TWI611855B - Optimization of high resolution digitally encoded laser scanners for fine feature marking - Google Patents

Optimization of high resolution digitally encoded laser scanners for fine feature marking Download PDF

Info

Publication number
TWI611855B
TWI611855B TW103130968A TW103130968A TWI611855B TW I611855 B TWI611855 B TW I611855B TW 103130968 A TW103130968 A TW 103130968A TW 103130968 A TW103130968 A TW 103130968A TW I611855 B TWI611855 B TW I611855B
Authority
TW
Taiwan
Prior art keywords
laser beam
scanning
laser
scan
layer
Prior art date
Application number
TW103130968A
Other languages
Chinese (zh)
Other versions
TW201518021A (en
Inventor
肯 葛羅斯
Original Assignee
n萊特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/323,954 external-priority patent/US9842665B2/en
Application filed by n萊特股份有限公司 filed Critical n萊特股份有限公司
Publication of TW201518021A publication Critical patent/TW201518021A/en
Application granted granted Critical
Publication of TWI611855B publication Critical patent/TWI611855B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/26Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by converting resistive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Abstract

本文中揭示雷射掃描系統及其用法。於某些實施例中,雷射掃描系統能夠被用來燒蝕性或非燒蝕性掃描一材料的一表面。某些實施例包含掃描一多層結構的方法。某些實施例包含平移一聚焦調整光學系統,用以改變雷射射束直徑。某些實施例利用一20位元雷射掃描系統。 The laser scanning system and its usage are disclosed in this article. In some embodiments, a laser scanning system can be used to ablate or non-ablatively scan a surface of a material. Some embodiments include a method of scanning a multilayer structure. Some embodiments include a translation-focus adjustment optical system for changing the laser beam diameter. Some embodiments utilize a 20-bit laser scanning system.

Description

用於精細特徵圖樣標記的高解析數位方式地編碼雷射掃描器之最佳化 Optimization of a high-resolution digitally encoded laser scanner for fine feature pattern marking

本揭示內容大體上關於雷射圖樣化,且更明確地說,關於用於精細特徵圖樣標記的高解析數位方式地編碼雷射掃描器之最佳化。 This disclosure relates generally to laser patterning, and more specifically, to the optimization of a high-resolution digitally encoded laser scanner for fine feature pattern marking.

相關申請案交叉參考 Cross-reference to related applications

本申請案為美國專利申請案第14/030,799號以及PCT申請案第PCT/US2013/060470號的部分接續案,此兩案皆於2013年9月18日提申並且主張2013年5月2日提申的美國臨時專利申請案第61/818,881號以及2013年2月21日提申的美國臨時專利申請案第61/767,420號的優先權。 This application is a partial continuation of U.S. Patent Application No. 14 / 030,799 and PCT Application No. PCT / US2013 / 060470, both of which were filed on September 18, 2013 and claim May 2, 2013 Priority filed in U.S. Provisional Patent Application No. 61 / 818,881 and U.S. Provisional Patent Application No. 61 / 767,420 filed on February 21, 2013.

本申請案為2014年2月21日提申的PCT申請案第PCT/US2014/017841號的部分接續案,此案主張2013年5月2日提申的美國臨時專利申請案第61/818,881號以及2013年9月9日提申的美國臨時專利申請案第61/875,679號的優先權。 This application is a partial continuation of PCT Application No. PCT / US2014 / 017841 filed on February 21, 2014. This application claims US Provisional Patent Application No. 61 / 818,881 filed on May 2, 2013. And the priority of US Provisional Patent Application No. 61 / 875,679 filed on September 9, 2013.

本申請案為2014年2月21日提申的PCT申請案第PCT/US2014/017836號的部分接續案,此案主張2013年9月18日提申的美國專利申請案第14/030,799號以及2013年5月2日提申的美國臨時專利申請案第61/818,881號以及2013年2月21日提申的美國臨時專利申請案第61/767,420號的權利。 This application is a partial continuation of PCT Application No. PCT / US2014 / 017836 filed on February 21, 2014. This case claims US Patent Application No. 14 / 030,799 filed on September 18, 2013 and Rights of US Provisional Patent Application No. 61 / 818,881 filed on May 2, 2013 and US Provisional Patent Application No. 61 / 767,420 filed on February 21, 2013.

本申請案主張2013年9月9日提申的美國臨時專利申請案第61/875,679號的權利。 This application claims the right to US Provisional Patent Application No. 61 / 875,679 filed on September 9, 2013.

本文以引用的方式將先前申請案PCT/US2013/060470、PCT/US2014/017836、PCT/US2014/017841、14/030,799、61/818,881、61/767,420、以及61/875,679完整併入。 The previous applications PCT / US2013 / 060470, PCT / US2014 / 017836, PCT / US2014 / 017841, 14 / 030,799, 61 / 818,881, 61 / 767,420, and 61 / 875,679 are fully incorporated by reference herein.

對於更小型及攜帶性更大的計算裝置的強烈需求已經在許多對應領域中(其包含用於智慧型手機及平板電腦的觸碰螢幕)造成實質的創新。然而,在觸碰感測器圖樣化與印刷電子的領域中仍有許多改善空間。既有技術(其包含光微影術、網印、以及雷射處理)有各種缺點,其部分肇因於必要處理步驟的數量以及在各種處理步驟之間進行切換所耗用的成本與時間。除了和各種處理步驟相關聯的成本之外,光微影術技術與網印技術還包含許多缺點,其包含和昂貴消耗品及有毒廢料相關聯的高成本。習知的雷射處理技術同樣有許多缺點。不幸的係,目前的技術仍必須生產用於處理印刷電子與觸碰感測器的更有效方法與系統。據此,本領域仍需要用於處理此些裝置之經改善且沒有伴隨缺點的方法與系統。 The strong demand for smaller and more portable computing devices has created substantial innovation in many corresponding fields, including touch screens for smartphones and tablets. However, there is still much room for improvement in the fields of touch sensor patterning and printed electronics. Existing technologies (including photolithography, screen printing, and laser processing) have various disadvantages, partly due to the number of necessary processing steps and the cost and time required to switch between the various processing steps. In addition to the costs associated with various processing steps, photolithography and screen printing techniques also contain many disadvantages, including the high costs associated with expensive consumables and toxic waste. The conventional laser processing technique also has many disadvantages. Unfortunately, current technology still has to produce more efficient methods and systems for handling printed electronics and touch sensors. Accordingly, there remains a need in the art for improved methods and systems for dealing with such devices without the attendant disadvantages.

本揭示內容的目的係藉由提供創新的雷射製程形式來滿足前面提及的需求,其會改變基板表面的導電率,而沒有燒蝕其材料。因此,根據本揭示內容的其中一項觀點提供一種用於處理透明基板的方法,該方法包含下面步驟:產生至少一雷射脈衝,其雷射參數經過選擇用於將被設置在該透明基板上的一導體層非燒蝕性改變成為一非導體特徵圖樣;以及 將該脈衝導向至導體層。 The purpose of this disclosure is to meet the aforementioned needs by providing an innovative laser process format that changes the conductivity of the substrate surface without ablating its material. Therefore, according to one aspect of the present disclosure, a method for processing a transparent substrate is provided. The method includes the steps of generating at least one laser pulse whose laser parameters are selected for being set on the transparent substrate A non-ablative change of a conductor layer into a non-conductor feature pattern; and This pulse is directed to the conductor layer.

於某些實施例中,該些雷射參數包含小於約200ps的脈衝長度以及小於約1.5J/cm2的脈衝能量密度。於某些實施例中,該脈衝的光點大小會藉由改變該基板相對於入射脈衝的位置而在5至100μm的範圍裡面改變。於某些實施例中,該透明基板包含一被設置在反向於該導體層的該基板的表面上的保護膜,並且該保護膜不會在該導體層的非燒蝕處理期間被移除。於某些實施例中,該透明基板係由撓性的聚乙烯對苯二甲酸酯(polyethylene terephthalate)材料製成。於某些實施例中,對觀察者的肉眼來說,相較於相鄰未經處理的導體層,該非導體特徵圖樣難以作視覺辨別或者具有非常低的可見性。於某些實施例中,該脈衝會被引導穿過該透明基板,抵達該導體層。於某些實施例中,該導體層包含銀奈米線。於某些實施例中,該導體層的表面粗糙性在利用該雷射脈衝處理之後實質上不會改變。於某些實施例中,該導體層經由選擇性氧化機制會在該經處理的區域中變成非導體性。 In some embodiments, the laser parameters include a pulse length of less than about 200 ps and a pulse energy density of less than about 1.5 J / cm 2 . In some embodiments, the spot size of the pulse can be changed in the range of 5 to 100 μm by changing the position of the substrate relative to the incident pulse. In some embodiments, the transparent substrate includes a protective film disposed on a surface of the substrate opposite to the conductive layer, and the protective film is not removed during a non-ablation process of the conductive layer. . In some embodiments, the transparent substrate is made of a flexible polyethylene terephthalate material. In some embodiments, the non-conductor feature pattern is difficult to visually recognize or has very low visibility for the naked eye of the observer compared to adjacent untreated conductive layers. In some embodiments, the pulse is guided through the transparent substrate to the conductor layer. In some embodiments, the conductor layer includes a silver nanowire. In some embodiments, the surface roughness of the conductive layer does not substantially change after being processed with the laser pulse. In some embodiments, the conductive layer becomes non-conductive in the treated area via a selective oxidation mechanism.

於本揭示內容的另一項觀點中提供一種改變撓性透明基板上銀奈米線導體基質的片阻(sheet resistance)的方法,該方法包含:產生至少一雷射脈衝,其具有在用於提高該導體基質之片阻的範圍所選出而不會燒蝕該些銀奈米線的雷射參數;以及將該脈衝導向至該導體基質,用以提供片阻。於某些實施例中,該撓性透明基板包含一被設置在反向於該銀奈米線導體基質的該基板的表面上的保護膜,並且該保護膜不會在該導體基質的非燒蝕處理期間被雷射脈衝移除。於某些實施例中,對觀察者的肉眼來說,相較於相鄰未經處理的區域,經由複數個雷射脈衝處理過的區域難以 作視覺辨別或者具有非常低的可見性。 In another aspect of the present disclosure, a method for changing a sheet resistance of a silver nanowire conductor substrate on a flexible transparent substrate is provided. The method includes: generating at least one laser pulse having A laser parameter for increasing the range of the sheet resistance of the conductor substrate is selected without ablating the silver nanowires; and the pulse is directed to the conductor substrate to provide the sheet resistance. In some embodiments, the flexible transparent substrate includes a protective film disposed on a surface of the substrate opposite to the silver nanowire conductor substrate, and the protective film does not burn on the conductor substrate. Removed by laser pulse during etch process. In some embodiments, it is more difficult for the observer's naked eye to treat regions processed by a plurality of laser pulses compared to adjacent unprocessed regions. For visual discrimination or with very low visibility.

於本揭示內容的進一步觀點中提供一種以脈衝式雷射射束來處理透明基板的方法,該基板的特徵為在其一選定表面上設置著一導體材料,該導體材料能夠利用一具有選定參數的脈衝式雷射射束經歷非燒蝕性改變成為非導體材料,該方法包含下面步驟:產生具有該些選定參數的至少一雷射脈衝;以及將該脈衝導向至該基板上的該導體材料,用以產生改變成為非導體材料。 In a further aspect of the present disclosure, a method for processing a transparent substrate with a pulsed laser beam is provided. The substrate is characterized in that a conductive material is disposed on a selected surface thereof. The conductive material can utilize a conductive material having a selected parameter. Pulsed laser beam undergoes non-ablative change to a non-conductive material, the method includes the steps of: generating at least one laser pulse having the selected parameters; and directing the pulse to the conductive material on the substrate To change into a non-conducting material.

於某些實施例中,該透明基板包含一被設置在反向於該導體材料的該基板的表面上的保護膜,並且該保護膜不會在該導體材料的非燒蝕處理期間被移除。於某些實施例中,對觀察者的肉眼來說,相較於未經處理的導體材料,該非導體材料難以作視覺辨別或者具有非常低的可見性。 In some embodiments, the transparent substrate includes a protective film disposed on a surface of the substrate opposite to the conductive material, and the protective film is not removed during a non-ablation process of the conductive material. . In some embodiments, the non-conductive material is difficult to visually discern or has very low visibility to the naked eye of the observer compared to the untreated conductive material.

於本揭示內容的進一步觀點中提供一種以脈衝式雷射射束來處理撓性透明基板的導體材料層的方法,該導體材料層的特徵為曝光於具有選定雷射脈衝參數的雷射脈衝中會導致該導體材料變成非導體材料而不會燒蝕性移除該材料層,該方法包含下面步驟:產生具有該些選定雷射脈衝參數的至少一雷射脈衝;以及將該脈衝導向至該基板的該導體材料層。於某些實施例中,該導體材料層包含銀奈米線。 In a further aspect of the present disclosure, a method for processing a conductive material layer of a flexible transparent substrate with a pulsed laser beam, the conductive material layer being characterized by being exposed to a laser pulse having a selected laser pulse parameter Will cause the conductive material to become non-conductive without ablating the material layer, the method comprising the steps of: generating at least one laser pulse with the selected laser pulse parameters; and directing the pulse to the The conductive material layer of the substrate. In some embodiments, the conductive material layer includes silver nanowires.

於本揭示內容的另一觀點中,目標表面能夠以雷射脈衝來處理,俾使得除非實質放大,否則難以視覺辨別經處理的區域和相鄰未經處理的區域。於本揭示內容的另一觀點中,一通常被設置在要在處理期間被處理及移除的該基板的表面上的保護層會在處理期間保持完整並且不會從該基板處被移除。 In another aspect of this disclosure, the target surface can be treated with laser pulses, making it difficult to visually discern the processed area and adjacent unprocessed areas unless it is substantially enlarged. In another aspect of the present disclosure, a protective layer that is generally disposed on the surface of the substrate to be processed and removed during processing will remain intact during processing and will not be removed from the substrate.

根據本揭示內容的其中一項觀點提供一種雷射圖樣化多層結構的方法,該多層結構包含一基板、一被設置在該基板上的第一層、一被設置在該第一層上的第二層、以及一被設置在該第二層上的第三層,該方法包含:產生至少一雷射脈衝,其雷射參數經過選擇用於非燒蝕性改變該第三層的一選定部分的導電率,俾使得該選定部分變成非導體性;以及將該脈衝導向至該多層結構,其中,該第一層的導電率實質上不會因該脈衝而改變。 According to one aspect of the present disclosure, a method for laser patterning a multilayer structure is provided. The multilayer structure includes a substrate, a first layer disposed on the substrate, and a first layer disposed on the first layer. Two layers, and a third layer disposed on the second layer, the method comprising: generating at least one laser pulse, the laser parameters of which are selected for non-ablatively changing a selected portion of the third layer The conductivity of the selected layer becomes non-conductive; and the pulse is directed to the multilayer structure, wherein the conductivity of the first layer does not substantially change due to the pulse.

於某些實施例中,該第一層與該第三層包含銀奈米線。於某些實施例中,該第一層包含ITO。於某些實施例中,該第二層為具有絕緣特性的光阻。於某些實施例中,該第二層被配置成用以保護該第一層,避免受到該脈衝的導電率改變特徵影響。於某些實施例中,該第二層被配置成用以散射或吸收來自該脈衝的能量。於某些實施例中,該第一層的導電率變更臨界值高於該第三層。於某些實施例中,該第一層已經過熱處置,以便提高其導電率變更臨界值。 In some embodiments, the first layer and the third layer include silver nanowires. In some embodiments, the first layer includes ITO. In some embodiments, the second layer is a photoresist having insulating properties. In some embodiments, the second layer is configured to protect the first layer from being affected by the conductivity change characteristic of the pulse. In some embodiments, the second layer is configured to scatter or absorb energy from the pulse. In some embodiments, the threshold for changing the conductivity of the first layer is higher than the third layer. In some embodiments, the first layer has been overheated in order to increase its threshold for changing the conductivity.

於本揭示內容的另一項觀點中,一種形成多層堆疊結構的方法包含:提供一基板;沉積一第一層在該基板上,該第一層為導體性;雷射圖樣化該第一層,俾使得該第一層的選定部分變成非導體性;沉積一第二層在該第一層上,該第二層為絕緣性;沉積一第三層在該第二層上,該第三層為導體性;以及非燒蝕性雷射圖樣化該第三層,俾使得該第三層的選定部分變成非導體性,而不會實質改變該第一層的導電率。 In another aspect of the present disclosure, a method for forming a multilayer stack structure includes: providing a substrate; depositing a first layer on the substrate, the first layer being conductive; and laser patterning the first layer , 俾 makes a selected portion of the first layer non-conductive; depositing a second layer on the first layer, the second layer is insulating; depositing a third layer on the second layer, the third layer The layer is conductive; and the third layer is patterned by a non-ablation laser so that selected portions of the third layer become non-conductive without substantially changing the conductivity of the first layer.

於某些實施例中,該第一層與第三層包含銀奈米線。於某些實施例中,該第一層包含ITO。於某些實施例中,該第二層為具有絕緣特性 的光阻。於某些實施例中,該第二層被配置成用以保護該第一層,避免在該第三層的非燒蝕性雷射圖樣化期間改變導電率。於某些實施例中,該第二層被配置成用以在該第三層的非燒蝕性雷射圖樣化期間散射或吸收能量。於某些實施例中,該第一層的導電率變更臨界值高於該第三層。於某些實施例中,該方法進一步包括在該第一層已經被雷射圖樣化之後熱處理置該第一層的步驟。於某些實施例中,該第一層的雷射圖樣化為非燒蝕性。 In some embodiments, the first layer and the third layer include silver nanowires. In some embodiments, the first layer includes ITO. In some embodiments, the second layer has insulating properties. Photoresist. In some embodiments, the second layer is configured to protect the first layer from changing conductivity during non-ablation laser patterning of the third layer. In some embodiments, the second layer is configured to scatter or absorb energy during non-ablative laser patterning of the third layer. In some embodiments, the threshold for changing the conductivity of the first layer is higher than the third layer. In some embodiments, the method further includes the step of heat treating the first layer after the first layer has been patterned by a laser. In some embodiments, the laser pattern of the first layer is non-ablative.

於某些實施例中,一光學處理系統包括:一物鏡,其被放置成用以將一處理光學射束導向一目標表面;以及一掃描系統其被放置成用以掃描該處理光學射束跨越該目標表面。一聚焦調整光學系統包含:一聚焦調整光學元件與一聚焦致動器,該聚焦調整光學元件被放置成用以將該光學射束導向該物鏡。該聚焦致動器被耦合至該聚焦調整光學元件,以便沿著該物鏡的一軸線來平移該聚焦調整光學元件,用以在該處理射束被掃描跨越該目標表面時保持該處理射束的聚焦。一射束直徑致動器被放置成用以平移該聚焦調整光學元件,以便在該目標表面處定義一處理射束直徑。於某些範例中,一控制器被耦合至該聚焦致動器,用以在掃描跨越該目標表面期間保持該處理射束的聚焦。於其它範例中,一基板平台包含一平台致動器,其被放置成用以沿著該物鏡的該軸線來定位該目標表面。於進一步的範例中,該控制器被耦合至該射束直徑致動器與該平台致動器,並且該控制器會以一選定的射束直徑為基礎來平移該聚焦調整光學系統與該基板平台。於一特殊的範例中,該射束直徑致動器會產生該聚焦調整光學系統的梯階式平移並且可以沿著該物鏡的該軸線平移至至少兩個位置,該至少兩個位置和具有至少下面較大直徑與較小直徑比的對應已聚焦射束 直徑相關聯:2:1、3:1、4:1、5:1、7.5:1、或是10:1。一般來說,該射束直徑致動器被放置成用以平移該聚焦調整光學系統以便定義至少兩個處理射束直徑,該至少兩個處理射束直徑對應於銀漿導體邊界以及銀奈米線或氧化銦錫導體層的燒蝕性處理與非燒蝕性處理,或者反之亦可。於某些範例中,一雷射會產生該處理射束,並且一雷射控制器會以該些處理射束直徑為基礎來選擇光學射束功率。於某些範例中,該聚焦致動器被耦合至該聚焦調整光學元件,用以沿著該物鏡的該軸線來平移該聚焦調整光學元件,以便補償該物鏡的場曲率(field curvature)。 In some embodiments, an optical processing system includes: an objective lens positioned to direct a processing optical beam to a target surface; and a scanning system positioned to scan the processing optical beam across The target surface. A focus adjustment optical system includes a focus adjustment optical element and a focus actuator, and the focus adjustment optical element is placed to direct the optical beam to the objective lens. The focus actuator is coupled to the focus adjustment optics so as to translate the focus adjustment optics along an axis of the objective lens to maintain the processing beam as the processing beam is scanned across the target surface. Focus. A beam diameter actuator is placed to translate the focus adjustment optics to define a processing beam diameter at the target surface. In some examples, a controller is coupled to the focus actuator to maintain focus of the processing beam during scanning across the target surface. In other examples, a substrate platform includes a platform actuator that is positioned to position the target surface along the axis of the objective lens. In a further example, the controller is coupled to the beam diameter actuator and the platform actuator, and the controller translates the focus adjustment optical system and the substrate based on a selected beam diameter. platform. In a special example, the beam diameter actuator generates a stepwise translation of the focus adjustment optical system and can be translated to at least two positions along the axis of the objective lens, the at least two positions and having at least two positions Corresponding focused beam with larger diameter to smaller diameter ratio below Diameter correlation: 2: 1, 3: 1, 4: 1, 5: 1, 7.5: 1, or 10: 1. Generally, the beam diameter actuator is placed to translate the focus adjustment optical system so as to define at least two processing beam diameters, the at least two processing beam diameters corresponding to a silver paste conductor boundary and silver nanometers Ablation and non-ablation treatment of wire or indium tin oxide conductor layer, or vice versa. In some examples, a laser generates the processing beam, and a laser controller selects the optical beam power based on the processing beam diameters. In some examples, the focus actuator is coupled to the focus adjustment optical element for translating the focus adjustment optical element along the axis of the objective lens in order to compensate for the field curvature of the objective lens.

方法包含當利用一來自一物鏡的光學射束處理一基板時沿著該物鏡的一軸線來平移一聚焦調整光學元件,以便保持一處理射束聚焦於一目標處。一處理射束直徑係藉由沿著該物鏡的該軸線來平移該聚焦調整光學元件所選定。於某些範例中,處理射束直徑係在至少兩個預設數值中所選定,其中,該些預設數值具有至少為1.5:1的較大直徑與較小直徑比。於其它範例中,該目標係一複合物,其具有一導體層與一導體邊界,其中,該至少兩個預設數值包含第一處理射束直徑與第二處理射束直徑,它們分別被選擇用以處理該導體層與該導體邊界。於額外的範例中,該些第一處理射束直徑與第二處理射束直徑經過選擇俾使得該導體層被非燒蝕性處理且該導體邊界被燒蝕性處理,或者反之亦可。於典型的應用中,該些處理射束直徑經過選擇用以處理一銀奈米線或氧化銦錫導體層以及一銀漿導體邊界中的一或更多者。於某些實施例中,該目標係以該選定的處理射束直徑為基礎沿著該物鏡的該軸線被平移。於一代表性範例中,至少兩個處理射束直徑被選擇用以處理一複合基板的一導體層與一導體邊界,其中,該 些處理射束直徑係在至少兩個預設數值中所選定,其中,該些預設數值具有至少為2:1的較大直徑與較小直徑比。於某些範例中,該些第一處理射束直徑與第二處理射束直徑經過選擇俾使得該導體層被非燒蝕性處理且該導體邊界被燒蝕性處理,或者反之亦可。於某些範例中,一種方法進一步包括選擇對應於該些第一處理射束直徑與第二處理射束直徑的第一光學射束功率與第二光學射束功率。 The method includes translating a focus adjustment optical element along an axis of the objective lens when processing a substrate with an optical beam from an objective lens, so as to keep a processing beam focused on a target. A processing beam diameter is selected by translating the focus adjustment optical element along the axis of the objective lens. In some examples, the processing beam diameter is selected from at least two preset values, wherein the preset values have a larger diameter to a smaller diameter ratio of at least 1.5: 1. In other examples, the target is a composite having a conductor layer and a conductor boundary, wherein the at least two preset values include a first processed beam diameter and a second processed beam diameter, which are selected respectively. Used to process the conductor layer and the conductor boundary. In additional examples, the diameters of the first processing beam and the diameter of the second processing beam are selected so that the conductor layer is non-ablative and the conductor boundary is ablative, or vice versa. In typical applications, the processing beam diameters are selected to process one or more of a silver nanowire or indium tin oxide conductor layer and a silver paste conductor boundary. In some embodiments, the target is translated along the axis of the objective lens based on the selected processing beam diameter. In a representative example, at least two processing beam diameters are selected to process a conductor layer and a conductor boundary of a composite substrate, wherein the The processed beam diameters are selected from at least two preset values, wherein the preset values have a larger diameter to a smaller diameter ratio of at least 2: 1. In some examples, the first processing beam diameter and the second processing beam diameter are selected such that the conductor layer is non-ablated and the conductor boundary is ablated, or vice versa. In some examples, a method further includes selecting a first optical beam power and a second optical beam power corresponding to the first processing beam diameter and the second processing beam diameter.

於某些實施例中,一種方法包括:接收一被儲存在至少一電腦可讀取儲存媒體中的圖樣描述,該圖樣描述包括和一掃描向量相關聯的至少一特徵圖樣的定義;以及以該圖樣描述為基礎在一固定掃描區域上方引導一雷射射束,其中,該雷射射束以小於一雷射射束直徑之1/20的橫向位移解析度在該掃描區域上方被引導。 In some embodiments, a method includes: receiving a pattern description stored in at least one computer-readable storage medium, the pattern description including a definition of at least one feature pattern associated with a scan vector; and using the The pattern description is based on guiding a laser beam over a fixed scanning area, wherein the laser beam is guided over the scanning area with a lateral displacement resolution less than 1/20 of a laser beam diameter.

於某些實施例中,一種方法包括:選擇一雷射射束直徑;放置一基板以便使其在和該選定雷射射束直徑相關聯的一掃描平面處被掃描;以及藉由相對於該基板來掃描一具有該選定雷射射束直徑的雷射射束而將該基板曝光於該雷射射束,其中,該雷射射束係在該掃描平面處以對應於小於該雷射射束直徑之1/10的角掃描遞增額被掃描。 In some embodiments, a method includes: selecting a laser beam diameter; placing a substrate so that it is scanned at a scan plane associated with the selected laser beam diameter; and by A substrate to scan a laser beam having the selected laser beam diameter and expose the substrate to the laser beam, wherein the laser beam is at the scanning plane to correspond to a laser beam smaller than the laser beam An angular scan increment of 1/10 of the diameter is scanned.

於某些實施例中,一種設備包括:一雷射,其被配置成用以產生一處理射束;一光學系統;以及一掃描控制器,其被配置成用以接收一掃描圖樣,該掃描圖樣被定義為複數個掃描向量並且被配置成用以控制該光學系統,以便引導該處理射束至一具有預設射束直徑的掃描區域。於某些情況中,該掃描控制器被配置成用以控制該光學系統,用以相對於該掃描區域來掃描該處理射束,以便產生一曝光掃描向量,俾使得該曝光掃 描向量與一預期掃描向量之間的橫向偏移小於該預設射束直徑的1/10。 In some embodiments, an apparatus includes: a laser configured to generate a processing beam; an optical system; and a scan controller configured to receive a scan pattern, the scan The pattern is defined as a plurality of scan vectors and is configured to control the optical system so as to guide the processing beam to a scanning area having a preset beam diameter. In some cases, the scanning controller is configured to control the optical system to scan the processing beam relative to the scanning area, so as to generate an exposure scanning vector, so that the exposure scanning The lateral offset between the scan vector and an expected scan vector is less than 1/10 of the preset beam diameter.

參考隨附的圖式可從下面的詳細說明中更明白本揭示內容的前述與其它目的、特點、以及優點。 The foregoing and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.

100‧‧‧雷射掃描系統 100‧‧‧laser scanning system

102‧‧‧雷射源 102‧‧‧Laser source

104‧‧‧雷射射束 104‧‧‧ laser beam

106‧‧‧光線 106‧‧‧ Light

108‧‧‧光線 108‧‧‧ light

110‧‧‧聚焦控制透鏡 110‧‧‧focus control lens

112‧‧‧殼體 112‧‧‧shell

114‧‧‧聚焦調整機制 114‧‧‧Focus adjustment mechanism

115‧‧‧位置 115‧‧‧Location

116‧‧‧物鏡組裝件 116‧‧‧ Objective lens assembly

117‧‧‧位置 117‧‧‧Location

118‧‧‧第一反射表面 118‧‧‧first reflective surface

119‧‧‧第一電流計 119‧‧‧First ammeter

120‧‧‧第二反射表面 120‧‧‧Second reflective surface

121‧‧‧第二電流計 121‧‧‧second ammeter

122‧‧‧基板 122‧‧‧ substrate

124‧‧‧光學軸線 124‧‧‧optical axis

126‧‧‧焦點 126‧‧‧ Focus

130‧‧‧平移平台 130‧‧‧translation platform

131‧‧‧平移平台 131‧‧‧translation platform

140‧‧‧控制系統 140‧‧‧control system

200‧‧‧物鏡 200‧‧‧ Objective

204‧‧‧平面 204‧‧‧plane

206‧‧‧彎曲表面 206‧‧‧ curved surface

208‧‧‧軸線 208‧‧‧ axis

214‧‧‧聚焦表面 214‧‧‧Focus Surface

216‧‧‧聚焦表面 216‧‧‧focusing surface

300‧‧‧複合體 300‧‧‧ complex

302‧‧‧雷射射束 302‧‧‧laser beam

303‧‧‧雷射射束 303‧‧‧laser beam

304‧‧‧雷射射束 304‧‧‧ laser beam

305‧‧‧下方部分 305‧‧‧Bottom

306‧‧‧基板 306‧‧‧ substrate

307‧‧‧周圍唇部 307‧‧‧ around lips

308‧‧‧周圍導體邊界 308‧‧‧ surrounding conductor boundary

310‧‧‧導體材料層 310‧‧‧Conductor material layer

312‧‧‧工作台 312‧‧‧Workbench

314‧‧‧螺紋桿 314‧‧‧Threaded Rod

316‧‧‧中空管體 316‧‧‧ hollow tube

318‧‧‧基底單元 318‧‧‧ base unit

400A‧‧‧第一聚焦平面 400A‧‧‧First focusing plane

400B‧‧‧第一聚焦平面 400B‧‧‧First focus plane

402A‧‧‧第二聚焦平面 402A‧‧‧Second focus plane

402B‧‧‧第二聚焦平面 402B‧‧‧Second focus plane

404A‧‧‧第三聚焦平面 404A‧‧‧Third focus plane

404B‧‧‧第三聚焦平面 404B‧‧‧ Third focus plane

406‧‧‧雷射射束 406‧‧‧laser beam

406A‧‧‧雷射射束配置 406A‧‧‧laser beam configuration

406B‧‧‧雷射射束配置 406B‧‧‧Laser beam configuration

406C‧‧‧雷射射束配置 406C‧‧‧laser beam configuration

408‧‧‧雷射射束 408‧‧‧laser beam

408A‧‧‧雷射射束 408A‧‧‧laser beam

408B‧‧‧雷射射束 408B‧‧‧laser beam

408C‧‧‧雷射射束 408C‧‧‧laser beam

410‧‧‧雷射射束 410‧‧‧laser beam

410A‧‧‧雷射射束 410A‧‧‧laser beam

410B‧‧‧雷射射束 410B‧‧‧laser beam

410C‧‧‧雷射射束 410C‧‧‧laser beam

412‧‧‧雷射掃描系統 412‧‧‧laser scanning system

600‧‧‧控制系統 600‧‧‧control system

602‧‧‧雷射射束參數控制介面 602‧‧‧ laser beam parameter control interface

603‧‧‧雷射射束傳遞系統 603‧‧‧laser beam delivery system

604‧‧‧平台控制介面 604‧‧‧platform control interface

605‧‧‧雷射源 605‧‧‧laser source

606‧‧‧電流計控制介面 606‧‧‧ ammeter control interface

607‧‧‧處理器 607‧‧‧ processor

608‧‧‧電流計控制介面 608‧‧‧ ammeter control interface

609‧‧‧記憶體 609‧‧‧Memory

610‧‧‧第一平台控制介面 610‧‧‧First platform control interface

612‧‧‧第二平台控制介面 612‧‧‧Second platform control interface

614‧‧‧電流計 614‧‧‧Ammeter

615‧‧‧反射表面 615‧‧‧Reflective surface

616‧‧‧電流計 616‧‧‧ ammeter

617‧‧‧反射表面 617‧‧‧Reflective surface

618‧‧‧基板平台 618‧‧‧ substrate platform

628‧‧‧聚焦調整組裝件 628‧‧‧Focus adjustment assembly

628A‧‧‧聚焦調整組裝件位置 628A‧‧‧Focus on adjusting assembly position

629‧‧‧運動控制裝置 629‧‧‧Motion control device

630‧‧‧運動控制裝置 630‧‧‧ Motion Control Device

700‧‧‧計算環境 700‧‧‧ Computing Environment

710‧‧‧處理單元 710‧‧‧processing unit

715‧‧‧圖形或協同處理單元 715‧‧‧Graphics or collaborative processing unit

720‧‧‧記憶體 720‧‧‧Memory

725‧‧‧記憶體 725‧‧‧Memory

730‧‧‧基礎配置 730‧‧‧Basic configuration

740‧‧‧儲存體 740‧‧‧Storage

750‧‧‧輸入裝置 750‧‧‧ input device

760‧‧‧輸出裝置 760‧‧‧Output device

770‧‧‧通信連接 770‧‧‧Communication connection

780‧‧‧軟體 780‧‧‧Software

782‧‧‧雷射射束軟體模組 782‧‧‧laser beam software module

784‧‧‧基板平台運動模組 784‧‧‧Substrate Platform Motion Module

786‧‧‧射束掃描模組 786‧‧‧ Beam Scanning Module

788‧‧‧場聚焦修正模組 788‧‧‧field focus correction module

790‧‧‧射束直徑模組 790‧‧‧ Beam Diameter Module

802‧‧‧平台 802‧‧‧platform

806‧‧‧透鏡 806‧‧‧Lens

806A‧‧‧透鏡位置 806A‧‧‧Lens Position

808‧‧‧聚焦組裝件 808‧‧‧Focus Assembly

808A‧‧‧固定位置 808A‧‧‧fixed position

810A‧‧‧組裝件止動部 810A‧‧‧Assembly stop

810B‧‧‧組裝件止動部 810B‧‧‧Assembly stop

810C‧‧‧組裝件止動部 810C‧‧‧Assembly stop

812‧‧‧軸線 812‧‧‧ axis

814‧‧‧物鏡 814‧‧‧Objective

1010‧‧‧脈衝式雷射射束 1010‧‧‧ Pulsed Laser Beam

1012‧‧‧目標 1012 ‧ ‧ goals

1014‧‧‧透明基板 1014‧‧‧Transparent substrate

1016‧‧‧保護層 1016‧‧‧ protective layer

1018‧‧‧導體材料層 1018‧‧‧Conductor material layer

1020‧‧‧經處理部分 1020‧‧‧After processing part

1022‧‧‧經處理銀奈米線水平條紋 1022‧‧‧Horizontal stripes with treated silver nanowires

1024‧‧‧第一水平線 1024‧‧‧ the first horizontal line

1026‧‧‧第二水平線 1026‧‧‧Second horizontal line

1028‧‧‧區域 1028‧‧‧area

1030‧‧‧橫向深度輪廓 1030‧‧‧Horizontal depth contour

1032‧‧‧橫向深度輪廓 1032‧‧‧Horizontal depth contour

2010‧‧‧多層堆疊結構 2010‧‧‧Multi-layer stack structure

2012‧‧‧基板層 2012‧‧‧ substrate layer

2014‧‧‧第一層 2014‧‧‧First floor

2016‧‧‧第二層 2016‧‧‧Second floor

2018‧‧‧第三層 2018‧‧‧Third floor

2020‧‧‧多層堆疊結構 2020‧‧‧multi-layer stack structure

2021‧‧‧脈衝式雷射射束 2021‧‧‧ Pulsed Laser Beam

2022‧‧‧選定部分 2022‧‧‧Selected parts

2024‧‧‧選定部分 2024‧‧‧Selected parts

2026‧‧‧第一層 2026‧‧‧First floor

2028‧‧‧第一層 2028‧‧‧First floor

2030‧‧‧多層堆疊結構 2030‧‧‧multi-layer stack structure

3000‧‧‧數位雷射掃描系統 3000‧‧‧digital laser scanning system

3002‧‧‧聚焦平面 3002‧‧‧Focus plane

3004‧‧‧聚焦平面 3004‧‧‧Focus plane

3006‧‧‧聚焦平面 3006‧‧‧Focus plane

3008‧‧‧雷射射束 3008‧‧‧laser beam

3008A‧‧‧雷射射束 3008A‧‧‧laser beam

3008B‧‧‧雷射射束 3008B‧‧‧laser beam

3008C‧‧‧雷射射束 3008C‧‧‧laser beam

3010‧‧‧雷射射束 3010‧‧‧laser beam

3010A‧‧‧雷射射束 3010A‧‧‧laser beam

3010B‧‧‧雷射射束 3010B‧‧‧laser beam

3010C‧‧‧雷射射束 3010C‧‧‧laser beam

3012‧‧‧雷射射束 3012‧‧‧laser beam

3012A‧‧‧雷射射束 3012A‧‧‧laser beam

3012B‧‧‧雷射射束 3012B‧‧‧laser beam

3012C‧‧‧雷射射束 3012C‧‧‧laser beam

3050‧‧‧軸線 3050‧‧‧ axis

圖1所示的係根據本揭示內容一項觀點之用於處理一基板的雷射射束的剖視圖。 FIG. 1 is a cross-sectional view of a laser beam for processing a substrate according to an aspect of the present disclosure.

圖2所示的係根據本揭示內容一項觀點的方法的流程方塊圖。 FIG. 2 is a flow block diagram of a method according to an aspect of the present disclosure.

圖3所示的係根據本揭示內容一項觀點之經雷射射束圖樣化基板的俯視圖。 FIG. 3 is a top view of a laser beam patterned substrate according to an aspect of the present disclosure.

圖4所示的係根據本揭示內容一項觀點之具有未經處理區域及已處理區域的疊置輪廓計資料的影像。 FIG. 4 is an image of superimposed profilometer data with unprocessed areas and processed areas according to one aspect of the present disclosure.

圖5A與5B所示的係根據本揭示內容一項觀點之分別為未經處理區域及經處理區域的XPS關係圖。 5A and 5B are XPS relationship diagrams of an untreated region and a processed region, respectively, according to an aspect of the disclosure.

圖6所示的係圖5B的關係圖中的選定種類的XPS關係圖。 The XPS relationship diagram of the selected type is shown in the relationship diagram of FIG. 5B shown in FIG. 6.

圖7A至7C所示的係根據本揭示內容一項觀點之各種製作步驟處的一示範性堆疊結構的剖視圖。 7A to 7C are cross-sectional views of an exemplary stacked structure at various manufacturing steps according to an aspect of the present disclosure.

圖8A至8C所示的係根據本揭示內容另一項觀點之各種製作步驟處的一示範性堆疊結構的剖視圖。 8A to 8C are cross-sectional views of an exemplary stacked structure at various manufacturing steps according to another aspect of the present disclosure.

圖9A至9C所示的係根據本揭示內容另一項觀點之各種製作步驟處的一示範性堆疊結構的剖視圖。 9A to 9C are cross-sectional views of an exemplary stacked structure at various manufacturing steps according to another aspect of the present disclosure.

圖10所示的係一示範性以雷射為基礎的處理系統。 An exemplary laser-based processing system is shown in FIG. 10.

圖11所示的係和射束直徑調整相關聯的的位移。 The displacements associated with the beam diameter adjustment shown in FIG. 11.

圖12所示的係利用諸如圖10中所示的系統來處理的複合材料。 The system shown in FIG. 12 uses a composite material such as that shown in FIG. 10 for processing.

圖13所示的係和不同射束直徑相關聯的聚焦區域。 The system shown in Fig. 13 is associated with the focal areas of different beam diameters.

圖14所示的係一種處理複合材料的方法。 Figure 14 illustrates a method for processing composite materials.

圖15所示的係一種示範性處理系統,其包含一控制系統與一雷射掃描系統。 An exemplary processing system shown in FIG. 15 includes a control system and a laser scanning system.

圖16所示的係一種示範性計算環境,其被配置成以聚焦控制與射束直徑調整來控制基板處理。 An exemplary computing environment shown in FIG. 16 is configured to control substrate processing with focus control and beam diameter adjustment.

圖17所示的係用於調整射束直徑的一代表性組裝件。 A representative assembly for adjusting the beam diameter is shown in FIG.

圖18所示的係一雷射掃描系統以及三個聚焦平面。 The system shown in FIG. 18 is a laser scanning system and three focusing planes.

圖19A與19B各自顯示一輸入圖樣以及一由雷射掃描系統實際掃描的圖樣。 19A and 19B each show an input pattern and a pattern actually scanned by the laser scanning system.

圖20A與20B各自顯示由一雷射掃描系統掃描的數條直線。 20A and 20B each show several straight lines scanned by a laser scanning system.

圖21所示的係用於一雷射掃描系統的輸入圖樣。 The system shown in Figure 21 is used for an input pattern of a laser scanning system.

圖22所示的係一示範性方法。 An exemplary method is shown in FIG. 22.

I. 一般性探討 I. General discussion

如本申請案及申請專利範圍中的用法,除非內文中另外清楚表示,否則,單數形式的「一」以及「該」亦包含複數形式。除此之外,「包含(include)」的意義為「包括(comprise)」。進一步言之,「被耦合」一詞並不排除在被耦合的項目之間有中間元件存在。 As used in the scope of this application and patent application, unless clearly stated otherwise in the text, the singular forms "a" and "the" include plural forms. In addition, "include" means "comprise". Furthermore, the term "coupled" does not exclude the presence of intervening elements between coupled items.

本文中所述的系統、設備、以及方法不應被視為有任何限制 意義。取而代之的係,本揭示內容係關於各種已揭實施例的所有新穎及非顯見特點與觀點以及它們的各種組合以及彼此的子組合。已揭系統、方法、以及設備並不受限於任何特定觀點或特點或是它們的組合,已揭系統、方法、以及設備亦不要求有任何一或更多個特定優點存在或是解決任何一或更多個特定問題。任何操作原理皆係為幫助解釋,已揭系統、方法、以及設備並不受限於此些操作原理。 The systems, devices, and methods described in this article should not be considered as limiting significance. Instead, this disclosure is all about novel and non-obvious features and perspectives on the various disclosed embodiments and their various combinations and subcombinations of each other. The disclosed systems, methods, and devices are not limited to any particular perspective or feature or combination thereof, and the disclosed systems, methods, and devices do not require any one or more specific advantages to exist or solve any Or more specific questions. Any operating principle is intended to help explain, and the disclosed systems, methods, and equipment are not limited to these operating principles.

為方便呈現起見,已揭方法中的一部分的操作雖然以特殊的循序順序來說明;不過,應該瞭解的係,除非本文中提出的特定語言要求特殊的排序方式,否則,此說明方式涵蓋重新排列。舉例來說,本文中依序說明的操作可於某些情況中被重新排列或是同步實施。又,為達簡化起見,隨附的圖式並沒有顯示已揭系統、方法、以及設備能夠配合其它系統、方法、以及設備來使用的各種方式。除此之外,說明有時候會使用類似「產生(produce)」以及「提供(provide)」等用詞來說明已揭的方法。此些用詞為被實施的實際操作的高階抽象概念。對應於此些用詞的實際操作會相依於特殊施行方式而改變並且熟習本技術的人士便可輕易地明瞭。 For ease of presentation, some of the operations in the disclosed method are described in a special sequential order; however, it should be understood that unless the specific language proposed in this article requires a special ordering method, this description method covers re- arrangement. For example, the operations described sequentially in this article may be rearranged or performed concurrently in some cases. In addition, for the sake of simplicity, the accompanying drawings do not show various ways in which the disclosed systems, methods, and devices can be used in conjunction with other systems, methods, and devices. In addition, the description sometimes uses terms such as "produce" and "provide" to describe the methods that have been disclosed. These terms are high-level abstractions of the actual operations being implemented. The actual operation corresponding to these terms will be changed depending on the particular implementation method and can be easily understood by those skilled in the art.

於某些範例中,數值、程序、或是設備會被稱為「最低」、「最佳」、「最小」、或是類似物;但是,應該明白的係,此些描述的用意係表示能夠在許多被使用的功能性替代例中作選擇,並且此些選擇未必相較於其它選擇為較佳、較小、或是較好。 In some examples, values, procedures, or equipment will be referred to as "lowest", "best", "minimum", or the like; however, it should be understood that these descriptions are intended to indicate Choose among many functional alternatives used, and these choices are not necessarily better, smaller, or better than other options.

為達合宜說明之目的,本文中使用「頂端」、「上方」、「下方」、「底部」、以及類似用詞來說明已揭實施例的特定特徵圖樣。此些用詞的用意並非表示某一特殊配向,取而代之的係,用以表示相對位置。 For the purpose of proper description, "top", "above", "below", "bottom", and similar terms are used herein to describe specific feature patterns of the disclosed embodiments. These terms are not intended to indicate a particular alignment, but instead are used to indicate relative positions.

如本文中的用法,雷射射束直徑通常係以最低階TEM00模式或是雷同功率分佈的l/e2強度為基礎。「軸線」或是「光學軸線(optical axis)」係指用於耦合光學元件的軸線。此些軸線未必為單一筆直的線段,相反地,亦能夠包含對應於利用面鏡、稜鏡、或是其它光學元件所產生之彎曲與對摺的複數個線段。如本文中的用法,透鏡係指單一透鏡元件或是多元件式(合成)透鏡。 As used herein, the laser beam diameter is usually based on the lowest order TEM 00 mode or 1 / e 2 intensity with the same power distribution. "Axis" or "optical axis" refers to the axis used to couple optical elements. These axes are not necessarily a single straight line segment. On the contrary, they can also include a plurality of line segments corresponding to the bending and folding of the mirror, the chirp, or other optical elements. As used herein, a lens refers to a single lens element or a multi-element (composite) lens.

II. 非燒蝕性雷射圖樣化 II. Non-Ablative Laser Patterning

撓性基板雖然有製造價格不昂貴的潛在優點;但是,習知的製程並未實現此些效率。據此,本文中所述的各種範例係針對製造用於不同應用的經處理複合膜,例如,用於觸敏式顯示器的透明導體。舉例來說,用於處理該些撓性複合膜的步驟能夠被配置成讓觸敏區域被形成在該撓性複合膜之中,俾使得該些觸敏區域變成適合使用在各種顯示裝置之中。用於經處理基板的其它合宜應用一般會包含顯示裝置,以及LED磷光體強化、其它商用與消費性照明應用、穿戴式電子、以及光伏特電池。然而,撓性基板特別適用於行動消費性顯示器,其中,非常希望有較薄、耐用、以及撓性的外形。又,藉由運用本文中所述的進展,撓性膜雷射圖樣化能夠利用一完整不改變的保護層來達成,從而達成真實的卷對卷(roll to roll)處理。於某些範例中,該基板亦能夠為剛性。 Flexible substrates have the potential advantage of not being expensive to manufacture; however, conventional processes have not achieved these efficiencies. Accordingly, the various examples described herein are directed to the manufacture of processed composite films for different applications, such as transparent conductors for touch-sensitive displays. For example, the step for processing the flexible composite films can be configured so that the touch-sensitive area is formed in the flexible composite film, thereby making the touch-sensitive areas suitable for use in various display devices. . Other suitable applications for processed substrates would typically include display devices, as well as LED phosphor enhancement, other commercial and consumer lighting applications, wearable electronics, and photovoltaic special batteries. However, flexible substrates are particularly suitable for mobile consumer displays, where a thin, durable, and flexible form factor is highly desirable. Also, by applying the progress described in this article, flexible film laser patterning can be achieved with a complete and unchanged protective layer, thereby achieving true roll-to-roll processing. In some examples, the substrate can also be rigid.

現在參考圖1,圖中所示的係根據本揭示內容一項觀點之具有用於處理一目標1012的選定雷射脈衝參數的脈衝式雷射射束1010的剖視圖。如圖所示,目標1012包含一透明基板1014,於該透明基板的其中一側設置一保護層1016並且在反向於該其中一側的另一側設置一薄的導體材料 層1018。於許多範例中,基板1014有恆定或固定的厚度,例如,落在50μm與200μm之間的範圍中,其經常相依於該基板以及所使用的(多種)材料的應用。於進一步範例中,可以配合該基板1014以及相關聯的保護層1016與薄層1018而設置額外層,例如,形成一複合基板或是於其中設置一或更多個其它材料或層的基板。 Reference is now made to FIG. 1, which is a cross-sectional view of a pulsed laser beam 1010 having selected laser pulse parameters for processing a target 1012 according to one aspect of the present disclosure. As shown, the target 1012 includes a transparent substrate 1014. A protective layer 1016 is provided on one side of the transparent substrate and a thin conductive material is provided on the other side opposite to the one side. Layer 1018. In many examples, the substrate 1014 has a constant or fixed thickness, for example, falling in the range between 50 μm and 200 μm, which often depends on the substrate and the application (material) used. In a further example, additional layers may be provided in conjunction with the substrate 1014 and associated protective layers 1016 and thin layers 1018, for example, forming a composite substrate or a substrate having one or more other materials or layers disposed therein.

於某些範例中,導體材料層1018包含隨機排列的多條銀奈米線。薄層1018的該些銀奈米線通常在一聚合物基質(例如,有機的覆蓋塗層)中被固定至基板1014。雷射射束1010傳遞雷射脈衝至該薄層1018並且創造一經處理的部分1020,其中,層1018的材料的導電率會實質地改變。本文中,「導體性」與「非導體性」具有在印刷電子、觸碰感測器圖樣化、或是光電子的技術中一般理解的意義,下面會更詳細提出。 In some examples, the conductive material layer 1018 includes a plurality of silver nanowires arranged randomly. The silver nanowires of the thin layer 1018 are typically fixed to the substrate 1014 in a polymer matrix (eg, an organic overcoat). The laser beam 1010 transmits a laser pulse to the thin layer 1018 and creates a processed portion 1020, wherein the conductivity of the material of the layer 1018 will substantially change. In this article, "conductivity" and "non-conductivity" have meanings commonly understood in the technology of printed electronics, touch sensor patterning, or optoelectronics, which will be presented in more detail below.

圖2所示的係根據本揭示內容一項觀點的示範性方法1100的流程方塊圖。在第一步驟1102中,一基板會被提供,其上設置著一薄導體層。該基板較佳的係為透明並且撓性,但是,根據本文亦能夠處理其它基板,其並沒有脫離本揭示內容的範疇。根據本揭示內容的另一項觀點,一保護層或膜會被設置在該基板的另一表面,舉例來說,反向於該導體層,並且該基板能夠不移除該保護層或膜而被處理。在第二步驟1104中,至少一雷射脈衝會被產生,其雷射脈衝參數經過選擇用以達成該基板上的該薄導體層的非燒蝕性處理,俾使得該薄導體層的該經處理部分變成非導體性,並且使得該經處理部分同樣為低可見性。在第三步驟1106中,該至少一雷射脈衝會被導向該基板。該經處理的基板具有不同於未經處理基板的導電率,俾使得特殊的感測區與電路徑可以被形成在該基板上。藉由審慎 選擇雷射脈衝的特徵(其包含諸如下面的脈衝參數:脈衝長度、脈衝能量密度、脈衝能量、光點大小、脈衝重複率、以及掃描速度),該基板可以被處理成使其電氣特徵以預設的方式改變,同時該基板以及相關聯的保護層與導體層不會因燒蝕性製程而被實質性破壞或是結構性改變。據此,在運用一保護層(舉例來說,保護層1016)的範例中,該保護層不需要在該基板的處理期間被移除。 FIG. 2 is a flowchart block diagram of an exemplary method 1100 according to an aspect of the present disclosure. In a first step 1102, a substrate is provided with a thin conductive layer disposed thereon. The substrate is preferably transparent and flexible. However, other substrates can be processed according to this document without departing from the scope of the present disclosure. According to another aspect of the present disclosure, a protective layer or film is disposed on the other surface of the substrate, for example, opposite to the conductor layer, and the substrate can be removed without removing the protective layer or film. Be processed. In a second step 1104, at least one laser pulse is generated, and its laser pulse parameters are selected to achieve a non-ablative treatment of the thin conductor layer on the substrate, so that the The treated portion becomes non-conductive and makes the treated portion equally low visibility. In a third step 1106, the at least one laser pulse is directed to the substrate. The processed substrate has a conductivity different from that of the untreated substrate, so that special sensing regions and electrical paths can be formed on the substrate. By prudence Selecting the characteristics of the laser pulse (which includes pulse parameters such as: pulse length, pulse energy density, pulse energy, spot size, pulse repetition rate, and scanning speed), the substrate can be processed to make its electrical characteristics predictive The design method is changed, and the substrate and the associated protective layer and conductor layer are not substantially damaged or structurally changed due to the ablation process. Accordingly, in the example using a protective layer (for example, the protective layer 1016), the protective layer need not be removed during processing of the substrate.

雖然圖1中的射束1010大體上顯示為被送往其聚焦處;不過,亦可採用其它射束幾何配置及強度分佈,其包含:未聚焦的射束;直線射束;正方形或矩形射束;以及跨越一或更多條橫切軸線擁有均勻、實質上均勻、或預選強度輪廓的射束。於某些範例中,提供射束1010的射束傳遞系統亦被配置成用以相對於目標1012來平移該射束1010,俾使得該射束能夠在其上形成直線特徵圖樣、面積特徵圖樣、以及其它幾何特徵圖樣。於其它範例中,目標1012能夠在射束傳遞系統及射束1010保持固定在一或更多條軸線中時被平移用以形成幾何特徵圖樣。於再其它範例中,目標1012及射束1010皆能夠被平移。又,於某些範例中,射束1010係從相反方向照射該目標1012,俾使得射束1010會傳播通過保護層1016(若存在的話)與基板1014,以便對導體層1018造成非燒蝕性效應。 Although the beam 1010 in FIG. 1 is generally shown as being sent to its focus; other beam geometric configurations and intensity distributions can also be used, including: unfocused beams; straight beams; square or rectangular beams Beams; and beams having a uniform, substantially uniform, or preselected intensity profile across one or more transverse axes. In some examples, the beam delivery system providing the beam 1010 is also configured to translate the beam 1010 relative to the target 1012, so that the beam can form a linear feature pattern, an area feature pattern, And other geometric features. In other examples, the target 1012 can be translated to form a geometric feature pattern while the beam delivery system and the beam 1010 remain fixed in one or more axes. In yet other examples, both the target 1012 and the beam 1010 can be translated. Also, in some examples, the beam 1010 illuminates the target 1012 from the opposite direction, so that the beam 1010 will propagate through the protective layer 1016 (if present) and the substrate 1014 so as to cause non-ablation to the conductor layer 1018 effect.

如本文中的用法,燒蝕性處理被理解成意謂著藉由蒸發、光化學改質、或是其它方式經由一入射光學射束所造成之從一目標處大量移除材料。同樣地,非燒蝕性處理被理解成意謂著既有的目標表面拓樸的結構性特徵圖樣在處理之後仍保持完整不改變,即使該目標的電氣特性或其它特性有改變。於某些範例中,一經非燒蝕性處理的表面和相鄰的未經處 理區域難以作視覺辨別。於某些範例中,銀奈米線的非燒蝕性處理不會移除或實質上不會移除該些銀奈米線。一覆蓋該些銀奈米線的覆蓋塗層會經由雷射處理從該些銀奈米線處被移除,該製程不會被視為相對於該些銀奈米線有燒蝕性。 As used herein, ablative treatment is understood to mean the substantial removal of material from a target by evaporation, photochemical modification, or other means caused by an incident optical beam. Similarly, non-ablative processing is understood to mean that the existing structural feature topography of the target surface remains intact after processing, even if the electrical or other characteristics of the target are changed. In some cases, a non-ablative surface and adjacent untreated areas It is difficult to visually identify the physical area. In some examples, the non-ablative treatment of silver nanowires does not remove or substantially does not remove the silver nanowires. A cover coating covering the silver nanowires is removed from the silver nanowires by a laser process, and the process is not considered to be ablative relative to the silver nanowires.

雷射射束1010的雷射脈衝雖然導致經處理部分1020變成非導體性;但是,該經處理部分1020的可見特徵則實質上保持不變。因此,若不借助於包含跨越多個視角的影像強化機制,例如,顯微鏡,經處理部分1020與未經處理部分10185之間的差別並不顯著。參考圖3,圖中所示的係根據一代表性已揭方法所處理的基板(例如,基板1014)在單色照明下放大1500倍的俯視圖的顯微鏡影像。如圖3中所示,圖中所示的經處理銀奈米線水平條紋1022(即使在明顯放大下,對肉眼仍幾乎不顯見)寬約30μm。用於提供條紋1022中所示的卓越非燒蝕性結果的雷射脈衝參數包含:約50ps的脈衝長度、約0.17J/cm2的脈衝能量密度、約40μm l/e2的光點大小、約1m/s的掃描速率、大於90%的脈衝至脈衝重疊、約12μJ的總脈衝能量、以及約100kHz的脈衝重複率。 Although the laser pulse of the laser beam 1010 causes the processed portion 1020 to become non-conductive, the visible characteristics of the processed portion 1020 remain substantially unchanged. Therefore, the difference between the processed portion 1020 and the unprocessed portion 10185 is not significant without the aid of an image enhancement mechanism that includes multiple viewing angles, such as a microscope. Referring to FIG. 3, a microscope image of a top view of a substrate (eg, substrate 1014) processed according to a representative disclosed method under a monochromatic illumination at a magnification of 1500 times is shown. As shown in FIG. 3, the processed silver nanowire horizontal stripes 1022 (which are hardly visible to the naked eye even under significant magnification) shown in the figure are about 30 μm wide. Laser pulse parameters for providing excellent non-ablative results shown streak 1022 comprises: a pulse length of about 50ps, a pulse energy density of about 0.17J / cm 2 and about 40μm l / e 2 spot size, A scan rate of about 1 m / s, a pulse-to-pulse overlap of greater than 90%, a total pulse energy of about 12 μJ, and a pulse repetition rate of about 100 kHz.

上面提及的雷射脈衝參數數值僅為範例,針對不同的目標與系統可以選擇與最佳化其它參數。除此之外,參數數值亦能夠針對各式各樣的處理速度而加以縮放,前提係,脈衝重疊與脈衝能量要保持在適合產生非燒蝕性非導體效應的參數範圍之中。因此,脈衝重複率能夠被提高至1MHz、數十個MHz、或是更高,以便提高處理速度,前提係,必要的雷射與射束傳遞架構能夠據以配置。脈衝長度能夠被選擇為較短或較長,並且其它參數(例如,脈衝能量密度)能夠經過調整用以確保目標以非燒蝕性被處 理成非導體性特徵圖樣。舉例來說,可能的脈衝長度包含小於約1ps、100ps、200ps、500ps、800ps、或是1ns。其它參數能夠以雷同的方式據以改變及最佳化。 The values of the laser pulse parameters mentioned above are just examples, and other parameters can be selected and optimized for different targets and systems. In addition, the parameter values can also be scaled for various processing speeds, provided that the pulse overlap and pulse energy are kept within the parameter range suitable for generating non-ablative non-conductor effects. Therefore, the pulse repetition rate can be increased to 1 MHz, tens of MHz, or higher in order to increase the processing speed, provided that the necessary laser and beam delivery architecture can be configured accordingly. Pulse length can be selected to be shorter or longer, and other parameters (e.g., pulse energy density) can be adjusted to ensure that the target is treated non-ablatively Form a non-conductive characteristic pattern. For example, possible pulse lengths include less than about 1 ps, 100 ps, 200 ps, 500 ps, 800 ps, or 1 ns. Other parameters can be changed and optimized in the same way.

在構形之後,在條紋1022上面與下面的目標1012的兩個部分會因為來自雷射射束1010的脈衝對該經處理區域1020所造成的片阻變化而彼此電隔離,從而對電力的傳導流動有效地形成屏障。當材料規格改變時,其它參數則能夠利用嘗試性或其它最佳化方式來審慎選擇,以便達成本揭示內容之製程的非燒蝕性導電率改變觀點,同時保持該經處理區域相對於未經處理區域的超低可見性。雷射射束1010亦能夠被修正為具有高斯狀(Gaussian)以外的形狀,例如,平頂狀(flat-top)、高斯狀(super-Gaussian)、…等。能夠操作本揭示內容之雷射參數範圍的雷射系統通常包含脈衝式光纖雷射、脈衝式光纖放大器、以及二極體激昇固態雷射。 After the configuration, the two parts of the target 1012 above and below the fringe 1022 are electrically isolated from each other due to the change in the sheet resistance caused by the pulse from the laser beam 1010 to the processed region 1020, thereby conducting electricity Flow effectively forms a barrier. When the material specifications change, other parameters can be carefully selected using tentative or other optimization methods in order to achieve a non-ablative conductivity change view of the cost-disclosure process, while maintaining the treated area relative to Ultra-low visibility of the processing area. The laser beam 1010 can also be modified to have a shape other than Gaussian, for example, flat-top, super-Gaussian, etc. Laser systems capable of operating within the laser parameter range of this disclosure typically include pulsed fiber lasers, pulsed fiber amplifiers, and diode-excited solid-state lasers.

據此,利用本文中揭示的方法能夠在基板上形成形狀與圖樣,以便達成與相鄰的未經處理區域電隔離的目的。除了不需要遮罩、光阻、蝕刻槽、置換或提供額外保護膜之外,使用雷射或掃描式雷射還提供一種可配置性極高的製程,從而允許進行片對片(sheet-to-sheet)、卷對片(roll to sheet)、卷對卷(roll to roll,R2R)、或是卷對最終感測器(roll to finished sensor)的製造。掃描式雷射能夠以一影像檔案來程式化,以便針對各種圖樣幾何形狀與基板或是在各種圖樣幾何形狀與基板之間輕易地修改該製程。又,藉由運用本文中所述的超低可見性製程觀點,甚至能夠在習知的雷射或化學製程中達到縮短循環時間的目的。舉例來說,於一習知的雷射製程中,為降低經燒蝕性處理區域的可見性,額外的區域必須經過非必要的處理, 以便提供均勻的圖樣效果,以便有效地降低該些燒蝕性標記對使用者之肉眼的總體可見性。因為本揭示內容的處理觀點造成超低可見性的標記,所以,首先,和在多個區域之中進行填充以便降低可見性相關聯的額外製程時間便不再需要,因此會導致更快速且因而更節省成本的製程。 According to this, the method and method disclosed herein can be used to form shapes and patterns on the substrate, so as to achieve the purpose of electrical isolation from adjacent unprocessed areas. In addition to the need for masks, photoresist, etched grooves, replacement, or additional protective film, the use of lasers or scanning lasers provides a highly configurable process that allows sheet-to-sheet -sheet), roll to sheet, roll to roll (R2R), or roll to finished sensor. Scanning lasers can be programmed with an image file to easily modify the process for various pattern geometries and substrates. In addition, by using the ultra-low visibility process viewpoint described in this article, the purpose of shortening cycle time can be achieved even in conventional laser or chemical processes. For example, in a conventional laser process, in order to reduce the visibility of the ablatively treated areas, the additional areas must undergo unnecessary treatment. In order to provide a uniform pattern effect, the overall visibility of the ablative marks to the naked eye of the user is effectively reduced. Because the processing point of view of this disclosure results in a mark of ultra-low visibility, first, the additional process time associated with padding in multiple regions to reduce visibility is no longer needed and therefore results in faster and therefore More cost-effective manufacturing process.

透明基板1014能夠由各式各樣不同的材料所組成,其包含玻璃、塑膠、或是金屬。典型的基板傾向由聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)製成,因為它的成本低以及許多有利的特點,該些特點包含透明度、撓性、彈性、容易製造、…等。PET基板能夠利用熟習透明導體膜處理技術的人士已知的一或更多種方式來製造,且於某些範例中,其能夠以適合卷對卷處理的卷軸來提供。其它可能基板材料的非竭盡清單包含玻璃、聚萘二甲酸乙二酯(polyethylene naphthalate)、聚胺基甲酸酯(polyurethane)、以及各種金屬。圖3中所示的基板1014具有約0.13mm的厚度並且係由聚乙烯對苯二甲酸酯所製成。於此厚度範圍中,PET以及其它合宜材料為撓性並且能夠以預設寬度的卷軸來儲存、以預設寬度的卷軸來運送、或是配置成以預設寬度的卷軸來處理。基板1014在視覺顯示應用中通常為透明,俾使得當該基板1014於稍後應用至一顯示裝置(圖中並未顯示)時,來自該顯示裝置的光可以傳播通過該基板1014,通往該裝置的使用者。 The transparent substrate 1014 can be composed of various materials including glass, plastic, or metal. A typical substrate tends to be made of polyethylene terephthalate (PET) because of its low cost and many advantageous features, such as transparency, flexibility, elasticity, ease of manufacture, etc. The PET substrate can be manufactured using one or more methods known to those skilled in transparent conductor film processing technology, and in some examples, it can be provided on a roll suitable for roll-to-roll processing. A non-exhaustive list of other possible substrate materials includes glass, polyethylene naphthalate, polyurethane, and various metals. The substrate 1014 shown in FIG. 3 has a thickness of about 0.13 mm and is made of polyethylene terephthalate. Within this thickness range, PET and other suitable materials are flexible and can be stored on rolls with a preset width, shipped on rolls with a preset width, or configured to be processed on rolls with a preset width. The substrate 1014 is generally transparent in a visual display application, so that when the substrate 1014 is later applied to a display device (not shown in the figure), light from the display device can propagate through the substrate 1014 to the The user of the device.

於撓性透明導體膜的典型範例中,在該透明導體膜的雷射圖樣處理中,未加工的原料(rough stock)係以卷軸或是扁平片狀配置的形式來提供,因此,該未加工的原料會變成適合使用在各種應用(例如,光電子裝置)中的經處理原料。於某些範例中,透明導體膜材料包含銀奈米線(亦稱為SNW或AgNW),其被沉積至預設厚度或導電率,兩者通常係藉由在膜生產 階段中提高或降低銀奈米線的密度所設定。於其它範例中,透明導體膜會包含其它材料或是具有多層。透明導體膜能夠在剛性表面(舉例來說,在剛性玻璃或複合螢幕)上發現終端用途。銀奈米線非常適用於撓性基板,因為它們的材料特性(例如,導電率與結構完整性)在各種類型的彎折負載下(舉例來說,固定式彎曲、循環式變形、或是柔韌性)非常一致。 In a typical example of a flexible transparent conductor film, in the laser pattern processing of the transparent conductor film, a rough stock is provided in the form of a roll or a flat sheet configuration. Therefore, the raw The raw materials will be processed raw materials suitable for use in various applications, such as optoelectronic devices. In some examples, the transparent conductor film material includes silver nanowires (also known as SNW or AgNW), which are deposited to a predetermined thickness or conductivity, both of which are usually produced by It is set to increase or decrease the density of silver nanowires in the stage. In other examples, the transparent conductive film may include other materials or have multiple layers. Transparent conductor films can find end uses on rigid surfaces, such as rigid glass or composite screens. Silver nanowires are very suitable for flexible substrates because their material properties (e.g., conductivity and structural integrity) are under various types of bending loads (for example, fixed bending, cyclic deformation, or flexibility) Sex) are very consistent.

保護層1016亦能夠由適合提供保護的不同材料製成,避免因微粒物質、磨損、以及刮擦而造成損壞。保護層1016的厚度通常經過選擇,以便適合為下面的基板1014提供保護。其中一種合宜的厚度為約.04mm;然而,亦可以使用其它厚度。因為本揭示內容的觀點不需要在製造期間移除、重新塗敷、或是置換保護層1016,所以,可以使用包括各種材料的保護層1016。由聚乙烯或是聚乙烯對苯二甲酸酯所製成的保護膜1016適合提供基板1014之表面的必要保護。習知製程中必須在處理基板1014之前先移除保護層(例如,保護層1016)並且在處理基板1014之後重新貼附或是重新塗敷以避免在處理期間因該雷射所提供的強大熱量而破壞該保護層,其會導致龐大的額外處理時間與成本。如本文中的揭示,一基板1014能夠被處理而不必移除以及重新貼附或重新塗敷保護層1016,從而在處理透明基板(包含撓性透明基板)中導致創新成本下降的潛在性。 The protective layer 1016 can also be made of different materials suitable for providing protection from damage caused by particulate matter, abrasion, and scratching. The thickness of the protective layer 1016 is usually selected so as to be suitable for protecting the underlying substrate 1014. One suitable thickness is about .04 mm; however, other thicknesses can also be used. Because the point of view of the present disclosure does not require removal, recoating, or replacement of the protective layer 1016 during manufacturing, a protective layer 1016 including various materials may be used. A protective film 1016 made of polyethylene or polyethylene terephthalate is suitable to provide the necessary protection of the surface of the substrate 1014. In the conventional process, the protective layer (for example, the protective layer 1016) must be removed before the substrate 1014 is processed and reattached or recoated after the substrate 1014 is processed to avoid the strong heat provided by the laser during processing. Destroying the protective layer will cause huge additional processing time and cost. As disclosed herein, a substrate 1014 can be processed without having to remove and re-attach or re-apply the protective layer 1016, thereby potentially reducing the cost of innovation in processing transparent substrates (including flexible transparent substrates).

圖4所示的係如圖3中所示之目標基板1014的俯視圖的雷同影像,其上疊置著額外的表面粗糙性資料。第一水平線1024約略沿著該經處理的條紋1022的中間延伸。第二水平線1026與第一水平線1024相鄰約30μm,其沿著一未經處理區域1018延伸平行於該第一水平線1024。在該影像底部的一區域1028包含沿著個別平行線1024、1026的橫向深度輪廓 (transverse depth profile)1030、1032。該些深度輪廓彼此疊置並且在約0.2μm深度的共同範圍中顯示相對於彼此的最小變異,其進一步證實和根據本揭示內容觀點的製程相關聯的非燒蝕性效應。其它表面雖然可能有較大的深度變異範圍,其相依於該基板與導體表面層的品質;然而,經處理區域與未經處理區域之間的變異在本文中的非燒蝕性製程下則為最小。 FIG. 4 is an identical image of the top view of the target substrate 1014 shown in FIG. 3, with additional surface roughness data superimposed thereon. The first horizontal line 1024 extends approximately along the middle of the processed stripe 1022. The second horizontal line 1026 is adjacent to the first horizontal line 1024 by about 30 μm, and extends along an untreated area 1018 and is parallel to the first horizontal line 1024. An area 1028 at the bottom of the image contains lateral depth contours along individual parallel lines 1024, 1026 (transverse depth profile) 1030, 1032. These depth profiles overlap each other and show minimal variation relative to each other in a common range of about 0.2 μm depth, which further confirms the non-ablation effect associated with the process according to the point of view of this disclosure. Although other surfaces may have a large range of depth variation, it depends on the quality of the substrate and the conductor surface layer; however, the variation between the treated area and the untreated area is as follows under the non-ablation process The smallest.

圖5A與5B所示的係基板1014的未經處理區域(圖5A)及經處理區域(圖5B)的x射線光電子頻譜圖(X-ray Photoelectron Spectroscopy,XPS),其表示以鍵結能量(binding energy)為基礎的每秒數量。XPS通常有助於解釋目標表面的元素含量以及可能因各種外在輸入所造成的材料變化。除了某些特殊例外之外,針對未經處理區域及經處理區域所顯示的結果在一鍵結能量範圍中為實質上相同。AgMNN、Ag 3p3/2、Ag 3p1/2、以及Ag 3d的鍵結能量尖峰出現在經處理區域1020中,其大體上表示有已氧化的銀存在。舉例來說,參考圖6,圖中所示的係鍵結能量相對於居中於約368eV處的動能與光子能量的關係圖並且大體上表示在該經處理區域中的氧化物形成。另外,比較各種碳物種、氯、氟、氧、以及矽訊號資料會讓人想到在由該些雷射脈衝進行處理之前及之後有其中埋置著銀奈米線的聚合物基質存在。因此,有機的覆蓋塗層可能會從該些銀奈米線處被選擇性地移除,其會讓該些奈米線變成氧化並且呈現非導體性特徵,而該覆蓋塗層的其餘部分則保持實質上完整沒有改變。一般來說,銀奈米線會呈現優於習知透明導體膜(如氧化銦錫(Indium Tin Oxide,ITO))的屬性。透明導體層1018通常厚約數十個奈米的大小。銀奈米線傾向於長約10μm並且直徑在數奈米至數十奈米的範圍中;不過,亦可以採用其它維度。 The x-ray photoelectron spectroscopy (XPS) of the unprocessed region (FIG. 5A) and the processed region (FIG. 5B) of the system substrate 1014 shown in FIGS. 5A and 5B shows the bond energy ( binding energy). XPS usually helps explain the element content of the target surface and the material changes that may be caused by various external inputs. With some special exceptions, the results shown for the untreated and treated regions are essentially the same in the bond energy range. The bonding energy spikes of AgMNN, Ag 3p3 / 2, Ag 3p1 / 2, and Ag 3d appear in the treated region 1020, which generally indicates the presence of oxidized silver. For example, referring to FIG. 6, a graph of the tethering energy versus kinetic energy and photon energy centered at about 368 eV is shown and generally represents oxide formation in the treated region. In addition, comparison of various carbon species, chlorine, fluorine, oxygen, and silicon signal data makes one think of the existence of a polymer matrix with silver nanowires embedded in it before and after processing by these laser pulses. Therefore, the organic coating may be selectively removed from the silver nanowires, which may cause the nanowires to become oxidized and present non-conductive characteristics, while the rest of the coating is It remains essentially intact. In general, silver nanowires will exhibit better properties than conventional transparent conductor films such as indium tin oxide (ITO). The transparent conductor layer 1018 is usually about tens of nanometers thick. Silver nanowires tend to be about 10 μm long and have a diameter in the range of several nanometers to tens of nanometers; however, other dimensions can also be used.

適合根據本揭示內容之方法的非燒蝕性雷射處理的雷射參數會部分以要被處理之選定材料的相關特性為基礎來選擇。舉例來說,改變下方基板、薄導體層、…等的厚度會影響雷射脈衝熱量可能分佈的情況或者導致需要減輕的其它時間相依效應。該些經最佳化的製程參數將會導致相較於相鄰或分離的未經處理區域具有超低可見性的經處理區域或特徵圖樣。其中一個最佳化區域會包含雷射脈衝波長。被用來處理本文中該些影像中所示之取樣的光的波長為1064nm,並且通常為較佳的波長,因為此較長波長的光會與透明基板、保護膜、或是鄰近的其它材料材料層進行反應,其反應程度小於較短的波長。其它技術(例如,光微影術)通常需要更難以生產或生產價格昂貴的波長,例如,可見頻譜或UV頻譜中的波長。 Laser parameters suitable for non-ablative laser processing according to the method of the present disclosure are selected based in part on the relevant characteristics of the selected material to be processed. For example, changing the thickness of the underlying substrate, thin conductor layer, etc. can affect the possible distribution of laser pulse heat or cause other time-dependent effects that need to be mitigated. These optimized process parameters will result in processed areas or feature patterns with ultra-low visibility compared to adjacent or separated unprocessed areas. One of the optimized regions will include the laser pulse wavelength. The wavelength used to process the sampled light shown in the images in this article is 1064nm, and is usually the better wavelength, because this longer wavelength light will interact with the transparent substrate, protective film, or other nearby materials The material layer reacts to a lesser extent than a shorter wavelength. Other technologies (e.g. photolithography) often require more difficult or expensive wavelengths to be produced, such as wavelengths in the visible or UV spectrum.

借由根據本文中的方法來處理目標基板能夠實現優於用於處理透明基板的習知製造技術的各項優點,遵照本揭示內容便會明白此些優點。 By processing the target substrate according to the methods herein, various advantages over conventional manufacturing techniques for processing transparent substrates can be realized, and these advantages will be understood in accordance with this disclosure.

III. 多層結構的雷射圖樣化 III. Laser Patterning of Multilayer Structures

觸碰感測器通常包括一由各種材料組成的膜複合物,該些材料會經由一或更多個沉積或層疊製程而被堆疊在一起。各式各樣的堆疊配置皆可以採用,而且在該些多層的製作期間亦能夠施行各種中間處理步驟。舉例來說,本文中所述的不同的多層結構能夠將層排列成和圖中所揭示不同的順序。於某些實施例中,被沉積的材料層能夠被設置在一基板的一或兩側上。於進一步的實施例中,該脈衝式雷射射束能夠從如圖示相反的方向處入射。不同類型的材料能夠用於本文中所討論的某些合宜範例的該些不同層。應該明白的係,亦可以採用許多不同的配置與變異,它們皆 落在本揭示內容的範疇裡面。 Touch sensors typically include a film composite composed of various materials that are stacked together through one or more deposition or stacking processes. A variety of stacked configurations can be used, and various intermediate processing steps can be performed during the fabrication of these multiple layers. For example, the different multilayer structures described herein can arrange the layers in a different order than disclosed in the figures. In some embodiments, the deposited material layer can be disposed on one or both sides of a substrate. In a further embodiment, the pulsed laser beam can be incident from an opposite direction as shown. Different types of materials can be used for these different layers of some convenient paradigms discussed herein. It should be understood that many different configurations and variations can also be used, all of which are It is within the scope of this disclosure.

現在參考圖7A至7C,圖中所示的係根據本揭示內容觀點之非燒蝕性雷射處理一多層材料堆疊的方法的不同階段。在圖7A中提供一多層堆疊結構2010,其包含一由PET或是其它合宜材料製成的基板層2012。結構2010包含一被設置在該基板層2012上的一導體性第一層2014。該第一層2014包含銀奈米線或是另一合宜的導體材料。一第二層2016被設置在該第一層2014上,其可以由光阻或其它合宜的絕緣材料製成。在該絕緣層2016被設置在或是被形成在該第一層2014上之前,結構2010會先經過非燒蝕性雷射處理用以形成選定的非導體性區域,其包含直線、圖樣、或是其它幾何形狀,該非燒蝕性處理會在下文中作進一步說明。 Reference is now made to FIGS. 7A to 7C, which illustrate the different stages of a method of non-ablation laser treatment of a multilayer material stack in accordance with the present disclosure. A multi-layer stack structure 2010 is provided in FIG. 7A and includes a substrate layer 2012 made of PET or other suitable materials. The structure 2010 includes a conductive first layer 2014 disposed on the substrate layer 2012. The first layer 2014 contains silver nanowires or another suitable conductive material. A second layer 2016 is disposed on the first layer 2014, which may be made of photoresist or other suitable insulating materials. Before the insulating layer 2016 is disposed on or formed on the first layer 2014, the structure 2010 is first subjected to a non-ablation laser treatment to form a selected non-conductive area, which includes a straight line, a pattern, or Are other geometries, and this non-ablative treatment is described further below.

絕緣層2016會包含一或更多個摻雜物,其提高層2016散射或吸收入射雷射能量的能力,以便降低入射在第一層2014上的殘餘能量密度數額。在圖7B中,一第三層2018被設置在或是被形成在該多層結構2010的第二層2016上。該第三層通常包含銀奈米線;不過,只要能夠進行非燒蝕性導電率修改,亦能夠使用其它合宜的導體材料。其中一種較佳的堆層方式(layering)係銀奈米線在第一層2014與第三層2018兩者之中。銀奈米線提供優於其它材料的數項優點,其包含能夠被非燒蝕性雷射處理(如本文中所述)以及它們能夠在變形下(例如,彎折負載)保留它們的特徵。舉例來說,銀奈米線非常適合應用在撓性觸碰螢幕中。在圖7C中,一脈衝式雷射射束2021被產生為具有適合非燒蝕性修改該目標的製程參數。該脈衝式雷射射束2021被導向至結構2010,用以對該結構2010進行雷射處理。該脈衝式射束2021會與結構2010的第三層2018進行反應,而不會燒蝕第三層2018的 選定部分2022。經由與來自該脈衝式射束2021的雷射脈衝進行反應,該選定部分2022的導電率會改變成為非導體性。同時,位在第三層2018下方的第一層2014的一選定部分2024則不會經歷相同的導電率變化。除此之外,該選定部分2024亦不會被射束2021燒蝕。絕緣層2016能夠幫助減輕被該第一層2014接收的脈衝能量,以便防止發生導電率修改的材料反應。 The insulating layer 2016 may include one or more dopants that increase the ability of the layer 2016 to scatter or absorb incident laser energy in order to reduce the amount of residual energy density incident on the first layer 2014. In FIG. 7B, a third layer 2018 is disposed on or formed on the second layer 2016 of the multilayer structure 2010. This third layer usually contains silver nanowires; however, other suitable conductor materials can be used as long as non-ablative conductivity modifications can be made. One of the better layering methods is silver nanowires in both the first layer 2014 and the third layer 2018. Silver nanowires offer several advantages over other materials, including their ability to be processed by non-ablation lasers (as described herein) and their ability to retain their characteristics under deformation (eg, bending loads). For example, silver nanowires are ideal for flexible touch screens. In FIG. 7C, a pulsed laser beam 2021 is generated with process parameters suitable for non-ablative modification of the target. The pulsed laser beam 2021 is directed to a structure 2010 for laser processing the structure 2010. The pulsed beam 2021 will react with the third layer 2018 of the structure 2010 without ablating the third layer 2018. Selected section 2022. By reacting with the laser pulse from the pulsed beam 2021, the conductivity of the selected portion 2022 is changed to non-conductivity. At the same time, a selected portion 2024 of the first layer 2014 below the third layer 2018 will not experience the same change in conductivity. In addition, the selected portion 2024 will not be ablated by the beam 2021. The insulating layer 2016 can help mitigate the pulsed energy received by the first layer 2014 in order to prevent a material reaction with conductivity modification from occurring.

在圖8A至8C中顯示根據本揭示內容另一項觀點之多層堆疊結構2020的雷射處理方法。在圖8A中,一堆疊結構2020包含一基板2012與一第一層2026,該第一層2026較佳的係包含銀奈米線。該第一層2026會被熱處置(由向下箭頭所示),用以向上修改第一層2026的導電率改變臨界值特徵。因此,在熱處置之後,該第一層2026的導電率的修改臨界值會更高。於某些範例中,此導電率修改臨界值會與材料的燒蝕臨界值有關。用於熱處置的各種溫度皆能夠被使用並且該溫度能夠被選擇或調整成用以對該第一層2026提供不同的效應。於某些範例中,熱處置係利用烤箱、雷射、或是其它熱處置機制來實施。該第一層2026的熱處置會造成覆蓋該第一層2026中的銀奈米線的有機覆蓋塗層之密度的改變,從而提高其能量密度臨界值。在圖8B中,結構2020會進行接續的堆層步驟,提供第二層2016於第一層2026的頂端以及提供第三層2018於第二層2016的頂端。在圖8C中,一脈衝式雷射射束2021被產生為具有適合非燒蝕性修改該目標的製程參數。該脈衝式雷射射束2021被導向至結構2020,用以對該結構2020進行雷射處理。該脈衝式射束2021會與結構2020的第三層2018進行反應,而不會燒蝕第三層2018的選定部分2022。經由與來自該脈衝式射束2021的雷射脈衝進行反應,該選定部分2022的導電率會改變成為非導體性。同時, 位在第三層2018下方的第一層2026的一選定部分2024則不會經歷相同的導電率變化。除此之外,該選定部分2024亦不會被射束2021燒蝕。 A laser processing method of a multilayer stack structure 2020 according to another aspect of the present disclosure is shown in FIGS. 8A to 8C. In FIG. 8A, a stacked structure 2020 includes a substrate 2012 and a first layer 2026. The first layer 2026 preferably includes silver nanowires. The first layer 2026 is thermally treated (indicated by a downward arrow) to modify the conductivity change threshold characteristic of the first layer 2026 upward. Therefore, after thermal treatment, the modification threshold of the conductivity of the first layer 2026 will be higher. In some examples, this conductivity modification threshold is related to the ablation threshold of the material. Various temperatures for thermal treatment can be used and the temperature can be selected or adjusted to provide different effects on the first layer 2026. In some examples, thermal treatment is performed using an oven, laser, or other thermal treatment mechanism. The thermal treatment of the first layer 2026 will cause the density of the organic coating layer covering the silver nanowires in the first layer 2026 to change, thereby increasing the critical value of its energy density. In FIG. 8B, the structure 2020 will perform successive stacking steps to provide a second layer 2016 on top of the first layer 2026 and a third layer 2018 on top of the second layer 2016. In FIG. 8C, a pulsed laser beam 2021 is generated with process parameters suitable for non-ablative modification of the target. The pulsed laser beam 2021 is directed to a structure 2020 for laser processing the structure 2020. The pulsed beam 2021 will react with the third layer 2018 of the structure 2020 without ablating selected portions 2022 of the third layer 2018. By reacting with the laser pulse from the pulsed beam 2021, the conductivity of the selected portion 2022 is changed to non-conductivity. Simultaneously, A selected portion 2024 of the first layer 2026 located below the third layer 2018 will not experience the same change in conductivity. In addition, the selected portion 2024 will not be ablated by the beam 2021.

參考圖9A至9C,圖中所示的係根據本揭示內容一項觀點之多層堆疊結構2030的雷射處理方法。在圖9A中,一堆疊結構2030包含一基板2012與一第一層2028,該第一層2028較佳的係包含氧化銦錫。該第一層2028會被燒蝕性處理,俾使得該第一層2028的多個部分經由一燒蝕性雷射製程而被移除。一第二層2016被設置在該第一層2028上。在圖9B中,一第三層2018被設置在或是被形成在該第二層2016上。第三層2018不同於第一層2028的材料成分,第三層2018較佳的係包含導體性的銀奈米線。因為材料差異的關係,該第三層2018的導電率改變臨界值特徵不同於第一層2028。在圖9C中,結構2030會由一脈衝式雷射射束2021來處理。該脈衝式雷射射束2021被產生為具有適合非燒蝕性修改該目標的製程參數。該脈衝式雷射射束2021被導向至結構2030,用以對該結構2030進行雷射處理。該脈衝式射束2021會與結構2030的第三層2018進行反應,而不會燒蝕第三層2018的選定部分2022。經由與來自該脈衝式射束2021的雷射脈衝進行反應,該選定部分2022的導電率會改變成為非導體性。同時,位在第三層2018下方的第一層2028的一選定部分2024則不會經歷相同的導電率變化。除此之外,該選定部分2024亦不會被射束2021燒蝕。 Referring to FIGS. 9A to 9C, a laser processing method of a multilayer stack structure 2030 according to an aspect of the present disclosure is shown. In FIG. 9A, a stacked structure 2030 includes a substrate 2012 and a first layer 2028. The first layer 2028 preferably includes indium tin oxide. The first layer 2028 is subjected to an ablation process, so that parts of the first layer 2028 are removed through an ablation laser process. A second layer 2016 is disposed on the first layer 2028. In FIG. 9B, a third layer 2018 is disposed on or formed on the second layer 2016. The material composition of the third layer 2018 is different from that of the first layer 2028. A better system of the third layer 2018 includes a conductive silver nanowire. Due to the material difference, the characteristic of the threshold value of the conductivity change of the third layer 2018 is different from that of the first layer 2028. In FIG. 9C, the structure 2030 is processed by a pulsed laser beam 2021. The pulsed laser beam 2021 is generated to have process parameters suitable for non-ablative modification of the target. The pulsed laser beam 2021 is directed to a structure 2030 for performing laser processing on the structure 2030. The pulsed beam 2021 will react with the third layer 2018 of the structure 2030 without ablating selected portions 2022 of the third layer 2018. By reacting with the laser pulse from the pulsed beam 2021, the conductivity of the selected portion 2022 is changed to non-conductivity. At the same time, a selected portion 2024 of the first layer 2028 located below the third layer 2018 will not experience the same change in conductivity. In addition, the selected portion 2024 will not be ablated by the beam 2021.

導體區或導體層經過非燒蝕性處理使得它們能夠被使用在和印刷電子或光電子有關的電子裝置或其它裝置的觸敏式螢幕中,其包含受益於基板之低毀損、低可見性處理或是需要精確性的裝置。如本文中的用法,「燒蝕性」與「非燒蝕性」具有上面提出的意義。 Conductor areas or layers are non-ablated so that they can be used in touch-sensitive screens of electronic or other devices related to printed electronics or optoelectronics, which include low damage, low visibility processing or It is a device that requires accuracy. As used in this article, "ablation" and "non-ablation" have the meanings set out above.

於某些情況中,該些導體材料層包含隨機排列的多條銀奈米線。此些層的銀奈米線通常在一聚合物基質(例如,有機的覆蓋塗層)中被固定至一基板。一雷射射束會傳遞雷射脈衝至此層並且創造一經處理的部分,其中,該導體層材料的導電率會實質地改變,俾使得該經處理部分實際上為非導體。如本文中的用法,「導體性」與「非導體性」具有在印刷電子、觸碰感測器圖樣化、或是光電子的技術中一般理解的意義,下面會更詳細提出。 In some cases, the conductive material layers include a plurality of silver nanowires arranged randomly. These layers of silver nanowires are typically fixed to a substrate in a polymer matrix (eg, an organic overcoat). A laser beam will pass a laser pulse to this layer and create a processed portion, wherein the conductivity of the material of the conductive layer will substantially change such that the processed portion is actually non-conductive. As used in this article, "conductivity" and "non-conductivity" have meanings commonly understood in the technology of printed electronics, touch sensor patterning, or optoelectronics, which will be presented in more detail below.

雷射脈衝會以各種圖樣被導向該複合體,俾使得特殊的區域與電路徑被形成在該基板上。藉由審慎選擇雷射脈衝參數的特徵(其包含:脈衝長度、脈衝能量密度、脈衝能量、光點大小、脈衝重複率、以及掃描速度),該基板可以被處理成使其電氣特徵以預設的方式改變,同時該基板以及相關聯的保護層與導體層不會被實質性破壞或是結構性改變(舉例來說,燒蝕性)。 Laser pulses are directed to the complex in various patterns, so that special regions and electrical paths are formed on the substrate. By carefully selecting the characteristics of the laser pulse parameters (which include: pulse length, pulse energy density, pulse energy, light spot size, pulse repetition rate, and scanning speed), the substrate can be processed so that its electrical characteristics are preset And the substrate and the associated protective layer and conductor layer will not be substantially damaged or structurally changed (for example, ablative).

適合對一導體層進行非燒蝕性處理的示範性雷射脈衝參數包含:約50ps的脈衝長度、約0.17J/cm2的脈衝能量密度、約40μm(l/e2)的光點大小、約1m/s的掃描速率、大於90%的脈衝至脈衝重疊、約12μJ的總脈衝能量、以及約100kHz的脈衝重複率,其係利用波長1064nm的光學輻射(經發現,其和基板及其它材料進行反應的程度小於較短波長的光)。各種其它參數同樣適合。舉例來說,脈衝重複率能夠提高至1MHz、10MHz、或是大於10MHz,以便提高處理速度。脈衝長度能夠選擇為較短或是較長。脈衝能量密度能夠經過調整以確保該目標被非燒蝕性處理。可能的脈衝長度包含小於約1ps、100ps、200ps、500ps、800ps、或是1ns。其它參數能夠 以雷同的方式據以改變及最佳化。適合非燒蝕性雷射處理的雷射參數會部分以要被處理之選定材料的相關特性為基礎來選擇。舉例來說,改變基板、薄導體層、…等的厚度會影響雷射脈衝熱量可能分佈的情況或者導致需要減輕的其它時間相依效應。 Exemplary laser pulse parameters suitable for non-ablative processing of a conductor layer include: a pulse length of about 50 ps, a pulse energy density of about 0.17 J / cm 2 , a spot size of about 40 μm (l / e 2 ), A scan rate of about 1 m / s, a pulse-to-pulse overlap of greater than 90%, a total pulse energy of about 12 μJ, and a pulse repetition rate of about 100 kHz, which uses optical radiation with a wavelength of 1064 nm (which has been found to be compatible with substrates and other materials The reaction proceeds to a lesser degree than light of shorter wavelengths). Various other parameters are equally suitable. For example, the pulse repetition rate can be increased to 1 MHz, 10 MHz, or greater than 10 MHz in order to increase the processing speed. The pulse length can be selected to be shorter or longer. The pulse energy density can be adjusted to ensure that the target is non-ablated. Possible pulse lengths include less than about 1 ps, 100 ps, 200 ps, 500 ps, 800 ps, or 1 ns. Other parameters can be changed and optimized in the same way. Laser parameters suitable for non-ablative laser processing are selected based in part on the relevant characteristics of the selected material to be processed. For example, changing the thickness of a substrate, a thin conductor layer, etc. can affect the possible distribution of laser pulse heat or cause other time-dependent effects that need to be mitigated.

雖然用於處理的射束通常係聚焦在該結構處;不過,亦可以採用其它射束幾何配置及強度分佈,其包含:未聚焦的射束;直線射束;正方形或矩形射束;以及跨越一或更多條橫切軸線擁有均勻、實質上均勻、或預選強度輪廓的射束。於某些情況中,一複合體會被平移,用以幫助在其表面上達成幾何形狀的特徵圖樣。於某些情況中,一或更多道雷射射束會從頂側或背側方向照射在一複合體上,俾使得該射束傳播通過該基板至該導體層,俾便該射束造成一導體層的燒蝕性或非燒蝕性變化。於某些情況中,雷射脈衝會導致一導體層的一經處理部分變成非導體性,但卻不會改變該經處理部分的可見特徵。同樣地,雷射脈衝會以燒蝕性或非燒蝕性方式處理一導體邊界。一導體邊界的雷射燒蝕能夠藉由提高入射在該目標表面的雷射射束的能量含量而達成。舉例來說,該些雷射脈衝參數能夠藉由提高脈衝長度、脈衝能量密度、總脈衝能量、使用較短的波長、或是縮小光點大小來調整。合宜的雷射系統通常包含脈衝式光纖雷射、脈衝式光纖放大器、以及二極體激昇固態雷射。 Although the beam used for processing is usually focused on the structure; other beam geometric configurations and intensity distributions can also be used, including: unfocused beams; straight beams; square or rectangular beams; and spans One or more beams that have a uniform, substantially uniform, or preselected intensity profile across the transverse axis. In some cases, a complex is translated to help achieve geometric feature patterns on its surface. In some cases, one or more laser beams are irradiated onto a complex from the top or back side, so that the beam propagates through the substrate to the conductor layer, which is caused by the beam. Ablation or non-ablation of a conductor layer. In some cases, a laser pulse can cause a processed portion of a conductive layer to become non-conductive without changing the visible characteristics of the processed portion. Similarly, laser pulses treat a conductor boundary in an ablative or non-ablative manner. Laser ablation of a conductor boundary can be achieved by increasing the energy content of the laser beam incident on the target surface. For example, the laser pulse parameters can be adjusted by increasing the pulse length, pulse energy density, total pulse energy, using a shorter wavelength, or reducing the spot size. A suitable laser system usually includes a pulsed fiber laser, a pulsed fiber amplifier, and a diode-pumped solid-state laser.

IV. 利用可變聚焦平面圖樣化導體膜以控制特徵圖樣大小 IV. Patterning the Conductor Film with Variable Focus Plane Patterns to Control Feature Pattern Size

於某些情況中,雷射掃描系統會被用來處理諸如使用在電子裝置中之複合膜的材料(舉例來說,作為電子裝置中的觸碰螢幕)。於其中一種示範性處理情境中,一或更多個導體材料(舉例來說,一層銀奈米線以及 一銀漿邊界)會被沉積在一基板上,並且一雷射掃描系統會被用來處理該些導體材料(舉例來說,用以降低該導體層中多個部分的導電率,或是經由燒蝕該材料而形成各種特徵圖樣)。本揭示內容提供優於先前技術觸碰螢幕製作過程的各種優點,其包含螢幕印刷技術及/或微影技術。明確地說,本揭示內容允許利用單一雷射掃描裝置來處理一觸碰螢幕的主體及其IC通道。 In some cases, laser scanning systems are used to process materials such as composite films used in electronic devices (for example, as touch screens in electronic devices). In one exemplary processing scenario, one or more conductive materials (for example, a layer of silver nanowires and A silver paste boundary) is deposited on a substrate, and a laser scanning system is used to process the conductive materials (for example, to reduce the conductivity of multiple parts of the conductive layer, or via The material is ablated to form various characteristic patterns). The present disclosure provides various advantages over the prior art touch screen manufacturing process, including screen printing technology and / or lithography technology. Specifically, the present disclosure allows a single laser scanning device to be used to process a touch screen subject and its IC channel.

用於處理一複合膜的步驟會被配置成用以讓使用在各種顯示裝置中的多個觸敏區域被形成在該複合膜之中。針對經處理材料的其它合宜應用一般會包含顯示裝置,以及LED磷光體強化、其它商用與消費性照明應用、穿戴式電子、以及光伏特電池。然而,複合膜特別適用於行動消費性顯示器,其中,非常希望有較薄、耐用、以及撓性的外形。當作為行動消費性裝置顯示器時,撓性及/或透明的複合膜(且因此,組成該複合膜的每一材料層為撓性及/或透明)會有好處。然而,端視最終產品的預期用途而定,至少部分或非常不透明及/或至少部分或非常剛性的複合膜亦會有好處。不論複合膜的透明度及/或剛性為何,本文中所述的系統、裝置、以及製程皆能夠被用來處理複合膜。複合膜在本文亦被稱為複合體。 The step for processing a composite film is configured to allow a plurality of touch-sensitive areas used in various display devices to be formed in the composite film. Other suitable applications for treated materials would typically include display devices, as well as LED phosphor enhancement, other commercial and consumer lighting applications, wearable electronics, and photovoltaic special batteries. However, composite films are particularly suitable for mobile consumer displays, where a thin, durable, and flexible form factor is highly desirable. When used as a display for a mobile consumer device, a flexible and / or transparent composite film (and therefore, each material layer making up the composite film is flexible and / or transparent) can be beneficial. However, depending on the intended use of the final product, a composite film that is at least partially or very opaque and / or at least partially or very rigid may also be beneficial. Regardless of the transparency and / or rigidity of the composite film, the systems, devices, and processes described herein can be used to process the composite film. Composite films are also referred to herein as composites.

所使用的基板可能由各式各樣的材料所形成。舉例來說,該基板能夠由聚乙烯對苯二甲酸酯(PET)製成,因為它的成本低以及許多有利的特點,該些特點包含透明度、撓性、彈性、容易製造、…等。其它可能基板材料的非竭盡清單包含聚萘二甲酸乙二酯、聚胺基甲酸酯、各種玻璃、以及各種金屬。該基板會有各種厚度。舉例來說,該基板會有介於約10μm與1mm之間的厚度、或是介於約50μm與200μm之間的厚度,或是於其中一特定範例中,厚度為約130μm。 The substrate used may be formed from a wide variety of materials. For example, the substrate can be made of polyethylene terephthalate (PET) because of its low cost and many advantageous features including transparency, flexibility, elasticity, ease of manufacture, ... and so on. A non-exhaustive list of other possible substrate materials includes polyethylene naphthalate, polyurethane, various glasses, and various metals. The substrate will come in various thicknesses. For example, the substrate may have a thickness between about 10 μm and 1 mm, or a thickness between about 50 μm and 200 μm, or in one specific example, the thickness is about 130 μm.

於某些情況中,一撓性且透明的複合材料包含一基板(舉例來說,PET),其上沉積一銀奈米線層(亦稱為SNW或AgNW)至預設厚度或是至預設導電率,兩者皆能夠藉由在複合體生產期間提高或降低銀奈米線的密度來達成。該銀奈米線層會有各種厚度,例如,介於約1nm與100nm之間的厚度、或是介於約3nm與70nm之間的厚度、或是介於約30nm與50nm之間的厚度。銀奈米線非常適用於撓性基板,因為它們的材料特性(例如,導電率與結構完整性)在各種類型的彎折負載下(舉例來說,固定式彎曲、循環式變形、或是柔韌性)非常一致。於某些情況中,亦能夠使用氧化銦錫(ITO)或是其它合宜材料來取代銀奈米線。 In some cases, a flexible and transparent composite material includes a substrate (for example, PET) on which a silver nanowire layer (also known as SNW or AgNW) is deposited to a predetermined thickness or to a predetermined thickness. Given the conductivity, both can be achieved by increasing or decreasing the density of the silver nanowires during the production of the composite. The silver nanowire layer may have various thicknesses, for example, a thickness between about 1 nm and 100 nm, or a thickness between about 3 nm and 70 nm, or a thickness between about 30 nm and 50 nm. Silver nanowires are very suitable for flexible substrates because their material properties (e.g., conductivity and structural integrity) are under various types of bending loads (for example, fixed bending, cyclic deformation, or flexibility) Sex) are very consistent. In some cases, indium tin oxide (ITO) or other suitable materials can be used instead of silver nanowires.

圖10所示的係一雷射掃描系統100的其中一實施例。該系統100包含一雷射源102,圖中以一對光線106、108來圖解雷射射束104。雷射射束104沿著一以虛線表示的光學軸線124傳播,從該雷射源102處傳播至一由殼體112來固持的聚焦控制透鏡110。透鏡110能夠為單一光學元件,例如,平凹面鏡或雙凹面鏡;或者,能夠為一合成透鏡,其包含二或更多個單一透鏡元件。於大部分情況中,該聚焦控制透鏡110會產生一發散射束;但是,於某些範例中,該聚焦控制透鏡110會導致射束104先聚合至一焦點,接著在傳播遠離該焦點時擴散。當離開該聚焦控制透鏡110時,射束104係沿著光學軸線124被導向一物鏡組裝件116,當射束104離開該物鏡組裝件116時,物鏡組裝件116會聚合該射束104。該聚合射束接著會被導向一第一反射表面118,其將該射束104反射至一第二反射表面120,該第二反射表面120將該射束反射至一基板122,射束104會被聚焦在該基板122中的一焦點126處。一般來說,射束104雖然被聚焦在一基板厚度的 特定部分處;但是,射束聚焦亦能夠在基板122的前面或後面以及在該基板122裡面。 An embodiment of a laser scanning system 100 shown in FIG. 10. The system 100 includes a laser source 102, and a laser beam 104 is illustrated by a pair of rays 106, 108 in the figure. The laser beam 104 propagates along an optical axis 124 indicated by a dotted line, and from the laser source 102 to a focus control lens 110 held by a housing 112. The lens 110 can be a single optical element, for example, a plano-concave mirror or a double-concave mirror; or, it can be a synthetic lens including two or more single lens elements. In most cases, the focus control lens 110 will generate a scattered beam; however, in some examples, the focus control lens 110 will cause the beam 104 to first converge to a focal point, and then diffuse when propagating away from the focal point. . When leaving the focus control lens 110, the beam 104 is guided to an objective lens assembly 116 along the optical axis 124. When the beam 104 leaves the objective lens assembly 116, the objective lens assembly 116 converges the beam 104. The aggregated beam is then directed to a first reflecting surface 118, which reflects the beam 104 to a second reflecting surface 120. The second reflecting surface 120 reflects the beam to a substrate 122. The beam 104 will Focused at a focal point 126 in the substrate 122. Generally, although the beam 104 is focused on a substrate At a specific portion; however, the beam focusing can also be in front of or behind the substrate 122 and inside the substrate 122.

如圖10中所示,系統100的反射表面118、120能夠被調整,以便相對於基板122來操控該射束。於其中一範例中,表面118、120能夠為分別被耦合至第一電流計119與第二電流計121的反射表面,且因此,它們的配向能夠利用一控制系統140來操縱與控制,該控制系統140提供掃描與聚焦控制。該控制系統140還被耦合至一或更多個電流計或是被耦合至沿著軸線124來移位該聚焦控制透鏡110的其它聚焦調整機制114。如圖10中所示,該聚焦控制透鏡110能夠被移動至各種位置,例如,虛線中所示的位置115。該聚焦控制透鏡110藉由此些移動提供一輸入射束至物鏡組裝件116,俾便該射束被聚焦在一可接受的位置處,用以補償非平坦的聚焦平面或是彎曲及/或非平面基板。 As shown in FIG. 10, the reflective surfaces 118, 120 of the system 100 can be adjusted to manipulate the beam relative to the substrate 122. In one example, the surfaces 118, 120 can be reflective surfaces that are coupled to the first galvanometer 119 and the second galvanometer 121, respectively, and thus their orientation can be manipulated and controlled using a control system 140, which controls The system 140 provides scanning and focus control. The control system 140 is also coupled to one or more galvanometers or other focus adjustment mechanisms 114 that shift the focus control lens 110 along the axis 124. As shown in FIG. 10, the focus control lens 110 can be moved to various positions, for example, a position 115 shown in a dotted line. The focus control lens 110 provides an input beam to the objective lens assembly 116 by these movements, so that the beam is focused at an acceptable position to compensate for a non-flat focus plane or curvature and / or Non-planar substrate.

聚焦控制透鏡110雖然能夠調整射束104在該基板處的聚焦;但是,通常無法沿著軸線124進行大幅的射束移位。取而代之的係,聚焦控制透鏡110的殼體112被固定至一平移平台130,以便沿著軸線124將該聚焦控制透鏡110移至各種位置,例如,虛線中所示的位置117。殼體112與聚焦控制透鏡110的此些相對較大運動提供射束104能夠被聚焦的一延伸範圍,並且因而允許射束光點大小在一聚焦位置處對應的變異。基板122會由一平移平台131定位在軸線124中,俾便各種光點大小的射束能夠被聚焦在基板122處。為方便說明起見,平移平台130對聚焦控制透鏡110所進行的調整會被稱為射束直徑調整。 Although the focus control lens 110 can adjust the focus of the beam 104 on the substrate, it is generally impossible to perform a large beam shift along the axis 124. Instead, the housing 112 of the focus control lens 110 is fixed to a translation platform 130 to move the focus control lens 110 to various positions along the axis 124, for example, a position 117 shown in a dotted line. These relatively large movements of the housing 112 and the focus control lens 110 provide an extended range in which the beam 104 can be focused, and thus allow a corresponding variation in the beam spot size at a focused position. The substrate 122 is positioned in the axis 124 by a translation platform 131, so that beams of various light spot sizes can be focused on the substrate 122. For convenience of explanation, the adjustment of the focus control lens 110 by the translation platform 130 will be referred to as a beam diameter adjustment.

圖10的系統允許即使在彎曲或非平面目標表面上仍可維持 聚焦。圖11所示的係利用諸如系統100的系統來聚焦一光學射束。一物鏡200被放置成用以將該光學射束聚焦在一軸線208中。對固定的透鏡位置以及在軸線208中的射束聚焦來說,該射束通常無法在掃描時聚焦在一平面204中。取而代之的係,該被掃描的射束聚焦定義一彎曲表面206。為聚焦在一平坦基板(或是其它形狀的基板)上,一聚焦控制透鏡會被調整用以在平面204(或是其它表面)上建立射束聚焦。如圖11中所示,一般來說,光線方向與軸線208之間的角度越大(也就是,角度α2越大),實際聚焦偏離平面204的位移便越大。為改變射束光點大小,舉例來說,可以利用如圖10中所示的平移平台130來平移一聚焦控制透鏡。利用此調整,一射束能夠利用一聚焦調整透鏡以不同的射束直徑被聚焦在一交替的聚焦平面214處,用以修正該彎曲的場聚焦表面216。依此方式,射束聚焦主要係以相對較小(並且通常較快)的聚焦調整來完成,而射束光點大小主要係以相對較大(並且通常較慢)的射束光點大小調整來調整。 The system of Figure 10 allows maintenance even on curved or non-planar target surfaces Focus. The system shown in FIG. 11 uses a system such as the system 100 to focus an optical beam. An objective lens 200 is placed to focus the optical beam in an axis 208. For a fixed lens position and beam focusing in the axis 208, the beam usually cannot be focused in a plane 204 during scanning. Instead, the scanned beam focus defines a curved surface 206. To focus on a flat substrate (or other shaped substrate), a focus control lens is adjusted to establish beam focus on the plane 204 (or other surface). As shown in FIG. 11, in general, the larger the angle between the direction of the ray and the axis 208 (that is, the larger the angle α2), the greater the displacement of the actual focus from the plane 204. To change the beam spot size, for example, a focus control lens may be translated using a translation platform 130 as shown in FIG. 10. With this adjustment, a beam can be focused at an alternate focusing plane 214 with a different beam diameter using a focus adjustment lens to correct the curved field focusing surface 216. In this way, beam focusing is mainly done with a relatively small (and usually faster) focus adjustment, while beam spot size is mainly adjusted with a relatively large (and usually slower) beam spot size To adjust.

於某些系統中,伺服馬達或是其它運動控制裝置(或是壓電式裝置、電流計、平移平台、…等)會被放置成用以移動一聚焦控制透鏡,用以修正場曲率並且維持在一基板處的射束聚焦。額外的伺服馬達(或是壓電式裝置、電流計、平移平台、…等)會被放置成用以移動該聚焦控制透鏡,用以進一步調整該光學軸線中的射束聚焦位置,通常係用以調整射束直徑。 In some systems, servo motors or other motion control devices (or piezoelectric devices, galvanometers, translation platforms, etc.) are placed to move a focus control lens to correct field curvature and maintain The beam at a substrate is focused. Additional servo motors (or piezoelectric devices, galvanometers, translation stages, etc.) will be placed to move the focus control lens to further adjust the focus position of the beam in the optical axis, usually used To adjust the beam diameter.

大體上參考圖12,圖中顯示被導向一複合體300並且被聚焦在不同複合體特徵圖樣處的三道雷射射束302、303、304(通常為脈衝式)的剖視圖,每一道雷射射束皆有選定的雷射脈衝參數。如圖示,該複合體300包含:一基板306,其具有一下方部分305與一周圍唇部307;一周圍導 體邊界308;以及一導體材料層310,其被設置在基板306的一頂端表面上。於某些範例中,基板306具有恆定或固定的厚度,或者會有變動的厚度,端視該複合體的預期應用而定。於某些範例中,該周圍導體邊界308包括一導體銀漿。 Referring generally to FIG. 12, there is shown a cross-sectional view of three laser beams 302, 303, 304 (typically pulsed) directed to a complex 300 and focused at different complex feature patterns. The beams have selected laser pulse parameters. As shown, the composite 300 includes: a substrate 306 having a lower portion 305 and a peripheral lip 307; a peripheral guide A body boundary 308; and a conductive material layer 310 that is disposed on a top surface of the substrate 306. In some examples, the substrate 306 has a constant or fixed thickness, or may have a varying thickness, depending on the intended application of the composite. In some examples, the surrounding conductor boundary 308 includes a conductive silver paste.

於某些實施例中,複合體300會被處理成作為電子裝置中的一電容式觸碰螢幕。於此些實施例中,該複合體300會為透明,俾使得其能夠疊置在一電子裝置的顯示器上,用以提供觸碰螢幕功能卻不阻礙使用者觀看該顯示器。薄層310會包括該觸碰螢幕的主體(也就是,其會疊置在該顯示器上),而邊界308會包括一或更多條積體電路(Integrated Circuit,IC)通道,用以將該些IC耦合至該觸碰螢幕的主體。舉例來說,該些IC能夠被用來以一觸碰螢幕上各種位置處的電容變化為基礎而決定該觸碰螢幕上的觸碰事件的位置。該些通道會將該IC耦合至該觸碰螢幕本身,以便致能此些決定作業。 In some embodiments, the complex 300 is processed as a capacitive touch screen in an electronic device. In these embodiments, the composite 300 is transparent, so that it can be stacked on the display of an electronic device to provide a touch screen function without hindering the user from viewing the display. The thin layer 310 will include the body that touches the screen (that is, it will be overlaid on the display), and the boundary 308 will include one or more integrated circuit (IC) channels for These ICs are coupled to the body of the touch screen. For example, the ICs can be used to determine the position of a touch event on the touch screen based on a change in capacitance at various positions on the touch screen. The channels couple the IC to the touch screen itself to enable such decisions.

於各種電子裝置中會希望薄層310疊置在該裝置的整個顯示器上,以便讓使用者與該顯示器的全部範圍進行互動。因此,其會必須將該些IC通道配接在該電子裝置的底盤裡面。當電子裝置底盤較小時,有利的作法係以雷同的方式縮減該些IC通道的尺寸(俾便它們能夠配接在該底盤裡面)並且能夠更精細地控制它們的特性(舉例來說,它們的導電率與維度)。 In various electronic devices, it may be desirable to stack the thin layer 310 over the entire display of the device in order to allow users to interact with the full range of the display. Therefore, they will have to fit the IC channels into the chassis of the electronic device. When the chassis of the electronic device is small, it is advantageous to reduce the size of the IC channels in a similar way (so that they can fit in the chassis) and to control their characteristics more finely (for example, they Conductivity and dimensions).

因為邊界308與薄層310有不同的用途,所以,它們能夠以不同的方式被處理而達成不同的結果。舉例來說,有利的作法係非燒蝕性處理該薄層310,俾使得其維持呈現給使用者的均勻厚度與外觀。然而,有 利的作法係燒蝕性處理邊界308,用以從該連續邊界308處形成該些IC通道。進一步言之,平面z1、z2、以及z3(脈衝式雷射射束302、304、以及303分別被聚焦於其上,用以處理層310以及邊界308)沿著該些脈衝式雷射射束302、303、304的光學軸線彼此分開。因此,本文中所述的技術以單一系統來處理層310與邊界308提供各種優點。 Because the boundary 308 and the thin layer 310 have different uses, they can be processed in different ways to achieve different results. For example, it is advantageous to treat the thin layer 310 non-ablatively so that it maintains a uniform thickness and appearance that is presented to the user. However, there is A favorable method is to ablate the boundary 308 to form the IC channels from the continuous boundary 308. Further, planes z1, z2, and z3 (pulse laser beams 302, 304, and 303 are focused thereon, respectively, for processing layer 310 and boundary 308) along the pulse laser beams The optical axes of 302, 303, 304 are separated from each other. As such, the techniques described herein provide various advantages in processing layers 310 and boundaries 308 in a single system.

如上面的解釋,圖12所示的係由諸如系統100的雷射圖樣化系統來處理的複合體的組件。根據前面說明,系統100能夠以各式各樣不同的方式被用來處理薄層310與邊界308。舉例來說,系統100能夠被用來非燒蝕性處理薄層310,如下面的更詳細解釋。系統100亦能夠被用來燒蝕性處理邊界308,同樣如下面的進一步詳細說明。於此些處理步驟中,聚焦控制透鏡110會自動移動,用以修正場曲率。殼體112的移動能夠由手動控制或是經由一電腦控制的伺服模組來控制,以便在一雷射射束的光學軸線方向中控制該射束的焦點位置。 As explained above, the components of the complex shown in FIG. 12 are processed by a laser patterning system such as the system 100. According to the foregoing description, the system 100 can be used to process the thin layer 310 and the boundary 308 in a variety of different ways. For example, the system 100 can be used to non-ablatively process the thin layer 310, as explained in more detail below. The system 100 can also be used to ablate process boundaries 308, as also described in further detail below. During these processing steps, the focus control lens 110 is automatically moved to correct the curvature of the field. The movement of the housing 112 can be controlled manually or through a computer-controlled servo module, so as to control the focal position of a laser beam in the optical axis direction of the laser beam.

因此,如圖12中所示,一脈衝式雷射射束302會被控制成在聚焦平面z1處聚焦於薄層310的外露表面,以便非燒蝕性地處理該層310。同樣地,一脈衝式雷射射束304會被控制成在聚焦平面z2處聚焦於邊界308的外露表面,以便燒蝕性地處理該層308。進一步言之,倘若一雷射射束被用來燒蝕性處理複合體300的話,該雷射射束會被連續性地控制,俾便其聚焦在材料(當進行燒蝕時其能夠移動)的表面處。於某些情況中會希望在該雷射射束正在處理的表面上最小化該雷射射束的光點大小。於此些情況中,該雷射射束的聚焦平面會與正在被處理的材料的外露表面一致,如針對雷射射束302與304所示。然而,於其它情況中可能會使用較大的特 徵圖樣尺寸,且因而可能會使用較大的光點大小。於此些情況中,該雷射射束的聚焦平面會沿著該雷射射束的光學軸線偏離正在被處理的材料的外露表面,如針對雷射射束303所示。因此,本文中所述的掃描雷射系統可提供特徵圖樣大小的調整。 Therefore, as shown in FIG. 12, a pulsed laser beam 302 is controlled to focus on the exposed surface of the thin layer 310 at the focus plane z1 in order to process the layer 310 non-ablatively. Similarly, a pulsed laser beam 304 is controlled to focus on the exposed surface of the boundary 308 at the focus plane z2 in order to ablate the layer 308. Furthermore, if a laser beam is used to ablate the composite 300, the laser beam is continuously controlled, so that it focuses on the material (it can move when it is ablated) On the surface. In some cases it may be desirable to minimize the spot size of the laser beam on the surface being processed by the laser beam. In these cases, the focusing plane of the laser beam will be consistent with the exposed surface of the material being processed, as shown for the laser beams 302 and 304. However, larger features may be used in other situations. Pattern size, and therefore may use a larger spot size. In these cases, the focus plane of the laser beam will deviate from the exposed surface of the material being processed along the optical axis of the laser beam, as shown for laser beam 303. Therefore, the scanning laser system described in this article can provide adjustment of the feature pattern size.

於某些情況中,介於一雷射掃描系統與要被處理的材料的表面之間的距離能夠被調整,舉例來說,增加距離以提供較大的場域大小、縮短距離以改善精確性、或是改變被聚焦的光點大小。因此,於某些情況中,要被一雷射掃描系統處理的材料會被放置在一可調整的表面上,其能夠被移動以調整介於該掃描系統與要被處理的表面之間的距離。舉例來說,如圖12中所示,複合體300會被放置在一工作台312上,其能夠沿著一軸線ZF進行調整。於其中一範例中,該工作台會被耦合至一或更多個螺紋桿314,該些螺紋桿314被旋入在內表面上有對應螺紋的個別中空管體316之中。因此,旋轉該些管體316會造成工作台312沿著軸線ZF運動並且因而造成複合體300沿著軸線ZF運動。管體316會被支撐在一基底單元318上。當然,亦能夠使用任何其它平移機制。 In some cases, the distance between a laser scanning system and the surface of the material to be processed can be adjusted, for example, increasing the distance to provide a larger field size and shortening the distance to improve accuracy , Or change the size of the focused spot. Therefore, in some cases, the material to be processed by a laser scanning system is placed on an adjustable surface that can be moved to adjust the distance between the scanning system and the surface to be processed . For example, as shown in FIG. 12, the composite 300 is placed on a work table 312, which can be adjusted along an axis ZF. In one example, the table is coupled to one or more threaded rods 314 that are screwed into individual hollow tube bodies 316 with corresponding threads on the inner surface. Therefore, rotating the tubes 316 will cause the table 312 to move along the axis ZF and thus cause the composite 300 to move along the axis ZF. The pipe body 316 is supported on a base unit 318. Of course, any other translation mechanism can be used.

圖13顯示雷射射束406、408、410,當被雷射掃描系統412(其可能具有和系統100的配置雷同的配置)引導時,每一道雷射射束沿著不同的軸線傳播。圖中所示的雷射射束406、408、410中的每一者皆有三種不同的配置(分別為射束406A、406B、406C,或是408A、408B、408C,或是410A、410B、410C):在第一種配置中被聚焦在一第一聚焦平面400A或400B上(也就是,如在406A、408A、以及410A處所示),在第二種配置中被聚焦在一第二聚焦平面402A或402B上(也就是,如在406B、408B、以及410B處所 示),以及在第三種配置中被聚焦在一第三聚焦平面404A或404B上(也就是,如在406C、408C、以及410C處所示)。聚焦平面400A比聚焦平面402A更遠離系統412距離x2,並且聚焦平面402A比聚焦平面404A更遠離系統412距離x3。距離x4、x5、x6通常對應於不同的聚焦位置,該些聚焦位置對應於物鏡中的場曲率。因此,一物鏡可以在平面400A處針對被放置在物鏡軸線上的基板的一目標部分形成一射束聚焦;沒有聚焦調整,入射至一偏軸(off-axis)目標部分的射束會被聚焦在平面400B上。如上面提及,一聚焦控制透鏡會被提供用以調整聚焦位置以便補償。 FIG. 13 shows laser beams 406, 408, 410. Each laser beam propagates along a different axis when guided by a laser scanning system 412 (which may have the same configuration as the system 100). Each of the laser beams 406, 408, 410 shown in the figure has three different configurations (beams 406A, 406B, 406C, or 408A, 408B, 408C, or 410A, 410B, 410C): Focused on a first focusing plane 400A or 400B in the first configuration (ie, as shown at 406A, 408A, and 410A), and focused on a second in the second configuration Focus plane 402A or 402B (ie, as in 406B, 408B, and 410B) Shown), and in a third configuration is focused on a third focus plane 404A or 404B (ie, as shown at 406C, 408C, and 410C). The focus plane 400A is further from the system 412 by a distance x2 than the focus plane 402A, and the focus plane 402A is further from the system 412 by a distance x3 than the focus plane 404A. The distances x4, x5, x6 usually correspond to different focal positions, which correspond to the curvature of the field in the objective lens. Therefore, an objective lens can form a beam focus at a plane 400A for a target portion of a substrate placed on the axis of the objective lens; without focus adjustment, a beam incident on an off-axis target portion will be focused On plane 400B. As mentioned above, a focus control lens is provided to adjust the focus position for compensation.

位移x2、x3通常係被提供用以對應一聚焦控制透鏡的較大平移,以便產生射束光點大小變化。位移x2、x3通常不相等,而且被聚焦在平面400A處的射束光點大小通常會大於在平面402A處的射束光點大小,而在平面402A處的射束光點大小則會大於在平面404A處的聚焦射束光點大小。如圖12中所示,一處理系統被配置成用以在和不同射束光點大小相關聯的位置處(也就是,在位移x2、x3處)提供聚焦調整(x4、x5、x6)。 The displacements x2 and x3 are usually provided to correspond to a large translation of a focus control lens in order to generate a change in the beam spot size. The displacements x2 and x3 are usually not equal, and the size of the beam spot focused at plane 400A is usually larger than the beam spot size at plane 402A, while the beam spot size at plane 402A is greater than The spot size of the focused beam at plane 404A. As shown in FIG. 12, a processing system is configured to provide focus adjustments (x4, x5, x6) at locations associated with different beam spot sizes (ie, at displacements x2, x3).

圖14顯示一種用於處理複合體(例如,要被處理成當作電子裝置中的觸碰螢幕的複合體)的示範性方法500。在502處會選擇一複合體,該複合體包含一基板,其上會形成一導體層與一導體邊界。在504處會取得一圖樣或製程描述,用以表示該複合體的各個部分要如何被處理,並且可能包含圖樣佈局、駐留時間、特徵圖樣大小、處理的類型(舉例來說,燒蝕或是其它製程)。在506處會將處理射束參數(例如,功率、波長、脈衝重複率、脈衝能量、以及射束光點大小)與該圖樣描述相關聯。在508處會選擇聚焦平面(或是工作距離),用以產生該些選定的射束光點大小。在510處 會定位一聚焦控制組裝件,俾使得來自該聚焦控制組裝件的射束會在該選定的聚焦平面處被聚焦成合宜的射束光點大小。如圖14中所示,該聚焦平面係被選擇用於處理該導體層。在512處會配合一聚焦控制透鏡所提供的聚焦控制以選定的光點大小/工作距離來處理該導體層(或是其它基板區)。在514處會定位一聚焦控制組裝件,俾使得來自該聚焦控制組裝件的射束會在另一選定的聚焦平面處被聚焦成另一合宜的射束光點大小。如圖14中所示,此聚焦平面被選擇用於處理該導體邊界。在516處會配合一聚焦控制透鏡所提供的聚焦控制以選定的光點大小/工作距離來處理該導體邊界(或是其它基板區)。此示範性方法的處理會結束在520處。複數個不同的工作距離與射束光點大小能夠以圖樣描述為基礎而被使用。雖然能夠使用一射束光點大小範圍,例如,介於2μm與10mm之間、介於4μm與1mm之間、介於5μm與0.5mm之間、或是介於8μm與0.2mm之間的射束直徑;不過,典型的射束光點大小則係介於10μm與100μm之間。此些射束通常能夠處理包含導體銀漿或銀奈米線的複合體,使其具有對應大小的特徵圖樣。 FIG. 14 shows an exemplary method 500 for processing a complex (eg, a complex to be processed as a touch screen in an electronic device). A composite body is selected at 502. The composite body includes a substrate on which a conductor layer and a conductor boundary are formed. A pattern or process description will be obtained at 504 to indicate how the various parts of the complex are to be processed, and may include pattern layout, dwell time, feature pattern size, type of processing (for example, ablation or Other processes). The processing beam parameters (eg, power, wavelength, pulse repetition rate, pulse energy, and beam spot size) are associated with the pattern description at 506. A focus plane (or working distance) is selected at 508 to generate the selected beam spot sizes. At 510 A focus control assembly will be positioned so that the beam from the focus control assembly will be focused at the selected focus plane to a suitable beam spot size. As shown in FIG. 14, the focusing plane is selected for processing the conductor layer. At 512, the conductor layer (or other substrate area) is processed with the selected spot size / working distance in cooperation with the focus control provided by a focus control lens. A focus control assembly will be positioned at 514 such that the beam from the focus control assembly will be focused at another selected focus plane to another suitable beam spot size. As shown in Figure 14, this focus plane is selected to process the conductor boundary. At 516, the conductor boundary (or other substrate area) is processed with the selected spot size / working distance in conjunction with the focus control provided by a focus control lens. Processing of this exemplary method ends at 520. A plurality of different working distances and beam spot sizes can be used based on the pattern description. Although a beam spot size range can be used, for example, a beam between 2 μm and 10 mm, between 4 μm and 1 mm, between 5 μm and 0.5 mm, or between 8 μm and 0.2 mm. Beam diameter; however, typical beam spot sizes are between 10 μm and 100 μm. Such beams are generally capable of processing complexes containing conductive silver paste or silver nanowires to provide correspondingly sized feature patterns.

導體層與邊界的燒蝕性及非燒蝕性處理Ablation and non-ablation treatment of conductor layers and boundaries

於某些情況中,該導體層係被非燒蝕性處理使其能夠作為電子裝置中的觸敏式螢幕,而該導體邊界係被燒蝕性處理使其形成從該觸敏式螢幕通往一積體電路的IC通道。然而,於替代實施例中,該導體層或是該導體邊界皆能夠被燒蝕性或非燒蝕性處理,只要適合該特殊實施例即可。如本文中的用法「燒蝕性」及「非燒蝕性」具有上面提出的意義。 In some cases, the conductor layer is non-ablated to enable it to function as a touch-sensitive screen in an electronic device, and the conductor boundary is subjected to ablation to form a path from the touch-sensitive screen to IC channel of an integrated circuit. However, in alternative embodiments, the conductor layer or the conductor boundary can be treated with ablation or non-ablation, as long as it is suitable for this particular embodiment. As used in this article, the terms "ablative" and "non-ablative" have the meanings mentioned above.

於某些情況中,該些導體材料層包含隨機排列的多條銀奈米 線。此些層的銀奈米線會在一聚合物基質(例如,有機的覆蓋塗層)中被固定至一基板。一雷射射束會傳遞雷射脈衝至此層並且創造一經處理的部分,其中,該導體層材料的導電率會實質地改變,俾使得該經處理部分實際上為非導體。如本文中的用法,「導體性」與「非導體性」具有在印刷電子、觸碰感測器圖樣化、或是光電子的技術中一般理解的意義。舉例來說,可被視為導體性的材料的合宜片阻包含30至250Ω/sq,而可被視為非導體性或電隔離的材料的合宜片阻或電隔離測量值則包含大於或等於約20MΩ/sq。然而,此些片阻僅為範例,而且其它導體性的範圍及非導體性的範圍可以相依於特殊應用的需求來套用。某些經處理的基板可以在片阻低於500Ω/sq、1kΩ/sq、5kΩ/sq、或是10kΩ/sq被視為有充分的導體性,並且可以在片阻大於或等於約100kΩ/sq、1MΩ/sq、或是100MΩ/sq被視為非導體性。 In some cases, the conductive material layers include randomly arranged silver nanometers line. These layers of silver nanowires are fixed to a substrate in a polymer matrix (eg, an organic overcoat). A laser beam will pass a laser pulse to this layer and create a processed portion, wherein the conductivity of the material of the conductive layer will substantially change such that the processed portion is actually non-conductive. As used herein, "conductivity" and "non-conductivity" have meanings commonly understood in the technology of printed electronics, touch sensor patterning, or optoelectronics. For example, a suitable sheet resistance that can be considered as a conductive material contains 30 to 250 Ω / sq, while a suitable sheet resistance or electrical isolation measurement that can be considered as a non-conductive or electrically isolated material contains greater than or equal to About 20MΩ / sq. However, these chip resistors are only examples, and other conductive ranges and non-conductive ranges can be applied depending on the requirements of a particular application. Some processed substrates can be considered to be sufficiently conductive at a sheet resistance of less than 500Ω / sq, 1kΩ / sq, 5kΩ / sq, or 10kΩ / sq, and can be greater than or equal to about 100kΩ / sq , 1MΩ / sq, or 100MΩ / sq is considered non-conductive.

雷射脈衝會以各種圖樣被導向該複合體,俾使得特殊的區域與電路徑被形成在該基板上。藉由審慎選擇雷射脈衝參數的特徵(其包含:脈衝長度、脈衝能量密度、脈衝能量、光點大小、脈衝重複率、以及掃描速度),該基板可以被處理成使其電氣特徵以預設的方式改變,同時該基板以及相關聯的保護層與導體層不會被實質性破壞或是結構性改變(舉例來說,燒蝕性)。 Laser pulses are directed to the complex in various patterns, so that special regions and electrical paths are formed on the substrate. By carefully selecting the characteristics of the laser pulse parameters (which include: pulse length, pulse energy density, pulse energy, light spot size, pulse repetition rate, and scanning speed), the substrate can be processed so that its electrical characteristics are preset And the substrate and the associated protective layer and conductor layer will not be substantially damaged or structurally changed (for example, ablative).

適合對一導體層進行非燒蝕性處理的示範性雷射脈衝參數包含:約50ps的脈衝長度、約0.17J/cm2的脈衝能量密度、約40μm(l/e2)的光點大小、約1m/s的掃描速率、大於90%的脈衝至脈衝重疊、約12μJ的總脈衝能量、以及約100kHz的脈衝重複率,其係利用波長1064nm的光學 輻射(經發現,其和基板及其它材料進行反應的程度小於較短波長的光)。各種其它參數同樣適合。舉例來說,脈衝重複率能夠提高至1MHz、10MHz、或是大於10MHz,以便提高處理速度。脈衝長度能夠選擇為較短或是較長。脈衝能量密度能夠經過調整以確保該目標被非燒蝕性處理。可能的脈衝長度包含小於約1ps、100ps、200ps、500ps、800ps、或是1ns。其它參數能夠以雷同的方式據以改變及最佳化。適合非燒蝕性雷射處理的雷射參數會部分以要被處理之選定材料的相關特性為基礎來選擇。舉例來說,改變基板、薄導體層、…等的厚度會影響雷射脈衝熱量可能分佈的情況或者導致需要減輕的其它時間相依效應。 Exemplary laser pulse parameters suitable for non-ablative processing of a conductor layer include: a pulse length of about 50 ps, a pulse energy density of about 0.17 J / cm 2 , a spot size of about 40 μm (l / e 2 ), A scan rate of about 1 m / s, a pulse-to-pulse overlap of greater than 90%, a total pulse energy of about 12 μJ, and a pulse repetition rate of about 100 kHz, which uses optical radiation with a wavelength of 1064 nm (which has been found to be compatible with substrates and other materials The reaction proceeds to a lesser degree than light of shorter wavelengths). Various other parameters are equally suitable. For example, the pulse repetition rate can be increased to 1 MHz, 10 MHz, or greater than 10 MHz in order to increase the processing speed. The pulse length can be selected to be shorter or longer. The pulse energy density can be adjusted to ensure that the target is non-ablated. Possible pulse lengths include less than about 1 ps, 100 ps, 200 ps, 500 ps, 800 ps, or 1 ns. Other parameters can be changed and optimized in the same way. Laser parameters suitable for non-ablative laser processing are selected based in part on the relevant characteristics of the selected material to be processed. For example, changing the thickness of a substrate, a thin conductor layer, etc. can affect the possible distribution of laser pulse heat or cause other time-dependent effects that need to be mitigated.

雖然該些射束通常被描述成被送往一焦點處;不過,亦可採用其它射束幾何配置及強度分佈,其包含:未聚焦的射束;直線射束;正方形或矩形射束;以及跨越一或更多條橫切軸線擁有均勻、實質上均勻、或預選強度輪廓的射束。於某些情況中,一複合體會被平移,用以幫助在其表面上達成幾何形狀的特徵圖樣。於某些情況中,一或更多道雷射射束會從頂側或背側方向照射在一複合體上,俾使得該射束傳播通過該基板至該導體層,俾便該射束造成一導體層的燒蝕性或非燒蝕性變化。於某些情況中,雷射脈衝會導致一導體層的一經處理部分變成非導體性,但卻不會改變該經處理部分的可見特徵。同樣地,雷射脈衝會以燒蝕性或非燒蝕性方式處理一導體邊界。一導體邊界的雷射燒蝕能夠藉由提高入射在該目標表面的雷射射束的能量含量而達成。舉例來說,該些雷射脈衝參數能夠藉由提高脈衝長度、脈衝能量密度、總脈衝能量、使用較短的波長、或是縮小光點大小來調整。合宜的雷射系統通常包含脈衝式光纖雷射、脈衝式光 纖放大器、以及二極體激昇固態雷射。 Although these beams are often described as being sent to a focal point; other beam geometric configurations and intensity distributions can also be used, including: unfocused beams; straight beams; square or rectangular beams; and A beam having a uniform, substantially uniform, or preselected intensity profile across one or more transverse axes. In some cases, a complex is translated to help achieve geometric feature patterns on its surface. In some cases, one or more laser beams are irradiated onto a complex from the top or back side, so that the beam propagates through the substrate to the conductor layer, which is caused by the beam. Ablation or non-ablation of a conductor layer. In some cases, a laser pulse can cause a processed portion of a conductive layer to become non-conductive without changing the visible characteristics of the processed portion. Similarly, laser pulses treat a conductor boundary in an ablative or non-ablative manner. Laser ablation of a conductor boundary can be achieved by increasing the energy content of the laser beam incident on the target surface. For example, the laser pulse parameters can be adjusted by increasing the pulse length, pulse energy density, total pulse energy, using a shorter wavelength, or reducing the spot size. A suitable laser system usually includes a pulsed fiber laser, pulsed light Fiber amplifiers, and diode-based solid-state lasers.

示範性控制系統與計算環境 Demonstration control system and computing environment

圖15所示的係一種示範性雷射處理系統,其包含一控制系統600,該控制系統600會控制一雷射射束傳遞系統603。如圖示,控制系統600會包含:一雷射射束參數控制介面602;一平台控制介面604;兩個電流計控制介面606與608,用以控制一雷射射束的掃描;以及第一平台控制介面610與第二平台控制介面612。雷射射束參數控制介面602會被耦合至一雷射射束源,例如,雷射源605,並且能夠控制因而所產生的雷射射束的參數,例如,脈衝長度、脈衝能量密度、脈衝能量、脈衝光波長、…等。一般來說,控制系統600包含一或更多個處理器607以及一記憶體609,該記憶體會保留圖樣資料以及用於處理圖樣資料的指令,以便決定雷射掃描參數。該些控制介面通常係以被儲存在一或更多個電腦可讀取儲存媒體(例如,磁碟或是諸如隨機存取記憶體的記憶體)之中的電腦可執行指令為基礎來施行。 An exemplary laser processing system shown in FIG. 15 includes a control system 600 that controls a laser beam delivery system 603. As shown, the control system 600 will include: a laser beam parameter control interface 602; a platform control interface 604; two galvanometer control interfaces 606 and 608 for controlling the scanning of a laser beam; and a first The platform control interface 610 and the second platform control interface 612. The laser beam parameter control interface 602 is coupled to a laser beam source, such as the laser source 605, and can control the parameters of the laser beam generated thereby, such as pulse length, pulse energy density, pulse Energy, pulsed light wavelength, ... Generally, the control system 600 includes one or more processors 607 and a memory 609. The memory retains pattern data and instructions for processing the pattern data in order to determine laser scanning parameters. The control interfaces are typically implemented on the basis of computer-executable instructions stored in one or more computer-readable storage media (for example, a magnetic disk or a memory such as a random access memory).

平台控制介面604會被耦合至一基板平台618,該基板平台能夠控制要被處理的複合體的位置。該基板平台618會包括任何各式各樣的運動控制裝置,例如,壓電式或馬達型掃描裝置。該些電流計控制介面606、608會分別被耦合至電流計616、614,電流計616、614能夠分別控制反射表面617、615。第一平台控制介面610與第二平台控制介面612分別被耦合至運動控制裝置629、630並且能夠沿著一光學軸線來控制該些平台的線性運動。運動控制裝置629被耦合至一聚焦調整組裝件628,俾便能夠在 射束掃描期間保持射束聚焦。該聚焦調整組裝件628被固定至運動控制裝置630,以便選擇一合宜的射束直徑來進行基板處理。圖中在628A處顯示聚焦調整組裝件628的其中一個額外位置。利用運動控制裝置630來調整聚焦調整組裝件628通常伴隨基板618的對應移動,因此會達成不同射束直徑的射束聚焦,同時能夠利用運動控制裝置629來保持聚焦在一掃描場域上方。 The platform control interface 604 is coupled to a substrate platform 618, which can control the position of the complex to be processed. The substrate platform 618 may include any of various motion control devices, such as a piezoelectric or motor type scanning device. The galvanometer control interfaces 606 and 608 are coupled to galvanometers 616 and 614, respectively. The galvanometers 616 and 614 can control the reflective surfaces 617 and 615, respectively. The first platform control interface 610 and the second platform control interface 612 are respectively coupled to the motion control devices 629 and 630 and can control the linear motion of the platforms along an optical axis. The motion control device 629 is coupled to a focus adjustment assembly 628, and the The beam is kept in focus during the beam scan. The focus adjustment assembly 628 is fixed to the motion control device 630 to select a suitable beam diameter for substrate processing. The figure shows one of the additional positions of the focus adjustment assembly 628 at 628A. The use of the motion control device 630 to adjust the focus adjustment assembly 628 usually accompanies the corresponding movement of the substrate 618, so beam focusing with different beam diameters can be achieved, and the motion control device 629 can be used to maintain focus over a scanning field.

圖16所示的係可以施行本文所述創新的一種合宜計算環境700的通用範例。計算環境700無意提出用途或功能範疇的任何限制,因為該些創新可以各式各樣的一般用途或特殊用途計算系統來施行。舉例來說,計算環境700能夠為任何各式各樣的計算裝置,舉例來說,桌上型電腦、膝上型電腦、伺服器電腦、平板電腦、媒體播放器、遊戲系統、行動裝置、…等。 The system shown in FIG. 16 is a general example of a suitable computing environment 700 that can implement the innovations described herein. The computing environment 700 is not intended to suggest any limitation in terms of use or functionality, as these innovations can be implemented with a wide variety of general-purpose or special-purpose computing systems. For example, the computing environment 700 can be any variety of computing devices, such as desktop computers, laptops, server computers, tablets, media players, gaming systems, mobile devices, ... Wait.

參考圖16,計算環境700包含一基礎配置730,其包含一或更多個處理單元710、715以及記憶體720、725。處理單元710、715會執行電腦可執行的指令。一處理單元能夠為一般用途中央處理單元(Central Processing Unit,CPU)、特定應用積體電路(Application-Specific Integrated Circuit,ASIC)的處理器、或是任何其它類型處理器。在一多重處理系統中,多個處理單元會執行電腦可讀取的指令而提高處理能力。舉例來說,圖16顯示一中央處理單元710以及一圖形處理單元或協同處理單元715。有形的記憶體720、725可以為揮發性記憶體(舉例來說,暫存器、快取、RAM)、非揮發性記憶體(舉例來說,ROM、EEPROM、快閃記憶體、…等)、或是可由該(些)處理單元存取的前述兩者的特定組合。記憶體720、725以適合讓 該(些)處理單元來執行的電腦可執行指令的形式儲存施行本文中所述之一或更多種創新的軟體780。 Referring to FIG. 16, the computing environment 700 includes a basic configuration 730 that includes one or more processing units 710 and 715 and memories 720 and 725. The processing units 710 and 715 execute instructions executable by the computer. A processing unit can be a general-purpose central processing unit (CPU), a processor of an application-specific integrated circuit (ASIC), or any other type of processor. In a multiple processing system, multiple processing units execute computer-readable instructions to increase processing power. For example, FIG. 16 shows a central processing unit 710 and a graphics processing unit or cooperative processing unit 715. Tangible memory 720, 725 can be volatile memory (for example, register, cache, RAM), non-volatile memory (for example, ROM, EEPROM, flash memory, etc.) Or a specific combination of the two mentioned above that is accessible by the processing unit (s). Memory 720, 725 to fit The processing unit (s) are stored in the form of computer-executable instructions that execute one or more of the innovative software 780 described herein.

一計算系統還可以有額外的特點。舉例來說,計算環境700包含儲存體740、一或更多個輸入裝置750、一或更多個輸出裝置760、以及一或更多個通信連接770。一互連機制(圖中並未顯示)(例如,匯流排、控制器、或是網路)會互連該計算環境700的該些器件。一般來說,作業系統軟體(圖中並未顯示)會為在該計算環境700中執行的其它軟體提供作業環境,並且協調該計算環境700的該些器件的活動。 A computing system can also have additional features. For example, the computing environment 700 includes a storage body 740, one or more input devices 750, one or more output devices 760, and one or more communication connections 770. An interconnection mechanism (not shown) (for example, a bus, a controller, or a network) interconnects the devices of the computing environment 700. Generally, operating system software (not shown) provides an operating environment for other software executing in the computing environment 700, and coordinates the activities of the devices of the computing environment 700.

有形儲存體740可以為抽取式或非抽取式,並且包含磁碟、磁帶或卡帶、CD-ROM、DVD、或是能夠被用來以非暫時的方式儲存資訊並且能夠在該計算環境700裡面被存取的任何其它媒體。儲存體740儲存用以施行本文中所述之一或更多種創新的軟體780的指令。 The tangible storage body 740 may be removable or non-removable, and contains a magnetic disk, tape or cassette, CD-ROM, DVD, or it can be used to store information in a non-transitory manner and can be stored in the computing environment 700. Any other media accessed. The storage 740 stores instructions to execute one or more of the innovative software 780 described herein.

該(些)輸入裝置750可以為觸碰輸入裝置(例如,鍵盤、滑鼠、筆、或是軌跡球)、語音輸入裝置、掃描裝置、或是提供輸入至該計算環境700的其它裝置。對視訊編碼來說,該(些)輸入裝置750可以為相機、視訊卡、TV調諧器或是以類比或數位形式接受視訊輸入的雷同裝置、或是將視訊取樣讀入至該計算環境700之中的CD-ROM或CD-RW。該(些)輸出裝置760可以為顯示器、印表機、揚聲器、CD覆寫機、或是從該計算環境700處提供輸出的其它裝置。 The input device (s) 750 may be a touch input device (eg, a keyboard, mouse, pen, or trackball), a voice input device, a scanning device, or other device that provides input to the computing environment 700. For video coding, the input device (s) 750 may be a camera, video card, TV tuner or similar device that accepts video input in analog or digital form, or read video samples into the computing environment 700. CD-ROM or CD-RW. The output device (s) 760 may be a display, a printer, a speaker, a CD overwriter, or other device that provides output from the computing environment 700.

該(些)通信連接770會在一通信媒體上致能與另一計算實體的通信。該通信媒體會傳達下面資訊,例如:電腦可執行的指令、音頻或視訊輸入或輸出、或是經調變資料信號中的其它資料。經調變的資料信號 為其特徵集中的一或更多者在該信號中編碼資訊或是其特徵集中的一或更多者已經以用以在該信號中編碼資訊的方式改變的信號。舉例來說,且沒有限制意義,通信媒體能夠使用電載體、光學載體、RF載體、或是其它載體。 The communication connection (s) 770 will enable communication with another computing entity over a communication medium. The communication medium conveys information such as computer-executable instructions, audio or video input or output, or other information in a modulated data signal. Modulated data signal A signal for which one or more of its feature sets encode information in the signal or one or more of its feature sets have changed in a manner used to encode information in the signal. For example, and without limitation, the communication medium can use an electric carrier, an optical carrier, an RF carrier, or other carriers.

軟體780會包含一或更多個軟體模組。舉例來說,軟體780能夠包含:一雷射射束軟體模組782,用以設定雷射射束參數及/或控制一雷射射束源;一基板平台運動模組784,用以設定沿著一軸線的基板位置並且控制一基板平台;以及一射束掃描模組786,用以決定一射束掃描系統的參數及/或控制此射束掃描系統。其中一種示範性射束掃描系統會包含一對電流計。一聚焦控制模組780還會包含一場聚焦修正模組788,用以決定為修正場曲率而要採取的動作,例如,移動一聚焦調整透鏡。一射束直徑模組790會控制移動,以便聚焦一射束於一特殊距離處,用以取得一選定的射束直徑。 The software 780 may include one or more software modules. For example, the software 780 can include: a laser beam software module 782 for setting laser beam parameters and / or controlling a laser beam source; a substrate platform movement module 784 for setting the A substrate position along an axis and controls a substrate platform; and a beam scanning module 786 for determining parameters of a beam scanning system and / or controlling the beam scanning system. One exemplary beam scanning system would include a pair of galvanometers. A focus control module 780 also includes a focus correction module 788 for determining the action to be taken to correct the curvature of the field, for example, moving a focus adjustment lens. A beam diameter module 790 controls the movement so as to focus a beam at a special distance to obtain a selected beam diameter.

為方便呈現起見,已揭方法中的一部分的操作雖然以特殊的循序順序來說明;不過,應該瞭解的係,除非本文中提出的特定語言要求特殊的排序方式,否則,此說明方式涵蓋重新排列。舉例來說,本文中依序說明的操作可於某些情況中被重新排列或是同步實施。又,為達簡化起見,隨附的圖式並沒有顯示已揭方法能夠配合其它方法來使用的各種方式。 For ease of presentation, some of the operations in the disclosed method are described in a special sequential order; however, it should be understood that unless the specific language proposed in this article requires a special ordering method, this description method covers re- arrangement. For example, the operations described sequentially in this article may be rearranged or performed concurrently in some cases. In addition, for the sake of simplicity, the accompanying drawings do not show various ways in which the disclosed method can be used in conjunction with other methods.

任何已揭方法皆能夠施行為被儲存在一或更多個電腦可讀取儲存媒體(舉例來說,一或更多個光學媒體碟片、揮發性記憶體器件(例如,DRAM或SRAM)、或是非揮發性記憶體器件(例如,快閃記憶體或是硬碟機))中並且在一電腦(舉例來說,任何市售電腦,其包含智慧型手機或是 包含計算硬體的其它行動裝置)中被執行的電腦可執行指令。電腦可讀取儲存媒體一詞並不包含通信連接,例如,信號與載波。用於施行已揭技術的任何電腦可執行指令以及在施行已揭實施例期間所創造及使用的任何資料會被儲存在一或更多個電腦可讀取儲存媒體中。舉例來說,該些電腦可執行指令會是一專屬軟體應用程式或是透過一網路瀏覽器或其它軟體應用程式(例如,遠端計算應用程式)來存取或下載的軟體應用程式的一部分。舉例來說,此軟體能夠在單一區域電腦上執行(舉例來說,任何合宜的市售電腦)或是在利用一或更多部網路電腦的網路環境中(透過網際網路、廣域網路、區域網路、客端-伺服器網路(例如,雲端計算網路)、或是其它此類網路)執行。 Any of the methods disclosed can be stored on one or more computer-readable storage media (for example, one or more optical media discs, volatile memory devices (e.g., DRAM or SRAM), Or a non-volatile memory device (for example, a flash memory or a hard drive) and a computer (for example, any commercially available computer that includes a smartphone or Contains computer-executable instructions executed on other mobile devices including computing hardware. The term computer-readable storage media does not include communication connections, such as signals and carrier waves. Any computer-executable instructions used to implement the disclosed technology and any data created and used during the implementation of the disclosed embodiments are stored in one or more computer-readable storage media. For example, the computer-executable instructions may be a proprietary software application or part of a software application that is accessed or downloaded through a web browser or other software application (e.g., a remote computing application). . For example, this software can be run on a single local computer (for example, any suitable commercially available computer) or in a network environment using one or more network computers (through the Internet, WAN , Local area network, client-server network (e.g., cloud computing network), or other such network).

再者,任何該些以軟體為基礎的實施例(舉例來說,其包括用以讓一電腦實施任何已揭方法的電腦可執行指令)皆能夠經由一合宜的通信手段被上傳、下載、或是遠端存取。舉例來說,此合宜的通信手段包含網際網路、全球資訊網(World Wide Web)、企業內部網路、軟體應用程式、纜線(其包含光纖纜線)、磁通信、電磁通信(其包含RF、微波、以及紅外線通信)、電子通信、或是其它此類通信手段。 Furthermore, any such software-based embodiment (for example, including computer-executable instructions for a computer to implement any of the disclosed methods) can be uploaded, downloaded, or Is remote access. For example, this suitable means of communication includes the Internet, the World Wide Web, corporate intranets, software applications, cables (which include fiber optic cables), magnetic communications, and electromagnetic communications (which includes RF, microwave, and infrared communications), electronic communications, or other such means of communication.

圖17顯示一聚焦組裝件808,其可以組裝件止動部810A至810C為基礎平移至多個固定位置(例如,808A)。平台802沿著一物鏡814的軸線812來平移該聚焦組裝件808。該聚焦組裝件808包含一透鏡806,其可在該聚焦組裝件808裡面平移,用以調整由物鏡814所建立的射束聚焦位置,以便補償場曲率或非平面基板。透鏡806的其中一代表性為至顯示在806A處。 FIG. 17 shows a focusing assembly 808 that can be translated to a plurality of fixed positions (eg, 808A) based on the assembly stops 810A to 810C. The platform 802 translates the focusing assembly 808 along the axis 812 of an objective lens 814. The focusing assembly 808 includes a lens 806 which can be translated in the focusing assembly 808 to adjust the beam focusing position established by the objective lens 814 so as to compensate the field curvature or the non-planar substrate. One of the lenses 806 is representatively displayed at 806A.

V. 用於精細特徵圖樣標記的高解析數位方式地編碼雷射掃描器之最佳化 V. Optimization of high-resolution digitally encoded laser scanners for fine feature pattern marking

雷射掃描系統的一種重要特徵為它們能夠達到的解析度(本文中用來表示兩個可區分點之間的最小距離)。習知的雷射掃描系統已經試圖藉由縮小該雷射掃描器與被掃描表面之間的工作距離而改善解析度,從而導致在一較小的掃描場域上有較小解析度的掃描。為保持大場域掃描能力,該些習知系統已經運用昂貴的可平移平台來平移正在被掃描的表面,俾使得複數個小型場域能夠在一表面上彼此相鄰地被掃描而形成一大型場域。此些習知系統有數項缺點。 An important feature of laser scanning systems is the resolution they can achieve (used in this paper to represent the minimum distance between two distinguishable points). Conventional laser scanning systems have attempted to improve resolution by reducing the working distance between the laser scanner and the surface being scanned, resulting in scanning with a smaller resolution over a smaller scanning field. To maintain large-field scanning capabilities, these conventional systems have used expensive translatable platforms to translate the surface being scanned, thereby enabling multiple small fields to be scanned adjacent to each other on a surface to form a large field. area. These known systems have several disadvantages.

先前的雷射掃描系統通常使用16位元的雷射掃描器,縮減工作距離直到達到所希望的解析度為止,並且接著掃描複數個小型場域,其仰賴於一可平移的平台以該掃描器為基準移動正在被掃描的表面。經發現,藉由使用20位元的掃描器能夠利用雷同的技術來達成改善的解析度(舉例來說,改善6倍)。或者,另外發現到,藉由使用20位元的掃描器,能夠在較大的工作距離處達到雷同的解析度,從而減少或消弭掃描複數個場域的需求且因而減少或消弭以該掃描器為基準平移正在被掃描的表面的需求。這提供數項不同且明顯優於習知系統的優點。舉例來說,其能夠達到明顯較小解析度的掃描。進一步言之,藉由減少或消弭將許多小型掃描場域拼接在一起的需求,其會減少或消弭在編結過程中所產生的錯誤。 Previous laser scanning systems typically used 16-bit laser scanners, reducing the working distance until the desired resolution was reached, and then scanning a number of small fields, which relied on a translatable platform to scan the scanner Move the surface being scanned as a reference. It was found that by using a 20-bit scanner, the same technology can be used to achieve improved resolution (for example, a 6-fold improvement). Alternatively, it was found that by using a 20-bit scanner, the same resolution can be achieved at a large working distance, thereby reducing or eliminating the need to scan multiple fields and thus reducing or eliminating the scanner. The need to translate the surface being scanned for the datum. This provides several different advantages that are significantly better than conventional systems. For example, it is able to achieve scans with significantly smaller resolutions. Furthermore, by reducing or eliminating the need to stitch many small scanning fields together, it will reduce or eliminate errors generated during the stitching process.

圖18所示的係一數位雷射掃描系統3000(例如,20位元雷射掃描系統)以及雷射射束3008、3010、以及3012,每一道射束皆沿著如系 統3000所指示的不同軸線傳播。圖中所示的雷射射束3008、3010、以及3012中的每一者皆有三種不同的配置(分別為射束3008A、3008B、3008C,或是3010A、3010B、3010C,或是3012A、3012B、3012C):在第一種配置中被聚焦在一第一聚焦平面3002上(也就是,如在3008A、3010A、以及3012A處所示),在第二種配置中被聚焦在一第二聚焦平面3004上(也就是,如在3008B、3010B、以及3012B處所示),以及在第三種配置中被聚焦在一第三聚焦平面3006上(也就是,如在3008C、3010C、以及3012C處所示)。聚焦平面3002比聚焦平面3004更遠離系統3000,並且聚焦平面3004比聚焦平面3006更遠離系統3000。 The system shown in FIG. 18 is a digital laser scanning system 3000 (for example, a 20-bit laser scanning system) and laser beams 3008, 3010, and 3012, each of which follows the system The different axes indicated by the system 3000 propagate. Each of the laser beams 3008, 3010, and 3012 shown in the figure has three different configurations (beams 3008A, 3008B, 3008C, or 3010A, 3010B, 3010C, or 3012A, 3012B, respectively). 3012C): Focused on a first focusing plane 3002 in the first configuration (ie, as shown at 3008A, 3010A, and 3012A), and focused in a second configuration Plane 3004 (ie, as shown at 3008B, 3010B, and 3012B), and in a third configuration, focused on a third focus plane 3006 (ie, as at 3008C, 3010C, and 3012C) As shown). The focus plane 3002 is farther from the system 3000 than the focus plane 3004, and the focus plane 3004 is farther from the system 3000 than the focus plane 3006.

數位雷射掃描系統3000通常會產生由預設數量位元以數位方式指定的偏斜角度α。舉例來說,數位雷射掃描系統3000能夠以n位位元來指定偏斜角度,其中,n為諸如8、16、18、20、或更多位位元的整數。一n位元的數位雷射掃描系統能夠辨識2n個不同的偏斜角度。在一選定聚焦平面上的橫向位移通常正比於該偏斜角度α和軸線3050中的聚焦平面距離的乘積。橫向位移解析度(針對一固定的偏斜角度差異)的定義為相關聯的橫向位移差異。 The digital laser scanning system 3000 usually generates a deflection angle α specified digitally by a predetermined number of bits. For example, the digital laser scanning system 3000 can specify a skew angle in n bits, where n is an integer such as 8, 16, 18, 20, or more bits. An n-bit digital laser scanning system can identify 2 n different deflection angles. The lateral displacement in a selected focus plane is usually proportional to the product of the skew angle α and the distance of the focus plane in the axis 3050. The lateral displacement resolution (for a fixed deflection angle difference) is defined as the associated lateral displacement difference.

如圖18中所示,在聚焦平面3006處的橫向位移解析度小於在聚焦平面3004處的橫向位移解析度,在聚焦平面3004處的橫向位移解析度小於在聚焦平面3002處的橫向位移解析度。也就是,當和系統3000的相隔工作距離增加時,橫向位移解析度便會提高。因為聚焦平面3002比聚焦平面3004更遠離系統3000,而聚焦平面3004比聚焦平面3006更遠離系統3000,所以,橫向位移解析度x10>x11>x12。利用20位元掃描系統而非16 位元掃描系統,便能夠在足夠大的工作距離處達成所希望的解析度,從而允許掃描一平方公尺大的掃描場域,而不需要以該掃描系統為基準來平移被掃描的表面且不需要將複數個較小的掃描場域拼接在一起以形成一較大的掃描場域。更明確地說,20位元掃描系統能夠以小於一微米的解析度來掃描一平方公尺的掃描場域。 As shown in FIG. 18, the lateral displacement resolution at the focus plane 3006 is smaller than the lateral displacement resolution at the focus plane 3004, and the lateral displacement resolution at the focus plane 3004 is smaller than the lateral displacement resolution at the focus plane 3002. . That is, as the working distance from the system 3000 increases, the lateral displacement resolution increases. Because the focus plane 3002 is farther from the system 3000 than the focus plane 3004, and the focus plane 3004 is farther from the system 3000 than the focus plane 3006, the lateral displacement resolution is x10> x11> x12. Utilize 20-bit scanning system instead of 16 The bit scanning system can achieve the desired resolution at a sufficiently large working distance, allowing scanning of a scanning area of one square meter, without the need to use the scanning system as a reference to translate the scanned surface and There is no need to stitch multiple smaller scanning fields together to form a larger scanning field. More specifically, a 20-bit scanning system can scan a square meter scanning field with a resolution of less than one micron.

系統3000會包含:一雷射,其被配置成用以產生一處理射束;一光學系統;以及一掃描控制器,其被配置成用以接收一掃描圖樣並且將掃描控制信號耦合至該光學系統。於某些情況中,該掃描圖樣會被定義為複數個掃描向量。於某些情況中,該些掃描控制信號會控制該光學系統,用以將該處理射束導向一具有預設射束直徑的掃描區域。於某些情況中,該掃描控制器被配置成用以耦合掃描控制信號至該光學系統,以便控制該光學系統跨越該掃描區域,或是相對於該掃描區域,來掃描該處理射束,藉以產生至少一曝光掃描向量。於某些情況中,介於該曝光掃描向量與一預期掃描向量之間的橫向偏移小於該預設射束直徑的1/10,或是小於該預設射束直徑的1/20。於某些情況中,該些掃描控制信號對應於該些掃描向量的精確性落在至少1/216(0.0015%)裡面,例如,約1/217(0.00076%)、或是約1/218(0.00038%)、或是約1/219(0.00019%)、或是約約1/220(0.000095%)。 System 3000 will include: a laser configured to generate a processing beam; an optical system; and a scanning controller configured to receive a scanning pattern and couple a scanning control signal to the optical system. In some cases, the scan pattern is defined as a plurality of scan vectors. In some cases, the scanning control signals control the optical system to direct the processing beam to a scanning area with a preset beam diameter. In some cases, the scanning controller is configured to couple a scanning control signal to the optical system so as to control the optical system to cross the scanning area or scan the processing beam relative to the scanning area, thereby Generate at least one exposure scan vector. In some cases, the lateral offset between the exposure scan vector and an expected scan vector is less than 1/10 of the preset beam diameter, or less than 1/20 of the preset beam diameter. In some cases, the plurality of scan control signal corresponding to the accuracy of the plurality of scanning vector 16 falls at least ½ (0.0015%) which, for example, from about 17 1/2 (0.00076%), or from about 1 / 2 18 (0.00038%), or about 1/2 19 (0.00019%), or about 1/2 20 (0.000095%).

表1更明確顯示利用各種掃描系統針對數種場域尺寸可達成的解析度,以μm/bit為單位。明確地說,表1針對具有不同長度側邊的正方形場域顯示20位元掃描系統優於16位元掃描系統的特定優點。 Table 1 shows more clearly the resolution that can be achieved with various scanning systems for several field sizes, in μm / bit. Specifically, Table 1 shows the specific advantages of a 20-bit scanning system over a 16-bit scanning system for square fields with different length sides.

Figure TWI611855BD00001
Figure TWI611855BD00001

圖19A與19B分別顯示利用16位元掃描系統及利用20位元掃描系統可達成的解析度。圖19A與19B的左邊影像顯示一由多個同心圓組成的輸入圖樣,最大圓的直徑為1mm。圖19A與19B的右邊影像顯示分別由16位元掃描系統及20位元掃描系統響應於由多個同心圓組成的輸入圖樣實際掃描到的圖樣。此些圖樣利用相同的光學系統、雷射、以及掃描器(其操作在16位元模式與20位元模式之中)被掃描在光敏紙張上。基於此些範例中所使用的場域大小,16位元掃描系統的橫向位移解析度為9.2μm而20位元掃描系統的橫向位移解析度為0.6μm。此些實驗結果清楚顯示20位元掃描系統之經改善的掃描解析度。利用較高的橫向位移解析度,形狀能夠更精確地被轉印至基板。 19A and 19B respectively show the resolutions that can be achieved by using a 16-bit scanning system and using a 20-bit scanning system. The left images of FIGS. 19A and 19B show an input pattern composed of multiple concentric circles, and the maximum circle diameter is 1 mm. The right images of FIGS. 19A and 19B show patterns actually scanned by the 16-bit scanning system and the 20-bit scanning system in response to an input pattern composed of a plurality of concentric circles, respectively. These patterns are scanned on photosensitive paper using the same optical system, laser, and scanner (which operates in 16-bit mode and 20-bit mode). Based on the field sizes used in these examples, the lateral displacement resolution of the 16-bit scanning system is 9.2 μm and the lateral displacement resolution of the 20-bit scanning system is 0.6 μm. The results of these experiments clearly show the improved scanning resolution of the 20-bit scanning system. With higher lateral displacement resolution, the shape can be transferred to the substrate more accurately.

因此,20位元掃描系統能夠提供具有小於已知掃描系統之掃描間距(本文中用來表示特徵圖樣之間的最小可達成中心至中心距離)的較小雷射刻劃線(scribe line),並且能夠減少因單一位元精確性限制所造成的和射束位移相關聯的量化誤差。明確地說,為在0.5mx0.5m的場域上掃描具有40μm間距的20μm刻劃線,16位元掃描系統在刻劃線之間僅提供5至6位位元(在7.6μm/位元處)。將刻劃寬度縮減至10μm並且將間距縮小至20μm,16位元系統能夠在刻劃之間僅提供2至3位位元,從而導致明顯的射束位移量化以及相關的誤差(舉例來說,特徵圖樣之間的間隔比較不一致)。相反地,為在0.5mx0.5m的場域上掃描具有20μm間距的10μm刻劃線,20位元掃描系統會在刻劃線之間提供41與42位位元。圖20A與20B顯示此改善結果。圖20A顯示由16位元掃描系統在100μm間距處所掃描的數條直線而圖20B顯示由20位元掃描系統所掃描的相同輸入圖樣。間隔一致性的改善結果可以視覺看出。 Therefore, a 20-bit scanning system can provide a smaller laser scribe line with a scanning pitch smaller than the known scanning system (the minimum achievable center-to-center distance between feature patterns used herein), And can reduce the quantization error associated with the beam displacement caused by the single bit accuracy limitation. Specifically, to scan a 20 μm scribe line with a 40 μm pitch over a 0.5 mx 0.5 m field, the 16-bit scanning system provides only 5 to 6 bit positions (between 7.6 μm / bit) between the scribe lines. Place). By reducing the scribe width to 10 μm and the pitch to 20 μm, a 16-bit system can provide only 2 to 3 bits between the scribes, resulting in significant beam shift quantization and related errors (for example, The intervals between feature patterns are relatively inconsistent). Conversely, to scan a 10 μm scribe line with a 20 μm pitch over a 0.5 mx 0.5 m field, a 20-bit scanning system will provide 41 and 42 bit positions between the scribe lines. 20A and 20B show the results of this improvement. FIG. 20A shows several straight lines scanned by a 16-bit scanning system at a pitch of 100 μm, and FIG. 20B shows the same input pattern scanned by a 20-bit scanning system. The improvement in interval consistency can be seen visually.

本發明有進行進一步的測試來評估由20位元掃描所提供的改善結果。圖21顯示由16位元掃描系統與20位元掃描系統所掃描的輸入圖樣,圖21中所顯示的數字表示相關聯圖樣的間距,以nm為單位。該些被掃描特徵圖樣的間距係在高放大倍數下所測得,在表2中呈現該些圖樣中每一者的結果(直線或角邊皆有給定的間隔)。 The present invention is further tested to evaluate the improvement provided by the 20-bit scan. FIG. 21 shows the input patterns scanned by the 16-bit scanning system and the 20-bit scanning system. The numbers shown in FIG. 21 represent the spacing of the associated patterns in nm. The distance between the scanned feature patterns is measured at a high magnification, and the results of each of these patterns are shown in Table 2 (the straight or corner edges have a given interval).

Figure TWI611855BD00002
Figure TWI611855BD00002

表2針對由16位元掃描及20位元掃描兩者所圖樣化的六個不同圖樣提出被掃描的特徵圖樣的間距的測量值,其包含最大間隔、最小間隔、最小間隔與最大間隔之間的差異、平均間隔、以及間隔的標準差。角邊特徵圖樣的間隔係在角邊之間的對角線中所測得,且因此,具有50μm間距的特徵圖樣的標稱距離為70.7μm而具有100μm間距的特徵圖樣的標稱距離為141.4μm。如表2中所示,20位元掃描的效能一致且顯著地優於16位元掃描。明確地說,20位元測量值的所有標準差皆落在兩倍單一位元解析度極限內。 Table 2 presents the measured values of the distances of the scanned feature patterns for six different patterns that are patterned by both 16-bit scanning and 20-bit scanning. It includes the maximum interval, the minimum interval, the minimum interval, and the maximum interval. , Mean interval, and standard deviation of the interval. The interval of the corner feature patterns is measured in a diagonal line between the corner edges, and therefore, the nominal distance of the feature patterns having a pitch of 50 μm is 70.7 μm and the nominal distance of the feature patterns having a pitch of 100 μm is 141.4. μm. As shown in Table 2, the performance of 20-bit scanning is consistent and significantly better than 16-bit scanning. Specifically, all standard deviations of 20-bit measurements fall within twice the single-bit resolution limit.

圖22所示的係能夠藉以處理材料的示範性方法2200。在2202處,要由一雷射掃描系統來處理的材料會被接收。在2204處,要被掃描至該材料上的圖樣的描述會被接收。在2206處,該材料會根據該圖樣描述利用該雷射掃描系統被處理,並且該雷射掃描系統會被操作成具有20位元的角解析度。在2208處,處理結束。於某些情況中,該方法被用來利用單一雷射掃描器處理至少一平方公尺的掃描場域,而不需要以該掃描器件為基準來平移該材料。 The system shown in FIG. 22 is an exemplary method 2200 by which materials can be processed. At 2202, material to be processed by a laser scanning system is received. At 2204, a description of the pattern to be scanned onto the material is received. At 2206, the material is processed using the laser scanning system according to the pattern description, and the laser scanning system is operated to have a 20-bit angular resolution. At 2208, processing ends. In some cases, the method is used to process a scanning field of at least one square meter with a single laser scanner without the need to translate the material using the scanning device as a reference.

另一種示範性方法會包含接收一圖樣描述,用以定義一或更多個圖樣特徵,該些圖樣特徵會和個別的掃描向量相關聯。該方法會進一步包含選擇一雷射射束直徑並且以該圖樣描述為基礎在一基板的掃描區域上方引導一具有該選定射束直徑或其它預設射束直徑的雷射射束。於某些情況中,該雷射射束會以小於該射束直徑之1/10的橫向位移解析度在該掃描區域上方被引導。於某些情況中,該雷射射束會以小於該射束直徑之1/20 的橫向位移解析度在該掃描區域上方被引導。該掃描區域能夠為正方形、矩形、圓形、或者能夠具有任何其它合宜的形狀。 Another exemplary method may include receiving a pattern description to define one or more pattern features, which are associated with individual scan vectors. The method may further include selecting a laser beam diameter and guiding a laser beam having the selected beam diameter or other preset beam diameter over a scanning area of a substrate based on the pattern description. In some cases, the laser beam is guided over the scanning area with a lateral displacement resolution less than 1/10 of the beam diameter. In some cases, the laser beam will be smaller than 1/20 of the beam diameter The lateral displacement resolution is guided above the scanning area. The scanning area can be square, rectangular, circular, or can have any other suitable shape.

另一示範性方法會包含選擇一雷射射束直徑(舉例來說,介於約10μm與100μm之間);以及在和一雷射射束源相隔所希望工作距離處放置一基板於一掃描平面上,俾使得該雷射射束在該掃描平面處具有選定的直徑。於某些情況中,該掃描平面會與該選定的雷射射束直徑相關聯,舉例來說,該工作距離會以該選定的直徑為基礎來決定。該方法會進一步包含藉由跨越,或是相對於,該基板來掃描該雷射射束而將該基板曝光於該雷射射束。於某些情況中,該雷射射束會以對應於小於該選定的雷射射束直徑之1/10、或是小於該選定的雷射射束直徑之1/20、或是小於該選定的雷射射束直徑之1/100、或是小於該選定的雷射射束直徑之1/1000的角掃描遞增額被掃描。 Another exemplary method would include selecting a laser beam diameter (for example, between about 10 μm and 100 μm); and placing a substrate in a scan at a desired working distance from a laser beam source On a plane, the chirp is such that the laser beam has a selected diameter at the scanning plane. In some cases, the scanning plane is associated with the selected laser beam diameter. For example, the working distance is determined based on the selected diameter. The method may further include exposing the substrate to the laser beam by scanning the laser beam across or relative to the substrate. In some cases, the laser beam will correspond to less than 1/10 of the selected laser beam diameter, or less than 1/20 of the selected laser beam diameter, or less than the selected laser beam diameter. An angular scan increment of 1/100 of the laser beam diameter or less than 1/1000 of the selected laser beam diameter is scanned.

一20位元掃描系統會改善解析度至使得該掃描系統不再是可達成解析度之限制因素的程度。舉例來說,用以修正該掃描系統的設備可能無法修正至落在藉由該掃描系統可達成的解析度裡面。於另一範例中,熱及/或振動效應以及射束操控及/或材料限制可能會造成大於藉由該掃描系統可達成之解析度的誤差。一20位元(或是其它)雷射掃描系統會使用多點外插與均化來放置一射束跨越一掃描場域,用以實現優於16位元編碼的進一步改善。任何合宜波長或波長範圍的光學輻射(例如,紫外光、可見光、紅外光、或是其它波長)皆能夠被使用。於某些實施例中,一雷射掃描系統會被用來掃描一二維表面,俾使得該掃描圖樣在第一軸線中的解析度和該掃描圖樣在第二軸線中的解析度相同。於替代的實施例中,一雷射掃 描系統會被用來掃描一二維表面,俾使得該掃描圖樣在第一軸線中的解析度大於該掃描圖樣在第二軸線中的解析度。 A 20-bit scanning system will improve the resolution to such an extent that the scanning system is no longer a limiting factor in achieving resolution. For example, the equipment used to modify the scanning system may not be able to be corrected to fall within the resolution achievable by the scanning system. In another example, thermal and / or vibration effects and beam steering and / or material limitations may cause errors greater than the resolution that can be achieved with the scanning system. A 20-bit (or other) laser scanning system uses multi-point extrapolation and equalization to place a beam across a scanning field to achieve further improvements over 16-bit encoding. Any suitable wavelength or range of optical radiation (eg, ultraviolet, visible, infrared, or other wavelengths) can be used. In some embodiments, a laser scanning system is used to scan a two-dimensional surface, so that the resolution of the scan pattern in the first axis is the same as the resolution of the scan pattern in the second axis. In an alternative embodiment, a laser sweep The tracing system is used to scan a two-dimensional surface, so that the resolution of the scan pattern in the first axis is greater than the resolution of the scan pattern in the second axis.

本文中所述的系統與方法提供大量的優點。舉例來說,本文中所述的系統與方法能夠達成一材料之更精確雷射圖樣化的目的。本文中所述的系統與方法能夠允許以小於或優於先前系統與方法的解析度來進行一實質上較大掃描場域的雷射圖樣化。明確地說,本文中所述的系統與方法允許以小於1μm的解析度來進行大於1平方公尺的掃描場域的雷射掃描,而不需要平移該材料且不需要拼接複數個掃描場域以形成一較大的複合掃描場域。這會減少或消弭因可平移平台及拼接過程所造成的誤差。這還會縮短掃描大型場域所需要的時間,從而縮短總生產時間,並且不需要昂貴的可平移平台,從而降低總生產成本。 The systems and methods described herein provide a number of advantages. For example, the systems and methods described herein can achieve a more accurate laser patterning of a material. The systems and methods described herein can allow laser patterning of a substantially larger scanning field with a resolution that is less than or better than previous systems and methods. Specifically, the systems and methods described herein allow laser scanning of a scanning field greater than 1 square meter with a resolution of less than 1 μm without the need to translate the material and stitching multiple scanning fields To form a larger composite scanning field. This will reduce or eliminate errors caused by the translatable platform and the stitching process. This also reduces the time required to scan large fields, which reduces overall production time, and eliminates the need for expensive translatable platforms, which reduces overall production costs.

於某些實施例中,多個20位元雷射掃描器能夠被使用在一陣列中用以同步掃描一表面而達成比單一20位元掃描器更大掃描場域及/或更小解析度的目的。此技術能夠藉由平行處理多個區域而非序列處理(其需要額外的時間來進行平移)多個區域來進一步縮短必要的處理時間。於某些實施例中,一或更多個20位元雷射掃描系統能夠被用來掃描一材料的一表面中的多個部分,而後,該材料會以該一或更多個掃描系統為基準被平移(舉例來說,一或更多個可平移的平台),俾便該些掃描系統能夠掃描該材料之該表面的不同部分。此技術亦能夠被用來達成更大掃描場域及/或更小解析度的目的。 In some embodiments, multiple 20-bit laser scanners can be used in an array to simultaneously scan a surface to achieve a larger scanning field and / or smaller resolution than a single 20-bit scanner the goal of. This technique can further reduce the necessary processing time by processing multiple regions in parallel instead of sequential processing (which requires extra time for translation). In some embodiments, one or more 20-bit laser scanning systems can be used to scan multiple portions of a surface of a material, and the material is then scanned by the one or more scanning systems as The fiducials are translated (for example, one or more translatable platforms) so that the scanning systems are able to scan different parts of the surface of the material. This technique can also be used to achieve larger scanning fields and / or smaller resolutions.

於多個20位元掃描系統被用來掃描一表面之多個掃描場域的實施例中,以及於一20位元掃描系統結合一可平移平台被用來掃描一表 面之多個掃描場域的實施例中,多個掃描掃域會被拼接在一起用以形成一較大的複合掃描場域。舉例來說,倘若使用多個20位元掃描系統的話,該些掃描系統中的每一者皆會配備一視覺系統,並且該表面會配備被放置在該視覺系統的視場之中的數個基準標記。該視覺系統會使用該些基準標記來辨識該些掃描系統被指派要掃描的表面中的區域並且於必要時對齊排列不同掃描系統的掃描。於另一範例中,倘若一20位元掃描系統結合一可平移平台被用來掃描多個掃描場域的話,該視覺系統則會使用該些基準標記來辨識該些多個掃描場域中的每一個場域,用以對齊排列該些多個掃描場域而形成一較大的複合掃描場域。因為一20位元掃描系統提供大幅改善的解析度,所以,多個場域能夠以更大精確性的方式被對齊排列(「拼接」在一起)。 In embodiments where multiple 20-bit scanning systems are used to scan multiple scanning fields on a surface, and a 20-bit scanning system combined with a translatable platform is used to scan a table In the embodiment of multiple scanning fields, the multiple scanning fields are spliced together to form a larger composite scanning field. For example, if multiple 20-bit scanning systems are used, each of these scanning systems will be equipped with a vision system, and the surface will be equipped with several placed in the field of view of the vision system. Fiducial mark. The vision system uses the fiducial marks to identify areas in the surfaces to which the scanning systems are assigned to scan and, if necessary, align the scans of different scanning systems. In another example, if a 20-bit scanning system combined with a translation platform is used to scan multiple scanning fields, the vision system will use the fiducial marks to identify the multiple scanning fields. Each field is used to align and arrange the multiple scanning fields to form a larger composite scanning field. Because a 20-bit scanning system provides significantly improved resolution, multiple fields can be aligned ("stitched" together) with greater accuracy.

於某些情況中,電腦系統會被提供儲存在一或更多個電腦可讀取儲存媒體之中的電腦可執行指令,其施行最佳化或排列被一雷射掃描系統掃描的一掃描圖樣之多個向量的順序的電腦可執行方法。此些方法與系統能夠縮短用以掃描一表面所需要的時間並且因而縮短總處理時間。當一掃描圖樣中的向量數量增加時,此些方法所使用的最佳化演算法會提供更大的效率。因此,經發現,此些方法對大型的掃描場域特別有價值,因為較大的掃描場域通常包含較大數量要被描繪的向量。 In some cases, a computer system is provided with computer-executable instructions stored in one or more computer-readable storage media, which performs optimization or alignment of a scan pattern scanned by a laser scanning system A computer-executable method of ordering multiple vectors. These methods and systems can reduce the time required to scan a surface and thus reduce the total processing time. As the number of vectors in a scan pattern increases, the optimization algorithms used by these methods provide greater efficiency. Therefore, these methods have been found to be particularly valuable for large scan fields, because larger scan fields usually contain a larger number of vectors to be drawn.

如上面提及,20位元掃描系統會被用來處理要作為電子裝置(例如,蜂巢式電話或平板)中的電容式觸碰螢幕的材料。於此些實施例中,一大型掃描場域會被用來在單一掃描作業期間從一共用基板中製作多個觸碰螢幕。一大型掃描場域亦能夠被用來製作大型的觸碰螢幕。 As mentioned above, a 20-bit scanning system is used to process materials that are to be used as capacitive touch screens in electronic devices such as cellular phones or tablets. In these embodiments, a large scanning field is used to make multiple touch screens from a common substrate during a single scanning operation. A large scanning field can also be used to make a large touch screen.

VI. 結論 VI. Conclusion

綜觀可套用本揭示內容之原理的許多可能實施例,應該明瞭的係,本發明所圖解的實施例僅為較佳實施例且不應該被視為限制本揭示內容的範疇。本發明主張落在隨附申請專利範圍的範疇與精神裡面的所有實施例。 Looking at the many possible embodiments that can apply the principles of the present disclosure, it should be clear that the embodiments illustrated by the present invention are only preferred embodiments and should not be considered as limiting the scope of the present disclosure. The invention claims all embodiments that fall within the scope and spirit of the scope of the accompanying patent application.

1010‧‧‧脈衝式雷射射束 1010‧‧‧ Pulsed Laser Beam

1012‧‧‧目標 1012 ‧ ‧ goals

1014‧‧‧透明基板 1014‧‧‧Transparent substrate

1016‧‧‧保護層 1016‧‧‧ protective layer

1018‧‧‧導體材料層 1018‧‧‧Conductor material layer

1020‧‧‧經處理部分 1020‧‧‧After processing part

Claims (20)

一種用於雷射圖樣化的方法,其包括:接收被儲存在至少一電腦可讀取儲存媒體中的一圖樣描述,該圖樣描述包括和一掃描向量相關聯的至少一特徵圖樣的定義,該掃描向量與一雷射射束偏斜角度相關聯;以及以該圖樣描述為基礎在一固定基板的一掃描區域上方引導一雷射射束,其中,該雷射射束以小於一雷射射束直徑之1/20的橫向位移解析度在該掃描區域上方被引導,使得對應於該至少一特徵圖樣的一圖樣部分藉由該雷射射束而產生於該固定基板的掃描區域上。 A method for laser patterning includes: receiving a pattern description stored in at least one computer-readable storage medium, the pattern description including a definition of at least one feature pattern associated with a scan vector, the The scanning vector is associated with a laser beam deflection angle; and a laser beam is guided over a scanning area of a fixed substrate based on the pattern description, wherein the laser beam is less than a laser beam A lateral displacement resolution of 1/20 of the beam diameter is guided above the scanning area, so that a pattern portion corresponding to the at least one characteristic pattern is generated on the scanning area of the fixed substrate by the laser beam. 根據申請專利範圍第1項的方法,其中,該固定掃描區域的面積為至少一平方公尺。 The method according to item 1 of the patent application scope, wherein the area of the fixed scanning area is at least one square meter. 根據申請專利範圍第2項的方法,其中,該橫向位移解析度小於1μm。 The method according to item 2 of the patent application scope, wherein the lateral displacement resolution is less than 1 μm. 根據申請專利範圍第1項的方法,其中,該固定掃描區域為正方形或圓形。 The method according to item 1 of the patent application scope, wherein the fixed scanning area is a square or a circle. 根據申請專利範圍第4項的方法,其中,雷射射束功率、脈衝能量、脈衝重複率、以及雷射射束直徑中的至少一者被選擇,以便處理該固定基板。 The method according to item 4 of the patent application scope, wherein at least one of laser beam power, pulse energy, pulse repetition rate, and laser beam diameter is selected to process the fixed substrate. 根據申請專利範圍第1項的方法,其中,該橫向位移解析度小於0.5μm。 The method according to item 1 of the patent application range, wherein the lateral displacement resolution is less than 0.5 μm. 根據申請專利範圍第6項的方法,其中,該掃描區域為正方形並且面積為至少一平方公尺。 The method according to item 6 of the patent application scope, wherein the scanning area is square and the area is at least one square meter. 根據申請專利範圍第1項的方法,其中,引導該雷射射束包含利用多點外插與均化來引導該雷射射束。 The method according to item 1 of the patent application scope, wherein guiding the laser beam includes guiding the laser beam using multi-point extrapolation and equalization. 一種用於雷射圖樣化的方法,其包括:選擇一雷射射束直徑;固定一基板以便使其在和經選定的該雷射射束直徑相關聯的一掃描平面處被掃描;藉由相對於經固定的該基板來掃描具有經選定的該雷射射束直徑的一雷射射束而將經固定的該基板曝光於該雷射射束,其中,該雷射射束係在該掃描平面處以對應於小於該雷射射束直徑之1/10的角掃描遞增額被掃描。 A method for laser patterning, comprising: selecting a laser beam diameter; fixing a substrate so that it is scanned at a scanning plane associated with the selected laser beam diameter; by A laser beam having a selected diameter of the laser beam is scanned relative to the fixed substrate and the fixed substrate is exposed to the laser beam, wherein the laser beam is at the The scan plane is scanned at an angular scan increment corresponding to less than 1/10 of the laser beam diameter. 根據申請專利範圍第9項的方法,其中,該雷射射束係在該掃描平面處以對應於小於該雷射射束直徑之1/100的角掃描遞增額被掃描。 The method according to item 9 of the patent application scope, wherein the laser beam is scanned at the scanning plane at an angular scan increment corresponding to less than 1/100 of the laser beam diameter. 根據申請專利範圍第9項的方法,其中,該雷射射束係在該掃描平面處以對應於小於該雷射射束直徑之1/1000的角掃描遞增額被掃描。 The method according to item 9 of the scope of patent application, wherein the laser beam is scanned at the scanning plane at an angular scan increment corresponding to less than 1/1000 of the laser beam diameter. 根據申請專利範圍第9項的方法,其中,該選定雷射射束直徑介於10μm與100μm之間。 The method according to item 9 of the patent application scope, wherein the selected laser beam diameter is between 10 μm and 100 μm. 根據申請專利範圍第9項的方法,其中,相對於經固定的該基板來掃描該雷射射束包括在經固定的該基板的一固定掃描區域上方掃描該雷射射束,其中,該固定掃描區域為至少一平方公尺。 The method according to item 9 of the patent application scope, wherein scanning the laser beam with respect to the fixed substrate includes scanning the laser beam over a fixed scanning area of the fixed substrate, wherein the fixed The scanning area is at least one square meter. 一種用於雷射圖樣化的設備,其包括:一雷射,其被配置成用以產生一處理射束;一光學系統;以及 一掃描控制器,其被配置成用以接收一掃描圖樣,該掃描圖樣被定義為複數個掃描向量並且被配置成用以控制該光學系統,以便用一預設射束直徑將該處理射束引導至一固定基板的一掃描區域;其中,該掃描控制器被配置成用以控制該光學系統,用以相對於該掃描區域來掃描該處理射束,以便產生一曝光掃描向量,俾使得該曝光掃描向量與一預期掃描向量之間的橫向偏移小於該預設射束直徑的1/10。 An apparatus for laser patterning, comprising: a laser configured to generate a processing beam; an optical system; and A scanning controller configured to receive a scanning pattern, the scanning pattern is defined as a plurality of scanning vectors and is configured to control the optical system to use a preset beam diameter to process the processing beam Guided to a scanning area of a fixed substrate; wherein the scanning controller is configured to control the optical system to scan the processing beam relative to the scanning area so as to generate an exposure scan vector, so that the The lateral offset between the exposure scan vector and an expected scan vector is less than 1/10 of the preset beam diameter. 根據申請專利範圍第14項的設備,其中,該掃描區域為矩形並且該橫向偏移小於一掃描區域長度的1/105The device according to item 14 of the scope of patent application, wherein the scanning area is rectangular and the lateral offset is less than 1/10 5 of a scanning area length. 根據申請專利範圍第14項的設備,其中,該掃描區域為矩形並且該橫向偏移小於一掃描區域長度的1/106The scope of the patent the device of Item 14, wherein the scanning area is rectangular and the lateral offset is less than 1/10 of the length of the scan area 6. 根據申請專利範圍第14項的設備,其中,該掃描控制器將多個掃描控制信號耦合至該光學系統,俾使得該些掃描控制信號對應於該些掃描向量至至少0.0015%裡面。 The device according to item 14 of the patent application scope, wherein the scan controller couples a plurality of scan control signals to the optical system, so that the scan control signals correspond to the scan vectors to at least 0.0015%. 根據申請專利範圍第14項的設備,其中,該掃描控制器將多個掃描控制信號耦合至該光學系統,俾使得該些掃描控制信號對應於該些掃描向量至至少0.0008%裡面。 The device according to item 14 of the patent application scope, wherein the scan controller couples a plurality of scan control signals to the optical system, so that the scan control signals correspond to at least 0.0008% of the scan vectors. 根據申請專利範圍第14項的設備,其中,該掃描控制器將多個掃描控制信號耦合至該光學系統,俾使得該些掃描控制信號對應於該些掃描向量至至少0.0004%裡面。 The device according to item 14 of the patent application scope, wherein the scan controller couples a plurality of scan control signals to the optical system, so that the scan control signals correspond to at least 0.0004% of the scan vectors. 根據申請專利範圍第14項的設備,其中,該掃描控制器將多個掃描控制信號耦合至該光學系統,俾使得該些掃描控制信號對應於該些掃描向量至至少0.0001%裡面。 The device according to item 14 of the patent application scope, wherein the scan controller couples a plurality of scan control signals to the optical system, so that the scan control signals correspond to at least 0.0001% of the scan vectors.
TW103130968A 2013-09-09 2014-09-09 Optimization of high resolution digitally encoded laser scanners for fine feature marking TWI611855B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361875679P 2013-09-09 2013-09-09
US61/875,679 2013-09-09
US14/323,954 US9842665B2 (en) 2013-02-21 2014-07-03 Optimization of high resolution digitally encoded laser scanners for fine feature marking
US14/323,954 2014-07-03

Publications (2)

Publication Number Publication Date
TW201518021A TW201518021A (en) 2015-05-16
TWI611855B true TWI611855B (en) 2018-01-21

Family

ID=52967010

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103130968A TWI611855B (en) 2013-09-09 2014-09-09 Optimization of high resolution digitally encoded laser scanners for fine feature marking

Country Status (3)

Country Link
KR (1) KR101883289B1 (en)
CN (1) CN104416289B (en)
TW (1) TWI611855B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537857A (en) * 2015-12-03 2018-12-20 マイクロニック アクティエボラーグ Method and system for manufacturing a workpiece using a polymer layer
CN109641317B (en) * 2016-08-19 2021-08-06 利惠商业有限公司 Laser finishing of garments
CN110678001A (en) * 2019-09-18 2020-01-10 深圳市安元达电子有限公司 Method and system for forming COF fine circuit, COF and processing method thereof
JP2021178337A (en) * 2020-05-12 2021-11-18 株式会社ディスコ Laser processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW553430U (en) * 1992-07-14 2003-09-11 Canon Kk Character generating apparatus
JP2006106227A (en) * 2004-10-01 2006-04-20 Hokkaido Univ Laser processing method and apparatus
TWI271904B (en) * 2001-03-29 2007-01-21 Gsi Lumonics Corp High-speed, precision, laser-based method and system
CN101143405A (en) * 2006-09-12 2008-03-19 株式会社迪思科 Laser beam machining system
JP2008281395A (en) * 2007-05-09 2008-11-20 Olympus Corp Optical system evaluation device, optical system evaluation method, and optical system evaluation program
CN102441740A (en) * 2010-10-07 2012-05-09 住友重机械工业株式会社 Laser irradiation apparatus, laser irradiation method, and insulating film forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071912B2 (en) * 2005-11-16 2011-12-06 Technolines, Lp Engineered wood fiber product substrates and their formation by laser processing
JP4297952B2 (en) * 2007-05-28 2009-07-15 三菱電機株式会社 Laser processing equipment
US8312393B2 (en) * 2009-03-06 2012-11-13 Micronic Laser Systems Ab Variable overlap method and device for stitching together lithographic stripes
CN101733561B (en) * 2009-11-04 2012-04-11 中国科学院长春光学精密机械与物理研究所 Method for quickly and precisely adjusting focal plane in laser trimming membrane resistance
JP2011215286A (en) * 2010-03-31 2011-10-27 Brother Industries Ltd Scanning optical apparatus
CN201783759U (en) * 2010-08-24 2011-04-06 上海市激光技术研究所 Optical fiber laser or disc laser dynamic focusing scanning spot trajectory processing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW553430U (en) * 1992-07-14 2003-09-11 Canon Kk Character generating apparatus
TWI271904B (en) * 2001-03-29 2007-01-21 Gsi Lumonics Corp High-speed, precision, laser-based method and system
JP2006106227A (en) * 2004-10-01 2006-04-20 Hokkaido Univ Laser processing method and apparatus
CN101143405A (en) * 2006-09-12 2008-03-19 株式会社迪思科 Laser beam machining system
JP2008281395A (en) * 2007-05-09 2008-11-20 Olympus Corp Optical system evaluation device, optical system evaluation method, and optical system evaluation program
CN102441740A (en) * 2010-10-07 2012-05-09 住友重机械工业株式会社 Laser irradiation apparatus, laser irradiation method, and insulating film forming apparatus

Also Published As

Publication number Publication date
KR101883289B1 (en) 2018-07-31
TW201518021A (en) 2015-05-16
CN104416289B (en) 2017-09-12
KR20150029597A (en) 2015-03-18
CN104416289A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
US11888084B2 (en) Optimization of high resolution digitally encoded laser scanners for fine feature marking
KR102045776B1 (en) Patterning conductive films using variable focal plane to control feature size
TWI611855B (en) Optimization of high resolution digitally encoded laser scanners for fine feature marking
JP6704462B2 (en) Exposure system, exposure apparatus, and exposure method
TWI505159B (en) Capacitive touch panels
KR101262173B1 (en) Conductive film patterning method, and fabricating method of flexible display device
US20160001496A1 (en) Methods and apparatus for the fabrication of pattern arrays in making touch sensor panels
KR102050532B1 (en) Apparatus for 3D laser patterning
US20170326687A1 (en) Double-sided machining laser machine tool
Zhao et al. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface
JP2017524540A (en) Double back laser ablation
TWI611854B (en) Optical processing system and method for optical processing
JP6576019B2 (en) Transparent electrode film manufacturing method and laser processing machine
JP2014183152A (en) Via hole formation method and desmear device
TWM383462U (en) Laser device to produce panel curve manufacturing process with electromechanical-control using conductive film
JP3164084U (en) Laser equipment used for curve process of double-layer conductive film panel
CN105144346B (en) The laser scribing of sandwich construction
TWM383898U (en) LED lamp with fake short-circuit design
TWM383896U (en) Portable multimedia audio-visual karaoke with retractable screen