TWI423737B - An RF power source system and a plasma reaction chamber using the RF power source system - Google Patents

An RF power source system and a plasma reaction chamber using the RF power source system Download PDF

Info

Publication number
TWI423737B
TWI423737B TW099126409A TW99126409A TWI423737B TW I423737 B TWI423737 B TW I423737B TW 099126409 A TW099126409 A TW 099126409A TW 99126409 A TW99126409 A TW 99126409A TW I423737 B TWI423737 B TW I423737B
Authority
TW
Taiwan
Prior art keywords
power
frequency
power source
switch
reaction chamber
Prior art date
Application number
TW099126409A
Other languages
Chinese (zh)
Other versions
TW201116169A (en
Inventor
Tuqiang Ni
Jinyuan Chen
Gerald Z Yin
Qian Xueyu
Hiroshi Iizuka
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Priority to TW099126409A priority Critical patent/TWI423737B/en
Publication of TW201116169A publication Critical patent/TW201116169A/en
Application granted granted Critical
Publication of TWI423737B publication Critical patent/TWI423737B/en

Links

Description

射頻功率源系統及使用該射頻功率源系統的等離子體反應腔室 RF power source system and plasma reaction chamber using the same

本發明提供一種應用於等離子體反應腔室中的射頻功率源系統,特別有關於一種可以產生多種頻率的射頻功率源系統及使用該射頻功率源系統的等離子體反應腔室。 The present invention provides an RF power source system for use in a plasma reaction chamber, and more particularly to an RF power source system that can generate multiple frequencies and a plasma reaction chamber using the RF power source system.

現有技術中已經有使用兩種射頻頻率(雙頻)的等離子體反應腔室。一般來說,雙頻等離子體反應腔室接收的射頻偏置功率(RF bias power)的頻率低於約15MHz,射頻源功率(RF source power)的頻率較高,一般在40-200MHz。射頻偏置功率是指用以控制離子能量和能量分佈的射頻功率,而射頻源功率是指用以控制等離子體中的離子解離(plasma ion dissociation)或等離子體密度(plasma density)的射頻功率。在某些特定應用中,人們運用偏置頻率為2MHz或13MHz、源頻率為27MHz、60MHz、100MHz或更高的頻率在等離子體反應腔室中進行蝕刻技術處理。 Plasma reaction chambers using two RF frequencies (dual frequency) have been used in the prior art. In general, the frequency of the RF bias power received by the dual-frequency plasma reaction chamber is less than about 15 MHz, and the frequency of the RF source power is relatively high, typically 40-200 MHz. The RF bias power refers to the RF power used to control the ion energy and energy distribution, and the RF source power refers to the RF power used to control the ionization dissociation or plasma density in the plasma. In some specific applications, etching techniques are performed in a plasma reaction chamber using a frequency of 2 MHz or 13 MHz, a source frequency of 27 MHz, 60 MHz, 100 MHz or higher.

最近有人提出了一種讓等離子體反應腔室工作在一個偏置頻率和兩個源頻率下的方式。例如,有人提出讓等離子體蝕刻反應腔室工作在2MHz偏置頻率和27MHz和60MHz兩個源頻率下。在這種方式下,不同類型的離子的解離可以通過兩個源射頻(source RF)的功率加以控制。但是,在現有技術中的這些應用,每種頻率都是通過一個獨立的射頻功率源(或射頻功率產生器)來提供的。比如,若等離子體蝕刻反應腔室需要工作在三種頻率下,則現有技術的反應腔室就必須提供三台獨立工作的射頻功率源來滿足工作需要。眾所周知,射頻功率源的費用非常昂貴,大大地增加了使用者的使用成本。欲獲得進一步的資訊,請參看美國專利號6,281,469和7,144,521,以及美國申請專利公開號2005/0264218。 A method has recently been proposed to operate the plasma reaction chamber at a bias frequency and two source frequencies. For example, it has been proposed to have a plasma etch reaction chamber operating at a 2 MHz bias frequency and two source frequencies of 27 MHz and 60 MHz. In this way, the dissociation of different types of ions can be controlled by the power of two source RFs. However, in these applications in the prior art, each frequency is provided by a separate RF power source (or RF power generator). For example, if the plasma etching reaction chamber needs to operate at three frequencies, the prior art reaction chamber must provide three independently operating RF power sources to meet the operational needs. As is known, the cost of the RF power source is very expensive, which greatly increases the user's use cost. For further information, see U.S. Patent Nos. 6,281,469 and 7,144,521, and U.S. Patent Application Publication No. 2005/0264218.

在等離子體反應腔室實際工作過程中,有時需要反應腔室同時工作在2MHZ偏置頻率和60MHZ的源頻率下;而有時又需要反應腔室同時工作在13MHZ偏置頻率和60MHZ的源頻率下。現有技術的做法是給等離子體反應腔室提供三台獨立的射頻功率源(或射頻功率產生器),通過分別控制每 一個獨立的射頻功率源來提供不同的頻率組合。但這種設計價格昂貴且設備占地體積大。 During the actual operation of the plasma reaction chamber, it is sometimes necessary to operate the reaction chamber at a bias frequency of 2 MHz and a source frequency of 60 MHz. Sometimes, the reaction chamber is required to operate at a bias frequency of 13 MHz and a source of 60 MHz. Under the frequency. The prior art practice is to provide three independent RF power sources (or RF power generators) to the plasma reaction chamber, respectively, by controlling each An independent RF power source provides different frequency combinations. However, this design is expensive and the equipment is bulky.

本發明的目的在於提供一種運用於等離子體反應腔室上的可以產生多種頻率的射頻功率源,其可以大大節省使用者的成本,並且可靠性高。 It is an object of the present invention to provide an RF power source that can be used in a plasma reaction chamber that can generate a variety of frequencies, which can greatly reduce the cost of the user and is highly reliable.

本發明的另一目的在於提供一種運用於等離子體反應腔室上的具有可切換的多種頻率的射頻功率源系統,其不僅可以大大節省使用者的成本、可靠性高,而且可以通過切換射頻,使等離子體反應腔室能夠選擇性地選擇工作頻率,滿足不同的應用(different applications)或技術步驟(recipe steps)。 Another object of the present invention is to provide a radio frequency power source system with switchable multiple frequencies applied to a plasma reaction chamber, which can not only greatly save the user's cost, high reliability, but also can switch radio frequency. The plasma reaction chamber is enabled to selectively select operating frequencies to meet different applications or recipe steps.

本發明是通過以下技術方法實現的:一種射頻功率源系統,包括:輸出具有N個頻率的N個射頻信號的射頻源,其中N是大於1的整數;合成該N個射頻信號的射頻功率合成器,以輸出一個合成的射頻信號;放大該合成的射頻信號的寬帶放大器,以提供一個經過放大的射頻信號;接收該經過放大的射頻信號的射頻功率分離器,以提供具有N個頻率的N個經過放大的射頻功率信號。 The present invention is implemented by the following technical method: a radio frequency power source system, comprising: an RF source outputting N radio frequency signals having N frequencies, wherein N is an integer greater than 1; and synthesizing radio frequency power of the N radio frequency signals And outputting a synthesized radio frequency signal; amplifying the wideband amplifier of the synthesized radio frequency signal to provide an amplified radio frequency signal; and receiving the amplified radio frequency signal of the radio frequency power splitter to provide N having N frequencies An amplified RF power signal.

一種射頻功率源系統,包括:第一射頻源,輸出具有第一頻率的第一射頻信號;第二射頻源,輸出具有第二頻率的第二射頻信號;射頻功率合成器,將第一和第二射頻信號合成,輸出一個合成的射頻信號;寬帶放大器,用以放大該合成的射頻信號,以提供一個經過放大的信號;射頻功率分離器,用以接收該經過放大的信號,並提供第一放大射頻功率和第二放大射頻功率;匹配電路,用以接收該第一放大射頻功率和該第二放大射頻功率。 An RF power source system includes: a first RF source that outputs a first RF signal having a first frequency; a second RF source that outputs a second RF signal having a second frequency; and a RF power combiner that will first and a radio frequency signal synthesis, outputting a synthesized radio frequency signal; a wideband amplifier for amplifying the synthesized radio frequency signal to provide an amplified signal; and a radio frequency power splitter for receiving the amplified signal and providing the first Amplifying the RF power and the second amplifying the RF power; the matching circuit is configured to receive the first amplified RF power and the second amplified RF power.

一種等離子體反應腔室,包括:真空反應腔室,用來在其中產生等離子體;射頻功率源,可提供頻率為f1的射頻功率;射頻源,可以輸出具有N個不同頻率的N個射頻信號,其中N是大於1的整數;合成該N個射頻信號的射頻功率合成器,以輸出一個合成的射頻信號;放大該合成的射頻信號的寬帶放大器,以提供一個經過放大的射頻信號;接收該經過放大的 射頻信號的射頻功率分離器,以提供具有N個頻率的N個經過放大的射頻功率信號;匹配電路,用以將該頻率f1以及該N個頻率中的至少一個頻率的射頻功率耦合到該真空反應腔室中。 A plasma reaction chamber includes: a vacuum reaction chamber for generating a plasma therein; an RF power source for providing RF power at a frequency of f1; and an RF source for outputting N RF signals having N different frequencies Where N is an integer greater than one; a radio frequency power combiner that synthesizes the N radio frequency signals to output a synthesized radio frequency signal; a wideband amplifier that amplifies the synthesized radio frequency signal to provide an amplified radio frequency signal; Enlarged a radio frequency power splitter for radio frequency signals to provide N amplified radio frequency power signals having N frequencies; a matching circuit for coupling the frequency f1 and radio frequency power of at least one of the N frequencies to the vacuum In the reaction chamber.

本發明的不同方面提供了具有單個頻率源射頻功率和雙頻射頻偏置功率的等離子體反應腔室。利用該發明系統,離子的轟擊能量以及能量分佈可以通過兩個不同的頻率來控制。例如,若需要高轟擊能量,反應腔室可用2MHz射頻偏置功率驅動,而需要較柔和的離子轟擊時,反應腔室可工作於13MHz射頻偏置功率下。當然,反應腔室也可同時載入相同或不同功率級別的兩種射頻偏置。 Different aspects of the invention provide a plasma reaction chamber having a single frequency source RF power and a dual frequency RF bias power. With the inventive system, the bombardment energy and energy distribution of the ions can be controlled by two different frequencies. For example, if high bombardment energy is required, the reaction chamber can be driven with 2MHz RF bias power, while the softer ion bombardment requires the reaction chamber to operate at 13MHz RF bias power. Of course, the reaction chamber can also simultaneously load two RF offsets of the same or different power levels.

作為本發明的其它方面,提供一個射頻功率源,可以實現可切換的多種頻率的射頻功率。該系統採用頻率合成或射頻信號振盪器方式產生N個射頻信號,並通過寬帶功率放大器將該N個射頻信號功率加以放大,隨後分離該經過放大的信號。於是系統的輸出是具有多種頻率的射頻功率。這些頻率是可以切換的,這樣使用者就可以選擇系統所輸出的頻率。 As a further aspect of the invention, a radio frequency power source is provided that enables switching of a plurality of frequencies of radio frequency power. The system generates N radio frequency signals by means of a frequency synthesis or radio frequency signal oscillator, and amplifies the N radio frequency signal powers through a wideband power amplifier, and then separates the amplified signals. The output of the system is then RF power with multiple frequencies. These frequencies are switchable so that the user can select the frequency that the system outputs.

第1圖是現有技術中的多頻率等離子體反應腔室的示意圖,其連接有一個射頻偏置功率源或射頻偏置功率產生器(one RF bias power generator)和兩個源射頻功率源或源射頻功率產生器(two source RF power generators)。具體而言,第1圖所示的等離子體反應腔室(以下或有簡稱反應腔室)100具有一個上電極105、下電極110和在兩個電極之間產生的等離子體120。通常,上電極105一般嵌設於反應腔室100頂蓋上,而下電極110一般嵌設于下方的陰極元件上,所述陰極元件上用於放置待處理的半導體產品,如,半導體晶片。如第1圖中所示,射頻偏置功率源125通過匹配電路140為反應腔室100提供射頻功率。射頻偏置頻率為f1,一般為2MHz或約13MHz(更精確地,是13.56MHz),一般載入到下電極110上。第1圖同時示出了兩個射頻源功率源130和135,工作頻率分別為f2和f3。比如,f2可設為27MHz,f3可設為60MHz。所述射頻源功率源130和135分別通過匹配網路145和150向反應腔室100提供功率。射頻功率源可以載入到下電極 110或上電極105上。需要注意的是,在本發明中的所有的圖示中,所有匹配網路的輸出都被表示為合成到一個指向反應腔室中的箭頭,這是一種示意性的表示,用於包括所有通過匹配網路到等離子體的耦合,無論是通過下電極、頂蓋上的電極、或是通過感性耦合線圈等等耦合的都被包括在內。例如,偏置功率可以通過下電極耦合,而源功率可以通過氣體噴頭中的電極或電感線圈耦合。相反地,偏置功率和源功率也可以通過下電極耦合。 Figure 1 is a schematic diagram of a prior art multi-frequency plasma reaction chamber coupled to a RF bias power source or one RF bias power generator and two source RF power sources or sources Two source RF power generators. Specifically, the plasma reaction chamber (hereinafter referred to as the reaction chamber) 100 shown in FIG. 1 has one upper electrode 105, a lower electrode 110, and a plasma 120 generated between the two electrodes. Generally, the upper electrode 105 is generally embedded in the top cover of the reaction chamber 100, and the lower electrode 110 is generally embedded on the lower cathode element for placing a semiconductor product to be processed, such as a semiconductor wafer. As shown in FIG. 1, the RF bias power source 125 provides RF power to the reaction chamber 100 through the matching circuit 140. The RF bias frequency is f1, typically 2 MHz or about 13 MHz (more precisely, 13.56 MHz), and is typically loaded onto the lower electrode 110. Figure 1 also shows two RF source power sources 130 and 135 operating at f2 and f3, respectively. For example, f2 can be set to 27MHz and f3 can be set to 60MHz. The RF source power sources 130 and 135 provide power to the reaction chamber 100 through matching networks 145 and 150, respectively. RF power source can be loaded to the lower electrode 110 or upper electrode 105. It should be noted that in all of the illustrations in the present invention, the output of all matching networks is represented as being synthesized into an arrow pointing into the reaction chamber, which is a schematic representation for including all passes. The matching network to plasma coupling, whether coupled through the lower electrode, the electrode on the top cover, or through an inductively coupled coil or the like, is included. For example, the bias power can be coupled through the lower electrode and the source power can be coupled through an electrode or an inductive coil in the gas jet. Conversely, the bias power and source power can also be coupled through the lower electrode.

第2圖是本發明第一種實施方式多頻率等離子體反應腔室的示意圖,它具有兩個射頻偏置功率產生器和一個射頻源功率產生器。圖中,兩個射頻偏置功率源225和255分別通過匹配電路240和245向反應腔室200提供射頻偏置功率。射頻偏置頻率為f1,其中心頻率一般是2MHz,而射頻偏置頻率f2的中心頻率一般為13MHz。兩個射頻偏置一般都載入到下電極210上。這樣,就可以實現改進的離子能量以及能量分佈的控制。例如,對於需要較高的轟擊能量的場合下,例如前端蝕刻應用,可使用2MHz功率源,而對於需要較柔和的轟擊能量的場合下,例如後端蝕刻應用,則採用13MHz。第2圖同時示出了一個射頻源功率源235,工作頻率為f3,如27MHz、60MHz、100MHz等等。射頻源功率源235通過匹配網路250直接送入至反應腔室200。功率源可以載入到下電極210或上電極205上。功率源被用來控制等離子體220密度,即,等離子體220的離子解離。 Figure 2 is a schematic illustration of a multi-frequency plasma reaction chamber of the first embodiment of the present invention having two RF bias power generators and a RF source power generator. In the figure, two RF bias power sources 225 and 255 provide RF bias power to the reaction chamber 200 via matching circuits 240 and 245, respectively. The RF bias frequency is f1, its center frequency is generally 2MHz, and the center frequency of the RF offset frequency f2 is generally 13MHz. Both RF offsets are typically loaded onto the lower electrode 210. In this way, improved ion energy and control of energy distribution can be achieved. For example, where high bombardment energy is required, such as front end etching applications, a 2 MHz power source can be used, while for applications requiring softer bombardment energy, such as back end etching applications, 13 MHz is used. Figure 2 also shows an RF source power source 235 operating at f3, such as 27 MHz, 60 MHz, 100 MHz, and the like. The RF source power source 235 is fed directly into the reaction chamber 200 through the matching network 250. The power source can be loaded onto the lower electrode 210 or the upper electrode 205. A power source is used to control the density of the plasma 220, i.e., the ion dissociation of the plasma 220.

在本發明中,採用匹配電路240,245來將射頻功率耦合到反應腔室200中。該匹配電路240,245一般可以包括若干個匹配網路,並且任何合適的匹配網路都可以使用。然而,為了獲得較好的使用效果以及實現不同功率源之間至少15db以上功率的相互隔離,推薦採用申請人擁有的專利申請序號為11/350,022、申請日為2006年2月8日的美國專利申請中提及的匹配網路。 In the present invention, matching circuits 240, 245 are employed to couple the RF power into the reaction chamber 200. The matching circuits 240, 245 can generally include a number of matching networks, and any suitable matching network can be used. However, in order to obtain better use effects and achieve mutual isolation of power of at least 15 db between different power sources, it is recommended to use the patent application number 11/350,022 owned by the applicant and the US patent dated February 8, 2006. The matching network mentioned in the application.

如前文所述,在現有技術中,各種射頻偏置功率和源功率是通過獨立的射頻功率源產生(separate RF power suppliers)的。然而,射頻功率源中的功率放大器相對昂貴,並且多個射頻功率源造成製造成本升高和可靠性降低的問題,由此,根據本發明的不同方面,本發明提供一種改進的架構, 實現產生多種射頻功率源,可以降低成本,並提高系統的可靠性。 As described above, in the prior art, various RF bias powers and source powers are generated by separate RF power suppliers. However, power amplifiers in RF power sources are relatively expensive, and multiple RF power sources cause problems with increased manufacturing costs and reduced reliability, and thus, in accordance with various aspects of the present invention, the present invention provides an improved architecture, Achieving multiple RF power sources can reduce costs and increase system reliability.

根據本發明的一個方面,採用多個射頻信號產生器,例如晶體振盪器或頻率合成器,從這些射頻信號產生器產生的信號經過合成再通過寬帶放大器(wide-band amplifier,如,FET放大器)進行放大。經過放大的信號再經過分離並送入適當的射頻系統匹配網路。控制器用來決定激發哪一個頻率信號產生器,於是就可以選擇系統所輸出的頻率,這樣就節省了放大器的數量。簡而言之,本發明的系統採用單個射頻功率產生器來提供可切換的、多種頻率的射頻功率。此外,傳統的射頻放大器需要高品質的直流電源才能正常地工作。而本發明僅使用一個射頻放大器,可以節省由於使用多個直流電源而帶來的開支。 According to one aspect of the invention, a plurality of radio frequency signal generators, such as crystal oscillators or frequency synthesizers, are employed, and the signals generated from the radio frequency signal generators are synthesized and passed through a wide-band amplifier (e.g., FET amplifier). Zoom in. The amplified signal is then separated and sent to the appropriate RF system matching network. The controller is used to determine which frequency signal generator to activate, so the frequency output by the system can be selected, thus saving the number of amplifiers. In short, the system of the present invention employs a single RF power generator to provide switchable, multi-frequency RF power. In addition, traditional RF amplifiers require high quality DC power supplies to function properly. However, the present invention uses only one radio frequency amplifier, which can save expenses due to the use of multiple DC power sources.

第3圖顯示了一種採用單射頻功率源(single RF power)提供多種頻率的射頻功率(multiple-frequency RF power)的實施方式。在第3圖中,射頻信號產生器325、330和335分別提供頻率為f1、f2和f3的射頻信號。射頻信號產生器325、330和335可以是振盪器(比如,晶體振盪器)、頻率合成器,比如,直接式數位頻率合成器(Direct digital frequency synthesizer,DDS)或鎖相環合成器(Phase locked loop frequency synthesizers)等等。在一種實施方式中,f1設置為2MHz,f2設置為13MHz,而f3設置為60MHz。三個信號產生器325、330和335的輸出隨後由合成器355進行合成,再送給寬帶功率放大器(wide-band power amplifier,WBPA)360。寬帶功率放大器360將合成的射頻信號放大,並輸出一個合成的經過放大的具有三個頻率f1、f2和f3的射頻信號。該合成的經過放大的射頻信號隨後利用射頻功率分離器得出不同的頻率輸出。所述射頻功率分離器可以是低通濾波器365、帶通濾波器370和高通濾波器380濾波,接著,不同濾波器的輸出,比如f1、f2和f3,分別施加到匹配網路340、345和350。這樣,只要使用一個放大器,系統就可以提供三路射頻功率信號。在使用時,控制器385用來控制射頻信號產生器325、330和335的激發。需要說明的是,在第3圖中,示出了三個射頻信號產生器325、330和335用於分別產生不同的射頻頻率,這僅是為了便於閱讀人員的理解而作出的示意性的繪圖,應當理解, 也可以僅採用單個的射頻信號產生器(比如,直接式數位頻率合成器,或未來發明出的更佳的單個的射頻信號產生器)就可以產生三個或若干個不同的射頻頻率,採用該單個的射頻信號產生器可靠性更高。 Figure 3 shows an implementation of multiple-frequency RF power using a single RF power source. In Fig. 3, radio frequency signal generators 325, 330, and 335 provide radio frequency signals of frequencies f1, f2, and f3, respectively. The RF signal generators 325, 330, and 335 may be an oscillator (such as a crystal oscillator), a frequency synthesizer, such as a Direct Digital Frequency Synthesizer (DDS) or a phase locked loop synthesizer (Phase locked). Loop frequency synthesizers) and so on. In one embodiment, f1 is set to 2 MHz, f2 is set to 13 MHz, and f3 is set to 60 MHz. The outputs of the three signal generators 325, 330 and 335 are then combined by a synthesizer 355 and sent to a wide-band power amplifier (WBPA) 360. The wideband power amplifier 360 amplifies the synthesized radio frequency signal and outputs a synthesized amplified radio frequency signal having three frequencies f1, f2, and f3. The synthesized amplified RF signal is then used to derive different frequency outputs using a RF power splitter. The RF power splitter may be a low pass filter 365, a band pass filter 370, and a high pass filter 380, and then the outputs of the different filters, such as f1, f2, and f3, are applied to the matching networks 340, 345, respectively. And 350. In this way, the system can provide three RF power signals with one amplifier. In use, controller 385 is used to control the firing of radio frequency signal generators 325, 330, and 335. It should be noted that in FIG. 3, three radio frequency signal generators 325, 330 and 335 are shown for respectively generating different radio frequency frequencies, which is only for the convenience of reading by the reader. Should understand that It is also possible to generate three or several different RF frequencies using only a single RF signal generator (for example, a direct digital synthesizer, or a better single RF signal generator invented in the future). A single RF signal generator is more reliable.

可以理解,根據本發明的一種實施方式,可以運用射頻信號產生器325和330來提供射頻偏置功率,而信號產生器335用來提供射頻源功率。在這種配置下,控制器385會激發信號產生器335至合適的功率來產生所期望的離子解離。控制器385還可以激發射頻信號產生器325和330中的一個或兩個來獲得所期望的離子轟擊能量。例如,對於需要得到高轟擊能量的場合,控制器385可以只激發射頻信號產生器325,而對於需要得到低轟擊能量的場合,控制器385可以只激發射頻信號產生器330。 It will be appreciated that, in accordance with an embodiment of the present invention, RF signal generators 325 and 330 can be utilized to provide RF bias power, while signal generator 335 is used to provide RF source power. In this configuration, controller 385 will activate signal generator 335 to the appropriate power to produce the desired ion dissociation. Controller 385 can also excite one or both of radio frequency signal generators 325 and 330 to achieve the desired ion bombardment energy. For example, for applications where high bombardment energy is required, the controller 385 can only excite the RF signal generator 325, and for applications where low bombardment energy is required, the controller 385 can only excite the RF signal generator 330.

另一方面,這一配置也可以用於使用兩個射頻源功率為系統提供功率。在這種配置方式下,射頻信號產生器325可設為如2MHz或13MHz來提供偏置功率,而射頻信號產生器330可設為如27MHz,射頻信號產生器335可被設為60MHz,這樣就可提供兩個頻率源功率來控制等離子體密度。在這種配置方式下,控制器385會激發射頻信號產生器325以提供偏置功率,並激發射頻信號產生器330和335以提供源功率。 On the other hand, this configuration can also be used to power the system using two RF source powers. In this configuration, the RF signal generator 325 can be set to provide bias power such as 2 MHz or 13 MHz, and the RF signal generator 330 can be set to 27 MHz, and the RF signal generator 335 can be set to 60 MHz. Two frequency source powers can be provided to control the plasma density. In this configuration, controller 385 will activate RF signal generator 325 to provide bias power and excite RF signal generators 330 and 335 to provide source power.

第4-1圖描述了本發明的一種實施方式,提供一個合成的雙頻射頻系統以及獨立的高頻功率源。第4-1圖中,頻率f3如傳統上使用的方式運用傳統的射頻信號產生器435連接至傳統的匹配網路450上。然而,頻率f1和f2是用本發明的一種實施方式來提供的,即用合成器455將射頻信號產生器425和430的輸出合成,並用寬帶功率放大器460放大,隨後用低通濾波器465和帶通濾波器470進行分離。經過放大的射頻信號再輸入匹配網路440和445。 Figure 4-1 depicts an embodiment of the present invention providing a composite dual frequency radio frequency system and an independent high frequency power source. In Figure 4-1, frequency f3 is coupled to conventional matching network 450 using conventional RF signal generator 435 as is conventionally used. However, the frequencies f1 and f2 are provided by an embodiment of the present invention in which the outputs of the radio frequency signal generators 425 and 430 are synthesized by a synthesizer 455 and amplified by a wideband power amplifier 460, followed by a low pass filter 465 and The band pass filter 470 performs separation. The amplified RF signal is then input to matching networks 440 and 445.

第4-1圖的實施方式可以通過單偏置和雙源頻率來改善現有技術的多頻率反應腔室。在這一設置中,射頻信號產生器435的頻率f3設定為偏置頻率,如,2MHz。源頻率由射頻信號產生器425和430提供,並設定頻率f1和f2,如27MHz和60MHz。 Embodiments of Figures 4-1 can improve prior art multi-frequency reaction chambers with single bias and dual source frequencies. In this arrangement, the frequency f3 of the radio frequency signal generator 435 is set to an offset frequency, for example, 2 MHz. The source frequency is provided by radio frequency signal generators 425 and 430 and sets frequencies f1 and f2, such as 27 MHz and 60 MHz.

相反地,根據本發明主旨,第4-1圖所示設置可被用於驅動一個反應腔 室400,其中兩個偏置頻率和單個源頻率配合使用。在這種配置方式下,射頻信號產生器435的頻率f3設為源頻率,比如60MHz。另一方面,頻率f1和f2設定為偏置頻率,比如2MHz和13MHz。如第3圖所示實施方式一樣,控制器485控制射頻信號產生器425和430以及射頻信號產生器435的工作。 Conversely, in accordance with the teachings of the present invention, the arrangement shown in Figure 4-1 can be used to drive a reaction chamber Room 400, in which two bias frequencies are used in conjunction with a single source frequency. In this configuration, the frequency f3 of the RF signal generator 435 is set to the source frequency, such as 60 MHz. On the other hand, the frequencies f1 and f2 are set to offset frequencies such as 2 MHz and 13 MHz. Controller 485 controls the operation of radio frequency signal generators 425 and 430 and radio frequency signal generator 435 as in the embodiment shown in FIG.

第4-2圖描述了第4-1圖所示實施方式的一個變形。第4-2圖的配置與第4-1圖很相似,除了添加了切換開關490用以在頻率f1和f2之間切換。切換開關490可以是射頻功率真空繼電器(RF power vacuum relay)或是PIN二極體(PIN diode)。利用這一配置,所述兩個頻率可用共同的AC/DC功率源、共同的射頻功率放大器和共同的通信系統來產生,由此降低了成本。 Figure 4-2 depicts a variation of the embodiment shown in Figure 4-1. The configuration of Fig. 4-2 is very similar to that of Fig. 4-1 except that a changeover switch 490 is added for switching between frequencies f1 and f2. The switch 490 can be a RF power vacuum relay or a PIN diode. With this configuration, the two frequencies can be generated with a common AC/DC power source, a common radio frequency power amplifier, and a common communication system, thereby reducing cost.

第5圖示出了一種利用單個射頻信號產生器來提供多種頻率的實施方式。在第5圖中,射頻信號產生器525提供頻率為f1的射頻信號。射頻信號產生器525可以與第2圖至第4-2圖中所示的射頻信號產生器相似,例如一個晶體振盪器、一個頻率合成器,等等。射頻信號產生器525的信號經過分割,一部分提供給合成器555,另一部分載入到第一射頻頻率倍頻器或分頻器530。正如所知那樣,射頻頻率倍頻器或分頻器(RF frequency multipliers or dividers)是可以產生頻率比相應輸入信號頻率乘上一個預設因數的輸出信號的設備。射頻頻率倍頻器或分頻器530的輸出信號頻率為f2,其中一部分輸入給合成器555,而另一部分輸入到第二射頻頻率倍頻器或分頻器535。在這一實施方式中,第二射頻頻率倍頻器或分頻器535的輸出也同時輸入到合成器555中。如第3圖所示實施方式,合成器555的輸出信號再經過放大和濾波。 Figure 5 illustrates an embodiment that utilizes a single RF signal generator to provide multiple frequencies. In Fig. 5, the radio frequency signal generator 525 provides a radio frequency signal of frequency f1. The RF signal generator 525 can be similar to the RF signal generator shown in Figures 2 through 4-2, such as a crystal oscillator, a frequency synthesizer, and the like. The signal of the RF signal generator 525 is split, a portion is supplied to the synthesizer 555, and another portion is loaded to the first RF frequency multiplier or frequency divider 530. As is known, RF frequency multipliers or dividers are devices that can produce an output signal having a frequency that is multiplied by a predetermined factor by the frequency of the corresponding input signal. The output frequency of the RF frequency multiplier or divider 530 is f2, with a portion being input to the synthesizer 555 and another portion being input to the second RF frequency multiplier or divider 535. In this embodiment, the output of the second RF frequency multiplier or divider 535 is also simultaneously input to the synthesizer 555. As in the embodiment shown in Figure 3, the output signal of synthesizer 555 is amplified and filtered.

可以理解,第5圖所示實施方式可被用於改進現有技術的多種源功率系統,或用來驅動本發明的多偏置系統。例如,當運行一個具有多個源功率的配置方式的系統時,信號產生器525可被設為提供一個2MHz的信號,第一射頻頻率倍頻器或分頻器530的倍頻係數可設為13,以提供頻率為26MHz的第一源輸出,而第二射頻頻率倍頻器或分頻器535的倍頻係數可設為2,以提供頻率為52MHz的第二源輸出。另一方面,當系統採用雙偏 置功率等離子體反應腔室時,信號產生器525可設為提供一個約為2MHz(精確地,為2.2MHz)的信號,第一射頻頻率倍頻器或分頻器530的倍頻係數可設為6,以提供頻率為13MHz的第二偏置輸出,第二射頻頻率倍頻器或分頻器535的倍頻係數可設為5,以提供66MHz的源輸出。 It will be appreciated that the embodiment of Figure 5 can be used to improve a variety of source power systems of the prior art or to drive the multi-bias system of the present invention. For example, when running a system with multiple source power configurations, the signal generator 525 can be set to provide a 2 MHz signal, and the first RF frequency multiplier or frequency divider 530 can be set to a multiplication factor. 13, to provide a first source output at a frequency of 26 MHz, and the second RF frequency multiplier or divider 535 can have a multiplication factor of 2 to provide a second source output at a frequency of 52 MHz. On the other hand, when the system adopts double bias When the power plasma reaction chamber is placed, the signal generator 525 can be set to provide a signal of about 2 MHz (accurately, 2.2 MHz), and the multiplication factor of the first RF frequency multiplier or frequency divider 530 can be set. 6 to provide a second bias output with a frequency of 13 MHz, the second RF frequency multiplier or divider 535 can be set to a multiplication factor of 5 to provide a 66 MHz source output.

在第5圖所示的級聯配置方式中,除非射頻頻率倍頻器或分頻器530同時工作,射頻頻率倍頻器或分頻器535是不能工作的。為了使控制更為靈活,系統可設為如第5圖連線595所示的方式。在這種情況下,射頻頻率倍頻器或分頻器535可以選擇倍頻由射頻頻率倍頻器或分頻器530接收到的頻率為f2的信號,或由射頻信號產生器525接收到的頻率為f1的信號。在此配置下,儘管射頻系統之射頻信號產生器525在工作時須一直開啟,但倍頻器或分頻器530和535中的一個或兩個可以開或關。例如,假設射頻信號產生器525工作在2.2MHz頻率下,射頻頻率倍頻器或分頻器530的倍頻係數設為6,倍頻器535的倍頻係數設為15。那麼,當通過連線590提供倍頻器535的輸入時,輸出f3為165MHz,而當通過連線595提供倍頻器535的輸入時,輸出f3為33MHz。於是,這一配置方式使得等離子體反應腔室500可以具有雙頻偏置功率和雙頻源功率。當然,如果不需要使用四個頻率,可以將連線590省去而提供三個頻率。 In the cascade configuration shown in Figure 5, the RF frequency multiplier or divider 535 is inoperable unless the RF frequency multiplier or divider 530 is operating at the same time. In order to make the control more flexible, the system can be set as shown in Figure 5, line 595. In this case, the RF frequency multiplier or frequency divider 535 can select a frequency doubled signal received by the RF frequency multiplier or frequency divider 530, or received by the RF signal generator 525. A signal with a frequency of f1. In this configuration, although the RF signal generator 525 of the radio frequency system must be always on during operation, one or both of the frequency multipliers or frequency dividers 530 and 535 can be turned "on" or "off". For example, assuming that the RF signal generator 525 operates at a frequency of 2.2 MHz, the multiplication factor of the RF frequency multiplier or divider 530 is set to 6, and the multiplication factor of the frequency multiplier 535 is set to 15. Then, when the input of the frequency multiplier 535 is supplied through the connection 590, the output f3 is 165 MHz, and when the input of the frequency multiplier 535 is supplied through the connection 595, the output f3 is 33 MHz. Thus, this configuration allows the plasma reaction chamber 500 to have dual frequency bias power and dual frequency source power. Of course, if four frequencies are not required, the line 590 can be omitted to provide three frequencies.

第6圖提供了本發明多頻率系統的又一種實施方式。在第6圖中,單個射頻信號產生器625提供一個頻率為f1的信號。該信號被載入到倍頻器或分頻器630和倍頻器或分頻器635上。來自倍頻器或分頻器635的信號經過功率放大器675放大,再通過匹配網路690載入到等離子體反應腔室600上。另一方面,射頻信號產生器625和倍頻器或分頻器630的輸出在合成器655中合成,並經過寬帶功率放大器660放大,採用低通濾波器665和帶通濾波器670分離,再通過匹配網路640和645載入到等離子體反應腔室600上。這樣,頻率f2可以選擇性地是否載入到等離子體反應腔室600上,而與頻率f1和f3的載入無關。 Figure 6 provides yet another embodiment of the multi-frequency system of the present invention. In Figure 6, a single RF signal generator 625 provides a signal at frequency f1. This signal is loaded onto a frequency multiplier or divider 630 and a frequency multiplier or divider 635. The signal from the frequency multiplier or divider 635 is amplified by a power amplifier 675 and loaded onto the plasma reaction chamber 600 via a matching network 690. On the other hand, the outputs of the RF signal generator 625 and the frequency multiplier or frequency divider 630 are combined in a synthesizer 655 and amplified by a wideband power amplifier 660, separated by a low pass filter 665 and a band pass filter 670, and then separated. Loaded into the plasma reaction chamber 600 through matching networks 640 and 645. Thus, the frequency f2 can be selectively loaded onto the plasma reaction chamber 600 regardless of the loading of the frequencies f1 and f3.

第7圖提供了本發明中再一種多頻率系統的實施方式。在第7圖所示實施方式中,一個射頻信號產生器725提供一個頻率為f1的信號,再輸入 到合成器755和倍頻器或分頻器730。倍頻器或分頻器730的信號也提供給合成器755。合成後的信號經過寬帶功率放大器760放大,經過放大的信號再經過低通濾波器765和帶通濾波器770分離,通過匹配網路740和745載入到反應腔室700上。另一方面,還可以利用一個獨立的射頻功率源735提供第三頻率f3,該功率源可以是一個傳統的射頻功率源。 Figure 7 provides an embodiment of yet another multi-frequency system of the present invention. In the embodiment shown in Figure 7, an RF signal generator 725 provides a signal of frequency f1 and then inputs To synthesizer 755 and frequency multiplier or divider 730. The signal from the frequency multiplier or divider 730 is also provided to the synthesizer 755. The synthesized signal is amplified by a wideband power amplifier 760, and the amplified signal is separated by a low pass filter 765 and a band pass filter 770, and loaded into the reaction chamber 700 through matching networks 740 and 745. Alternatively, a third RF frequency source 735 can be utilized to provide a third frequency f3, which can be a conventional RF power source.

根據本發明的發明精神,第8圖提供了一種不使用合成器的多頻率系統的實施方式。在第8圖中,射頻信號產生器825提供一個頻率為f1的射頻信號。信號通過切換開關865送給功率放大器855並送給倍頻器或分頻器830。功率放大器855輸出的經過放大的信號通過匹配網路840耦合到等離子體反應腔室800。倍頻器或分頻器830提供一個射頻輸出f2,該射頻輸出f2是頻率f1的一種倍頻或分頻。經過倍頻或分頻的信號f2通過切換開關870送給功率放大器860,該經過放大的輸出信號再通過匹配網路845連接到反應腔室800。此外,射頻功率源835提供另一頻率為f3的射頻信號,通過匹配網路850送給反應腔室800。 In accordance with the inventive spirit of the present invention, FIG. 8 provides an embodiment of a multi-frequency system that does not use a synthesizer. In Fig. 8, the RF signal generator 825 provides a radio frequency signal of frequency f1. The signal is supplied to power amplifier 855 via switch 865 and to a frequency multiplier or divider 830. The amplified signal output by power amplifier 855 is coupled to plasma reaction chamber 800 through matching network 840. The frequency multiplier or frequency divider 830 provides a radio frequency output f2 which is a frequency multiplication or frequency division of the frequency f1. The multiplied or divided signal f2 is supplied to the power amplifier 860 via a switch 870, which is coupled to the reaction chamber 800 via a matching network 845. In addition, RF power source 835 provides another RF signal at frequency f3 that is sent to reaction chamber 800 via matching network 850.

在此配置方式下,可以將一個、兩個或三個頻率信號送給反應腔室800。例如,射頻信號產生器825可被設置為提供2.2MHz的射頻信號,若倍頻器或分頻器830的倍頻係數設為6,則f2為13MHz。射頻功率源835可提供例如頻率為60MHz的信號。在這種情況下,採用一種雙偏置(dual bias)架構,其中控制器885可以激發射頻功率源835以提供射頻源功率,並開通切換開關865控制2.2MHz偏置功率,或開通切換開關870控制13MHz偏置功率,或開通兩個切換開關865和870控制2.2MHz和13MHz的雙偏置功率。相反地,為了提供一個雙源頻率反應腔室800,倍頻器或分頻器830的倍頻係數可設為如12,從而得到源頻率的輸出是26.4MHz。 In this configuration, one, two or three frequency signals can be sent to the reaction chamber 800. For example, the RF signal generator 825 can be configured to provide a 2.2 MHz RF signal. If the multiplier of the frequency multiplier or divider 830 is set to 6, then f2 is 13 MHz. The RF power source 835 can provide, for example, a signal having a frequency of 60 MHz. In this case, a dual bias architecture is employed in which the controller 885 can excite the RF power source 835 to provide RF source power and turn on the diverter switch 865 to control 2.2 MHz bias power or turn on the diverter switch 870. Control 13MHz bias power, or turn on two switches 865 and 870 to control dual bias power of 2.2MHz and 13MHz. Conversely, to provide a dual source frequency reaction chamber 800, the multiplier of the frequency multiplier or divider 830 can be set to 12, such that the output of the source frequency is 26.4 MHz.

所有上述實施方式都可用來控制等離子體反應腔室,以進行具有在第一偏置頻率(a first bias frequency)下工作的第一階段和第二偏置頻率(a second bias frequency)下工作的第二階段的加工技術。例如,反應腔室可工作在較低的偏置頻率(如約2MHZ)來進行主蝕刻步驟;然而,為了在過蝕刻時產生蝕刻速度緩慢效果,系統可以切換到較高的偏置頻率(如約13MHz) 下工作。根據本發明的一種實施方式,第9圖提供了一種採用兩個偏置頻率實現技術的實施方式。這個技術過程可以是蝕刻一片半導體晶片。在步驟S900中,源功率被激發,從而轟擊等離子體。源射頻功率的頻率可以是如27MHz、60MHz、100MHz、160MHz等等。在步驟S910中,激發第一頻率偏置功率並將其載入到反應腔室上,以產生解離離子來在第一處理步驟(步驟S920)中轟擊晶片。當第一處理步驟完成後,進行步驟S930,將第一偏置功率解除,而在步驟S940中,激發第二頻率偏置功率以進行步驟S950中的第二次處理。在這種情況下,第一偏置頻率可以是例如2MHZ,而第二偏置頻率約為13MHz。 All of the above embodiments can be used to control the plasma reaction chamber for operation with a first phase and a second bias frequency operating at a first bias frequency (a first bias frequency) The second stage of processing technology. For example, the reaction chamber can operate at a lower bias frequency (eg, about 2 MHz) for the main etch step; however, to produce a slow etch rate effect during overetching, the system can switch to a higher bias frequency (eg, About 13MHz) Work under. In accordance with an embodiment of the present invention, FIG. 9 provides an embodiment in which the techniques are implemented using two bias frequencies. This technical process can be to etch a piece of semiconductor wafer. In step S900, the source power is excited to bombard the plasma. The frequency of the source RF power can be, for example, 27 MHz, 60 MHz, 100 MHz, 160 MHz, and the like. In step S910, the first frequency bias power is excited and loaded onto the reaction chamber to generate dissociated ions to bombard the wafer in a first processing step (step S920). When the first processing step is completed, step S930 is performed to cancel the first bias power, and in step S940, the second frequency offset power is excited to perform the second processing in step S950. In this case, the first bias frequency may be, for example, 2 MHz and the second bias frequency is about 13 MHz.

第10圖所示為本發明多頻率系統的再一種實施方式。第10圖的配置與第3圖很相似,除了在匹配電路與濾波器之間添加了切換電路390。請結合參考第11圖,第11圖所示為第10圖所示中的切換電路390與匹配網路340和345的具體電路連接方式。如第11圖所示,切換電路390包括切換開關1090和一並聯電容(shunt capacitor)1042與兩個匹配網路340、345的串聯部分相連接,用以實現兩個頻率f1、f2之間的切換以及射頻產生器與等離子體反應腔室之間的匹配,將射頻功率產生器的功率以最小反射功率的方式傳輸入等離子體反應腔室以及等離子體。在第10圖中,通過切換電路390的作用,可以依等離子體反應時的實際應用或技術步驟的需要,得出不同的頻率組合:f1與f3或f2與f3。在第11圖中,一個單一的並聯電容1042與切換開關1090相連接。切換開關1090的每一個輸出腳與匹配網路340或345相連接。匹配網路340至少包括電容元件1061和電感元件1062;匹配網路345至少包括電容元件1071和電感元件1072。兩個匹配電路的輸出可以被連接在一起與等離子體反應腔室300的下電極310相連接。這種連接方式是通過切換開關1090和並聯電容1042實現的,藉以防止能量從斷開的電路(disconnected circuit)中損失。如第11圖所示,當切換開關1090與網路345相連接時,沒有能量通過網路340損失,因為並聯電容1042是連接在開關輸入端的前端。因此,所有能量都被輸送到等離子體反應腔室300的下電極310。可以理解,該實施方式也可以用於本發明圖式 中的其他實施方式,比如,與第4-1圖、第4-2圖、第5圖、第6圖、第7圖、第8圖相連接。另外,在第10圖中,僅是示意性地將切換電路390連接於低通濾波器365、帶通濾波器370和匹配網路340、345之間,在本發明的技術領域內的熟悉本發明的技術人員也可以很容易地想到,切換電路390也可以選擇性地連接於其他濾波器和匹配電路之間;或者,切換電路390也可以變形為匹配電路的一部分。 Figure 10 is a diagram showing still another embodiment of the multi-frequency system of the present invention. The configuration of Fig. 10 is very similar to that of Fig. 3 except that a switching circuit 390 is added between the matching circuit and the filter. Referring to FIG. 11 together, FIG. 11 shows the specific circuit connection mode of the switching circuit 390 and the matching networks 340 and 345 shown in FIG. As shown in FIG. 11, the switching circuit 390 includes a diverter switch 1090 and a shunt capacitor 1042 coupled to a series of two matching networks 340, 345 for achieving a frequency between two frequencies f1, f2. The switching and the matching between the RF generator and the plasma reaction chamber transfer the power of the RF power generator into the plasma reaction chamber and the plasma with minimal reflected power. In Fig. 10, by the action of the switching circuit 390, different frequency combinations can be derived depending on the actual application of the plasma reaction or the technical steps: f1 and f3 or f2 and f3. In Fig. 11, a single shunt capacitor 1042 is coupled to the diverter switch 1090. Each of the output pins of the diverter switch 1090 is coupled to a matching network 340 or 345. The matching network 340 includes at least a capacitive element 1061 and an inductive element 1062; the matching network 345 includes at least a capacitive element 1071 and an inductive element 1072. The outputs of the two matching circuits can be connected together to be connected to the lower electrode 310 of the plasma reaction chamber 300. This type of connection is achieved by switching switch 1090 and shunt capacitor 1042 to prevent energy loss from the disconnected circuit. As shown in FIG. 11, when the switch 1090 is connected to the network 345, no energy is lost through the network 340 because the shunt capacitor 1042 is connected to the front end of the switch input. Therefore, all of the energy is delivered to the lower electrode 310 of the plasma reaction chamber 300. It can be understood that this embodiment can also be used in the drawing of the present invention. Other embodiments are connected to, for example, Figures 4-1, 4-2, 5, 6, 7, and 8. In addition, in FIG. 10, only the switching circuit 390 is schematically connected between the low pass filter 365, the band pass filter 370, and the matching networks 340, 345, which is familiar in the technical field of the present invention. It will also be readily apparent to those skilled in the art that switching circuit 390 can also be selectively coupled between other filters and matching circuits; alternatively, switching circuit 390 can be modified to be part of a matching circuit.

在實際應用中,本發明圖式中的各種濾波器、寬帶功率放大器、合成器、倍頻器或分頻器、射頻信號產生器均可以被集成在一個單一的射頻產生器(RF generator)中,因此,本發明可以通過一個單一的射頻產生器產生多種頻率的輸出,並且進一步地,通過射頻產生器內部的切換開關或切換電路的配置,不僅可以共用射頻產生器內部工作元件,從而大大節省射頻產生器,而且可以根據等離子體反應時的實際應用或技術步驟的需要,有選擇性地組合輸出不同的工作頻率組合。因此,與現有技術中的一種頻率由一個獨立的射頻功率源來提供的配置相比,本發明具有較多成本和應用上的優勢。 In practical applications, various filters, wideband power amplifiers, synthesizers, frequency multipliers or frequency dividers, and RF signal generators in the drawings of the present invention can be integrated into a single RF generator. Therefore, the present invention can generate multiple frequency outputs through a single RF generator, and further, through the configuration of the switching switch or the switching circuit inside the RF generator, not only the internal working elements of the RF generator can be shared, thereby greatly saving The RF generator can selectively combine and output different operating frequency combinations according to the actual application or technical steps of the plasma reaction. Therefore, the present invention has more cost and application advantages than a configuration in the prior art in which the frequency is provided by an independent RF power source.

此外,本發明圖式中的射頻功率源的各種頻率輸出均連接在等離子體反應腔室的下電極上,可以理解,本發明的射頻功率源的各種頻率輸出也可以依實際應用需要部分地或全部地連接到等離子體反應腔室的上電極上,或同時部分地連接至上電極和下電極上。 In addition, the various frequency outputs of the RF power source in the diagram of the present invention are connected to the lower electrode of the plasma reaction chamber. It can be understood that the various frequency outputs of the RF power source of the present invention may also be partially or according to actual application requirements. All are connected to the upper electrode of the plasma reaction chamber, or at the same time partially connected to the upper and lower electrodes.

本發明圖式中的射頻功率源可以運用於各種需要施加射頻功率源的反應腔室,比如,等離子體反應腔室,可以包括但不限於:等離子體蝕刻腔室(plasma etching reactor)、等離子體增強型化學氣相沉積反應腔室(plasma enhanced chemical vapor deposition reactor)、等離子體輔助型化學氣相沉積反應腔室(plasma assisted chemical vapor deposition reactor)。 The RF power source in the drawings of the present invention can be applied to various reaction chambers that need to apply a RF power source, such as a plasma reaction chamber, which may include, but is not limited to, a plasma etching chamber, a plasma. A plasma enhanced chemical vapor deposition reactor or a plasma assisted chemical vapor deposition reactor.

最後,應當理解,此處所述的技術並不與任何特定的裝置直接相關,它可以用任何合適的元件組合來實現。此外,可以根據本發明所教示的內容,各種類型的通用器件均可以被應用。也可以製造專門的器材來實現本專利所述的方法及步驟,並且具有一定的優勢。本發明是參照具體的實施 方式來描述的,其所有方面都應為示意性的解釋而非限定性的。本領域的技術人員會意識到,不同的硬體、軟體和固件的組合都可適用于實施本發明。比如,所述的軟體可以用很多種程式或指令碼語言來描述,比如彙編、C/C++、perl、shell、PHP、Java等等。 Finally, it should be understood that the techniques described herein are not directly related to any particular device, and that it can be implemented in any suitable combination of components. Moreover, various types of general purpose devices can be applied in accordance with the teachings of the present invention. Specialized equipment can also be manufactured to implement the methods and steps described in this patent, and has certain advantages. The present invention refers to a specific implementation All aspects are to be construed as illustrative and not restrictive. Those skilled in the art will appreciate that different combinations of hardware, software, and firmware are suitable for use in practicing the present invention. For example, the software can be described in a variety of programs or script languages, such as assembly, C/C++, perl, shell, PHP, Java, and the like.

以上已將本發明做一詳細說明,惟以上所述者,僅為本發明之一較佳實施例而已,當不能限定本發明實施之範圍。即凡依本發明申請範圍所作之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍內。 The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

100,200,400,500,600,700,800‧‧‧等離子體反應腔室 100,200,400,500,600,700,800‧‧‧ plasma reaction chamber

105,205,305,405,505,605,705,805‧‧‧上電極 105,205,305,405,505,605,705,805‧‧‧ upper electrode

110,210,310,410,510,610,710,810‧‧‧下電極 110,210,310,410,510,610,710,810‧‧‧ lower electrode

120,220,320,420,520,620,720,820‧‧‧等離子體 120,220,320,420,520,620,720,820‧‧‧ Plasma

125,225,255‧‧‧射頻偏置功率源 125,225,255‧‧‧RF bias power source

130,135,235‧‧‧射頻源功率源 130,135,235‧‧‧RF source power source

325,330,335,435,425,430,525,625,725,825‧‧‧射頻信號產生器 325,330,335,435,425,430,525,625,725,825‧‧‧RF signal generator

530,535,630,635,730,830‧‧‧倍頻器或分頻器 530,535,630,635,730,830‧‧‧Multiplier or crossover

735,835‧‧‧射頻功率源 735,835‧‧‧RF power source

140,240,245‧‧‧匹配電路 140,240,245‧‧‧matching circuit

145,150,250,340,345,350,440,445,450,540,545,550,640,645,690,740,745,750,840,845,850‧‧‧匹配網路 145,150,250,340,345,350,440,445,450,540,545,550,640,645,690,740,745,750,840,845,850‧‧‧match network

355,455,555,655,755‧‧‧合成器 355,455,555,655,755‧‧‧ synthesizer

360,460,560,660,760‧‧‧寬帶功率放大器 360,460,560,660,760‧‧‧Broadband Power Amplifier

365,465,565,665,765‧‧‧低通濾波器 365,465,565,665,765‧‧‧ low pass filter

370,470,570,670,770‧‧‧帶通濾波器 370,470,570,670,770‧‧‧ bandpass filter

675,855,860‧‧‧功率放大器 675,855,860‧‧‧Power Amplifier

380‧‧‧高通濾波器 380‧‧‧High-pass filter

385,485,585,685,785,885‧‧‧控制器 385, 485, 585, 685, 785, 885 ‧ ‧ controller

390‧‧‧切換電路 390‧‧‧Switching circuit

490,865,870,1090‧‧‧切換開關 490, 865, 870, 1090‧‧‧ switch

590,595‧‧‧連線 590,595‧‧‧Connect

1042‧‧‧並聯電容 1042‧‧‧Shut capacitor

1061,1071‧‧‧電容元件 1061,1071‧‧‧Capacitive components

1062,1072‧‧‧電感元件 1062, 1072‧‧‧Inductive components

第1圖是現有技術中多頻率等離子體反應腔室的示意圖。 Figure 1 is a schematic illustration of a prior art multi-frequency plasma reaction chamber.

第2圖是本發明多頻率等離子體反應腔室的第一種實施方式的示意圖。 Figure 2 is a schematic illustration of a first embodiment of a multi-frequency plasma reaction chamber of the present invention.

第3圖是一種利用單射頻功率源提供可切換的多種頻率的射頻功率的實施方式示意圖。 Figure 3 is a schematic diagram of an embodiment of a single RF power source that provides switchable RF power at multiple frequencies.

第4-1圖和第4-2圖是本發明中提供一個合成的雙頻射頻系統和獨立的射頻功率源的實施方式示意圖。 Figures 4-1 and 4-2 are schematic views of an embodiment of a composite dual frequency radio frequency system and a separate RF power source provided in the present invention.

第5圖描繪的是採用單個射頻信號產生器提供多種頻率的實施方式示意圖。 Figure 5 depicts a schematic diagram of an embodiment that provides multiple frequencies using a single RF signal generator.

第6圖提供了本發明多頻率系統的又一種實施方式示意圖。 Figure 6 provides a schematic diagram of yet another embodiment of the multi-frequency system of the present invention.

第7圖提供了本發明多頻率系統的再一種實施方式示意圖。 Figure 7 provides a schematic diagram of still another embodiment of the multi-frequency system of the present invention.

第8圖提供了本發明中多頻率系統的一種不使用合成器的實施方式示意圖。 Figure 8 provides a schematic diagram of an embodiment of a multi-frequency system of the present invention that does not use a synthesizer.

第9圖是根據本發明一種實施方式採用兩個偏置頻率進行技術處理的實施方式示意圖。 Figure 9 is a schematic illustration of an embodiment of a technical process using two bias frequencies in accordance with one embodiment of the present invention.

第10圖所示為本發明多頻率系統的再一種實施方式示意圖。 Figure 10 is a schematic view showing still another embodiment of the multi-frequency system of the present invention.

第11圖所示為第10圖所示中的切換電路與匹配電路的電路連接方式示意圖。 Fig. 11 is a view showing the circuit connection mode of the switching circuit and the matching circuit shown in Fig. 10.

Claims (20)

一種射頻功率源系統,其用於給等離子體反應腔室的電極提供可切換的射頻頻率,包括:複數射頻源,提供至少兩不同頻率的射頻信號;切換開關,電性連接射頻源且具有兩輸出腳;兩匹配網路,該兩匹配網路一端分別連接切換開關的兩輸出腳,另端連接電極,且兩匹配網路被調諧工作兩不同頻率;並聯電容,連接於大地與所述切換開關之間。 An RF power source system for providing a switchable RF frequency to an electrode of a plasma reaction chamber, comprising: a plurality of RF sources providing at least two RF signals of different frequencies; a switch, electrically connecting the RF source and having two Output pin; two matching networks, one end of the two matching networks are respectively connected to the two output pins of the switch, the other end is connected to the electrode, and the two matching networks are tuned to work two different frequencies; the parallel capacitor is connected to the earth and the switch Between the switches. 如申請專利範圍第1項所述的射頻功率源系統,其中該並聯電容為可變的並聯電容。 The RF power source system of claim 1, wherein the shunt capacitor is a variable shunt capacitor. 如申請專利範圍第1項所述的射頻功率源系統,其中該兩匹配網路分別包括電容元件和電感元件。 The RF power source system of claim 1, wherein the two matching networks respectively comprise a capacitive element and an inductive element. 如申請專利範圍第1項所述的射頻功率源系統,其中該電極為該等離子體反應腔室的上電極或下電極。 The RF power source system of claim 1, wherein the electrode is an upper electrode or a lower electrode of the plasma reaction chamber. 如申請專利範圍第1項所述的射頻功率源系統,其中該射頻功率源包括相互連接的射頻信號發生器、合成器以及寬頻功率放大器。 The RF power source system of claim 1, wherein the RF power source comprises an interconnected RF signal generator, a synthesizer, and a broadband power amplifier. 如申請專利範圍第5項所述的射頻功率源系統,其中該射頻功率源進一步包括一倍頻器或分頻器與所述射頻信號發生器連接。 The RF power source system of claim 5, wherein the RF power source further comprises a frequency multiplier or a frequency divider coupled to the RF signal generator. 如申請專利範圍第5項所述的射頻功率源系統,其中該射頻信號發生器包括振盪器或直接式數位頻率合成器或鎖相環合成器。 The RF power source system of claim 5, wherein the RF signal generator comprises an oscillator or a direct digital synthesizer or a phase locked loop synthesizer. 如申請專利範圍第1項所述的射頻功率源系統,其中該射頻功率源為一單個射頻信號發生器。 The RF power source system of claim 1, wherein the RF power source is a single RF signal generator. 如申請專利範圍第8項所述的射頻功率源系統,其中該單個射頻信號發生器為直接式數位頻率合成器,用以輸出若干個不同的射頻頻率。 The RF power source system of claim 8, wherein the single RF signal generator is a direct digital synthesizer for outputting a plurality of different RF frequencies. 如申請專利範圍第1項所述的射頻功率源系統,其中該切換開關是射頻功率真空繼電器或PIN二極體。 The RF power source system of claim 1, wherein the switch is a radio frequency power vacuum relay or a PIN diode. 一種射頻功率源系統,用於給等離子體反應腔室提供可切換的射頻頻率,包括:兩射頻功率產生器,分別提供頻率為f1與f2的射頻功率信號;切換開關,與該兩射頻功率產生器相連接,並提供對頻率f1和f2之間的切換;兩匹配網路,分別連接該切換開關,且包括一電容元件和一電感元件;控制器,與該切換開關相連接,以決定該切換開關導通其一匹配網路。 An RF power source system for providing a switchable RF frequency to a plasma reaction chamber, comprising: two RF power generators for respectively providing RF power signals of frequencies f1 and f2; a switch, and the two RF power generation The devices are connected and provide switching between the frequencies f1 and f2; the two matching networks are respectively connected to the switch, and include a capacitive element and an inductive element; and a controller is connected to the switch to determine the The switch turns on a matching network. 如申請專利範圍第11項所述的射頻功率源系統,其中更包括一並聯電容與所述切換開關相連接。 The RF power source system of claim 11, further comprising a shunt capacitor connected to the switch. 如申請專利範圍第11項所述的射頻功率源系統,其中該匹配網路進一步與該等離子體反應腔室的一電極相連接。 The RF power source system of claim 11, wherein the matching network is further coupled to an electrode of the plasma reaction chamber. 如申請專利範圍第11項所述的射頻功率源系統,其中頻率f1和f2由一共同的AC/DC功率源產生。 The RF power source system of claim 11, wherein the frequencies f1 and f2 are generated by a common AC/DC power source. 如申請專利範圍第11項所述的射頻功率源系統,其中更包括一共同的射頻功率放大器來放大所述頻率f1和f2。 The RF power source system of claim 11, further comprising a common RF power amplifier for amplifying the frequencies f1 and f2. 如申請專利範圍第11項所述的射頻功率源系統,其中更包括提供頻率為f3射頻功率信號的射頻功率發生器,亦對應連接有另一匹配網路。 The RF power source system of claim 11, further comprising a radio frequency power generator that provides a frequency of f3 radio frequency power signal, and another matching network is also connected. 一種等離子體反應腔室系統,包括:上電極;與該上電極相對設置的下電極;三射頻功率產生器,分別提供具有頻率為f1、f2、f3的射頻功率信號;切換開關,與提供頻率f1、f2射頻功率信號的兩射頻功率產生器相連接,並提供對頻率f1和f2的切換; 三匹配網路,其中兩匹配網路與該切換開關和該下電極相連接,且與該切換開關連接的該兩匹配網路分別包括一電容元件和一電感元件,而未與該切換開關連接的另一匹配網路則連接提供頻率f3射頻功率信號的射頻功率產生器,並連接其中一電極;控制器,與該切換開關相連接,以決定該切換開關導通與該切換開關連接的該兩匹配網路的其中之一。 A plasma reaction chamber system includes: an upper electrode; a lower electrode disposed opposite to the upper electrode; and three RF power generators respectively providing RF power signals having frequencies f1, f2, and f3; switching switches, and providing frequencies The two RF power generators of the f1 and f2 RF power signals are connected and provide switching of the frequencies f1 and f2; a three-matching network, wherein two matching networks are connected to the switching switch and the lower electrode, and the two matching networks connected to the switching switch respectively comprise a capacitive component and an inductive component, and are not connected to the switching switch Another matching network is connected to the RF power generator that provides the frequency f3 RF power signal, and is connected to one of the electrodes; the controller is connected to the switch to determine that the switch is turned on and the two connected to the switch Match one of the networks. 如申請專利範圍第17項所述的等離子體反應腔室系統,其中更包括一連接切換開關的並聯電容。 The plasma reaction chamber system of claim 17, further comprising a parallel capacitor connected to the switch. 如申請專利範圍第17項所述的等離子體反應腔室系統,其中更包括一合成器,該合成器連接提供頻率f1、f2射頻功率信號的兩射頻功率產生器與該切換開關。 The plasma reaction chamber system of claim 17, further comprising a synthesizer coupled to the two RF power generators for providing RF power signals of frequencies f1 and f2 and the switch. 如申請專利範圍第19項所述的等離子體反應腔室系統,其中更包括一寬頻功率放大器與該合成器、該切換開關相連接。 The plasma reaction chamber system of claim 19, further comprising a broadband power amplifier coupled to the synthesizer and the switch.
TW099126409A 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system TWI423737B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099126409A TWI423737B (en) 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099126409A TWI423737B (en) 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system

Publications (2)

Publication Number Publication Date
TW201116169A TW201116169A (en) 2011-05-01
TWI423737B true TWI423737B (en) 2014-01-11

Family

ID=44934703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099126409A TWI423737B (en) 2007-05-22 2007-05-22 An RF power source system and a plasma reaction chamber using the RF power source system

Country Status (1)

Country Link
TW (1) TWI423737B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106234557A (en) * 2016-10-10 2016-12-21 成都沃特塞恩电子技术有限公司 A kind of radio frequency power source and radio frequency thawing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649308A (en) * 1993-04-12 1997-07-15 Trw Inc. Multiformat auto-handoff communications handset
TW363332B (en) * 1996-07-10 1999-07-01 Cvc Products Inc Apparatus and method for multi-zone high-density inductively-coupled plasma generation
US20030052085A1 (en) * 2000-03-28 2003-03-20 Richard Parsons Control of power delivered to a multiple segment inject electrode
TW536437B (en) * 2000-08-25 2003-06-11 Univ Texas Transmission line based inductively coupled plasma source with stable impedance
US20030146803A1 (en) * 2002-02-01 2003-08-07 Pickard Daniel S. Matching network for RF plasma source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649308A (en) * 1993-04-12 1997-07-15 Trw Inc. Multiformat auto-handoff communications handset
TW363332B (en) * 1996-07-10 1999-07-01 Cvc Products Inc Apparatus and method for multi-zone high-density inductively-coupled plasma generation
US20030052085A1 (en) * 2000-03-28 2003-03-20 Richard Parsons Control of power delivered to a multiple segment inject electrode
TW536437B (en) * 2000-08-25 2003-06-11 Univ Texas Transmission line based inductively coupled plasma source with stable impedance
US20030146803A1 (en) * 2002-02-01 2003-08-07 Pickard Daniel S. Matching network for RF plasma source

Also Published As

Publication number Publication date
TW201116169A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
US7503996B2 (en) Multiple frequency plasma chamber, switchable RF system, and processes using same
US7879185B2 (en) Dual frequency RF match
WO2003055286A1 (en) High-frequency power source and its control method, and plasma processor
US8643281B2 (en) Signal generation system
JP2012074361A (en) Single matching network for multi frequency matching, its construction method, and rf power supplier system using matching network
KR101164531B1 (en) A plasma chamber having switchable bias power and a switchable frequency rf match network therefor
TWI383712B (en) An RF power source system and a plasma reaction chamber using the RF power source system
TWI423737B (en) An RF power source system and a plasma reaction chamber using the RF power source system
CN101896034A (en) Radio frequency power source system and plasma reaction chamber applying same
CN101630624B (en) Dual frequency RF match
TWI416995B (en) A plasma processing chamber having a switchable bias frequency, and a switchable matching network
TWI442838B (en) A single matching network, a construction method thereof, and a matching network radio frequency power source system
TWI554161B (en) RF matching network and its application of plasma processing chamber
CN209218441U (en) A kind of inductively coupled plasma body processor
TWI716831B (en) Switchable matching network and inductively coupled plasma processor
JPH056799A (en) Rf power supply device for icp
CN102202454A (en) Switchable radio frequency power source system
CN113874979A (en) Radio frequency generator
TW201136458A (en) Switchable radio frequency power source system
CN103648230A (en) A switchable radio frequency power source system
KR20070017989A (en) Dual frequency rf match