TW200847855A - Radio frequency power source system and the plasma reaction chamber using that radio frequency power source system - Google Patents

Radio frequency power source system and the plasma reaction chamber using that radio frequency power source system Download PDF

Info

Publication number
TW200847855A
TW200847855A TW96118026A TW96118026A TW200847855A TW 200847855 A TW200847855 A TW 200847855A TW 96118026 A TW96118026 A TW 96118026A TW 96118026 A TW96118026 A TW 96118026A TW 200847855 A TW200847855 A TW 200847855A
Authority
TW
Taiwan
Prior art keywords
power
frequency
radio frequency
signal
power source
Prior art date
Application number
TW96118026A
Other languages
Chinese (zh)
Other versions
TWI383712B (en
Inventor
Tu-Qiang Ni
Jin-Yuan Chen
Gerald-Z Yin
Xue-Yu Qian
Hiroshi Iizuka
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Priority to TW096118026A priority Critical patent/TWI383712B/en
Publication of TW200847855A publication Critical patent/TW200847855A/en
Application granted granted Critical
Publication of TWI383712B publication Critical patent/TWI383712B/en

Links

Abstract

A radio frequency power source system applied to plasma reaction chamber adopts frequency synthesis or radio frequency signal oscillator to generate N's radio frequency signals and amplify the N's radio frequency signal power through a wide-band power amplifier followed by separating the amplified signals. The output of radio frequency power source system is a radio frequency power with multiple frequencies. Optionally, these frequencies can be switched so that user can choose the output power from the radio frequency power source system. This invention further discloses a plasma reaction chamber using that radio frequency power source system.

Description

200847855 、 九、發明說明: 【發明所屬之技術領域】 本發明提供-種顧於轉子體及應腔室巾的射頻功率·統,特別 有關於-種可以產生錄解的_功率料、統及使職㈣功率源 的等離子體反應腔室。 【先前技術】 現有技術巾已贿兩飾頻辭(雙頻)鱗離子體反應腔室。 -般來說’雙頻等離子體反應腔室接收的射頻偏置功率肿恤寧而)的頻 率低於約15MHz,射頻源功率(RF s〇urce p〇wer)的頻率較高,一般在 • 4〇_2〇〇MHZ。射頻偏置功率是指帛以控制離子能量和能量分佈的射頻功率, 而射頻源功率是指用以控制等離子體中的離子解離⑼㈣& di_iati〇n) 或等離子體密度_madensity)的射頻功率。在某些特定應用中,人們運用 偏置頻率為2MHz或13MHz、源頻率為27應、6〇ΜΗζ、ι〇〇ΜΗζ或更古 的頻率在等離子體反應腔室中進行蝕刻技術處理。 η 、取近有人提出了-種讓等離子體反應腔室工作在一個偏置頻率和兩個 源頻率下的方式。例如’有人提㈣等離子體侧反應雌工作在2MHz 偏置頻率和27MHz和6〇MHz兩個源頻率下。在這種方式下,不同類型的 離子的解離可以通過兩個源、射頻(s〇urceRp)的功率加以控制。但是,在現有 # 2射的這些顧,每種鮮較通過-侧立的賴轉源(或射頻功 =產生器)來提供的。比如,若等離子體蚀刻反應腔室需要工作在三種頻 率下,則現有技觸反應職就必職供三台齡讀_頻功率源來滿 足工作需要4所周知,射頻功率源_时料貴,大大地增加了使用 者的使用成本。欲獲得進-步的資訊,請參看美國專利號6,281,和 7,144,52卜以及美國申請專利公開號2〇〇5/〇264218。 在等離子體反應腔室實際工作過程中,有時需要反應腔室同時工作在 2MHZ偏置鮮和6GMHZ的_率下;而树又需奴驗㈣時工作在 13MHZ偏置醉和6GMHZ轉鮮下。财技躺縣是給等離子體反 應腔室提供三台獨立的射頻功率源(或射頻功率產生器),通過分別控制每 個獨立的綱神源來提供獨的鱗組合。但這種設計價格昂貴且設 5 200847855 備占地體積大。 【發明内容】 本發明的目的在於提供一種運用於等離子體反應腔室上的可以產生多 種頻率的姻功轉、,其可以大大節省使用者的成本,並且可靠性高。 本發明的另一目的在於提供一種運用於等離子體反應腔室上的具有可 2的^種頻率的射頻功率赫統,其不僅可以大大節省使用者的成本、 可罪〖生南’、而且可以通過切換射頻,使等離子體反應腔室能夠選擇性地選200847855, IX, invention description: [Technical field of the invention] The present invention provides an RF power system that takes into account the rotor body and the chamber towel, and particularly relates to a type of power material that can be recorded. The plasma reaction chamber of the (four) power source. [Prior Art] The prior art towel has bribed a two-frequency (double frequency) scale ion reaction chamber. Generally speaking, the frequency of the RF bias power received by the dual-frequency plasma reaction chamber is lower than about 15 MHz, and the frequency of the RF source power (RF s〇urce p〇wer) is relatively high. 4〇_2〇〇MHZ. The RF bias power refers to the RF power that controls the ion energy and energy distribution, and the RF source power refers to the RF power used to control the ion dissociation (9) (4) & di_iati〇n) or plasma density _madensity in the plasma. In some specific applications, etching techniques are performed in a plasma reaction chamber using a frequency of 2 MHz or 13 MHz, a source frequency of 27, 6 〇ΜΗζ, ι 〇〇ΜΗζ or more. η, which has been proposed, has been proposed to operate the plasma reaction chamber at a bias frequency and two source frequencies. For example, it has been suggested that (4) the plasma side reaction female works at a 2 MHz bias frequency and two source frequencies of 27 MHz and 6 〇 MHz. In this way, the dissociation of different types of ions can be controlled by the power of two sources, radio frequency (s〇urceRp). However, in the existing #2 shots, each fresher is provided by a side-by-side source (or RF power = generator). For example, if the plasma etching reaction chamber needs to work at three frequencies, the existing technical touch response job must be used for three age-reading _frequency power sources to meet the working needs. 4, the RF power source is expensive. The user's use cost is greatly increased. For further information, see U.S. Patent Nos. 6,281, and 7,144,52, and U.S. Patent Application Serial No. 2/5/264218. During the actual working process of the plasma reaction chamber, it is sometimes necessary to operate the reaction chamber at the same time at 2 MHZ bias fresh and 6 GMHZ _ rate; while the tree needs to be tested (4) when working at 13 MHZ offset drunk and 6GMHZ turn . Caiji County provides three independent RF power sources (or RF power generators) to the plasma reaction chamber to provide a unique scale combination by controlling each independent source. However, this design is expensive and has a large footprint. SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-frequency transfer that can be used in a plasma reaction chamber, which can greatly save the cost of the user and is highly reliable. Another object of the present invention is to provide a radio frequency power system having a frequency of 2 that can be used in a plasma reaction chamber, which can not only greatly save the user's cost, but also sin. The plasma reaction chamber can be selectively selected by switching the RF

擇工作頻率,滿足不同的應用Afferent applications)或技術步驟(redpe steps) 〇 FChoose the working frequency to meet different application Afferent applications) or technical steps (redpe steps) 〇 F

本發明是通過以下技術方法實現的·· 、-種射頻功率源系統,包括:輸出具有^^個頻率_個射頻信號的射 頻源,其中N是大於1的整數;合成該N個射頻健_頻功率合成器, 以輸出-個合成的射頻信號;纟大該合成的射頻信?虎的寬帶放纟器,讀 供一個經過放大的射頻信號;接收該經過放大的射頻信號的射頻功率分離 器,以提供具有N個頻率的N個經過放大的射頻功率信號。 -種射頻功率源系統,包括:第—射頻源,輸出具有第—頻率的第一 射頻信號H懷源,輸出具有第二頻率的第二射頻信號;射頻功率合 成器,將第-和第二射頻信號合成,輸出—個合成的射頻信號;寬帶放大 器,用以放大該合成的射頻信號,以提供一個經過放大的信號;射頻功率 分離器,用以接收該經過放大的信號,並提供第一放大射頻功率和第二放 大射頻功率;匹配電路,肋接收該第—放大麵轉和雜二放大射頻 功率。 -種等離子體反應腔室,包括:真空反應腔室,用來在其中產生等離 子體;射頻功率源,可提供頻率為fl的射頻功率;射 ㈣不隨_ N個射頻魏,其中N是大於丨的整數;合成該 ^號的棚功率合成器、,以輸出一個合成的射頻信號;放大該合成的射頻 #號的寬帶放以提供-個經過放大騎雜號;接收該經過放大的 射頻信號的射頻功率分離器,以提供具有N個頻率的1^個經過放大的射頻 功率信號;匹配電路,用以將該頻率fl以及該N個頻率中的至少一個頻率 6 200847855 的射頻功率耦合到該真空反應腔室中。 本發明的不同方面提供了具有單個頻率源射頻功率和雙頻射頻偏置功 率的等離子體反應㈣。彻該發鴨統,離子的轟擊能量以及能量分佈 可以通過兩個不_鮮來控制。例如,若需要高轟雜量,反應腔室可 用2MHz麵偏置功率购,而需要較柔㈣離子轟擊時,反應腔室可工 作於13MHz軸偏置功率下。#然,反舰室也可同喊人相同或不同功 率級別的兩種射頻偏置。The present invention is an RF power source system implemented by the following technical methods, comprising: outputting a radio frequency source having a frequency_radio frequency signal, wherein N is an integer greater than 1; synthesizing the N radio frequency health_ a frequency power synthesizer for outputting a synthesized RF signal; a large-scale radio frequency converter of the synthesized RF signal, reading an amplified RF signal; and receiving a RF power splitter for the amplified RF signal To provide N amplified RF power signals having N frequencies. - an RF power source system, comprising: a first-radio source, outputting a first radio frequency signal H-source having a first frequency, outputting a second radio frequency signal having a second frequency; and a radio frequency power synthesizer, the first and second RF signal synthesis, output - a composite RF signal; a wideband amplifier for amplifying the synthesized RF signal to provide an amplified signal; and a RF power splitter for receiving the amplified signal and providing the first Amplifying the RF power and the second amplifying the RF power; the matching circuit receives the first-amplified surface and the second amplified RF power. - a plasma reaction chamber comprising: a vacuum reaction chamber for generating a plasma therein; a radio frequency power source capable of providing a radio frequency power of a frequency fl; a shot (4) not following a _ N radio frequency Wei, wherein N is greater than An integer of 丨; a shed power synthesizer for synthesizing the horn, to output a synthesized radio frequency signal; amplifying the wideband of the synthesized radio frequency # to provide an amplified amp; receiving the amplified radio frequency signal RF power splitter to provide 1^ amplified RF power signals having N frequencies; a matching circuit for coupling the frequency fl and the RF power of at least one of the N frequencies 6 200847855 to the Vacuum in the reaction chamber. Different aspects of the invention provide a plasma reaction (4) with a single frequency source RF power and dual frequency RF bias power. Throughout the duck system, the ion bombardment energy and energy distribution can be controlled by two not-fresh. For example, if high turbulence is required, the reaction chamber can be purchased with a 2MHz surface bias power, while a relatively soft (tetra) ion bombardment is required, and the reaction chamber can operate at a 13MHz shaft bias power. #然, the anti-ship room can also be the same or different power level of the two RF offsets.

作為本發_其它方面,提供—個射頻功率源,可以實現可切換的多 種頻率的賴轉。齡統獅鮮合絲麵信號滅胃对產生難 麵信號,並通過寬帶轉放大^職N働頻錢神加喊大,隨後 分離該經過放大的織m躺輸蚊具有乡翻率的麵功率。這 些頻率是可购換的’這樣朗者就可以選⑽、賴輸㈣頻率。 【實施方式】 第1圖是财技射够頻转軒肢應腔室的示_,其連接有 -個射頻偏置功率源或射頻偏置功率產生帅ne处bias p麵r generat〇r)和 兩個2射頻雜賊源麵轉產生器―s_e即p。而g_tQI^具 體而β第1圖所示的等離子體反應腔室(以下或有簡稱反應腔室)雇具有 -個上電極105、下電極U0和在兩個電極之間產生的等離子體⑽。通常, 上to 105 -般嵌設於反應腔室卿頂蓋上,而下電極ιι〇 一般嵌設于下 方的陰極元件上’所述陰極元件上用於放置待處理的半導體產品,如,半 導體晶片。如第i圖中所示’射頻偏置功率源125 it過匹配電路⑽為反 應腔室1〇〇提供射頻功率。射頻偏置頻率為fl,—般為2廳或約13論 (更精確地’是13.56MHz) ’―般载人到極⑽上。第! _ 了兩個射頻源功率源130和135,工作頻率分別為β㈣。比如,料設 議。所述射頻源功率源13G和135分別通過匹配 no或:盼主爾,在她中崎有的二 ^網路的輸出都被表示為合成到一個指向反應腔室中的箭頭,這是一種干 思性的表不,胁包括所有通舰_路到等離子體雜合,無論是通過 7 200847855 了電極、頂蓋上的電極、或是通^^感性轉合線圈等等搞合的都被包括在内。 置功率可以通過下電極耦合,而源功率可以通過氣體喷頭中的電 極或,感線_合。相反地,偏置功率和源神也可崎過下電_合。 第2圖疋本發明第-種實施方式續轉軒體反應腔室的示意圖, 它具有兩_頻偏置功率產生器和—個射親功率產生器。圖中,兩個射 頻偏置功率源级和255分別通過匹配電路鳩和245向反應腔室提 供射頻偏置功率。射頻偏置頻率為,其中心頻率一般是遞而射頻偏 置頻=f2的中心頻率一般為^廳。兩個射頻偏置一般都載入到下電極加 上。j ’就可以實現改進的離子能量以及能量分佈的測。例如,對於 ⑩ $要^的轟擊如的場合下,例如前端侧顧,可使用2MHz功率源, 而對於需要較柔和的轟擊能量的場合下,例如後祕職^,則採用 13麻。第2圖同時示出了—個射頻源功率源说,工作頻率為β,如 27MHz、60MHz、100ΜΗζ等等。射頻源功率源故通過匹配網路25〇直 接运入至反應腔室200。功率源可以載入到下電極21〇或上電極2〇5上。功 率馳用來控制等離子體220缝,即,等離子體22〇麟子解離。 在本發明中,採用匹配電路240,245來將射頻功率♦禺合到反應腔室2〇〇 中。該匹配電路240,245 -般可以包括若干個匹配網路,並且任何合適的匹 配肩路都可以使用。然而’為了獲得較好的使用效果以及實現不同功率源 # 之間至少15db以上功率的相互隔離,推薦採用申請人擁有的專利申請序號 為11/350,022、申凊日為2006年2月8日的美國專利申請中提及的匹配網 路。 如刖文所述,在現有技術中,各種射頻偏置功率和源功率是通過獨立 的射頻功率源產生(separate RF power suppliers)的。然而,射頻功率源中 的功率放大器相對昂貴,並且多個棚神源造減造成本升高和可_ 降低的醜,由此,根據本發_不同方面,本發明提供—做進的架構, 實現產生多種射頻功率源,可以降低成本,並提高系統的可靠性。 根據本發明的一個方面,採用多個射頻信號產生器,例如晶體振盪器 或頻率合成器,從這些射頻信號產生器產生的信號經過合成再通過寬帶^ 大器(wide-band amplifier,如,FET放大器)進行放大。經過放大的信號再 8 200847855 、f離並送人適當的射頻系統匹配網路。控制器用來決統發哪一個頻 率產,器,於是就可以選擇系統所輸出的頻率,這樣就節省了放大器 的數$。簡而言之,本發明的系統採用單個射頻功率產生器來提供可切換 的、多種頻率的射頻功率。此外,傳統的射頻放大器需要高品質的直流電 源才能正常地工作。而本發雜制—個射頻放All,可以節省由於使用 多個直流電源而帶來的開支。 第3圖顯示了一種採用單射頻功率源(singleRFp〇wer)提供多種頻率的 射頻2率(miiltiPle-freqUenCy RFpower)的實施方式。在第3圖中,射頻信號 產生器=25、330和335分別提供頻率為ηβ和β的射頻信號。射頻信 • #U產生斋325、33G和335可以是振盈器(比如,晶體振盈器)、頻率合成 ^ ^ m^m^m(Divect digital frequency synthesizer ^ DDS) 或鎖相環合成器(Phase locked l〇op frequenCy synthesizers)等等。在一種實 施=式中,fl設置為2MHz,β設置為13MHz,而β設置為60MHz。三 個$號產生器325、330和335的輸出隨後由合成器355進行合成,再送給 寬帶功率放大器(wide-band power amplifier,WBPA)360。寬帶功率放大器 360將合成的射頻信號放大,並輸出一個合成的經過放大的具有三個頻^ Π、£2和β的射頻信號。該合成的經過放大的射頻信號隨後利用射頻功率 分離器得鮮輸ώ。所述麵神分離器可以是低通濾波器365、 # f通濾、波器37G和高通濾波器通濾波,接著,*同濾波器的輸出,比如 Ω、β和β,分別施加到匹配網路34〇、345和35〇。這樣,只要使用一個 放大器,系統就可以提供三路射頻功率信號。在使用時,控制器385用來 控制射頻信號產生器325、330和335的激發。需要說明的是,在第3圖中, =出了三個射頻信號產生器325、33〇和335用於分別產生不同的射頻頻 率,這僅疋為了便於閱讀人員的理解而作出的示意性的繪圖,應當理解, 也可以僅採用單個的射頻信號產生器(比如,直接式數位頻率合成器,或 未來發明出的更佳的單個的射頻信號產生器)就可以產生三個或若干個不同 的射頻頻率,採用該單個的射頻信號產生器可靠性更高。 可以理解,根據本發明的一種實施方式,可以運用射頻信號產生器325 和330來提供射頻偏置功率,而信號產生器335用來提供射頻源功率。在 9 200847855 這種配置下,控制器385會激發信號產生器335至合適的功率來 望的離子解離。控制器385還可以激發射頻信號產生器325和330中的— 個或兩個輕得簡望馨子轟輪量。例如,騎料刺高轟擊能旦 385可以只激發射頻信號產生器325,而對於需要得到低轟 擊月b里的%δ,控制器385可以只激發射頻信號產生器33〇。 車這—配置也可以驗㈣兩個射麵功率為系統提供功 率。在运種配置方式下’射頻信號產生器325可設為如2MHz或13MKz來As a further aspect of the present invention, a radio frequency power source is provided, which can realize switching of a plurality of frequencies that can be switched. The age-old lion's fresh silk surface signal eliminates the stomach and produces a difficult surface signal, and through the broadband transfer amplification, the job N 働 frequency money god shouts large, and then separates the enlarged woven m lying mosquito to have the surface power of the rural turn-over rate . These frequencies are available for purchase. This way, you can choose (10) and rely on (four) frequencies. [Embodiment] The first picture is the indication that the financial technology shoots enough frequency to turn the accompaniment of the ampere, and it is connected with a radio frequency bias power source or RF bias power to generate the bias p face r generat〇r) And two 2 RF thief source surface generator - s_e is p. Further, the plasma reaction chamber (hereinafter referred to as the reaction chamber) shown in Fig. 1 has an upper electrode 105, a lower electrode U0, and a plasma (10) generated between the two electrodes. Typically, the top 105 is embedded in the top of the reaction chamber, and the lower electrode is generally embedded on the cathode element below. The cathode element is used to place a semiconductor product to be processed, such as a semiconductor. Wafer. The RF bias power source 125 it over-matching circuit (10), as shown in Figure i, provides RF power to the reaction chamber 1〇〇. The RF bias frequency is fl, which is generally 2 halls or about 13 (more precisely '13.56 MHz) ‘-like manned to pole (10). The first! _ Two RF source power sources 130 and 135, the operating frequency is β (four). For example, the material is set. The RF source power sources 13G and 135 respectively match the output of no or: hope, and the output of the two networks in her middle is represented as an arrow that is directed into the reaction chamber. This is a kind of thinking. Sexuality, threats include all the ship-to-plasma hybrids, whether through the electrodes of 2008200855, the electrodes on the top cover, or the inductive turning coils, etc. are included in the Inside. The set power can be coupled through the lower electrode, and the source power can pass through the electrode in the gas jet or the sense line. Conversely, the bias power and source god can also be overpowered. Fig. 2 is a schematic view showing the first embodiment of the present invention, which has a two-frequency bias power generator and a single-shot power generator. In the figure, two RF bias power source stages and 255 provide RF bias power to the reaction chamber through matching circuits 鸠 and 245, respectively. The RF bias frequency is such that the center frequency of the RF frequency is generally the frequency of the radio frequency offset = f2 is generally the hall. Both RF offsets are typically loaded onto the lower electrode plus. Improved measurement of ion energy and energy distribution can be achieved with j '. For example, in the case of a bombardment of 10 $ ^, for example, a front-end side can use a 2 MHz power source, and in the case where a softer bombardment energy is required, for example, a post-secret ^, 13 hemp is used. Figure 2 also shows a source of RF source power, said operating frequency is β, such as 27MHz, 60MHz, 100ΜΗζ and so on. The RF source power source is therefore carried directly into the reaction chamber 200 through the matching network 25〇. The power source can be loaded onto the lower electrode 21〇 or the upper electrode 2〇5. The power is used to control the plasma 220 slit, that is, the plasma 22 is disintegrated. In the present invention, matching circuits 240, 245 are employed to couple the RF power to the reaction chamber 2A. The matching circuits 240, 245 can generally include a number of matching networks, and any suitable matching shoulder can be used. However, in order to obtain better use effect and achieve mutual isolation of power of at least 15 db between different power sources, it is recommended to use the patent application number of the applicant as 11/350,022 and the application date is February 8, 2006. The matching network mentioned in the U.S. patent application. As described in the text, in the prior art, various RF bias powers and source powers are generated by separate RF power suppliers. However, the power amplifiers in the RF power source are relatively expensive, and the multiple shackles cause the increase and the ugly ugliness. Thus, according to various aspects of the present invention, the present invention provides an architecture for doing so. Achieving multiple RF power sources can reduce costs and increase system reliability. According to one aspect of the invention, a plurality of radio frequency signal generators, such as crystal oscillators or frequency synthesizers, are employed, and the signals generated from the radio frequency signal generators are synthesized and passed through a wide-band amplifier (e.g., FET). Amplifier) to zoom in. The amplified signal is then transmitted to the appropriate RF system matching network. The controller is used to determine which frequency generator to send, so that the frequency output by the system can be selected, thus saving the number of amplifiers. Briefly, the system of the present invention employs a single RF power generator to provide switchable, multi-frequency RF power. In addition, traditional RF amplifiers require high quality DC power to operate properly. This is a hybrid, a radio frequency release, which can save the cost of using multiple DC power supplies. Figure 3 shows an implementation of a radio frequency 2 rate (miiltiPle-freqUenCy RFpower) using a single RF power source (singleRFp〇wer). In Fig. 3, radio frequency signal generators = 25, 330, and 335 provide radio frequency signals of frequencies ηβ and β, respectively. RF Signals • #U产生斋 325, 33G and 335 can be vibrators (eg crystal oscillators), frequency synthesis ^ ^ m^m^m (Divect digital frequency synthesizer ^ DDS) or phase-locked loop synthesizers ( Phase locked l〇op frequenCy synthesizers) and so on. In an implementation =, fl is set to 2 MHz, β is set to 13 MHz, and β is set to 60 MHz. The outputs of the three $number generators 325, 330 and 335 are then synthesized by synthesizer 355 and sent to a wide-band power amplifier (WBPA) 360. The wideband power amplifier 360 amplifies the synthesized RF signal and outputs a synthesized amplified RF signal having three frequencies, £2, and β. The synthesized amplified RF signal is then utilised by the RF power splitter. The face separator may be a low pass filter 365, a #f pass filter, a wave filter 37G, and a high pass filter pass filter, and then, the output of the same filter, such as Ω, β, and β, is applied to the matching network, respectively. Roads 34, 345 and 35 〇. This way, the system can provide three RF power signals with one amplifier. In use, controller 385 is used to control the firing of radio frequency signal generators 325, 330, and 335. It should be noted that in FIG. 3, three RF signal generators 325, 33A and 335 are used to generate different RF frequencies, respectively, which are merely illustrative for the convenience of the reader. Drawing, it should be understood that it is also possible to generate three or several different ones using only a single RF signal generator (for example, a direct digital synthesizer, or a better single RF signal generator invented in the future). RF frequency, the single RF signal generator is more reliable. It will be appreciated that, in accordance with an embodiment of the present invention, RF signal generators 325 and 330 can be utilized to provide RF bias power, while signal generator 335 is used to provide RF source power. In this configuration of 9 200847855, the controller 385 will excite the signal generator 335 to the desired ion dissociation of the appropriate power. The controller 385 can also excite one or both of the RF signal generators 325 and 330 to be light and sleek. For example, the rider high bombardment energy 385 can only excite the RF signal generator 325, and the controller 385 can only excite the RF signal generator 33A for the % δ in the low bombing month b. This configuration of the vehicle can also be verified (4). The power of the two facets provides power to the system. In this mode, the RF signal generator 325 can be set to 2MHz or 13MKz.

提供偏置功率,而射頻信號產生器330可設為如27MHz,射頻信號產生器 335^可被„又為60MHz,這樣就可提供兩個辭源功率來控制等離子體密度D。 在這種配置方式下,控制器385會激發射頻信號產生器325以提供偏^功 率’並激發射頻信號產生器330和335以提供源功率。 第4 -1圖描述了本發明的一種實施方式,提供一個合成的雙頻射頻系 統以及獨立的高頻功轉1 44圖中,頻率β如傳統上使用的方式運用 傳統的麵信號產生器435連接至傳統的匹配網路上。然而,頻率打 和β是用本發明的一種實施方式來提供的,即用合成器松將射頻信號產 生器425和430的輸出合成,並用寬帶功率放大器46〇放大,隨後用低通 濾波器465和帶通濾波器進行分離。經過放大的射頻信號再輸入匹配 網路440和445。 ,第4-1圖的實施方式可以通過單偏置和雙源頻率來改善現有技術的多 頻率反應腔室。在這-設置中,射頻信號產生器435的頻率β設定為偏置 頻率,如,2MHz。源頻率由射頻信號產生器425和43〇提供,並設定頻率 fl 和 f2,如 27MHz 和 60MHz。 相反地’根據本發明主旨,第4_ι圖所示設置可被用於驅動一個反應腔 至400 ’其中兩個偏置頻率和單個源頻率配合使用。在這種配置方式下,射 頻信號產生器435的頻率β設為源頻率,比如6〇MHz。另一方面,頻率 和f2設定為偏置頻率,比如2MHz* 13MHz。如第3圖所示實施方式一樣, 控制器485控制射頻信號產生器425和430以及射頻信號產生器435的工 作0 第4 2圖描述了第4-1圖所示實施方式的一個變形。第冬2圖的配置與 200847855 第4-1圖很相似,除了添加了切換開關490用以在頻率之間切換。 切換開關490可以是射頻功率真空繼電器(处p〇wer vacuum reiay)或是 二極體(PIN diode)。利用這一配置,所述兩個頻率可用共同的aC/dc功率 源、共同的射頻功率放大器和共同的通信系統來產生,由此降低了成本。The bias power is provided, and the RF signal generator 330 can be set to, for example, 27 MHz, and the RF signal generator 335 can be further 60 MHz, so that two source powers can be provided to control the plasma density D. In the mode, controller 385 will excite RF signal generator 325 to provide bias power and excite RF signal generators 330 and 335 to provide source power. Figure 4-1 depicts an embodiment of the present invention that provides a synthesis In the dual-band RF system and the independent high-frequency power conversion, the frequency β is connected to the conventional matching network using the conventional surface signal generator 435 as conventionally used. However, the frequency hitting and β are used in the present invention. One embodiment provides for synthesizing the outputs of the RF signal generators 425 and 430 with a synthesizer and amplifying them with a wideband power amplifier 46, followed by separation using a low pass filter 465 and a bandpass filter. The RF signals are re-input into matching networks 440 and 445. The embodiment of Figure 4-1 can improve prior art multi-frequency reaction chambers with single bias and dual source frequencies. In this arrangement, the frequency β of the RF signal generator 435 is set to an offset frequency, such as 2 MHz. The source frequency is provided by the RF signal generators 425 and 43A, and sets the frequencies fl and f2, such as 27 MHz and 60 MHz. In accordance with the teachings of the present invention, the arrangement shown in FIG. 4_ι can be used to drive a reaction chamber to 400' in which two bias frequencies are used in conjunction with a single source frequency. In this configuration, the RF signal generator 435 The frequency β is set to the source frequency, such as 6 〇 MHz. On the other hand, the frequency and f2 are set to a bias frequency, such as 2 MHz * 13 MHz. As in the embodiment shown in Fig. 3, the controller 485 controls the RF signal generator 425 and 430 and operation of RF signal generator 435. Figure 4 depicts a variation of the embodiment shown in Figure 4-1. The configuration of Figure 2 is very similar to that of 200847855, Figure 4-1, except that a switch is added. 490 is used to switch between frequencies. The switch 490 can be a radio frequency power vacuum relay (P〇wer vacuum reiay) or a PIN diode. With this configuration, the two frequencies can be used together with a common aC. /dc Rate source, and a common radio frequency power amplifier to generate a common communication system, thereby reducing the cost.

第5圖示出了一種利用單個射頻信號產生器來提供多種頻率的實施方 式。在第5圖中,射頻信號產生器525提供頻率為fl的射頻信號。射頻信 號產生器仍可以與第2圖至第Μ g[中所示的射頻信號產生器相似,例如 -個晶體振盈器、-個頻率合成器,等等。麵信號產生器525的信號經 過刀割邛刀友1供給合成器555,另一部分載入到第一射頻頻率倍頻器或 分頻器530。正如所知那樣,射頻頻率倍頻器或分頻器(Rp multipliers or dividers)是可以產生頻率比相應輸入信號頻率乘上一個預設因 數的輸出信號的設備。射頻頻率倍頻器或分頻器別的輸出信號頻率為β, 其卜部分輸 =給合成H 555,而另-部分輸人到第二射頻頻率倍頻器或分 頻器仍。在這-實施方式中,第二麵頻率倍頻器或分頻^ 535的輸出也 同時輸入到合成H 555中。如第3圖所示實施方式,合成器555的輸出信 號再經過放大和滤波。 可以理解,第5圖所示實施方式可被麟改進現有技術的多種源功率 系統,或用來驅動本發明的多偏置系統。例如,當運行—個具有多個源功 率的配置方式的系統時,信號產生器525可被設為提供一個2ΜΗζ的作號, 第-麵頻率倍頻器或分頻器53()的倍頻係數可設為13,以提 26MHz的第-源輸出’而第二射頻頻率倍頻器或分頻器奶的倍頻係數可 設為2 ’以提供頻率為52mHz的第二源輸出。另一方面,當系統採用雙偏 置功率等離子體反應腔室時,信號產生器525可設為提供—個約為2廳 (精確地,為2.2MHz)的信號,第一射麵率倍頻器或分頻器5 係數可設為6,以提供頻率為13MHz的第二偏置輸出,第二射頻娜、 器或分頻H 535的倍頻係數可設為5,以提供66MHz 。 °、 在第5 _福級聯配置方式中’除非侧鮮倍頻器或分頻器別 同時工作’麵鮮倍頻H或分翻535是猶功的。為了使控制 靈活,系統可設為如第5圖連線595所示的方式。在這種情況下,射麵 11 200847855 率倍頻器或分頻器535可以選擇倍頻由射頻頻率倍頻 置下,儘管_統之射頻信號產生_ 525 担提。供倍頻器535的輸入時,輸出β為165MHz,而當通過連 提供倍頻器535的輸入時’輸出β為33MHz 传 離子體反應腔室500可以具有雙頻偏置功封雔配置方式使传專 雨㈣田—㈣ *雙頻偏置力率和雙頻源功率。當然,如果不 而要使用四個鮮’可以將連線省去而提供三個鮮。 第^圖提供了本發明多頻率系統的又一種實施方式。在第6圖中 號產生器625提供-個鮮為的信號。該信號被载入到倍頻器 或錢^63〇和倍頻器或分頻$ 635上。來自倍頻器或分頻㈣$的作號 m放大器675放大,再通過匹配網路柳載入到等離子體反應腔室u 600上。另-方面’射頻信號產生器必和倍頻器或分頻器咖的輸出在合 Γ合成’並經過寬帶功率放大11 660放大,採用低通滤波器俯 和^慮波=70分離,再通過匹配網路_和祕載入到等離子體反應 腔室600上。這樣,頻率β可以選擇性地是否載入到等離子體反應腔室^ 上’而與頻率fl和β的載入無關。 第7圖提供了本發明中再、一種多頻率系統的實施方式。在第7圖所示 實施方式中,-個射頻信號產生器725提供一個頻率為的信號,再輸入 到合f 755和倍頻器或分頻器73〇。倍頻器或分頻器73〇的信號也提供^ 合成恭755。合成後的信號經過寬帶功率放大器76〇放大,經過放大的信號 再經過低通濾、波器765和帶通濾波器77()分離,通過匹配網路,和745 載入到反應腔室700上。另一方面,還可以利用一個獨立的射頻功率源故 提供第二鮮β ’該功麵可岐_個傳統的射頻功率源。 根據本發明的發明精神’第8圖提供了—種不使用合成器的多頻率系 統的實施方式。在第8圖中,射頻信號產生器825提供一個頻率為的射 頻信號。信號通過切換開目865送給功率放大器855並送給倍頻器或分頻 12 200847855 器830。功率放大器855輪出的經過放大的信號通過匹配網路_輕合 離子^反應腔室,倍頻!|或分頻器_提供—個射頻輸㈣,該射頻輸 出β疋鮮m種倍贼麵。經過錢絲_鶴β通過切換 關870运給功率放大器86〇,該經過放大的輸出信號再通過匹配網路84 接到反應腔室800。此外’射頻功率源835提供另一頻率為β的射頻信穿, 通過匹配網路850送給反應腔室8〇〇。 在此配置方式下,可以將一個、兩個或三個頻率信號送給反應腔 800。例如’射頻信號產生器825可被設置為提供2·2ΜΗζ的射頻信號 倍頻器或分頻器830的倍頻係數設為6,則β為13ΜΗζ。射頻功奶 # =供例如頻率為6〇ΜΗζ的信號。在這種情況下,採用一種雙偏置細 木’其中控制器885可以激發射頻功率源835以提供射頻源功率,並 通切換開關865控制2.2MHz偏置功率,或開通切換開關87〇控制i3MHz 偏置功率,或開通兩個切換開關865和控制Z2顺和i3舰的雙偏 置功率。相反地,為了提供-個雙源頻率反應腔室_,倍頻 ς聚 830的倍頻係數可設為如12,從而得到源頻率的輸出是編舰。、° 所有上述實施方式都可絲㈣轉子體反餘室,錢行具有在第 -偏置頻率(a first bias freqUeney)下工作的第一階段和第二偏置頻率 second bias freqUency)下工作的第二階段的加工技術。例如,反應腔室可工 • 作在較低的偏置頻率(如約2MHZ)來進行主餘刻步驟;然而,為了在過偏丨 時產生侧速度緩慢絲,纽可⑽翻較高的偏置頻率(如約1 枯發明的—種實施方式’第9圖提供了—種_兩個偏置頻 率實現技術的貫施方式。這個技術過程可以是侧一片半導體晶片。在+ 驟S900中,源功率被激發,從而轟擊等離子體。源射頻功率的;;率可以: 如27MHz、60MHz、1()〇應、16〇廳等等。在步驟S91〇中激發^ 頻率偏置功率並將其載入到反應腔室上,以產生解離離子來在第一户理+ 驟(步驟s92〇)中轟擊晶片。當第一處理步驟完成後,進行步驟沾二,ς 第-偏置功轉除,而在轉測巾,紐第二解偏置辨 S950中的第二次處理。在這種情況下,帛一偏置頻率可以是例如細 而第二偏置頻率約為13MHz。 ’ 13 200847855 ★ / 1G圖所示為本發明多頻率系統的再-種實施方式。第1G圖的配置 與第3圖很相似,除了在匹配電路與渡波器之間添加了切換電路綱。請結 合參考第11目,第n圖所示為第1〇圖所示中的切換電路與匹配網^ 340和345的具體電路連接方式。如第u圖所示,切換電路獨包括切換 開關1090和並聯電容(shunt哪純〇1>)1〇42與兩個匹配網路細、泌的 Μ部分相連接,用以實現兩個鮮fj、β之間_換以及棚產生器與 等離子體反應腔室之間的㈣,將射頻功率產生器的功相最小反射功率 的方式傳輸入等離子體反應腔室以及等離子體。在第1〇圖中,通過切換電 路390的作用,可以依等離子體反應時的實際應用或技術步驟的需要,得 ⑩ f不同的頻率組合·· η與β或β與β。在第η圖中…個單—的並聯電 容1042與切換開關109〇相連接。切換開關1〇9〇的每一個輸出腳與匹配網 路340或祕相連接。匹配網路34〇至少包括電容元件膽和電感元件 1062 ;匹配網路345至少包括電容元件1()71和電感元件1()72。兩個匹配電 路的,出可以被連接在一起與等離子體反應腔室3〇〇的下電極训相連 接。,種連接方式是通過切換開_ 1〇9〇和並聯電容1〇42實現的,藉以防 止旎里從斷開的電路(diS_ected circuit)中損失。如第η圖所示,告切換 ,,與網路345相連接時,沒有能量通過網路34G損失,因為^電 容1042是連接在開關輸入端的前端。因此,所有能量都被輸送到等離子體 • 反應腔室3〇0的下電極310。可以理解,該實施方式也可以用於本發明圖式 中的其他實施方式,比如,與第抝圖、第4_2圖、第5圖、第6圖、第7 圖、第8圖相連接。另外,在第1〇圖中,僅是示意性地將切換電路綱連 接於低通濾波器365、帶通濾波器370和匹配網路340、345之間,在本發 明的技術領域内的熟悉本發明的技術人員也可以很容易地想到,切換電路 390也可以選擇性地連接於其他濾波器和匹配電路之間,·或者,切換電路 390也可以變形為匹配電路的一部分。 、 在實際應用中,本發明圖式中的各種溏波器、寬帶功率放大器、人成 器:倍_或分頻II、射頻信號產生器均可以被集成在—個單—的射二產 生器(RF generator)中,因此,本發明可以通過一個單一的射頻產生器產生 多麵率的輸出,並且進-步地,通過麵產生器内部的切換開關或切換 200847855 ‘ 電路的配置’不僅可以共_生肋部工作元件,從而大大節省射頻 產生器’而且可錄據等料肢斜的實際顧雜術轉 選擇性地組合輸出獨的工作頻率組合。因此,與現有技射的—種頻率 由-個獨立的射頻功率源來提供的配置相比,本發明具有較多成本和應用 上的優勢。 此外,本發明圖式中的射頻功率源的各種頻率輸出均連接在等離子體 反應腔^的下電極上’可以理解,本發_射頻功率源的各種頻率輸出也 可以依實際應用需要部分地或全部地連接到等離子體反應腔室的上電極 上,或同時部分地連接至上電極和下電極上。 • 本發蝴式中的_功率源可以運麟各種需要施加射頻功率源的反 2腔室’比如,等離子體反應腔室,可以包括但不限於··等離子體餘刻腔 室_嶋etching reactor)、等離子體增強型化學氣相沉積反應腔室恤疆 chemical VapGr depGSiti⑽臟tar)、等離子體辅助型化學氣相沉積 反應腔至(plasma assisted chemical vapor deposition reactor)。 〜錢,應當理解,此處所述的技術並不與任何特㈣裝置直接相關, =可以用任何合適的元件組合來實現。此外,可崎據本發明所教示的内 容’各種麵的顧H件均可以被顧。也可以製造專⑽撕來實現本 專利所述的方法及步驟,並且具有一定的優勢。本發明是參照具體的實施 • 方式來,述的’其所有方面都應為示意性的解釋而非限定性的。本領域的 ,術人員會思識到,不同的硬體、軟體和固件的組合都可適用于實施本發 明。比如,所述的軟體可以用很多種程式或指令碼語言來描述,比如囊編二 C/C++、perl、sheU、PHP、Java 等等。 以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明之一較佳 實施,而已,當不能限定本發明實施之範圍。即凡依本發明申請範圍所作 之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍内。 15 200847855 【圖式簡單說明】 現有技術中多頻率等離子體反應腔室的示音圖 j 2圖=本發明多頻率等離子體反應腔室的第t 第3圖是一種利用單μ 貫%方式的示意圖。 方式示賴。㈣__她轉的實施 ==二發明中提供-個合成的雙頻射頻一的射頻 =圖描_是採料姆齡舰生跋 =了,率系統的又一種實施方式=施一 =圖k供了本發明多頻率系統的再一種實施方式示意圖。 Γ9圖忾辭纽的—種不個合細的實施方式示意圖。 種實財式制确魅解進行技破理的實施 第10圖所福本發❹頻畅_再—種實施方式示意圖。 第11圖所4第10圖所示中的切換電路與匹配電路的電路連接方式示魚Figure 5 illustrates an implementation that utilizes a single RF signal generator to provide multiple frequencies. In Fig. 5, radio frequency signal generator 525 provides a radio frequency signal of frequency fl. The RF signal generator can still be similar to the RF signal generator shown in Figures 2 through Μ g [, for example, a crystal oscillator, a frequency synthesizer, and the like. The signal of the surface signal generator 525 is supplied to the synthesizer 555 via the knife cutter 1 and the other portion is loaded to the first RF frequency multiplier or frequency divider 530. As is known, RF frequency multipliers or dividers are devices that produce an output signal whose frequency is greater than the frequency of the corresponding input signal by a predetermined factor. The output frequency of the RF frequency multiplier or divider is β, which is part of the input = to the synthesis H 555, and the other part is input to the second RF frequency multiplier or divider. In this embodiment, the output of the second plane frequency multiplier or divider 535 is also simultaneously input to the synthesis H 555. As in the embodiment shown in Figure 3, the output signal of synthesizer 555 is amplified and filtered. It will be appreciated that the embodiment illustrated in Figure 5 can be used to improve a variety of source power systems of the prior art or to drive the multi-bias system of the present invention. For example, when running a system with multiple source power configurations, the signal generator 525 can be set to provide a 2 ΜΗζ number, first-order frequency multiplier or frequency divider 53 () multiplier The coefficient can be set to 13 for a 26 MHz source-source output' and the second RF frequency multiplier or divider milk multiplication factor can be set to 2' to provide a second source output with a frequency of 52 mHz. On the other hand, when the system employs a dual bias power plasma reaction chamber, the signal generator 525 can be set to provide a signal of approximately 2 halls (precisely 2.2 MHz), the first face rate multiplier The divider or divider 5 factor can be set to 6 to provide a second bias output at 13 MHz, and the second RF or multiplexer H 535 can be set to 5 to provide 66 MHz. °, in the 5th _ Cascade configuration mode 'unless the side fresh frequency multiplier or crossover does not work at the same time' face fresh multiplier H or 535 is a gong. In order to make the control flexible, the system can be set as shown in Figure 5, line 595. In this case, the facet 11 200847855 rate multiplier or divider 535 can select the multiplier to be multiplied by the RF frequency, although the RF signal of the system generates _ 525. When the input of the frequency multiplier 535 is input, the output β is 165 MHz, and when the input of the frequency multiplier 535 is supplied through the connection, the output β is 33 MHz. The ion-transfer chamber 500 can have a dual-frequency offset power package configuration. Rainwater (4) Tian—(4) * Dual-frequency bias rate and dual-frequency source power. Of course, if you don't want to use four fresh ones, you can save the connection and provide three fresh ones. Figure 4 provides yet another embodiment of the multi-frequency system of the present invention. In Figure 6, the number generator 625 provides a fresh signal. This signal is loaded into the multiplier or money ^63〇 and the multiplier or on the crossover $ 635. The amplifier from the frequency multiplier or the frequency division (four)$ is amplified by the amplifier 675, and then loaded into the plasma reaction chamber u 600 through the matching network. Another aspect of the 'RF signal generator must be combined with the output of the frequency multiplier or the crossover coffee, and is amplified by broadband power amplification 11 660, using a low-pass filter and a wave of separation = 70, and then passed The matching network _ and the secret are loaded onto the plasma reaction chamber 600. Thus, the frequency β can be selectively loaded onto the plasma reaction chamber irrespective of the loading of the frequencies fl and β. Figure 7 provides an embodiment of a multi-frequency system in accordance with the present invention. In the embodiment shown in Fig. 7, a radio frequency signal generator 725 supplies a signal of a frequency and is input to a f 755 and a frequency multiplier or frequency divider 73 〇. The signal of the frequency multiplier or the frequency divider 73〇 is also provided. The synthesized signal is amplified by a wideband power amplifier 76, and the amplified signal is separated by a low pass filter, a waver 765 and a band pass filter 77 (), passed through a matching network, and loaded onto the reaction chamber 700 by a 745. . On the other hand, it is also possible to use a separate RF power source to provide a second source of fresh RF power. According to the inventive spirit of the present invention, Fig. 8 provides an embodiment of a multi-frequency system that does not use a synthesizer. In Fig. 8, the radio frequency signal generator 825 provides a radio frequency signal of a frequency. The signal is sent to the power amplifier 855 via the switching head 865 and sent to the frequency multiplier or frequency divider 12 200847855 830. The amplified signal from the power amplifier 855 is passed through the matching network _ light-combined ion ^ reaction chamber, multiplier! | or the divider _ provides - a radio frequency (four), the radio frequency output β 疋 fresh m thief face. After passing through the switch 870 to the power amplifier 86, the amplified output signal is coupled to the reaction chamber 800 via the matching network 84. In addition, the RF power source 835 provides another RF signal through which is frequency β, which is supplied to the reaction chamber 8 through the matching network 850. In this configuration, one, two or three frequency signals can be sent to the reaction chamber 800. For example, the RF signal generator 825 can be set to provide a 2:2 射频 RF signal. The frequency multiplier or the frequency divider 830 has a multiplication factor of 6, and β is 13 ΜΗζ. RF function milk # = for signals with a frequency of 6 例如. In this case, a dual-biased fine wood is used in which the controller 885 can excite the RF power source 835 to provide RF source power, and control the 2.2 MHz bias power through the switch 865, or turn on the switch 87 to control the i3 MHz bias. Set the power, or turn on the two switch 865 and control the dual bias power of the Z2 Shun and i3 ships. Conversely, in order to provide a dual source frequency reaction chamber _, the multiplication factor of the frequency multiplication 830 can be set to 12, so that the output of the source frequency is the bank. All of the above embodiments can be used to operate the rotor (4) rotor body inverse chamber, which has a first phase and a second bias frequency (second bias freqUency) operating at a first bias freqUeney The second stage of processing technology. For example, the reaction chamber can be operated at a lower bias frequency (e.g., about 2 MHz) for the main remnant step; however, in order to produce a slow side wire during over-biasing, the button (10) is turned higher. The set frequency (as in the first embodiment of the invention) is shown in Figure 9. The technique for implementing the two bias frequency implementation techniques can be a side semiconductor wafer. In +S900, The source power is excited to bombard the plasma. The source RF power can be: such as 27MHz, 60MHz, 1(), 16〇, etc. The frequency bias power is excited in step S91〇 and Loading into the reaction chamber to generate dissociated ions to bombard the wafer in the first chamber + step (step s92 〇). When the first processing step is completed, the step dip is performed, and the first-bias work is removed. In the case of the test towel, the second second offset is determined by the second processing in S950. In this case, the first bias frequency can be, for example, fine and the second bias frequency is about 13 MHz. ' 13 200847855 ★ / 1G diagram shows a further embodiment of the multi-frequency system of the present invention. The setting is very similar to that of Figure 3, except that a switching circuit is added between the matching circuit and the ferrator. Please refer to the eleventh item, and the nth figure shows the switching circuit and matching network in the first figure. The specific circuit connection mode of 340 and 345. As shown in Fig. u, the switching circuit includes the switch 1090 and the shunt capacitor (shunt which is pure 〇1) 1〇42 and the matching part of the two matching networks. Connection, which is used to realize the exchange between two fresh fj and β, and between the shed generator and the plasma reaction chamber, and transfer the power of the RF power generator to the plasma reaction chamber with minimum reflected power. And the plasma. In the first diagram, by the action of the switching circuit 390, it is possible to obtain different frequency combinations of η and η and β or β and β depending on the actual application or technical procedure at the time of the plasma reaction. In the nth figure, a single-parallel capacitor 1042 is connected to the switching switch 109. Each of the switching pins 1〇9〇 is connected to the matching network 340 or the secret phase. The matching network 34〇 includes at least a capacitor. Component biliary and inductive component 1062; matching The path 345 includes at least a capacitive element 1 () 71 and an inductive element 1 () 72. The two matching circuits can be connected together to connect to the lower electrode of the plasma reaction chamber 3 。. It is realized by switching between _1〇9〇 and shunt capacitor 1〇42 to prevent loss in the circuit (diS_ected circuit). As shown in Figure η, switch, and network 345 When connected, no energy is lost through the network 34G because the capacitor 1042 is connected to the front end of the switch input. Therefore, all energy is delivered to the lower electrode 310 of the plasma reaction chamber 3〇0. It will be understood that this embodiment can also be used in other embodiments of the drawings of the present invention, for example, in connection with the fourth, fourth, fifth, sixth, seventh, and eighth figures. In addition, in the first diagram, only the switching circuit is schematically connected between the low pass filter 365, the band pass filter 370, and the matching networks 340, 345, which is familiar in the technical field of the present invention. It will also be readily apparent to those skilled in the art that switching circuit 390 can also be selectively coupled between other filters and matching circuits. Alternatively, switching circuit 390 can be modified as part of a matching circuit. In practical applications, various choppers, broadband power amplifiers, and human components in the drawings of the present invention: multiple- or cross-over II, RF signal generators can be integrated into a single-shot generator (RF generator), therefore, the present invention can produce a multi-faceted output through a single RF generator, and further, through the switching switch inside the surface generator or switching the configuration of the 200847855 'circuit' _ raw rib working elements, which greatly saves the RF generator's and can be recorded and the like, the actual processing of the limbs is selectively combined to output the unique working frequency combination. Thus, the present invention has many cost and application advantages over prior art configurations where the frequency is provided by a separate RF power source. In addition, the various frequency outputs of the RF power source in the diagram of the present invention are connected to the lower electrode of the plasma reaction chamber. It can be understood that the various frequency outputs of the RF source can also be partially or according to actual application requirements. All are connected to the upper electrode of the plasma reaction chamber, or at the same time partially connected to the upper and lower electrodes. • The _ power source in the hairspring can be used to transport various anti-2 chambers that require the application of RF power sources. For example, the plasma reaction chamber can include, but is not limited to, a plasma residual chamber _嶋etching reactor ), plasma enhanced chemical vapor deposition reaction chamber, chemical VapGr depGSiti (10) dirty tar), plasma assisted chemical vapor deposition reactor (plasma assisted chemical vapor deposition reactor). ~ Money, it should be understood that the techniques described herein are not directly related to any particular device, and = can be implemented with any suitable combination of components. Further, the contents of the various aspects of the contents of the present invention can be taken care of. It is also possible to manufacture a special (10) tear to implement the methods and steps described in this patent, and has certain advantages. The present invention is to be considered as illustrative and not restrictive. Those skilled in the art will recognize that various combinations of hardware, software, and firmware are suitable for practicing the present invention. For example, the software can be described in a variety of programs or script languages, such as the two C/C++, perl, sheU, PHP, Java, and the like. The present invention has been described in detail above, but the foregoing is merely a preferred embodiment of the invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention. 15 200847855 [Simple diagram of the drawing] The sound map j 2 diagram of the multi-frequency plasma reaction chamber in the prior art = the t-th diagram of the multi-frequency plasma reaction chamber of the present invention is a single-% mode schematic diagram. Ways to show it. (4) __ her implementation of the implementation == two inventions provided - a synthetic dual-frequency radio frequency of the radio = map description _ is the mining of the age of the ship 跋 =, another implementation of the rate system = Shi Yi = map k A schematic diagram of yet another embodiment of a multi-frequency system of the present invention. Γ9 图忾忾—The schematic diagram of a different implementation. The implementation of the real financial system is really enchanting and the implementation of the technical breakthrough. Figure 10 is a picture of the implementation of the method. Figure 11 shows the circuit connection between the switching circuit and the matching circuit shown in Figure 10

圖。 W 【主要元件符號說明】 等離子體反應腔室· 上電極...... 下電極·..... 等離子體····· 射頻偏置功率源·· 射頻源功率源··· 射頻信號產生器· · · 倍頻器或分頻器·· 射頻功率源····Figure. W [Description of main component symbols] Plasma reaction chamber · Upper electrode... Lower electrode ·..... Plasma ····· RF bias power source·· RF source power source··· RF signal generator · · · Frequency multiplier or crossover · · RF power source ····

• · · 100,200,400,500,600,700,800 .....1〇5,205,305,405,505,605,705,805 .....11〇,210,31054105510,610,710,810 • · · · 120,220,320,420,520,620,720,820 .........125, 225,255 ........130,135,235 ......325,330,335,435,425,430,525,625,725,825 ........530,535,630,635,730,830 ......735,835 匹配電路.............140,240,245 匹配網路........................... · ....... 145,150,250,340,345,350,44(),445,45(),54(),545,55(),64(),645,69(),74(),745,750,8 16 200847855 40,845,850 合成器· · · ......- ---355,455,555,655/755 寬帶功率放大器············ 360,460,560,660,760 低通濾波器............. 365,465,565,665,765, 帶通濾波器· · · · · ........ 370,470,570,670,770, 功率放大器············· 675,855,860 高通濾波器.............380 控制器.............385,485,585,685,785,885 切換電路··...........390 切換開關·...........· 490,865,870,1090 連線.............590,595 並聯電容.............1042 電容元件············· 1061,1071 電感元件.............1062,1072• · · 100,200,400,500,600,700,800 .....1〇5,205,305,405,505,605,705,805 .....11〇,210,31054105510,610,710,810 • · · · 120,220,320,420,520,620,720,820 .........125, 225,255 ........ 130,135,235 ......325,330,335,435,425,430,525,625,725,825 ........530,535,630,635,730,830 ......735,835 matching circuit.............140,240,245 matching network....... ......................................145,150,250,340,345,350,44(),445,45(),54(),545,55( ),64(),645,69(),74(),745,750,8 16 200847855 40,845,850 Synthesizer · · · ......- ---355,455,555,655/755 Broadband Power Amplifier······· ····· 360,460,560,660,760 Low-pass filter.................. 365,465,565,665,765, bandpass filter · · · · · ........ 370,470,570,670,770, power amplifier···· ········· 675,855,860 High-pass filter.............380 Controller.............385,485,585,685,785,885 Switching circuit··... ........390 Switching Switch·...........· 490,865,870,1090 Connection.............590,595 Shunt Capacitor..... ........1042 Capacitance Element············································

1717

Claims (1)

200847855 十、申請專利範圍: L 一種射頻功率源系統,包括: 輪出具有N個頻率的N個射頻信號的射頻源,其中N是大於i的 整數; 合成該則崎頻信號的賴辨合成器,以細—個合成的射頻 ίσ y 放大該合成的射頻信號的寬帶功率放大器,以提供一個經過放 射頻信號;200847855 X. Patent application scope: L An RF power source system, comprising: an RF source that rotates N radio frequency signals having N frequencies, where N is an integer greater than i; a synthesis synthesizer that synthesizes the sonic frequency signal Amplifying the synthesized radio frequency signal of the broadband power amplifier with a fine-combined radio frequency ίσ y to provide a radio frequency signal; 2. 3. 接收該經過放大的射頻信號的射頻功率分離器,以提供具有n個 頻率的N個經過放大的射頻功率信號。 ’、 如專利範圍第1項所述的射頻功率源系統,進—步包括匹配電路,用 以接收該N値過献的軸辨銶,並_N個經敝大的 功率信號載入到一等離子體反應腔室上。 、 如專利範圍第1項所述的射頻功率勒統,其中所述射頻源包括至少 一個振盪器。 ,其中所述射頻源包括至少 ,其中所述射頻源進一步包 ,進一步包括至少一個切換 頻率中的某一個選擇性地耦 4·如專利範圍第1項所述的射頻功率源系統 一個頻率合成器。2. A radio frequency power splitter that receives the amplified RF signal to provide N amplified RF power signals having n frequencies. ', as in the RF power source system described in the first item of the patent scope, the step further comprises a matching circuit for receiving the axis identification of the N値, and loading the _N large power signals into the first Plasma reaction chamber. The radio frequency power system of claim 1, wherein the radio frequency source comprises at least one oscillator. Wherein the radio frequency source comprises at least, wherein the radio frequency source further comprises, further comprising: one of the at least one switching frequency selectively coupled. 4. The radio frequency power source system of claim 1 of the patent range, a frequency synthesizer . 5·如專利範圍第1項所述的射頻功率源系統 括至少一個倍頻器或分頻器。 6.如專利範圍第2項所述的射頻功率源系統 開關,可將N個頻率中的預先設定的兩個 合到匹配電路。 7·如專利範圍第2項所述的射頻功率源系統,其中所述匹配電路包括若 干個匹配網路,每-個匹配網路設置為接個頻率中的一個。 8·如專利範圍第2項所述的射頻功率源系統,其中N為2,且所述匹配 電路包括至少-娜配網路,設置為可城地接收所述兩個頻率中的 9·如專利範圍第6項所述的射頻功率源系統,進一步包括一個並聯電容 與該切換開關的輸入端相連接。 200847855 ι〇· —種射頻功率源系統,包括: 第一射頻源,輸出具有第一頻率的第一射頻信號; 第二射頻源,輸出具有第二頻率的第二射頻信號; 射頻功率合成器,將第-和第二射頻信號合成,輸出一個合成的射 頻信號; 寬咿放大器,用以放大該合成的射頻信號,以提供一個經過放大 信號; 射頻功率分離器,用以接收該經過放大的信號,並提供第一放大射 頻功率和第二放大射頻功率; 匹配電路,用以接收該第一放大射頻功率和該第二放大射頻功率。 11·如專利範圍第10項所述的射頻功率源系統,其中所述匹配電路包括一 個接收第一放大射頻功率的第一匹配網路,和一個接收第二放大射頻 功率的第二匹配網路。 12.如專利範圍第1〇項所述的射頻功率源系統,其中所述射頻功率分離器 包括至少一個濾波器。 13·如專利範圍第1〇項所述的射頻功率源系統,其中所述射頻功率分離器 包括至少一個低通濾波器和一個帶通濾波器。 Μ·如專利範圍第1〇項所述的射頻功率源系統,其中所述第一射頻源包括 一個頻率合成器。 15·如專利範圍第14項所述的射頻功率源系統,其中所述第二射頻源包括 一個倍頻器或分頻器。 16.如專利範圍第10項所述的射頻功率源系統,進一步包括用以控制激發 所述第一射頻源和第二射頻源的控制器。 17·如專利範圍第10項所述的射頻功率源系統,進一步包括至少一個切換 開關與該射頻功率分離器相連接,該切換開關具有一輸入端接收該經 過放大的信號,並且還包括至少一個並聯電容與該輸入端連接。 18· —種等離子體反應腔室,包括: 真空反應腔室,用來在其中產生等離子體; 射頻功率源,可提供頻率為fl的射頻功率; 200847855 大於=數錢具有N細辨的N個射頻信號 ’其中N是 信號合成該N個射頻信號的射頻功率合成器,以輸出-個合成的射頻 信號放大該合成的射頻信號的寬帶放大器’以提供一個經過放大的射頻 ,接收該、’。過放大的射頻信號的射頻功率分離器,以提供具有N個 頻率的N個經過放大的射頻功率信號; 匹配電路,用轉該辭f!以及制_率巾·少—個頻率的 • 射頻功率耦合到該真空反應腔室中。 I9·如專利範圍第I8項所述的等離子體反應腔室,其中頻率Ω從27麻、 60MHz、100MHz 以及約 160MHz 中選擇。 20. 如專利範圍第18項所述的等離子體反應腔室,其中料2,其中則固 頻率是從約2MHz和約13MHz、約2MHz㈣27MHz,^ i3MHz 和約27MHz中選出的兩個頻率。 21. 如專利範圍第18項所述的等離子體反應腔室,其中n為2,並且其中 射頻源可以是數位合成器、或數位合成器加上倍頻器、或數位合成器 加上分頻器。 口 口 • 22·如專利範圍第18項所述的等離子體反應腔室,進一步包括至少一個切 換開關與該射頻功率分離器相連接,該切換開關具有一輸入端接收該 經過放大的信號,並且還包括至少一個並聯電容與該輸入端連接。 205. The RF power source system of claim 1 includes at least one frequency multiplier or frequency divider. 6. The RF power source system switch according to item 2 of the patent scope can combine two presets of the N frequencies into the matching circuit. 7. The RF power source system of claim 2, wherein the matching circuit comprises a plurality of matching networks, each of the matching networks being set to one of the following frequencies. 8. The radio frequency power source system of claim 2, wherein N is 2, and the matching circuit comprises at least a network, configured to receive 9 of the two frequencies. The RF power source system of claim 6 further comprising a shunt capacitor connected to the input end of the switch. 200847855 ι〇·-A kind of RF power source system, comprising: a first RF source, outputting a first RF signal having a first frequency; a second RF source outputting a second RF signal having a second frequency; a radio frequency power synthesizer, Combining the first and second RF signals to output a synthesized RF signal; a wide chirp amplifier for amplifying the synthesized RF signal to provide an amplified signal; and a RF power splitter for receiving the amplified signal And providing a first amplified RF power and a second amplified RF power; a matching circuit configured to receive the first amplified RF power and the second amplified RF power. 11. The RF power source system of claim 10, wherein the matching circuit comprises a first matching network that receives the first amplified RF power, and a second matching network that receives the second amplified RF power. . 12. The RF power source system of clause 1, wherein the RF power splitter comprises at least one filter. 13. The RF power source system of clause 1, wherein the RF power splitter comprises at least one low pass filter and one band pass filter. The RF power source system of claim 1, wherein the first RF source comprises a frequency synthesizer. The RF power source system of claim 14, wherein the second RF source comprises a frequency multiplier or a frequency divider. 16. The RF power source system of clause 10, further comprising a controller to control excitation of the first RF source and the second RF source. The RF power source system of claim 10, further comprising at least one switch connected to the RF power splitter, the switch having an input receiving the amplified signal and further comprising at least one A shunt capacitor is connected to the input. 18. A plasma reaction chamber comprising: a vacuum reaction chamber for generating a plasma therein; an RF power source for providing RF power at a frequency of fl; 200847855 greater than n counts having N finely defined N A radio frequency signal 'where N is a radio frequency power combiner that synthesizes the N radio frequency signals, and a wideband amplifier that amplifies the synthesized radio frequency signal by outputting a synthesized radio frequency signal to provide an amplified radio frequency to receive the '. An RF power splitter that amplifies the RF signal to provide N amplified RF power signals having N frequencies; a matching circuit that uses the word f! and a frequency of the frequency of the radio frequency power Coupled into the vacuum reaction chamber. I9. The plasma reaction chamber of claim 1, wherein the frequency Ω is selected from the group consisting of 27 hemp, 60 MHz, 100 MHz, and about 160 MHz. 20. The plasma reaction chamber of clause 18, wherein material 2, wherein the solid frequency is two frequencies selected from about 2 MHz and about 13 MHz, about 2 MHz (four) 27 MHz, ^ i3 MHz, and about 27 MHz. 21. The plasma reaction chamber of claim 18, wherein n is 2, and wherein the RF source can be a digital synthesizer, or a digital synthesizer plus a frequency multiplier, or a digital synthesizer plus a frequency division Device. The plasma reaction chamber of claim 18, further comprising at least one switch connected to the RF power splitter, the switch having an input receiving the amplified signal, and Also included is at least one shunt capacitor coupled to the input. 20
TW096118026A 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system TWI383712B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096118026A TWI383712B (en) 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096118026A TWI383712B (en) 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system

Publications (2)

Publication Number Publication Date
TW200847855A true TW200847855A (en) 2008-12-01
TWI383712B TWI383712B (en) 2013-01-21

Family

ID=44823644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096118026A TWI383712B (en) 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system

Country Status (1)

Country Link
TW (1) TWI383712B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681195A (en) * 2012-09-14 2014-03-26 朗姆研究公司 Adjustment of power and frequency based on three or more states
CN107039263A (en) * 2016-02-04 2017-08-11 三星电子株式会社 The method of plasma etching

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649308A (en) * 1993-04-12 1997-07-15 Trw Inc. Multiformat auto-handoff communications handset
US5846883A (en) * 1996-07-10 1998-12-08 Cvc, Inc. Method for multi-zone high-density inductively-coupled plasma generation
WO2001073814A2 (en) * 2000-03-28 2001-10-04 Tokyo Electron Limited Method and apparatus for controlling power delivered to a multiple segment electrode
US6459066B1 (en) * 2000-08-25 2002-10-01 Board Of Regents, The University Of Texas System Transmission line based inductively coupled plasma source with stable impedance
US7298091B2 (en) * 2002-02-01 2007-11-20 The Regents Of The University Of California Matching network for RF plasma source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681195A (en) * 2012-09-14 2014-03-26 朗姆研究公司 Adjustment of power and frequency based on three or more states
CN103681195B (en) * 2012-09-14 2017-03-01 朗姆研究公司 Power based on three or more states and the regulation of frequency
CN107039263A (en) * 2016-02-04 2017-08-11 三星电子株式会社 The method of plasma etching
US11075089B2 (en) 2016-02-04 2021-07-27 Samsung Electronics Co., Ltd. Method of plasma etching and method of fabricating semiconductor device using the same
US11075088B2 (en) 2016-02-04 2021-07-27 Samsung Electronics Co., Ltd. Method of plasma etching and method of fabricating semiconductor device using the same
CN107039263B (en) * 2016-02-04 2021-11-09 三星电子株式会社 Method of plasma etching

Also Published As

Publication number Publication date
TWI383712B (en) 2013-01-21

Similar Documents

Publication Publication Date Title
US7503996B2 (en) Multiple frequency plasma chamber, switchable RF system, and processes using same
US8643281B2 (en) Signal generation system
US7879185B2 (en) Dual frequency RF match
KR101164531B1 (en) A plasma chamber having switchable bias power and a switchable frequency rf match network therefor
CN1305353C (en) High-frequency power source and its control method, and plasma processor
US20150002020A1 (en) Rf/vhf impedance matching, 4 quadrant, dual directional coupler with vrms/irms responding detector circuitry
CN102790588B (en) Low-converter, low-converter IC and the method being used for controlling low-converter
TW200829087A (en) High frequency power source device and supply method of high frequency power
US20210082667A1 (en) Broadband Plasma Processing Systems and Methods
KR20120033239A (en) Single matching network for matching multi-frequency and radio frequency power source system using the same
JP2008544480A5 (en)
US20180138888A1 (en) Bulk acoustic wave resonator and method of manufacturing the same
TW200847855A (en) Radio frequency power source system and the plasma reaction chamber using that radio frequency power source system
CN111524781A (en) High-frequency power supply and plasma processing apparatus
JP4131793B2 (en) High frequency power supply and control method thereof, and plasma processing apparatus
CN107452589A (en) Plasma processing apparatus and method of plasma processing
TWI423737B (en) An RF power source system and a plasma reaction chamber using the RF power source system
CN101896034A (en) Radio frequency power source system and plasma reaction chamber applying same
TWI416995B (en) A plasma processing chamber having a switchable bias frequency, and a switchable matching network
TWI554161B (en) RF matching network and its application of plasma processing chamber
JP7428728B2 (en) Radio frequency generator, plasma processing system, method of operating a radio frequency generator controller, computer program elements, and computer readable medium
TW201136458A (en) Switchable radio frequency power source system
TWI442838B (en) A single matching network, a construction method thereof, and a matching network radio frequency power source system
JPH056799A (en) Rf power supply device for icp
TWI362825B (en) Circuit and method for implementing the third harmonic frequency i/q signal