TW200900857A - Radiosensitive resin composition, laminated insulation film and micro lens, preparation method thereof - Google Patents

Radiosensitive resin composition, laminated insulation film and micro lens, preparation method thereof Download PDF

Info

Publication number
TW200900857A
TW200900857A TW097107118A TW97107118A TW200900857A TW 200900857 A TW200900857 A TW 200900857A TW 097107118 A TW097107118 A TW 097107118A TW 97107118 A TW97107118 A TW 97107118A TW 200900857 A TW200900857 A TW 200900857A
Authority
TW
Taiwan
Prior art keywords
weight
acrylate
sulfonate
naphthoquinonediazide
resin composition
Prior art date
Application number
TW097107118A
Other languages
Chinese (zh)
Other versions
TWI430026B (en
Inventor
Kenichi Hamada
Masaaki Hanamura
Takahiro Iijima
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200900857A publication Critical patent/TW200900857A/en
Application granted granted Critical
Publication of TWI430026B publication Critical patent/TWI430026B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

The invention provides a radiation sensitive resin composition, comprising 1,2-diazido quinine compound and the following multipolymers, including unsaturated carboxylic acid and/or unsaturated carboxyl anhydride, at least one compound containing epoxy group or oxetane group, (methyl) acryloyl morph line and other unsaturated compounds. The radiation sensitive resin composition has high radiation sensitivity, and a development balance capable of forming excellent pattern shapes even if optimal development time is passed during development process, thus pattern-shaped films having excellent binding property may be easily formed.

Description

200900857 九、發明說明 【發明所屬之技術領域] 本發明係關於敏輻射線性樹脂組成物,層間絕緣膜及 微透鏡,以及其製造方法。 【先前技術】 在薄膜電晶體(以下略記爲「TFT」)型液晶顯示元 件或磁頭元件’積體電路元件,固體成像(imaging )元 件等的電子零件中’一般而言,爲了使層狀配置的配線間 絕緣,設置有層間絕緣膜。形成層間絕緣膜的材料方面, 由於欲獲得必要的圖型形狀,以步驟數少且具有充分平坦 性之物爲佳’因此敏輻射線性樹脂組成物被廣泛的使用( 參照日本特開2001-354822號公報及日本特開 2001-343 743號公報)。 上述電子零件之中,例如TFT型液晶顯示元件,由於 係經由在上述的層間絕緣膜上,形成透明電極膜,進而於 其上形成液晶配向膜的步驟而製造,層間絕緣膜,在透明 電極膜的形成步驟中,高溫條件下被曝光,也就是在形成 電極圖型所使用的光阻剝離液中曝光,所以對該等必須具 備充分的耐性。 又近年,在TFT型液晶顯示元件中,有大畫面化,高 亮度化,高精細化,高速應答化,薄型化等的傾向’該等 所使用之層間絕緣膜形成用組成物方面爲高感度’所形成 的層間絕緣膜在低介電率’高透過率等之中’比習知增加 -5- 200900857 的高性能被尋求著。 另一方面’傳真機,影印機,固體成像(imaging ) 兀件等的晶片上(onchip )濾色片的成像光學系或光纖連 接器的光學系材料方面,係使用具3〜ΙΟΟμιη左右透鏡徑 的微透鏡’或規則配列該等微透鏡的微透鏡陣列。 形成微透鏡或微透鏡陣列時,已知有於形成相當於透 鏡的光阻圖型後,以加熱處理的方式使其熔融,維持原樣 作爲透鏡使用的方法,或將熔融的透鏡圖型作爲光罩,以 乾蝕刻方式’於底層轉印透鏡形狀的方法等。形成該透鏡 圖型時,廣泛使用敏輻射線性樹脂組成物(參照日本特開 平6-18702號公報及日本特開平6-136239號公報)。 然而,如上述的微透鏡或微透鏡陣列所形成之元件, 其後,爲了去除配線形成部分的結合墊(bonding pad)上 之各種絕緣膜,有塗佈平坦化膜及飩刻用光阻膜,使用所 期望的光罩進行曝光,顯影去除連結部分的蝕刻光阻,接 著,藉由蝕刻去除平坦化膜或各種絕緣膜,露出連結墊部 分的步驟。因此,在微透鏡或微透鏡陣列中,形成平坦化 膜及蝕刻光阻塗膜的步驟以及蝕刻步驟中,必須具有耐溶 劑性或耐熱性。 用於形成此種微透鏡所使用的敏輻射線性樹脂組成物 爲高感度,且由此所形成的微透鏡具有所期望的曲率半徑 ,具備高耐熱性,高透過率等者被尋求著。 又,如此一來所得的層間絕緣膜或微透鏡’在形成該 等時的顯影步驟中’顯影時間一旦比最適時間只多一點也 -6 - 200900857 是過多’此時’圖型與基板之間就會浸透顯影液,變成容 易剝離’故有必要嚴格控制顯影時間,對製品的生產率有 所影響。 換言之’如此一來,由敏輻射線性樹脂組成物形成層 間絕緣膜或微透鏡時,組成物方面必須爲高感度,又在形 成步驟的顯影步驟中,即使在顯影時間比設定的時間更多 的情況下’亦能顯現出圖型不產生剝離之良好的密接性, 且由此所形成的層間絕緣膜必須具備高耐熱性,高耐溶劑 性’低介電率,高透過率,高密接性等,另一方面,形成 微透鏡時,微透鏡必須具有良好的熔體(melt )形狀(所 期望的曲率半徑),高耐熱性,高耐溶劑性,高透過率, 但滿足該要求的敏輻射線性樹脂組成物一直爲習所不知。 【發明內容】 發明揭示 本發明係根據以上的理由而提出者。因此,本發明的 目的,係提供具有高敏輻射線感度,具有顯影步驟中即使 超過最適顯影時間,尙可形成良好圖型形狀的顯影界限, 易形成密接性優異的圖型狀薄膜的敏輻射線性組成物。 本發明的其他目的,係提供在用於形成層間絕緣膜時 ,可形成高耐熱性,高耐溶劑性,高透過率,低介電率, 高密接性的層間絕緣膜,又在用於形成微透鏡時,可形成 具有高透過率與良好熔體形狀的微透鏡之敏輻射線性樹脂 組成物。 200900857 進而,本發明的其他目的,係提供使用上述敏輻射線 性樹脂組成物’形成層間絕緣膜及微透鏡的方法。 進而,本發明的其他目的,係提供藉由本發明的方法 所形成之層間絕緣膜及微透鏡。 由以下的說明’可進而明瞭本發明的其他目的及優點 〇 根據本發明’本發明的上述目的及優點,第1爲,藉 由以含有 [A](al)選自不飽和羧酸及不飽和羧酸酐所成群之 至少1種(以下稱爲「化合物(a 1 )」), (a2 )含有環氧基及氧雜環丁烷基之至少一個的之 不飽和化合物(以下稱爲「化合物(a2 )」), (a3)選自丙烯醯基嗎啉及甲基丙烯甲基丙烯醯基 嗎啉所成群之至少1種(以下稱爲「化合物(a3 )」), (a4 )異於上述化合物(al ) 、( a2 )及(a3 )的 任一種’且選自甲基丙烯酸烷基酯,甲基丙烯酸環狀烷基 酯’丙烯酸烷基酯,丙烯酸環狀烷基酯,丙烯酸芳基酯, 甲基丙燃酸芳基酯,不飽和二竣酸二酯,經基甲基丙輝酸 酯’羥基丙烯酸酯,雙環不飽和化合物,順丁烯二醯亞胺 化合物’不飽和芳香族化合物,共軛二烯,具四氫呋喃骨 架的不飽和化合物,具呋喃骨架的不飽和化合物,具四氫 脈喃骨架的不飽和化合物,具脈喃骨架的不飽和化合物, 丙烯腈’甲基丙烯腈,氯化乙烯,氯化亞乙烯,丙烯醯胺 ,甲基丙烯醯胺及乙酸乙烯所成群之至少1種其他的不飽 _ 8 200900857 和化合物(以下稱爲「化合物(a4)」)的共聚物(以下 稱爲「共聚物[A]」),以及 [B]l,2-醌二疊氮基化合物(以下稱爲「[b]成分」) 爲特徵之敏輻射線性樹脂組成物而達成者。 本發明的目的及優點,第2爲, 藉由以下列記載的順序含有以下記載的步驟爲特徵之 層間絕緣膜或微透鏡的形成方法而達成者。 (1 )於基板上形成上述敏輻射線性組成物的塗膜之 步驟, (2 )將該塗膜的至少一部分照射輻射線的步驟, (3 )顯影步驟,及 (4 )加熱步驟。 進而本發明的目的及優點,第3爲, 藉由以上述的方法所形成之層間絕緣膜或微透鏡而達 成者。 實施發明之最佳形態 關於本發明的敏輻射線性樹脂組成物詳述如下。 共聚物[A] 共聚物[A]’可藉由在溶劑中,聚合引發劑的存在下 ’使化合物(a 1 ) ’化合物(a2 ),化合物(a3 )及化合 物(a4)自由基聚合而製造。 化合物(al)爲選自具有自由基聚合性的不飽和羧酸 -9- 200900857 及不飽和羧酸酐所成群的至少1種,可例舉單羧酸,二羧 酸,二羧酸的酐,多價羧酸的單〔(甲基)丙烯醯氧烷基 〕酯,兩末端具有羧基與羥基的聚合物之單(甲基)丙烯 酸酯,具有羧基的多環式化合物及其酐等。 該等的具體例方面,單羧酸中,可例舉丙烯酸,甲基 丙烯酸,巴豆酸等; 二羧酸方面,可例舉順丁烯二酸,反丁烯二酸,檸康 酸,中康酸,伊康酸等; 二羧酸的酐方面,可例舉上述二羧酸所例示的化合物 之酐等; 多價羧酸的單〔(甲基)丙烯醯氧烷基〕酯方面,可 例舉琥珀酸單〔2-(甲基)丙烯醯氧乙基〕,酞酸單〔2-(甲基)丙烯醯氧乙基〕等; 兩末端具有羧基與羥基的聚合物的單(甲基)丙嫌酸 酯方面,可例舉ω —羧聚己內酯單(甲基)丙烯酸酯等; 具有羧基的多環式化合物及其酐方面,可例舉5-竣雙 環[2.2.1]庚-2-烯,5,6-二羧雙環[2.2.1]庚-2-烯,5·羧 _5·甲 基雙環[2_2_1]庚_2_烯,5_羧_5_乙基雙環[2_2.1]庚-2_稀, 5-羧-6-甲基雙環[2_2.1]庚-2-烯,5-羧-6·乙基雙環[2.21] 庚-2-烯,5,6-二羧雙環[2.2.1]庚-2-烯酐等。 該等之中,以使用單羧酸,二羧酸的酐爲佳,就共聚 合反應性,對鹼水溶液的溶解性及取得容易的觀點而胃, 以使用丙烯酸,甲基丙烯酸,順丁烯二酸酐爲特佳。該等 化合物(al )可單獨使用或組合使用。 -10- 200900857 本發明所使用的共聚物[A ],根據由化合物(a 1 )所 衍生的構成單位,與由化合物(al ) 、( a2 ) ,( a3 )及 (a4)所衍生的重覆單位的合計,較佳爲含有1〜80重量 % ’特佳爲含有5〜4 0重量%。該構成單位不足1重量%時 ,所得層間絕緣膜或微透鏡的密接性有降低的傾向,另— 方面,該構成單位的量若超過80重量%時,敏輻射線性樹 脂組成物的保存穩定性有降低的傾向。 化合物(a2)爲至少含有具自由基聚合性的環氧基及 氧雜環丁烷基的的任一方之不飽和化合物。 含有環氧基的不飽和化合物方面,可例舉丙烯酸環氧 丙酯,甲基丙烯酸環氧丙酯,ct-乙基丙烯酸環氧丙酯, α -η-丙基丙烯酸環氧丙酯,α-η-丁基丙烯酸環氧丙酯,丙 烯酸-3,4-環氧基丁酯,甲基丙烯酸-3,4-環氧基丁酯,丙烯 酸-6,7-環氧基庚酯,甲基丙烯酸-6,7-環氧基庚酯,α-乙基 丙烯酸-6,7-環氧基庚酯,〇-乙烯苄基環氧丙基醚,m-乙烯 苄基環氧丙基醚,P-乙烯苄基環氧丙基醚等。該等之中, 就共聚合反應性及所得層間絕緣膜或微透鏡的耐熱性,提 高表面硬度的觀點而言,以使用甲基丙烯酸環氧丙酯,甲 基丙烯酸-6,7-環氧基庚酯,0-乙烯苄基環氧丙基醚,m-乙 烯苄基環氧丙基醚,P-乙烯苄基環氧丙基醚,3,4-環氧基 環己基甲基丙烯酸酯等爲佳。 含有環氧基的不飽和化合物方面,可例舉3 -(甲基丙 烯醯基氧甲基)氧雜環丁烷,3-(甲基丙烯醯基氧甲基)-3-乙基氧雜環丁烷,3-(甲基丙烯醯基氧甲基)-2-甲基氧 -11 - 200900857 雜環丁烷,3-(甲基丙烯醯基氧甲基)-2-三氟甲基氧雜環 丁烷,3-(甲基丙烯醯基氧甲基)-2-五氟乙基氧雜環丁烷 ,3-(甲基丙烯醯基氧甲基)-2-苯基氧雜環丁烷’ 3-(甲 基丙緒酿基氧甲基)-2,2 -二氟氧雜環丁院,3-(甲基丙稀 醯基氧甲基)-2,2,4-三氟氧雜環丁烷,3-(甲基丙烯醯基 氧甲基)-2,2,4,4-四氟氧雜環丁烷,3-(甲基丙烯醯基氧 乙基)氧雜環丁烷,3-(甲基丙烯醯基氧乙基)-3-乙基氧 雜環丁院’ 2 -乙基- 3-(甲基丙儲醯基氧乙基)氧雜環丁院 ,3-(甲基丙烯醯基氧乙基)-2 -三氟甲基氧雜環丁烷,3-(甲基丙燒酸基氧乙基)-2 -五氟乙基氧雜環丁燒’ 3-(甲 基丙烯醯基氧乙基)-2-苯基氧雜環丁烷,2,2 -二氟- 3-(甲 基丙烯醯基氧乙基)氧雜環丁烷,3-(甲基丙烯醯基氧乙 基)-2,2,4-三氟氧雜環丁烷,3-(甲基丙烯醯基氧乙基)-2,2,4,4-四氟氧雜環丁烷等。該等化合物(a2)可單獨使 用或組合使用。 本發明所使用的共聚物[A],根據由化合物(a2 )所 衍生的構成單位,與由化合物(al) 、 (a2) ,(a3)及 (a4 )所衍生之重覆單位的合計,較佳爲含有5〜70重量 %,特佳爲含有10〜60重量%。該構成單位若不足5重量 %時,敏輻射線性樹脂組成物的耐熱性及硬化性,表面高 度有降低的傾向,另一方面,若超過70重量%時,敏輻射 線性樹脂組成物的保存穩定性有降低的傾向。 化合物(a3 )爲丙烯醯基嗎琳及/或甲基丙烯醯基嗎 琳。 -12- 200900857 化合物(a3)之中,丙烯醯基嗎啉,與化合物(a4) 所示之其他的不飽和化合物之中的丙烯酸酯共聚合,可使 聚合轉化比(conversion ratio )提高。該等的具體例方面 ,可例舉甲基丙嫌酸酯,乙基丙烯酸酯,η -丙基丙烯酸酯 ,i -丙基丙烯酸酯,η -丁基丙烯酸酯,sec -丁基丙烯酸酯 ,t-丁基丙烯酸酯,環己基丙烯酸酯,2-甲基環己基丙烯 酸酯,三環[5.2.1.02’6]癸烷-8-基丙烯酸酯(以下稱爲「二 環戊基丙烯酸酯」),三環[5.2.1.02,6]癸烷-8-基氧乙基丙 烯酸酯,異Μ基丙烯酸酯,苯基丙烯酸酯,苄基丙烯酸酯 ,四氫糠基丙烯酸酯,3-丙烯醯基氧四氫呋喃-2-酮,糠基 丙烯酸酯等。 本發明所使用的共聚物[Α],根據由化合物(al )、 (a2 ) , ( a3 )及(a4 )所衍生之重覆單位的合計,由化 合物(a 3 )所衍生的構成單位,較佳爲含有1〜5 0重量% ,特佳爲含有1〜30重量%。該構成單位若超過50重量。/。 時,敏輻射線性樹脂組成物的保存穩定性有降低的傾向。 化合物(a4 )爲具有自由基聚合性的不飽和化合物, 然後,爲甲基丙烯酸烷基酯,甲基丙烯酸環狀烷基酯,丙 烯酸烷基酯,丙烯酸環狀烷基酯,丙烯酸芳基酯,甲基丙 烯酸芳基酯,不飽和二羧酸二酯,羥基甲基丙烯酸酯,羥 基丙烯酸酯,雙環不飽和化合物,順丁烯二醯亞胺化合物 ,不飽和芳香族化合物,共軛二烯,具四氫呋喃骨架,呋 喃骨架,四氫哌喃骨架或者哌喃骨架的不飽和化合物或其 他的不飽和化合物。 -13- 200900857 甲基丙烯酸烷基酯方面,可例舉甲基甲基丙烯酸酯, 乙基甲基丙烯酸酯,η-丁基甲基丙烯酸酯,sec_ 丁基甲基 丙烯酸酯,t-丁基甲基丙烯酸酯,2-乙基己基甲基丙烯酸 醋’異癸基甲基丙嫌酸醋’ η -月桂基甲基丙嫌酸醋,十三 基甲基丙烯酸酯,η -硬脂醯基甲基丙烯酸酯等;甲基丙烯 酸的環狀酯方面,可例舉環己基甲基丙烯酸酯,2 -甲基環 己基甲基丙烯酸酯’三環[5.2.1.02,6]癸院-8-基甲基丙烯酸 酯(以下稱爲「二環戊基甲基丙烯酸酯」),三環 [5.2.丨.02’6]癸烷-8-基氧乙基甲基丙烯酸酯,異萡基甲基丙 烯酸酯等;丙烯酸烷基酯方面,可例舉甲基丙烯酸酯,乙 基丙烯酸酯,η-丙基丙烯酸酯,i-丙基丙烯酸酯,η-丁基 丙烯酸酯,sec -丁基丙烯酸酯,t -丁基丙烯酸酯等;丙烯 酸的環狀酯方面,可例舉環己基丙烯酸酯,2-甲基環己基 丙烯酸酯,三環[5.2.1.02,6]癸烷-8 -基丙烯酸酯(以下稱爲 「二環戊基丙烯酸酯」)’三環[5.2.1.02,6]癸烷-8-基氧乙 基丙烯酸酯’異萡基丙烯酸酯等;丙烯酸芳基酯方面,可 例舉苯基丙烯酸酯’苄基丙烯酸酯等;甲基丙烯酸芳基酯 方面’可例舉苯基甲基丙烯酸酯,苄基甲基丙烯酸酯等; 不飽和二羧酸二酯方面,可例舉順丁烯二酸二乙酯,反丁 烯二酸二乙酯,伊康酸二乙酯等;羥基甲基丙烯酸酯方面 ,可例舉羥基甲基甲基丙烯酸酯,2 -羥基乙基甲基丙烯酸 酯’ 3 -羥基丙基甲基丙烯酸酯,4 -羥基丁基甲基丙烯酸酯 ,二乙二醇單甲基丙烯酸酯,2,3 -二羥基丙基甲基丙烯酸 酯,2 -甲基丙烯醯氧基乙基苷,4 -羥基苯基甲基丙烯酸酯 -14- 200900857 等;羥基丙烯酸酯方面,可例舉羥基甲基丙稀酸酯,2_羥 基乙基丙烯酸酯’ 3 -羥基丙基丙烯酸酯,4_羥基丁基丙烯 酸酯’二乙二醇單丙烯酸酯’ 2,3 -二羥基丙基丙烯酸酯, 2 -丙嫌醯氧基乙基苷,4 -經基苯基丙嫌酸酯等; 雙環不飽和化合物方面,可例舉雙環[2.21]庚_2_燦, 甲基雙環[2.2.1]庚-2-烯,5-乙基雙環[2.2.1]庚-2-稀,5-經基雙環[2.2.1]庚_2-烯,5_羧雙環[2.2.1]庚_2_稀,5_經基 甲基雙環[2.2.1]庚-2-烯,5- (2·羥基乙基)雙環[2.21] 庚-2-烯’ %甲氧基雙環[2.2.1]庚_2_烯,5_乙氧基雙環 [2.2.1]庚-2-烯 ’ 5,6-二羥基雙環[2_2.1]庚-2_烯,5,6-二竣 雙環[2.2.1]庚-2-烯,5,6-二(羥基甲基)雙環[221]庚_2_ 燃,5,6-二(2-羥基乙基)雙環[2.2.1]庚-2_烯,5,6-二甲 氧基雙環[2.2.1]庚-2-烯,5,6-二乙氧基雙環[2 2丨]庚_2_稀 ’ 5-羥基_5_甲基雙環[2·2·ΐ]庚-2-烯,5-羥基-5_乙基雙環 [2·2·1]庚-2-烯,5·羧-5-甲基雙環[2.2_1]庚-2_ 烯,5_ 殘 _5_ 乙基雙環[2.2.1]庚-2-烯,5-羥基甲基-5-甲基雙環[221] 庚-2-烯’ 5-羧-6-甲基雙環[2.2.1]庚-2-烯,5_羧_6_乙基雙 環[2.2.1]庚-2-烯,5,6-二羧雙環[2.2.1]庚-2-烯酐(himic 酸酐),5-t-丁氧基羰雙環[2.2.1]庚-2-烯,5_環己基氧鑛 雙環[2.2.1]庚-2-烯,5-苯氧基羰雙環[2.2.1]庚-2_烯,5,6_ 二(t-丁氧基羰)雙環[2.2.1]庚-2-烯’ 5,6-二(環己基氧 羰)雙環[2.2.1]庚-2-烯等; 順丁烯二醯亞胺化合物方面,可例舉N-苯基順丁储 二醯亞胺,N-環己基順丁烯二醯亞胺,N-苄基順丁烯二醯 -15- 200900857 亞胺,N- ( 4-羥基苯基)順丁烯二醯亞胺,N- ( 4-羥基苄 基)順丁烯二醯亞胺,N-琥珀醯亞胺基-3 -順丁烯二醯亞 胺苯甲酸酯,N_琥珀醯亞胺基-4-順丁烯二醯亞胺丁酸酯 ,N-琥珀醯亞胺基-6-順丁烯二醯亞胺己酸酯,N-琥珀醯 亞胺基-3-順丁烯二醯亞胺丙酸酯,N- ( 9-吖啶)順丁烯二 醯亞胺等; 不飽和芳香族化合物方面,可例舉苯乙烯,α -甲基 苯乙烯,m-甲基苯乙烯,ρ-甲基苯乙烯,乙烯甲苯,ρ_甲 氧基苯乙烯等;共軛二烯方面,可例舉1,3 -丁二烯,異戊 二烯,2,3-二甲基-1,3-丁二烯等;具四氫呋喃骨架的不飽 和化合物方面,可例舉四氫糠基(甲基)丙烯酸酯,2-甲 基丙烯醯基氧-丙酸四氫糠基酯,3-(甲基)丙烯醯基氧四 氫呋喃-2 -酮等;具呋喃骨架的不飽和化合物方面,可例舉 2-甲基-5- (3-呋喃基)-1-戊烯-3-酮,糠基(甲基)丙烯 酸酯,1-呋喃-2-丁基-3-烯-2-酮,1-呋喃-2-丁基-3-甲氧 基-3-烯-2-酮,6- (2 -呋喃基)-2 -甲基-1-己烯-3-酮,6 -呋 喃-2-基-己-1-烯_3_酮,丙烯酸2-呋喃-2-基-卜甲基-乙基酯 ,6- (2-呋喃基)-6-甲基-1-庚烯-3-酮等;具四氫哌喃骨 架的不飽和化合物方面,可例舉(四氫哌喃-2-基)甲基甲 基丙稀酸醋’ 2,6 - 一甲基- 8-(四氮峨喃-2 -基氧)-辛-1-烯-3-酮,2-甲基丙烯酸四氫哌喃-2-基酯,1-(四氫哌喃· 2-氧)-丁基-3-烯-2-酮等;具哌喃骨架的不飽和化合物方 面,可例舉4- (1,4-二氧雜-5-羰基(οχο) -6-庚烯基)-6-甲基-2-二D比略甲酮(pyrrone) ,4-(1,5-二氧雜-6-羰基- -16- 200900857 7-辛烯基)-6-甲基-2-二吡咯甲酮(pyrrone)等。 其他的不飽和化合物爲丙烯腈’甲基丙烯腈’氯化乙 烯’氯化亞乙烯,丙烯醯胺,甲基丙烯醯胺或乙酸乙烧。 該等中,以使用甲基丙烯酸烷基酯,甲基丙烯酸環狀 烷基酯,雙環不飽和化合物,不飽和芳香族化合物’共轭 二烯爲佳,特別是就共聚合反應性及對鹼水溶液的溶解性 的觀點而言,以使用苯乙烯,t-丁基甲基丙烯酸酯’三環 [5.2.1.02 = 6]癸烷-8-基甲基丙烯酸酯,p-甲氧基苯乙烯,2-甲基環己基丙烯酸酯,1,3_丁二烯,雙環[2.2.1]庚-2-烯’ 四氫糠基(甲基)丙烯酸酯,聚乙二醇(n = 2〜10)單( 甲基)丙烯酸酯,3-(甲基)丙烯醯基氧四氫呋喃-2-酮’ 1-(四氯峨喃-2-氧)-丁基-3-稀-2-嗣’糖基(甲基)丙稀 酸酯爲更佳。該等的化合物(a4),可單獨使用或組合使 用。 本發明所使用的共聚物[A],根據由化合物(al )、 (a2 ) , ( a3 )及(a4 )衍生之重覆單位的合計,由化合 物(a4 )所衍生的構成單位,較佳爲含有1 〇〜80重量%, 特佳爲含有20〜70重量%。該構成單位若不足10重量% 時’所得層間絕緣膜或微透鏡的耐熱性或表面硬度有降低 的傾向,另一方面,該構成單位的量若超過80重量%時, 敏輻射線性樹脂組成物的保存穩定性有降低的傾向。 本發明所使用的共聚物[A],較佳的具體例方面,可 例舉甲基丙烯酸/三環[5.2.1.〇2,6]癸烷-8-基甲基丙烯酸酯/ 甲基丙烯酸環氧丙酯/2-甲基環己基丙烯酸酯/N- ( 3,5-二 -17- 200900857 甲基-4-羥基苄基)甲基丙烯醯胺/丙烯醯基嗎咐共聚物, 甲基丙烯酸/甲基丙烯酸環氧丙酯/丨_(四氫哌喃·2_氧)-丁 基-3-烯-2-酮/Ν-環己基順丁烯二醯亞胺/Ρ-甲氧基苯乙烯 /3-乙基-3-甲基丙烯醯基氧甲基氧雜環丁烷/Ν- ( 3,5-二甲 基-4 -羥基苄基)甲基丙烯醯胺/丙烯醯基嗎啉共聚物,甲 基丙烯酸/三環[5.2.1.02’6]癸烷-8-基甲基丙烯酸酯/苯乙烯 /Ν-苯基順丁烯二醯亞胺/Ν- ( 4-羥基苯基)甲基丙烯醯胺/ 丙烯醯基嗎啉共聚物,甲基丙烯酸/甲基丙烯酸環氧丙酯/ 三環[5.2.1.02’6]癸烷-8-基甲基丙烯酸酯/η-月桂基甲基丙 烯酸酯/3 -甲基丙烯醯基氧四氫呋喃-2-酮/Ν- (4_羥基苯基 )甲基丙烯醯胺/丙烯醯基嗎啉共聚物,甲基丙烯酸/甲基 丙烯酸環氧丙酯/苯乙烯/2_甲基環己基丙烯酸酯/1-(四氫 哌喃-2-氧)-丁基-3-烯-2-酮/4-羥基苄基甲基丙烯酸酯/丙 烯醯基嗎啉共聚物,甲基丙烯酸/甲基丙烯酸環氧丙酯/三 環[5.2.1 ·02’6]癸烷-8-基甲基丙烯酸酯/ρ-甲氧基苯乙烯/4-羥基苄基甲基丙烯酸酯/丙烯醯基嗎啉共聚物,甲基丙烯 酸/三環[5.2.1.02’6]癸烷-8-基甲基丙烯酸酯/甲基丙烯酸環 氧丙酯/苯乙烯/ρ-乙烯苄基環氧丙基醚/四氫糠基甲基丙烯 酸酯/4-羥基苯基甲基丙烯酸酯/丙烯醯基嗎啉共聚物,甲 基丙烯酸/甲基丙烯酸環氧丙酯/Ν-環己基順丁烯二醯亞胺 /α -甲基-ρ-經基本乙嫌/四氨糖基甲基丙嫌酸醋/丙稀酿基嗎 啉共聚物,甲基丙烯酸/甲基丙烯酸環氧丙酯/Ν -環己基順 丁烯二醯亞胺/ 3-乙基-3-甲基丙烯醯基氧甲基氧雜環丁烷 /3-甲基丙烯醯基氧四氫呋喃-2-酮/四氫糠基甲基丙烯酸酯 -18- 200900857 /4-羥基苯基甲基丙烯酸酯/丙烯醯基嗎啉共聚物,甲基丙 烯酸/甲基丙烯酸環氧丙酯/3-乙基-3-甲基丙烯醯基氧甲基 氧雜環丁烷/四氫糠基甲基丙烯酸酯/N -苯基順丁烯二酿亞 胺/α -甲基-p -經基本乙稀/丙稀酿基嗎琳共聚物,甲基丙稀 酸/甲基丙烯酸環氧丙酯/ 3-乙基-3-甲基丙烯醯基氧甲基氧 雜環丁烷/三環[5.2.1.02’6]癸烷-8-基甲基丙烯酸酯/N_環己 基順丁烯二醯亞胺/η-月桂基甲基丙烯酸酯/α_甲基-p_經基 苯乙烯共聚物/丙烯醯基嗎啉等。 本發明所使用的共聚物[A]的聚苯乙烯換算重量平均 分子量(以下稱爲「Mw」),較佳爲2><1〇3〜更 佳爲5χ103〜5χ104。Mw若不足2Μ03時,顯影界限將有 不充分的情形,所得被膜的殘膜率等降低,又所得層_糸邑 緣膜或微透鏡的圖型形狀,耐熱性等不佳,另一方面,g 超過1 X 1 05時,感度降低,圖型形狀不佳。 又’分子量分布(以下稱爲「Mw/Mn」)較佳爲5.0 以下’更佳爲3.0以下爲所望。Mw/Mn若超過5.0時,所 得層間絕緣膜或微透鏡的圖型形狀不佳。含上述共聚物 [A]的敏輻射線性樹脂組成物,於顯影之際,無顯影殘留 ,可容易形成設定的圖型形狀。 [A]共聚物,例如可藉由將不飽和化合物(al ),不 飽和化合物(a2 ),不飽和化合物(a3 )及不飽和化合物 (a4) ’在適當的溶劑中,自由基聚合引發劑的存在下, 聚合而合成。 該聚合所使用的溶劑方面,可例舉醇,醚,乙二醇醚 -19- 200900857 ,乙二醇烷基醚乙酸酯,二乙二醇烷基醚,丙二醇單烷基 醚,丙二醇烷基醚乙酸酯,丙二醇烷基醚丙酸酯,芳香族 烴,酮,酯等。 該等溶劑的具體例,醇方面可例舉甲醇,乙醇,苄基 醇,2 -苯基乙醇’ 3 -苯基-1-丙醇等;醚方面,可例舉四氫 呋喃等;乙二醇醚方面,可例舉乙二醇單甲基醚,乙二醇 單乙基醚等;乙二醇烷基醚乙酸酯方面,可例舉乙二醇甲 基醚乙酸酯’乙二醇乙基醚乙酸酯,乙二醇η -丙基醚乙酸 酯,乙二醇η_ 丁基醚乙酸酯等;二乙二醇烷基醚方面,可 例舉二乙二醇單甲基醚,二乙二醇單乙基醚,二乙二醇二 甲基醚’二乙二醇二乙基醚,二乙二醇乙基甲基醚等; 丙二醇單烷基醚方面,可例舉丙二醇單甲基醚,丙二 醇單乙基醚,丙二醇單-η-丙基醚,丙二醇單-η-丁基醚等 ;丙二醇烷基醚乙酸酯方面,可例舉丙二醇甲基醚乙酸酯 ’丙二醇乙基醚乙酸酯,丙二醇η-丙基醚乙酸酯,丙二醇 η -丁基醚乙酸酯等;丙二醇烷基醚丙酸酯方面,可例舉丙 二醇甲基醚丙酸酯,丙二醇乙基醚丙酸酯,丙二醇η -丙基 醚丙酸酯,丙二醇η -丁基醚丙酸酯等;芳香族烴方面,可 例舉甲苯,二甲苯等;酮方面,可例舉甲基乙基酮,環己 酮,4-羥基-4-甲基-2-戊酮等; 酯方面,可例舉乙酸甲酯,乙酸乙酯,乙酸丙酯,乙 酸丁酯,2 -羥基丙酸乙酯,2 -羥基-2-甲基丙酸甲酯,2 -經 基-2-甲基丙酸乙酯,羥基乙酸甲酯,羥基乙酸乙酯,經基 乙酸丁酯,乳酸甲酯,乳酸乙酯,乳酸丙酯,乳酸丁醋, -20- 200900857 3 -控基丙酸甲酯,3 -經基丙酸乙酯,3 -經基丙酸丙酯,3-羥基丙酸丁酯,2-羥基-3-甲基丁烷酸甲酯,甲氧基乙酸甲 酯’甲氧基乙酸乙酯’甲氧基乙酸丙酯,甲氧基乙酸丁酯 ’乙氧基乙酸甲酯’乙氧基乙酸乙酯,乙氧基乙酸丙酯, 乙氧基乙酸丁酯,丙氧基乙酸甲酯,丙氧基乙酸乙酯,丙 氧基乙酸丙酯’丙氧基乙酸丁酯,丁氧基乙酸甲酯,丁氧 基乙酸乙酯,丁氧基乙酸丙酯,丁氧基乙酸丁酯,2_甲氧 基丙酸甲酯’ 2 -甲氧基丙酸乙酯,2 -甲氧基丙酸丙酯,2-甲氧基丙酸丁酯’ 2 -乙氧基丙酸甲酯,2_乙氧基丙酸乙酯 ’ 2-乙氧基丙酸丙酯,2_乙氧基丙酸丁酯,2_ 丁氧基丙酸 甲酯’ 2-丁氧基丙酸乙酯,2-丁氧基丙酸丙酯,2-丁氧基 丙酸丁酯’ 3-甲氧基丙酸甲酯,3-甲氧基丙酸乙酯,3-甲 氧基丙酸丙酯,3 -甲氧基丙酸丁酯,3 -乙氧基丙酸甲酯, 3 -乙氧基丙酸乙酯,3 -乙氧基丙酸丙酯,3 -乙氧基丙酸丁 酯’ 3 -丙氧基丙酸甲酯,3 -丙氧基丙酸乙酯,3 -丙氧基丙 酸丙酯,3-丙氧基丙酸丁酯,3-丁氧基丙酸甲酯,3-丁氧 基丙酸乙酯,3-丁氧基丙酸丙酯,3-丁氧基丙酸丁酯等的 醋。 該等之中,以乙二醇烷基醚乙酸酯,二乙二醇,丙二 醇單烷基醚,丙二醇烷基醚乙酸酯爲佳,其中以二乙二醇 二甲基醚,二乙二醇乙基甲基醚,丙二醇甲基醚,丙二醇 甲基醚乙酸酯爲特佳。 共聚物[A]的製造中所使用的聚合引發劑方面,一般 可使用已知的自由基聚合引發劑。可例舉2,2’-偶氮雙異丁 -21 - 200900857 腈,2,2’-偶氮雙-(2,4-二甲基戊腈),2,2’-偶氮雙-(4-甲氧基-2,4-二甲基戊腈)等的偶氮化合物;苯醯基過氧化 物,月桂醯過氧化物,t-丁基過氧三甲基乙酸酯,1,1'-雙-(t-丁基過氧)環己烷等的有機過氧化物;及過氧化氫。 使用過氧化物的自由基聚合引發劑時,亦可將過氧化物與 還原劑一起使用,作爲氧化還原型引發劑。 在共聚物[A]的製造中,可使用分子量調整劑來調整 分子量。其具體例方面,可例舉氯仿,四溴化碳等的鹵化 烴;η-己基硫醇,η-辛基硫醇,η-十二基硫醇,三級十二 基硫醇,硫代羥乙酸等的硫醇;二甲基黃原酸基( xanthogen)硫化物,二異丙基黃原酸基(xanthogen)二 硫化物等的黃原酸基(xanthogen);蔥品油嫌,α -甲基苯 乙烯二聚物等。 [Β]成分 本發明所使用的[Β ]成分之1,2 -醌二疊氮基化合物方 面,可例舉1,2-苯醌二疊氮基磺酸酯,1,2-萘醌二疊氮基 磺酸酯,1,2-苯醌二疊氮基磺酸醯胺,1,2-萘醌二疊氮基 磺酸醯胺等。 該等具體例方面,可例舉2,3,4-三羥基二苯基酮-1,2-萘醌疊氮基-4-磺酸酯,2,3,4-三羥基二苯基酮-1,2-萘醌二 疊氮基-5-磺酸酯,2,3,4-三羥基二苯基酮-1,2-萘醌二疊氮 基-6-磺酸酯,2,3,4-三羥基二苯基酮-1,2-萘醌二疊氮基-7-磺酸酯,2,3,4-三羥基二苯基酮-1,2-萘醌二疊氮基-8-磺酸 -22- 200900857 酯,2,4,6-三羥基二苯基酮-1,2-萘醌二疊氮基-4-磺酸酯, 2.4.6- 三羥基二苯基酮-1,2-萘醌二疊氮基-5-磺酸酯, 2.4.6- 三羥基二苯基酮-1,2-萘醌二疊氮基-6-磺酸酯, 2.4.6- 三羥基二苯基酮-1,2-萘醌二疊氮基-7-磺酸酯, 2,4,6_三羥基二苯基酮-1,2-萘醌二疊氮基-8-磺酸酯等的三 羥基二苯基酮的1,2-萘醌二疊氮基磺酸酯; 2,2',4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-4-磺酸 酯,2,2’,4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-5-磺酸 酯,2,2',4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-6-磺酸 酯,2,2',4,4’-四羥基二苯基酮-1,2-萘醌二疊氮基-7-磺酸 酯,2,2',4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-8-磺酸 酯,2,3,4,3'-四羥基二苯基酮-1,2-萘醌二疊氮基-4-磺酸酯 ,2,3,4,3'-四羥基二苯基酮-1,2-萘醌二疊氮基-5-磺酸酯, 2,3,4,3'-四羥基二苯基酮-1,2-萘醌二疊氮基-6-磺酸酯, 2,3,4,3、四羥基二苯基酮-1,2-萘醌二疊氮基-7-磺酸酯, 2,3,4,3'-四羥基二苯基酮-1,2-萘醌二疊氮基-8-磺酸酯, 2,3,4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-4-磺酸酯, 2,3,4,4’ -四羥基二苯基酮-1,2-萘醌二疊氮基-5-磺酸酯, 2,3,4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-6-磺酸酯, 2,3,4,4'-四羥基二苯基酮-1,2-萘醌二疊氮基-7-磺酸酯, 2,3,4,4’-四羥基二苯基酮-1,2-萘醌二疊氮基-8-磺酸酯, 2,3,4,2^四羥基-4’-甲基二苯基酮-1,2-萘醌二疊氮基-4-磺 酸酯,2,3,4,2'-四羥基-4'-甲基二苯基酮-1,2-萘醌二疊氮 基-5-磺酸酯,2,3,4,2'-四羥基-4'-甲基二苯基酮-1,2-萘醌 -23- 200900857 二疊氮基-6-磺酸酯,2,3,4,2’-四羥基-41-甲基二苯基酮-1,2-萘醌二疊氮基-7-磺酸酯,2,3,4,2’-四羥基-4'-甲基二苯 基酮-1,2-萘醌二疊氮基-8-磺酸酯,2,3,4,4'-四羥基-3'-甲 氧基二苯基酮-1,2-萘醌二疊氮基-4-磺酸酯,2,3,4,4'-四羥 基-3’-甲氧基二苯基酮-1,2-萘醌二疊氮基-5-磺酸酯, 2,3,4,4'-四羥基-3'-甲氧基二苯基酮-1,2-萘醌二疊氮基-6-磺酸酯,2,3,4,4'-四羥基-3’-甲氧基二苯基酮-1,2-萘醌二 疊氮基-7-磺酸酯,2,3,4,4、四羥基-3'-甲氧基二苯基酮-1,2-萘醌二疊氮基-8-磺酸酯等的四羥基二苯基酮的1,2-萘 醌二疊氮基磺酸酯; 2,3,4,2',6’-五羥基二苯基酮-1,2-萘醌二疊氮基-4-磺酸 酯,2,3,4,2',6'-五羥基二苯基酮-1,2-萘醌二疊氮基-5-磺酸 酯,2,3,4,2’,6'-五羥基二苯基酮-1,2-萘醌二疊氮基-6-磺酸 酯,2,3,4,2',6'-五羥基二苯基酮-1,2-萘醌二疊氮基-7_磺酸 酯,2,3,4,2^6^五羥基二苯基酮-1,2-萘醌二疊氮基-8-磺酸 酯等的五羥基二苯基酮的1,2-萘醌二疊氮基磺酸酯; 2,4,6,3',4’,5'-六羥基二苯基酮-1,2-萘醌二疊氮基-4-磺 酸酯,2,4,6,3',4',5'-六羥基二苯基酮-1,2-萘醌二疊氮基-5-磺酸酯,2,4,6,3',4',5’-六羥基二苯基酮-1,2-萘醌二疊氮 基-6-磺酸酯,2,4,6,3',4',5'-六羥基二苯基酮-1,2-萘醌二疊 氮基-7-磺酸酯,2,4,6^,4^-六羥基二苯基酮-1,2-萘醌二 疊氮基-8-磺酸酯,3,4,5,3’,4',5'-六羥基二苯基酮-1,2-萘醌 二疊氮基-4-磺酸酯,3,4,5,3',41,5'-六羥基二苯基酮-1,2-萘 醌二疊氮基-5-磺酸酯,3,4,5,3',4’,5'-六羥基二苯基酮-1,2- -24- 200900857 萘醌二疊氮基-6-磺酸酯,3,4,5,3',4',5、六羥基二苯基酮- 1.2- 萘醌二疊氮基-7-磺酸酯,3,4,5,3',4',5'-六羥基二苯基 酮-1,2-萘醌二疊氮基-8-磺酸酯等的六羥基二苯基酮的 1.2- 萘醌二疊氮基磺酸酯;雙(2,4-二羥基苯基)甲烷- 1.2- 萘醌二疊氮基-4-磺酸酯,雙(2,4-二羥基苯基)甲烷- 1.2- 萘醌二疊氮基-5-磺酸酯,雙(2,4-二羥基苯基)甲烷- 1.2- 萘醌二疊氮基-6-磺酸酯,雙(2,4-二羥基苯基)甲烷- 1.2- 萘醌二疊氮基-7-磺酸酯,雙(2,4-二羥基苯基)甲烷-1,2-萘醌二疊氮基-8-磺酸酯,雙(p-羥基苯基)甲烷-1,2-萘醌二疊氮基-4-磺酸酯,雙(p-羥基苯基)甲烷-1,2-萘醌 二疊氮基-5-磺酸酯,雙(p-羥基苯基)甲烷-1,2-萘醌二疊 氮基-6-磺酸酯,雙(p-羥基苯基)甲烷-1,2-萘醌二疊氮 基-7-磺酸酯,雙(p-羥基苯基)甲烷-1,2-萘醌二疊氮基-8-磺酸酯,三(p-羥基苯基)甲烷-1,2-萘醌二疊氮基-4-磺 酸酯,三(P-羥基苯基)甲烷-1,2-萘醌二疊氮基-5-磺酸酯 ,三(P-羥基苯基)甲烷-1,2-萘醌二疊氮基-6-磺酸酯,三 (P-羥基苯基)甲烷-1,2-萘醌二疊氮基-7-磺酸酯,三(P-羥基苯基)甲烷-1,2-萘醌二疊氮基-8-磺酸酯, 1,1,1-三(P-羥基苯基)乙烷-1,2-萘醌二疊氮基-4-磺 酸酯,1,1,1-三(P-羥基苯基)乙烷-1,2-萘醌二疊氮基-5-磺酸酯,1,1,1-三(P-羥基苯基)乙烷-1,2-萘醌二疊氮基-6-磺酸酯,1,1,1-三(p-羥基苯基)乙烷-1,2-萘醌二疊氮 基-7-磺酸酯,1,1,1-三(p-羥基苯基)乙烷-1,2-萘醌二疊 氮基-8-磺酸酯,雙(2,3,4-三羥基苯基)甲烷-1,2-萘醌二 -25- 200900857 疊氮基-4-磺酸酯,雙(2,3,4-三羥基苯基)甲烷-1,2-萘醌 二疊氮基-5-磺酸酯,雙(2,3,4-三羥基苯基)甲烷-1,2-萘 醌二疊氮基-6-磺酸酯,雙(2,3,4-三羥基苯基)甲烷-1,2-萘醌二疊氮基-7-磺酸酯,雙(2,3,4-三羥基苯基)甲烷- 1.2- 萘醌二疊氮基-8-磺酸酯,2,2-雙(2,3,4-三羥基苯基) 丙烷-1,2-萘醌二疊氮基_4_磺酸酯,2,2-雙(2,3,4-三羥基 苯基)丙烷-1,2-萘醌二疊氮基-5-磺酸酯,2,2-雙(2,3,4-三羥基苯基)丙烷-1,2-萘醌二疊氮基-6-磺酸酯,2,2-雙( 2,3,4-三羥基苯基)丙烷-1,2-萘醌二疊氮基-7-磺酸酯, 2.2- 雙(2,3,4-三羥基苯基)丙烷-1,2-萘醌二疊氮基-8-磺 酸酯, 1,1,3-三(2,5-二甲基-4-羥基苯基)-3-苯基丙烷-1,2-萘醌二疊氮基-4-磺酸酯,1,1,3-三(2,5-二甲基-4-羥基苯 基)-3-苯基丙烷-1,2-萘醌二疊氮基-5-磺酸酯,1,1,3-三( 2,5-二甲基-4-羥基苯基)-3-苯基丙烷-1,2-萘醌二疊氮基-6-磺酸酯,1,1,3-三(2,5-二甲基-4-羥基苯基)-3-苯基丙 烷-1,2-萘醌二疊氮基-7-磺酸酯,1,1,3-三(2,5-二甲基-4-羥基苯基)-3-苯基丙烷-1,2-萘醌二疊氮基-8-磺酸酯, 4,4'-〔1-〔4-〔1-〔4-羥基苯基〕-1-甲基乙基〕苯基〕亞 乙基〕雙酚-1,2-萘醌二疊氮基-4-磺酸酯,4,4'-〔 1-〔 4-〔 1-〔4-羥基苯基〕-1-甲基乙基〕苯基〕亞乙基〕雙酚-1,2-萘醌二疊氮基-5-磺酸酯,4,4’-〔 1-〔 4-〔 1-〔 4-羥基苯基 〕-1-甲基乙基〕苯基〕亞乙基〕雙酚-1,2-萘醌二疊氮基-6-磺酸酯,4,4’-〔 1-〔 4-〔 1-〔 4-羥基苯基〕-卜甲基乙基 -26- 200900857 〕苯基〕亞乙基〕雙酚-1,2-萘醌二疊氮基-7-磺酸酯, 4,4'-〔卜〔4-〔 1-〔4-羥基苯基〕-1-甲基乙基〕苯基〕亞 乙基〕雙酚-1,2-萘醌二疊氮基-8-磺酸酯, 雙(2,5-二甲基-4-羥基苯基)-2-羥基苯基甲烷-1,2-萘醌二疊氮基-4-磺酸酯,雙(2,5-二甲基-4-羥基苯基)-2-羥基苯基甲烷-1,2-萘醌二疊氮基-5-磺酸酯,雙(2,5-二 甲基-4-羥基苯基)-2-羥基苯基甲烷-1,2-萘醌二疊氮基- 6-磺酸酯,雙(2,5-二甲基-4-羥基苯基)-2-羥基苯基甲烷- 1.2- 萘醌二疊氮基-7-磺酸酯,雙(2,5-二甲基-4-羥基苯基 )-2 -羥基苯基甲烷-1,2 -萘醌二疊氮基-8 -磺酸酯, 3,3,3’,3'-四甲基-1,1'-螺旋雙茚-5,6,7,5、6’,7’-己醇-1,2-萘 醌二疊氮基-4-磺酸酯,3,3,3',3'-四甲基-151'-螺旋雙茚-5,6,7,5',6',7'-己醇-1,2-萘醌二疊氮基-5-磺酸酯,3,3,3^3^-四甲基-1,1'-螺旋雙茚-5,6,7,5',6’,7'-己醇-1,2-萘醌二疊氮 基-6-磺酸酯,3,3,3',3'-四甲基-1,1’-螺旋雙茚-5,6,7,5’,6’,7'-己醇-1,2-萘醌二疊氮基-7-磺酸酯,3,3,3',3'-四甲基-1,Γ-螺旋雙茚-5,6,7,5',6',7’-己醇-1,2-萘醌二疊氮 基-8-磺酸酯,2,2,4-三甲基-7,2',4'-三羥基黃烷-1,2-萘醌 二疊氮基-4-磺酸酯,2,2,4-三甲基-7,2',4'-三羥基黃烷- 1.2- 萘醌二疊氮基-5-磺酸,2,2,4-三甲基-7,2',41-三羥基黃 烷-1,2-萘醌二疊氮基-6-磺酸酯,2,2,4-三甲基-7,2^-三 羥基黃烷-1,2-萘醌二疊氮基-7-磺酸,2,2,4 -三甲基-7,2',4’-三羥基黃烷-1,2-萘醌二疊氮基-8-磺酸等的(聚羥 基苯基)鏈烷的1,2 -萘醌二疊氮基磺酸酯。 -27- 200900857 該等的1,2 -醌二疊氮基化合物可單獨使用或組合2種 類以上使用。 [B]成分的使用比率,相對於共聚物[A] 100重量份, 較佳爲5〜100重量份’更佳爲1〇〜50重量份。該比率若 不足5重量份時,由於因輻射線的照射產生的酸量少,對 成爲輻射線的照射部分與未照射部分的顯影液之鹼水溶液 ,溶解度的差異小,圖型化有困難的傾向。又,由於參與 與共聚物[A]的反應之酸量變少,有無法獲得充分的耐熱 性及耐溶劑性的情形。另一方面,該比率若超過1 00重量 份時,在短時間的輻射線照射下,由於未反應的[B]成分 大量殘存,對該鹼水溶液的不溶效果過高,顯影有困難的 傾向。 其他成分 本發明的敏輻射線性樹脂組成物,含有上述共聚物 [A]及[B]成分的必須成分,但其他可因應需要含有:[c]感 熱性酸生成化合物,[D]具有至少1個乙烯性不飽和雙鍵 的聚合性化合物’ [E]異於共聚物[A]之其他的環氧基樹脂 ’ [F]界面活性劑或[G]黏接助劑。 上述[C]感熱性酸生成化合物,可用來提高耐熱性或 硬度。其具體例方面,可例舉鎏鹽,苯并唑鑰鹽,銨鹽, 鳞鹽等的鑰鹽。 上述鎏鹽的具體例方面,可例舉烷基鎏鹽,苄基鎏鹽 ,二节基鎏鹽,取代苄基鎏鹽等。 -28- 200900857 該等具體例方面,烷基鎏鹽可例舉4-乙醯苯基二甲基 鎏六氟銻酸鹽,4-乙醯氧基苯基二甲基鎏六氟砷酸鹽,二 甲基-4-(苄基氧羰氧)苯基鎏六氟銻酸鹽,二甲基-4-( 苯醯基氧)苯基鎏六氟銻酸鹽,二甲基-4-(苯醯基氧)苯 基鎏六氟砷酸鹽,二甲基-3-氯-4-乙醯氧基苯基鎏六氟銻 酸鹽等; 苄基鎏鹽可例舉苄基-4-羥基苯基甲基鎏六氟銻酸鹽, 苄基-4-羥基苯基甲基鎏六氟磷酸鹽,4-乙醯氧基苯基苄基 甲基鎏六氟銻酸鹽,苄基-4-甲氧基苯基甲基鎏六氟銻酸鹽 ,苄基-2-甲基-4-羥基苯基甲基鎏六氟銻酸鹽,苄基-3-氯-4-羥基苯基甲基鎏六氟砷酸鹽,4-甲氧基苄基-4-羥基苯基 甲基鎏六氟磷酸鹽等; 二苄基鎏鹽可例舉二苄基-4-羥基苯基鎏六氟銻酸鹽, 二苄基-4-羥基苯基鎏六氟磷酸鹽,4-乙醯氧基苯基二苄基 鎏六氟銻酸鹽,二苄基-4-甲氧基苯基鎏六氟銻酸鹽,二苄 基-3-氯-4-羥基苯基鎏六氟砷酸鹽,二苄基-3-甲基-4-羥 基-5-三級丁基苯基鎏六氟銻酸鹽,苄基-4-甲氧基苄基-4-羥基苯基鎏六氟磷酸鹽等; 取代苄基鎏鹽可例舉P-氯苄基-4-羥基苯基甲基鎏六 氟銻酸鹽,P-硝基苄基-4-羥基苯基甲基鎏六氟銻酸鹽,p-氯苄基-4-羥基苯基甲基鎏六氟磷酸鹽,p-硝基苄基-3-甲 基-4-羥基苯基甲基鎏六氟銻酸鹽,3,5-二氯苄基-4-羥基苯 基甲基鎏六氟銻酸鹽,〇-氯苄基-3-氯-4-羥基苯基甲基鎏 六氟銻酸鹽等。 -29- 200900857 上述苯并唑鑰鹽的具體例方面,可例舉3-苄基苯并π坐 鑰六氟銻酸鹽’ 3-苄基苯并唑鎗六氟磷酸鹽,3_苄基苯并 唑鑰四氟硼酸酯,3-(ρ-甲氧基苄基)苯并唑鑰六氟錄酸 鹽,3-苄基-2-甲基硫代苯并唑鑰六氟銻酸鹽,3_苄基-5 _ 氯苯并唑鑰六氟銻酸鹽等的苄基苯并唑鑰鹽。 該等之中’以使用鎏鹽及苯并唑鑰鹽爲佳,特別以使 用4 -乙醯氧基苯基二甲基鎏六氟砷酸鹽,苄基_4_羥基苯 基甲基鎏六氟銻酸鹽,4-乙醯氧基苯基苄基甲基鎏六氟銻 酸鹽,二苄基_4·羥基苯基鎏六氟銻酸鹽,4-乙醯氧基苯基 苄基鎏六氟銻酸鹽,3-苄基苯并噻唑鑰六氟銻酸鹽爲佳。 該等的市售品方面,可例舉sun aid SI-L85,同SI-L110,同 SI-L145,同 SI-L150,同 SI-L160(三新化學工 業公司製)等。 [C]成分的使用比率,相對於共聚物[A] 100重量份, 較佳爲2 0重量份以下,更佳爲5重量份以下。該使用量 若超過20重量份時,在塗膜形成步驟中析出物將析出, 導致塗膜形成故障。 上述[D]成分之具有至少1個乙烯性不飽和雙鍵的聚 合性化合物(以下稱爲「D成分」)方面,可例舉較佳的 單官能(甲基)丙烯酸酯,2官能(甲基)丙烯酸酯或3 官能以上的(甲基)丙烯酸酯。 上述單官能(甲基)丙烯酸酯方面,可例舉2-羥基乙 基(甲基)丙烯酸酯,卡必醇(甲基)丙烯酸酯,異萡基 (甲基)丙烯酸酯,3-甲氧基丁基(甲基)丙烯酸酯,2- -30- 200900857 (甲基)丙烯醯基氧乙基-2-羥基丙基鄰苯二酸酯等。該等 的市售品方面,可例舉aronixM·101’同 M-111,同 M-114(以上,東亞合成公司製),KAYARAD TC-1 1 0S,同 TC-120S (以上,日本化藥公司製),bisuko-to 1 58,同 23 1 1 (以上,大阪有機化學工業公司製)等。 上述2官能(甲基)丙烯酸酯方面,可例舉乙二醇( 甲基)丙烯酸酯,1,6-己烷二醇二(甲基)丙烯酸酯,1,9-壬烷二醇二(甲基)丙烯酸酯,聚丙二醇二(甲基)丙烯 酸酯,四乙二醇二(甲基)丙烯酸酯,雙苯氧基乙醇蕗丙 烯酸酯,雙苯氧基乙醇莽丙烯酸酯等。該等的市售品方面 ,可例舉 aronix M-210,同 M-240,同 M-6200 (以上,東 亞合成公司製),KAYARAD HDDA,同 HX-220,同 R-604 (以上,日本化藥公司製),bisuko-to260,同312, 同335HP (以上,大阪有機化學工業公司製)等。 上述3官能以上的(甲基)丙烯酸酯方面,可例舉三 羥甲基丙烷三(甲基)丙烯酸酯,新戊四醇三(甲基)丙 烯酸酯,三((甲基)丙烯醯氧乙基)磷酸酯,新戊四醇 四(甲基)丙烯酸酯,二新戊四醇五(甲基)丙烯酸酯, 二新戊四醇六(甲基)丙烯酸酯等,其市售品方面,可例 舉 aronix M-3 09,同 M-400,同 M-405,同 M-450,同 M-7100,同M-8030,同M-8060(以上,東亞合成公司製) > KAYARAD TMPTA,同 DPHA,同 DPCA-20,同 DPCA-30,同 DPCA-60,同DPCA-120(以上,日本化藥公司製 ),bisuko-to 295 ’ 同 3 00,同 3 60,同 GPT,同 3PA, -31 - 200900857 同400 (以上,大阪有機化學工業公司製)等。 該等之中’以使用3官能以上的(甲基)丙烯酸酯爲 佳’其中,以三經甲基丙院三(甲基)丙燦酸酯,新戊四 醇四(甲基)丙烯酸酯,二新戊四醇六(甲基)丙烯酸酯 爲特佳。 該等的單官能,2官能或3官能以上的(甲基)丙烯 酸酯,可單獨使用或組合使用。[D ]成分的使用比率,相 對於共聚物[A] 1 00重量份,較佳爲5 0重量份以下,更佳 爲3 0重量份以下。 藉由含有此種比率的[D]成分,可使由本發明的敏輻 射線性樹脂組成物所得的層間絕緣膜或微透鏡的耐熱性及 表面硬度等提高。該使用量若超過50重量份時,在基板 上形成敏輻射線性樹脂組成物的塗膜之步驟中,將會產生 膜乾斑。 上述[E]成分之異於共聚物[A]之其他的環氧基樹脂( 以下稱爲「E成分」)方面,只要不影響相溶性,並無特 別限定。較佳可例舉雙酚A型環氧基樹脂,苯酚酚醛清漆 型環氧基樹脂,甲酚酚醛清漆型環氧基樹脂,環狀脂肪族 環氧基樹脂,環氧丙基酯型環氧基樹脂,環氧丙基胺型環 氧基樹脂,雜環式環氧基樹脂,將環氧丙基甲基丙烯酸酯 (共)聚合的樹脂等。該等之中,以雙酚A型環氧基樹脂 ,甲酚酚醛清漆型環氧基樹脂,環氧丙基酯型環氧基樹脂 等爲特佳。 [E]成分的使用比率,相對於共聚物[A]100重量份, -32- 200900857 較佳爲30重量份以下。藉由含有此種比率的[E]成分,可 進而提高由本發明的敏輻射線性樹脂組成物所得之保護膜 或絕緣膜的耐熱性及表面硬度等。該比率若超過30重量 份時’於基板上形成敏輻射線性樹脂組成物的塗膜之際, 塗膜的膜厚均一性將變得不充分。 此外’共聚物[A]亦可稱爲「環氧基樹脂」,但在具 鹼可溶性這一點與[E]成分相異。[E]成分爲鹼不溶性。 本發明的敏輻射線性樹脂組成物中,進而可使用上述 [F]成分的界面活性劑以提高塗佈性。在此可使用的[F]界 面活性劑方面,較佳爲使用氟系界面活性劑,聚矽氧系界 面活性劑及非離子系界面活性劑。 氟系界面活性劑的具體例方面,除了 1,1,2,2-四氟辛 基(1,1,2,2-四氟丙基)醚,1,1,2,2-四氟辛基己基醚,八 乙二醇二(1,1,2,2-四氟丁基)醚,六乙二醇( 1,1,2,2,3,3-六氟戊基)醚,八丙二醇二(1,1,2,2-四氟丁基 )醚,六丙二醇二(1,1,2,2,3,3-六氟戊基)醚,全氟十二 基磺酸鈉,1,1,2,2,8,8,9,9,10,10-十氟十二烷,1,1,2,2,3,3 •六氟癸烷等之外,可例舉氟烷基苯磺酸鈉;氟烷基氧乙 烯醚;氟烷基銨碘化物,氟烷基聚氧乙烯醚,全氟烷基聚 氧乙醇;全氟烷基烷氧化物;氟系烷基酯等。該等的市售 品方面,可例舉 BM-1000’ BM-1100(以上,BM Chemie 公司製),megafuck F142D,同 F172,同 F173’ 同 F183 ,同F178,同F191,同F4 71(以上,大日本油墨化學工 業公司製),Fluorad FC-170, FC-171 ’ FC-430’ FC-431 -33- 200900857 (以上,住友3M公司製),Safron S-112,同S-113,同 S-131 ,同 S-141 ,同 S-145 ,同 S-382 ,同 SC-101 ,同 SC-102,同 SC-103,同 SC-104,同 SC-105,同 SC-106 ( 旭硝子公司製),f-topEF301,同303,同352(新秋田化 成公司製)等。 上述聚矽氧系界面活性劑方面,可例舉商品名DC3PA ,DC7P A , FS- 1 265 , SF-8428 , SH11PA , SH21PA , SH28PA,SH29PA > SH30PA,SH-190,SH-193,SZ-603 2 (以上,Toray · Dow Corning ·聚砍氧公司製),TSF-4440 , TSF-4300 , TSF-4445 , TSF-4446 , TSF-4460 , TSF-4452 (以上,GE東芝聚矽氧公司製)等的的市售品。 上述非離子系界面活性劑方面,可使用聚氧乙烯月桂 基醚,聚氧乙烯硬脂醯基醚,聚氧乙烯油基醚等的聚氧乙 烯烷基醚;聚氧乙烯辛基苯基醚,聚氧乙烯壬基苯基醚等 的聚氧乙烯芳基醚;聚氧乙烯二月桂酸酯,聚氧乙烯二硬 脂酸酯等的聚氧乙烯二烷基酯等;(甲基)丙烯酸系共聚 物polyflow No. 57,95 (共榮公司化學公司製)等。 該等界面活性劑可單獨使用,或組合2種以上使用。 該等[F]界面活性劑,相對於共聚物[A] 100重量份, 較佳爲使用5重量份以下,更佳爲使用2重量份以下。 [F]界面活性劑的使用量若超過5重量份時,於基板上形 成塗膜之際,易產生塗膜的膜乾斑。 本發明的敏輻射線性樹脂組成物中’又,可使用[G] 成分的黏接助劑以提高與基體的黏接性。此種[G]黏接助 -34- 200900857 劑方面,以使用官能性矽烷偶合劑爲佳,可例舉具有羧基 ,甲基丙烯醯基,異氰酸酯基,環氧基等反應性取代基的 矽烷偶合劑。具體言之,可例舉三甲氧基矽烷基苯甲酸, γ-甲基丙烯醯氧基丙基三甲氧基矽烷,乙烯三乙醯氧基矽 烷,乙烯三甲氧基矽烷,γ-異氰酸酯丙基三乙氧基矽烷, γ-環氧丙基丙基三甲氧基矽烷,β- (3,4-環氧基環己基) 乙基三甲氧基矽烷等。此種[G]黏接助劑,相對於共聚物 [Α]100重量份,較佳爲使用20重量份以下,更佳爲使用 1 〇重量份以下的量。黏接助劑的量若超過2 0重量份時, 顯影步驟中,易有顯影殘留的情形。 敏輻射線性樹脂組成物 本發明的敏輻射線性樹脂組成物,可藉由平均混合上 述的共聚物[Α]及[Β]成分,以及任意添加如上述的其他成 分而調製。較佳爲將本發明的敏輻射線性樹脂組成物溶解 於適當的溶劑中,成爲溶液狀態而使用。例如可將共聚物 [Α]及[Β]成分,以及任意添加的其他成分,以設定的比率 混合,調製溶液狀態的敏輻射線性樹脂組成物。 調製本發明敏輻射線性樹脂組成物所使用的溶劑方面 ,可使用能平均溶解共聚物[Α]及[Β]成分以及任意配合的 其他成分,且與各成分不產生反應之物。 此種溶劑方面,可例舉同於用來製造上述共聚物[Α] 之可使用的溶劑所例示之物。 此種溶劑之中’就各成分的溶解性,與各成分的反應 -35- 200900857 性’易形成塗膜等的觀點而言’以使用醇,乙二醇醚,乙 二醇烷基醚乙酸酯,酯及二乙二醇爲佳。該等之中,以使 用苄基醇’ 2 -苯基乙基醇,3_苯基-丙醇,乙二醇單丁基 醚乙酸酯’一乙一醇單乙基醒乙酸醋’二乙二醇二乙基醚 ,一乙一醇乙基甲基醚’二乙二醇二甲基醚,丙二醇單甲 基醚’丙二醇單甲基醚乙酸酯,甲氧基丙酸甲基,乙氧基 丙酸乙基爲特佳。 進而爲了提筒膜厚面內的均一性,該溶劑可同時併用 筒沸點溶劑。可倂用的高沸點溶劑方面,可例舉N -甲基 甲醯胺’ N,N -二甲基甲醯胺,N_甲基N_甲醯苯胺,N—甲 基乙醯胺’ N,N -二甲基乙醯胺,N -甲基吡咯啶酮,二甲基 亞颯,苄基乙基醚’二己基醚,丙酮基丙酮,異佛爾酮, 己酸,辛酸’ 1-辛醇,1_壬醇,乙酸苄酯,苯甲酸乙酯, 草酸二乙酯’順丁烯二酸二乙酯,γ-丁內酯,碳酸乙烯酯 ’碳酸丙烯酯,苯基溶纖劑乙酸酯等。該等之中,以Ν_ 甲基吡咯啶酮,γ-丁內酯,Ν,Ν-二甲基乙醯胺爲佳。 本發明敏輻射線性樹脂組成物的溶劑倂用高沸點溶劑 時,其使用量,相對於溶劑全量,較佳爲5 0重量%以下, 更佳爲40重量%以下,進而更佳爲3 0重量%以下。高沸 點溶劑的使用量若超過該使用量時,塗膜的膜厚均一性, 感度及殘膜率有降低的情形。 將本發明的敏輻射線性樹脂組成物調製成溶液狀態時 ’在溶液中所佔,溶劑以外的成分(亦即共聚物[Α]及[Β] 成分以及任意添加的其他成分的合計量)的比率’依照使 -36- 200900857 用目的或所期望膜厚的値等可任意設定,但較佳爲5〜50 重量%,更佳爲1 0〜40重量%,進而更佳爲丨5〜3 5重量% 〇 如此一來調製的組成物溶液,使用孔徑0.2μιη左右的 ' 微孔過濾器等過濾之後,亦可供使用。 層間絕緣膜,微透鏡的形成 接著說明使用本發明的敏輻射線性樹脂組成物,形成 本發明的層間絕緣膜,微透鏡的方法。本發明的層間絕緣 膜或微透鏡的形成方法,係依照下列記載的順序含有以下 的步驟。 (1 )於基板上形成本發明敏輻射線性樹脂組成物的 塗膜之步驟, (2 )在該塗膜的至少一部分照射輻射線的步驟, (3 )顯影步驟,及 \ ( 4 )加熱步驟。 (1 )於基板上形成本發明敏輻射線性樹脂組成物的 塗膜之步驟 在上述(1)的步驟中,將本發明的組成物溶液塗佈 . 於基板表面,較佳爲藉由預烘烤去除溶劑,形成敏輻射線 性樹脂組成物的塗膜。 可使用的基板種類方面,可例舉玻璃基板,矽晶圓及 在該等表面上,各種金屬所形成的基板。 -37- 200900857 組成物溶液的塗佈方法方面’並無特別限定,可採用 噴灑法,輥塗佈法’旋轉塗佈法’縫模塗佈法’棒塗佈法 ,噴墨法等適宜的方法’特別以旋轉塗佈法’縫模塗佈法 爲佳。預烘烤的條件方面’亦依各成分的種類’使用比率 等而有所不同。例如’可在6 0〜1 1 0 °c下預烘烤3 0秒〜1 5 分鐘左右。 形成塗膜的膜厚方面,預烘烤後的値方面,形成層間 絕緣膜時,例如以3〜6 μπι爲佳,形成微透鏡時,例如以 0.5〜3μηι爲佳。 (2 )將該塗膜的至少一部分照射輻射線的步驟 上述(2)的步驟中,介由具有設定圖型的光罩,於 所形成之塗膜上照射,輻射線後,藉由以顯影液顯影處理 ,去除輻射線的照射部分,進行圖型化。此時,所使用的 輻射線方面,可例舉紫外線,遠紫外線,X線,荷電粒子 線等。 上述紫外線方面,可例舉g線(波長436nm ) ,i線 (波長3 6 5nm )等。遠紫外線方面,可例舉KrF準分子雷 射等。X線方面,可例舉同步加速器輻射線等。荷電粒子 線方面,可例舉電子束等。 該#之中’以紫外線爲佳,其中尤以含g線及/或i線 的輻射線爲特佳。 曝光量方面’於形成層間絕緣膜時,以50〜 l,5〇〇J/m2爲佳,於形成微透鏡時,以5〇〜2,000J/m2爲佳 -38- 200900857 (3 )顯影步驟 顯影處理所使用的顯影液方面,可使用氫氧化鈉’氫 氧化鉀,碳酸鈉,矽酸鈉,偏矽酸鈉,氨’乙基胺’ η-丙 基胺,二乙基胺,二乙基胺基乙醇,二-η-丙基胺,三乙基 胺,甲基二乙基胺,二甲基乙醇胺,三乙醇胺,氫氧化四 甲基銨,氫氧化四乙基銨,吡咯,哌啶,1,8 -雙氮雜二環 〔5.4.0〕-7-十一烯,1,5-雙氮雜二環〔4.3.0〕-5-壬烷等 的鹼(鹼性化合物)水溶液。又,可將在在上述的鹼水溶 液中,適當添加甲醇,乙醇等的水溶性有機溶劑或界面活 性劑的水溶液,或溶解本發明的組成物之各種有機溶劑作 爲顯影液使用。進而,顯影方法方面,可使用盛液法,浸 漬法,搖動浸漬法’沖洗法等適宜的方法。此時的顯影時 間,依照組成物的組成而有所不同,例如可顯影3 0〜1 2 0 秒。 此外’習知的敏輻射線性樹脂組成物,由於顯影時間 若超過最適値2〇〜25秒左右時,易產生形成之圖型剝離 的現象,故必須嚴格控制顯影時間,但本發明的敏轄射線 性樹脂組成物時’即使超過最適的顯影時間3 0秒以上, 亦可形成良好的圖型,具有製品生產率上的優點。 (4 )加熱步驟 如上述貫施之(3 )的顯影步驟後’對圖型化的薄膜 -39- 200900857 ,較佳爲例如進行流水洗淨的沖洗處理,進而,更佳爲藉 由高壓水銀燈的輻射線全面照射(後曝光),進行該當薄 膜中殘存1,2_醌二疊氮化合物的分解處理後,藉由以熱板 ,烤箱等的加熱裝置,將薄膜加熱處理(事後烘烤處理) ,進行該當薄膜的硬化處理。上述後曝光步驟中,曝光量 較佳爲2,000〜5,000J/m2左右。又,該硬化處理中,燒成 溫度例如爲120〜250°C。加熱時間依加熱機器的種類而異 ,但例如在熱板上進行加熱處理時,可爲5〜3 0分鐘,在 烤箱中進行加熱處理時,可爲30〜90分鐘。此時,可使 用進行2次以上加熱步驟的步進烘焙(step bake )法等。 如此一來,對應目的的層間絕緣膜或微透鏡,可於基 板表面上形成圖型狀薄膜。 如上述所形成之層間絕緣膜及微透鏡,如同後述實施 例所得知者,其密接性,耐熱性,耐溶劑性’及透明性等 均爲優異。 層間絕緣膜 如上述所形成之本發明的層間絕緣膜,與基板的密接 性良好,耐溶劑性及耐熱性優異,具有高透過率’介電率 低,可適用於電子零件的層間絕緣膜。 微透鏡 如上述所形成之本發明的微透鏡’與基板的密接性良 好,耐溶劑性及耐熱性優異,且具備高透過率與良好的熔 -40- 200900857 體形狀,可適用於固體成像(imaging)元件的微透鏡 此外,本發明之微透鏡的形狀,如第1圖(a ) ,爲半凸的透鏡形狀。 如上述,本發明之敏輻射線性樹脂組成物,具有 輻射線感度,在顯影步驟中,具有即使超過最適顯影 ,亦可形成良好圖型形狀的顯影界限,容易形成密接 異的圖型狀薄膜。 由上述組成物所形成之本發明的層間絕緣膜,與 的密接性良好,耐溶劑性及耐熱性優異,具有高透過 介電率低,可適用於電子零件的層間絕緣膜。 又,由上位組成物所形成之本發明的微透鏡,與 的密接性良好,耐溶劑性及耐熱性優異,且具備高透 與良好的熔體形狀,可適用於固體成像(imaging ) 的微透鏡。 【實施方式】 實施例 以下例示合成例,實施例及比較例,進而具體說 發明,但本發明並不限定於以下的實施例。 合成例1 在備有冷卻管,攪拌機的燒瓶內,放入2,2'-偶氮 2,4-二甲基戊腈)7重量份及丙二醇單甲基醚乙酸酯 重量份。接著,放入甲基丙烯酸22重量份,二環戊 所示 高敏 時間 性優 基板 率, 基板 過率 元件 明本 雙( 220 基甲 -41 - 200900857 基丙烯酸酯23重量份,丙烯醯基嗎啉5重量份,3-乙基-3-甲基丙烯醯基氧甲基氧雜環丁烷50重量份及α-甲基苯 乙稀二聚物3重量份,一面氮取代,一面開始慢慢攪捽。 使溶液的溫度上升至70°C,以該溫度加熱4小時,獲得含 共聚物[A-1 ]的聚合物溶液。所得聚合物溶液的固形成分 濃度爲31.1重量%,聚合物的重量平均分子量爲17,200, 分子量分布(重量平均分子量/數平均分子量的比)爲1.9 。此外,重量平均分子量及數平均分子量,係使用GPC ( 凝膠滲透層析術(Tosoh公司製HLC-8020 )測定的聚苯乙 烯換算平均分子量。 合成例2 在備有冷卻管,攪拌機的燒瓶內,放入2,2'-偶氮雙( 2,4-二甲基戊腈)7重量份及二乙二醇乙基甲基醚220重 量份。接著,放入甲基丙烯酸13重量份,環氧丙基甲基 丙烯酸酯50重量份,3-乙基-3-甲基丙烯醯基氧甲基氧雜 環丁烷10重量份,環己基順丁烯二醯亞胺10重量份’丙 烯醯基嗎啉10重量份及四氫糠基丙烯酸酯7重量份,一 面氮取代,一面開始慢慢攪拌。使溶液的溫度上升至7 0 °C ,以該溫度加熱4小時,獲得含共聚物[A-2]的聚合物溶 液。所得之聚合物溶液的固形成分濃度爲3 2.1重量%,聚 合物的重量平均分子量爲18,200,分子量分布爲1_8。 合成例3 -42 - 200900857 在備有冷卻管’攪拌機的燒瓶內,放入2,2’-偶氮雙( 2,4-二甲基戊腈)7重量份及二乙二醇乙基甲基醚200重 量份。接著,放入甲基丙烯酸11重量份,環己基順丁烯 二醯亞胺12重量份’ α_甲基-p_羥基苯乙烯9重量份,環 氧丙基甲基丙烯酸酯50重量份,3 -乙基-3-甲基丙烯醯基 氧甲基氧雜環丁烷10重量份,丙烯醯基嗎啉5重量份, 四氫糠基甲基丙烯酸酯3重量份及α-甲基苯乙烯二聚物3 重量份’一面氮取代’一面開始慢慢攪拌。使溶液的溫度 上升至70°C,以該溫度加熱5小時,獲得含共聚物[Α_3] 的聚合物溶液。所得聚合物溶液的固形成分濃度爲32.4 重量% ’聚合物的重量平均分子量爲21,200,分子量分布 爲 2.1。 合成例4 在備有冷卻管,攪拌機的燒瓶內,放入2,2 1 -偶氮雙( 2,4-二甲基戊腈)8重量份及二乙二醇乙基甲基醚220重 量份。接著’放入苯乙烯10重量份,甲基丙稀酸20重量 份’ 3 -乙基-3-甲基丙烯醯基氧甲基氧雜環丁烷20重量份 ,環氧丙基甲基丙烯酸酯30重量份,丙烯醯基嗎啉8重 量份’四氫糠基丙烯酸酯12重量份及α -甲基苯乙烯二聚 物4 · 0重量份,一面氮取代,一面開始慢慢攪拌。使溶液 的溫度上升至70°C,以該溫度加熱5小時,獲得含共聚物 [A - 4 ]的聚合物溶液。所得聚合物溶液的固形成分濃度爲 32.0重量%’聚合物的重量平均分子量爲20,100,分子量 -43- 200900857 分布爲1.9 比較合成例1 在備有冷卻管,攪拌機的燒瓶內,放入2,2,__ 2,4-二甲基戊腈)7重量份及二乙二醇甲基乙基 偶氮 雙 22〇 量份。接著,放入甲基丙烯酸23重量份,—瓒+ ^ 一戊基申基 摄份及α. 甲基苯乙烯二聚物2.0重量份,一面氮取代, 面開始1曼 慢攪拌。使溶液的溫度上升至70°c,保持溫度5丨 ^ 」、時,择 得含共聚物[A- 1 R]的聚合物溶液。所得聚合物溶 ^ '的固形 丙烯酸酯47重量份,甲基丙烯酸環氧丙酯20翼 一面氮取代, 成分濃度爲32.8重量%,聚合物的重量平均分$ 24,000,分子量分布爲2. 毚舄 比較合成例2 在備有冷卻管,攪拌機的燒瓶內,放入2,2,_他& 2,4-二甲基戊腈)7重量份及二乙二醇甲基乙基酸 量份。接著裝入甲基丙烯酸25重量份,二環戊甚 烯酸酯35重量份,2-羥基乙基甲基丙烯酸酯4〇m& α·甲基苯乙烯二聚物2.0重量份,一面氮取代,〜θ 面開始 慢慢攪拌。使溶液的溫度上升至7(TC,保持該溫度5小時 ,獲得含共聚物[A-2R]的聚合物溶液。所得之聚合物溶液 的固形成分濃度爲3 2 · 8重量%,聚合物的重量平均分子量 爲25,000,分子量分布爲2.4。 -44 - 200900857 實施例1 敏輻射線性樹脂組成物的調製 混合合成例1所得之含共聚物[A_ 1 ]的聚合物溶液( 相當於共聚物[A-1]100重量份(固形成分))’與成分 [B]的4,4,-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]亞乙基 ]雙酚(1莫耳)與丨,2 -萘醌二疊氮基-5-磺酸氯化物(2莫 耳)的縮合物(4,4'-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯 基]亞乙基]雙酚-1,2 -萘醌二疊氮基-5-磺酸酯)20重量份 ,及γ-甲基丙烯醯氧基丙基三甲氧基矽烷5重量份,使固 形成分濃度成爲30重量%,在溶解於丙二醇單甲基醚乙酸 酯後,以孔徑〇 _ 5 μιη的微孔過濾器過濾,調製敏輻射線性 樹脂組成物的溶液(S -1 )。 層間絕緣膜的評價 (I )圖型狀薄膜的形成 使用旋轉器,於玻璃基板上塗佈上述組成物溶液(s_ 1 )後’於熱板上80 °C下預供烤3分鐘,形成塗膜。 使用設定的圖型光罩,在上述所得的塗膜上,以 3 65nm下強度爲10mW/cm2的紫外線照射15秒。接著,在 氫氧化四甲基銨0.5重量%水溶液中,25亡下顯影1分鐘 後’以純水沖洗1分鐘。藉由該等操作,去除不要的部分 〇 在上述所形成的圖型上,照射 365nm下強度爲 1 OmW/cm2的紫外線3〇秒後,在烤箱中220X:下,加熱6〇 -45- 200900857 分鐘使其硬化,獲得膜厚3 μιη的圖型狀薄膜。 又,除了預烘烤溫度爲9 0 °C,1 0 0 °C之外,其他與上 述一樣,進行操作,形成預烘烤溫度相異的3種圖型狀薄 膜。 (II )解像度的評價 在上述(I)所得之圖型狀薄膜中,抽出圖型( 5μΓηχ5μηι電洞)能解像時以〇表示,不能解像時以X表示 。結果如表1所示。 (111 )耐熱尺寸穩定性的評價 上述(I )中,將預烘烤溫度80°C下形成的薄膜圖型 於垮箱中,220 °C下加熱60分。加熱前後膜厚的變化率如 表2所示。此時’加熱前後的尺寸變化率在5 %以內的時 ’耐熱尺寸穩定性良好,尺寸變化率超過5%時’可謂不 (IV )透明性的評價 上述(I)中,使用分光光度計( 150-20型double b e a m (日立製作所公司製))測定預烘烤溫度8 0 °C下形成 之®1型狀薄膜的4 0 0 nm的透過率,進行透明性評價。該結 東如表2所示。此時,透過率超過9 〇 %以上時’透明性良 好,不足9 0 %時,可謂不良。 -46- 200900857 (V)耐熱變色性的評價 上述(I)中,將預烘烤溫度80°C下形成的具有圖型 狀薄膜的基板,於2 5 0 °C的烤箱中加熱1小時’以加熱前 後圖型狀薄膜透過率的變化評價耐熱變色性。此時評價結 果如表2所示。變化率不足5%時,耐熱變色性良好,超 過5%時,可謂不良。此外透過率係以同於(IV )透明性 的評價之方式而求得。 (VI )密接性的評價 藉由壓力鍋試驗(120°C,濕度1〇〇%,4小時)後的 棋盤眼剝離試驗,對上述(I )中預烘烤溫度80 °C下形成 的圖型狀薄膜的密接性進行評價。此時,評價結果如表2 所示。評價結果以棋盤眼1 〇〇個中,殘留棋盤眼的數目表 不 ° (VII)保存穩定性的評價 將上述組成物溶液於4(TC的烤箱中加熱1週,以加熱 前後黏度的變化進行保存穩定性的評價。此時,黏度變化 率如表1所示。變化率不足5 %時,保存穩定性良好,5 % 以上時,保存穩定性可謂不良。 微透鏡的評價 (I )微透鏡的形成 在6英吋矽基板上,旋轉塗佈上述組成物溶液(S -1 -47- 200900857 )成爲2.5 μιη的膜厚,於熱板上701下預烘烤3分鐘,形 成塗膜。 使用設定之圖型光罩,在上述所得之塗膜上,照射 43 6nm下強度爲10mW/cm2的紫外線。接著,以氫氧化四 甲基錢2.38重量%水溶液25°C下顯影1分鐘後,以純水沖 洗1分鐘。藉由該等操作,去除不要的部分,形成圖型。 在上述所形成之圖型上,照射 4 3 6nm下強度爲 10mW/cm2的紫外線200mJ/cm2後,160°C下加熱1〇分鐘 ’進而2 3 0 °C下加熱1 〇分鐘,使圖型熔融,形成微透鏡。 (II )感度的評價 將上述(I)所得之熔融後的微透鏡圖型的〇·8μιη線 與間距圖型(1 0對1 )之可解像間距線寬的最低照射量如 表3所示。該値低於1 〇〇mJ/Cm2時,解像度良好’感度超 過100mJ/cm2時,解像度可謂不良。 (ΙΠ )透明性的評價 同於上述(I ),於玻璃基板上形成圖型狀薄膜。 使用分光光度計(1 50-20型 double beam (日立製 作所公司製)),對熔融後形成微透鏡圖型的玻璃基板測 定400nm的透過率,進行透明性評價。此時,400nm的透 過率如表3所示。透過率爲90〜100%時’表示透過率良 好,不足90%時,表示透過率不良。 -48- 200900857 (IV )耐熱透明性的評價 將上述(111 )中形成的具有圖型狀薄膜的玻璃基板於 2 5 0 r的烤箱中加熱1小時’以加熱前後圖型狀薄膜透過 率的變化進行耐熱透明性的評價。此時透過率的變化率如 表3所示。變化率不足5 %時’表示耐熱透明性良好’超 過5 %時,可謂不良。 此外透過率係以同於(III )透明性的評價之作法而求 得。 (V )密接性的評價 藉由壓力鍋試驗(120 °C,濕度100%,4小時)後的 棋盤眼剝離試驗,對上述(I )形成之圖型狀薄膜的密接 性進行評價。此時,評價結果如表3所示。評價結果以棋 盤眼100個中,殘留棋盤眼的數目表示。 (VII)耐溶劑性的評價 將同於上述(III )之作法形成的具有圖型狀薄膜的玻 璃基板,浸漬於50 °c中的異丙基醇中10分鐘,評價膜厚 的變化。此時的變化率如表3所示。變化爲〇〜5 %時,表 示耐溶劑性良好’超過5 %時,及因溶解使膜厚降低時, 表示耐溶劑性不良。 實施例2 混合合成例2所得之含共聚物[A_2]的聚合物溶液( -49- 200900857 相當於共聚物[A-2] 100重量份(固形成分)),與成分 [B]的4,4'-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]亞乙基 ]雙酚(1莫耳)與1,2-萘醌二疊氮基-5-磺酸氯化物(2莫 耳)的縮合物(4,4'-[1-[4-[1-[4 -經基苯基]-1-甲基乙基]苯 基]亞乙基]雙酚-1,2-萘醌二疊氮基-5-磺酸酯)20重量份 ,及γ_甲基丙烯醯氧基丙基三甲氧基矽烷5重量份予以混 合,使固形成分濃度成爲31重量%,溶解於丙二醇單甲基 醚乙酸酯後,以孔徑0.5 μπι的微孔過濾器過瀘,調製敏輻 射線性樹脂組成物的溶液(S -2 ),進行評價。結果如表1 〜3所示。 實施例3 混合合成例3所得之含共聚物[Α-3]的聚合物溶液( 相當於共聚物[Α-3]100重量份(固形成分)), 與成分[Β]的4,4,-[1-[4-[1-[4 -羥基苯基]-1-甲基乙基] 苯基]亞乙基]雙酚(1莫耳)與1,2-萘醌二疊氮基-5-磺酸 氯化物(2莫耳)的縮合物(4,4'-[1-[4-[1-[4-羥基苯基]_ 1-甲基乙基]苯基]亞乙基]雙酚-1,2-萘醌二疊氮基-5-磺酸 酯)18重量份,及γ-甲基丙烯醯氧基丙基三甲氧基矽烷5 重量份,使固形成分濃度成爲30重量%,溶解於丙二醇單 甲基醚乙酸酯後,以孔徑0.5 μπι的微孔過濾器過濾’調製 敏輻射線性樹脂組成物的溶液(S-3 ),進行評價。結果 如表1〜3所示。 -50- 200900857 實施例4 混合合成例4所得之含共聚物[A-4]的聚合物溶液( 相當於共聚物[A-4]l〇〇重量份(固形成分)), 與成分[B]的4,4'-[1-[4-[1-[4-羥基苯基]-1-甲基乙基] 苯基]亞乙基]雙酚(1莫耳)與1,2-萘醌二疊氮基-5-磺酸 氯化物(2莫耳)的縮合物(4,4’-[1-[4-[1-[4 -羥基苯基]-1-甲基乙基]苯基]亞乙基]雙酚-1,2 -萘醌二疊氮基-5-磺酸 酯)30重量份,4,4'-[1-[4-[1-[4 -羥基苯基]-1-甲基乙基] 苯基]亞乙基]雙酚5重量份’及γ-甲基丙烯醯氧基丙基三 甲氧基矽烷5重量份予以混合,使固形成分濃度成爲3 J 重量%,溶解於丙二醇單甲基醚乙酸酯後,以孔徑〇. 5 μιη 的微孔過濾器過濾’調製敏輻射線性樹脂組成物的溶液( S-4),進行評價。結果如表1〜3所示。 比較例1 混合比較合成例1所得之含共聚物[A -1 R ]的聚合物溶 液(相當於共聚物[A-lR]l〇〇重量份(固形成分)), 與成分[B]的4,4·-[1-[4-[1-[4-羥基苯基]-1-甲基乙基] 苯基]亞乙基]雙酚(1莫耳)與1,2-萘醌二疊氮基-5-磺酸 氯化物(2莫耳)的縮合物(4,4,-[1-[4-[1-[4 -羥基苯基]-1-甲基乙基]苯基]亞乙基]雙酚·1,2-萘醌二疊氮基-5-磺酸 酯)30重量份,及γ -甲基丙烯醯氧基丙基三甲氧基矽烷5 重量份予以混合’使固形成分濃度成爲3 1重量。/。,溶解於 丙一醇單甲基醚乙酸酯後,以孔徑〇 · 5 μ m的微孔過據器過 -51 - 200900857 濾’調製敏輻射線性樹脂組成物的溶液(s _丨R ),進行評 價。結果如表1〜3所示。 比較例2 混合比較合成例2所得之含共聚物[A-2R]的聚合物溶 液(相當於共聚物[A-2R] 100重量份(固形成分)), 與成分[B]的4,4'-[1-[4-[1-[4-羥基苯基]-1-甲基乙基] 苯基]亞乙基]雙酚(1莫耳)與1,2-萘醌二疊氮基-5-磺酸 氯化物(2莫耳)的縮合物(4,4'-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]亞乙基]雙酚-1,2-萘醌二疊氮基-5-磺酸 酯)18重量份,及γ-甲基丙烯醯氧基丙基三甲氧基矽烷5 重量份予以混合,使固形成分濃度成爲31重量%,溶解於 丙二醇單甲基醚乙酸酯後,以孔徑0.5μηι的微孔過濾器過 濾,調製敏輻射線性樹脂組成物的溶液(S-2R ),進行評 價。結果如表1〜3所示。 表1 解像度 保存穩定性 (黏度變化率) 頃烘烤溫度(。(:) _ 80 90 100 實施例1 〇 〇 〇 1% 實施例2 〇 〇 〇 4% 實施例3 〇 〇 〇 2% 實施例4 〇 〇 〇 2% 比較例1 〇 〇 〇 9% 比較例2 〇 〇 〇 4% -52- 200900857 表2 耐熱尺寸穩定性 (膜厚變化率) 透明性 (透過率) 耐熱變色性 (透過率之變化率) 密接性 實施例1 1% 95% 2% 90 實施例2 3% 95% 2% 100 實施例3 3% 96% 2% 100 實施例4 4% 95% 3% 100 比較例1 4% 91% 5% 80 比較例2 6% 91% 6% 80 表3 感度 (mJ/cm2) 透明性 (透過率) 耐熱透明性 (變化率) 密接性 耐溶劑性 (膜厚變化率) 實施例1 50 95% 3% 90 3% 實施例2 50 95% 2% 100 3% 實施例3 45 95% 4% 100 2% 實施例4 55 94% 1% 100 3% 比較例1 100 86% 7% 80 7% 比較例2 110 86% 7% 80 7% 【圖式簡單說明】 第1圖係表示微透鏡形狀的模式圖。 -53-200900857 IX. Description of the Invention [Technical Field] The present invention relates to a radiation sensitive linear resin composition, an interlayer insulating film and a microlens, and a method of manufacturing the same. [Prior Art] In an electronic component such as a thin film transistor (hereinafter abbreviated as "TFT") type liquid crystal display element or a magnetic head element 'integrated circuit element, solid imaging element, etc. The wiring closet is insulated and provided with an interlayer insulating film. In terms of the material for forming the interlayer insulating film, it is preferable to have a small number of steps and sufficient flatness because the desired pattern shape is to be obtained. Therefore, the linear composition of the sensitive radiation is widely used (refer to Japanese Patent Laid-Open No. 2001-354822). Bulletin No. 2001-343 743). Among the above-mentioned electronic components, for example, a TFT-type liquid crystal display element is produced by forming a transparent electrode film on the above-mentioned interlayer insulating film and further forming a liquid crystal alignment film thereon, and an interlayer insulating film is formed on the transparent electrode film. In the formation step, it is exposed under high temperature conditions, that is, in the photoresist stripping liquid used for forming the electrode pattern, so that it is necessary to have sufficient resistance. In recent years, the TFT-type liquid crystal display device has a large screen, a high-intensity, a high-definition, a high-speed response, and a reduction in thickness, etc., which are high-sensitivity in terms of the composition for forming an interlayer insulating film to be used. 'The interlayer insulating film formed is sought for in the low dielectric constant 'high transmittance, etc.' than the conventional high performance -5 - 200900857. On the other hand, on the other hand, the on-chip imaging optical system of the onchip color filter or the optical material of the optical fiber connector of the facsimile machine, photocopying machine, solid imaging device, etc., is used with a lens diameter of about 3 to ΙΟΟμηη. The microlenses 'or regularly align the microlens arrays of the microlenses. When forming a microlens or a microlens array, it is known that after forming a photoresist pattern corresponding to a lens, it is melted by heat treatment, and it is used as a lens as it is, or a molten lens pattern is used as light. The cover is a method of dry-etching a 'transfer lens shape on the bottom layer, and the like. In the case of forming the lens pattern, a sensitive radiation linear resin composition is widely used (refer to Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. However, as the element formed by the above-described microlens or microlens array, thereafter, in order to remove various insulating films on the bonding pad of the wiring forming portion, there is a coating flattening film and a photoresist film for engraving Exposure is performed using a desired mask, development is performed to remove the etching photoresist of the joint portion, and then the planarization film or various insulating films are removed by etching to expose the step of bonding the pad portions. Therefore, in the microlens or microlens array, in the step of forming the planarizing film and etching the photoresist coating film and in the etching step, it is necessary to have solvent resistance or heat resistance. The sensitive radiation linear resin composition used for forming such a microlens is highly sensitive, and the microlens thus formed has a desired radius of curvature, and has high heat resistance and high transmittance. Moreover, the resulting interlayer insulating film or microlens 'in the developing step when forming the same time' development time is only a little more than the optimum time -6 - 200900857 is too much 'this time' between the pattern and the substrate The developer is soaked and becomes easily peeled off. Therefore, it is necessary to strictly control the development time, which affects the productivity of the product. In other words, when forming an interlayer insulating film or a microlens from a sensitive radiation linear resin composition, the composition must be high in sensitivity, and in the developing step of the forming step, even if the development time is longer than the set time. In the case of 'there is also good adhesion of the pattern without peeling off, and the interlayer insulating film thus formed must have high heat resistance, high solvent resistance, 'low dielectric constant, high transmittance, high adhesion. Etc. On the other hand, when forming a microlens, the microlens must have a good melt shape (desired radius of curvature), high heat resistance, high solvent resistance, high transmittance, but sensitivity to meet this requirement. Radiation linear resin compositions have been unknown to the prior art. Disclosure of the Invention The present invention has been made on the basis of the above reasons. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a high-sensitivity radiation sensitivity, a development limit having a good pattern shape even if an optimum development time is exceeded in a development step, and a linear radiation sensitivity of a pattern-like film excellent in adhesion. Composition. Another object of the present invention is to provide an interlayer insulating film which can form high heat resistance, high solvent resistance, high transmittance, low dielectric constant, and high adhesion when used for forming an interlayer insulating film, and is used for formation. In the case of a microlens, a sensitive radiation linear resin composition of a microlens having a high transmittance and a good melt shape can be formed. Further, another object of the present invention is to provide a method of forming an interlayer insulating film and a microlens using the above-mentioned radiation sensitive resin composition. Further, another object of the present invention is to provide an interlayer insulating film and a microlens formed by the method of the present invention. The above objects and advantages of the present invention will be further clarified by the following description. The first object of the present invention is to provide an [A] (al) selected from the group consisting of unsaturated carboxylic acids and At least one of a group of saturated carboxylic anhydrides (hereinafter referred to as "compound (a 1 )"), (a2) an unsaturated compound containing at least one of an epoxy group and an oxetanyl group (hereinafter referred to as " Compound (a2)"), (a3) is at least one selected from the group consisting of acryloylmorpholine and methacrylomethylpropenylmorpholine (hereinafter referred to as "compound (a3)"), (a4) Any of the above compounds (al), (a2) and (a3) and selected from the group consisting of alkyl methacrylates, cyclic alkyl methacrylates, alkyl acrylates, cyclic alkyl acrylates, Aryl acrylate, aryl methacrylate, unsaturated didecanoic acid, transmethyl methacrylate "hydroxy acrylate, bicyclic unsaturated compound, maleimide compound ' a saturated aromatic compound, a conjugated diene, an unsaturated compound having a tetrahydrofuran skeleton, Unsaturated compound of furan skeleton, unsaturated compound with tetrahydrofuran skeleton, unsaturated compound with porphyrin skeleton, acrylonitrile 'methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methyl a copolymer of at least one other unsaturated group of acrylamide and vinyl acetate, and a copolymer of a compound (hereinafter referred to as "compound (a4)") (hereinafter referred to as "copolymer [A]"), and [B] The 1,2-quinonediazide compound (hereinafter referred to as "[b] component") is a characteristic radiation sensitive linear resin composition. The second object of the present invention is to provide a method for forming an interlayer insulating film or a microlens characterized by the steps described below in the order described below. (1) a step of forming a coating film of the above-mentioned radiation-sensitive linear composition on a substrate, (2) a step of irradiating at least a part of the coating film with radiation, (3) a developing step, and (4) a heating step. Further, the third object of the present invention is to achieve the object and the advantage of the present invention by the interlayer insulating film or the microlens formed by the above method. BEST MODE FOR CARRYING OUT THE INVENTION The radiation sensitive linear resin composition of the present invention is described in detail below. The copolymer [A] copolymer [A]' can be free-radically polymerized by the compound (a1), the compound (a3), the compound (a3) and the compound (a4) in the presence of a polymerization initiator in a solvent. Manufacturing. The compound (al) is at least one selected from the group consisting of a radically polymerizable unsaturated carboxylic acid-9-200900857 and an unsaturated carboxylic anhydride, and examples thereof include an anhydride of a monocarboxylic acid, a dicarboxylic acid, and a dicarboxylic acid. A mono(meth)acryloxyalkylene ester of a polyvalent carboxylic acid, a mono(meth)acrylate of a polymer having a carboxyl group and a hydroxyl group at both terminals, a polycyclic compound having a carboxyl group, an anhydride thereof, and the like. In the specific examples, the monocarboxylic acid may, for example, be acrylic acid, methacrylic acid or crotonic acid; and the dicarboxylic acid may, for example, maleic acid, fumaric acid or citraconic acid. And the acid anhydride of the dicarboxylic acid, and the anhydride of the compound exemplified as the above dicarboxylic acid; and the mono[(meth)acryloxyalkylalkyl] ester of a polyvalent carboxylic acid, For example, succinic acid mono [2-(methyl) propylene oxime ethyl], decanoic acid mono [2-(methyl) propylene oxiranyl], etc.; a polymer having a carboxyl group and a hydroxyl group at both ends ( The methyl methacrylate compound may, for example, be ω-carboxypolycaprolactone mono(meth)acrylate; and the polycyclic compound having a carboxyl group and an anhydride thereof may, for example, be 5-indene bicyclo[2.2. 1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene,5.carboxy-5·methylbicyclo[2_2_1]hept-2-ene, 5-carboxyl_5_ Ethylbicyclo[2_2.1]heptane-2_dilute, 5-carboxy-6-methylbicyclo[2_2.1]hept-2-ene, 5-carboxy-6-ethylbicyclo[2.21]hept-2- Alkene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride, and the like. Among these, it is preferred to use an acid anhydride of a monocarboxylic acid or a dicarboxylic acid, and to use a solution of acrylic acid, methacrylic acid, and cis-butene in terms of copolymerization reactivity, solubility in an aqueous alkali solution, and ease of availability. Diacid anhydride is particularly preferred. These compounds (al ) may be used singly or in combination. -10- 200900857 The copolymer [A ] used in the present invention is based on the constituent units derived from the compound (a 1 ) and the weight derived from the compounds (al ), ( a2 ), ( a3 ) and (a4). The total of the coating units is preferably from 1 to 80% by weight, and particularly preferably from 5 to 40% by weight. When the constituent unit is less than 1% by weight, the adhesion between the obtained interlayer insulating film or the microlens tends to be lowered. On the other hand, when the amount of the constituent unit exceeds 80% by weight, the storage stability of the radiation sensitive linear resin composition is obtained. There is a tendency to decrease. The compound (a2) is an unsaturated compound containing at least one of a radical polymerizable epoxy group and an oxetane group. Examples of the epoxy group-containing unsaturated compound include glycidyl acrylate, glycidyl methacrylate, ct-glycidyl ethacrylate, α-η-propyl propylene glycol acrylate, α. -η-butyl butyl acrylate, -3,4-epoxybutyl acrylate, -3,4-epoxybutyl methacrylate, acetyl-6,7-epoxyheptyl ester, A 6,7-epoxyheptyl acrylate, α-ethyl acrylate-6,7-epoxyheptyl ester, fluorene-vinylbenzyl epoxypropyl ether, m-vinylbenzyl epoxy propyl ether , P-vinylbenzyl epoxypropyl ether and the like. Among these, in terms of copolymerization reactivity and heat resistance of the obtained interlayer insulating film or microlens, and improvement of surface hardness, use of glycidyl methacrylate, methacrylic acid-6,7-epoxy Hepeptyl ester, 0-vinylbenzyl epoxypropyl ether, m-vinylbenzyl epoxypropyl ether, P-vinylbenzyl epoxypropyl ether, 3,4-epoxycyclohexyl methacrylate It is better. The epoxy group-containing unsaturated compound may, for example, be 3-(methacryloyloxymethyl)oxetane, 3-(methacryloyloxymethyl)-3-ethyloxa Cyclobutane, 3-(methacryloyloxymethyl)-2-methyloxy-11 - 200900857 Heterocyclobutane, 3-(methacryloyloxymethyl)-2-trifluoromethyl Oxetane, 3-(methacryloyloxymethyl)-2-pentafluoroethyloxetane, 3-(methacryloyloxymethyl)-2-phenyloxalate Cyclobutane ' 3-(methylpropanyloxymethyl)-2,2-difluorooxetane, 3-(methylpropenyloxymethyl)-2,2,4- Trifluorooxetane, 3-(methacryloyloxymethyl)-2,2,4,4-tetrafluorooxetane, 3-(methacryloyloxyethyl)oxy Heterocyclic butane, 3-(methacryloyloxyethyl)-3-ethyloxetane' 2-ethyl-3-(methylpropionyloxyethyl) oxetane, 3-(methacryloyloxyethyl)-2-trifluoromethyloxetane, 3-(methylpropanoic acid oxyethyl)-2 -pentafluoroethyl oxetane ' 3-(methacryloyloxyethyl)-2-phenyloxa Butane, 2,2-difluoro-3-(methacryloyloxyethyl)oxetane, 3-(methacryloyloxyethyl)-2,2,4-trifluoroox Heterocyclic butane, 3-(methacryloyloxyethyl)-2,2,4,4-tetrafluorooxetane and the like. These compounds (a2) may be used singly or in combination. The copolymer [A] used in the present invention is a combination of the constituent units derived from the compound (a2) and the repeating units derived from the compounds (al), (a2), (a3) and (a4), It is preferably contained in an amount of 5 to 70% by weight, particularly preferably 10 to 60% by weight. When the amount is less than 5% by weight, the heat-resistant and curable property of the radiation-sensitive linear resin composition tends to lower the surface height. On the other hand, when it exceeds 70% by weight, the storage of the radiation-sensitive linear resin composition is stable. Sex has a tendency to decrease. The compound (a3) is acrylonitrile-based and/or methacrylonitrile-based. -12- 200900857 Among the compounds (a3), acryloylmorpholine is copolymerized with an acrylate other than the other unsaturated compound represented by the compound (a4), whereby the conversion ratio can be improved. Specific examples of such examples include methyl propionate, ethyl acrylate, η-propyl acrylate, i-propyl acrylate, η-butyl acrylate, sec-butyl acrylate, T-butyl acrylate, cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0''6] decane-8-yl acrylate (hereinafter referred to as "dicyclopentyl acrylate" ), tricyclo[5.2.1.02,6]decane-8-yloxyethyl acrylate, isodecyl acrylate, phenyl acrylate, benzyl acrylate, tetrahydrofurfuryl acrylate, 3-propene oxime Oxygen tetrahydrofuran-2-one, mercapto acrylate, and the like. The copolymer [Α] used in the present invention is a constituent unit derived from the compound (a 3 ) based on the total of the repeating units derived from the compounds (al), (a2), (a3) and (a4). It is preferably 1 to 50% by weight, particularly preferably 1 to 30% by weight. The constituent unit is more than 50% by weight. /. At the time, the storage stability of the sensitive radiation linear resin composition tends to be lowered. The compound (a4) is an unsaturated compound having a radical polymerizable property, followed by an alkyl methacrylate, a cyclic alkyl methacrylate, an alkyl acrylate, a cyclic alkyl acrylate, an aryl acrylate. , aryl methacrylate, unsaturated dicarboxylic acid diester, hydroxy methacrylate, hydroxy acrylate, bicyclic unsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated diene An unsaturated compound having a tetrahydrofuran skeleton, a furan skeleton, a tetrahydropyran skeleton or a permeose skeleton or other unsaturated compound. -13- 200900857 The alkyl methacrylate may, for example, be methyl methacrylate, ethyl methacrylate, η-butyl methacrylate, sec_butyl methacrylate, t-butyl methacrylate, 2 -ethylhexyl methacrylate vinegar 'isodecyl methacrylate vinegar' η - lauryl methyl propyl vinegar, thirteen methacrylate, η - stearyl methacrylate, etc.; The cyclic ester of methacrylic acid may, for example, be cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate 'tricyclic [5.2.1.02,6] brothel-8-yl methacrylate ( Hereinafter referred to as "dicyclopentyl methacrylate"), tricyclo[5.2.丨.02'6]decane-8-yloxyethyl methacrylate, isodecyl methacrylate, etc.; acrylic acid As the alkyl ester, methacrylate, ethyl acrylate, η-propyl acrylate, i-propyl acrylate, η-butyl acrylate, sec-butyl acrylate, t-butyl may, for example, be mentioned. Acrylate or the like; a cyclic ester of acrylic acid, which may, for example, be cyclohexyl acrylate or 2-methylcyclohexyl acrylate. Ring [5.2.1.02,6]decane-8-yl acrylate (hereinafter referred to as "dicyclopentyl acrylate") 'tricyclo[5.2.1.02,6]decane-8-yloxyethyl acrylate 'Iteronyl acrylate or the like; aryl acrylate, phenyl acrylate 'benzyl acrylate, etc.; aryl methacrylate' exemplified by phenyl methacrylate, benzyl methyl Acrylate or the like; in terms of the unsaturated dicarboxylic acid diester, diethyl maleate, diethyl fumarate, diethyl itaconate, etc.; and hydroxymethacrylate; For example, hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate '3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2, 3-dihydroxypropyl methacrylate, 2-methylpropenyloxyethyl glucoside, 4-hydroxyphenyl methacrylate-14-200900857, etc.; hydroxy acrylate Dilute ester, 2-hydroxyethyl acrylate '3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate 'diethylene Monoacrylate '2,3-dihydroxypropyl acrylate, 2-propanoid decyloxyethyl glucoside, 4-phenylphenyl propyl acrylate, etc.; bicyclic unsaturated compound, exemplified by bicyclo[2.21 Geng_2_can, methylbicyclo[2.2.1]hept-2-ene, 5-ethylbicyclo[2.2.1]hept-2-ene, 5-carbylbicyclo[2.2.1]hept_2 -ene,5-carboxybicyclo[2.2.1]heptane-2_dilute,5-carbylmethylbicyclo[2.2.1]hept-2-ene,5-(2.hydroxyethyl)bicyclo[2.21]g -2-ene '% methoxybicyclo[2.2.1]hept-2-ene, 5-ethoxybicyclo[2.2.1]hept-2-ene' 5,6-dihydroxybicyclo[2_2.1] Geng-2_ene, 5,6-dioxabicyclo[2.2.1]hept-2-ene, 5,6-di(hydroxymethyl)bicyclo[221]heptene-2_, 5,6-di (2 -hydroxyethyl)bicyclo[2.2.1]hept-2-ene, 5,6-dimethoxybicyclo[2.2.1]hept-2-ene, 5,6-diethoxybicyclo[2 2丨Geng_2_thin' 5-hydroxy-5-methylbicyclo[2·2·ΐ]hept-2-ene, 5-hydroxy-5-ethylbicyclo[2·2·1]hept-2-ene ,5·carboxy-5-methylbicyclo[2.2_1]hept-2-ene,5_residue_5_ethylbicyclo[2.2.1]hept-2-ene, 5-hydroxymethyl-5-methylbicyclo[221 Hept-2-ene ' 5-carboxy-6-methylbicyclo[2.2.1]hept-2-ene, 5 _Carboxy-6-ethylbicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride (himic anhydride), 5-t-butoxycarbonyl Bicyclo [2.2.1] hept-2-ene, 5-cyclohexyloxy orthobicyclo[2.2.1]hept-2-ene, 5-phenoxycarbonylbicyclo[2.2.1]hept-2-ene, 5, 6_ bis(t-butoxycarbonyl)bicyclo[2.2.1]hept-2-ene' 5,6-di(cyclohexyloxycarbonyl)bicyclo[2.2.1]hept-2-ene; The quinone imine compound may, for example, be N-phenyl cis-butane diimide, N-cyclohexylmethyleneimine, N-benzylbutylene hydrazine-15- 200900857 imine, N - (4-hydroxyphenyl) maleimide, N-(4-hydroxybenzyl) maleimide, N-succinimide-3 - maleimide Benzoate, N-succinimide-4-butyleneimine butyrate, N-succinimide-6-m-butyleneimine hexanoate, N-Amber醯imino-3-butylimide imine propionate, N-(9-acridine) maleimide, etc.; unsaturated aromatic compound, styrene, α - Methylstyrene, m-methylstyrene, ρ-methylstyrene, vinyl toluene, _methoxy styrene or the like; conjugated diene, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, etc.; tetrahydrofuran skeleton The unsaturated compound may, for example, be tetrahydroindenyl (meth) acrylate, 2-methylpropenyl oxy-propionic acid tetrahydrofurfuryl ester, 3-(methyl) propylene decyloxytetrahydrofuran-2 - a ketone or the like; as an unsaturated compound having a furan skeleton, 2-methyl-5-(3-furyl)-1-penten-3-one, decyl (meth) acrylate, 1- Furan-2-butyl-3-en-2-one, 1-furan-2-butyl-3-methoxy-3-en-2-one, 6-(2-furyl)-2- 1-hexen-3-one, 6-furan-2-yl-hex-1-en-3-one, 2-furan-2-yl--methyl-ethyl acrylate, 6-(2-furan (6-methyl-1-hepten-3-one, etc.; and tetrahydropyran-2-yl)methylmethyl acrylate Vinegar ' 2,6 -monomethyl-8-(tetrazinium-2-yloxy)-oct-1-en-3-one, 2-tetrahydropyran-2-yl methacrylate, 1 -(tetrahydropyrano-2-oxy)-butyl-3-en-2-one; As the unsaturated compound, 4-(1,4-dioxa-5-carbonyl(οχο)-6-heptenyl)-6-methyl-2-di D-pyrone (pyrrone) can be exemplified. 4-(1,5-Dioxa-6-carbonyl--16-200900857 7-octenyl)-6-methyl-2-dipyrrolidone (pyrrone) and the like. Other unsaturated compounds are acrylonitrile 'methacrylonitrile' chloroethylene 'vinylene chloride, acrylamide, methacrylamide or ethyl acetate. Among these, it is preferred to use an alkyl methacrylate, a cyclic alkyl methacrylate, a bicyclic unsaturated compound, or an unsaturated aromatic compound conjugated diene, particularly in terms of copolymerization reactivity and alkali From the viewpoint of the solubility of the aqueous solution, styrene, t-butyl methacrylate 'tricyclic [5.2.1.02 = 6] decane-8-yl methacrylate, p-methoxystyrene, 2 is used. -Methylcyclohexyl acrylate, 1,3-butadiene, bicyclo[2.2.1]hept-2-ene'tetrahydroindenyl (meth) acrylate, polyethylene glycol (n = 2 to 10) Mono(meth)acrylate, 3-(methyl)propenyloxytetrahydrofuran-2-one' 1-(tetrachloropyran-2-oxy)-butyl-3-dil-2-anthracene (Methyl) acrylate is more preferred. These compounds (a4) may be used singly or in combination. The copolymer [A] used in the present invention is preferably a constituent unit derived from the compound (a4) based on the total of the repeating units derived from the compounds (al), (a2), (a3) and (a4). It is contained in an amount of from 1 to 80% by weight, particularly preferably from 20 to 70% by weight. When the amount is less than 10% by weight, the heat resistance or surface hardness of the obtained interlayer insulating film or microlens tends to decrease. On the other hand, when the amount of the constituent unit exceeds 80% by weight, the radiation sensitive linear resin composition The storage stability tends to decrease. The copolymer [A] used in the present invention, preferably a specific example, may be methacrylic acid/tricyclo[5.2.1.〇2,6]decane-8-ylmethacrylate/methyl Glycidyl acrylate/2-methylcyclohexyl acrylate/N-(3,5-di-17- 200900857 methyl-4-hydroxybenzyl)methacrylamide/propenyl ruthenium ruthenium copolymer, Methacrylic acid/glycidyl methacrylate/丨_(tetrahydropyran·2_oxy)-butyl-3-en-2-one/oxime-cyclohexylmethyleneimine/anthracene- Methoxystyrene/3-ethyl-3-methylpropenyloxymethyloxetane/Ν-(3,5-dimethyl-4-hydroxybenzyl)methacrylamide/ Propylene decylmorpholine copolymer, methacrylic acid / tricyclo [5.2.1.02'6] decane-8-yl methacrylate / styrene / fluorene - phenyl succinimide / Ν - ( 4-hydroxyphenyl)methacrylamide/propenylmorpholine copolymer, methacrylic acid/glycidyl methacrylate/tricyclo[5.2.1.0''6]decane-8-ylmethacrylic acid Ester/η-lauryl methacrylate/3-methylpropenyloxytetrahydrofuran-2-one/indole-(4-hydroxyphenyl)methacrylamide/acrylonitrile Morpholine copolymer, methacrylic acid/glycidyl methacrylate/styrene/2_methylcyclohexyl acrylate/1-(tetrahydropyran-2-oxo)-butyl-3-ene-2 -keto/4-hydroxybenzyl methacrylate/acryloylmorpholine copolymer, methacrylic acid/glycidyl methacrylate/tricyclo[5.2.1 ·02'6]decane-8-yl Methacrylate / ρ-methoxystyrene / 4-hydroxybenzyl methacrylate / propylene hydrazinomorpholine copolymer, methacrylic acid / tricyclo [5.2.1.0''6] decane-8-yl Methacrylate/glycidyl methacrylate/styrene/ρ-vinylbenzylepoxypropyl ether/tetrahydrofurfuryl methacrylate/4-hydroxyphenyl methacrylate/acrylonitrile Porphyrin copolymer, methacrylic acid/glycidyl methacrylate/Ν-cyclohexyl maleimide/α-methyl-ρ- via basic B/tetraosylmethyl propyl vinegar / propylene-based morpholine copolymer, methacrylic acid / glycidyl methacrylate / Ν - cyclohexyl maleimide / 3-ethyl-3-methylpropenyl oxymethyl oxygen Heterocyclic butane/3-methylpropenyloxytetrahydrofuran-2-one/tetrahydrofurfurylmethylpropane Acid ester-18- 200900857 /4-hydroxyphenyl methacrylate / propylene decylmorpholine copolymer, methacrylic acid / glycidyl methacrylate / 3-ethyl-3-methyl propylene sulfhydryl Methyl oxetane/tetrahydrofurfuryl methacrylate/N-phenyl-butenyl-imine/α-methyl-p-based basic ethyl propylene/acrylic acid-based copolymer Methyl acrylate/glycidyl methacrylate / 3-ethyl-3-methylpropenyl methoxymethyl oxetane / tricyclo [5.2.1.02'6] decane-8-yl Methacrylate / N_cyclohexyl maleimide / η-lauryl methacrylate / α_methyl-p_ phenyl styrene copolymer / acryl morphomorpholine and the like. The polystyrene-equivalent weight average molecular weight (hereinafter referred to as "Mw") of the copolymer [A] used in the present invention is preferably 2 ><1〇3~ More preferably 5χ103~5χ104. When the Mw is less than 2Μ03, the development limit may be insufficient, and the residual film ratio of the obtained film may be lowered, and the pattern shape of the obtained film or the microlens may be poor, and heat resistance may be poor. When g exceeds 1 X 1 05, the sensitivity is lowered and the shape of the pattern is not good. Further, the molecular weight distribution (hereinafter referred to as "Mw/Mn") is preferably 5. 0 below 'better is 3. 0 is below. If Mw/Mn exceeds 5. When 0, the pattern of the interlayer insulating film or the microlens is not good. The sensitive radiation linear resin composition containing the above copolymer [A] has no development residue at the time of development, and can easily form a set pattern shape. [A] copolymer, for example, by using an unsaturated compound (al), an unsaturated compound (a2), an unsaturated compound (a3) and an unsaturated compound (a4) in a suitable solvent, a radical polymerization initiator In the presence of, it is synthesized by synthesis. The solvent used in the polymerization may, for example, be an alcohol, an ether, a glycol ether-19-200900857, an ethylene glycol alkyl ether acetate, a diethylene glycol alkyl ether, a propylene glycol monoalkyl ether or a propylene glycol alkane. Ethyl ether acetate, propylene glycol alkyl ether propionate, aromatic hydrocarbon, ketone, ester, and the like. Specific examples of the solvent include methanol, ethanol, benzyl alcohol, 2-phenylethanol '3-phenyl-1-propanol, and the like, and ether may, for example, tetrahydrofuran or the like; The aspect may, for example, be ethylene glycol monomethyl ether, ethylene glycol monoethyl ether or the like; and the ethylene glycol alkyl ether acetate may, for example, be ethylene glycol methyl ether acetate 'ethylene glycol B Ethyl ether acetate, ethylene glycol η-propyl ether acetate, ethylene glycol η_butyl ether acetate, etc.; diethylene glycol alkyl ether, exemplified by diethylene glycol monomethyl ether , diethylene glycol monoethyl ether, diethylene glycol dimethyl ether 'diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, etc.; propylene glycol monoalkyl ether, propylene glycol can be exemplified Monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-η-propyl ether, propylene glycol mono-η-butyl ether, etc.; propylene glycol alkyl ether acetate, propylene glycol methyl ether acetate can be exemplified Propylene glycol ethyl ether acetate, propylene glycol η-propyl ether acetate, propylene glycol η-butyl ether acetate, etc.; propylene glycol alkyl ether propionate, propylene glycol methyl ether propionate Propylene glycol ethyl ether propionate, propylene glycol η-propyl ether propionate, propylene glycol η-butyl ether propionate, etc.; aromatic hydrocarbons, for example, toluene, xylene, etc.; Ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc.; esters, exemplified by methyl acetate, ethyl acetate, propyl acetate, butyl acetate, 2-hydroxypropyl Ethyl acetate, methyl 2-hydroxy-2-methylpropanoate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl acetate, methyl lactate , ethyl lactate, propyl lactate, butyl lactic acid, -20- 200900857 3 - methyl propionate, ethyl 3-propionate, propyl 3-propyl propionate, 3-hydroxypropionic acid Ester, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate 'ethyl methoxyacetate' propyl methoxyacetate, butyl methoxyacetate 'Ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, propyl propoxyacetate butyl propoxyacetate, Methyl butoxyacetate Ethyl butoxyacetate, propyl butoxyacetate, butyl butoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate , butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate , 2_methyl butoxypropionate ethyl 2-butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, Ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, Propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, propyl 3-propoxypropionate, Butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, butyl 3-butoxypropionate, etc. Vinegar. Among them, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate is preferred, wherein diethylene glycol dimethyl ether, diethyl Glycol ethyl methyl ether, propylene glycol methyl ether, and propylene glycol methyl ether acetate are particularly preferred. As the polymerization initiator to be used in the production of the copolymer [A], a known radical polymerization initiator can be generally used. It may, for example, be 2,2'-azobisisodin-21 - 200900857 nitrile, 2,2'-azobis-(2,4-dimethylvaleronitrile), 2,2'-azobis-( An azo compound such as 4-methoxy-2,4-dimethylvaleronitrile; phenylhydrazine peroxide, lauryl peroxide, t-butyl peroxytrimethyl acetate, 1, An organic peroxide such as 1'-bis-(t-butylperoxy)cyclohexane; and hydrogen peroxide. When a peroxide radical polymerization initiator is used, a peroxide may be used together with a reducing agent as a redox initiator. In the production of the copolymer [A], a molecular weight modifier can be used to adjust the molecular weight. Specific examples thereof include halogenated hydrocarbons such as chloroform and carbon tetrabromide; η-hexyl mercaptan, η-octyl mercaptan, η-dodecyl mercaptan, and tertiary tridecyl mercaptan, and thio a thiol such as glycolic acid; a xanthogen sulfide, a xanthogen disulfide disulfide or the like; xanthogen; - a methyl styrene dimer or the like. [Β] Component The 1,2-quinonediazide compound of the [Β] component used in the present invention may, for example, be 1,2-benzoquinonediazidesulfonate or 1,2-naphthoquinone. Azidosulfonate, 1,2-benzoquinonediazidesulfonate, 1,2-naphthoquinonediazidesulfonate, and the like. As such specific examples, 2,3,4-trihydroxydiphenyl ketone-1,2-naphthoquinone azide-4-sulfonate, 2,3,4-trihydroxydiphenyl ketone can be exemplified. -1,2-naphthoquinonediazide-5-sulfonate, 2,3,4-trihydroxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2, 3,4-trihydroxydiphenyl ketone-1,2-naphthoquinonediazide-7-sulfonate, 2,3,4-trihydroxydiphenyl ketone-1,2-naphthoquinonediazide Base-8-sulfonic acid-22- 200900857 ester, 2,4,6-trihydroxydiphenyl ketone-1,2-naphthoquinonediazide-4-sulfonate, 2. 4. 6-Trihydroxydiphenyl ketone-1,2-naphthoquinonediazide-5-sulfonate, 2. 4. 6-Trihydroxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2. 4. 6-trihydroxydiphenyl ketone-1,2-naphthoquinonediazide-7-sulfonate, 2,4,6-trihydroxydiphenyl ketone-1,2-naphthoquinonediazide- 1,2-naphthoquinonediazide sulfonate of trihydroxydiphenyl ketone such as 8-sulfonate; 2,2',4,4'-tetrahydroxydiphenyl ketone-1,2-naphthalene Bis-azido-4-sulfonate, 2,2',4,4'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-5-sulfonate, 2,2' ,4,4'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2,2',4,4'-tetrahydroxydiphenyl ketone-1,2 -naphthoquinonediazide-7-sulfonate, 2,2',4,4'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-8-sulfonate, 2, 3,4,3'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-4-sulfonate, 2,3,4,3'-tetrahydroxydiphenyl ketone-1,2 -naphthoquinonediazide-5-sulfonate, 2,3,4,3'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2,3 ,4,3,tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-7-sulfonate, 2,3,4,3'-tetrahydroxydiphenyl ketone-1,2-naphthalene醌Diazide-8-sulfonate, 2,3,4,4'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-4-sulfonate, 2,3,4 , 4' - tetrahydroxy two Ketone-1,2-naphthoquinonediazide-5-sulfonate, 2,3,4,4'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate Acid ester, 2,3,4,4'-tetrahydroxydiphenyl ketone-1,2-naphthoquinonediazide-7-sulfonate, 2,3,4,4'-tetrahydroxydiphenyl Keto-1,2-naphthoquinonediazide-8-sulfonate, 2,3,4,2^tetrahydroxy-4'-methyldiphenyl ketone-1,2-naphthoquinonediazide 4-sulfonate, 2,3,4,2'-tetrahydroxy-4'-methyldiphenyl ketone-1,2-naphthoquinonediazide-5-sulfonate, 2,3, 4,2'-tetrahydroxy-4'-methyldiphenyl ketone-1,2-naphthoquinone-23- 200900857 diazido-6-sulfonate, 2,3,4,2'-tetrahydroxyl -41-Methyldiphenyl ketone-1,2-naphthoquinonediazide-7-sulfonate, 2,3,4,2'-tetrahydroxy-4'-methyldiphenyl ketone-1 , 2-naphthoquinonediazide-8-sulfonate, 2,3,4,4'-tetrahydroxy-3'-methoxydiphenyl ketone-1,2-naphthoquinonediazide- 4-sulfonate, 2,3,4,4'-tetrahydroxy-3'-methoxydiphenyl ketone-1,2-naphthoquinonediazide-5-sulfonate, 2,3, 4,4'-tetrahydroxy-3'-methoxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2,3,4,4'-tetrahydroxy-3' -Methoxydiphenyl ketone-1,2-naphthoquinonediazide-7-sulfonate Tetrahydroxydiphenyl ketone of ester, 2,3,4,4, tetrahydroxy-3'-methoxydiphenyl ketone-1,2-naphthoquinonediazide-8-sulfonate 1,2-naphthoquinonediazidesulfonate; 2,3,4,2',6'-pentahydroxydiphenyl ketone-1,2-naphthoquinonediazide-4-sulfonate, 2,3,4,2',6'-pentahydroxydiphenyl ketone-1,2-naphthoquinonediazide-5-sulfonate, 2,3,4,2',6'-pentahydroxy Diphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2,3,4,2',6'-pentahydroxydiphenyl ketone-1,2-naphthoquinonediazide Penta-7-sulfonate, pentahydroxydiphenyl ketone of 2,3,4,2^6^pentahydroxydiphenyl ketone-1,2-naphthoquinonediazide-8-sulfonate 1,2-naphthoquinonediazidesulfonate; 2,4,6,3',4',5'-hexahydroxydiphenyl ketone-1,2-naphthoquinonediazide-4-sulfonate Acid ester, 2,4,6,3',4',5'-hexahydroxydiphenyl ketone-1,2-naphthoquinonediazide-5-sulfonate, 2,4,6,3' , 4',5'-hexahydroxydiphenyl ketone-1,2-naphthoquinonediazide-6-sulfonate, 2,4,6,3',4',5'-hexahydroxydiphenyl Ketone-1,2-naphthoquinonediazide-7-sulfonate, 2,4,6^,4^-hexahydroxydiphenyl ketone-1,2-naphthoquinonediazide-8- Sulfonate, 3,4,5,3',4',5'-hexahydroxy Diphenyl ketone-1,2-naphthoquinonediazide-4-sulfonate, 3,4,5,3',41,5'-hexahydroxydiphenyl ketone-1,2-naphthoquinone Azido-5-sulfonate, 3,4,5,3',4',5'-hexahydroxydiphenyl ketone-1,2- -24- 200900857 naphthoquinonediazide-6-sulfonate Acid ester, 3,4,5,3',4',5,hexahydroxydiphenyl ketone - 1. 2-naphthoquinonediazide-7-sulfonate, 3,4,5,3',4',5'-hexahydroxydiphenyl ketone-1,2-naphthoquinonediazide-8- 1. A sulfonate or the like of hexahydroxydiphenyl ketone. 2-naphthoquinonediazide sulfonate; bis(2,4-dihydroxyphenyl)methane- 1. 2-naphthoquinonediazide-4-sulfonate, bis(2,4-dihydroxyphenyl)methane- 1. 2-naphthoquinonediazide-5-sulfonate, bis(2,4-dihydroxyphenyl)methane- 1. 2-naphthoquinonediazide-6-sulfonate, bis(2,4-dihydroxyphenyl)methane- 1. 2-naphthoquinonediazide-7-sulfonate, bis(2,4-dihydroxyphenyl)methane-1,2-naphthoquinonediazide-8-sulfonate, bis(p-hydroxyl) Phenyl)methane-1,2-naphthoquinonediazide-4-sulfonate, bis(p-hydroxyphenyl)methane-1,2-naphthoquinonediazide-5-sulfonate, double (p-hydroxyphenyl)methane-1,2-naphthoquinonediazide-6-sulfonate, bis(p-hydroxyphenyl)methane-1,2-naphthoquinonediazide-7-sulfonate Acid ester, bis(p-hydroxyphenyl)methane-1,2-naphthoquinonediazide-8-sulfonate, tris(p-hydroxyphenyl)methane-1,2-naphthoquinonediazide 4-sulfonate, tris(P-hydroxyphenyl)methane-1,2-naphthoquinonediazide-5-sulfonate, tris(P-hydroxyphenyl)methane-1,2-naphthoquinone Diazido-6-sulfonate, tris(P-hydroxyphenyl)methane-1,2-naphthoquinonediazide-7-sulfonate, tris(P-hydroxyphenyl)methane-1, 2-naphthoquinonediazide-8-sulfonate, 1,1,1-tris(P-hydroxyphenyl)ethane-1,2-naphthoquinonediazide-4-sulfonate, 1 1,1-tris(P-hydroxyphenyl)ethane-1,2-naphthoquinonediazide-5-sulfonate, 1,1,1-tris(P-hydroxyphenyl)ethane- 1,2-naphthoquinonediazide -6-sulfonate, 1,1,1-tris(p-hydroxyphenyl)ethane-1,2-naphthoquinonediazide-7-sulfonate, 1,1,1-tri (p -hydroxyphenyl)ethane-1,2-naphthoquinonediazide-8-sulfonate, bis(2,3,4-trihydroxyphenyl)methane-1,2-naphthoquinone di-25- 200900857 Azido-4-sulfonate, bis(2,3,4-trihydroxyphenyl)methane-1,2-naphthoquinonediazide-5-sulfonate, double (2,3,4 -trihydroxyphenyl)methane-1,2-naphthoquinonediazide-6-sulfonate, bis(2,3,4-trihydroxyphenyl)methane-1,2-naphthoquinonediazide -7-sulfonate, bis(2,3,4-trihydroxyphenyl)methane- 1. 2-naphthoquinonediazide-8-sulfonate, 2,2-bis(2,3,4-trihydroxyphenyl)propane-1,2-naphthoquinonediazide-4-sulfonate , 2,2-bis(2,3,4-trihydroxyphenyl)propane-1,2-naphthoquinonediazide-5-sulfonate, 2,2-bis(2,3,4-tri) Hydroxyphenyl)propane-1,2-naphthoquinonediazide-6-sulfonate, 2,2-bis(2,3,4-trihydroxyphenyl)propane-1,2-naphthoquinone Nitrogen-7-sulfonate, 2. 2-bis(2,3,4-trihydroxyphenyl)propane-1,2-naphthoquinonediazide-8-sulfonate, 1,1,3-tris(2,5-dimethyl- 4-hydroxyphenyl)-3-phenylpropane-1,2-naphthoquinonediazide-4-sulfonate, 1,1,3-tris(2,5-dimethyl-4-hydroxybenzene 3-phenylpropane-1,2-naphthoquinonediazide-5-sulfonate, 1,1,3-tris(2,5-dimethyl-4-hydroxyphenyl)-3 -Phenylpropane-1,2-naphthoquinonediazide-6-sulfonate, 1,1,3-tris(2,5-dimethyl-4-hydroxyphenyl)-3-phenylpropane -1,2-naphthoquinonediazide-7-sulfonate, 1,1,3-tris(2,5-dimethyl-4-hydroxyphenyl)-3-phenylpropane-1,2 -naphthoquinonediazide-8-sulfonate, 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene] Bisphenol-1,2-naphthoquinonediazide-4-sulfonate, 4,4'-[1-[4-[1-[1-[4-hydroxyphenyl]-1-methylethyl]benzene Ethylene]bisphenol-1,2-naphthoquinonediazide-5-sulfonate, 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1- Methyl ethyl]phenyl]ethylidene bisphenol-1,2-naphthoquinonediazide-6-sulfonate, 4,4'-[ 1-[ 4-[ 1-[ 4-hydroxyl Phenyl]-甲基methylethyl-26- 200900857]phenyl]ethylidene]bisphenol-1,2-naphthoquinonediazide-7-sulfonate, 4,4'-[Bu[4-[1-[4] -hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol-1,2-naphthoquinonediazide-8-sulfonate, bis(2,5-dimethyl- 4-hydroxyphenyl)-2-hydroxyphenylmethane-1,2-naphthoquinonediazide-4-sulfonate, bis(2,5-dimethyl-4-hydroxyphenyl)-2- Hydroxyphenylmethane-1,2-naphthoquinonediazide-5-sulfonate, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane-1,2- Naphthoquinonediazide-6-sulfonate, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane-1 2-naphthoquinonediazide-7-sulfonate, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane-1,2-naphthoquinonediazide- 8-sulfonate, 3,3,3',3'-tetramethyl-1,1'-helical biguanide-5,6,7,5,6',7'-hexanol-1,2- Naphthoquinonediazide-4-sulfonate, 3,3,3',3'-tetramethyl-151'-helical biguanide-5,6,7,5',6',7'-hexyl Alcohol-1,2-naphthoquinonediazide-5-sulfonate, 3,3,3^3^-tetramethyl-1,1'-helical biguanide-5,6,7,5', 6',7'-hexanol-1,2-naphthoquinonediazide-6-sulfonate, 3,3,3',3'-tetramethyl-1,1'-helical biguanide-5 ,6,7,5',6',7'-hexanol-1,2-naphthoquinonediazide-7-sulfonate, 3,3,3',3'-tetramethyl-1, Γ-helical biguanide-5,6,7,5',6',7'-hexanol-1,2-naphthoquinonediazide-8-sulfonate, 2,2,4-trimethyl -7,2',4'-trihydroxyflavan-1,2-naphthoquinonediazide-4-sulfonate, 2,2,4-trimethyl-7,2',4'-three Hydroxyflavan - 1. 2-naphthoquinonediazide-5-sulfonic acid, 2,2,4-trimethyl-7,2',41-trihydroxyflavan-1,2-naphthoquinonediazide-6-sulfonate Acid ester, 2,2,4-trimethyl-7,2^-trihydroxyflavan-1,2-naphthoquinonediazide-7-sulfonic acid, 2,2,4-trimethyl-7 1,2-naphthoquinonediazidesulfonic acid of (polyhydroxyphenyl)alkane such as 2',4'-trihydroxyflavan-1,2-naphthoquinonediazide-8-sulfonic acid ester. -27- 200900857 These 1,2-quinonediazide compounds may be used singly or in combination of two or more. The use ratio of the component [B] is preferably from 5 to 100 parts by weight, more preferably from 1 to 50 parts by weight, per 100 parts by weight of the copolymer [A]. When the ratio is less than 5 parts by weight, the amount of acid generated by the irradiation of the radiation is small, and the difference in solubility between the irradiated portion which becomes the radiation and the aqueous solution of the developer which is not irradiated is small, and the patterning is difficult. tendency. Further, since the amount of acid participating in the reaction with the copolymer [A] is small, sufficient heat resistance and solvent resistance cannot be obtained. On the other hand, when the ratio exceeds 100 parts by weight, the unreacted [B] component remains in a large amount due to irradiation with a short period of time, and the insoluble effect on the aqueous alkali solution is too high, which tends to be difficult to develop. Other components The radiation sensitive linear resin composition of the present invention contains essential components of the above copolymer [A] and [B] components, but other may contain: [c] a thermosensitive acid generating compound, and [D] has at least 1 The polymerizable compound of the ethylenically unsaturated double bond '[E] is different from the other epoxy resin of the copolymer [A]' [F] surfactant or [G] adhesion aid. The above [C] sensible acid generating compound can be used to improve heat resistance or hardness. Specific examples thereof include a key salt of an onium salt, a benzoxazole salt, an ammonium salt, and a scale salt. Specific examples of the above sulfonium salt include an alkyl sulfonium salt, a benzyl sulfonium salt, a bis- fluorenyl salt, a substituted benzyl sulfonium salt and the like. -28- 200900857 In the specific examples, the alkyl sulfonium salt may, for example, be 4-ethenyl phenyl dimethyl hexafluoroantimonate or 4-ethyl methoxy phenyl dimethyl hexafluoro arsenate. , dimethyl-4-(benzyloxycarbonyloxy)phenylphosphonium hexafluoroantimonate, dimethyl-4-(benzoyloxy)phenylphosphonium hexafluoroantimonate, dimethyl-4- (Benzyl oxy) phenyl sulfonium hexafluoro arsenate, dimethyl-3-chloro-4-ethoxy phenyl hexafluoroantimonate, etc.; benzyl sulfonium salt can be exemplified by benzyl-4 -hydroxyphenylmethylhydrazine hexafluoroantimonate, benzyl-4-hydroxyphenylmethylphosphonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylphosphonium hexafluoroantimonate, benzyl 4-methoxyphenylmethylhydrazine hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxybenzene Methyl hydrazine hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenylmethyl sulfonium hexafluorophosphate, etc.; dibenzyl sulfonium salt can be exemplified by dibenzyl-4-hydroxyphenyl hydrazine Hexafluoroantimonate, dibenzyl-4-hydroxyphenylphosphonium hexafluorophosphate, 4-acetoxyphenyldibenzylphosphonium hexafluoroantimonate, dibenzyl-4-methoxyphenyl Hexafluoroantimonate Dibenzyl-3-chloro-4-hydroxyphenylphosphonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-tertiary butylphenylphosphonium hexafluoroantimonate, benzyl 4-methoxybenzyl-4-hydroxyphenylphosphonium hexafluorophosphate; etc.; substituted benzyl sulfonium salt may, for example, be P-chlorobenzyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, P -nitrobenzyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, p-chlorobenzyl-4-hydroxyphenylmethylphosphonium hexafluorophosphate, p-nitrobenzyl-3-methyl 4-hydroxyphenylmethyl hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethyl hexafluoroantimonate, 〇-chlorobenzyl-3-chloro-4- Hydroxyphenylmethyl hydrazine hexafluoroantimonate or the like. -29- 200900857 Specific examples of the above benzoxazole salt can be exemplified by 3-benzylbenzopyridinium hexafluoroantimonate '3-benzylbenzoxazole gun hexafluorophosphate, 3-benzyl group Benzoazolium tetrafluoroborate, 3-(ρ-methoxybenzyl)benzoxazole hexafluoroate, 3-benzyl-2-methylthiobenzoxazole hexafluoroantimonic acid a salt, a benzyl benzazole key salt such as 3-benzyl-5-chlorobenzoxazole hexafluoroantimonate. Among these, 'the use of sulfonium salts and benzoxazole molybdenum salts is preferred, in particular 4-ethoxypropyl phenyl dimethyl hexafluoroarsenate, benzyl-4-hydroxy hydroxymethyl hydrazide Hexafluoroantimonate, 4-ethenyloxyphenylbenzylmethylphosphonium hexafluoroantimonate, dibenzyl-4,hydroxyphenylphosphonium hexafluoroantimonate, 4-acetoxyphenylbenzyl Based on hexafluoroantimonate, 3-benzylbenzothiazole hexafluoroantimonate is preferred. For the above-mentioned commercial products, sun aid SI-L85, the same as SI-L110, the same SI-L145, the same SI-L150, and the same SI-L160 (manufactured by Sanshin Chemical Industry Co., Ltd.) can be exemplified. The use ratio of the component [C] is preferably 20 parts by weight or less, more preferably 5 parts by weight or less based on 100 parts by weight of the copolymer [A]. When the amount used exceeds 20 parts by weight, precipitates are precipitated in the coating film forming step, resulting in failure of coating film formation. A polymerizable compound having at least one ethylenically unsaturated double bond (hereinafter referred to as "D component") of the above [D] component may, for example, be a preferred monofunctional (meth) acrylate or a bifunctional (A) (meth) acrylate or a trifunctional or higher (meth) acrylate. The above monofunctional (meth) acrylate may, for example, be 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, isodecyl (meth) acrylate, 3-methoxy Butyl (meth) acrylate, 2- -30- 200900857 (meth) acryloyl oxyethyl 2-hydroxypropyl phthalate, and the like. For such commercial products, aronix M·101' is the same as M-111, and M-114 (above, manufactured by Toagosei Co., Ltd.), KAYARAD TC-1 1 0S, and TC-120S (above, Japanese chemical) Company system), bisuko-to 1 58, same as 23 1 1 (above, Osaka Organic Chemical Industry Co., Ltd.). The above bifunctional (meth) acrylate may, for example, be ethylene glycol (meth) acrylate, 1,6-hexane diol di(meth) acrylate or 1,9-nonanediol diol ( Methyl) acrylate, polypropylene glycol di(meth) acrylate, tetraethylene glycol di(meth) acrylate, bisphenoxyethanol hydrazine acrylate, bisphenoxyethanol hydrazine acrylate, and the like. For such commercial products, aronix M-210, M-240, M-6200 (above, manufactured by Toagosei Co., Ltd.), KAYARAD HDDA, HX-220, and R-604 (above, Japan) Chemical company), bisuko-to260, 312, 335HP (above, Osaka Organic Chemical Industry Co., Ltd.). The trifunctional or higher (meth) acrylate may, for example, be trimethylolpropane tri(meth) acrylate, neopentyl alcohol tri(meth) acrylate, or tris((meth) propylene oxime). Ethyl) phosphate, neopentyl alcohol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc., in terms of commercial products , can be exemplified by aronix M-3 09, with M-400, with M-405, with M-450, with M-7100, with M-8030, with M-8060 (above, manufactured by Toagosei Co., Ltd.) > KAYARAD TMPTA, same as DPHA, with DPCA-20, with DPCA-30, with DPCA-60, with DPCA-120 (above, manufactured by Nippon Kayaku Co., Ltd.), bisuko-to 295 ' with 30,000, with 3 60, with GPT, Same as 3PA, -31 - 200900857, 400 (above, Osaka Organic Chemical Industry Co., Ltd.). Among these, 'use of a trifunctional or higher (meth) acrylate is preferable. Among them, trimethyl methacrylate tri(methyl) acrylate, pentaerythritol tetra (meth) acrylate Dipentaerythritol hexa(meth) acrylate is particularly preferred. These monofunctional, bifunctional or trifunctional or higher (meth) acrylates may be used singly or in combination. The use ratio of the component [D] is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, based on 100 parts by weight of the copolymer [A]. By including the component [D] in such a ratio, the heat resistance and surface hardness of the interlayer insulating film or the microlens obtained from the radiation sensitive resin composition of the present invention can be improved. When the amount used exceeds 50 parts by weight, a film dry spot is formed in the step of forming a coating film of the radiation sensitive linear resin composition on the substrate. The epoxy group-containing resin (hereinafter referred to as "E component") which is different from the copolymer [A] in the above [E] component is not particularly limited as long as it does not affect the compatibility. Preferred examples are bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, cyclic aliphatic epoxy resin, and epoxy propyl ester type epoxy. A base resin, a epoxypropylamine type epoxy resin, a heterocyclic epoxy resin, a resin obtained by (co)polymerizing a glycidyl methacrylate, or the like. Among these, bisphenol A type epoxy resin, cresol novolak type epoxy resin, and epoxy propyl ester type epoxy resin are particularly preferable. The use ratio of the component [E] is preferably 30 parts by weight or less based on 100 parts by weight of the copolymer [A], and -32 to 200900857. By including the component [E] in such a ratio, the heat resistance, surface hardness, and the like of the protective film or the insulating film obtained from the radiation sensitive linear resin composition of the present invention can be further improved. When the ratio exceeds 30 parts by weight, when the coating film of the radiation sensitive linear resin composition is formed on the substrate, the film thickness uniformity of the coating film becomes insufficient. Further, the copolymer [A] may also be referred to as "epoxy resin", but differs from the [E] component in that it has alkali solubility. The component [E] is alkali-insoluble. In the radiation sensitive linear resin composition of the present invention, a surfactant of the above [F] component can be further used to improve coatability. As the [F] surfactant which can be used herein, a fluorine-based surfactant, a polyoxymethylene-based surfactant, and a nonionic surfactant are preferably used. Specific examples of the fluorine-based surfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl)ether, 1,1,2,2-tetrafluorooctyl Hexyl hexyl ether, octaethylene glycol bis(1,1,2,2-tetrafluorobutyl)ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl)ether, eight Propylene glycol di(1,1,2,2-tetrafluorobutyl)ether, hexapropanediol bis(1,1,2,2,3,3-hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 1,1,2,2,8,8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3 • hexafluorodecane, etc., may be exemplified by fluorine Sodium alkylbenzene sulfonate; fluoroalkyl oxyethylene ether; fluoroalkyl ammonium iodide, fluoroalkyl polyoxyethylene ether, perfluoroalkyl polyoxyethylene; perfluoroalkyl alkoxide; fluoroalkyl ester Wait. For such commercial products, BM-1000' BM-1100 (above, BM Chemie), megafuck F142D, same as F172, same as F173', F183, F178, F191, and F4 71 (above) , manufactured by Dainippon Ink Chemical Industry Co., Ltd., Fluorad FC-170, FC-171 'FC-430' FC-431 -33- 200900857 (above, Sumitomo 3M), Safron S-112, same as S-113, same S-131, same as S-141, with S-145, with S-382, with SC-101, with SC-102, with SC-103, with SC-104, with SC-105, with SC-106 (Asahi Glass) Company system), f-topEF301, same as 303, with 352 (new Akita Chemical Co., Ltd.) and so on. The polyoxo-based surfactant may, for example, be trade names DC3PA, DC7P A , FS-1 265 , SF-8428 , SH11PA , SH21PA , SH28PA , SH29PA > SH30PA, SH-190, SH-193, SZ- 603 2 (above, Toray · Dow Corning · Polyoxane Company), TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4452 (above, GE Toshiba Poly Oxygen Co., Ltd. It is a commercial item such as. As the nonionic surfactant, a polyoxyethylene alkyl ether such as polyoxyethylene lauryl ether, polyoxyethylene stearyl sulfonyl ether or polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether; a polyoxyethylene aryl ether such as polyoxyethylene nonylphenyl ether; a polyoxyethylene dialkyl ester such as polyoxyethylene dilaurate or polyoxyethylene distearate; (meth)acrylic acid; Copolymer polyflow No.  57, 95 (manufactured by Kyoei Chemical Co., Ltd.), etc. These surfactants may be used singly or in combination of two or more. The [F] surfactant is preferably used in an amount of 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the copolymer [A]. When the amount of the surfactant to be used exceeds 5 parts by weight, when the coating film is formed on the substrate, dry film spots of the coating film are likely to occur. In the radiation sensitive linear resin composition of the present invention, the adhesion aid of the [G] component can be used to improve the adhesion to the substrate. In the case of such a [G]-bonding-34-200900857 agent, a functional decane coupling agent is preferably used, and a decane having a reactive substituent such as a carboxyl group, a methacryl fluorenyl group, an isocyanate group or an epoxy group may, for example, be mentioned. Coupling agent. Specifically, trimethoxydecyl benzoic acid, γ-methyl propylene methoxy propyl trimethoxy decane, ethylene triethoxy decane, ethylene trimethoxy decane, γ-isocyanate propyl tri Ethoxy decane, γ-glycidylpropyltrimethoxydecane, β-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, and the like. The [G] adhesion aid is preferably used in an amount of 20 parts by weight or less, more preferably 1 part by weight or less, based on 100 parts by weight of the copolymer. When the amount of the adhesion aid exceeds 20 parts by weight, development may be liable to remain in the development step. Sensitive Radiation Linear Resin Composition The radiation sensitive linear resin composition of the present invention can be prepared by uniformly mixing the above copolymer [Α] and [Β] components, and optionally adding other components as described above. Preferably, the radiation sensitive linear resin composition of the present invention is dissolved in a suitable solvent to be used in a solution state. For example, the copolymer [Α] and [Β] components, and optionally added other components, may be mixed at a set ratio to prepare a sensitive radiation linear resin composition in a solution state. As the solvent to be used for modulating the linear radiation-sensitive resin composition of the present invention, those which can dissolve the copolymer [Α] and [Β] components and any other components which are arbitrarily compounded, and which do not react with the respective components, can be used. As such a solvent, those exemplified as the usable solvent used for the production of the above copolymer [Α] can be exemplified. Among such solvents, 'the solubility of each component, and the reaction of each component-35-200900857' is easy to form a coating film, etc.', using alcohol, glycol ether, ethylene glycol alkyl ether Acid esters, esters and diethylene glycol are preferred. Among these, benzyl alcohol '2-phenylethyl alcohol, 3-phenyl-propanol, ethylene glycol monobutyl ether acetate '-ethyl alcohol monoethyl ketone acetic acid vinegar' Glycol diethyl ether, monoethyl alcohol ethyl methyl ether 'diethylene glycol dimethyl ether, propylene glycol monomethyl ether 'propylene glycol monomethyl ether acetate, methoxy propionic acid methyl, ethoxy Ethyl propyl propionate is particularly preferred. Further, in order to improve the uniformity in the thick surface of the film, the solvent can be used in combination with the boiling point solvent. As the high-boiling solvent which can be used, N-methylformamide 'N,N-dimethylformamide, N-methyl N-methylanilide, N-methylacetamide' N can be exemplified. , N-dimethylacetamide, N-methylpyrrolidone, dimethyl hydrazine, benzyl ethyl ether 'dihexyl ether, acetonyl acetone, isophorone, caproic acid, octanoic acid' 1- Octanol, 1 - decyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate 'diethyl maleate, γ-butyrolactone, ethylene carbonate 'propylene carbonate, phenyl cellosolve Acetate and the like. Among these, Ν-methylpyrrolidone, γ-butyrolactone, hydrazine, hydrazine-dimethylacetamide are preferred. When the solvent of the radiation sensitive linear resin composition of the present invention is a high boiling point solvent, the amount thereof is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight based on the total amount of the solvent. %the following. When the amount of the high boiling point solvent is more than the amount used, the film thickness uniformity of the coating film may be lowered, and the sensitivity and the residual film ratio may be lowered. When the radiation sensitive linear resin composition of the present invention is prepared into a solution state, the components other than the solvent (i.e., the total amount of the copolymer [Α] and [Β] components and any other components added) are occupied in the solution. The ratio ' can be arbitrarily set according to the purpose or the desired film thickness of 36-36-200900857, but is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and still more preferably 丨5 to 3 5 wt% 〇 The composition solution thus prepared, using a pore size of 0. It can also be used after filtering by a microporous filter such as 2μιη. Interlayer insulating film, formation of microlens Next, a method of forming the interlayer insulating film and the microlens of the present invention using the radiation sensitive linear resin composition of the present invention will be described. The method for forming the interlayer insulating film or the microlens of the present invention comprises the following steps in the order described below. (1) a step of forming a coating film of the radiation sensitive linear resin composition of the present invention on a substrate, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and / (4) a heating step . (1) Step of forming a coating film of the radiation sensitive linear resin composition of the present invention on the substrate In the step (1) above, the composition solution of the present invention is applied.  On the surface of the substrate, it is preferred to remove the solvent by prebaking to form a coating film of the radiation sensitive resin composition. The type of the substrate that can be used may, for example, be a glass substrate, a germanium wafer, or a substrate formed of various metals on the surfaces. -37- 200900857 The method of applying the composition solution is not particularly limited, and a spray method, a roll coating method, a spin coating method, a slit die coating method, a bar coating method, an inkjet method, or the like may be employed. The method 'particularly by the spin coating method' is a slit die coating method. The pre-baking conditions are also different depending on the type of each component used. For example, 'can be pre-baked at 60 to 1 10 °c for 30 seconds to about 15 minutes. In terms of the film thickness of the coating film, in the case of forming the interlayer insulating film after the prebaking, for example, it is preferably 3 to 6 μm, and when the microlens is formed, for example, 0. 5~3μηι is preferred. (2) a step of irradiating at least a part of the coating film with radiation. In the step (2), the mask is formed on the formed coating film by a mask having a setting pattern, and after the radiation is irradiated The liquid development process removes the irradiated portion of the radiation and performs patterning. In this case, ultraviolet rays, far ultraviolet rays, X-rays, charged particle rays, and the like can be exemplified for the radiation used. Examples of the ultraviolet rays include a g line (wavelength 436 nm), an i line (wavelength 3 6 5 nm), and the like. In the case of far ultraviolet rays, a KrF excimer laser or the like can be exemplified. In the X-ray aspect, a synchrotron radiation line or the like can be exemplified. As the charged particle beam, an electron beam or the like can be exemplified. Among the #'s, ultraviolet rays are preferred, and especially those containing g-line and/or i-line are particularly preferable. The amount of exposure is preferably 50 to l, 5 〇〇 J/m 2 when forming the interlayer insulating film, and preferably 5 〇 to 2,000 J/m 2 when forming the microlens - 38 - 200900857 (3 ) development step For the developer used in the development treatment, sodium hydroxide 'potassium hydroxide, sodium carbonate, sodium citrate, sodium metasilicate, ammonia 'ethylamine' η-propylamine, diethylamine, diethyl ether can be used. Aminoethanol, di-η-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperazine Pyridine, 1,8-diazabicyclo[5. 4. 0]-7-undecene, 1,5-diazabicyclo[4. 3. An aqueous solution of a base (basic compound) such as 0]-5-decane. Further, an aqueous solution of a water-soluble organic solvent such as methanol or ethanol or an interfacial activity agent or various organic solvents in which the composition of the present invention is dissolved may be appropriately added as a developing solution to the above aqueous alkaline solution. Further, as the developing method, a suitable method such as a liquid-filling method, a dipping method, or a shaking dipping method can be used. The development time at this time varies depending on the composition of the composition, and for example, it can be developed for 30 to 12 seconds. In addition, the conventional sensitive radiation linear resin composition, since the development time exceeds the optimum temperature of about 2 〇 to 25 seconds, is likely to cause the formation of the pattern peeling phenomenon, so the development time must be strictly controlled, but the sensitivity of the present invention In the case of the ray-based resin composition, even if it exceeds the optimum development time for more than 30 seconds, a good pattern can be formed, which has an advantage in product productivity. (4) The heating step is as follows: after the development step (3), the patterning film-39-200900857 is preferably subjected to, for example, a rinse treatment of running water, and more preferably, by a high pressure mercury lamp. The radiation is fully irradiated (post-exposure), and after the decomposition treatment of the residual 1,2_醌diazide compound in the film, the film is heat-treated by a heating device such as a hot plate or an oven (post-baking treatment) ), the hardening treatment of the film is performed. In the above post-exposure step, the exposure amount is preferably about 2,000 to 5,000 J/m2. Further, in the hardening treatment, the firing temperature is, for example, 120 to 250 °C. The heating time varies depending on the type of the heating machine. For example, when the heat treatment is performed on a hot plate, it may be 5 to 30 minutes, and when it is heat-treated in an oven, it may be 30 to 90 minutes. In this case, a step bake method or the like which performs a heating step twice or more can be used. As a result, a pattern-like film can be formed on the surface of the substrate in accordance with the purpose of the interlayer insulating film or the microlens. The interlayer insulating film and the microlens formed as described above are excellent in adhesion, heat resistance, solvent resistance, and transparency as known from the examples described later. Interlayer insulating film The interlayer insulating film of the present invention, which is formed as described above, has excellent adhesion to a substrate, is excellent in solvent resistance and heat resistance, and has a high transmittance and a low dielectric constant, and is suitable for use as an interlayer insulating film for electronic parts. The microlens of the microlens of the present invention formed as described above has good adhesion to a substrate, is excellent in solvent resistance and heat resistance, and has high transmittance and a good melt-40-200900857 shape, and is suitable for solid imaging ( Microlens of the element of the invention In addition, the shape of the microlens of the present invention is a semi-convex lens shape as shown in Fig. 1(a). As described above, the sensitive radiation linear resin composition of the present invention has a radiation sensitivity, and in the development step, it has a development limit which can form a good pattern shape even if it exceeds optimum development, and it is easy to form a pattern-like film which is closely bonded. The interlayer insulating film of the present invention, which is formed of the above-mentioned composition, has excellent adhesion, is excellent in solvent resistance and heat resistance, and has a high dielectric transmittance and is suitable for use as an interlayer insulating film for electronic parts. Further, the microlens of the present invention formed of the upper composition is excellent in adhesion, excellent in solvent resistance and heat resistance, and has a high permeability and a good melt shape, and is suitable for use in solid imaging. lens. [Embodiment] Hereinafter, the synthesis examples, the examples, and the comparative examples will be specifically described, but the present invention is not limited to the following examples. Synthesis Example 1 7 parts by weight of 2,2'-azo 2,4-dimethylvaleronitrile and propylene glycol monomethyl ether acetate were placed in a flask equipped with a cooling tube and a stirrer. Next, 22 parts by weight of methacrylic acid was added, and the high-sensitivity time-sensitive substrate ratio represented by dicyclopentan was used, and the substrate over-rate element was bismuth (220 g-41 - 200900857 acrylate 23 parts by weight, acryloyl morpholine) 5 parts by weight, 50 parts by weight of 3-ethyl-3-methylpropenyloxymethyloxetane and 3 parts by weight of α-methylstyrene dimer, and slowly replaced with nitrogen The temperature of the solution was raised to 70 ° C, and heated at this temperature for 4 hours to obtain a polymer solution containing the copolymer [A-1 ]. The solid solution concentration of the obtained polymer solution was 31. 1% by weight, the weight average molecular weight of the polymer is 17,200, and the molecular weight distribution (ratio of weight average molecular weight / number average molecular weight) is 1. 9 . In addition, the weight average molecular weight and the number average molecular weight were the polystyrene-equivalent average molecular weight measured by GPC (gel permeation chromatography (HLC-8020, manufactured by Tosoh Corporation). Synthesis Example 2 In a flask equipped with a cooling tube and a stirrer And adding 7 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Then, 13 parts by weight of methacrylic acid was placed. 50 parts by weight of glycidyl methacrylate, 10 parts by weight of 3-ethyl-3-methylpropenyloxymethyloxetane, 10 parts by weight of cyclohexylmethyleneimine, 'propylene 10 parts by weight of decylmorpholine and 7 parts by weight of tetrahydrofurfuryl acrylate were slowly stirred while being substituted with nitrogen, and the temperature of the solution was raised to 70 ° C, and heated at this temperature for 4 hours to obtain a copolymer-containing copolymer. The polymer solution of [A-2]. The solid solution concentration of the obtained polymer solution was 3 2. The weight average molecular weight of the polymer was 18,200 and the molecular weight distribution was 1-8. Synthesis Example 3 -42 - 200900857 In a flask equipped with a cooling tube 'mixer, 7 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and diethylene glycol ethyl group were placed. 200 parts by weight of the ether. Next, 11 parts by weight of methacrylic acid, 12 parts by weight of cyclohexylmethyleneimine, 9 parts by weight of 'α-methyl-p-hydroxystyrene, and 50 parts by weight of glycidyl methacrylate were placed. 10 parts by weight of 3-ethyl-3-methylpropenyloxymethyloxetane, 5 parts by weight of acryloylmorpholine, 3 parts by weight of tetrahydrofurfuryl methacrylate, and α-methylbenzene The ethylene dimer was slowly stirred while 3 parts by weight of 'one nitrogen substitution'. The temperature of the solution was raised to 70 ° C, and heated at this temperature for 5 hours to obtain a polymer solution containing the copolymer [Α_3]. The solid solution concentration of the obtained polymer solution was 32. 4% by weight of the polymer has a weight average molecular weight of 21,200 and a molecular weight distribution of 2. 1. Synthesis Example 4 In a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2 1 -azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were placed. Share. Next, '10 parts by weight of styrene, 20 parts by weight of methyl acrylate, 20 parts by weight of '3-ethyl-3-methylpropenyl methoxymethyl oxetane, epoxy methacrylic acid 30 parts by weight of the ester, 12 parts by weight of propylene decylmorpholine, 12 parts by weight of 'tetrahydrofurfuryl acrylate, and 4 parts by weight of α-methylstyrene dimer, were slowly stirred while being substituted with nitrogen. The temperature of the solution was raised to 70 ° C, and heated at this temperature for 5 hours to obtain a polymer solution containing the copolymer [A - 4 ]. The solid solution concentration of the obtained polymer solution was 32. The 0% by weight of the polymer has a weight average molecular weight of 20,100 and a molecular weight of -43 to 200900857 distributed at 1. 9 Comparative Synthesis Example 1 In a flask equipped with a cooling tube and a stirrer, 7 parts by weight of 2,2,__ 2,4-dimethylvaleronitrile and diethylene glycol methylethylazobis 22〇 were placed. Quantities. Next, 23 parts by weight of methacrylic acid, - 瓒 + ^ - pentyl thiol and α.  Methyl styrene dimer 0 parts by weight, replaced by nitrogen on one side, and the surface starts to stir slowly. When the temperature of the solution was raised to 70 ° C and the temperature was maintained at 5 ° C, a polymer solution containing the copolymer [A-1 R] was selected. 47 parts by weight of the solid acrylate of the obtained polymer, the glycidyl methacrylate was substituted with one side nitrogen and the concentration of the component was 32. 8 wt%, the average weight of the polymer is $24,000, and the molecular weight distribution is 2.  毚舄Comparative Synthesis Example 2 In a flask equipped with a cooling tube and a stirrer, 7 parts by weight of 2,2,_the & 2,4-dimethylvaleronitrile and diethylene glycol methylethyl acid were placed. Quantities. Next, 25 parts by weight of methacrylic acid, 35 parts by weight of dicyclopentocenoate, 2-hydroxyethyl methacrylate 4 〇 m & α·methyl styrene dimer 2. 0 parts by weight, one side is replaced by nitrogen, and the ~θ surface starts to stir slowly. The temperature of the solution was raised to 7 (TC, and the temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-2R]. The solid solution concentration of the obtained polymer solution was 32% by weight, polymerized The weight average molecular weight is 25,000 and the molecular weight distribution is 2. 4. -44 - 200900857 Example 1 Preparation of a radiation sensitive linear resin composition The polymer solution containing the copolymer [A-1] obtained in Synthesis Example 1 (corresponding to 100 parts by weight of copolymer [A-1] (solid component)) '4,4,-[1-[4-[1-[4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1 mol) with the component [B] Condensate with hydrazine, 2-naphthoquinonediazide-5-sulfonic acid chloride (2 mol) (4,4'-[1-[4-[1-[4-hydroxyphenyl]-1 -methylethyl]phenyl]ethylidene]bisphenol-1,2-naphthoquinonediazide-5-sulfonate) 20 parts by weight, and γ-methylpropenyloxypropyltrimethoxy 5 parts by weight of decane, the solid content concentration was 30% by weight, and after being dissolved in propylene glycol monomethyl ether acetate, it was filtered through a micropore filter having a pore diameter of 5 5 μm to prepare a solution of the radiation sensitive linear resin composition. (S -1 ). Evaluation of interlayer insulating film (I) Formation of pattern-shaped film Using a rotator, coating the above composition solution (s_1) on a glass substrate, and then pre-baked for 3 minutes at 80 ° C on a hot plate to form a coating. membrane. Using the set pattern mask, the coating film obtained above was irradiated with ultraviolet rays having an intensity of 10 mW/cm 2 at 3 65 nm for 15 seconds. Next, in the tetramethylammonium hydroxide 0. In a 5 wt% aqueous solution, after 25 deaths and developed for 1 minute, it was rinsed with pure water for 1 minute. By these operations, the unnecessary portion is removed on the pattern formed as described above, and the ultraviolet light having an intensity of 1 OmW/cm 2 at 365 nm is irradiated for 3 sec seconds, and then heated at 220 X: in the oven at 6 〇 -45 - 200900857. It was hardened in a minute to obtain a pattern-shaped film having a film thickness of 3 μm. Further, in the same manner as described above, except that the prebaking temperature was 90 ° C and 100 ° C, three pattern-shaped films having different prebaking temperatures were formed. (II) Evaluation of resolution In the pattern-shaped film obtained in the above (I), the extraction pattern (5 μΓηχ5μηι hole) is represented by 〇 when the image is resolved, and is represented by X when the image cannot be resolved. The results are shown in Table 1. (111) Evaluation of heat-resistant dimensional stability In the above (I), a film pattern formed at a prebaking temperature of 80 ° C was placed in a crucible, and heated at 220 ° C for 60 minutes. The rate of change in film thickness before and after heating is shown in Table 2. In this case, when the dimensional change rate before and after heating is less than 5%, the heat-resistant dimensional stability is good, and when the dimensional change rate exceeds 5%, it can be said that the (IV) transparency is evaluated. In the above (I), a spectrophotometer is used ( 150-20 type double beam (manufactured by Hitachi, Ltd.)) The transmittance of 400 nm of the ?1 film formed at a prebaking temperature of 80 ° C was measured, and the transparency was evaluated. The knot is shown in Table 2. At this time, when the transmittance exceeds 9 〇 % or more, the transparency is good, and when it is less than 90%, it is bad. -46- 200900857 (V) Evaluation of heat-resistant discoloration In the above (I), a substrate having a patterned film formed at a prebaking temperature of 80 ° C was heated in an oven at 250 ° C for 1 hour. The heat discoloration resistance was evaluated by the change in the transmittance of the pattern-shaped film before and after heating. The evaluation results at this time are shown in Table 2. When the rate of change is less than 5%, the heat discoloration property is good, and when it exceeds 5%, it is bad. In addition, the transmittance is obtained by the same evaluation as (IV) transparency. (VI) Evaluation of adhesion The pattern formed by the pre-baking temperature of 80 ° C in the above (I) by the checkerboard peel test after the pressure cooker test (120 ° C, humidity: 1%, 4 hours) The adhesion of the film was evaluated. At this time, the evaluation results are shown in Table 2. The evaluation results were in the number of the checkerboard eyes, and the number of the remaining checkerboard eyes was not shown. (VII) Evaluation of storage stability The above composition solution was heated in an oven of 4 (TC for 1 week, and the viscosity was changed before and after heating. The evaluation of the storage stability is as shown in Table 1. When the rate of change is less than 5%, the storage stability is good, and when it is 5% or more, the storage stability is poor. Evaluation of Microlenses (I) Microlens On the 6-inch substrate, the composition of the above composition (S -1 -47 - 200900857 ) was spin-coated to become 2. A film thickness of 5 μm was prebaked on a hot plate at 701 for 3 minutes to form a coating film. Ultraviolet rays having an intensity of 10 mW/cm 2 at 43 6 nm were irradiated on the coating film obtained above using the set pattern mask. Next, with tetramethylammonium hydroxide 2. After developing for 3 minutes at 25 ° C in a 38% by weight aqueous solution, it was washed with pure water for 1 minute. By these operations, unnecessary portions are removed to form a pattern. On the pattern formed as described above, after irradiating 200 mJ/cm 2 of ultraviolet light having an intensity of 10 mW/cm 2 at 436 nm, heating at 160 ° C for 1 ' minutes ' and then heating at 2 30 ° C for 1 〇 minutes to make a pattern Melt to form a microlens. (II) Evaluation of Sensitivity The minimum irradiation amount of the solvable pitch line width of the 微·8 μιη line and the pitch pattern (10 to 1) of the lenticular pattern obtained by the above (I) is as shown in Table 3. Show. When the 値 is less than 1 〇〇mJ/cm 2 , the resolution is good. When the sensitivity exceeds 100 mJ/cm 2 , the resolution is poor. (ΙΠ) Evaluation of transparency In the same manner as in the above (I), a pattern-shaped film was formed on a glass substrate. Using a spectrophotometer (1 50-20 type double beam (manufactured by Hitachi, Ltd.)), a transmittance of 400 nm was measured on a glass substrate on which a microlens pattern was formed after melting, and transparency was evaluated. At this time, the transmittance at 400 nm is shown in Table 3. When the transmittance is 90 to 100%, 'the transmittance is good, and when it is less than 90%, the transmittance is poor. -48- 200900857 (IV) Evaluation of heat-resistant transparency The glass substrate having the pattern-like film formed in the above (111) was heated in an oven of 250 rpm for 1 hour to increase the transmittance of the film before and after heating. The change was evaluated for heat resistance transparency. The rate of change of transmittance at this time is shown in Table 3. When the rate of change is less than 5%, 'it means that the heat-resistant transparency is good'. When it exceeds 5%, it is bad. In addition, the transmittance is obtained by the same evaluation as (III) transparency. (V) Evaluation of Adhesiveness The adhesion of the pattern-form film formed by the above (I) was evaluated by a checkerboard peeling test after a pressure cooker test (120 ° C, humidity: 100%, 4 hours). At this time, the evaluation results are shown in Table 3. The evaluation result is expressed by the number of remaining checkerboard eyes among the 100 chessboard eyes. (VII) Evaluation of solvent resistance The glass substrate having the pattern-like film formed in the same manner as in the above (III) was immersed in isopropyl alcohol at 50 ° C for 10 minutes to evaluate the change in film thickness. The rate of change at this time is shown in Table 3. When the change is 〇5 %, the solvent resistance is good. When the film thickness is more than 5%, and the film thickness is lowered by dissolution, the solvent resistance is poor. Example 2 A polymer solution containing the copolymer [A_2] obtained in Synthesis Example 2 (-49-200900857 corresponds to 100 parts by weight of the copolymer [A-2] (solid component)), and 4 of the component [B]. 4'-[1-[4-[1-[4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1 mol) and 1,2-naphthoquinone Condensate of nitrogen-5-sulfonic acid chloride (2 mol) (4,4'-[1-[4-[1-[4-]-phenylphenyl]-1-methylethyl]phenyl 20 parts by weight of ethylene]bisphenol-1,2-naphthoquinonediazide-5-sulfonate), and 5 parts by weight of γ-methacryloxypropyltrimethoxydecane are mixed. The solid content concentration was 31% by weight, and after dissolving in propylene glycol monomethyl ether acetate, the pore diameter was 0. A 5 μm microporous filter was passed through, and a solution (S -2 ) of the sensitive radiation resin composition was prepared and evaluated. The results are shown in Tables 1 to 3. Example 3 A polymer solution containing copolymer [Α-3] obtained in Synthesis Example 3 (corresponding to 100 parts by weight of copolymer [Α-3] (solid component)), and 4, 4 of the component [Β], -[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1 mol) and 1,2-naphthoquinonediazide a condensate of -5-sulfonic acid chloride (2 mol) (4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]-ethylidene 18 parts by weight of bisphenol-1,2-naphthoquinonediazide-5-sulfonate) and 5 parts by weight of γ-methacryloxypropyltrimethoxydecane, so that the solid content concentration becomes 30% by weight, dissolved in propylene glycol monomethyl ether acetate, with a pore size of 0. A 5 μm microporous filter was used to filter the solution (S-3) of the radiation-sensitive linear resin composition and evaluated. The results are shown in Tables 1 to 3. -50-200900857 Example 4 A polymer solution containing copolymer [A-4] obtained in Synthesis Example 4 (corresponding to copolymer [A-4] 10 parts by weight (solid component)), and component [B] 4,4'-[1-[4-[1-[4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1 mol) with 1,2- A condensate of naphthoquinonediazide-5-sulfonic acid chloride (2 mole) (4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl) ]phenyl]ethylidene]bisphenol-1,2-naphthoquinonediazide-5-sulfonate) 30 parts by weight, 4,4'-[1-[4-[1-[4-hydroxyl 5 parts by weight of phenyl]-1-methylethyl]phenyl]ethylidene]bisphenol and 5 parts by weight of γ-methacryloxypropyltrimethoxydecane are mixed to form a solid component concentration 3 J wt%, dissolved in propylene glycol monomethyl ether acetate, with a pore size 〇.  A 5 μιη micropore filter was used to filter the solution (S-4) of the radiation sensitive linear resin composition and evaluated. The results are shown in Tables 1 to 3. Comparative Example 1 A polymer solution containing the copolymer [A -1 R ] obtained in Comparative Synthesis Example 1 (corresponding to a copolymer [A-1R] 10 parts by weight (solid content)), and a component [B] were mixed. 4,4·-[1-[4-[1-[4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1 mol) and 1,2-naphthoquinone Condensate of diazido-5-sulfonic acid chloride (2 mole) (4,4,-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]benzene 30 parts by weight of ethylidene]bisphenol·1,2-naphthoquinonediazide-5-sulfonate, and 5 parts by weight of γ-methacryloxypropyltrimethoxydecane 'Make the solid component concentration to 31 weight. /. After dissolving in propanol monomethyl ether acetate, the solution of the sensitive linear resin composition (s _丨R) is modulated by a microporous filter having a pore diameter of 〇·5 μm through -51 - 200900857 , for evaluation. The results are shown in Tables 1 to 3. Comparative Example 2 The polymer solution containing the copolymer [A-2R] obtained in Comparative Synthesis Example 2 (corresponding to 100 parts by weight of the copolymer [A-2R] (solid component)), and 4, 4 of the component [B] were mixed. '-[1-[4-[1-[4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1 mol) and 1,2-naphthoquinonediazide a condensate of benzyl-5-sulfonate chloride (2 mol) (4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl] 18 parts by weight of ethyl]bisphenol-1,2-naphthoquinonediazide-5-sulfonate, and 5 parts by weight of γ-methacryloxypropyltrimethoxydecane are mixed to form a solid The component concentration is 31% by weight, and after being dissolved in propylene glycol monomethyl ether acetate, the pore diameter is 0. The microporous filter of 5 μηι was filtered, and a solution (S-2R) of the linear radiation-sensitive resin composition was prepared and evaluated. The results are shown in Tables 1 to 3. Table 1 Resolution Storage Stability (Viscosity Change Rate) Baking Temperature (. (:) _ 80 90 100 Example 1 〇〇〇 1% Example 2 〇〇〇 4% Example 3 〇〇〇 2% Example 4 〇〇〇 2% Comparative Example 1 〇〇〇 9% Comparative Example 2 〇〇〇 4% -52- 200900857 Table 2 Heat Resistance Dimensional Stability (Thickness Change Rate) Transparency (Transmittance) Heat Discoloration (Transmittance) Rate of change) Adhesion Example 1 1% 95% 2% 90 Example 2 3% 95% 2% 100 Example 3 3% 96% 2% 100 Example 4 4% 95% 3% 100 Comparative Example 1 4 % 91% 5% 80 Comparative Example 2 6% 91% 6% 80 Table 3 Sensitivity (mJ/cm2) Transparency (transmittance) Heat-resistant transparency (change rate) Adhesive solvent resistance (film thickness change rate) Example 1 50 95% 3% 90 3% Example 2 50 95% 2% 100 3% Example 3 45 95% 4% 100 2% Example 4 55 94% 1% 100 3% Comparative Example 1 100 86% 7% 80 7% Comparative Example 2 110 86% 7% 80 7% [Simplified Schematic] Figure 1 shows the pattern of the shape of the microlens. -53-

Claims (1)

200900857 十、申請專利範圍 1 · 一種敏輻射線性樹脂組成物,其特徵爲含有: [A](al)選自不飽和羧酸及不飽和羧酸酐所成群之 至少1種, (a2)含有環氧基及氧雜環丁烷基之至少一個的不 飽和化合物, (a3 )選自丙烯醯基嗎啉及甲基丙烯醯基嗎啉所成 群之至少1種, (a4 )異於上述化合物(ai ) 、( a2 )及(a3 )的 任一種’且選自甲基丙烯酸烷基酯、甲基丙烯酸環狀烷基 酯、丙烯酸烷基酯、丙烯酸環狀烷基酯、丙烯酸芳基酯、 甲基丙烯酸芳基酯、不飽和二羧酸二酯、羥基甲基丙烯酸 酯、羥基丙烯酸酯、雙環不飽和化合物、順丁烯二醯亞胺 化合物、不飽和芳香族化合物、共軛二烯、具四氫呋喃骨 架的不飽和化合物、具呋喃骨架的不飽和化合物、具四氧 哌喃骨架的不飽和化合物、具哌喃骨架的不飽和化合物、 丙烯腈、甲基丙烯腈、氯化乙烯、氯化亞乙烯、丙烯醯胺 、甲基丙烯醯胺及乙酸乙烯酯所成群之至少1種的其他不 飽和化合物的共聚物,以及 [B ] 1 , 2 -醌二疊氮基化合物。 2.如申請專利範圍第1項之敏輻射線性樹脂組成物, 其爲層間絕緣膜形成用者。 3 . —種層間絕緣膜的形成方法,其特徵爲,以下列記 載的順序含有以下的步驟者, -54- 200900857 (1 )於基板上形成如申請專利範圍第1項之敏輻射 線性樹脂組成物的塗膜之步驟, (2 )將該塗膜的至少一部分照射輻射線的步驟, (3 )顯影步驟,及 (4 )加熱步驟。 4. 一種層間絕緣膜,其特徵爲,藉由如申請專利範圍 第3項之方法所形成者。 5 ·如申請專利範圍第1項之敏輻射線性樹脂組成物, 其爲微透鏡形成用者。 6. —種微透鏡的形成方法,其特徵爲,以下列的順序 含有以下的步驟, (1)於基板上形成如申g靑專利範圍第1項之敏輻射 線性組成物的塗膜之步驟, (2 )將該塗膜的至少一部分照射輻射線的步驟, (3)顯影步驟,及 (4 )加熱步驟。 7·—種微透鏡,其特徵爲,藉由如申請專利範圍第6 項的方法所形成者。 -55-200900857 X. Patent Application No. 1 A sensitive radiation linear resin composition characterized in that: [A] (al) is at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and (a2) contains An unsaturated compound of at least one of an epoxy group and an oxetanyl group, wherein (a3) is at least one selected from the group consisting of acryloylmorpholine and methacryloylmorpholine, and (a4) is different from the above. Any one of the compounds (ai), (a2) and (a3) and is selected from the group consisting of alkyl methacrylate, cyclic alkyl methacrylate, alkyl acrylate, cyclic alkyl acrylate, aryl acrylate Ester, aryl methacrylate, unsaturated dicarboxylic acid diester, hydroxy methacrylate, hydroxy acrylate, bicyclic unsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated An alkene, an unsaturated compound having a tetrahydrofuran skeleton, an unsaturated compound having a furan skeleton, an unsaturated compound having a tetraoxypyran skeleton, an unsaturated compound having a piperine skeleton, acrylonitrile, methacrylonitrile, ethylene chloride, Vinylene chloride Acrylamide, methyl acrylamide and vinyl ester groups of at least one other ethylenically unsaturated compound is one kind, and [B] 1, 2 - quinonediazide compound. 2. The sensitive radiation linear resin composition of claim 1, which is an interlayer insulating film forming user. A method for forming an interlayer insulating film, which comprises the following steps in the order described below, -54-200900857 (1) forming a sensitive radiation linear resin composition on the substrate as in the first application of the patent scope a step of coating the film, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) a heating step. An interlayer insulating film characterized by being formed by the method of claim 3 of the patent application. 5. The sensitive radiation linear resin composition of claim 1, which is a microlens forming user. 6. A method of forming a microlens, comprising the steps of: (1) forming a coating film on a substrate, such as a coating film of a sensitive radiation linear composition of claim 1; (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) a heating step. A microlens characterized by being formed by the method of claim 6 of the patent application. -55-
TW097107118A 2007-03-01 2008-02-29 Sensitive linear resin composition, interlayer insulating film and microlens, and the like TWI430026B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051870A JP4748323B2 (en) 2007-03-01 2007-03-01 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof

Publications (2)

Publication Number Publication Date
TW200900857A true TW200900857A (en) 2009-01-01
TWI430026B TWI430026B (en) 2014-03-11

Family

ID=39836625

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097107118A TWI430026B (en) 2007-03-01 2008-02-29 Sensitive linear resin composition, interlayer insulating film and microlens, and the like

Country Status (4)

Country Link
JP (1) JP4748323B2 (en)
KR (1) KR101355223B1 (en)
CN (1) CN101256360B (en)
TW (1) TWI430026B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872123B (en) * 2009-04-27 2013-07-24 Jsr株式会社 Radioactive rays sensitive resin compound, distance piece or protection film for liquid crystal display and forming method thereof
KR101229960B1 (en) * 2011-01-28 2013-02-06 한양대학교 산학협력단 Photoacid generator bound tetra-polymer resist and the synthesis of the same
EP2865715B1 (en) * 2012-06-01 2020-02-19 LG Chem, Ltd. Resin composition, optical film formed using same, and polarizer and liquid crystal display device comprising same
CN111801821B (en) * 2018-03-23 2024-04-02 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, conductive material paste composition, slurry composition, electrode, and battery
CN109467079B (en) * 2018-11-19 2020-11-24 华南理工大学 Organic functionalized graphene material and preparation method and application thereof
TWI724765B (en) 2020-01-21 2021-04-11 達興材料股份有限公司 Laser-debondable composition, laminate thereof, and laser-debonding method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172676A (en) * 1992-12-03 1994-06-21 Nippon Oil & Fats Co Ltd Uv-curable antifogging agent composition
JPH07261391A (en) * 1994-03-22 1995-10-13 Nippon Oil & Fats Co Ltd Photosetting resin composition
JP3543286B2 (en) * 1996-03-08 2004-07-14 日本化薬株式会社 Resin composition, resist ink resin composition and cured product thereof
WO2000040632A1 (en) * 1998-12-28 2000-07-13 Daicel Chemical Industries, Ltd. Curable resin composition, modified copolymer and resin composition, and alkali development type photocurable glass paste
JP2003043685A (en) * 2001-08-03 2003-02-13 Showa Denko Kk Color composition, and photosensitive color composition for color filter
KR20040030534A (en) * 2001-05-15 2004-04-09 쇼와 덴코 가부시키가이샤 Photosensitive coloring composition, color filter using the composition and method of producing the same
TWI300795B (en) * 2001-08-21 2008-09-11 Mitsubishi Chem Corp Curable resin composition for die coating and process for producing color filter
JP4492393B2 (en) * 2005-03-08 2010-06-30 チッソ株式会社 Photosensitive composition and display element using the same

Also Published As

Publication number Publication date
JP4748323B2 (en) 2011-08-17
CN101256360B (en) 2012-06-20
CN101256360A (en) 2008-09-03
TWI430026B (en) 2014-03-11
KR101355223B1 (en) 2014-01-24
JP2008216491A (en) 2008-09-18
KR20080080453A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
TWI437365B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
JP2001354822A5 (en)
TWI405038B (en) A radiation-sensitive resin composition, an interlayer insulating film and a microlens, and a method for manufacturing the same
JP2004264623A (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming these
KR100776121B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
JP2007101762A (en) Radiation-sensitive resin composition and formation of interlayer insulation film and microlens
TWI410667B (en) Sensing linear resin composition, interlayer insulating film and method for forming the same, microlens and method for forming the same
TWI430026B (en) Sensitive linear resin composition, interlayer insulating film and microlens, and the like
TWI361951B (en)
TWI510857B (en) Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like
TWI383255B (en) A method for forming a radiation linear resin composition and an interlayer insulating film and a microlens
JP2002287351A (en) Radiation sensitive resin composition, its use for interlayer insulating film and microlens, interlayer insulating film and microlens
JP2008225162A (en) Radiation-sensitive resin composition, interlayer insulation film and microlens, and method for producing the same
JP4670568B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
JP4581810B2 (en) Radiation-sensitive resin composition for forming interlayer insulating film and radiation-sensitive composition for forming microlens
TWI326799B (en)
TWI338190B (en)
TWI282905B (en) Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those
TWI425315B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
JP4766268B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP2008175889A (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for producing those
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens
TWI394000B (en) Radiation sensitive resin composition, radiation sensitive dry film, interlayer dielectric film and a forming method thereof, and microlens and a forming method thereof
JP4581952B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens