TW200849627A - Photovoltaic cell with shallow emitter - Google Patents

Photovoltaic cell with shallow emitter Download PDF

Info

Publication number
TW200849627A
TW200849627A TW097112977A TW97112977A TW200849627A TW 200849627 A TW200849627 A TW 200849627A TW 097112977 A TW097112977 A TW 097112977A TW 97112977 A TW97112977 A TW 97112977A TW 200849627 A TW200849627 A TW 200849627A
Authority
TW
Taiwan
Prior art keywords
reflective coating
conductive anti
passivation layer
conductors
conductive
Prior art date
Application number
TW097112977A
Other languages
Chinese (zh)
Inventor
Leonid Rubin
Original Assignee
Day4 Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CA2008/000349 external-priority patent/WO2008141415A1/en
Application filed by Day4 Energy Inc filed Critical Day4 Energy Inc
Priority to TW097112977A priority Critical patent/TW200849627A/en
Publication of TW200849627A publication Critical patent/TW200849627A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A photovoltaic semiconductor apparatus for use in forming a solar cell with shallow emitter is disclosed. The apparatus includes first and second adjacent oppositely doped volumes of semiconductor material forming a semiconductor heterojunction. The apparatus also includes a first passivation layer of material on the front side, the first passivation layer having a first outer surface and a plurality of openings therethrough defining corresponding unpassivated areas of the front side that are unpassivated by the first passivation layer. The apparatus further includes a first conductive anti-reflective coating on the first outer surface of the passivation layer and on the corresponding unpassivated areas of the front side. The apparatus may further include dielectric antireflective coating on an outer surface of the first passivation layer. A conductive anti-reflective coating may be provided on the outer surface of dielectric antireflective coating layer and on the corresponding unpassivated areas of the front side. A back side surface of the apparatus may be finished in various ways including forming a passivation layer with openings as on the front side, forming a third doped volume adjacent the second doped volume, or forming a layer of aluminum with laser-fired contacts on a passivation layer on the back side surface. The apparatus may further include second conductive coating on the back side surface. The apparatus further includes first and second electrodes for collecting electric current correspondingly from front and back sides of photovoltaic apparatus.

Description

200849627 九、發明說明: t發明所屬技術領域j 相關申請案 本申請案之美國稱號係為2007年5月21日提出申过的 5美國申請案第11/751,524號之一部分延續申請案。 發明領域 本發明一般而言係有關於半導體裝置,更特定古之係 有關於具有淺射極之高效率光伏(PV)電池。 【先前3 10 發明背景 結晶矽光伏(PV)電池一般而言係由一摻雜雜質用以產 生一p/n異質接面的矽基板所構成。p/n異質接面典型地可藉 由磷或硼擴散進入p型或n型半導體基板之前側而構成 異質接面處固定電荷,由於硼及磷原子產生一具有言電p 15的永久偶極電荷層。pv電池之一部分,介於前側與p/n異^ 接面之間,係視為一射極。當pv電池係藉由光線照明時貝 光能之光子產生電子洞對以及?/11異質接面之高電場提供 電荷分離。此自由電荷之位移導致基板之1)與11區域之間= 一電壓差。當p&n區域連接至一電路時,電流流動。此電 20流係藉由前及後側金屬接點自PV電池收集。 經由使用絲網印刷技術前及後側金屬接點典型地係提 供位在基板上,其中一部分導電膏,其典型地包含銀及/或 铭經由一光罩而絲網印刷在基板之前及後表面上。 就基板之前側而言,光罩典型地具有開口,導電膏經 200849627 由開口接觸基板表面。前側光罩典型地經構形用以構成複 數之薄平行線接點連接至二或更多與之連接並且一般地與 平行線接點垂直地延伸的較厚線。將導電膏散佈在光罩上 之後,移除光罩並加熱支承該部分導電膏的晶圓用以讓導 5電膏乾燥。接著在一烤箱中“燃結(fired)”晶圓並且導電膏進 入一金屬相,其中至少其之一部分擴散通過基板之前表面 並進入基板結構同時留有一部分在前表面上凝固。複數薄 平行線構成視為“手指(finger),,的薄平行線性電流收集區 域,其係由視為“彙電桿(bus bar),,的較厚垂直線交又。手指 10自基板之前側收集電流並將其轉移至彙電桿。彙電桿能夠 連接至一電路。 典型地,每一手指之寬度及高度分別約為12〇微米及1〇 微米。儘管手指足以自基板收集小電流,但彙電桿需自複 數之手指收集更大的電流,因此相應地具有較大的橫截面 15 及寬度。 在基板之背部表面上,包含銀及鋁之成分的部分導電 膏於使用作為電接點的區域中經絲網印刷並加以乾燥。包 含鋁的部分導電貧接著經散佈涵蓋基板之整個背部表面, 並且與上述接點之邊緣部分地重疊。接著藉由加熱將此導 2〇 電貧乾燥。然後讓基板於一烤箱中接受“燃結”,以及部分 之紹擴散進入基板之背部表面。如此在基板之背部表面處 產生一高摻雜P+層,或是背面場(BSF)。在其與接點部分重 疊的該等區域中鋁亦與銀/鋁接點成為合金。在擴散進入基 板之背部表面的鋁之背面場之間,該等銀/鋁接點因而顯現 200849627 為銀/铭焊墊。該等銀/鋁接點自基板之後側收集電流,並使 用作為供基板之背側所用的電終端。 由手指及彙電桿所佔用位在基板之前側上的區域係為 所热知的陰敝區域(sha(jing area),因為於此區域中構成手 5指及彙電桿的非透明導電膏防止太陽輻射不致抵達基板的 表面。此陰蔽區域降低裝置之電流產生容量。現代的太陽 能電池基板隆蔽區域佔用可用活性表面積的6_1〇%。在前側200849627 IX. INSTRUCTIONS: t TECHNICAL FIELD RELATED APPLICATIONS The US title of this application is a continuation-in-part application of 5 US Application No. 11/751,524, filed on May 21, 2007. FIELD OF THE INVENTION The present invention relates generally to semiconductor devices, and more particularly to high efficiency photovoltaic (PV) cells having shallow emitters. [Previous 3 10 BACKGROUND OF THE INVENTION Crystalline germanium photovoltaic (PV) cells are generally constructed of a germanium substrate doped with impurities to produce a p/n heterojunction. The p/n heterojunction can typically form a fixed charge at the heterojunction by diffusion of phosphorus or boron into the front side of the p-type or n-type semiconductor substrate, and a permanent dipole having a voltage p 15 due to boron and phosphorus atoms. Charge layer. One part of the pv battery, between the front side and the p/n junction, is considered an emitter. When the pv battery is illuminated by light, the photon of the photon is generated by the photon. The high electric field of the /11 heterojunction provides charge separation. This displacement of the free charge results in a voltage difference between the 1) and 11 regions of the substrate. When the p&n region is connected to a circuit, current flows. This electrical 20 flow is collected from the PV cells by the front and rear metal contacts. The front and back side metal contacts are typically provided on the substrate via the use of screen printing techniques, wherein a portion of the conductive paste, which typically comprises silver and/or is screen printed on the front and back surfaces of the substrate via a mask on. As far as the front side of the substrate is concerned, the reticle typically has an opening, and the conductive paste contacts the surface of the substrate by the opening via 200849627. The front side reticle is typically configured to form a plurality of thin parallel line contacts connected to two or more thicker wires that are connected thereto and generally extend perpendicularly to the parallel line contacts. After the conductive paste is spread on the reticle, the reticle is removed and the wafer supporting the portion of the conductive paste is heated to dry the conductive paste. The wafer is then "fired" in an oven and the conductive paste enters a metal phase, at least one of which partially diffuses through the front surface of the substrate and into the substrate structure while leaving a portion of the surface solidified on the front surface. The complex thin parallel lines constitute a thin parallel linear current collection region that is considered to be a "finger", which is a thick vertical line that is considered to be a "bus bar". The finger 10 collects current from the front side of the substrate and transfers it to the power pole. The power pole can be connected to a circuit. Typically, each finger has a width and height of about 12 microns and 1 micron, respectively. Although the fingers are sufficient to collect a small current from the substrate, the poles need to collect a larger current from the fingers of the plurality, and accordingly have a larger cross section 15 and width. On the back surface of the substrate, a portion of the conductive paste containing the components of silver and aluminum is screen printed and dried in a region where it is used as an electrical contact. The partially conductive lean portion comprising aluminum is then spread over the entire back surface of the substrate and partially overlaps the edges of the contacts. This conduction is then dried by heating. The substrate is then subjected to "burning" in an oven and partially diffused into the back surface of the substrate. This produces a highly doped P+ layer, or back surface field (BSF), at the back surface of the substrate. Aluminum also alloys with the silver/aluminum joints in such areas where it overlaps the contacts. Between the back side fields of aluminum diffusing into the back surface of the substrate, the silver/aluminum contacts thus appear as a silver/yel solder pad in 200849627. The silver/aluminum contacts collect current from the back side of the substrate and serve as an electrical termination for the back side of the substrate. The area occupied by the finger and the power rod on the front side of the substrate is a well-known shading area (sha (jing area), because the non-transparent conductive paste constituting the hand 5 fingers and the power rod in this area) Preventing solar radiation from reaching the surface of the substrate. This shaded area reduces the current generation capacity of the device. Modern solar cell substrate pockets occupy 6_1% of the available active surface area.

/ 上存在有金屬接點以及在背側上存在有銀/鋁焊墊亦會導 致由基板所產生的電壓降低,與金屬化區域成比例,因為 10接點賞擴散進入基板之前側表面對於電荷再結合具有一不 利的效果。由於矽與銀/鋁膏之間的熱膨脹係數不同,傳統 的金屬化技術亦可造成基板形成弓形。此係為薄太陽能電 池的一問題,其使用小於180微米厚的基板,致使該等電池 易碎因而降低生產量。 15 20 此外,傳統的金屬化技術導致在射極區域中實質的損 处“此為了增加使用傳統絲網印刷金屬化技術的太陽 電也的轉換效率’射極設計參數通常在將光照明區域掺 雜濃度等級儘可能低以及射極係極薄的該-方式下最佳 =此提供用以改良光子收集,特別是在藍色光譜區。在 通手指ί彙電桿下方的區域中摻雜濃度及射極厚度 貝上&Ν $輯供基板與手指及彙電桿之間的低 电且%接觸而未讓ρ/显曾媒 帝4日 /、貝接面刀流。易言之,需使太陽能 同射極:度射:其包,有不同摻雜物濃度及不 ' 偟官使用選擇性射極已證實能夠有效 7 200849627 地改良pv太陽能電池效率,實務上選擇性射極應用係相备 複雜。 田 頒給Ruby等人標題為“藉由一自對準、選擇性射極、電 聚回#製程製造矽太陽能電池 5 (Self.Aligned?Selective-Emitter9Plasma.Etchback Process)- 的美國專利第5,871,591號中說明一製程用於構成一選擇性 射極並使其鈍化。該製程使用重摻雜射極之電漿钱刻用以 改良其之性能。絲網印刷金屬圖案,所謂的太陽能電池之 拇極,係用以遮蔽電漿餘刻因此僅有介於拇極之間的區域 10中射極受到蝕刻,而位於柵極下方的區域維持重摻雜,用 以在基板與絲網印刷金屬柵極之間提供低接觸電阻。此製 程潛在地具低成本,因為其在重摻雜區域與絲網印刷圖案 之間不需精確對準。在射極經蝕刻後,藉由電漿增強化學 蒸氣沉積法將氮化矽沉積,從而產生一抗反射塗層。太陽 15能電池接著在構成氣體(forming gas)中退火。儘管此方法容 許構成一選擇性射極並增加太陽能電池效率,但其之缺點 在於選擇性射極形成僅在絲網印刷金屬圖案已構成在太陽 月b電池上之後發生,因而係取決於傳統式絲網印刷金屬化 技術。 20 頒給Ruby等人標題為“藉由一自對準、選擇性射極、電 漿回蝕製程製造矽太陽能電池(Self-Aligned,/ The presence of metal contacts on the back side and the presence of silver/aluminum pads on the back side also cause a reduction in the voltage generated by the substrate, proportional to the metallized area, since the 10 junctions are diffused into the substrate before the side surface is charged Recombination has an adverse effect. Due to the different coefficients of thermal expansion between tantalum and silver/aluminum paste, conventional metallization techniques can also cause the substrate to bow. This is a problem with thin solar cells that use substrates that are less than 180 microns thick, rendering the cells fragile and thus reducing throughput. 15 20 In addition, traditional metallization techniques result in substantial damage in the emitter region. "This is to increase the conversion efficiency of solar power using conventional screen printing metallization techniques." The emitter design parameters are usually incorporated in the light illumination region. The best level of impurity concentration is as low as possible and the emitter is extremely thin. This is provided to improve photon collection, especially in the blue spectral region. Doping concentration in the area below the fingertip And the thickness of the emitter is on the & Ν $ series for the low electricity and % contact between the substrate and the finger and the power pole, but does not let ρ / show the media Emperor 4th /, Bay joint knife flow. It is easy to say, Need to make solar energy with the same emitter: radiant: its package, with different dopant concentrations and not ' 偟 使用 使用 使用 使用 使用 使用 使用 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 Complicated. The field was awarded to Ruby et al. entitled "Self-Aligned? Selective-Emitter9Plasma.Etchback Process" by the title "Self-Aligned, Selective-Emitter9Plasma.Etchback Process" Patent No. 5,871,591 Out of a process for forming a selective emitter and passivated. The process uses a heavily doped emitter of plasma to improve its performance. Screen printing metal pattern, the so-called thumb of the solar cell, is used to shield the plasma residue so that only the emitter 10 is etched in the region 10 between the thumb poles, while the region below the gate maintains re-doping Miscellaneous to provide low contact resistance between the substrate and the screen printed metal gate. This process is potentially cost effective because it does not require precise alignment between the heavily doped regions and the screen printed pattern. After the emitter is etched, tantalum nitride is deposited by plasma enhanced chemical vapor deposition to produce an antireflective coating. The solar 15 energy cell is then annealed in a forming gas. Although this method allows for the formation of a selective emitter and increases solar cell efficiency, it has the disadvantage that selective emitter formation occurs only after the screen printed metal pattern has been formed on the solar cell b cell, and thus depends on the conventional Screen printing metallization technology. 20 awarded to Ruby et al. entitled “Self-Aligned by a self-aligned, selective emitter, plasma etchback process” (Self-Aligned,

Selective-Emitter,Plasma-Etchback Process)’’的美國專利第 6,091,021號中說明光伏電池及其製造方法,其中電池之金 屬化柵極係用以遮蔽部分之電池射極區域,容許摻雜碟射 200849627 極區域之選擇性蝕刻。與具有均勻重摻雜之射極的電池相 較’此自對準選擇性蝕刻提供增強的藍光反應,同時針對 低接觸電阻所需在栅極線下方的區域中維持較重的推雜。 如此可取代用以獲得選擇性蝕刻射極的昂貴且困難的對準 5方法,並可輕易地與現存的電漿加工方法及技術整合。然 而,所提議的方法係需僅在已對太陽能電池上施以絲網印 刷金屬化之後完成選擇性射極形成作業,致使該製程取決 於傳統絲網印刷金屬化技術。 10 15 頒給H〇rzel等人標題為“具有選擇性擴散區域的半導體 裝置(Semiconductor Device whh sdectiveiy 以饰⑽ ⑽㈣”的«專利第6,552,414及M25,綱射說明具有 -選擇性擴散區域其之摻雜程度不同的紐(pv)電池。第 一絲網印刷製程係用以將 將匕3摻雜劑的一導電膏沉積在一 基板之擴散區域上,用以吝山 ^ X產生鬲摻雜射極區域。金屬化圖 案的弟一絲網印刷沉積你样^ 她心〜 積係精確地對準用以確保構成與高掺 雜射極區域連接。再者, ^ _ 而要絲網印刷金屬化技術。 【發明内容1 發明概要 根據本發明之一觀點, m ”用以構成一太陽能電池的 尤1大牛V體裝置。該步 m ^ "匕栝構成一半導體異質接面的 第及第一相鄰相對的半 -并孫祛…6 材料之摻雜容積。第-摻雜 谷積係使用作為一射極,以 該裝置亦包括位在前側上的—^―前側用於接收光線。 化層具有-第-外表面以及複=鈍化材料層,該第-鈍 後數之開口,經由該等開口界 20 200849627 定未由第一鈍化層所鈍化之對應的前側之未鈍化區域。該 裝置進一步包括位在鈍化層之第一外表面上以及前側之對 應的未鈍化區域上的一第一傳導性抗反射塗層。 半導體異質接面可為一離子植入異質接面及一熱擴散 5 異質接面的至少其中一者。 第一摻雜容積可具有一每平方約60歐姆至每平方約 150歐姆的薄層電阻率,而合意地具有一每平方約80歐姆至 每平方約150歐姆的薄層電阻率。 第一鈍化層可由Si02、SiN4及SiC的至少其中之一者所 10 組成。 第一鈍化層可具有約10奈米至約500奈米的一厚度,而 較佳地具有約10奈米至約50奈米的一厚度。 該等開口之寬度係約50微米至約200微米。 位於第一鈍化層中的開口係以平行線方式配置涵蓋第 15 —外表面。 位於第二鈍化層中開口之平行線間的距離可約為500 微米至約5000微米。 該等平行線可藉由交叉的平行線連接用以構成一栅極 配置。 20 該柵極配置具有約500平方微米至約5000平方微米的 網眼(mesh)。 第一傳導性抗反射塗層可為連續的。 第一傳導性抗反射塗層厚度可為約70奈米至約280奈 米。 10 200849627 第一傳導性抗反射塗層可包含InOx、SnOx、InSnOx、 TiOx及ΖηΟχ之其中至少之一者。 第一傳導性抗反射塗層具有約為每平方1歐姆至約每 平方30歐姆的一薄層電阻率。 5 該裝置可包括位在背側表面上的一第二鈍化層,該第 二鈍化層具有一第二外表面其具有第二複數之開口,經由 該等開口界定未由第二鈍化層所鈍化之對應的前側之未鈍 化區域。 該裝置亦包括位在第二鈍化層之第二外表面上以及第 ίο二外表面之對應的未鈍化區域上的一第二傳導性抗反射塗 層。 第二鈍化層可由Si〇2、SiN4及SiC的至少其中之一者所 組成。 第二鈍化層可具有約10奈米至約5〇〇奈米的一厚度,而 15較佳地具有約10奈米至約50奈米的一厚度。 位在第二鈍化層中該等開口之寬度係約50微米至約 200微米。 ' 位於第二鈍化層中的開口係以平行線方式配置涵蓋第 二外表面。 20 該等平行線可間隔開約500微米至約5000微米。 該等平行線可藉由交又的平行線連接用以構成_拇極 配置。 忒柵極配置具有約5〇〇平方微米至約5〇〇〇平方微米的 網眼(mesh)。 11 200849627 第二傳導性抗反射塗層可為連續的。 第二傳導性抗反射塗層厚度約至少為第一傳導性抗反 射塗層的厚度。 第二傳導性抗反射塗層厚度約為70奈米至約500奈米。 5 第二傳導性抗反射塗層可包含InOx、SnOx、InSnOx、A photovoltaic cell and a method of fabricating the same are described in U.S. Patent No. 6,091,021, the entire disclosure of which is incorporated herein by reference. Selective etching of the 200849627 polar region. This self-aligned selective etch provides an enhanced blue light response compared to a cell with a uniformly heavily doped emitter while maintaining a heavier push in the region below the gate line for low contact resistance. This can be used in place of the expensive and difficult alignment method for selectively etching the emitter and can be easily integrated with existing plasma processing methods and techniques. However, the proposed method requires selective emitter formation to be performed only after screen printing metallization has been applied to the solar cell, such that the process is dependent on conventional screen printing metallization techniques. 10 15 awarded to H〇rzel et al. entitled “Semiconductor devices with selective diffusion regions (Semiconductor Device whh sdectiveiy with ornaments (10) (10) (4)”, patents 6, 552, 414 and M25, with a description of the selective diffusion region A neon (pv) battery having a different degree of heterogeneity. The first screen printing process is for depositing a conductive paste of a cerium 3 dopant on a diffusion region of a substrate for generating a ytterbium-doped shot. The polar region. The metallized pattern of the screen-deposited deposition of your sample ^ her heart ~ the system is precisely aligned to ensure that the structure is connected to the highly doped emitter region. Furthermore, ^ _ and screen printing metallization technology. SUMMARY OF THE INVENTION According to one aspect of the present invention, m ” is used to form a solar cell, and the first and second phases of a semiconductor heterojunction are formed. The adjacent opposite half-and-sun 祛...6 doped volume of the material. The first-doped valley system is used as an emitter, and the device also includes a front side on the front side for receiving light. With a - outer surface and a passivation material layer, the opening of the first blunt number, through which the unenpassed regions of the corresponding front side are not passivated by the first passivation layer. The device further comprises a first layer located in the passivation layer a first conductive anti-reflective coating on the outer surface and the corresponding unpassivated region on the front side. The semiconductor heterojunction may be at least one of an ion implanted heterojunction and a thermally diffused 5 heterojunction. The first doped volume may have a sheet resistivity of from about 60 ohms per square to about 150 ohms per square, and desirably has a sheet resistivity of from about 80 ohms per square to about 150 ohms per square. The layer may be comprised of at least one of SiO 2 , SiN 4 and SiC 10. The first passivation layer may have a thickness of from about 10 nm to about 500 nm, and preferably from about 10 nm to about 50 nm. The thickness of the openings is from about 50 microns to about 200 microns. The openings in the first passivation layer are arranged in a parallel line to cover the 15th outer surface. Between the parallel lines of the openings in the second passivation layer Distance From 500 microns to about 5000 microns, the parallel lines can be joined by intersecting parallel lines to form a gate configuration. 20 The gate configuration has a mesh of from about 500 square microns to about 5000 square microns. The first conductive anti-reflective coating can be continuous. The first conductive anti-reflective coating can have a thickness of from about 70 nanometers to about 280 nanometers. 10 200849627 The first conductive anti-reflective coating can comprise InOx, SnOx, At least one of InSnOx, TiOx, and Ζn. The first conductive anti-reflective coating has a sheet resistivity of from about 1 ohm per square to about 30 ohms per square. 5 the device may include a second passivation layer on the backside surface, the second passivation layer having a second outer surface having a second plurality of openings through which the passivation is not passivated by the second passivation layer Corresponding front side unpassivated areas. The device also includes a second conductive anti-reflective coating on the second outer surface of the second passivation layer and the corresponding unpassivated region of the second outer surface. The second passivation layer may be composed of at least one of Si〇2, SiN4, and SiC. The second passivation layer can have a thickness of from about 10 nanometers to about 5 nanometers, and 15 preferably has a thickness of from about 10 nanometers to about 50 nanometers. The width of the openings in the second passivation layer is from about 50 microns to about 200 microns. The openings in the second passivation layer are arranged in a parallel line to cover the second outer surface. 20 The parallel lines may be spaced apart from about 500 microns to about 5000 microns. The parallel lines can be connected by a parallel parallel line to form a thumb-shaped configuration. The germanium gate configuration has a mesh of from about 5 square microns to about 5 square meters. 11 200849627 The second conductive anti-reflective coating can be continuous. The second conductive anti-reflective coating has a thickness of at least about the thickness of the first conductive anti-reflective coating. The second conductive anti-reflective coating has a thickness of from about 70 nanometers to about 500 nanometers. 5 The second conductive anti-reflective coating may comprise InOx, SnOx, InSnOx,

TiOx及ZnOx之其中至少之一者。 第二傳導性抗反射塗層具有約為每平方1歐姆至約每 平方30歐姆的一薄層電阻率。 為了在太陽能電池中使用光伏半導體裝置,將第一及 10 第二電極連接至該裝置之前及背側。該第一電極包括一第 一透光電絕緣薄膜,其具有第一及第二相對側邊。該第一 側邊具有一第一黏著劑用於將該第一薄膜黏合至該第一傳 導性抗反射塗層。該第一電極進一步包括内篏於該第一黏 著劑塗層中的第一複數之導體,致使部分之第一複數之導 15 體自該第一黏著劑突出。該等部分係藉由在該等部分上的 一合金塗層而焊接至該第一傳導性抗反射塗層,用以在該 第一傳導性抗反射塗層與部分之第一複數之導體之間構成 歐姆連接,致使電子能夠於前側之未鈍化區域與第一複數 之導體之間通過,容許藉由光伏半導體裝置所產生的電流 20 由第一複數之導體傳導。 第二電極包括一第二電絕緣薄膜,其具有第一及第二 相對側邊。該第二薄膜之該第一側邊具有一第二黏著劑用 於將該第二薄膜黏合至該第二傳導性抗反射塗層。該第二 電極進一步包括内嵌於該第二黏著劑塗層中的第二複數之 12 200849627 導體,致使部分之第二魏之導體自該第二黏著 該等部分之第二複數之導體_由在該等部分上的一人八 塗層而焊接至第二料性抗反射_,心㈣分之^ 複數之導體與該第二料性抗反•層之間構成歐姆: 接,致使電子㈣钱第二外表面之祕化^拉第二* 數之導體之間通過’容許藉由光伏半導體裝置所產生^ 流由第二複數之導體傳導。 ^ 取代該第二鈍化層及該第二傳導性抗反射塗層,該裝 置可包括與該半導體異質接面相對和該第二換雜容積之: 10側邊上的第二摻雜容積相鄰的一第三摻雜容積。該第三摻 雜容積具有與該第二摻雜容積相同的極性,從而與該第二 摻雜容積構成一同型接合(isotypejunction)。該第三摻雜容 積亦具有一摻雜濃度大於該第二摻雜容積之一摻雜濃度, 並且第三摻雜容積具有一背側表面。 15 該裝置進一步包括位在該第三摻雜容積之背側表面上 的一弟一傳導性抗反射塗層。 該第二傳導性抗反射塗層可為連續的並且均勻,以及 具有一厚度約與該第一傳導性抗反射塗層之一厚度相同, 或較大。 第二傳導性抗反射塗層可具有約為70至約500奈米的 一厚度。 第二傳導性抗反射塗層可包含In〇x、SnOx、InSnOx、 TiOx及ZnOx之其中至少之一者。 第二傳導性抗反射塗層具有約為每平方1歐姆至約每 13 200849627 平方30歐姆的一薄層電阻率。 使用具有該第三摻雜容積之裝置的一太陽能電池係藉 由將第一及第二電極連接至該裝置之前及背表面而構成。 該第一電極包括包括一第一透光電絕緣薄膜,其具有 5 第一及第二相對側邊。該第一側邊具有一第一黏著劑用於 將該第一薄膜黏合至該第一傳導性抗反射塗層。該第一電 極進一步包括内欲於該第一黏著劑塗層中的第一複數之導 體,致使部分之第一複數之導體自該第一黏著劑塗層突 出。該等部分係藉由在其上的一合金塗層而焊接至該第一 10 傳導性抗反射塗層,用以在該第一傳導性抗反射塗層與部 分之第一複數之導體之間構成歐姆連接,致使電子能夠於 前側之未鈍化區域與第一複數之導體之間通過,容許藉由 光伏半導體裝置所產生的電流由第一複數之導體傳導。 第二電極包括一第二電絕緣薄膜,其具有第一及第二 15 相對側邊。該第二薄膜之該第一側邊具有一第二黏著劑用 於將第二薄膜黏合至該第二傳導性抗反射塗層。第二電極 進一步包括内嵌於第二黏著劑中的第二複數之導體,致使 部分之第二複數之導體自該第二黏著劑塗層突出。該等部 分之第二複數之導體係藉由在該等部分上的一合金塗層而 20 焊接至該第二傳導性抗反射塗層,用以在部分之第二複數 之導體與該第二傳導性抗反射塗層之間構成歐姆連接,致 使電子能夠於該第三容積之背側表面與第二複數之導體之 間通過,容許藉由光伏半導體裝置所產生的電流由第二複 數之導體傳導。 14 200849627 於另一具體實施例中,該第二摻雜容積可具有一背側 表面並可在背側表面上包括一第二純化層,以及可進一步 在該第二鈍化層上包括一鋁層。該鋁層具有複數之雷射燒 結電流收集接點延伸通過該第二鈍化層至該第二摻雜容 5積。 使用具有鋁層之裝置的一太陽能電池包括第一及第二 電極分別地連接至該裝置之前及背部表面。該第一電極包 括一第一透光電絕緣薄膜,其具有第一及第二相對側邊。 該第一側邊具有一第一黏著劑用於將該第一薄膜黏合至該 10 第一傳導性抗反射塗層。該第一電極進一步包括内嵌於該 第一黏著劑中的第一複數之導體,致使部分之第一複數之 導體自該第一黏著劑塗層突出。該等部分係藉由在其上的 一合金塗層而焊接至該第一傳導性抗反射塗層,用以在該 傳導性抗反射塗層與部分之第一複數之導體之間構成歐姆 15 連接,致使電子能夠於該前側之未鈍化區域與第一複數之 導體之間通過,容許藉由該光伏半導體裝置所產生的電流 由第一複數之導體傳導。 第二電極包括一第二電絕緣薄膜,其具有第一及第二 相對側邊。該第二薄膜之該第一側邊具有一第二黏著劑用 20 於將該第二薄膜黏合至鋁層。該第二電極進一步包括内嵌 於該第二黏著劑中的第二複數之導體,致使部分之第二複 數之導體自該第二黏著劑塗層突出。該等部分之第二複數 之導體係藉由在該等部分上的一合金塗層而焊接至鋁層, 用以在部分之第二複數之導體與鋁層之間構成歐姆連接, 15 200849627 容2藉由光伏半導體裝置所產生的電流由第二複數之導體 傳&通過1呂層以及雷射燒結接點至該第二摻雜容積。 “^據本务明之另一觀點,提供用於構成太陽能電池之 光伏半導體裝置的一製造方法。該方法包含在一第一鈍化 5層中2成第一複數之開口,該第一鈍化層係位在具有構成 異貝接面的第一及第二相鄰相對的半導體材料之摻雜容 牙貝的半導體晶圓之半導體材料的第-摻雜容積的-前側 上々忒第一複數之開口界定係藉由該第一鈍化層而未鈍化 的第鈾側之對應的未鈍化區域。該方法亦包含在該第一 10純化層之一第一外表面上以及在該前側之該等對應的未鈍 化區域上構成一第一傳導性抗反射塗層。 第一複數之開口的構成作業包含致使第一複數之開口 中每一開口具有約5〇微米至約2〇〇微米的寬度。 在第一鈍化層中構成第一複數之開口的作業包含以平 15打線方式配置第一複數之開口涵蓋該第一外表面。 位於該第一鈍化層中開口之平行線間的距離可約為 500微米至約5〇〇〇微米。 在該第一鈍化層中構成第—複數之開口的作業包含以 平行線藉由交叉平行線連接方式配置第一複數之開口用以 20 構成一柵極配置。 該柵極配置具有約500平方微米至約5〇〇〇平方微米的 網眼(mesh)。 構成該第一傳導性抗反射塗層作業可包含在該第一外 表面上以及在該前側表面之該等未鈍化區域上構成一第一 16 200849627 連續傳導性抗反射塗層。 構成第一傳導性抗反射塗層作業可包含致使該第一傳 導性抗反射塗層具有約70奈米至約280奈米的一厚度。 在該第一外表面上以及在該前側表面之該等未鈍化區 5 域上構成該第一傳導性抗反射塗層可包含施以一材料,其 包括InOx ; SnOx ; InSnOx ; TiOx及ZnOx之其中至少之一 者。 構成該第一傳導性抗反射塗層作業可包含致使該第一 傳導性抗反射塗層具有約為每平方1歐姆至約每平方30歐 10 姆的一薄層電阻率。 該方法可包含藉由離子植入及熱擴散的其中至少一方 式構成該異質接面。 該方法可包含構成該第一掺雜容積而其具有約每平方 60歐姆至約每平方150歐姆的薄層電阻率,而合意地具有約 15 每平方80歐姆至約每平方150歐姆的薄層電阻率。 該方法包含構成該第一純化層。 構成該第一鈍化層作業可包含在該前側上構成Si02、 SiN4及SiC的至少其中之一者的一層。 構成該第一鈍化層作業包含致使該第一鈍化層具有約 20 10奈米至約500奈米的一厚度,而合意地約1〇奈米至約50奈 米。 該方法包含在一第二鈍化層中構成第二複數之開口, 該第二鈍化層係位在該半導體材料之該第二摻雜容積的一 背側表面上,第二複數之開口界定位在該背側表面上對應 17 200849627 的未鈍化區域。該方法亦包含在該第二純化層之_外表面 上以及在該第二背側表面之該等未純化區域上構成一第二 傳導性抗反射塗層。 第二複數之開口的構成作業包含致使第二複數之開口 5中每一開口具有約50微米至約200微米的寬度。 幵 在該第二鈍化層中構成第二複數之開口的作業包含以 平行線方式配置第二複數之開口涵蓋該背側表面。 位於該第二鈍化層中該等平行線間的距離可約為5〇〇 微米至約5000微米。 10 在第二鈍化層中構成第二複數之開口的作業包含以平 行線藉由父叉平行線連接方式配置第二複數之開口用以構 成一栅極配置。 該柵極配置具有約500平方微米至約5〇〇〇平方微米的 網眼(mesh)。 15 構成該第二傳導性抗反射塗層作業可包含在該第二鈍 化層之該外表面上以及在該背側表面之該等未鈍化區域上 構成一第二連續傳導性抗反射塗層。 構成該第二傳導性抗反射塗層作業可包含致使該塗層 具有約70奈米至約500奈米的一厚度。 2〇 構成該第二傳導性抗反射塗層作業包含以一材料塗佈 該第二鈍化層之該外表面以及該背側表面之該等未鈍化區 域,該材料包括InOx ; SnOx ; InSnOx ; TiOx及ZnOx之其 中至少之一者。 構成該第二傳導性抗反射塗層作業可包含致使該第二 18 200849627 傳導性抗反射塗層具有約為每平方1歐姆至約每平方30歐 姆的一薄層電阻率。 該方法包含構成該第二鈍化層。 構成該第二鈍化層作業可包含在該外表面上構成 5 Si02、SiN4及SiC的至少其中之一者的一層。 構成該第二鈍化層作業包含致使該第二鈍化層具有約 10奈米至約500奈米的一厚度,而合意地約10奈米至約50奈 米。 該方法可包含將位在一透光電絕緣薄膜上的一黏著劑 10 黏合至該第一傳導性抗反射塗層,致使位在内嵌於黏著劑 中第一複數之導體之對應暴露部分上的部分之合金塗層係 配置在該第一傳導性抗反射塗層上。該方法亦可包含加熱 該合金塗層同時將該等暴露部分壓按靠著該第一傳導性抗 反射塗層,致使該合金塗層將第一複數之導體的該等暴露 15 部分焊接至該第一傳導性抗反射塗層用以在第一複數之導 體與該第一傳導性抗反射塗層之間產生歐姆連接。 該方法可包含將位在一第二電絕緣薄膜上的一第二黏 著劑黏合至該第二傳導性抗反射塗層,致使位在内嵌於該 第二黏著劑中第二複數之導體的對應暴露部分上的部分之 20 第二合金塗層係配置在該第二傳導性抗反射塗層上。該方 法可進一步包含加熱該第二合金塗層同時將第二複數之導 體之暴露部分壓按靠著該第二傳導性抗反射塗層,致使該 第二合金塗層將第二複數之導體的暴露部分焊接至該第二 傳導性抗反射塗層用以在第二複數之導體與該第二傳導性 19 200849627 抗反射k層之間產生歐姆連接。 ^方去可包含在與該半導體接合相對的該第二摻雜容 ^ ^上的—第三摻雜容積的-背部側表面上構成- 第γ ‘陵抗反射塗層,該第三摻雜容積具有與該第二容 5積相同的摻雜極性,從而構成一同型接合㈣挪juncti〇n) 並且其中該第三摻雜容積亦具有一推雜濃度大於該第二容 積之一摻雜濃度。 第-傳導性抗反射塗層構成作業可包含在該第三換雜 容積之背侧表面上構成-第二連續的傳導性抗反射塗層。 10 第二傳導性抗反射塗層構成作業可包含致使該第二傳 導性抗反射塗層具有約70奈米至約5〇〇奈米的一厚度。 構成第二傳導性抗反射塗層作業可包含以一材料塗佈 該第三摻雜容積之該背側表面,該材料包括ΐηθχ ; Sn0x ; InSnOx ; TiOx及ZnOx之其中至少之一者。 15 構成第二傳導性抗反射塗層作業可包含致使該第二傳 導性抗反射塗層具有約為每平方1歐姆至約每平方3〇歐姆 的一薄層電阻率。 該方法可包含將位在一透光電絕緣薄膜上的一黏著劑 黏合至該第一傳導性抗反射塗層’致使位在内嵌於黏著劑 20中第一複數之導體之對應暴露部分上的部分之合金塗層係 配置在該第一傳導性抗反射塗層上。該方法可進一步包含 加熱該合金塗層同時將該等暴露部分壓按靠著該第一傳導 性抗反射塗層,致使該合金塗層將第一複數之導體的暴露 部分焊接至該傳導性抗反射塗層用以在第一複數之導體與 20 200849627 該第一傳導性抗反射塗層之間產生歐姆連接。 該方法可包含將位在一第二電絕緣薄膜上的一第二黏 著劑黏合至該第二傳導性抗反射塗層,致使位在内嵌於該 第二黏著劑中第二複數之導體之對應暴露部分上的部分之 5 第二合金塗層係配置在該第二傳導性抗反射塗層上。該方 法可進一步包含加熱該第二合金塗層同時將第二複數之導 ’ 體之暴露部分壓按靠著該第二傳導性抗反射塗層,致使第 二合金塗層將第二複數之導體的暴露部分焊接至該第二傳 導性抗反射塗層用以在第二複數之導體與該第二傳導性抗 10 反射塗層之間產生歐姆連接。 該方法可包含在該第二容積之一背部側表面上構成一 第二鈍化層。 構成該第二鈍化層作業可包含在該外表面上構成 Si02、SiN4及SiC的至少其中之一者的一層。 ' 15 構成該第二鈍化層作業包含致使該第二鈍化層具有約 - 10奈米至約5 00奈米的一厚度,而合意地約10奈米至約50奈 米。 該方法可包含在該第二鈍化層上構成一鋁層。 該鋁層之構成作業可包含藉由蒸氣沉積及喷濺的其中 20 至少一方式構成鋁層。 鋁層之構成作業可包含構成該鋁層致使該鋁層之厚度 約為1微米至約20微米,而合意地約2微米至約10微米。 該方法可包含在該鋁層中構成複數之雷射燒結接點。 該方法可包含將位在一透光電絕緣薄膜上的一黏著劑 21 200849627 黏合至該第一傳導性抗反射塗層,致使位在内嵌於該黏著 劑中第一複數之導體之對應暴露部分上的部分之合金塗層 係配置位在該前側上。該方法可進一步包含加熱該合金塗 層,同時將該等暴露部分壓按靠著位在該等未鈍化區域上 5 的該第一傳導性抗反射塗層,致使該合金塗層將第一複數 之導體的暴露部分焊接至該傳導性抗反射塗層用以在第一 複數之導體與該第一傳導性抗反射塗層之間產生歐姆連 接。 該方法可包含將位在一第二電絕緣薄膜上的一第二黏 10 著劑黏合至該鋁層,致使位在内嵌於該第二黏著劑中第二 複數之導體之對應暴露部分上的第二合金塗層係配置在該 I呂層上。該方法可進一步包含加熱該第二合金塗層,同時 將第二複數之導體之暴露部分壓按靠著該鋁層,致使該第 二合金塗層將第二複數之導體的暴露部分焊接至該鋁層用 15 以在第二複數之導體與該鋁層之間產生歐姆連接,用以容 許電流在第二複數之導體與該第二摻雜容積之間流動通過 該等雷射燒結接點及該鋁層。 根據本發明之另一觀點,提供用以構成一太陽能電池 的一光伏半導體裝置。該裝置包括構成一半導體異質接面 20 的第一及第二相鄰相對的半導體材料之摻雜容積,該第一 摻雜容積係使用作為一射極,具有一前側用於接收光線。 該裝置亦包括位在該前侧上的一第一鈍化材料層,該第一 鈍化層具有一第一外表面以及複數之開口,經由該等開口 界定未由第一鈍化層所鈍化之對應的該前側之該等未鈍化 22 200849627 區或"亥衣置進一步包括位在該鈍化層之該第一外表面上 的;丨私抗反射塗層致使位在該鈍化層中的該等開口並無 遠介電抗反射塗層。該裝置亦在該第一介電抗反射塗層上 乂及在"亥别側之该等對應的未純化區域上包括一第一傳導 5 性抗反射塗層。 該半導體異質接面可包括一離子植入異質接面以及一 熱擴政異質接面的至少其中一者。 該第一摻雜容積可包括一每平方約6〇歐姆至每平方約 150歐姆的薄層電阻率。 10 該第一摻雜容積可包括一每平方約80歐姆至每平方約 150歐姆的薄層電阻率 该第—鈍化層可包括Si〇2、SiN4及SiC的至少其中之_ 者。 该第一鈍化層可具有約10奈米至約200奈米的一厚度。 15 該第一鈍化層可具有約10奈米至約50奈米的一厚度。 位在該第一鈍化層中該等開口之寬度係約50微米至約 200微米。 位於該第一鈍化層中的該等開口可具有一伸長的形 狀’其之長度介於約〇·5公厘與約4公厘之間以及其之寬度 20介於約ο·1公厘與約1公厘之間。該等開口可間隔開約1公厘 至約6公厘。 位於該第一鈍化層中該等開口係以平行線方式配置涵 蓋該第一外表面。 該等平行線間隔開約為500微米至約5000微米。 23 200849627 該等平行線可藉由交叉的平行線連接用以構成一柵極 配置。 該栅極配置具有約500平方微米至約5000平方微米的 網眼(mesh)。 5 該介電抗反射塗層厚度可為約70奈米至約100奈米。 該介電抗反射塗層可包含氮化石夕。 該介電抗反射塗層可具有一折射率介於約2.0與約2.5 之間。 該第一傳導性抗反射塗層可包括銦、錫、鈦及鋅其中 10 至少一者之氧化物。 該第一傳導性抗反射塗層可包括銦及錫其中至少一者 之一摻雜氟化物的氧化物。 該第一傳導性抗反射塗層厚度可介於約7 0奈米與約 100奈米之間。 15 該第一傳導性抗反射塗層可具有一折射率介於約1.7 與約1.9之間。 該介電抗反射塗層可具有一折射率介於約2.0與約2.5 之間以及該第一傳導性抗反射塗層可具有一折射率介於約 1.7與約1.9之間。 20 根據本發明之另一觀點,提供構成用以形成一太陽能 電池的一光伏半導體裝置的方法。該方法包含在一介電抗 反射塗層中構成複數之開口,以及一第一鈍化層係位在具 有構成一異質接面的第一及第二相鄰相對的半導體材料之 摻雜容積的一半導體晶圓之半導體材料的第一摻雜容積的 24 200849627 鈾側上,用以在前側上^ ^ ^ ^ ^ ^ ^ ^ ^ 幻1於其間5亥弟—摻雜容積之 X引貝'、暴路部分上形成鈍化的介電塗覆區域。該方法亦 包含在該等鈍化的介電塗覆區域與該前側表 區域上構[第-料餘反射塗層。 5 構成複數之開口作業可包含制-第-材料去除製 程,用以去除該介電抗反射塗層之區域露出該第—純化層 之—表面的該等部分,以及使用一第二製程用以 一鈍化層之該等部分,產生1前 人 度王β刖側表面之该專暴露區域。 。亥第-製程可包含雷射剝钱及選擇性電浆餘刻作業的 10至少之-者,以及該第二製程可包含濕式化學餘刻。 濕式化學蝕刻可包含使用氟酸的濕式化學蝕刻。 該方法可包含進行濕式化學蝕刻直至該介電抗反射塗 層具有介於約70奈米與約1〇〇奈米之間的一厚度為止。 一經檢閱以下結合伴隨圖式的本發明之特定具體實施 15例之說明’本發明之其他觀點及特性對熟知此技藝之人士 而言將為顯而易見的。 圖式簡單說明 以下圖式係說明本發明之具體實施例, 第1圖係為本發明之第一具體實施例的一光伏半導體 20 裝置的一橫截面視圖。 第2圖係為第1圖之裝置於加工作業的第一階段的一橫 截面視圖。 第3圖係為第1圖之裝置於加工作業的第二階段的一橫 截面視圖。 25 200849627 第4圖係為第1圖之裝置於加工作業的第三階段的一橫 截面視圖。 第5圖係為第1圖之裝置於加工作業的第四階段的一橫 截面視圖。 5 第6圖係為第1圖之裝置的一平面圖,顯示位在第1圖之 裝置的一前表面上的一鈍化層中之開口係以平行線方式配 置。 弟7圖係為一弟一具體實施例的一裝置之一平面圖,其 中位在第1圖之裝置的一前表面上的一鈍化層中之開口係 10顯示為平行線及交又平行線方式配置用以構成一栅極配 置。 第8圖係為第1圖之裝置於加工作業的第五階段的一橫 截面視圖。 第9圖係為本發明之一第二具體實施例之一裝置的一 15橫截面視圖,其中對一鈍化層施加一介電抗反射塗層。 第10圖係為第9圖之該裝置的一橫截面視圖,顯示去除 部分之該介電抗反射塗層。 弟11圖係為第10圖之該裝置的一橫截面視圖,顯示去 除部分之該介電抗反射塗層以及該第一鈍化層。 〇 第12圖係為第11圖之該裝置的一橫截面視圖,顯示部 分之該介電抗反射塗層以及暴露部分之該半導體晶圓之該 第一容積的該外表面覆以一傳導性抗反射塗層。 弟13圖係為第8圖之該裝置的一橫截面視圖,其中其之 该背側表面係以與其之前側表面相似的一方式作最後加 26 200849627 工0 -透:圖,其之該裝置在—製造作業階段所示的 第15圖係及第二電極係連接至前及背側表面。 .^ . Γ. ^ ^ 圖之裝置的一橫截面視圖,其中該背側 表面係以弟 < 換雜办办 第15A圖係為第二積以及一傳導性塗層作最後加工。 放大橫截域_ 5圖巾料《㈣—較之一分段 # 10 第16圖係為第s 側係以具有雷•二該裝置的-橫截面視圖,其中該背 心結接點的一鋁層作最後加工。 【實施冷 式:! 明 較佳實施例之詳細言兒 參考第1圖,用 ^ ;構成一太陽能電池的一光伏半導體裝 置一般地係以代表符號α標示。該裝置10包括構成-半導 體一貝接面16的第—及第二相鄰相對的半導體材料的掺雜 5合積12及14使用该第_摻雜容積作為一射極。例如,該At least one of TiOx and ZnOx. The second conductive anti-reflective coating has a sheet resistivity of from about 1 ohm per square to about 30 ohms per square. In order to use a photovoltaic semiconductor device in a solar cell, the first and the 10 second electrodes are connected to the front side and the back side of the device. The first electrode includes a first light transmissive electrically insulating film having first and second opposing sides. The first side has a first adhesive for bonding the first film to the first conductive anti-reflective coating. The first electrode further includes a first plurality of conductors in the first adhesive coating such that a portion of the first plurality of conductors protrude from the first adhesive. The portions are soldered to the first conductive anti-reflective coating by an alloy coating on the portions for the first conductive anti-reflective coating and a portion of the first plurality of conductors The ohmic connection is formed such that electrons can pass between the unpassivated region on the front side and the first plurality of conductors, allowing the current 20 generated by the photovoltaic semiconductor device to be conducted by the first plurality of conductors. The second electrode includes a second electrically insulating film having first and second opposing sides. The first side of the second film has a second adhesive for bonding the second film to the second conductive anti-reflective coating. The second electrode further includes a second plurality of 12 200849627 conductors embedded in the second adhesive coating, such that a portion of the second conductor of the conductor adheres to the second plurality of conductors of the second portion One of the eight coatings on the parts is welded to the second material anti-reflection _, the heart (four) is divided into a plurality of conductors and the second material anti-reverse layer constitutes ohms: connection, resulting in electrons (four) money The second outer surface is fused by the second plurality of conductors to allow conduction through the second plurality of conductors by the flow generated by the photovoltaic semiconductor device. ^ In place of the second passivation layer and the second conductive anti-reflective coating, the apparatus may include opposite the semiconductor heterojunction and the second exchange volume: 10 adjacent to the second doping volume on the side a third doping volume. The third doped volume has the same polarity as the second doped volume to form an isotype junction with the second doped volume. The third doping volume also has a doping concentration greater than one of the second doping volumes, and the third doping volume has a backside surface. The device further includes a conductive anti-reflective coating on the backside surface of the third doped volume. The second conductive anti-reflective coating can be continuous and uniform, and have a thickness that is about the same as, or greater than, one of the first conductive anti-reflective coatings. The second conductive anti-reflective coating can have a thickness of from about 70 to about 500 nanometers. The second conductive anti-reflective coating layer may include at least one of In〇x, SnOx, InSnOx, TiOx, and ZnOx. The second conductive anti-reflective coating has a sheet resistivity of from about 1 ohm per square to about 30 ohms per 13 200849627 square. A solar cell using the device having the third doping volume is constructed by connecting the first and second electrodes to the front and back surfaces of the device. The first electrode includes a first light-transmissive electrically insulating film having 5 first and second opposing sides. The first side has a first adhesive for bonding the first film to the first conductive anti-reflective coating. The first electrode further includes a first plurality of conductors intended to be in the first adhesive coating such that a portion of the first plurality of conductors emerge from the first adhesive coating. The portions are soldered to the first 10 conductive anti-reflective coating by an alloy coating thereon for between the first conductive anti-reflective coating and a portion of the first plurality of conductors An ohmic connection is formed such that electrons can pass between the unpassivated region on the front side and the first plurality of conductors, allowing current generated by the photovoltaic semiconductor device to be conducted by the first plurality of conductors. The second electrode includes a second electrically insulating film having first and second opposite sides. The first side of the second film has a second adhesive for bonding the second film to the second conductive anti-reflective coating. The second electrode further includes a second plurality of conductors embedded in the second adhesive such that a portion of the second plurality of conductors protrude from the second adhesive coating. The second plurality of guiding systems of the portions are soldered to the second conductive anti-reflective coating by an alloy coating on the portions for use in a portion of the second plurality of conductors and the second An ohmic connection is formed between the conductive anti-reflective coatings, such that electrons can pass between the backside surface of the third volume and the second plurality of conductors, allowing current generated by the photovoltaic semiconductor device to be passed by the second plurality of conductors Conduction. 14 200849627 In another embodiment, the second doping volume may have a backside surface and may include a second purification layer on the backside surface, and may further include an aluminum layer on the second passivation layer . The aluminum layer has a plurality of laser-sintered current collecting contacts extending through the second passivation layer to the second dopant. A solar cell using a device having an aluminum layer includes first and second electrodes connected to the front and back surfaces of the device, respectively. The first electrode includes a first light transmissive electrically insulating film having first and second opposing sides. The first side has a first adhesive for bonding the first film to the first conductive anti-reflective coating. The first electrode further includes a first plurality of conductors embedded in the first adhesive such that a portion of the first plurality of conductors protrude from the first adhesive coating. The portions are soldered to the first conductive anti-reflective coating by an alloy coating thereon for forming an ohmic 15 between the conductive anti-reflective coating and a portion of the first plurality of conductors The connection is such that electrons can pass between the unpassivated region of the front side and the first plurality of conductors, allowing current generated by the photovoltaic semiconductor device to be conducted by the first plurality of conductors. The second electrode includes a second electrically insulating film having first and second opposing sides. The first side of the second film has a second adhesive 20 for bonding the second film to the aluminum layer. The second electrode further includes a second plurality of conductors embedded in the second adhesive such that a portion of the second plurality of conductors protrude from the second adhesive coating. The second plurality of guiding systems of the portions are soldered to the aluminum layer by an alloy coating on the portions to form an ohmic connection between a portion of the second plurality of conductors and the aluminum layer, 15 200849627 2 The current generated by the photovoltaic semiconductor device is transmitted from the second plurality of conductors to the second doped volume through the layer 1 and the laser sintered junction. According to another aspect of the present invention, a method of fabricating a photovoltaic semiconductor device for constituting a solar cell is provided. The method includes forming a first plurality of openings in a first passivation 5 layer, the first passivation layer The opening of the first plurality of openings on the front side of the first doping volume of the semiconductor material of the semiconductor wafer having the doped shells of the first and second adjacent opposing semiconductor materials constituting the heterobe junction a corresponding unpassivated region of the uranium side that is not passivated by the first passivation layer. The method is also included on the first outer surface of one of the first 10 purification layers and the corresponding ones on the front side Forming a first conductive anti-reflective coating on the passivation region. The first plurality of openings are configured to cause each of the openings of the first plurality of openings to have a width of from about 5 Å to about 2 Å. The operation of forming the first plurality of openings in the passivation layer comprises arranging the first plurality of openings in a flat 15 line manner to cover the first outer surface. The distance between the parallel lines of the openings in the first passivation layer may be about 500 microns. Up to about 5 μm. The operation of forming the first plurality of openings in the first passivation layer includes arranging the first plurality of openings in parallel lines by cross-parallel connection to form a gate configuration. The gate configuration has a mesh of from about 500 square microns to about 5 square microns. The first conductive anti-reflective coating operation can be included on the first outer surface and on the front side surface A first conductive anti-reflective coating is formed on the unpassivated region. The first conductive anti-reflective coating operation may comprise causing the first conductive anti-reflective coating to have from about 70 nm to about 280 nm. a thickness of the meter. The first conductive anti-reflective coating layer on the first outer surface and the non-passivated regions 5 of the front side surface may comprise a material comprising InOx; SnOx; InSnOx At least one of TiOx and ZnOx. The operation of the first conductive anti-reflective coating may comprise causing the first conductive anti-reflective coating to have a thickness of about 10 ohms per square to about 30 ohms per square. a thin layer of electricity The method may comprise forming the heterojunction by at least one of ion implantation and thermal diffusion. The method may comprise constituting the first doping volume having about 60 ohms per square to about 150 per square. An ohmic sheet resistivity, desirably having a sheet resistivity of from about 80 ohms per square to about 150 ohms per square. The method includes forming the first purification layer. The operation of forming the first passivation layer can be included in the Forming a layer on at least one of SiO 2 , SiN 4 , and SiC on the front side. constituting the first passivation layer includes causing the first passivation layer to have a thickness of from about 20 10 nm to about 500 nm, and desirably about 1 〇 nanometer to about 50 nm. The method comprises forming a second plurality of openings in a second passivation layer, the second passivation layer being tied to a back side surface of the second doping volume of the semiconductor material Upper, the second plurality of open boundaries are positioned on the backside surface corresponding to the unpassivated regions of 17 200849627. The method also includes forming a second conductive anti-reflective coating on the outer surface of the second purification layer and on the unpurified regions of the second backside surface. The second plurality of openings are configured to cause each opening in the second plurality of openings 5 to have a width of from about 50 microns to about 200 microns. The operation of forming the opening of the second plurality in the second passivation layer comprises arranging the second plurality of openings in a parallel line to cover the backside surface. The distance between the parallel lines in the second passivation layer can be from about 5 Å to about 5,000 microns. The operation of forming the second plurality of openings in the second passivation layer includes arranging the second plurality of openings in parallel lines by the parent-fork parallel line connection to form a gate configuration. The grid configuration has a mesh of from about 500 square microns to about 5 square microns. The second conductive anti-reflective coating operation may comprise forming a second continuous conductive anti-reflective coating on the outer surface of the second passivation layer and on the unpassivated regions of the backside surface. The constituting the second conductive anti-reflective coating operation can comprise causing the coating to have a thickness of from about 70 nanometers to about 500 nanometers. The second conductive anti-reflective coating operation comprises coating the outer surface of the second passivation layer and the unpassivated regions of the backside surface with a material comprising InOx; SnOx; InSnOx; TiOx And at least one of ZnOx. The constituting the second conductive anti-reflective coating operation can comprise causing the second 18 200849627 conductive anti-reflective coating to have a sheet resistivity of from about 1 ohm per square to about 30 ohms per square. The method includes forming the second passivation layer. The constituting the second passivation layer may include a layer constituting at least one of 5SiO2, SiN4, and SiC on the outer surface. The constituting the second passivation layer comprises causing the second passivation layer to have a thickness of from about 10 nm to about 500 nm, and desirably from about 10 nm to about 50 nm. The method can include adhering an adhesive 10 on a light-transmissive electrically insulating film to the first conductive anti-reflective coating such that the bit is embedded in a corresponding portion of the first plurality of conductors in the adhesive. A portion of the alloy coating is disposed on the first conductive anti-reflective coating. The method can also include heating the alloy coating while pressing the exposed portions against the first conductive anti-reflective coating such that the alloy coating welds the exposed portions of the first plurality of conductors to the A first conductive anti-reflective coating is used to create an ohmic connection between the first plurality of conductors and the first conductive anti-reflective coating. The method can include bonding a second adhesive on a second electrically insulating film to the second conductive anti-reflective coating such that the second plurality of conductors are embedded in the second adhesive A second second alloy coating layer corresponding to the portion on the exposed portion is disposed on the second conductive anti-reflective coating. The method can further include heating the second alloy coating while pressing the exposed portion of the second plurality of conductors against the second conductive anti-reflective coating such that the second alloy coating will be the second plurality of conductors The exposed portion is soldered to the second conductive anti-reflective coating for creating an ohmic connection between the second plurality of conductors and the second conductivity 19 200849627 anti-reflective k layer. The square-shaped anti-reflective coating may be formed on the back side surface of the third doping volume on the second doping capacity opposite to the semiconductor bonding, the third doping The volume has the same doping polarity as the second volume 5, thereby forming a homojunction (4), and wherein the third doping volume also has a doping concentration greater than a doping concentration of the second volume . The first conductive anti-reflective coating forming operation may comprise forming a second continuous conductive anti-reflective coating on the backside surface of the third alternating volume. The second conductive anti-reflective coating composition can comprise causing the second conductive anti-reflective coating to have a thickness of from about 70 nanometers to about 5 nanometers. The constituting the second conductive anti-reflective coating operation may include coating the backside surface of the third doping volume with a material comprising at least one of ΐηθχ; Sn0x; InSnOx; TiOx and ZnOx. 15 The second conductive anti-reflective coating operation can comprise causing the second conductive anti-reflective coating to have a sheet resistivity of from about 1 ohm per square to about 3 ohms per square. The method can include bonding an adhesive on a light-transmissive electrically insulating film to the first conductive anti-reflective coating to cause a position on the corresponding exposed portion of the first plurality of conductors embedded in the adhesive 20 A portion of the alloy coating is disposed on the first conductive anti-reflective coating. The method can further include heating the alloy coating while pressing the exposed portions against the first conductive anti-reflective coating such that the alloy coating welds the exposed portions of the first plurality of conductors to the conductive resistance A reflective coating is used to create an ohmic connection between the first plurality of conductors and the first conductive anti-reflective coating of 20 200849627. The method can include bonding a second adhesive on a second electrically insulating film to the second conductive anti-reflective coating such that the second plurality of conductors are embedded in the second adhesive A second alloy coating layer corresponding to the portion on the exposed portion is disposed on the second conductive anti-reflective coating. The method can further include heating the second alloy coating while pressing the exposed portion of the second plurality of conductors against the second conductive anti-reflective coating such that the second alloy coating will be the second plurality of conductors The exposed portion is soldered to the second conductive anti-reflective coating for creating an ohmic connection between the second plurality of conductors and the second conductive anti-reflective coating. The method can include forming a second passivation layer on a back side surface of one of the second volumes. The constituting the second passivation layer may include a layer constituting at least one of SiO 2 , SiN 4 and SiC on the outer surface. The constituting the second passivation layer operation comprises causing the second passivation layer to have a thickness of from about -10 nm to about 500 nm, and desirably from about 10 nm to about 50 nm. The method can include forming an aluminum layer on the second passivation layer. The structuring of the aluminum layer may comprise forming the aluminum layer by at least one of vapor deposition and sputtering. The structuring of the aluminum layer can comprise forming the aluminum layer such that the aluminum layer has a thickness of from about 1 micron to about 20 microns, and desirably from about 2 microns to about 10 microns. The method can include forming a plurality of laser sintered joints in the aluminum layer. The method may include adhering an adhesive 21 200849627 on a light-transmissive electrically insulating film to the first conductive anti-reflective coating such that a corresponding exposed portion of the first plurality of conductors embedded in the adhesive is present. The upper portion of the alloy coating is disposed on the front side. The method may further comprise heating the alloy coating while pressing the exposed portions against the first conductive anti-reflective coating on the unpassivated regions 5 such that the alloy coating will be the first plurality An exposed portion of the conductor is soldered to the conductive anti-reflective coating for creating an ohmic connection between the first plurality of conductors and the first conductive anti-reflective coating. The method can include bonding a second adhesive 10 on a second electrically insulating film to the aluminum layer such that the bit is embedded in a corresponding portion of the second plurality of conductors in the second adhesive A second alloy coating is disposed on the I layer. The method can further include heating the second alloy coating while pressing the exposed portion of the second plurality of conductors against the aluminum layer such that the second alloy coating welds the exposed portions of the second plurality of conductors to the The aluminum layer 15 is used to create an ohmic connection between the second plurality of conductors and the aluminum layer for allowing current to flow between the second plurality of conductors and the second doped volume through the laser sintered junctions and The aluminum layer. According to another aspect of the present invention, a photovoltaic semiconductor device for forming a solar cell is provided. The apparatus includes a doped volume of first and second adjacent opposing semiconductor materials constituting a semiconductor heterojunction 20, the first doped volume being used as an emitter having a front side for receiving light. The device also includes a first passivation material layer on the front side, the first passivation layer having a first outer surface and a plurality of openings through which the corresponding openings not passivated by the first passivation layer are defined The unpassivated 22 200849627 region or "well device further comprises a layer on the first outer surface of the passivation layer; the anti-reflective coating causes the openings in the passivation layer to be No far dielectric anti-reflective coating. The device also includes a first conductive anti-reflective coating on the first dielectric anti-reflective coating and on the corresponding unpurified regions on the "Hill side. The semiconductor heterojunction may include at least one of an ion implanted heterojunction and a thermally expanded heterojunction. The first doped volume can comprise a sheet resistivity of from about 6 ohms per square to about 150 ohms per square. The first doped volume may comprise a sheet resistivity of from about 80 ohms per square to about 150 ohms per square. The first passivation layer may comprise at least one of Si 〇 2, SiN 4 and SiC. The first passivation layer can have a thickness of from about 10 nanometers to about 200 nanometers. 15 The first passivation layer can have a thickness of from about 10 nanometers to about 50 nanometers. The width of the openings in the first passivation layer is from about 50 microns to about 200 microns. The openings in the first passivation layer may have an elongated shape having a length between about 〇5 mm and about 4 mm and a width 20 of about ο1 mm. About 1 mm. The openings may be spaced apart by from about 1 mm to about 6 mm. The openings in the first passivation layer are disposed in a parallel line to cover the first outer surface. The parallel lines are spaced apart from about 500 microns to about 5000 microns. 23 200849627 The parallel lines can be connected by crossed parallel lines to form a gate configuration. The grid configuration has a mesh of from about 500 square microns to about 5,000 square microns. 5 The dielectric anti-reflective coating can have a thickness of from about 70 nanometers to about 100 nanometers. The dielectric anti-reflective coating can comprise nitride rock. The dielectric anti-reflective coating can have a refractive index between about 2.0 and about 2.5. The first conductive anti-reflective coating layer may include an oxide of at least one of indium, tin, titanium, and zinc. The first conductive anti-reflective coating can include an oxide of at least one of indium and tin doped with fluoride. The first conductive anti-reflective coating may have a thickness between about 70 nanometers and about 100 nanometers. 15 The first conductive anti-reflective coating can have a refractive index between about 1.7 and about 1.9. The dielectric anti-reflective coating can have a refractive index between about 2.0 and about 2.5 and the first conductive anti-reflective coating can have a refractive index between about 1.7 and about 1.9. According to another aspect of the present invention, a method of forming a photovoltaic semiconductor device for forming a solar cell is provided. The method includes forming a plurality of openings in a dielectric anti-reflective coating, and a first passivation layer is tied to one of the doping volumes of the first and second adjacent opposing semiconductor materials constituting a heterojunction The first doping volume of the semiconductor material of the semiconductor wafer is 24 200849627 on the uranium side, on the front side, ^ ^ ^ ^ ^ ^ ^ ^ ^ 幻幻1 in the middle of the 5 Haidi - doping volume of the X-lead', A passivated dielectric coated region is formed on the blast portion. The method also includes forming a [first-reflective coating" on the passivated dielectric coating region and the front side surface region. 5 forming a plurality of opening operations may include a system-first material removal process for removing portions of the dielectric anti-reflective coating that expose the surface of the first purification layer, and using a second process for The portions of a passivation layer produce the specialized exposed area of the front side of the human beta side. . The Haidi-process may include at least 10 of the laser stripping and selective plasma remnant operations, and the second process may include a wet chemical residue. Wet chemical etching can include wet chemical etching using fluoric acid. The method can include performing a wet chemical etch until the dielectric anti-reflective coating has a thickness of between about 70 nanometers and about 1 nanometer. The following is a description of the specific embodiments of the present invention in conjunction with the accompanying drawings, which will be apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS The following drawings illustrate specific embodiments of the invention, and FIG. 1 is a cross-sectional view of a photovoltaic semiconductor device 20 in accordance with a first embodiment of the present invention. Figure 2 is a cross-sectional view of the apparatus of Figure 1 in the first stage of the machining operation. Figure 3 is a cross-sectional view of the apparatus of Figure 1 in a second stage of the machining operation. 25 200849627 Figure 4 is a cross-sectional view of the third stage of the processing of the apparatus of Figure 1. Figure 5 is a cross-sectional view of the apparatus of Figure 1 in the fourth stage of the machining operation. 5 Fig. 6 is a plan view of the apparatus of Fig. 1, showing that the openings in a passivation layer on a front surface of the apparatus of Fig. 1 are arranged in parallel lines. Figure 7 is a plan view of a device of a specific embodiment, wherein the opening system 10 in a passivation layer on a front surface of the device of Figure 1 is shown as a parallel line and a parallel and parallel line manner. The configuration is used to form a gate configuration. Figure 8 is a cross-sectional view of the fifth stage of the apparatus of Figure 1 in a processing operation. Figure 9 is a cross-sectional view of a device according to a second embodiment of the present invention, wherein a dielectric anti-reflective coating is applied to a passivation layer. Figure 10 is a cross-sectional view of the device of Figure 9 showing the removed portion of the dielectric anti-reflective coating. Figure 11 is a cross-sectional view of the apparatus of Figure 10 showing the removed portion of the dielectric anti-reflective coating and the first passivation layer. Figure 12 is a cross-sectional view of the device of Figure 11, showing a portion of the dielectric anti-reflective coating and the exposed portion of the outer surface of the first volume of the semiconductor wafer covered with a conductivity Anti-reflective coating. Figure 13 is a cross-sectional view of the device of Figure 8, wherein the back side surface is finally added in a manner similar to its front side surface. The 15th diagram and the second electrode system shown in the manufacturing operation phase are connected to the front and back side surfaces. . . . ^. ^ ^ A cross-sectional view of the apparatus, wherein the backside surface is finished with a second product and a conductive coating for final processing. Enlarged cross-section _ 5 towel material "(4) - one-segment segment # 10 Figure 16 is the s-side system with a cross-sectional view of the device, where the vest junction is an aluminum The layer is finally processed. [Implementation of cold:! DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to Figure 1, a photovoltaic semiconductor device constituting a solar cell is generally indicated by the symbol α. The device 10 includes doped 5 confluences 12 and 14 of a first and second adjacent opposing semiconductor material constituting a semiconductor-baffle junction 16 using the _doped volume as an emitter. For example, the

等容積12、14可根據傳統式熱擴散或離子植入技術配置於 一半導體晶圓中。該第一摻雜容積12具有一前側表面18。 一第一鈍化層20係配置位在前側表面18上。該第一鈍化層 20具有一第一外表面22以及複數之開口,圖式中僅顯示五 20開口 24、26、28、30及32,界定未由該第一鈍化層20所鈍 化之前側表面18之對應的未鈍化區域34、36、38、40及42。 儘管為了說明的目的僅顯示五開口,但實務上可具有更大 數目之開口。一第一傳導性抗反射塗層44係配置位在該鈍 化層之該第一外表面22上以及該前側表面18之該等未鈍化 27 200849627 區域34、36、38、40及42上。 參考第2及3圖,為構成第1圖中所示裝置,一結晶石夕晶 圓15係以相對極性之適合的摻雜元素换雜,用以於其間產 生該等第一及第二容積12及14以及該異質接面16。典型 地’一預先摻雜p或η型結晶矽晶圓15首先使用濕電漿蝕刻 技術加以蝕刻,用以自該矽晶圓去除鋸切損傷(saw damage)。接著使用濕式技術將晶圓之前表面加以質地化, 用以降低當使用中時自該前表面反射的太陽能輻射量。 饭若ΰ亥結晶石夕晶圓15係經預先摻雜而成為p型半導體 1〇材料,則該第一摻雜容積12通常係藉由以含磷物質摻雜該 曰曰:圓之-前側邊而構成,以及假若該⑨晶圓初始地係為η =、則其之別側邊通常係以石朋摻雜。可藉由離子植入技術 完成摻雜作業,其有助於删或磷離子穿透進入該預先換雜 的半導體材料中, 15 淺射極。該笠胜,Μ 提供形成具有尖喊止ρ/η接合阻障層的 該等特性有助於在電荷分 以及位於藍色光譜區域中的靈敏性。 在界定該石夕晶[Ρ 質接面16之一 化。可任擇地 離上的較佳ρ /η接合性能 。接續的退火作業使位The equal volumes 12, 14 can be disposed in a semiconductor wafer according to conventional thermal diffusion or ion implantation techniques. The first doped volume 12 has a front side surface 18. A first passivation layer 20 is disposed on the front side surface 18. The first passivation layer 20 has a first outer surface 22 and a plurality of openings. Only five 20 openings 24, 26, 28, 30 and 32 are shown in the drawing, defining a front side surface that is not passivated by the first passivation layer 20. Corresponding unpassivated regions 34, 36, 38, 40 and 42 of 18. Although only five openings are shown for purposes of illustration, it is practical to have a greater number of openings. A first conductive anti-reflective coating 44 is disposed on the first outer surface 22 of the passivation layer and the unpassivated 27 200849627 regions 34, 36, 38, 40 and 42 of the front side surface 18. Referring to Figures 2 and 3, in order to form the apparatus shown in Figure 1, a crystalline lithographic wafer 15 is substituted with a suitable doping element of opposite polarity for generating the first and second volumes therebetween. 12 and 14 and the heterojunction 16. Typically a pre-doped p or n-type crystalline germanium wafer 15 is first etched using wet plasma etching techniques to remove saw damage from the germanium wafer. The front surface of the wafer is then textured using wet techniques to reduce the amount of solar radiation reflected from the front surface when in use. The rice doping film 15 is pre-doped to become a p-type semiconductor 1 〇 material, and the first doping volume 12 is usually doped with a phosphorus-containing substance: the circle-front The side is constructed, and if the 9 wafer is initially η =, the other side is usually doped with a stone. Doping can be accomplished by ion implantation techniques that aid in the removal or penetration of phosphorus ions into the pre-doped semiconductor material, 15 shallow emitters. The Μ Μ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , In defining the Shi Xijing [the enamel junction 16 is one of the. The preferred ρ / η bonding properties can optionally be removed. Continuous annealing operation

上所祝明的傳統式包含似蝴摻雜劑 以及接續的退火作 具有約每平方80至: 該初始摻雜的半導 火作業之後,藉由 劑原子的氣體之熱擴散The conventional formula described above contains a butterfly-like dopant and a subsequent annealing process having a heat of about 80 to about 80 to: after the initial doping of the semi-conducting operation, the heat of the gas by the atom of the agent

導體材料可進1在接續的燒結擴散及退 藉由在該半導體材料 上施加固態碟或爛摻雜 28 200849627 源而進一步地摻雜。然而,離子植入技術大體上消耗的能 量杈傳統式熱擴散製程為少,因而優於熱擴散技術。 芩考第4圖,為在該前側表面18上構成第一鈍化材料 層,使用低壓化學蒸氣沉積技術、電漿增強化學蒸氣沉積 5技術或是其他合適方法,將二氧化矽(Si02)、氮化矽(SiN4) 或碳化矽(SiC)沉積。合意地,該第一鈍化層2〇具有約1〇奈 米至約500奈米的一厚度,而更佳地,具有約1〇奈米至約刈 奈米的一厚度。 參考第5圖,例如,藉由對該第一鈍化層2〇之雷射燒蝕 10或是選擇性電漿姓刻而構成開口 24、26、28、30及32,用 以分別地界定該等未鈍化區域34、36、38、40及42。 參考第6圖’該第一鈍化層中的該等開口可以橫跨該第 一外表面22的間隔開平行線54、56、58及60方式配置。例 如,該等線之寬度可介於約50微米至約2〇〇微米之間,以及 15該等平行線間距離可為約500微米至約5000微米。 芩考第7圖’於一可任擇的具體實施例中,該等平行線 54、56、58及60係藉由交叉的平行線62、64、66及68連接 用以構成一柵極配置。該柵極配置具有約5〇〇平方微米至約 5000平方微米的網.(mesh) 69。 20 參考第8圖,在該第一鈍化層20中構成複數之開口後, 藉由化學蒸氣沉積、喷濺或是其他傳統方法施加包含 InOx、SnOx、InSnOx、TiOx或ZnOx之其中至少之一者的 該第一傳導性抗反射塗層44。合意地,構成該第一傳導性 抗反射塗層44涵蓋藉由該鈍化層之該第一外表面22以及該 29 200849627 等未鈍化區域34、36、38、40及42所界定的該等表面,用 以提供整個涵蓋該晶圓之該頂部的一連續塗層。連續的係 意指涵蓋該整個表面的該第一傳導性抗反射塗層44中無斷 裂,即使該第一傳導性抗反射塗層橫截面具有一稍微彎彎 5 曲曲的形狀。合意地,視半導體裝置之所需的射極薄層傳 導性及光譜靈敏性而定,該第一傳導性抗反射塗層44具有 介於約70奈米與約280奈米之間的一厚度。同時,合意地, 該第一抗反射塗層具有介於約每平方1歐姆與約每平方3〇 歐姆之間的一薄層電阻率。 10 在完成第8圖中所示的該第三步驟之後,裝置1〇之該前 側因而如將於以下所說明般完成並準備接收一電極。 於一可任擇的具體實施例中,參考第4及9圖,如上所 述在形成開口之如’在遠弟^-純化層20之該外表面22上沉 積一介電抗反射層或塗層50。合意地,該介電抗反射塗層 15 50具有一初始厚度介於約1〇〇奈米與約150奈米之間。該介 電抗反射塗層50之折射率較佳地應位於2 〇至2·5的範圍 中,並且該介電抗反射塗層50必需能夠耐受暴露至約?^^ 的溫度下持續至少10分鐘,而不造成其之整體性及折射率 的IV低。可使用氮化石夕喷錢、氮化石夕反應性噴濺、電漿增 2〇強化學蒸汽沉積或是其他合適方法產生具有該等特性的一 合適介電抗反射塗層50。由於能夠藉由雷射剝姓或是利用 鼠酸姓刻去除氮化石夕薄膜,所以使用一氮化石夕介電抗反射 塗層50係為所需的。當钮刻時,在相同的狀況下敍刻作 業的速度較佳地應較姓刻二氧化石夕薄膜之速度慢約1〇倍。 30 200849627 >考第lGg] ’藉由—第—材料去除製程,諸如雷射剝 2或選擇性電漿刻或是其他合適方法將該介電抗反射塗 do之特疋區域去除,在該介電抗反射塗層对構成開口 5 10 15 - 6 58及6G。合意地,該介電抗反射塗層5〇幾乎 U除即終止該雷射舰或選擇性製程,致使該 介電抗反射塗層之殘餘部分繼續存在以及該第-鈍化層20 幾乎暴露’如區域72、74、76、78及8〇中所示。 /10圖之裝置接著進行—第二材料去除製程,諸如利 用氟酸濕化學_直至該介電抗反射塗層之該等殘餘部分 以㈣第-純化層絲為止,如第u圖中所示讓 β亥第摻雜谷積12之該前側表面18的對應區域72、74、%、 78及8〇露出且未鈍化。應察知的是在利用氟酸濕化學敍刻 之製程期間’由於部分_所以該介電抗反射塗層50變得 較薄。在此部分_後,該介電抗反射塗層50之最終厚度 82應介於約70至約1〇〇奈米之間。 72、74、76、78及 80上 接著,將包含銦、或錫、或辞、或鈦或是一該等材料 之結合的-傳導性抗反射塗層52施加至該裝置,以致該傳 導性抗反射塗層係構成在該介電抗反射塗層5q之頂部上以 及在該第-掺雜容積12之該前側表面18的該等暴露區域 如第12圖中所示。較佳地,使用 20 銦、锡、鈦或辞或是銦及錫之一混合物的推雜氣化物氧化 物作為該傳導性抗反射塗層52。該傳導性抗反射塗層如 具有約70至約100奈米的_厚度,並應具有—約丨了至約I》 的折射率。 31 200849627 該介電抗反射塗層50屏蔽氟酸濕蝕刻保護該第一鈍化 層20,以及該介電抗反射塗層及該傳導性抗反射塗層將自 該光伏裝置之該前側表面18的入射太陽輻射之反射降至最 低0 5 所廣為熟知的是源自於任何材料的光反射係藉由根據 方程式:,條件為每一材料層之厚度係大於 该波長之四分之一或大於8〇奈米,介於二相鄰材料間折射 率之差異而確定。假若矽之折射率係約為4·〇以及該傳導性 抗反射塗層之折射率係約為17,則在該傳導性抗反射塗層 10係直接地位在該第一摻雜容積之該前側表面18的該等暴露 區域上的該等區域處,該總反射係約為16%。在該前側表 面18係以该介電抗反射塗層5〇塗佈並且該介電抗反射塗層 具有一約為2.2的折射率處,該總反射實質上變得低於8%。 在該傳導性抗反射塗層52(折射率1.7)係位在該介電抗反射 15塗層50(折射率2_2)上的該等區域處,該總反射降至丨.6%。 因此,容許更多光線進入該前側表面,導致該光伏裝置之 該轉換效率相應地增加。 亦為重要地應注意的是由於該第一換雜容積12實質上 係為一淺射極,所以存在著一風險在於具有若干之電洞會 20 引起負分流(negative shunting)。於所示的具體實施例中, 該介電抗反射塗層50將該傳導性抗反射塗層52與位在與該 等開口 72、74、76、78及80相鄰的該等區域中該第一摻雜 容積12(射極)隔離不致直接接觸,降低經由該射極分流的電 位0 32 200849627 ;第12圖中所示的構形係適合用於該第一 :二。該第一容積鳴型時,該第—傳二 =幽料=1咖罐,,⑽物有利地 該第—容積12係為n型時,該第-傳導性抗反射塗層52 T銦之一氧化物構成,例如,由於該材料有利地與讀 料互相作用。 、The conductor material can be further doped by successive sintering diffusion and retraction by applying a solid state dish or a rotten doping 28 200849627 source to the semiconductor material. However, ion implantation techniques generally consume less energy than conventional thermal diffusion processes and are therefore superior to thermal diffusion techniques. Referring to FIG. 4, in order to form a first passivation material layer on the front side surface 18, a low pressure chemical vapor deposition technique, a plasma enhanced chemical vapor deposition 5 technique or other suitable method for cerium oxide (SiO 2 ), nitrogen is used. Deuterium (SiN4) or tantalum carbide (SiC) deposits. Desirably, the first passivation layer 2 has a thickness of from about 1 nanometer to about 500 nanometers, and more preferably, a thickness of from about 1 nanometer to about nanometer. Referring to FIG. 5, for example, openings 24, 26, 28, 30, and 32 are formed by laser ablation 10 or selective plasma of the first passivation layer 2 to define the respective openings The unpassivated regions 34, 36, 38, 40, and 42 are equal. The openings in the first passivation layer can be disposed across the spaced apart parallel lines 54, 56, 58 and 60 of the first outer surface 22, with reference to Fig. 6. For example, the lines may have a width between about 50 microns and about 2 microns, and 15 such parallel lines may range from about 500 microns to about 5000 microns. Referring to FIG. 7, in an optional embodiment, the parallel lines 54, 56, 58 and 60 are connected by intersecting parallel lines 62, 64, 66 and 68 to form a gate configuration. . The grid configuration has a mesh 69 of from about 5 square microns to about 5000 square microns. Referring to FIG. 8, after the plurality of openings are formed in the first passivation layer 20, at least one of InOx, SnOx, InSnOx, TiOx or ZnOx is applied by chemical vapor deposition, sputtering or other conventional methods. The first conductive anti-reflective coating 44. Desirably, the first conductive anti-reflective coating 44 is formed to encompass the surface defined by the first outer surface 22 of the passivation layer and the unpassivated regions 34, 36, 38, 40, and 42 such as 29 200849627 Providing a continuous coating covering the entire top of the wafer. By continuous is meant that the first conductive anti-reflective coating 44 covering the entire surface is free of cracks, even though the first conductive anti-reflective coating cross-section has a slightly curved shape. Desirably, depending on the desired emitter thin layer conductivity and spectral sensitivity of the semiconductor device, the first conductive anti-reflective coating 44 has a thickness between about 70 nm and about 280 nm. . Also, desirably, the first anti-reflective coating has a sheet resistivity between about 1 ohm per square and about 3 ohms per square. 10 After completing the third step shown in Fig. 8, the front side of the device 1 is thus completed and ready to receive an electrode as will be explained below. In an optional embodiment, referring to Figures 4 and 9, a dielectric anti-reflective layer or coating is deposited on the outer surface 22 of the opening layer 20 as described above. Layer 50. Desirably, the dielectric anti-reflective coating 15 50 has an initial thickness of between about 1 nanometer and about 150 nanometers. The refractive index of the dielectric anti-reflective coating 50 should preferably be in the range of 2 Å to 2.5, and the dielectric anti-reflective coating 50 must be able to withstand exposure to about? The temperature of ^^ lasts for at least 10 minutes without causing its integrity and IV of the refractive index. A suitable dielectric anti-reflective coating 50 having such characteristics can be produced using a nitrite spray, a nitrite reactive splatter, a plasma enhanced chemical vapor deposition, or other suitable method. The use of a nitride-on-silicon dielectric anti-reflective coating 50 is desirable because it can be stripped of the surname by laser or by the use of a murine acid to remove the nitride film. When the button is engraved, the speed of the engraving work under the same conditions should preferably be about 1 time slower than the speed of the surnamed dioxide film. 30 200849627 >考第1Gg] 'With the - material removal process, such as laser stripping 2 or selective plasma etching or other suitable method to remove the special area of the dielectric anti-reflective coating do The dielectric anti-reflective coating pair constitutes openings 5 10 15 - 6 58 and 6G. Desirably, the dielectric anti-reflective coating 5 〇 terminates the laser or selective process, such that the residual portion of the dielectric anti-reflective coating continues to exist and the first passivation layer 20 is nearly exposed The areas 72, 74, 76, 78 and 8 are shown. The device of the /10 diagram is then followed by a second material removal process, such as using hydrofluoric acid wet _ until the residual portion of the dielectric anti-reflective coating is (4) the first-purified layer filament, as shown in FIG. Corresponding regions 72, 74, %, 78, and 8 of the front side surface 18 of the βHad doped grain product 12 are exposed and not passivated. It should be appreciated that the dielectric anti-reflective coating 50 becomes thinner during the process utilizing the wet chemical etching process of the hydrofluoric acid. After this portion, the final thickness 82 of the dielectric anti-reflective coating 50 should be between about 70 and about 1 nanometer. Subsequent to 72, 74, 76, 78 and 80, a conductive anti-reflective coating 52 comprising indium, or tin, or a combination of titanium or a combination of such materials is applied to the device such that the conductivity An anti-reflective coating is formed on top of the dielectric anti-reflective coating 5q and at the exposed areas of the front side surface 18 of the first doped volume 12 as shown in FIG. Preferably, 20 indium, tin, titanium or a mixed gas oxide of a mixture of indium and tin is used as the conductive anti-reflective coating 52. The conductive anti-reflective coating has a thickness of from about 70 to about 100 nanometers and should have a refractive index of from about 丨 to about I. 31 200849627 The dielectric anti-reflective coating 50 shields the first passivation layer 20 from wet etching of the hydrofluoric acid, and the dielectric anti-reflective coating and the conductive anti-reflective coating will be from the front side surface 18 of the photovoltaic device The reflection of incident solar radiation is reduced to a minimum of 0 5 It is well known that light reflection from any material is by equation: the condition is that the thickness of each material layer is greater than a quarter or greater than the wavelength 8 〇 nanometer, determined by the difference in refractive index between two adjacent materials. If the refractive index of the crucible is about 4·〇 and the refractive index of the conductive anti-reflective coating is about 17, the conductive anti-reflective coating 10 is directly in the front side of the first doping volume. At these regions of the exposed areas of surface 18, the total reflection is about 16%. The front side surface 18 is coated with the dielectric anti-reflective coating 5 and the dielectric anti-reflective coating has a refractive index of about 2.2, which becomes substantially less than 8%. At the regions where the conductive anti-reflective coating 52 (refractive index 1.7) is located at the dielectric anti-reflective coating 15 (refractive index 2_2), the total reflection is reduced to 丨.6%. Therefore, more light is allowed to enter the front side surface, resulting in a corresponding increase in the conversion efficiency of the photovoltaic device. It is also important to note that since the first change volume 12 is substantially a shallow emitter, there is a risk that having a plurality of holes 20 will cause negative shunting. In the particular embodiment shown, the dielectric anti-reflective coating 50 places the conductive anti-reflective coating 52 in the regions adjacent to the openings 72, 74, 76, 78, and 80. The first doping volume 12 (emitter) isolation is not in direct contact, reducing the potential shunted through the emitter 0 32 200849627; the configuration shown in Fig. 12 is suitable for the first: two. When the first volume is in the shape of the first volume, the second conductivity is equal to the coffee pot, and the (10) material is advantageously the first volume 12 is n-type, the first conductive anti-reflective coating 52 T indium The mono-oxide composition, for example, because the material advantageously interacts with the reading material. ,

呈口 :考第13圖’该第二摻雜容積η具有—背側表面1〇4, 八可以複數之不同方式作最後加工處理。例如,如第13圖 1〇中所不,該背側表面1〇4可與該前側表面18同樣地以一具有 開口的第二鈍化層以及一第二傳導性抗反射塗層 : 工處理。可任擇地,如第15圖中所示,該背側表 ,、成弟二摻雜容積相鄰形成一第三摻雜容積,以及在該 1第一奋積之該外表面上形成一傳導性抗反射塗層作最後加 处 或者,該背側表面可覆以一第二鈍化層以及一 鋁層,複數之雷射燒結接點可構成於其中。以下將說明用 於對4老側表面作最後加工處理的每一可任擇方法。 參考第13圖,於一具體實施例中,該第二摻雜容積14 之該背側表面104可與第1圖中所示該前側相似的一方式加 2〇以構形。特別地,第8圖中所示該裝置接受一進一步加工作 業其中在該背側表面104上提供一第二鈍化層1〇6。例如, 该弟二鈍化層1〇6可包含Si〇2、SiN4或SiC,並可經構成具 有約10奈米至約500奈米的一厚度,合意地約為10奈米至約 5〇奈米。該第二鈍化層106具有一第二外表面1〇8以及通過 33 200849627 該表面的第二複數之開口,該等開口一般地係以代表符號 110、112、114、116及118標示。該等開口 110、112、114、 116及118界定該背側表面1〇4之藉由該第二鈍化層106而 未鈍化的各別未鈍化區域120、122、124、126及128。例如, 5 如第6圖中所示以間隔開的平行線方式配置位在該第二鈍 化層106中的該等開口。例如,該等線之寬度可介於約50微 米至約200微米之間,以及平行線之間的距離可約為500微 米至約5000微米。 在該第二鈍化層106中構成複數之開口後,藉由化學蒸 10 氣沉積、喷濺或是其他方法施加包含InOx、SnOx、InSnOx、 TiOx或ZnOx之其中至少之一者的該第二傳導性抗反射塗 層130。合意地,該第二傳導性抗反射塗層130係包含一銦 之氧化物,其中半導體材料之該第二容積14係包含η型材料 以及該第二傳導性抗反射塗層130係包含一錫之氧化物,其 15 中半導體材料之該弟一谷積14係包含ρ型材料。同時合意 地,構成該第二傳導性抗反射塗層130涵蓋藉由該鈍化層之 該第二外表面108以及该等未純化區域120、122、124、126 及128所界定的該表面,用以提供整個涵蓋該晶圓之該背側 的一連續塗層。連續的係意指涵蓋該整個表面的該第二傳 20 導性抗反射塗層13〇中無斷裂,即使該第二傳導性抗反射塗 層橫截面具有一稍微彎彎曲曲的形狀。合意地,該第二傳 導性抗反射塗層130具有一厚度約等於或大於該第一傳導 性抗反射塗層44的厚度。如此,該第二傳導性抗反射塗層 130可具有約70奈米至約500奈米的一厚度。合意地,該第 34 200849627 t抗反射塗層具有約每平方1欧姆至約每平方30歐姆的- 薄層電阻率。 就如上所述地製備該裝置之前側與背側而言,該裝置 準備分別地接受第-及第二電極。參考第剛,一般地以 5代表符號8G及14G標㈣第H電極齡別地施加至 該裝置之前側及背側。該第1極_包含一第一透光電 絕緣薄膜82其分別具有第-及第二相對側邊84及86。該第 一透光電絕緣賴82,例如,可包括—聚㈣膜,並可具 有約6微米至約刚微米的―厚度。該第-側邊84具有-第 H) -黏著劑塗層_於將該第1光絕緣薄膜82黏合至位在 3亥半導體裝置ίο上的該第—傳導性抗反射塗層44。合意 地,該黏著劑塗層具有熱塑性特性並在承受約6〇<t至約14〇 C的服度日守,或蛑更合意地,當承受位在約8〇它與約13〇。〇 間的溫度範圍中的-溫度時成為流體。㈣,該黏著劑可 15 具有約為15微米至約130微米的—厚度。 複數之導體,其中之一導體係以代表符號9〇標示,係 内嵌於該第一黏著劑塗層88中,致使部分92自該第一黏著 劑塗層88突出。該等導體90之部分92係藉由加熱並壓按經 配置作為預先構成在該等導體90之暴露部分90上的一塗層 20 的一合金而焊接至該第一傳導性抗反射塗層44。該合金可 包括一合成物其包含銀(Ag)、鉍(Bi)、鎘(Cd)、鎵(Ga)、銦 (In)、鉛(Pb)、銻(Sb)、錫(Sn)及鋅(Zn)中之至少二者。例如, 該合金可包括一合成物其包含銦(In)、錫(Sn)、銀(Ag),比 例為約47%之銦(In)、約51%之錫(Sn)以及約2%之銀(Ag)。 35 200849627 可任擇地’該合金可包括銦(In)及錫(Sn),比例為約48〇/〇之 麵l(In)及約52%之錫(Sn)。該合金可具有約為丨微米至約5微 米的一厚度並具有一熔化溫度約30°C至約200°C。更特定言 之’該合金可具有一熔化溫度係介於約60°C與約150。(:之 5 間。 將部分92焊接至該第一傳導性抗反射塗層44構成導體 之該等部分92與該第一傳導性抗反射塗層44之間的歐姆連 接’致使電子能夠在該等未鈍化區域34、36、38、4〇及42 以及該第一傳導性抗反射塗層44與内嵌在該第一電極8〇上 10的該黏著劑中的該等導體之該等部分92之間通過,用以容 許由該光伏半導體裝置1〇所產生的電流由該等導體9〇傳 導。該等導體90係連接至使用作為一第一終端的一彙電桿 94,自導體收集電流並使該光伏電池能约連接至一電路。 可由專利申請人之國際專利申請案第w〇 15 2004/021455A1號獲得該第一電極之一般及可任擇結構 的進一步細節,其於此併入本案以為參考資料。 圖中所示該第二電極一般地係以代表符號14〇標示,並 係施加至该弟二傳導性抗反射塗層13〇。該第二電極14〇係 與該第一電極80相似,其包括一第二電絕緣薄膜142具有第 20 一及第二相對侧邊144及146。該第二絕緣薄膜不需為透光 的。該第二薄膜142之該第一側邊144具有一第二黏著劑塗 層148,用於將該第二薄膜黏合至該第二傳導性抗反射塗層 130。第^一衩數之導體1係内嵌於該第二黏著劑塗層148 中,致使部分152自該第二黏著劑塗層突出並係藉由加熱以 36 200849627 及於其上壓按一合金塗層而焊接至該第二傳導性抗反射塗 層130,如上所述,用以在部分之導體150與該第二傳導性 抗反射塗層130之間構成歐姆連接。電子因而能夠在該等導 體150、該第二傳導性抗反射塗層與該背側表面1〇4上的該 5 等未鈍化區域(於第14圖中未顯示)之間通過,用以容許由光 伏半導體裝置10產生的電流供給至一電路。一第二囊電桿 154係連接至該等導體用以提供一第二終端用於將光伏電 池連接至一電路。因此,於此具體實施例中,第14圖中所 示的彙電桿94及154分別地使用作為該太陽能電池之正及 10負終端。 參考第15及15A圖,可任擇地,該裝置1〇之該背側表面 1〇4可藉由位在和半導體異質接面16相對的該第二摻雜容 積之一側邊上與該第二摻雜容積14相鄰之一第三摻雜容積 160作表面處理加1。該第三摻雜容積⑽具有與該第二換 15雜容積14相同的摻雜極性,從而構成一同型接合162。該第 二摻雜容積16G具有-摻雜濃度大於該第二掺雜容積此 -摻雜濃度,並且具有一背側表面164。例如,用以構成該 第三摻雜容積160的摻雜作業可藉由自包含合適摻雜元素 2q的I體壞境中進行離子植入或是擴散而完成。 2〇〜—第二傳導性抗反射塗層166係配 置位在該第三摻雜 容積160之背側表面164上。合意地,該第二傳導性抗反射 塗層166係為連續的並具有與該第-料性抗反射塗層44 ▲旱度、力為相同或&大於的_厚度。如此,該第二傳導性 抗反射塗層166具有介於約7〇奈米至約姻奈米之間的—厚 37 200849627 度。该第一傳導性抗反射塗層1 66可包含In〇X、Sn〇X、 InSnOx、TiOx及ZnOx之其中至少之一者。合意地,該第二 傳導性抗反射塗層具有約為每平方1歐姆至約每平方30歐 姆之間的一薄層電阻率。 5 该第一及弟二電極80及140係分別地牢固至該裝置之 該前側邊以及該第三摻雜容積16〇之該第二傳導性抗反射 塗層166,所用方式係與上述相關於第10圖的方式相同,其 中該第一電極80之該等導體9〇之該等部分係藉由加熱及壓 按位在該等部分92上的一合金塗層而焊接至該第一傳導性 10 抗反射塗層44,用以在該第一傳導性抗反射塗層44與第一 複數之導體90的該等部分92之間構成歐姆連接,致使電子 能夠在該前侧表面18之該等未鈍化區域34、36、38、40及 42與第一複數之導體90之間通過,用以容許藉由該光伏半 導體裝置產生的電流由第一複數之導體90所傳導。此外, 15 該第二電極140之第二複數之導體150之該等部分152係藉 由加熱及壓按位在該等部分152上的一合金塗層而焊接至 該第二傳導性抗反射塗層166,用以在第二複數之導體150 的該等部分152與該第二傳導性抗反射塗層166之間構成歐 姆連接,致使電子能夠在第二複數之導體150與該第三摻雜 20 容積160之該背側表面164之間通過,用以容許藉由該光伏 半導體裝置產生的電流由第二複數之導體150所傳導。 參考第16圖,於另一可任擇的具體實施例中,該裝置 10之該背側表面1 〇 4係以沉積位在該第二鈍化層丨7 4上的鋁 層170,以及介於該鋁層170與該第二摻雜容積14之間穿過 38 200849627 第一純化層所構成的雷射燒結接點作最後處理加工。首 先’在該第二摻雜容積14之該背側表面104上構成一第二連 續純化層174。該第二鈍化層174,例如,可藉由Si02、SiN4 或SiC之低壓化學蒸氣沉積或電漿增強化學蒸氣沉積而構 5成在该第二摻雜容積14之該背側表面104上。該第二鈍化層 174可經構成具有約1〇奈米至約5〇〇奈米的一厚度,而更合 意地,具有約10奈米至約50奈米的一厚度。 接著使用真空蒸發或喷濺技術將該鋁層170構成位在 該第二鈍化層174之表面上。該鋁層170可經構成具有約1微 10米至約2〇奈米的一厚度,而更合意地,具有約2微米至約1〇 微米的一厚度。 雷射燒結接點172係使用傳統式技術經雷射燒結進入 該鋁層中,致使部分之鋁層17〇燃燒穿過該第二鈍化層174 並與該第二摻雜容積14構成一合金,從而產生背面場及電 15 流收集接點。 為使用第16圖中所示的半導體裝置構成一太陽能電 池,諸如第14圖中所示的第一及第二電極8〇及14〇係連接至 該第一傳導性抗反射塗層44以及該鋁層,用以容許由該半 導體裝置供給電流至一外部電路。就該第一電極8〇而言, 20將暴露的導體之該等部分92藉由在該等暴露部分上加熱及 壓按合金塗層而焊接至該第一傳導性抗反射塗層44,用以 在該第一傳導性抗反射塗層44與第一複數之導體9〇的該等 部分92之間構成歐姆連接,致使電子能夠於該前側之該等 未鈍化區域34、36、38、40及42與第一複數之導體9〇之間 39 200849627 通過,用以谷蛑由該光伏半導體裝置所產生的電流由第一 複數之導體90傳導。就該第二電極14〇而言,將第二複數之 導體150之该等暴露部分152藉由在該等部分152上加熱及 壓按一合金塗層而焊接至鋁層17〇,用以在第二複數之導體 5丨50之該等部分152與第二摻雜容積14之間通過雷射燒結接 點172而構成歐姆連接,容許由該光伏半導體裝置所產生的 電流由第二複數之導體150傳導。 本發明提供具有一淺射極的一光伏電池,該淺射極之 厚度一般而吕係為均勻的,因而不需選擇性地構成不同厚 1〇度的射極區域。此外,由於射極係為淺的,所以該裝置與 具有非均勻厚度之射極的裝置相較對於藍光更具敏感性, 致使該整體裝置在將光能轉換成電能方面更具效率。 此外,於此所說明的方法及裝置不需絲網印刷技術, 其將消除複數之費時及耗費能源的製造步驟並降低因使用 15位在该電池之該前與背部表面上的導電膏而造成弓狀的敏 感性。 此外,針對絲網印刷技術無任何需求而容許能夠更快 速且在較低成本下製造太陽能電池。 除了避免使用絲網印刷技術之外,容許形成大體上較 ° 溥的射極而無射極分流(emitter shunting)的風險。 除了藉由具有開口的鈍化層以及傳導性抗反射塗層所 提供的結合有助於能夠有效地電流收集之外,同時提供半 導體表面鈍化。 此外,於此所說明的方法及裝置容許針對異質及同型 40 200849627 接合形成錢使_子狀作為熱擴散的—供選擇方式, 因而降低製造作業的能源消耗及製造成本。 最後至V在a亥太陽能電池之該前側表面上使用該等 傳導性塗層以及使用分別轉接至該第—及第二傳導性抗 5反射塗層以及该背側表面的第一及第二電極,能夠消除在 具有預先印刷接點的該等電極上精確地將該等導體對準的 需求。該等電極精確地對準因此該等電極上的該等導體不 需與該等前及背側表面上的預先形成接點對準,使能夠在 太陽能電池製造作業上放鬆製造公差,進一步地降低生產 10 成本。 儘管已說明及圖示本發明之特定具體實施例,但該等 具體實施例應僅視為對本發明具說明性而非限定本發明, 本發明應根據伴隨的申請專利範圍。 【圖式簡單說明】 第1圖係為本發明之第一具體實施例的一光伏半導體 裝置的一橫截面視圖。 第2圖係為第1圖之裝置於加工作業的第一階段的一橫 截面視圖。 第3圖係為第1圖之裝置於加工作業的第二階段的一橫 20 截面視圖。 第4圖係為第1圖之裝置於加工作業的第三階段的一橫 截面視圖。 第5圖係為第1圖之裝置於加工作業的第四階段的一橫 截面視圖。 200849627 第6圖係為第!圖之裝置的一平面圖,顯示位在第i圖之 裝置的一前表面上的一鈍化層中之開口係以平行線方式配 置。 第7圖係為一第二具體實施例的一裝置之一平面圖,其 5中位在第1圖之裝置的一前表面上的一鈍化層中之開口係 顯示為平行線及交叉平行線方式配置用以構成一柵極配 置。 第8圖係為第1圖之裝置於加工作業的第五階段的一橫 截面視圖。 10 第9圖係為本發明之一第二具體實施例之一裝置的一 才頁截面視圖,其中對一鈍化層施加一介電抗反射塗層。 第10圖係為第9圖之該裝置的一橫截面視圖,顯示去除 部分之該介電抗反射塗層。 第11圖係為第10圖之該裝置的一橫截面視圖,顯示去 15除部分之該介電抗反射塗層以及該第一鈍化層。 弟12圖係為弟11圖之該裝置的一橫截面視圖,顯示部 分之該介電抗反射塗層以及暴露部分之該半導體晶圓之該 第一容積的該外表面覆以一傳導性抗反射塗層。 第13圖係為第8圖之該裝置的一橫截面視圖,其中其之 20 该背側表面係以與其之前側表面相似的一方式作最後加 工。 第14圖係為第13圖之該裝置在一製造作業階段所示的 一透視圖,其中第一及第二電極係連接至前及背側表面。 第15圖係為第8圖之裝置的一橫截面視圖,其中該背側 42 200849627 表面係以一第三摻雜容積以及一傳導性塗層作最後加工。 第15A圖係為第15圖中所示該裝置的一部分之一分段 放大橫截面視圖。 第16圖係為第8圖之該裝置的一橫截面視圖,其中該背 側係以具有雷射燒結接點的一鋁層作最後加工。Presenting: Test Figure 13 The second doping volume η has a back side surface 1〇4, which can be processed in a different manner in a plurality of ways. For example, as shown in Fig. 13A, the back side surface 1〇4 can be treated similarly to the front side surface 18 by a second passivation layer having an opening and a second conductive anti-reflective coating. Optionally, as shown in FIG. 15, the back side table, the two doping volumes adjacent to each other form a third doping volume, and a one on the outer surface of the first first product is formed The conductive anti-reflective coating is used as a final addition or the backside surface may be covered with a second passivation layer and an aluminum layer, and a plurality of laser sintered joints may be formed therein. Each of the alternative methods for final processing of the 4 old side surfaces will be described below. Referring to Fig. 13, in a specific embodiment, the back side surface 104 of the second doping volume 14 can be configured in a manner similar to the front side shown in Fig. 1. In particular, the apparatus shown in Fig. 8 accepts a further work in which a second passivation layer 1〇6 is provided on the backside surface 104. For example, the passivation layer 1〇6 may comprise Si〇2, SiN4 or SiC, and may be formed to have a thickness of from about 10 nm to about 500 nm, desirably from about 10 nm to about 5 nm. Meter. The second passivation layer 106 has a second outer surface 1 〇 8 and a second plurality of openings through the surface of 33 200849627, which are generally indicated by representative symbols 110, 112, 114, 116 and 118. The openings 110, 112, 114, 116, and 118 define respective unpassivated regions 120, 122, 124, 126, and 128 of the backside surface 1〇4 that are not passivated by the second passivation layer 106. For example, 5 the openings in the second passivation layer 106 are arranged in spaced apart parallel lines as shown in FIG. For example, the width of the lines can be between about 50 microns and about 200 microns, and the distance between the parallel lines can be between about 500 microns and about 5000 microns. After the plurality of openings are formed in the second passivation layer 106, the second conduction including at least one of InOx, SnOx, InSnOx, TiOx or ZnOx is applied by chemical vapor deposition, sputtering or other methods. Anti-reflective coating 130. Desirably, the second conductive anti-reflective coating 130 comprises an oxide of indium, wherein the second volume 14 of the semiconductor material comprises an n-type material and the second conductive anti-reflective coating 130 comprises a tin. The oxide of the semiconductor material of the 15th semiconductor material comprises a p-type material. Also desirably, the second conductive anti-reflective coating 130 is comprised of the surface defined by the second outer surface 108 of the passivation layer and the unpurified regions 120, 122, 124, 126, and 128. To provide a continuous coating covering the back side of the wafer. By continuous is meant that there is no break in the second conductive antireflective coating 13 that covers the entire surface, even though the second conductive antireflective coating cross-section has a slightly curved shape. Desirably, the second conductive anti-reflective coating 130 has a thickness approximately equal to or greater than the thickness of the first conductive anti-reflective coating 44. As such, the second conductive anti-reflective coating 130 can have a thickness of from about 70 nanometers to about 500 nanometers. Desirably, the 34 200849627 t anti-reflective coating has a sheet resistivity of from about 1 ohm per square to about 30 ohms per square. In order to prepare the front side and the back side of the apparatus as described above, the apparatus is prepared to receive the first and second electrodes separately. Referring to the first, generally, the 5th symbol 8G and the 14G standard (4) H electrode age are applied to the front side and the back side of the device. The first pole_ includes a first light-transmitting electrically insulating film 82 having first and second opposite side edges 84 and 86, respectively. The first light-transmissive electrically insulating layer 82, for example, may comprise a poly(tetra) film and may have a thickness of from about 6 microns to about just microns. The first side 84 has a -H)-adhesive coating to bond the first light-insulating film 82 to the first conductive anti-reflective coating 44 on the semiconductor device. Desirably, the adhesive coating has thermoplastic properties and is subject to a service of about 6 Torr < t to about 14 〇 C, or more desirably, when the bearing is at about 8 Torr and about 13 Torr. The temperature in the temperature range between turns becomes a fluid. (d) The adhesive 15 may have a thickness of from about 15 microns to about 130 microns. A plurality of conductors, one of which is indicated by the reference numeral 9A, is embedded in the first adhesive coating 88 such that the portion 92 protrudes from the first adhesive coating 88. Portions 92 of the conductors 90 are soldered to the first conductive anti-reflective coating 44 by heating and pressing an alloy configured to pre-form a coating 20 on the exposed portions 90 of the conductors 90. . The alloy may include a composition comprising silver (Ag), bismuth (Bi), cadmium (Cd), gallium (Ga), indium (In), lead (Pb), antimony (Sb), tin (Sn), and zinc. At least two of (Zn). For example, the alloy may comprise a composition comprising indium (In), tin (Sn), silver (Ag), a ratio of about 47% indium (In), about 51% tin (Sn), and about 2% Silver (Ag). 35 200849627 Optionally, the alloy may comprise indium (In) and tin (Sn) in a ratio of about 48 Å/Å to 1 (In) and about 52% to Tin (Sn). The alloy may have a thickness of from about 丨 microns to about 5 microns and has a melting temperature of from about 30 ° C to about 200 ° C. More specifically, the alloy may have a melting temperature of between about 60 ° C and about 150. (5 of 5. The portion 92 is soldered to the first conductive anti-reflective coating 44 to form an ohmic connection between the portion 92 of the conductor and the first conductive anti-reflective coating 44 to enable electrons to be And other unpassivated regions 34, 36, 38, 4 and 42 and the first conductive anti-reflective coating 44 and the portions of the conductors embedded in the adhesive on the first electrode 8 Passed between 92 to allow current generated by the photovoltaic semiconductor device 1 to be conducted by the conductors 9. The conductors 90 are connected to a power rod 94 used as a first terminal, collected from the conductor The current and the photovoltaic cell are capable of being connected to a circuit. Further details of the general and optional structure of the first electrode are obtained from the patent applicant's International Patent Application No. WO 2004/021455 A1, The second electrode is generally indicated by the representative symbol 14〇 and is applied to the second conductive anti-reflective coating 13〇. The second electrode 14 is connected to the first electrode. An electrode 80 is similar and includes a second electrical insulation The film 142 has a 20th first and second opposite sides 144 and 146. The second insulating film does not need to be transparent. The first side 144 of the second film 142 has a second adhesive coating 148. For bonding the second film to the second conductive anti-reflective coating 130. The conductor 1 of the first number is embedded in the second adhesive coating 148, so that the portion 152 is adhered to the second adhesive The coating is protruded and soldered to the second conductive anti-reflective coating 130 by heating at 36 200849627 and pressed thereon by an alloy coating, as described above, for the portion of the conductor 150 and the first An ohmic connection is formed between the two conductive anti-reflective coatings 130. The electrons are thus capable of being on the conductor 150, the second conductive anti-reflective coating, and the 5 un-passivated regions on the backside surface 1〇4 Passed between the figures in Figure 14 to allow current generated by the photovoltaic device 10 to be supplied to a circuit. A second capsule 154 is coupled to the conductors for providing a second terminal for The photovoltaic cell is connected to a circuit. Thus, in this particular embodiment, Figure 14 The illustrated power poles 94 and 154 are used as the positive and negative terminals of the solar cell, respectively. Referring to Figures 15 and 15A, optionally, the back side surface 1〇4 of the device 1 can be A third doping volume 160 adjacent to the second doping volume 14 on the side of one of the second doping volumes opposite the semiconductor heterojunction 16 is surface treated plus 1. The third doping The volume (10) has the same doping polarity as the second alternating volume 14 to form a homojunction 162. The second doping volume 16G has a -doping concentration greater than the second doping volume, the doping concentration, And having a backside surface 164. For example, the doping operation to form the third doping volume 160 can be accomplished by ion implantation or diffusion from an I-body environment containing a suitable doping element 2q. The second conductive anti-reflective coating 166 is disposed on the back side surface 164 of the third doped volume 160. Desirably, the second conductive anti-reflective coating 166 is continuous and has the same wetness, force, or greater than the thickness of the first anti-reflective coating 44. As such, the second conductive anti-reflective coating 166 has a thickness between about 7 nanometers and about a mid-saternity of 37 200849627 degrees. The first conductive anti-reflective coating 1 66 may include at least one of In〇X, Sn〇X, InSnOx, TiOx, and ZnOx. Desirably, the second conductive anti-reflective coating has a sheet resistivity of between about 1 ohm per square to about 30 ohms per square. The first and second electrodes 80 and 140 are respectively secured to the front side of the device and the second conductive anti-reflective coating 166 of the third doping volume 16 , in a manner related to the above In the same manner as in FIG. 10, the portions of the conductors 9 of the first electrode 80 are soldered to the first conduction by heating and pressing an alloy coating on the portions 92. An anti-reflective coating 44 for forming an ohmic connection between the first conductive anti-reflective coating 44 and the portions 92 of the first plurality of conductors 90 such that electrons can be on the front side surface 18 The unpassivated regions 34, 36, 38, 40 and 42 pass between the first plurality of conductors 90 to allow current generated by the photovoltaic semiconductor device to be conducted by the first plurality of conductors 90. In addition, the portions 152 of the second plurality of conductors 150 of the second electrode 140 are soldered to the second conductive anti-reflective coating by heating and pressing an alloy coating on the portions 152. a layer 166 for forming an ohmic connection between the portions 152 of the second plurality of conductors 150 and the second conductive anti-reflective coating 166, such that electrons can be in the second plurality of conductors 150 and the third dopant The back side surface 164 of the volume 160 passes between to allow current generated by the photovoltaic semiconductor device to be conducted by the second plurality of conductors 150. Referring to Figure 16, in another optional embodiment, the backside surface 1 〇4 of the device 10 is deposited to deposit an aluminum layer 170 on the second passivation layer 74, and The aluminum layer 170 and the second doping volume 14 pass through a laser sintered joint formed by the first purification layer of 38 200849627 for final processing. A second continuous purification layer 174 is first formed on the backside surface 104 of the second doped volume 14. The second passivation layer 174, for example, can be formed on the backside surface 104 of the second doped volume 14 by low pressure chemical vapor deposition or plasma enhanced chemical vapor deposition of SiO 2 , SiN 4 or SiC. The second passivation layer 174 can be formed to have a thickness of from about 1 nanometer to about 5 nanometers, and more desirably, a thickness of from about 10 nanometers to about 50 nanometers. The aluminum layer 170 is then formed on the surface of the second passivation layer 174 using vacuum evaporation or sputtering techniques. The aluminum layer 170 can be formed to have a thickness of from about 1 micrometer to about 2 nanometers, and more desirably, a thickness of from about 2 micrometers to about 1 micrometer. The laser sintered joint 172 is laser sintered into the aluminum layer using a conventional technique, such that a portion of the aluminum layer 17 is burned through the second passivation layer 174 and forms an alloy with the second doped volume 14. This produces a back surface field and an electrical 15 flow collection contact. To form a solar cell using the semiconductor device shown in FIG. 16, first and second electrodes 8A and 14 such as shown in FIG. 14 are connected to the first conductive anti-reflective coating 44 and An aluminum layer for allowing current to be supplied by the semiconductor device to an external circuit. For the first electrode 8 , 20, the portions 92 of the exposed conductor are soldered to the first conductive anti-reflective coating 44 by heating and pressing the alloy coating on the exposed portions. An ohmic connection is formed between the first conductive anti-reflective coating 44 and the portions 92 of the first plurality of conductors 9A, such that electrons can be applied to the unpassivated regions 34, 36, 38, 40 of the front side. And 42 and the first plurality of conductors 9 39 39 200849627 pass, the current generated by the photovoltaic device for the valley is conducted by the first plurality of conductors 90. For the second electrode 14 该, the exposed portions 152 of the second plurality of conductors 150 are soldered to the aluminum layer 17 by heating and pressing an alloy coating on the portions 152 for The portions 152 of the second plurality of conductors 5丨50 and the second doping volume 14 form an ohmic connection through the laser sintered contacts 172, allowing the current generated by the photovoltaic semiconductor device to be conducted by the second plurality of conductors 150 conduction. SUMMARY OF THE INVENTION The present invention provides a photovoltaic cell having a shallow emitter having a generally uniform thickness and a uniform uniformity, thereby eliminating the need to selectively form emitter regions of different thicknesses. Moreover, since the emitter is shallow, the device is more sensitive to blue light than devices having non-uniform thickness emitters, making the overall device more efficient at converting light energy into electrical energy. In addition, the methods and apparatus described herein do not require screen printing techniques, which eliminates a number of time consuming and energy consuming manufacturing steps and reduces the use of conductive paste on the front and back surfaces of the battery. Bow-like sensitivity. In addition, there is no need for screen printing technology to allow solar cells to be manufactured faster and at lower cost. In addition to avoiding the use of screen printing techniques, it is permissible to create a substantially more 射 emitter without the risk of emitter shunting. In addition to the combination provided by the passivation layer with openings and the conductive anti-reflective coating, it is possible to provide efficient surface current isolation while providing semiconductor surface passivation. In addition, the methods and apparatus described herein allow alternative methods for heterogeneous and homogenous 40 200849627 to form a _ sub-form as a thermal diffusion, thereby reducing energy consumption and manufacturing costs of manufacturing operations. Finally, V is used on the front side surface of the a-hai solar cell, and the first and second are respectively transferred to the first and second conductive anti-5 reflective coatings and the back side surface The electrodes are capable of eliminating the need to accurately align the conductors on the electrodes having pre-printed contacts. The electrodes are precisely aligned such that the conductors on the electrodes do not need to be aligned with pre-formed contacts on the front and back side surfaces, enabling manufacturing tolerances to be relaxed in solar cell manufacturing operations, further reducing Production 10 costs. While the invention has been shown and described with respect to the specific embodiments of the present invention BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a photovoltaic semiconductor device according to a first embodiment of the present invention. Figure 2 is a cross-sectional view of the apparatus of Figure 1 in the first stage of the machining operation. Figure 3 is a cross-sectional view of the second stage of the apparatus of Figure 1 in a second stage of the machining operation. Figure 4 is a cross-sectional view of the apparatus of Figure 1 in the third stage of the machining operation. Figure 5 is a cross-sectional view of the apparatus of Figure 1 in the fourth stage of the machining operation. 200849627 The sixth picture is the first! A plan view of the apparatus of the figure showing the openings in a passivation layer on a front surface of the apparatus of Fig. i arranged in a parallel line. Figure 7 is a plan view of a device of a second embodiment in which the opening in a passivation layer on a front surface of the device of Figure 1 is shown as a parallel line and a cross-parallel line. The configuration is used to form a gate configuration. Figure 8 is a cross-sectional view of the fifth stage of the apparatus of Figure 1 in a processing operation. Figure 9 is a fragmentary cross-sectional view of a device in accordance with a second embodiment of the present invention, wherein a dielectric anti-reflective coating is applied to a passivation layer. Figure 10 is a cross-sectional view of the device of Figure 9 showing the removed portion of the dielectric anti-reflective coating. Figure 11 is a cross-sectional view of the apparatus of Figure 10 showing the portion of the dielectric anti-reflective coating and the first passivation layer. Figure 12 is a cross-sectional view of the device of Figure 11, showing a portion of the dielectric anti-reflective coating and the exposed portion of the outer surface of the first volume of the semiconductor wafer coated with a conductive resistance Reflective coating. Figure 13 is a cross-sectional view of the apparatus of Figure 8, wherein the backside surface is finalized in a manner similar to its front side surface. Figure 14 is a perspective view of the apparatus of Figure 13 shown in a manufacturing stage in which the first and second electrodes are attached to the front and back side surfaces. Figure 15 is a cross-sectional view of the apparatus of Figure 8, wherein the back side 42 200849627 surface is finished with a third doped volume and a conductive coating. Figure 15A is a fragmentary enlarged cross-sectional view of a portion of the device shown in Figure 15. Figure 16 is a cross-sectional view of the apparatus of Figure 8, wherein the back side is finished with an aluminum layer having laser sintered joints for final processing.

i 【主要元件符號說明 10.. .光伏半導體裝置 12.14.. .半導體材料的推雜容積 15.. .結晶碎晶圓 16…半導體異質接面 18…前側表面 20…第一鈍化層 22.. .第一外表面 24.26.28.30.32.. .開口 34.36.38.40.42.. .未鈍化區域 44…第一傳導性抗反射塗層 50.. .介電抗反射塗層 52.. .開口 /傳導性抗反射塗層 54.56.58.60.. .平行線/開口 62,64,66,68…交叉平行線 69.. .網眼 72,74,76,78,80···區域 80…第一電極 82.. .第一透光電絕緣薄膜/介電 抗反射塗層之最終厚度 84…第一側邊 86…第二側邊 88.. .第一黏著劑塗層 90.. .導體 92.··導體之部分 94.. .彙電桿 104.. .背側表面 106…第二鈍化層 108…第二外表面 110,112,114,116,118...開口 120,122,124,126,128.··未鈍化 區域 130…第二傳導性抗反射塗層 140…第二電極 142.. .第二電絕緣薄膜 144…第一側邊 146…第二側邊 43 200849627 148.. .第二黏著劑塗層 150…第二複數之導體 152…部分 154.. .第二彙電桿 160.. .第三摻雜容積 162.. .同型接合 164…背側表面 166.. .第二傳導性抗反射塗層 170.. .铭層 172.. .雷射燒結接點 174…第二鈍化層 44i [Major component symbol description 10... Photovoltaic semiconductor device 12.14.. The doping volume of semiconductor material 15. Crystallized wafer 16... Semiconductor heterojunction 18... Front side surface 20... First passivation layer 22.. The first outer surface is 24.26.28.30.32... opening 34.36.38.40.42.. unpassivated area 44... first conductive anti-reflective coating 50.. dielectric anti-reflective coating 52.. opening / Conductive anti-reflective coating 54.56.58.60.. parallel lines / openings 62, 64, 66, 68... cross-parallel lines 69.. mesh 72, 74, 76, 78, 80 · · area 80... An electrode 82.. The final thickness of the first light-transmissive electrically insulating film/dielectric anti-reflective coating 84...the first side 86...the second side 88..the first adhesive coating 90..the conductor 92 The part of the conductor 94... the power pole 104.. the back side surface 106...the second passivation layer 108...the second outer surface 110,112,114,116,118...the opening 120,122,124,126 128.··Unpassivated region 130...second conductive anti-reflective coating 140...second electrode 142..second electrically insulating film 144...first side 146...second side 43 200849627 148.. . Second adhesive coating 150... Two-conductor conductor 152...part 154... second busbar 160... third doping volume 162.. homojunction 164... backside surface 166.. second conductive anti-reflective coating 170. .. Ming layer 172.. laser sintered joint 174... second passivation layer 44

Claims (1)

200849627 十、申請專利範圍: 1·=種a構成—太陽㈣池的—光伏半導體裝置,其包 一構成—半導體異質接面(heteroJunctlon)的第—及第 /相相對的半導體材料之摻雜容積,該第—摻雜容積 係使用作為一射極,其具有-前側用於接收光線;' 一第一鈍化材料層,其係位在該前側上,該第一鈍 化層具有一第一外表面以及複數之開口,經由該等開口 界疋未由該第一鈍化層所鈍化之對應的該前側之未鈍 10 化區域;以及 一弟一傳導性抗反射塗層’其係位在該鈍化層之該 第一外表面上以及該前側之該等對應的未鈍化區域上。 2·如申請專利範圍第丨項之裝置,其中該半導體異質接面 係為一離子植入異質接面及一熱擴散異質接面的至少 15 其中一者。 3·如申請專利範圍第1項之裝置,其中該第一摻雜容積具 有一每平方約60歐姆至每平方約150歐姆的薄層電阻 率。 4·如申請專利範圍第1項之裝置,其中該第一摻雜容積具 20 有一每平方約80歐姆至每平方約150歐姆的薄層電阻 率。 5·如申請專利範圍第丨項之裝置,其中該第一鈍化層係由 Si〇2、SiN4及SiC的至少其中之一者所組成。 6·如申請專利範圍第1項之裝置,其中該第一鈍化層具有 45 200849627 約10奈米至約500奈米的一厚度。 7. 如申請專利範圍第6項之裝置,其中該第一鈍化層具有 約10奈米至約50奈米的一厚度。 8. 如申請專利範圍第1項之裝置,其中該等開口之寬度係 5 約50微米至約200微米。 9. 如申請專利範圍第1項之裝置,其中位於該第一鈍化層 中的該等開口係以平行線方式配置涵蓋該第一外表面。 10. 如申請專利範圍第9項之裝置,其中該等平行線係間隔 開約500微米至約5000微米。 10 11.如申請專利範圍第8項之裝置,其中該等平行線藉由交 叉的平行線連接用以構成一栅極配置。 12.如申請專利範圍第11項之裝置,其中該柵極配置具有約 500平方微米至約5000平方微米的網眼。 13-如申請專利範圍第1項之裝置,其中該第一傳導性抗反 15 射塗層係為連續的。 14. 如申請專利範圍第1項之裝置,其中該第一傳導性抗反 射塗層厚度係為約70奈米至約280奈米。 15. 如申請專利範圍第1項之裝置,其中該第一傳導性抗反 射塗層包含InOx、SnOx、InSnOx、TiOx及ZnOx之其中 20 至少之一者。 16. 如申請專利範圍第1項之裝置,其中該第一傳導性抗反 射塗層具有約為每平方1歐姆與約每平方30歐姆之間的 一薄層電阻率。 17. 如申請專利範圍第1項之裝置,其進一步包含: 46 200849627 一第二鈍化層,其係位在該背側表面上,該第二鈍 化層具有一第二外表面其具有第二複數之開口,經由該 等開口界定未由該第二鈍化層所鈍化之對應的該第二 外表面之未鈍化區域;以及 5 一第二傳導性抗反射塗層,其係位在該第二鈍化層 之該第二外表面上以及該第二外表面之該對應的未鈍 化區域上。 18.如申請專利範圍第17項之裝置,其中該第二鈍化層包含 Si02、SiN4及SiC的至少其中之一者。 10 19.如申請專利範圍第17項之裝置,其中該第二鈍化層可具 有約10奈米至約500奈米的一厚度。 20. 如申請專利範圍第17項之裝置,其中該第二鈍化層具有 約10奈米至約50奈米的一厚度。 21. 如申請專利範圍第17項之裝置,其中位在該第二鈍化層 15 中的該等開口之寬度係約50微米至約200微米。 22. 如申請專利範圍第17項之裝置,其中位於該第二鈍化層 中的該等開口係以平行線方式配置涵蓋該第二外表面。 23. 如申請專利範圍第22項之裝置,其中該等平行線間可間 隔開約500微米至約5000微米。 20 24.如申請專利範圍第23項之裝置,其中該等平行線可藉由 交叉的平行線連接用以構成一柵極配置。 25. 如申請專利範圍第24項之裝置,其中該柵極配置具有約 500平方微米至約5000平方微米的網眼。 26. 如申請專利範圍第17項之裝置,其中該第二傳導性抗反 47 200849627 射塗層係為連續的。 27. 如申請專利範圍第17項之裝置,其中該第二傳導性抗反 射塗層厚度約至少為該第一傳導性抗反射塗層的厚度。 28. 如申請專利範圍第17項之裝置,其中該第二傳導性抗反 5 射塗層厚度約為70奈米與約500奈米之間。 29. 如申請專利範圍第17項之裝置,其中該第二傳導性抗反 射塗層可包含InOx、SnOx、InSnOx、TiOx及ZnOx之其 中至少之一者。 30. 如申請專利範圍第17項之裝置,其中該第二傳導性抗反 10 射塗層具有約為每平方1歐姆至約每平方30歐姆的一薄 層電阻率。 31. —種包含如申請專利範圍第17項之裝置並進一步包含 一第一電極的太陽能電池裝置,其包含: 一第一透光電絕緣薄膜,其具有第一及第二相對側 15 邊; 該第一側邊具有一第一黏著劑用於將該第一薄膜 黏合至該第一傳導性抗反射塗層; 第一複數之導體,其係内嵌於該第一黏著劑中,致 使部分之該第一複數之導體自該第一黏著劑突出; 20 該等部分係藉由在該等部分上的一合金塗層而焊 接至該第一傳導性抗反射塗層,用以在該第一傳導性抗 反射塗層與該等部分之該第一複數之導體之間構成歐 姆連接,致使電子能夠於該前側之該等未鈍化區域與該 第一複數之導體之間通過,以容許藉由該光伏半導體裝 48 200849627 置所產生的一電流由該弟一複數之導體傳導。 32. —種包含如申請專利範圍第31項之裝置並進一步包含 一第二電極的太陽能電池裝置,其包含: 一第二電絕緣薄膜,其具有第一及第二相對側邊; 5 該第二薄膜之該第一側邊具有一第二黏著劑用於 將該第二薄膜黏合至該第二傳導性抗反射塗層; 第二複數之導體,其係内嵌於該第二黏著劑中致使 部分之該第二複數之導體自該第二黏著劑突出; 該等部分之該第二複數之導體係藉由在該等部分 10 上的一合金塗層而焊接至該第二傳導性抗反射塗層,用 以在該等部分之該第二複數之導體與該第二傳導性抗 反射塗層之間構成歐姆連接,致使電子能夠於該第二外 表面之該等未鈍化區域與該第二複數之導體之間通 過,以容許藉由該光伏半導體裝置所產生的電流由該第 15 二複數之導體傳導。 33. 如申請專利範圍第1項之裝置,其進一步包含與該半導 體異質接面相對和該第二摻雜容積之一側邊上的該第 二摻雜容積相鄰的一第三摻雜容積,該第三摻雜容積具 有與該第二摻雜容積相同的摻雜極性,從而與第二摻雜 20 容積構成一同型接合(isotype junction),其中該第三摻雜 容積亦具有一摻雜濃度大於該第二摻雜容積之一摻雜 濃度,並且其中該第三摻雜容積具有一背側表面。 34. 如申請專利範圍第33項之裝置,其進一步包含位在該第 三摻雜容積之該背側表面上的一第二傳導性抗反射塗 49 200849627 層。 35.如申請專利範圍第34項之裝置,其中該第二傳導性抗反 射塗層具有一厚度約與該第一傳導性抗反射塗層之一 厚度相同’或較大。 5 36.如申請專利範圍第34項之裝置,其中該第二傳導性抗反 射塗層具有約為70至約500奈米的一厚度。 37.如申請專利範圍第34項之裝置,其中該第二傳導性抗反 射塗層包含InOx、SnOx、InSnOx、TiOx及ZnOx之其中 至少之一者。 10 38.如申請專利範圍第34項之裝置,其中該第二傳導性抗反 射塗層具有約為每平方1歐姆至約每平方30歐姆的一薄 層電阻率。 39. —種包含如申請專利範圍第34項之裝置並進一步包含 一第一電極的太陽能電池裝置,其包含: 15 一第一透光電絕緣薄膜,其具有第一及第二相對側 邊; 該第一側邊具有一第一黏著劑用於將該第一薄膜 黏合至該第一傳導性抗反射塗層; 第一複數之導體,其内嵌於該第一黏著劑中致使部 20 分之該第一複數之導體自該第一黏著劑突出; 該等部分係藉由在該等部分上的一合金塗層而焊 接至該第一傳導性抗反射塗層,用以在該第一傳導性抗 反射塗層與該等部分之該第一複數之導體之間構成歐 姆連接,致使電子能夠於該前側之該等未鈍化區域與該 50 200849627 弟複數之導體之間通過,以容許藉由光伏半導體裝置 所產生的電流由該第一複數之導體傳導。 40· —種包含如申請專利範圍第39項之裝置並進一步包含 一弟一電極的太陽能電池裝置,其包含: 一第二電絕緣薄膜,其具有第一及第二相對側邊; 该第二薄膜之該第一側邊具有一第二黏著劑用於 將該第二薄膜黏合至該第二傳導性抗反射塗層; 第二複數之導體,内嵌於該第二黏著劑中致使部分 之該第二複數之導體自該第二黏著劑突出; 該等部分之該第二複數之導體係藉由在該等部分 上的一合金塗層而焊接至該第二傳導性抗反射塗層,用 以在該等部分之該第二複數之導體與該第二傳導性抗 反射塗層之間構成歐姆連接,致使電子能夠於該第三容 積之該背側表面與該第二複數之導體之間通過,以容許 藉由該光伏半導體裝置所產生的電流由該第二複數之 導體傳導。 41.如申請專利範圍第丨項之裝置,其中該第二摻雜容積具 有一背側表面並進一步包含: 一第二鈍化層,其係位在該背側表面上;以及 一鋁層,其係位在該第二鈍化層上,該鋁層具有複 數之雷射燒結電流收集接點自該鋁層延伸通過第二鈍 化層至該第二摻雜容積。 42· —種包含如申請專利範圍第41項之裝置並進一步包含 一第一電極的太陽能電池裝置,其包含: 51 200849627 一第一透光電絕緣薄膜,其具有第一及第二相對側 邊; 該第一側邊具有一第一黏著劑用於將該第一薄膜 黏合至該第一傳導性抗反射塗層; 5 第一複數之導體,其内嵌於該第一黏著劑中致使部 分之該第一複數之導體自該第一黏著劑突出; 該等部分係藉由在該等部分上的一合金塗層而焊 接至該第一傳導性抗反射塗層,用以在該傳導性抗反射 塗層與該等部分之該第一複數之導體之間構成歐姆連 10 接,致使電子能夠於該前側之該等未鈍化區域與該第一 複數之導體之間通過,以容許藉由該光伏半導體裝置所 產生的電流由該第一複數之導體傳導。 43. —種包含如申請專利範圍第42項之裝置並進一步包含 一第二電極的太陽能電池裝置,其包含: 15 —第二電絕緣薄膜,其具有第一及第二相對側邊; 該第二薄膜之該第一側邊具有一第二黏著劑用於 將該第二薄膜黏合至該鋁層; 第二複數之導體,其内嵌於該第二黏著劑中致使部 分之該第二複數之導體自該第二黏著劑突出; 20 該等部分之該第二複數之導體係藉由在該等部分 上的一合金塗層而焊接至該铭層,用以在該等部分之該 第二複數之導體與第二摻雜容積之該外表面之間構成 歐姆連接通過雷射燒結接點,用以容許藉由該光伏半導 體裝置所產生的電流由該第二複數之導體傳導。 52 200849627 44. 一種用於構成一太陽能電池之一光伏半導體裝置的製 造方法,該方法包含: 在一第一鈍化層中構成第一複數之開口,該第一鈍 化層係位在具有構成一異質接面的第一及第二相鄰相 5 對的半導體材料之摻雜容積的一半導體晶圓之半導體 材料的第一摻雜容積的一前側上,該第一複數之開口界 定係未由該第一鈍化層鈍化的該第一前側之對應的未 純化區域,以及 在該第一鈍化層之一第一外表面上以及在該前側 10 之該等對應的未鈍化區域上構成一第一傳導性抗反射 塗層。 45. 如申請專利範圍第44項之方法,其中該第一複數之開口 的構成作業包含致使該第一複數之開口中每一開口具 有約50微米至約200微米的一寬度。 15 46.如申請專利範圍第44項之方法,其中在該第一鈍化層中 構成該第一複數之開口的作業包含以平行線方式配置 該第一複數之開口涵蓋該第一外表面。 47. 如申請專利範圍第46項之方法,其中該第一複數之開口 的構成作業包含致使該等平行線間隔開約為5 00微米至 20 約5000微米。 48. 如申請專利範圍第44項之方法,其中在該第一鈍化層中 構成該第一複數之開口的作業包含以平行線藉由交叉 平行線連接方式配置該第一複數之開口用以構成一柵 極配置。 53 200849627 如申凊專利|&圍第48項之方法,其巾該栅極配置具有約 500平方微米至約5000平方微米的網眼。 50·如申請專利範圍第44項之方法,其中構成該第一傳導性 抗反射塗層作業包含在該第一外表面上以及在該前側 表面之該等未鈍化區域上構成一第一連續傳導性抗反 射塗層。 51·如申請專利範圍第44項之方法,其中構成該第一傳導性 抗反射塗層作業包含致使該第一傳導性抗反射塗層具 有約70奈米至約280奈米的一厚度。 10 52.如申請專利範圍第44項之方法,其中在該第一外表面上 以及在該前側表面之該等未鈍化區域上構成該第一傳 導性抗反射塗層作業可包含施以一包括In〇X ; Sn〇X ; InSnOx ; TiOx及ZnOx之其中至少之一者的材料至該第 一外表面以及該前側表面之該等未鈍化區域。 15 53·如申請專利範圍第44項之方法,其中構成該第一傳導性 抗反射塗層作業包含致使該第一傳導性抗反射塗層具 有約為每平方1歐姆至約每平方3〇歐姆的一薄層電阻 率。 54·如申請專利範圍第44項之方法,其進一步包含藉由離子 20 植入及熱擴散的其中至少一方式構成該異質接面。 55·如申請專利範圍第44項之方法,其進一步包含致使該第 一掺雜容積具有每平方60歐姆至每平方150歐姆的一薄 層電阻率。 56·如申請專利範圍第44項之方法,其進一步包含致使該第 54 200849627 一摻雜容積具有每平方80歐姆至每平方150歐姆的一薄 層電阻率。 57.如申請專利範圍第44項之方法,其進一步包含構成該第 一鈍化層。 5 58.如申請專利範圍第57項之方法,其中構成該第一鈍化層 作業包含在該前側上構成Si02、SiN4及SiC的至少其中之 一者的一層。 59. 如申請專利範圍第57項之方法,其中構成該第一鈍化層 作業包含致使該第一鈍化層具有約10奈米至約500奈米 10 的一厚度。 60. 如申請專利範圍第57項之方法,其中構成該第一鈍化層 作業包含致使該第一鈍化層具有約10奈米至約50奈米 的一厚度。 61. 如申請專利範圍第44項之方法,其進一步包含: 15 在一第二鈍化層中構成第二複數之開口,該第二鈍 化層係位在該半導體材料之該第二摻雜容積的一背側 表面上,該第二複數之開口界定位在該背側表面上對應 的未純化區域;以及 在該第二鈍化層之一外表面上以及在該第二背側 20 表面之該等未鈍化區域上構成一第二傳導性抗反射塗 層。 62. 如申請專利範圍第61項之方法,其中該第二複數之開口 的構成作業包含致使該第二複數之開口中每一開口具 有約50微米至約200微米的一寬度。 55 200849627 63. 如申請專利範圍第61項之方法,其中在該第二鈍化層中 構成該第二複數之開口的作業包含以平行線方式配置 該第二複數之開口涵蓋該背側表面。 64. 如申請專利範圍第63項之方法,其中以平行線方式配置 5 該第二複數之開口的作業包含致使該等平行線間隔開 約500微米至約5000微米。 65. 如申請專利範圍第61項之方法,其中在該第二鈍化層中 構成該第二複數之開口的作業包含以平行線藉由交叉 平行線連接方式配置該第二複數之開口用以構成一柵 10 極配置。 66. 如申請專利範圍第65項之方法,其中以平行線藉由交叉 平行線連接方式配置該第二複數之開口用以構成一柵 極配置的作業包含致使該栅極配置具有約5 0 0平方微米 至約5000平方微米的網眼。 15 67.如申請專利範圍第61項之方法,其中構成該第二傳導性 抗反射塗層作業包含在該第二鈍化層之該外表面上以 及在該背側表面之該等未鈍化區域上構成一第二連續 傳導性抗反射塗層。 68. 如申請專利範圍第67項之方法,其中構成該第二傳導性 20 抗反射塗層作業包含致使該塗層具有約70奈米至約500 奈米的一厚度。 69. 如申請專利範圍第61項之方法,其中構成該第二傳導性 抗反射塗層作業包含以一材料塗佈該第二鈍化層之該 外表面以及該背側表面之該等未鈍化區域,該材料包括 56 200849627 InOx; SnOx; InSnOx; TiOx及ZnOx之其中至少之一者。 7〇·如申請專利範圍第61項之方法,其中構成該第二傳導性 抗反射塗層作業包含致使該第二傳導性抗反射塗層具 有約為每平方1歐姆至約每平方30歐姆的一薄層電阻 5 率。 71.如申請專利範圍第61項之方法,其進一步包含構成該第 二純化層。 72·如申請專利範圍第69項之方法,其中構成該第二鈍化層 作業包含在該背側表面上構成Si02、SiN4及SiC的至少其 10 中之一者的一層。 73·如申请專利範圍第69項之方法,其中構成該第二鈍化層 作業包含致使該第二鈍化層具有約1〇奈米至約500奈米 的一厚度。 74. 如申请專利範圍第69項之方法,其中構成該第二鈍化層 15 作業包含致使該第二鈍化層具有約10奈米至約50奈米 的一厚度。 75. 如申請專利範圍第61項之方法,其進一步包含: 將位在一透光電絕緣薄膜上的一黏著劑黏合至該 第一傳導性抗反射塗層,致使位在内嵌於該黏著劑中第 20 一複數之導體之對應暴露部分上的部分之合金塗層係 配置在該第一傳導性抗反射塗層上;以及 加熱該合金塗層同時將該等暴露部分壓按靠著該 第一傳導性抗反射塗層,致使該合金塗層將該第一複數 之導體的該等暴露部分焊接至該第一傳導性抗反射塗 57 200849627 層用以在該第一複數之導體與該第一傳導性抗反射塗 層之間產生歐姆連接。 76. 如申請專利範圍第75項之方法,其進一步包含: 將位在一第二電絕緣薄膜上的一第二黏著劑黏合 5 至該第二傳導性抗反射塗層,致使位在内嵌於該第二黏 著劑中第二複數之導體的對應暴露部分上的部分之第 二合金塗層係配置在該第二傳導性抗反射塗層上;以及 加熱該第二合金塗層同時將該第二複數之導體之 該等暴露部分壓按靠著該第二傳導性抗反射塗層,致使 10 該第二合金塗層將該第二複數之導體的該等暴露部分 焊接至該第二傳導性抗反射塗層用以在該第二複數之 導體與該第二傳導性抗反射塗層之間產生歐姆連接。 77. 如申請專利範圍第44項之方法,其進一步包含: 在與該半導體接合相對的該第二摻雜容積之一側 15 邊上的一第三摻雜容積的一背側表面上構成一第二傳 導性抗反射塗層,該第三摻雜容積具有與該第二容積相 同的摻雜極性,從而構成一同型接合(isotype junction) 並且其中該第三摻雜容積具有一摻雜濃度大於該第二 容積之一摻雜濃度。 20 78.如申請專利範圍第77項之方法,其中該第二傳導性抗反 射塗層構成作業包含在該第三摻雜容積之該背側表面 上構成一第二連續的傳導性抗反射塗層。 79.如申請專利範圍第77項之方法,其中該第二傳導性抗反 射塗層構成作業包含致使該第二傳導性抗反射塗層具 58 200849627 有約70奈米至約500奈米的一厚度。 80. 如申請專利範圍第77項之方法,其中構成該第二傳導性 抗反射塗層作業包含以一材料塗佈該第三摻雜容積之 該背側表面,該材料包括InOx ; SnOx ; InSnOx ; TiOx 5 及ZnOx其中至少之一者。 81. 如申請專利範圍第77項之方法,其中構成該第二傳導性 抗反射塗層作業包含致使該第二傳導性抗反射塗層具 有約為每平方1歐姆至約每平方30歐姆的一薄層電阻 率。 10 82.如申請專利範圍第44項之方法,其進一步包含: 將位在一透光電絕緣薄膜上的一黏著劑黏合至該 第一傳導性抗反射塗層,致使位在内嵌於該黏著劑中第 一複數之導體之對應暴露部分上的部分之合金塗層係 配置在該第一傳導性抗反射塗層上;以及 15 加熱該合金塗層同時將該等暴露部分壓按靠著位 在該等未鈍化區域上的該第一傳導性抗反射塗層,致使 該合金塗層將該第一複數之導體的該等暴露部分焊接 至該傳導性抗反射塗層用以在該第一複數之導體與該 第一傳導性抗反射塗層之間產生歐姆連接。 20 83.如申請專利範圍第82項之方法,其進一步包含: 將位在一第二電絕緣薄膜上的一第二黏著劑黏合 至該第二傳導性抗反射塗層,致使位在内嵌於該第二黏 著劑中第二複數之導體之對應暴露部分上的部分之第 二合金塗層係配置在該第二傳導性抗反射塗層上;以及 59 200849627 加熱該第二合金塗層同時將該第二複數之導體之 該等暴露部分壓按靠著該第二傳導性抗反射塗層,致使 該第二合金塗層將該第二複數之導體的該等暴露部分 焊接至該第二傳導性抗反射塗層用以在該第二複數之 5 導體與該第二傳導性抗反射塗層之間產生歐姆連接。 84. 如申請專利範圍第44項之方法,其進一步包含在該第二 容積之一背側表面上構成一第二鈍化層。 85. 如申請專利範圍第84項之方法,其進一步包含在該第二 純化層上構成一铭層。 10 86.如申請專利範圍第84項之方法,其進一步包含在該鋁層 中構成複數之雷射燒結接點。 87. 如申請專利範圍第86項之方法,其進一步包含: 將位在一透光電絕緣薄膜上的一黏著劑黏合至該 第一傳導性抗反射塗層,致使位在内嵌於該黏著劑中第 15 一複數之導體之對應暴露部分上的部分之合金塗層係 配置位在該前側上;以及 加熱該合金塗層,同時將該等暴露部分壓按靠著位 在該等未鈍化區域上的該第一傳導性抗反射塗層,致使 該合金塗層將該第一複數之導體的該等暴露部分焊接 20 至該傳導性抗反射塗層用以在該第一複數之導體與該 第一傳導性抗反射塗層之間產生歐姆連接。 88. 如申請專利範圍第87項之方法,其進一步包含: 將位在一第二電絕緣薄膜上的一第二黏著劑黏合 至該鋁層,致使位在内嵌於該第二黏著劑中第二複數之 60 200849627 導體之對應暴露部分上的第二合金塗層係配置在該鋁 層上;以及 加熱該第二合金塗層,同時將該第二複數之導體之 該等暴露部分壓按靠著該鋁層,致使該第二合金塗層將 5 該第二複數之導體的該等暴露部分焊接至該鋁層用以 在該第二複數之導體與該鋁層之間產生歐姆連接,容許 電流在該第二複數之導體與該第二摻雜容積之間流動 通過該等雷射燒結接點及該鋁層。 89. —種用以構成一太陽能電池的一光伏半導體裝置,其包 10 含: 構成一半導體異質接面的第一及第二相鄰相對的 半導體材料之摻雜容積,該第一摻雜容積係使用作為一 射極,其具有一前側用於接收光線; 一第一鈍化材料層,其係位在該前側上,該第一鈍 15 化層具有一第一外表面以及複數之開口,經由該等開口 界定未由該第一鈍化層所鈍化之對應的該前側之未鈍 化區域, 一介電抗反射塗層,其係位在該鈍化層之該第一外 表面上,該等開口並無該介電抗反射塗層;以及 20 一第一傳導性抗反射塗層,其係位在該介電抗反射 塗層上以及該前側之該等對應的未鈍化區域上。 90. 如申請專利範圍第89項之裝置,其中該半導體異質接面 係為一離子植入異質接面及一熱擴散異質接面的至少 其中一者。 61 200849627 91. 如申請專利範圍第89項之裝置,其中該第一摻雜容積具 有一每平方約60歐姆至每平方約150歐姆的薄層電阻 率。 92. 如申請專利範圍第89項之裝置,其中該第一摻雜容積具 5 有一每平方約80歐姆至每平方約150歐姆的薄層電阻 率。 93. 如申請專利範圍第89項之裝置,其中該第一鈍化層係由 Si02、SiN4及SiC的至少其中之一者所組成。 94. 如申請專利範圍第89項之裝置,其中該第一鈍化層具有 10 約10奈米至約200奈米的一厚度。 95. 如申請專利範圍第94項之裝置,其中該第一鈍化層具有 約10奈米至約50奈米的一厚度。 96. 如申請專利範圍第89項之裝置,其中位在該第一鈍化層 中該等開口之一寬度係約50微米至約200微米。 15 97.如申請專利範圍第89項之裝置,其中位於該第一鈍化層 中的該等開口具有一伸長的形狀,其之長度介於約0.5 公厘與約4公厘之間以及其之寬度介於約0.1公厘與約1 公厘之間。 98. 如申請專利範圍第97項之裝置,其中該等開口間隔開約 20 1公厘至約6公厘。 99. 如申請專利範圍第89項之裝置,其中位於該第一鈍化層 中該等開口係以平行線方式配置涵蓋該第一外表面。 100. 如申請專利範圍第99項之裝置,其中該等平行線間隔開 約為500微米至約5000微米。 62 200849627 101. 如申請專利範圍第99項之裝置,其中該等平行線藉由交 叉的平行線連接用以構成一栅極配置。 102. 如申請專利範圍第101項之裝置,其中該柵極配置具有 約500平方微米至約5000平方微米的網眼。 5 103.如申請專利範圍第89項之裝置,其中該介電抗反射塗層 厚度係約為70奈米至約100奈米。 104. 如申請專利範圍第89項之裝置,其中該介電抗反射塗層 包含氮化矽。 105. 如申請專利範圍第89項之裝置,其中該介電抗反射塗層 10 具有一折射率介於約2.0與約2.5之間。 106. 如申請專利範圍第89項之裝置,其中該第一傳導性抗反 射塗層包括銦、錫、鈦及鋅其中至少一者之傳導性氧化 物。 107. 如申請專利範圍第89項之裝置,其中該第一傳導性抗反 15 射塗層包括銦及錫其中至少一者之一掺雜氟化物的氧 化物。 108. 如申請專利範圍第89項之裝置,其中該第一傳導性抗反 射塗層厚度介於約70奈米與約100奈米之間。 109. 如申請專利範圍第89項之裝置,其中該第一傳導性抗反 20 射塗層具有一折射率介於約1.7與約1.9之間。 110. 如申請專利範圍第89項之裝置,其中該介電抗反射塗層 具有一折射率介於約2.0與約2.5之間以及該第一傳導性 抗反射塗層可具有一折射率介於約1.7與約1.9之間。 111. 一種用以構成一太陽能電池的一光伏半導體裝置的製 63 200849627 造方法,該方法包含: 在一介電抗反射塗層以及一第一鈍化層中構成複 數之開口,其係位在具有構成一異質接面的第一及第二 相鄰相對的半導體材料之摻雜容積的一半導體晶圓之 5 半導體材料的一第一摻雜容積的一前側上,用以在該前 側上以及介於其間之該第一摻雜容積之該前側的暴露 部分上形成鈍化的介電塗覆區域;以及 在該等鈍化的介電塗覆區域與該前側表面之該等 暴露區域上構成一第一傳導性抗反射塗層。 10 112.如申請專利範圍第111項之方法,其中構成該複數之開 口作業包含使用一第一材料去除製程,用以去除該介電 抗反射塗層之區域直至留下該介電抗反射塗層之殘留 部分為止致使該第一鈍化層之一表面的該等部分係幾 乎露出,以及使用一第二製程用以去除該等殘留部分並 15 用以去除該第一純化層之對應部分,產生該前側表面之 該等暴露區域。 113.如申請專利範圍第112項之方法,其中該第一製程包含 雷射剝蝕及選擇性電漿蝕刻作業的至少之一者,以及其 中該第二製程可包含濕式化學蝕刻。 20 114.如申請專利範圍第113項之方法,其中該濕式化學蝕刻 包含使用氣酸的濕式化學#刻。 115.如申請專利範圍第114項之方法,其進一步包含進行濕 式化學#刻直至該介電抗反射塗層具有介於約70奈米 與約100奈米之間的一厚度為止。 64200849627 X. Patent application scope: 1·= species a--the solar (four) pool-photovoltaic semiconductor device, the package-constituting-the heterojunction of the semiconductor heterojunction (the heterojunction) and the doping volume of the opposite phase semiconductor material The first doped volume is used as an emitter having a front side for receiving light; and a first passivation material layer on the front side, the first passivation layer having a first outer surface And a plurality of openings through which the corresponding un-blunted regions of the front side that are not passivated by the first passivation layer are passed; and a conductive anti-reflective coating that is in the passivation layer On the first outer surface and the corresponding unpassivated regions of the front side. 2. The device of claim 3, wherein the semiconductor heterojunction is at least one of an ion implanted heterojunction and a thermally diffused heterojunction. 3. The device of claim 1, wherein the first doping volume has a sheet resistivity of from about 60 ohms per square to about 150 ohms per square. 4. The device of claim 1, wherein the first doping volume 20 has a sheet resistivity of from about 80 ohms per square to about 150 ohms per square. 5. The device of claim 3, wherein the first passivation layer is composed of at least one of Si〇2, SiN4, and SiC. 6. The device of claim 1, wherein the first passivation layer has a thickness of from 45 200849627 to about 10 nanometers to about 500 nanometers. 7. The device of claim 6, wherein the first passivation layer has a thickness of from about 10 nanometers to about 50 nanometers. 8. The device of claim 1, wherein the openings have a width of from about 50 microns to about 200 microns. 9. The device of claim 1, wherein the openings in the first passivation layer are arranged in a parallel line to cover the first outer surface. 10. The device of claim 9, wherein the parallel lines are spaced apart from about 500 microns to about 5000 microns. 10. The device of claim 8 wherein the parallel lines are connected by crossed parallel lines to form a grid configuration. 12. The device of claim 11 wherein the grid configuration has a mesh of from about 500 square microns to about 5000 square microns. 13- The device of claim 1, wherein the first conductive anti-reflective coating is continuous. 14. The device of claim 1, wherein the first conductive anti-reflective coating has a thickness of from about 70 nanometers to about 280 nanometers. 15. The device of claim 1, wherein the first conductive anti-reflective coating comprises at least one of InOx, SnOx, InSnOx, TiOx, and ZnOx. 16. The device of claim 1, wherein the first conductive anti-reflective coating has a sheet resistivity of between about 1 ohm per square and about 30 ohms per square. 17. The device of claim 1, further comprising: 46 200849627 a second passivation layer on the backside surface, the second passivation layer having a second outer surface having a second plurality An opening through which the unpassivated regions of the corresponding second outer surface not passivated by the second passivation layer are defined; and a second conductive anti-reflective coating that is tied to the second passivation The second outer surface of the layer and the corresponding unpassivated region of the second outer surface. 18. The device of claim 17, wherein the second passivation layer comprises at least one of SiO 2 , SiN 4 , and SiC. 10. The device of claim 17, wherein the second passivation layer can have a thickness of from about 10 nanometers to about 500 nanometers. 20. The device of claim 17, wherein the second passivation layer has a thickness of from about 10 nanometers to about 50 nanometers. 21. The device of claim 17, wherein the openings in the second passivation layer 15 have a width of from about 50 microns to about 200 microns. 22. The device of claim 17, wherein the openings in the second passivation layer are arranged in a parallel line to cover the second outer surface. 23. The device of claim 22, wherein the parallel lines are spaced apart from about 500 microns to about 5000 microns. 20. 24. The device of claim 23, wherein the parallel lines are connected by intersecting parallel lines to form a grid configuration. 25. The device of claim 24, wherein the grid configuration has a mesh of from about 500 square microns to about 5000 square microns. 26. The device of claim 17, wherein the second conductive anti-reverse 47 200849627 is continuous. 27. The device of claim 17, wherein the second conductive anti-reflective coating has a thickness of at least about the thickness of the first conductive anti-reflective coating. 28. The device of claim 17, wherein the second conductive anti-reflective coating has a thickness of between about 70 nanometers and about 500 nanometers. 29. The device of claim 17, wherein the second conductive anti-reflective coating layer comprises at least one of InOx, SnOx, InSnOx, TiOx, and ZnOx. 30. The device of claim 17, wherein the second conductive anti-reflective coating has a sheet resistivity of from about 1 ohm per square to about 30 ohms per square. 31. A solar cell device comprising the device of claim 17 and further comprising a first electrode, comprising: a first light transmissive electrically insulating film having first and second opposite sides 15; The first side has a first adhesive for bonding the first film to the first conductive anti-reflective coating; the first plurality of conductors are embedded in the first adhesive, causing a portion The first plurality of conductors protrude from the first adhesive; 20 the portions are soldered to the first conductive anti-reflective coating by an alloy coating on the portions for An electrically conductive anti-reflective coating forms an ohmic connection with the first plurality of conductors of the portions such that electrons can pass between the unpassivated regions of the front side and the first plurality of conductors to allow The current generated by the photovoltaic semiconductor device 48 200849627 is conducted by the conductor of the plurality of conductors. 32. A solar cell device comprising the device of claim 31 and further comprising a second electrode, comprising: a second electrically insulating film having first and second opposite sides; The first side of the second film has a second adhesive for bonding the second film to the second conductive anti-reflective coating; the second plurality of conductors are embedded in the second adhesive Causing a portion of the second plurality of conductors to protrude from the second adhesive; the second plurality of conductive systems of the portions are soldered to the second conductive resistance by an alloy coating on the portions 10 a reflective coating for forming an ohmic connection between the second plurality of conductors of the portions and the second conductive anti-reflective coating, such that electrons can be present in the unpassivated regions of the second outer surface The second plurality of conductors pass between each other to allow current generated by the photovoltaic semiconductor device to be conducted by the 15th and second plurality of conductors. 33. The device of claim 1, further comprising a third doping volume adjacent to the semiconductor heterojunction and adjacent to the second doping volume on one side of the second doping volume The third doping volume has the same doping polarity as the second doping volume, thereby forming an isotype junction with the second doping 20 volume, wherein the third doping volume also has a doping The concentration is greater than a doping concentration of the second doping volume, and wherein the third doping volume has a backside surface. 34. The device of claim 33, further comprising a second layer of conductive anti-reflective coating 49 200849627 positioned on the backside surface of the third doped volume. 35. The device of claim 34, wherein the second conductive anti-reflective coating has a thickness that is about the same as or greater than a thickness of one of the first conductive anti-reflective coatings. The apparatus of claim 34, wherein the second conductive anti-reflective coating has a thickness of from about 70 to about 500 nanometers. 37. The device of claim 34, wherein the second conductive anti-reflective coating comprises at least one of InOx, SnOx, InSnOx, TiOx, and ZnOx. The device of claim 34, wherein the second conductive anti-reflective coating has a sheet resistivity of from about 1 ohm per square to about 30 ohms per square. 39. A solar cell device comprising the device of claim 34 and further comprising a first electrode, comprising: a first light transmissive electrically insulating film having first and second opposing sides; The first side has a first adhesive for bonding the first film to the first conductive anti-reflective coating; the first plurality of conductors embedded in the first adhesive to cause the portion 20 The first plurality of conductors protrude from the first adhesive; the portions are soldered to the first conductive anti-reflective coating by an alloy coating on the portions for the first conduction An ohmic connection between the anti-reflective coating and the first plurality of conductors of the portions, such that electrons can pass between the unpassivated regions of the front side and the conductors of the plurality of 2008 20082727 to allow The current generated by the photovoltaic semiconductor device is conducted by the first plurality of conductors. 40. A solar cell device comprising the device of claim 39 and further comprising a first electrode, comprising: a second electrically insulating film having first and second opposing sides; the second The first side of the film has a second adhesive for bonding the second film to the second conductive anti-reflective coating; the second plurality of conductors are embedded in the second adhesive to cause a portion The second plurality of conductors protrude from the second adhesive; the second plurality of conductive systems of the portions are soldered to the second conductive anti-reflective coating by an alloy coating on the portions Forming an ohmic connection between the second plurality of conductors of the portions and the second conductive anti-reflective coating such that electrons can be on the back side surface of the third volume and the second plurality of conductors Passing through to allow current generated by the photovoltaic semiconductor device to be conducted by the second plurality of conductors. 41. The device of claim 2, wherein the second doped volume has a backside surface and further comprising: a second passivation layer that is tied to the backside surface; and an aluminum layer The base layer is on the second passivation layer, the aluminum layer having a plurality of laser sintering current collecting contacts extending from the aluminum layer through the second passivation layer to the second doping volume. 42. A solar cell device comprising the device of claim 41 and further comprising a first electrode, comprising: 51 200849627 a first light transmissive electrically insulating film having first and second opposite sides; The first side has a first adhesive for bonding the first film to the first conductive anti-reflective coating; 5 a first plurality of conductors embedded in the first adhesive to cause a portion The first plurality of conductors protrude from the first adhesive; the portions are soldered to the first conductive anti-reflective coating by an alloy coating on the portions for the conductive resistance Between the reflective coating and the first plurality of conductors of the portions, an ohmic junction is formed such that electrons can pass between the unpassivated regions of the front side and the first plurality of conductors to allow The current generated by the photovoltaic semiconductor device is conducted by the first plurality of conductors. 43. A solar cell device comprising the device of claim 42 and further comprising a second electrode, comprising: 15 - a second electrically insulating film having first and second opposing sides; The first side of the second film has a second adhesive for bonding the second film to the aluminum layer; the second plurality of conductors are embedded in the second adhesive to cause the second plurality of portions The conductor protrudes from the second adhesive; 20 the second plurality of conductive systems of the portions are soldered to the layer by an alloy coating on the portions for use in the portion An ohmic connection is formed between the two plurality of conductors and the outer surface of the second doped volume through the laser sintered junction to allow current generated by the photovoltaic semiconductor device to be conducted by the second plurality of conductors. 52 200849627 44. A method for fabricating a photovoltaic device of a solar cell, the method comprising: forming a first plurality of openings in a first passivation layer, the first passivation layer being tied to form a heterogeneity On a front side of the first doping volume of the semiconductor material of a semiconductor wafer having a doping volume of the first and second adjacent phases of the semiconductor material, the first plurality of openings are not defined by the a corresponding unpurified region of the first front side of the first passivation layer passivation, and a first conduction on the first outer surface of the first passivation layer and the corresponding unpassivated regions of the front side 10 Anti-reflective coating. 45. The method of claim 44, wherein the opening of the first plurality of openings comprises causing each of the openings of the first plurality of openings to have a width of from about 50 microns to about 200 microns. The method of claim 44, wherein the constituting the first plurality of openings in the first passivation layer comprises disposing the first plurality of openings in a parallel line to cover the first outer surface. 47. The method of claim 46, wherein the forming of the first plurality of openings comprises causing the parallel lines to be spaced apart from about 500 microns to about 20 microns. 48. The method of claim 44, wherein the constituting the first plurality of openings in the first passivation layer comprises arranging the first plurality of openings in parallel lines by a cross-parallel connection to form A gate configuration. 53 200849627 The method of claim 48, wherein the grid configuration has a mesh of from about 500 square microns to about 5,000 square microns. 50. The method of claim 44, wherein the first conductive anti-reflective coating operation comprises forming a first continuous conduction on the first outer surface and on the unpassivated regions of the front side surface Anti-reflective coating. The method of claim 44, wherein the constructing the first conductive anti-reflective coating comprises causing the first conductive anti-reflective coating to have a thickness of from about 70 nanometers to about 280 nanometers. The method of claim 44, wherein the constructing the first conductive anti-reflective coating on the first outer surface and on the unpassivated regions of the front side surface may comprise applying In〇X ; Sn〇X ; InSnOx ; a material of at least one of TiOx and ZnOx to the first outer surface and the unpassivated regions of the front side surface. The method of claim 44, wherein the constructing the first conductive anti-reflective coating comprises causing the first conductive anti-reflective coating to have an electrical conductivity of from about 1 ohm to about 3 ohms per square. A thin layer of resistivity. 54. The method of claim 44, further comprising forming the heterojunction by at least one of ion implantation and thermal diffusion. 55. The method of claim 44, further comprising causing the first doped volume to have a sheet resistivity of from 60 ohms per square to 150 ohms per square. 56. The method of claim 44, further comprising causing the 54 200849627 a doping volume to have a sheet resistivity of from 80 ohms per square to 150 ohms per square. 57. The method of claim 44, further comprising forming the first passivation layer. The method of claim 57, wherein the constituting the first passivation layer comprises a layer constituting at least one of SiO 2 , SiN 4 and SiC on the front side. 59. The method of claim 57, wherein the forming the first passivation layer comprises causing the first passivation layer to have a thickness of from about 10 nanometers to about 500 nanometers. 60. The method of claim 57, wherein the forming the first passivation layer comprises causing the first passivation layer to have a thickness of from about 10 nanometers to about 50 nanometers. 61. The method of claim 44, further comprising: 15 forming a second plurality of openings in a second passivation layer, the second passivation layer being tied to the second doped volume of the semiconductor material On a back side surface, the second plurality of open boundaries are positioned on corresponding unpurified regions on the back side surface; and on an outer surface of the second passivation layer and on the surface of the second back side 20 A second conductive anti-reflective coating is formed on the unpassivated area. 62. The method of claim 61, wherein the forming of the second plurality of openings comprises causing each of the openings of the second plurality of openings to have a width of from about 50 microns to about 200 microns. The method of claim 61, wherein the constituting the second plurality of openings in the second passivation layer comprises disposing the second plurality of openings in a parallel line to cover the back side surface. 64. The method of claim 63, wherein the arranging the openings of the second plurality in parallel lines comprises causing the parallel lines to be spaced apart from about 500 microns to about 5000 microns. 65. The method of claim 61, wherein the constituting the second plurality of openings in the second passivation layer comprises arranging the second plurality of openings in parallel lines by means of cross-parallel connections for forming A gate 10 pole configuration. 66. The method of claim 65, wherein the arranging the second plurality of openings in parallel lines by a cross-parallel connection to form a gate configuration comprises causing the gate configuration to have about 500 Mesh from square microns to about 5,000 square microns. The method of claim 61, wherein the second conductive anti-reflective coating operation is included on the outer surface of the second passivation layer and on the unpassivated regions of the backside surface A second continuous conductive anti-reflective coating is formed. 68. The method of claim 67, wherein the constructing the second conductive 20 antireflective coating comprises causing the coating to have a thickness of from about 70 nanometers to about 500 nanometers. 69. The method of claim 61, wherein the second conductive anti-reflective coating operation comprises coating the outer surface of the second passivation layer with a material and the unpassivated regions of the backside surface The material includes 56 200849627 InOx; SnOx; InSnOx; at least one of TiOx and ZnOx. The method of claim 61, wherein the constructing the second conductive anti-reflective coating comprises causing the second conductive anti-reflective coating to have an electrical conductivity of from about 1 ohm per square to about 30 ohms per square. A thin layer of resistance 5 rate. 71. The method of claim 61, further comprising constituting the second purification layer. The method of claim 69, wherein the constituting the second passivation layer comprises a layer constituting at least one of SiO 2 , SiN 4 and SiC on the back side surface. 73. The method of claim 69, wherein the forming the second passivation layer comprises causing the second passivation layer to have a thickness of from about 1 nanometer to about 500 nanometers. 74. The method of claim 69, wherein the constructing the second passivation layer 15 comprises causing the second passivation layer to have a thickness of from about 10 nanometers to about 50 nanometers. 75. The method of claim 61, further comprising: bonding an adhesive on a light-transmissive electrically insulating film to the first conductive anti-reflective coating such that the in-line is embedded in the adhesive An alloy coating layer on a portion of the corresponding exposed portion of the conductor of the 20th complex is disposed on the first conductive anti-reflective coating; and heating the alloy coating while pressing the exposed portions against the first a conductive anti-reflective coating such that the alloy coating welds the exposed portions of the first plurality of conductors to the first conductive anti-reflective coating 57 200849627 layer for the first plurality of conductors and the first An ohmic connection is created between a conductive anti-reflective coating. 76. The method of claim 75, further comprising: bonding a second adhesive on a second electrically insulating film to the second conductive anti-reflective coating to cause in-position a second alloy coating layer on a portion of the second plurality of conductors corresponding to the exposed portions of the second adhesive is disposed on the second conductive anti-reflective coating; and heating the second alloy coating while The exposed portions of the second plurality of conductors are pressed against the second conductive anti-reflective coating such that the second alloy coating welds the exposed portions of the second plurality of conductors to the second conductive An anti-reflective coating is used to create an ohmic connection between the second plurality of conductors and the second conductive anti-reflective coating. 77. The method of claim 44, further comprising: forming a back surface on a back side surface of a third doping volume on a side 15 side of the second doping volume opposite the semiconductor junction a second conductive anti-reflective coating having a same doping polarity as the second volume to form an isotype junction and wherein the third doping volume has a doping concentration greater than One of the second volumes is doped. The method of claim 77, wherein the second conductive anti-reflective coating comprises a second continuous conductive anti-reflective coating on the backside surface of the third doped volume. Floor. 79. The method of claim 77, wherein the second conductive anti-reflective coating comprises an operation comprising causing the second conductive anti-reflective coating 58 200849627 to have a temperature of from about 70 nm to about 500 nm. thickness. 80. The method of claim 77, wherein the second conductive anti-reflective coating operation comprises coating the backside surface of the third doping volume with a material comprising InOx; SnOx; InSnOx ; at least one of TiOx 5 and ZnOx. 81. The method of claim 77, wherein the constructing the second conductive anti-reflective coating comprises causing the second conductive anti-reflective coating to have a level of from about 1 ohm per square to about 30 ohms per square. Sheet resistivity. The method of claim 44, further comprising: bonding an adhesive on a light-transmissive electrically insulating film to the first conductive anti-reflective coating, such that the position is embedded in the adhesive An alloy coating of a portion of the first plurality of conductors on the corresponding exposed portion of the agent is disposed on the first conductive anti-reflective coating; and 15 heating the alloy coating while pressing the exposed portions against the position The first conductive anti-reflective coating on the unpassivated regions, causing the alloy coating to solder the exposed portions of the first plurality of conductors to the conductive anti-reflective coating for use in the first An electrical connection is made between the plurality of conductors and the first conductive anti-reflective coating. The method of claim 82, further comprising: bonding a second adhesive on a second electrically insulating film to the second conductive anti-reflective coating, causing the position to be embedded a second alloy coating layer on a portion of the second plurality of conductors corresponding to the exposed portion of the second adhesive is disposed on the second conductive anti-reflective coating; and 59 200849627 heating the second alloy coating simultaneously Pressing the exposed portions of the second plurality of conductors against the second conductive anti-reflective coating such that the second alloy coating welds the exposed portions of the second plurality of conductors to the second A conductive anti-reflective coating is used to create an ohmic connection between the second plurality of conductors and the second conductive anti-reflective coating. 84. The method of claim 44, further comprising forming a second passivation layer on a backside surface of one of the second volumes. 85. The method of claim 84, further comprising forming a layer on the second purification layer. The method of claim 84, further comprising forming a plurality of laser sintered joints in the aluminum layer. 87. The method of claim 86, further comprising: bonding an adhesive on a light-transmissive electrically insulating film to the first conductive anti-reflective coating, such that the position is embedded in the adhesive An alloy coating of a portion of the corresponding exposed portion of the conductor of the fifteenth complex is disposed on the front side; and heating the alloy coating while pressing the exposed portions against the unpassivated region The first conductive anti-reflective coating thereon, such that the alloy coating welds the exposed portions of the first plurality of conductors 20 to the conductive anti-reflective coating for the first plurality of conductors An ohmic connection is created between the first conductive anti-reflective coatings. 88. The method of claim 87, further comprising: bonding a second adhesive on a second electrically insulating film to the aluminum layer such that the position is embedded in the second adhesive a second plurality 60 200849627 A second alloy coating on the corresponding exposed portion of the conductor is disposed on the aluminum layer; and heating the second alloy coating while pressing the exposed portions of the second plurality of conductors Abutting the aluminum layer, causing the second alloy coating to weld the exposed portions of the second plurality of conductors to the aluminum layer for creating an ohmic connection between the second plurality of conductors and the aluminum layer, An allowable current flows between the second plurality of conductors and the second doped volume through the laser sintered joints and the aluminum layer. 89. A photovoltaic semiconductor device for forming a solar cell, the package 10 comprising: a doping volume of first and second adjacent opposing semiconductor materials constituting a semiconductor heterojunction, the first doping volume Used as an emitter having a front side for receiving light; a first layer of passivation material on the front side, the first blunt layer having a first outer surface and a plurality of openings via The openings define a corresponding unpassivated region of the front side that is not passivated by the first passivation layer, a dielectric anti-reflective coating that is tied to the first outer surface of the passivation layer, the openings No such dielectric anti-reflective coating; and 20 a first conductive anti-reflective coating on the dielectric anti-reflective coating and the corresponding unpassivated regions on the front side. 90. The device of claim 89, wherein the semiconductor heterojunction is at least one of an ion implanted heterojunction and a thermally diffused heterojunction. The apparatus of claim 89, wherein the first doping volume has a sheet resistivity of from about 60 ohms per square to about 150 ohms per square. 92. The device of claim 89, wherein the first doping volume 5 has a sheet resistivity of from about 80 ohms per square to about 150 ohms per square. 93. The device of claim 89, wherein the first passivation layer is comprised of at least one of SiO 2 , SiN 4 , and SiC. 94. The device of claim 89, wherein the first passivation layer has a thickness of from about 10 nanometers to about 200 nanometers. 95. The device of claim 94, wherein the first passivation layer has a thickness of from about 10 nanometers to about 50 nanometers. 96. The device of claim 89, wherein one of the openings in the first passivation layer is between about 50 microns and about 200 microns wide. The apparatus of claim 89, wherein the openings in the first passivation layer have an elongated shape having a length between about 0.5 mm and about 4 mm and The width is between about 0.1 mm and about 1 mm. 98. The device of claim 97, wherein the openings are spaced apart by about 20 1 mm to about 6 mm. 99. The device of claim 89, wherein the openings in the first passivation layer are arranged in a parallel line to cover the first outer surface. 100. The device of claim 99, wherein the parallel lines are spaced apart from about 500 microns to about 5000 microns. The apparatus of claim 99, wherein the parallel lines are connected by crossed parallel lines to form a grid configuration. 102. The device of claim 101, wherein the grid configuration has a mesh of from about 500 square microns to about 5000 square microns. The apparatus of claim 89, wherein the dielectric anti-reflective coating has a thickness of from about 70 nm to about 100 nm. 104. The device of claim 89, wherein the dielectric anti-reflective coating comprises tantalum nitride. 105. The device of claim 89, wherein the dielectric anti-reflective coating 10 has a refractive index between about 2.0 and about 2.5. 106. The device of claim 89, wherein the first conductive anti-reflective coating comprises a conductive oxide of at least one of indium, tin, titanium, and zinc. 107. The device of claim 89, wherein the first conductive anti-reflective coating comprises an oxide of at least one of indium and tin doped with fluoride. 108. The device of claim 89, wherein the first conductive anti-reflective coating has a thickness of between about 70 nanometers and about 100 nanometers. 109. The device of claim 89, wherein the first conductive anti-reflective coating has a refractive index between about 1.7 and about 1.9. 110. The device of claim 89, wherein the dielectric anti-reflective coating has a refractive index between about 2.0 and about 2.5 and the first conductive anti-reflective coating can have a refractive index between Between about 1.7 and about 1.9. 111. A method for fabricating a photovoltaic device for forming a solar cell. The method of manufacturing a semiconductor device comprises: forming a plurality of openings in a dielectric anti-reflective coating and a first passivation layer, the moieties having Forming a doped volume of the first and second adjacent opposing semiconductor materials of a heterojunction on a front side of a first doping volume of a semiconductor wafer of a semiconductor wafer for use on the front side Forming a passivated dielectric coating region on the exposed portion of the front side of the first doping volume; and forming a first on the passivated dielectric coating region and the exposed regions of the front side surface Conductive anti-reflective coating. The method of claim 111, wherein the opening of the plurality of openings comprises using a first material removal process for removing the area of the dielectric anti-reflective coating until the dielectric anti-reflective coating is left The remaining portion of the layer causes the portions of the surface of one of the first passivation layers to be nearly exposed, and a second process is used to remove the remaining portions and 15 to remove corresponding portions of the first purification layer, resulting in The exposed areas of the front side surface. 113. The method of claim 112, wherein the first process comprises at least one of a laser ablation and a selective plasma etch operation, and wherein the second process can comprise a wet chemical etch. The method of claim 113, wherein the wet chemical etching comprises wet chemical etching using a gas acid. 115. The method of claim 114, further comprising performing wet chemistry until the dielectric anti-reflective coating has a thickness of between about 70 nanometers and about 100 nanometers. 64
TW097112977A 2007-05-17 2008-04-10 Photovoltaic cell with shallow emitter TW200849627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097112977A TW200849627A (en) 2007-05-17 2008-04-10 Photovoltaic cell with shallow emitter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW96117614 2007-05-17
PCT/CA2008/000349 WO2008141415A1 (en) 2007-05-17 2008-02-22 Photovoltaic cell with shallow emitter
TW097112977A TW200849627A (en) 2007-05-17 2008-04-10 Photovoltaic cell with shallow emitter

Publications (1)

Publication Number Publication Date
TW200849627A true TW200849627A (en) 2008-12-16

Family

ID=44824194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097112977A TW200849627A (en) 2007-05-17 2008-04-10 Photovoltaic cell with shallow emitter

Country Status (1)

Country Link
TW (1) TW200849627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492390B (en) * 2009-02-09 2015-07-11 埃托特克德國有限公司 Silicon solar cell
TWI506799B (en) * 2010-03-25 2015-11-01 Solutia Inc Thin film photovoltaic module with contoured deairing substrate
TWI555219B (en) * 2011-02-15 2016-10-21 太陽電子公司 Process and structures for fabrication of solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492390B (en) * 2009-02-09 2015-07-11 埃托特克德國有限公司 Silicon solar cell
TWI506799B (en) * 2010-03-25 2015-11-01 Solutia Inc Thin film photovoltaic module with contoured deairing substrate
TWI555219B (en) * 2011-02-15 2016-10-21 太陽電子公司 Process and structures for fabrication of solar cells

Similar Documents

Publication Publication Date Title
US20080290368A1 (en) Photovoltaic cell with shallow emitter
US20080092944A1 (en) Semiconductor structure and process for forming ohmic connections to a semiconductor structure
US7335555B2 (en) Buried-contact solar cells with self-doping contacts
US20100147368A1 (en) Photovoltaic cell with shallow emitter
WO2008141415A1 (en) Photovoltaic cell with shallow emitter
TWI305422B (en) Process and fabrication methods for emitter wrap through back contact solar cells
JP2004266023A (en) Solar battery and method of manufacturing the same
TW201203588A (en) Solar cell including sputtered reflective layer and method of manufacture thereof
JP2010521824A (en) Solar cell
JP2008034609A (en) Solar battery element, solar battery module using same, and manufacturing methods of both
TW201236171A (en) Solar cell and solar-cell module
TW201436259A (en) Solar cell and method for producing same
EP2423981B1 (en) Method of manufacturing solar cell electrodes by paste firing
JP2007299844A (en) Method for manufacturing photoelectric converting element
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
JP6013200B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
TW201218394A (en) Photovoltaic device and method for manufacturing same
CA3190022A1 (en) Back-contact solar cell, and production thereof
TW200849627A (en) Photovoltaic cell with shallow emitter
TWI474342B (en) Aluminum paste, method for manufacturing back electrode of solar cell and solar cell
WO2010150606A1 (en) Photovoltaic device and method for manufacturing same
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
RU2815034C1 (en) Back-contacting solar cell and manufacturing such element
KR20110010224A (en) Solar cell, method for solar cell and heat treatment apparatus for thermal diffusion
JP2003273378A (en) Solar cell element