the beam is deteriorated due to the two lasers. problem. Since it is possible to increase the processing quality at which the processing quality f can be performed, it has the effect of being able to be processed in a range higher than the Z-axis height of the conventional laser processing. Embodiment 2 is performed under a wider range of conditions. FIG. 6 is a view of the present invention, and FIG. 7'1 is a Rayleigh device of the sixth embodiment. The second embodiment of the main SEM scanner is configured from the χ wheel direction. The sub-electron micro-scanning device of the engineering device is the configuration diagram of the laser processing frame when the figure is shown in Fig. 6. The front focus of the image of the configuration diagram of the scanner is only placed nearby, so that the configuration is The Ms_jet machining device is characterized in that the rotation axis is also zero with respect to the lens electron microscope scanners 23a and 23b of the two tilt mirror scanners 26a. In addition, the sub sound is dumped at an angle Θ for configuration. =, the position of the case of the second embodiment is followed by the lenses 24a, 24b, 27a of the electro-optical scanners 23a, 23b, 2f. Further, two lenses 22g to 22 are disposed between the lens 22b and the sub-320239 20 200902207 electron-mirror scanner 23a in the two optical paths which respectively form the same right-angled seat, and between the lenses_, and The XYZ coordinate system shown by the sub-electron scanner 23t is changed to be the same as the straight-coordinate system in the figure. The optical path system on the side of the mirror oscillator 20 is configured as §, 22i. The closer to the laser XYZ right-angle coordinate system, the set is based on the axis parallel to adjust the height of the guard point. This is the case of the second embodiment in the case of the second embodiment. At a right angle, the 26a is arranged in an inclined state in the electron microscope, and the sign is made so that the electron microscope scanner, as in the 7th to 7thth, the lower side of the 26th oblique angle. Only the electric device is tilted at an angle Θ in the positive direction of the Y-axis as shown in Fig. 2, and the movable range of the lens 27a and 27b is performed in the plane. By such inclination, it is possible to The distance between the two lenses 27a, 27b, which does not interfere, is reduced. If the lens is 28, the moment of the front cymbal is smaller than the ideal position of the beam sweeping of the first embodiment, and the two lenses & the position of the point (5) before the lens 28 can also be illuminated by the distance between the embodiments a and 27b. Force ^.^2^:=, and _lifting angle Θ, also makes the SEM sweeper, 231) 插 插 263 tilted to the state 1 configuration position compared to YZS ^ Figure 2 The configuration is performed in the form <9. The angle is inclined by the square sentence by the angle of the electron mirror scanner 23a, and the electron microscope scanner 23b, 2, and 6a are tilted as described above. ^When the scanning is performed, the direction of the 工X axis and the y 320239 21 200902207 axis are parallel. According to the second embodiment, in addition to the effect of the first embodiment, the main electron microscope scanners 26a and 26b are arranged close to each other. Ίθ The front focus position F of the lens 28 has an effect of further improving the quality of the machined hole as compared with the first embodiment. In the third embodiment, the upper and lower adjustment mechanisms for the beam position are not caused by the Z axis. (Adjusting the focus position by moving the processing head portion The operation is changed, and the optical axis 'parallel to the z-axis must be provided in the middle of the optical path, and the optical path is set, and the lens after the ith optical splitting (the K-th optical device 21) is two more than the embodiment i. The above problem is explained. Therefore, in the present embodiment, the case where the number of lenses after the third beam splitting is designed to be the same as that of the first embodiment will be described. Fig. 8 is a view showing the laser beam of the present invention. The configuration of the third embodiment of the apparatus is characterized in that, in the first embodiment of the embodiment i, the electron microscope scanner 26a is disposed only in a state in which the electron microscope scanner 26a is inclined obliquely downward. The SEM state _state 2 (four) U = ^ (10) is arranged at the position and the real (4) R, so the description thereof is omitted. - The angle of the pupa is matched/applied 3 ′ only by tilting the electron microscope scanner 26a up to ^ 11 χ γ ζ 任一 any axis is parallel. Therefore, the operation performed by the adjustment mechanism of the optical axis can be changed. Up and down of the boring axis 320239 22 200902207 In the case of the third embodiment, when the electric power 26a, 26b is scanned, the χγ work 23a 23b

々的掃描方向並非與4及行的=雷射光La、L 以非直角的預定角度交叉的兩條軸平行切向而是成為與 依據本實施形態3,第2偏光裝置2㈣ 直角座標系統,副電為基準的 再是直角賴統㈣物嶋 抑制加工孔品質的劣化之效果以騎2相比,具有能夠 實施形態4 在實施形態1至3中 器及鏡的配置進行了說明。f缉射加工裝置中的電鏡掃描 1的光學线中係如第丨二上所述’例如’在實施形態 圃所不’若α夺击τ 描器23a及/5光束困从兩 尤束用的電鏡掃 正交,則直覺上容=!鏡掃描器咖的一 如,在實施形態1(第】^⑼使掃描面積達到最大。例 28,則α光束。用的番:):,若假設為理想的Μ透鏡 其後處係X轴方向,“二婦描盗23a的掃插方向在緊接 而/3光束L/3用的電鏡 乂灯工作台11上係X軸方向, 處係Ζ方向,因此在χγ 抑描方向在緊接其後 實際上由於理想的f ° 上係Υ軸方向。然而, 極限等原因,電鏡_ '、 8難以製造、透鏡裝設精度的 时田益所進行的掃描方向並無法在Π工 320239 23 200902207 作台π上成為直線。此外,由於能夠 描方法(控制方法)來控制加工n鏡掃插器的掃 3所示,亦能夠為如α光束⑻的麵^如貫施形態2、 走L/9用的雷於短&抑。 电鏡知描器23a及万光 束L/9用的電鏡输挪的掃描 = 此,不管是哪-種情形,皆必須 I 又之構成。因 23b,a、26b的角度,以對目,之= 鏡掃描器撕、 s , , , 了日铩之孔座標施行孔加工。 因此’在本^形態4巾’係就用來對之_ 孔加工的電鏡掃描器控制方法進行說明。,之孔幻示施灯 第=述Γ射加工農置的控制者係㈣ 戶广制部,該控制部30係啊 ^ 23a. 23b ^ 26a > 26b ^ 模型(ιηΐΊΓ成於XY工作台11上的加卫孔位置之關係; = (_εΠ儲存功能32,係館存模型,賴型係用以求 用的I:校功能31所求出之作為目標的位置進行孔加工 =鏡掃描器孤、23卜,、261)的鏡片角度;加工資 功能,係儲存對被加卫物12進行之開加工孔的 疒At力工資讯,以及加工控制功能,係使用加工資訊儲 、c:斤儲存的加工資訊及模型儲存功能32的模盤來 押制電鏡掃插器23a、23b、26a、26b與雷射振盪器20的 針餅以下,先說明雷射加工裝置的控制方法的概要’ 、’、乂進行控制的調校方法進行說明。 A 11田射加工裝置係需要有以下功能:對欲加工的工 上的孔座標(目標孔座標),求取實現其加工所需委 320239 24 200902207 電鏡掃描器23a、23b、26a、26b的角度(角戶:#人僧)。 第9圖係顯示第圖所示的習知的同時多二射型命 射加工裝置的各電鏡掃描器的鏡片角度與加工孔的座標: 關係的方塊線圖。如該第9圖所示,在習知的同時多^照 ▽射型雷射加王裝置t,係採心τ方法,該方法係求取主 光束La的加工孔座標(ax,ay),而#由與該主光束u的加 工孔座標(ax,ay)的差分來求取副光東Lb的加工孔座標 (bx,by)亦即’藉由第2組的電鏡掃描器226a、22此的鏡 片角度來決定主光束La的加工孔座標(ax,ay)。另一方的副 ^束Lb的加工孔座標(bx,by)係除了藉由第2組的電鏡掃描 ^ 226a、226b的鏡片角度之外,還藉由第!組的電鏡婦描 器224a、224b的鏡片角度來決定。不過,若匯整該等主光 束La及副光束Lb,即可得到4輸入4輸出之關係,亦即 一旦決定4個電鏡掃描器224a、⑽、2脱、2挪的鏡片 $度時,2個加工孔座標(4個座標成分)便決定。據此,便 能夠掌握到該等的關係為映射(mapping)關係(詳細說 參照專利文獻2)。 一而在本發明的雷射加U中,如上所述,經第i偏 ,裝,21分*的兩雷射光皆傳播於相同數目的電鏡掃描 益藉此’不會因光束品質造成優劣差別,因此沒有所謂 之主光束與副光束的分類而為同等。料,用於本發明的 田射加工裝置之控制方法,由於無法適用上述之利用習知 的如第9圖所示的映射關係來求取用以決定兩加工孔座炉 的4個電鏡掃描器的鏡片角度之方法,因此需要新的用來 320239 25 200902207 決定::工孔座標的控制方法。 盟λαΪ JO圖係顯示本發明的雷射加工裝置的各電鏡掃β 器的鏡片角度邀士 电鏡輙描 /、加工孔的座標之關係的方塊線 圖所示’在本夢明固如第10 加工孔之位置:'加工裝置中’關於'光束^ ’The scanning direction of the 々 is not parallel to the tangential direction of the two axes intersecting the predetermined angles of the laser light La and L at a non-right angle, and the second polarizing device 2 (four) is a rectangular coordinate system according to the third embodiment. Further, the electric power is based on the right angle (4). The effect of suppressing the deterioration of the quality of the machined hole is compared with that of the rider 2, and the arrangement of the device and the mirror in the first to third embodiments is described. f The optical line of the electron microscope scan 1 in the laser processing apparatus is as described in the second section, for example, in the embodiment, if the image is not trapped in the embodiment, the beam is trapped from the two beams. The electron microscope scan is orthogonal, and the intuition is superior. The mirror scanner is as simple as the first embodiment. The first (the first) (9) is used to maximize the scan area. For example, the alpha beam is used. Example: It is assumed that the ideal Μ lens is followed by the X-axis direction, and the sweeping direction of the two snails 23a is in the X-axis direction immediately after the electron mirror xenon table 11 for the /3 beam L/3. The Ζ direction, so in the χ 抑 抑 方向 在 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 理想 理想 理想 理想 理想 理想 理想 理想 理想 理想 理想 理想 理想 理想 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The scanning direction cannot be made straight on the stage π 320239 23 200902207. In addition, since the scanning method (control method) can be used to control the scanning of the n-mirror, it can also be such as the alpha beam (8). Face ^ such as the form of 2, the use of the L / 9 for the short & EMI. Electron microscopy scanner 23a and million beam L / 9 for electricity Mirror input scan = This, no matter what kind of situation, must be composed of I. Because of the angle of 23b, a, 26b, to the eye, the mirror scanner tear, s, ,, the sundial The hole coordinates are applied to the hole processing. Therefore, the '4 in the form' is used to describe the electron microscopy scanner control method for the hole processing. The hole magical display lamp is the control of the radiant processing The system is (4) Huguang Department, the control department 30 is ah ^ 23a. 23b ^ 26a > 26b ^ model (i is the relationship between the position of the guard hole on the XY table 11; = (_ ε Π storage function 32, is The library model, the Lai type is used for the I: the position of the target obtained by the school function 31, and the lens angle of the hole mirror = mirror scanner, 23, 261); processing function, storage The 疒At work information and the machining control function for the machining hole of the reinforced object 12 are controlled by the processing information storage, the processing information of the c: jin storage, and the mold of the model storage function 32. The devices 23a, 23b, 26a, and 26b and the needle cake of the laser oscillator 20, first, the control of the laser processing device will be described. The outline of the method ', ', and 乂 control method is explained. A 11 field processing equipment system needs to have the following functions: to find the hole coordinates (target hole coordinates) of the work to be processed, to achieve its processing The angle of the electron microscope scanners 23a, 23b, 26a, and 26b (the angle household: #人僧) is required. Fig. 9 shows the conventional simultaneous multi-two-shot type firing apparatus shown in the figure. The angle of the lens of the electron microscope scanner and the coordinates of the machined hole: a block diagram of the relationship. As shown in FIG. 9, the conventional method of multi-shot laser-type laser-adding device t is a method of collecting the heart τ, which is to obtain the coordinates of the processed hole (ax, ay) of the main beam La, And # is calculated from the difference between the processed hole coordinates (ax, ay) of the main beam u to obtain the processed hole coordinates (bx, by) of the sub-light east Lb, that is, by the second group of electron microscope scanners 226a, 22 The lens angle determines the machined hole coordinates (ax, ay) of the main beam La. The processed hole coordinates (bx, by) of the other sub-beam Lb are in addition to the lens angles of the second group of electron mirrors ^ 226a, 226b, and by the first! The lens angles of the group of electroscopes 224a, 224b are determined. However, if the main beam La and the sub beam Lb are combined, a 4-input and 4-output relationship can be obtained, that is, once the number of lenses of the four electron microscope scanners 224a, (10), 2, and 2 is determined, 2 The coordinates of the machined holes (4 coordinate components) are determined. According to this, it is possible to grasp that the relationship is a mapping relationship (refer to Patent Document 2 in detail). In the laser plus U of the present invention, as described above, the two laser beams of the ith offset, the mount, and the 21 min* are all propagated to the same number of electron microscope scans, thereby not causing differences in beam quality. Therefore, there is no such thing as classification of the main beam and the sub beam. For the control method of the field processing apparatus of the present invention, since the above-described mapping relationship as shown in FIG. 9 cannot be applied, the four electron microscope scanners for determining the two machined hole furnaces can be obtained. The method of lens angle, therefore requires a new control method for 320239 25 200902207:: work hole coordinates. The λαΪJO diagram shows the relationship between the lens angle of each electron microscope sweeping device of the laser processing apparatus of the present invention, and the relationship between the coordinates of the processed hole and the coordinates of the processed hole. 10 Position of the machining hole: 'Processing device' about 'beam ^ '

Mb的鏡ff(…y)係除了藉由主電鏡掃描器 ^ , 月角度之外,還藉由配置於α光束;La的杏 兄知描杰23a的鏡片角度來決定。此外,關於 A 式i 束 L/ ’ 力'!j T 7 丨 /_i_ tur -x.., 置座標(^,^)亦是除了藉由主電 見田口σ a、26b的鏡片角度之外,還藉由配置於冷光束 L/5的光路上的副電鏡掃描器挪的鏡片角度來決定。並 且’右進仃匯整觀察’可得知具有下述映射關係,亦即一 旦決定4台電鏡掃描器23a、23b、26a、26b的鏡片角度時, 4個加工孔座標ax'ay、n(兩個孔各有X座標與γ座 標,因此有4個變數)便決定。〜 據此,本實施形態4的特徵在於,為了求取兩個加工 孔座標(4個加工孔座標之成分),而使用$ 1〇_的方塊線 圖所表示之映射的反映射模型。此外,尚. ^ ^ 肉有4輸入4輸出 之特徵,亦即由第1 〇圖得知,相對於兩個 ¥ . 力工孔的目標位 置座才示ax、ay、y9x、石y的4輸入’為了每 勹丁只現在其孔座標 m、^的加工而輸出4台電鏡細n 26a、26b的鏡片角度的估計值gae、gbe、 e 肊6、2(^之4變 數。並且,本實施形態4所使用的反映私“ ,听射知型係使用含有 4輸入4輸出的多項式之多項式模型,而娘 ^ 而貫現自4台電鏡 知描器23a、23b、26a、26b的鏡片角庶黍+、 永取4個加工孔 320239 26 200902207 力能。此處 數與的四則運算進行計算的數式,可考慮許多種類 射模ΓΓΓ陣的數式來表示本實施形態所使用的反映 ㈣⑴。此處,"代表4台電鏡掃描 代表以鳴為矩陣,Α係 二J 係數矩陣(或未知參數矩陣)。 為52 ^ 1次多項式模型的情形巾,係成為如同項數 =Γ=下式(3)之形式,在3次多項式 另外補充說明為35個的下式 如你田^ 除了此處顯不的多項式以外,亦可者⑼ 使用式⑷的一部分等之多項式模型。 考慮例The mirror ff (...y) of Mb is determined by the angle of the lens of the amber beam, which is arranged by the alpha beam, in addition to the moon angle by the main electron microscope scanner. In addition, regarding the A-type i-beam L/ 'force'!j T 7 丨/_i_ tur -x.., the coordinates (^, ^) are also in addition to the lens angle of the Taguchi σ a, 26b by the main electric field. It is also determined by the lens angle of the sub-electron scanner placed on the optical path of the cold beam L/5. And the 'right-adjusting observation' can be found to have the following mapping relationship, that is, once the lens angles of the four electron microscope scanners 23a, 23b, 26a, and 26b are determined, the four processing hole coordinates ax'ay, n ( The two holes each have an X coordinate and a γ coordinate, so there are 4 variables). According to the fourth embodiment, in order to obtain two processing hole coordinates (components of four processing hole coordinates), a mapping inverse mapping model represented by a square line diagram of $1〇_ is used. In addition, Shang. ^ ^ meat has the characteristics of 4 input and 4 output, that is, it is known from the first map. Compared with the two ¥. The target position of the force hole shows ax, ay, y9x, stone y 4 Input 'the estimated values of the lens angles gae, gbe, e 肊6, 2 of 4 electron micrographs n 26a, 26b for the processing of the hole coordinates m and ^ for each 勹 。. The reflection private type used in the fourth embodiment uses a polynomial model containing a polynomial of four inputs and four outputs, and the lens angle of the four electron microscope scanners 23a, 23b, 26a, and 26b is used.庶黍+, and always take 4 machining holes 320239 26 200902207 Force energy. The equations for calculating the number of four calculations can be used to express the reflections used in this embodiment (4) (1) Here, " represents 4 electron microscopy scans representing the matrix as a matrix, and the two J-coefficient matrices (or unknown parameter matrices). For the case of a 52 ^ 1 polynomial model, the system becomes like the number of items = Γ = In the form of equation (3), the third-order polynomial is additionally supplemented by 35 as follows: In addition to the polynomial shown here, it is also possible to use (9) a polynomial model using a part of equation (4).

Sa *Sb ,ge,g/]=[τ: β” βχΤ^ ,α. kw ki_2 k, , k, 2-3 ^2-4 ^3-J ^3«2 ^ ^4-J k;4_2 k4_3 k4-4 k5-l kj-2 k5_3 k 3-2 a3-3 ^3-4 ‘(2) *g«e» Bh1Sa *Sb ,ge,g/]=[τ: β" βχΤ^ ,α. kw ki_2 k, , k, 2-3 ^2-4 ^3-J ^3«2 ^ ^4-J k;4_2 K4_3 k4-4 k5-l kj-2 k5_3 k 3-2 a3-3 ^3-4 '(2) *g«e» Bh1

320239 27 …’(3) 200902207320239 27 ...’(3) 200902207

Be ΙδΛ gb、gC'gde 产--- A :[i m3 βχ p為 ΡχΡϊ kw k,_2 k卜3 lcM lr U ,ccx j W Λ2-2 ··· .....* ··- … ...... .·· ·,, •k]5»i k3W k35^_ '⑷ 上列的式中’係數矩陣χ的成分匕1、匕” 形中,係數矩陣x為jjt*1次多項式模型μ 形中,仙㈣ν 車’在2次多項式模型的精 形中::* 為15X4的矩陣’在3次多項式模型的傾 形中,係數矩陣X為35x4的矩陣。 度更==rrr數的話,則能夠進行精 的多項式,但由scr。雖然能夠使用伽 的雷射加工裝;使=於印刷基板等之開孔 的項所構成的多項式模型(項數=35)時所 要求規格之精度的反映射模型。 滿足 校處頁式模型的係數(未知參數),需要調 咖^自^ ’係將各電鏡婦描器⑽、235、26” 兄片角度擺定-些的角度值以進行試加工,並以⑽ 320239 28 200902207 攝影機等攝像手段29來測定實際被加工的孔座標。從各電 鏡掃描器23a、23b、26a、26b的角度資料ga、gb、gc、gd 及當時被加工的孔座標資料ax、ay、万χ、,使用最小 平方法或加權最小平方法等手段來決定上述多項式模型的 係數(未知參數)。以調校功能31依上述方法算出的各電鏡 •掃描器的鏡片角度進行加工的兩個孔座標之映射的反映射 模型(多項式模型)係儲存於模型儲存功能32。 在該調校處理中’本發明的雷射加工裝置仍發揮能夠 $習知的同時多點照射型雷射加工裝置縮短作 業時間的顯 著效果。藉㈣Μ下的簡單例子進行_來制該效果。 比較在本發明及習知的調校處理中,將第工組的電鏡 掃描器 23a、23b(或 224a、99/ik、、 m 224b)分別擺定4種鏡片角度以 ^加工、將第2組的電鏡掃描器施、娜(或2恤、 別擺定3種鏡片角度以進行試加工時的情形。第 Η圖係顯示使用習知的同時多點照射型雷第, 加工孔位置之圖。第12圖 裝置守的 顯不使用本發明的雷射加工裝 、、口 之圖。另外,為了起見,传 設理想㈣透鏡28、228,且為^ 此=, :於直線上者。在該等圖中,料表示^作^上 外,「〇」記號表示由主光束j :1卜221上的以由。此 工孔之位置,「X」記號表亍束由^^光束L續形成的加 成的加工孔之位置 第13圖係顯示調校所* 叮而要的加工孔數之 戒表不由副光束_光束W所形 圖。在以習务 320239 29 200902207 的雷射加工裝置(第14圖)進行試加工的情形 器的鏡片角度的組合係有3χ3χ4χ4 = 144種兔電鏡掃推 Lb為兩束,因此要進行確認者為種。=射光La、 的特性,而存在有重複加工於相同位置的部分。、、光學系絲 第9圖的方塊線圖可得知,在f知技術的°例如,從 雷射加工裝置t ’主光束u的光學系統並=照射型 器224a、224b的鏡片位置,因此確認3x3^ =電鏡掃描 即,位置相同的狀況不需進行重複加工,因此啦即可。亦 孔數係變得比⑽種少,而成為153種。"要確認的 另一方面,在以本發明的雷射加工裴置、 情形中,電鏡掃描器的鏡片角度的組合有3xJ'試加工的 而雷射光Lcc、i/9或兩击 m 〜36種, 就m 此要進行確認者為72種 就連在此簡單的例子中,本發明的雷射加二種。 夠比習知技術減少81個調校時進行試加工數裝置都能 際的調校處理中’係需要更 數。而在實 角度,因此與習知技術之間的孔數差會:二 理中’係簡像裝置29來測定經該試加 調奴處 數愈多,敎作業會花費愈多的铸L的座標’孔 式 控制功能34係你4 τ 徑制#30的加工 上的奸r 存功能33取得χγ工作台η 孔位置,將所取得的欲開孔位置物^上的欲開 存功能32的多輪入至儲存於模型儲 夕項式杈型並將電鏡掃插器23a、23b、26a、 320239 30 200902207 26b的鏡片角度控制成演算後所得之電鏡掃持哭 度ga、gb、gC、gd。藉由上述過程,^的鏡片角 被加工物12上的位置開孔。 〇在作為目標的 另外,在上述說明中,雖然是列舉實施形 加工裝置的情形為例,但實施形態2、3之情/的雷射 藉由使用多項式模型來控制電鏡掃描器开"亦能夠同樣 26b的鏡片位置而控制加工孔位置。 3b 26a、 依據本實施形態4,由於在經第1偏光舉 兩光路上配置相同數目的電鏡掃插器,因^置2丨分光的 處理所需要的加工孔數,而有能夠將 _減少調校 縮短的顯著效果。此外,對於具有此種::理時間大幅地 工裝置,係具有可利用以4台電鏡掃插二統之雷射加 加工的兩個孔座標之映射的反映 ^見片角度進行 之效果。 里來控制加工孔位置 光成兩束的雷射摘各光路上配’雖然是顯示在 例’但只要各光路上的數目相同,亦可2配 .. 直任意數目的, κ 另外,在上述的實施形態j至4 ______________ ^^然是顯示在^ 掃插 鏡掃插器、此外,亦可應用本既人^配置往意數目 先再分光成兩束、或準備複數台射九成兩束的雷j 工孔數。 振盪器^曾加同日心 [產業上的利用可能性.] 複數個高精度的孔加工的情形 【圖式簡單說明】 同時進4 如上所述,本發明的雷射加工裳置係通用在 320239 31 200902207 圖 第1圖係本發明的雷射加工裝置的實施形態1的構成 第2圖係第1圖的雷射加工裝置的ίθ透鏡的前焦點 位置附近的電鏡掃描器的配置關係圖。 、,· 第3-1圖係加工孔品質佳之狀態的示意圖。 第3-2圖係加工孔品質差之狀態的示意圖。 第4圖係顯不加工孔品質的一評價方法例之圖。 第5-1圖係顯示習知雷射加工裝置的主光束與副光束 的加工孔品質被判斷為佳之範圍的一例之圖。 第5_2圖係顯示實施形態1的雷射加工裝置的α光束 與沒光束的加工孔品質被判斷為佳之範圍的—例之圖。 圖。第6圖係本發明的雷射加I裝置的實施形態2的構成 第7-1圖係第6圖的雷射加工裝置的副電鏡掃 主電鏡掃描器之從\軸方向觀看時的配置關係圖。,、 第7-2圖係第6圖的雷射加工裝置的^透鏡的前隹 點位置附近的電鏡掃描II的配置難圖。 …、 圖。第8圖係本發明的雷射加工裳置的實施形態3的構成 第9圖係顯示習知的同時多點照射型雷射加工裝置的 ^電鏡掃描器的鏡片角度與加工孔的座標之關係的方I線 第10圖係顯示本發明的雷射加工裝置 器的鏡月角度與加工孔的座標之關係的方塊線圖。兄田 320239 32 200902207 第11圖係顯示使用習知的同時多點照射型雷射加工 裝置時的加工孔位置之圖。 第12圖係顯示使用本赘明的雷射加工裝置時的加工 孔位置之圖。 第13圖係顯示調校所需要的加工孔數之圖。 第14圖係習知例的同時多點照射型雷射加工裝置的 構造圖。 【主要元件符號說明】 11、211 XY工作台 12、212被加工物 20 雷射振盪器 21、222第1偏光裝置 22a 至 22j、24a、24b、27a、27b、221a 至 221d、225a、 225b、227a、227b 鏡片 23a、23b、26、26a、26b、224a、224b、226a、226b 電鏡掃描器 228 透鏡 控制部 模型餘存功 25、223第2偏光襞置 π 29 攝像裝置 30 31 33 34 L、L α 月& 調校功能 32 加工資訊儲存功能 加工控制功能ga、gb、gc、gd鏡片角度 L./5 雷射光 又 320239 33Be ΙδΛ gb, gC'gde production --- A :[i m3 βχ p is ΡχΡϊ kw k,_2 kb 3 lcM lr U ,ccx j W Λ2-2 ··· .....* ··- ... ......·······k]5»i k3W k35^_ '(4) In the above formula, the composition of the 'coefficient matrix 匕1, 匕', in the shape, the coefficient matrix x is jjt*1 In the sub-polynomial model μ, in the fine form of the second-order polynomial model::* is a matrix of 15×4. In the inclination of the third-order polynomial model, the coefficient matrix X is a matrix of 35×4. Degree is more == In the case of the rrr number, a fine polynomial can be performed, but it is possible to use a laser processing apparatus for gamma, and a polynomial model (number of items = 35) which is formed by an item of an opening such as a printed circuit board. The inverse mapping model of the accuracy of the specification. To satisfy the coefficient of the school page model (unknown parameter), it is necessary to adjust the coffee ^ ^ ^ to set the angle of each of the electron mirrors (10), 235, 26" The value is subjected to trial processing, and the actual processed hole coordinates are measured by an imaging means 29 such as a camera (10) 320239 28 200902207. From the angle data ga, gb, gc, gd of each of the electron microscope scanners 23a, 23b, 26a, 26b and the hole coordinate data ax, ay, 10,000, which are processed at the time, using the least square method or the weighted least square method Determine the coefficients (unknown parameters) of the above polynomial model. The inverse mapping model (polynomial model) of the mapping of the two hole coordinates processed by the adjustment angle 31 of each of the electron mirrors/scanners calculated by the above-described method is stored in the model storage function 32. In the adjustment processing, the laser processing apparatus of the present invention exhibits a remarkable effect of shortening the working time while the multi-point irradiation type laser processing apparatus can be known. Use the simple example of (4) to make this effect. In the present invention and the conventional adjustment process, the electron microscope scanners 23a, 23b (or 224a, 99/ik, m 224b) of the first group are respectively set to four lens angles to be processed, and the second is processed. The group's electron microscope scanner Shi Na (or 2 shirts, do not set the three lens angles for the trial processing situation. The second diagram shows the use of the conventional simultaneous multi-point illumination type Ledi, the map of the processing hole position Fig. 12 shows a schematic diagram of the laser processing apparatus and the port of the present invention. In addition, for the sake of the sake of the present invention, the ideal (four) lenses 28 and 228 are disposed, and are: In the figures, the material indicates that ^ is the upper part, and the "〇" mark indicates the position on the main beam j:1 226. The position of the hole, the "X" mark is bundled by the ^L beam L The position of the processing hole of the continuation of the addition is shown in Fig. 13. The ring number of the number of holes to be calibrated is not the shape of the sub beam _beam W. In the laser processing of the service 320239 29 200902207 The combination of the lens angles of the device (Fig. 14) for trial processing is 3χ3χ4χ4 = 144 kinds of rabbit electron microscopes sweep Lb to two beams, because The person to be confirmed is the species. = the characteristic of the light beam La, and there is a portion that is repeatedly processed at the same position. The block diagram of the optical wire in Fig. 9 can be seen, for example, from the technique of The laser processing device t' optics of the main beam u and the lens positions of the illumination patterns 224a, 224b, so that it is confirmed that the 3x3^=electron microscopy scan, the same position does not need to be repeated, so it is OK. The number system is less than (10), and it is 153. "On the other hand, in the case of the laser processing apparatus of the present invention, the combination of the lens angles of the electron microscope scanner has 3xJ' trial processing. The laser light Lcc, i/9 or two hits m~36, the number of which to be confirmed is 72. In this simple example, the laser of the present invention is added with two kinds. When the number of trials is reduced, the number of holes in the adjustment process can be changed. In the real angle, the difference in the number of holes between the conventional technology and the conventional technique is as follows: The device 29 determines that the more the number of slaves are added, the more the sputum operation will cost. The coordinate of the casting L's hole control function 34 is the processing of the τ 工作 # 30 30 30 30 30 30 30 30 30 30 30 χ χ χ χ χ χ η η η η η η η η η η η η η η η η The function 32 is multi-rounded into the model storage type and the lens angles of the SEM sweepers 23a, 23b, 26a, 320239 30 200902207 26b are controlled to be calculated by the SEM, the degree of crying ga, gb, gC, gd. By the above process, the lens angle of the lens is opened at the position on the workpiece 12. In addition, in the above description, the case where the shape processing device is exemplified is taken as an example, but the embodiment The 2/3 situation/the laser controls the position of the processing hole by using the polynomial model to control the scanning of the electron microscope scanner. 3b 26a. According to the fourth embodiment, since the same number of electron microscope scanners are disposed on the two optical paths through the first polarizing, the number of processing holes required for the processing of splitting the light is set, and the number of processing holes can be reduced. The school has a significant effect on shortening. Further, in the case of having such a large-scale processing time, there is an effect that the reflection of the two hole coordinates which can be processed by the laser processing of the four electron mirrors is obtained. Lie to control the position of the processing hole into two beams of laser picking on each optical path with 'Although it is shown in the example', but as long as the number of optical paths is the same, it can also be 2.. Straight any number, κ In addition, in the above The implementation form j to 4 ______________ ^ ^ is displayed in the ^ sweeping mirror sweeper, in addition, can also be applied to the two people to configure the number of points to first split the light into two, or prepare a plurality of shots into two The number of mine j holes. Oscillator ^ has been added to the same day [industry utilization possibilities.] Multiple high-precision hole machining cases [simple description of the drawings] Simultaneously as described above, the laser processing skirt of the present invention is common in 320239 31 200902207 Fig. 1 is a view showing an arrangement relationship of an electron microscope scanner in the vicinity of a front focus position of a ίθ lens of a laser processing apparatus according to a first embodiment of the laser processing apparatus according to the first embodiment of the present invention. , , · Figure 3-1 is a schematic diagram of the state in which the quality of the processing hole is good. Fig. 3-2 is a schematic view showing a state in which the quality of the processed hole is poor. Fig. 4 is a diagram showing an example of an evaluation method for the quality of unprocessed pores. Fig. 5-1 is a view showing an example in which the processing hole quality of the main beam and the sub beam of the conventional laser processing apparatus is judged to be a good range. Fig. 5-2 is a view showing an example in which the quality of the α-beam and the non-beam processed hole quality of the laser processing apparatus according to the first embodiment is judged to be a good range. Figure. Fig. 6 is a view showing the arrangement relationship of the sub-electron micro-scanning electron microscope scanner of the laser processing apparatus of the second embodiment of the laser-increasing device of the present invention when viewed from the \-axis direction; Figure. Fig. 7-2 is a diagram showing the arrangement of the electron microscope scan II near the front edge position of the lens of the laser processing apparatus of Fig. 6. ..., figure. Fig. 8 is a view showing the configuration of the third embodiment of the laser processing apparatus of the present invention. Fig. 9 is a view showing the relationship between the lens angle of the electron microscope scanner and the coordinates of the processing hole of the conventional simultaneous multi-point irradiation type laser processing apparatus. Fig. 10 is a block diagram showing the relationship between the mirror angle of the laser processing apparatus of the present invention and the coordinates of the machined hole. Xiong Tian 320239 32 200902207 Fig. 11 is a view showing the position of a machined hole when a conventional multi-point illumination type laser processing apparatus is used. Fig. 12 is a view showing the position of the machining hole when the laser processing apparatus of the present invention is used. Figure 13 is a diagram showing the number of machining holes required for adjustment. Fig. 14 is a structural view showing a conventional multi-point irradiation type laser processing apparatus of a conventional example. [Description of main component symbols] 11, 211 XY table 12, 212 workpiece 20 laser oscillator 21, 222 first polarizing devices 22a to 22j, 24a, 24b, 27a, 27b, 221a to 221d, 225a, 225b, 227a, 227b Lens 23a, 23b, 26, 26a, 26b, 224a, 224b, 226a, 226b Electron microscopy scanner 228 Lens control part model Remaining work 25, 223 Second polarized light π 29 Imaging device 30 31 33 34 L, L α Month & Tuning function 32 Machining information storage function Machining control function ga, gb, gc, gd lens angle L./5 Laser light 320239 33

Claims (1)

200902207 七、申請專利範圍: 1· -種雷射加工褒置,係對配置於.工作台上的被加工物上 的兩點以上㈣照射雷射光以進行加丄,該雷射加 置係具備: 衷 弟1偏絲置’係將-束雷射光分光成光路相異 第1與第2雷射光; 第1電鏡掃描器,係配置在前述第丨雷射患的光路 上,且使前述第I雷射光朝前心作台上— 行掃描; 第1 2電鏡掃描器,係配置在前述第2雷射光的光路 ^且使前述第2雷射光朝前述工作台上之與前述第」 方向相異的第2方向進行掃描; 帛2偏光裝置,係混合前述第」及第2雷射光. 主電鏡掃描器,係由一對.第3及第4電鏡掃 組成,使經混合的前述第1及第2雷射光朝前述工作台 上之相異的第3與第4方向進行掃描;以及 ^ fΘ透鏡,係使來自前述主電鏡掃描器 320239 34 1 聚光於前述被加工物上的預定= 如申§月專利乾圍弟1項之雷射加工裝置,其中,前述第 1及弟1電鏡掃描器係分別配置在傳播前述第i及第2 ==各?路上之距前述⑺透鏡的前焦點位置的光 路長度為相荨之位置。 2 ·如申請專利範圍第1項之雷射加工裝置,其中,告以正 交於前述第1及第1方向兩方向之方向為第5方田向時, 200902207 則迷第1至第4電鏡掃描器係配置成使 電鏡掃描器的鏡片的旋轉纟 苐A 第5方A “ 轉1向與前述第卜第2、 第5方向中任一方向成為同方向。 4· 專㈣,項之雷射加工裝置,其中,當以正 U1及第2方向兩方向之方向為第5方向時, 第1 2及第4電鏡掃描器係配置成使前述 前述第1、第2、4第€3=的則__的方向與 方向中任一方向成為同方向; 鏡掃描器係配置成比前述第4電鏡掃描 搞罪近“苐2偏光裝置側,且配置成使前述第3 知描器的鏡片的旋轉軸的方向相對於前述第卜第2、、 第5方向中任一方向傾斜預定角度。 5.:::咖圍第i項之雷射加工裝置,其中, =第1及第2偏絲置之_兩光路之電鏡掃描器的 片㈣、將别述第1及第2雷射光導引至預定方向之鏡 片的數目為相同。 6·如中請專利範圍第!項之雷射加工襄置,其中,復 f制f置,該控料段係根據表示前述第1至第4電鏡 掃描器的鏡片角度、與為該鏡片角度時由照射於前述工 Γ台;^载第^及第2雷射光所加卫之孔的座標之關 二的遺异模型,對應前述被加工物上的目的加工位置來 演,前述第1至第4電鏡掃描器的鏡片角度,以控制前 述弟1至第4電鏡掃描器的鏡片角度。 .如申請專利範圍第6項之雷射加工裝置’其中,前述演 320239 35 4 200902207 算模型係為從前述第1至第4電鏡掃描器的鏡片角度至 前述第1及第2雷射光在前述工作台上的照射座標之映 射的反映射模型。 8.如申請專利範圍第7項之雷射加工裝置,其中,前述反 映射模型係以多項式模型表示,該多項式模型係含有以 • 構成前述照射座標的4個成分為輸入、以前述第1至第 4的電鏡掃描器的鏡片角度為輸出的4輸入4輸出多項 式。 # 9.如申請專利範圍第8項之雷射加工裝置,其中,前述多 項式模型係以含有前述照射座標的4個成分的3次以下 之項的多項式表示。 10.如申請專利範圍第6項之雷射加工裝置,其中,前述控 制裝置復具備算出功能,該功能係測定任意擺動前述第 1至第4電鏡掃描器的各鏡片角度時之前述第l·及第2 雷射光在前述工作台上之照射座標的4個成分,以算出 表示前述第1至第4電鏡掃描器的鏡片角度與前述照射 Ί . - 座標的4個成分之間的關係的演算模型。 36 320239200902207 VII. Scope of application for patents: 1. A type of laser processing device that illuminates a laser beam for two or more points (4) on a workpiece placed on a workbench for laser beaming. : 衷 1 1 偏 置 ' 系 系 系 束 束 束 束 束 束 束 束 束 束 束 束 束 束 束 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第I laser light is directed toward the front center for scanning - the first optical mirror is disposed on the optical path of the second laser light, and the second laser light is directed toward the front surface of the second laser light. Scanning in a different second direction; 帛2 polarizing device mixing the first and second laser light. The main electron microscope scanner is composed of a pair of third and fourth electron mirror scans, and the first one is mixed. And scanning the second laser light to the different third and fourth directions on the table; and the lens is configured to condense the main electron microscope scanner 320239 34 1 on the workpiece to be predetermined = For example, the laser processing device of the patent squadron The first brother-based scanner and an electron microscope are respectively disposed at the i-th propagation respective second ==? Path of the optical path length from the front focal position of the lens ⑺ relative position of urticaria. 2. The laser processing apparatus according to claim 1, wherein the direction perpendicular to the first and the first directions is the fifth square direction, and the second to fourth electron microscopes are used in 200902207. The scanner is arranged such that the rotation of the lens of the electron microscope scanner 第A fifth party A "turns one direction to the same direction as any of the aforementioned second and fifth directions. 4" (four), item of thunder In the shot processing apparatus, when the directions of the two directions of the positive U1 and the second direction are the fifth direction, the first and fourth electron microscope scanners are arranged such that the first, second, and fourth numbers are the aforementioned The direction of the __ is the same direction as any of the directions; the mirror scanner is configured to sneak closer to the side of the 偏2 polarizer than the fourth SEM scan, and is configured to make the lens of the third scriber The direction of the rotation axis is inclined by a predetermined angle with respect to any one of the aforementioned second, second, and fifth directions. 5.::: The laser processing device of the i-th item of the café, in which the first and second polarized light guides of the electron microscope scanner of the two optical paths are placed (4), and the first and second laser light guides will be described separately. The number of lenses leading to the predetermined direction is the same. 6. Please ask for the scope of patents! a laser processing apparatus, wherein the control section is irradiated to the workpiece stage according to a lens angle indicating the first to fourth electron microscope scanners; ^The alien model of the coordinate of the hole of the hole to be protected by the second and second laser light is performed corresponding to the target processing position on the workpiece, and the lens angles of the first to fourth electron microscope scanners are To control the lens angle of the aforementioned first to fourth electron microscope scanners. The laser processing apparatus of claim 6 wherein said 320239 35 4 200902207 calculation model is from the lens angle of said first to fourth electron microscope scanners to said first and second laser beams in said An inverse mapping model of the mapping of illuminated coordinates on the workbench. 8. The laser processing apparatus according to claim 7, wherein the inverse mapping model is represented by a polynomial model, wherein the polynomial model includes four components that constitute the illumination target, and the first to The lens angle of the fourth electron microscope scanner is a 4-input 4-output polynomial of the output. The laser processing apparatus according to claim 8, wherein the multi-model model is represented by a polynomial of three or less items including four components of the illumination target. 10. The laser processing apparatus according to claim 6, wherein the control device further includes a calculation function for measuring the first l of the respective lens angles of the first to fourth electron microscope scanners. And calculating the relationship between the lens angles of the first to fourth electron microscope scanners and the four components of the illumination Ί - coordinates by the four components of the illumination coordinates of the second laser light on the table. model. 36 320239
TW097119012A 2007-05-28 2008-05-23 Laser processing apparatus TW200902207A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140210A JP4297952B2 (en) 2007-05-28 2007-05-28 Laser processing equipment

Publications (2)

Publication Number Publication Date
TW200902207A true TW200902207A (en) 2009-01-16
TWI343850B TWI343850B (en) 2011-06-21

Family

ID=40105426

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097119012A TW200902207A (en) 2007-05-28 2008-05-23 Laser processing apparatus

Country Status (4)

Country Link
JP (1) JP4297952B2 (en)
KR (1) KR100955149B1 (en)
CN (1) CN101314196B (en)
TW (1) TW200902207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511822B (en) * 2013-01-04 2015-12-11 Mitsubishi Electric Corp Processing control device, laser processing device and processing control method

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178557B2 (en) * 2009-02-02 2013-04-10 三菱電機株式会社 Spectroscopic unit and laser processing apparatus using the same
JP5511644B2 (en) * 2010-12-07 2014-06-04 住友重機械工業株式会社 Laser processing apparatus and laser processing method
TWI459039B (en) * 2011-05-18 2014-11-01 Uni Via Technology Inc Apparatus and method for transforming a laser beam
CN105144346B (en) 2013-02-21 2017-12-15 恩耐公司 The laser scribing of sandwich construction
US10464172B2 (en) 2013-02-21 2019-11-05 Nlight, Inc. Patterning conductive films using variable focal plane to control feature size
KR101974163B1 (en) 2013-02-21 2019-09-02 엔라이트 인크. Non-ablative laser patterning
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking
CN104416289B (en) * 2013-09-09 2017-09-12 恩耐公司 To the optimization of high-resolution digital coded laser light scanner to carry out fine-feature mark
US10618131B2 (en) 2014-06-05 2020-04-14 Nlight, Inc. Laser patterning skew correction
CN105195904B (en) * 2014-06-23 2020-03-10 三菱电机株式会社 Laser processing apparatus
JP6218770B2 (en) * 2014-06-23 2017-10-25 三菱電機株式会社 Laser processing equipment
JP5952875B2 (en) * 2014-09-30 2016-07-13 株式会社片岡製作所 Laser processing machine, work distortion correction method for laser processing machine
JP5902281B2 (en) * 2014-11-19 2016-04-13 三星ダイヤモンド工業株式会社 Laser processing equipment
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
JP6395681B2 (en) * 2015-08-28 2018-09-26 三菱電機株式会社 Laser processing equipment
WO2017091606A1 (en) 2015-11-23 2017-06-01 Nlight, Inc. Predictive modification of laser diode drive current waveform in high power laser systems
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
US10295820B2 (en) 2016-01-19 2019-05-21 Nlight, Inc. Method of processing calibration data in 3D laser scanner systems
US10732439B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Fiber-coupled device for varying beam characteristics
US10423015B2 (en) 2016-09-29 2019-09-24 Nlight, Inc. Adjustable beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US11173548B2 (en) 2017-04-04 2021-11-16 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
CN109471333B (en) * 2017-09-08 2020-05-01 上海微电子装备(集团)股份有限公司 Galvanometer correction system and method
JP6781209B2 (en) * 2018-08-03 2020-11-04 ファナック株式会社 Laser machining equipment control device and laser machining equipment
GB201913631D0 (en) * 2019-09-20 2019-11-06 Alltec Angewandte Laserlicht Tech Gesellschaft Mit Beschraenkter Haftung Electromagnetic radiation system
WO2021221665A1 (en) * 2020-04-30 2021-11-04 Promega Corporation Laser illumination techniques for capillary electrophoresis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479878B2 (en) 2000-03-27 2003-12-15 住友重機械工業株式会社 Laser processing method and processing apparatus
JP4148138B2 (en) * 2001-11-15 2008-09-10 三菱電機株式会社 Laser processing equipment
US7006237B2 (en) * 2002-03-26 2006-02-28 Mitsubishi Denki Kabushiki Kaisha Laser beam positioning device for laser processing equipment
TWI275439B (en) * 2003-05-19 2007-03-11 Mitsubishi Electric Corp Laser processing apparatus
JP4539652B2 (en) * 2004-06-01 2010-09-08 三菱電機株式会社 Laser processing equipment
KR20060037568A (en) * 2004-10-28 2006-05-03 주식회사 이오테크닉스 Dual laser beam system
JP2006122988A (en) * 2004-10-29 2006-05-18 Mitsubishi Electric Corp Laser beam machine
TWI382795B (en) * 2005-03-04 2013-01-11 Hitachi Via Mechanics Ltd A method of opening a printed circuit board and an opening device for a printed circuit board
KR100819616B1 (en) * 2006-03-13 2008-04-04 미쓰비시덴키 가부시키가이샤 Laser beam apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511822B (en) * 2013-01-04 2015-12-11 Mitsubishi Electric Corp Processing control device, laser processing device and processing control method

Also Published As

Publication number Publication date
TWI343850B (en) 2011-06-21
JP2008290137A (en) 2008-12-04
KR100955149B1 (en) 2010-04-28
CN101314196A (en) 2008-12-03
CN101314196B (en) 2012-06-27
JP4297952B2 (en) 2009-07-15
KR20080104993A (en) 2008-12-03

Similar Documents

Publication Publication Date Title
TW200902207A (en) Laser processing apparatus
JP3822188B2 (en) Multi-beam laser drilling machine
JP4401410B2 (en) Laser processing equipment
TWI392552B (en) Laser irradiation device and laser processing method
JP4466561B2 (en) Laser processing equipment
JP7409315B2 (en) Processing system and processing method
CN104105994B (en) Configuration of acousto-optic deflectors for laser beam scanning
CN113515017B (en) AOD scanning-based dual-beam high-speed laser direct writing method and device
TW540194B (en) Laser machining apparatus
JP2013173150A (en) Laser beam machining device and laser beam machining method
JP2000317667A (en) Composite head for laser beam welding
JP2005205429A (en) Laser beam machine
JPWO2020090961A1 (en) Processing system and processing method
JP2008180983A (en) Laser microfabrication method
CN112548324A (en) Laser welding method and apparatus for laser welding
WO2005118207A1 (en) Laser beam apparatus
KR20210125361A (en) Laser processing appartus for quartz ware and laser processing method for quartz ware
JP2021030295A (en) Laser processing device and optical adjustment method
TW201248203A (en) Apparatus and method for transforming a laser beam
CN109623155B (en) Method for performing near 4 pi solid angle femtosecond laser direct writing processing by utilizing multi-photon excitation and application
JP2009038060A (en) Manufacturing method of polycrystalline film and laser machining device
JP2008012538A5 (en)
CN105127599B (en) Method and system for exposing elliptic motion during femtosecond laser machining of motion workpiece
KR20060037568A (en) Dual laser beam system
TW200422131A (en) Laser processing device