TW200846802A - Resin sheet for circuit substrate, sheet for circuit substrate and circuit substrate for display - Google Patents

Resin sheet for circuit substrate, sheet for circuit substrate and circuit substrate for display Download PDF

Info

Publication number
TW200846802A
TW200846802A TW97110287A TW97110287A TW200846802A TW 200846802 A TW200846802 A TW 200846802A TW 97110287 A TW97110287 A TW 97110287A TW 97110287 A TW97110287 A TW 97110287A TW 200846802 A TW200846802 A TW 200846802A
Authority
TW
Taiwan
Prior art keywords
circuit board
sheet
resin sheet
resin
circuit
Prior art date
Application number
TW97110287A
Other languages
Chinese (zh)
Inventor
Yasunori Karasawa
Masahito Nakabayashi
Tatsuo Fukuda
Naofumi Izumi
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of TW200846802A publication Critical patent/TW200846802A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Resin sheet for circuit substrate (2) for embedding circuit chips (3) for display is made of polymer material curable with energy ray and contains inorganic fine particles therein. Sheet for circuit substrate (6) is prepared by laminating the resin sheet for circuit substrate (2) on one face of a support (1). The circuit substrate for display (7) is obtained by embedding circuit chips (3) into a surface of the resin sheet for circuit substrate (2) constituting the sheet for circuit substrate (6) and curing the resin sheet by irradiating the resin sheet with an energy ray. A circuit substrate for display embedded with circuit chips which exhibits a restricted volume shrinkage on curing by active energy ray, has a sufficient adhesiveness to the support and has excellent heat resistance can be obtained.

Description

200846802 九、發明說明: 【.發明所屬之技術領域】 本發明關於顯示器用的電路基板用樹脂片、電路基板 用片及顯示器用電路基板。更詳細地,本發明關於可品質 佳、以高的生產性有效率地製作顯示器用,尤其平面顯示 器用的埋有用於控制各畫素之電路晶片的電路基板之顯示 器用電路基板用樹脂片,電路基板用片,及使用其所得之 埋入電路晶片而成之顯示器用電路基板。 【先前技術】 以往,於液晶顯示器所代表的平面顯示器中,例如在 玻璃基板上,以CVD法(化學的氣相蒸鍍法)等依順序層合 絕緣膜、半導體膜等,經由與製造半導體積體電路同樣的 步驟,在構成畫面的各畫素附近形成薄膜電晶體(TFT)等微 小電子裝置,藉此進行各畫素開、關、濃淡的控制。即, 在玻璃基板上當場製作TFT等的微小電子裝置。然而,於 如此的技術中,步驟係多階段且煩雜,無法避免成本變高 ,而且若顯示器面積擴大,則用於在玻璃基板上形成膜的 CVD裝置等亦大型化,有成本顯著上升的問題。因此,以 削減成本爲目的,有揭示使微小的結晶矽積體電路晶片如 印刷油墨般附著在印刷底版上,藉由印刷技術等手段將其 移到顯示器用的玻璃基板上之指定位置,使固定的技術(例 如參照專利文獻1 )。於此情況下,預先在玻璃基板上形成 高分子薄膜,以印刷技術等手段將微小的結晶矽積體電路 晶片移到其上,藉由熱成形或加熱加壓等方法,將該晶片 200846802 埋入高分子薄膜中。然而,於如此的方法中,容易發生高 分子薄膜的變形或發泡的不良情況,而且由於加熱費時, 故沒有效率。 爲了解決如此的問題,本發明人們先前使用由能量線 硬化型高分子材料所成的電路基板用樹脂片,代替前述高 分子薄膜,藉由將電路晶片埋入時及埋入後的各儲存彈性 模數控制在指定範圍內,發明即使不進行加熱也能將電路 晶片埋入的電路基板用片。因此,發現可品質佳、以高的 # 生產性有效率地製作埋有電路晶片的顯示器用電路基板, 提出發明專利申請(例如參照專利文獻2)。然而,於僅使 用能量線硬化型高分子材料當作電路基板用樹脂片時,由 • 於活性能量線所致的硬化時之體積收縮率大,有從支持體 ^ 剝離之虞的問題。又,僅能量線硬化型高分子材料,耐熱 性係不充分,在加熱下的條件中,所得到的電路基板之埋 有電路晶片的面會容易伸縮,對電路基板的配線有引入裂 縫之虞,未必可充分地滿足,而希望改良。 ® [專利文獻1]特開2003-248436号公報 [專利文獻2]特開2006-3 23 3 3 5号公報 【發明內容】 發明所欲解決的問題 於如此的情況下,本發明之目的爲提供:電路基板用 樹脂片,其係由用於埋入電路晶片的能量線硬化型高分子 材料所成的顯示器用的電路基板用樹脂片’該電路基板用 樹脂片係可給予抑制由於活性能量線所致的硬化時之體積 -6- 200846802 收縮,對於支持體具有充分的密接性,而且具有高耐熱性 的埋有電路晶片之顯示器用電路基板;及該片層合在支持 體上而成的電路基板用片;以及使用其所得之纟里人電路晶 片而成的顯示器用電路基板。 解決問題的手段 本發明人們爲了達成上述目的,重複精心硏究,結果 發現於藉由在能量線硬化型高分子材料所成的電路基板用 樹脂片中,使含有無機微粒子,尤其具有特定粒徑及性質 # 狀態的無機微粒子,可達成其目的,以該知識爲基礎’終 於完成本發明。即,本發明提供: [1 ] 一種電路基板用樹脂片,係由用於埋入電路晶片的 • 能量線硬化型高分子材料所成的顯示器用之電路基板用樹 ^ 脂片,其特徵爲該片中含有無機微粒子; [2] 如[1 ]項記載的電路基板用樹脂片,其中電路基板用 樹脂片的23 °C之根據JIS K 7244-7所測定的硬化前之儲存 彈性模數爲IxlO4〜lxl〇7Pa,23°C之根據JIS K 7244-4所 ® 測定的硬化後之儲存彈性模數爲1 X 1 08Pa以上; [3] 如上述[1]或[2]項記載的電路基板用樹脂片,其中無 機微粒子的平均粒徑爲3〜50nm ; [4] 如上述[1]〜[3]項中任一項記載的電路基板用樹脂片 ,其中無機微粒子係矽石系微粒子; [5 ]如上述[1 ]〜[4 ]項中任一項記載的電路基板用樹脂片 ,其中無機微粒子係經有機矽烷化合物所表面修飾者; [6]如上述[5]項記載的電路基板用樹脂片,其中有機矽 200846802 烷化合物係具有可與構成能量線硬化型高分子材料的至少 一個成分可鍵結的官能基; [7] 如上述[1]〜[6]項中任一項記載的電路基板用樹脂片 ,其中無機微粒子的固體成分含量爲3〜70質量。/。; [8] —種電路基板用片’其係由在支持體的一面上層合 如上述[1 ]〜[7]項中任一項記載的電路基板用樹脂片所成 •,及 [9] 一種顯示器用電路基板,其特徵爲在如上述[8]項記 # 載的電路基板用片之電路基板用樹脂片面,埋入電路晶片 ,對其照射能量線而使硬化。 發明的效果 依照本發明,可提供:電路基板用樹脂片,其係由用 於埋入電路晶片的能量線硬化型高分子材料所成的顯示器 用的電路基板用樹脂片,及在支持體上形成有其的電路基 板用片,該電路基板用片係可給予抑制由於活性能量線所 致的硬化時之體積收縮,與支持體有充分的密接性,而且 ® 具有高耐熱性的埋有電路晶片之顯示器用電路基板;電路 基板用片;及使用其所得之埋入電路晶片而成的顯示器用 電路基板。 【實施方式】 實施發明的最佳形態_ 本發明的電路基板用樹脂片係由用於埋入電路晶片的 能量線硬化型高分子材料所成的顯示器用的電路基板用樹 脂片,其特徵爲該片中含有無機微粒子。 200846802 於本發明的電路基板用樹脂片中,23 °C之根據JIS Κ 7244-7所測定的硬化前之儲存彈性模數較佳爲IxlO4〜 lxl07Pa,23°C之根據JIS K 7244-4所測定的硬化後之儲 存彈性模數較佳爲ixl 〇8Pa以上,若23 °C的硬化前之儲存 彈性模數在上述範圍內,則硬化前的電路基板用樹脂片係 形狀保持性及與支持體密接性良好,而且電路晶片的埋入 性亦良好。較佳之23 °C的硬化前之儲存彈性模數爲在 5χ104〜5xl〇6Pa的範圍。再者,80°C的硬化前之儲存彈性 # 模數通常爲5 X 1 03〜1 X 106Pa左右。 另一方面,於前述電路基板用樹脂片經硬化時,硬化 層的23 °C之根據〗IS K 7244-4所測定的硬化後之儲存彈性 模數若爲1 X 1 〇 8Pa以上,則所埋入的電路晶片之保持性良 好。該儲存彈性模數的上限雖然沒有特別的限制,但通常 爲9χ1 09Pa左右。較佳之23 °C的硬化後儲存彈性模數爲在 5 X 1 08 〜5 X 1 0 9 P a 的範圍。再者,1 5 0。(:之根據 JI S K 7 2 4 4 · 4 所測定的硬化後之儲存彈性模數通常爲5χ107〜5xl09Pa左 ^右。 於埋入電路晶片時,溫度若過高,則有由於氣體的發 生而導致光的散射等光學不良情況,或損害電路基板的平 坦性之虞。從此點來看,電路晶片的埋入溫度較佳爲〇〜 150°C,更佳爲 5〜100°C。 再者,稍後說明前述儲存彈性模數的測定方法。 於本發明中,硬化後的電路基板用樹脂片之波長 400nm的透射率爲80%以上,此從透光性方面來看係較宜 200846802 。再者,稍後說明該透射率的測定方法。 於本發明中’能量線硬化型高分子材料係指藉由照射 電磁波或在荷電粒子線中具有能量子者,即紫外線或電子 線寺而父聯的筒分子材料。 作爲本發明所用的前述能量線硬化型高分子材料,例 如可舉出(1)含有丙烯酸系聚合物與能量線硬化型聚合性寡 聚物及/或聚合性單體及視需要之光聚合引發劑的高分子材 料’(2)含有在側鏈導入具有聚合性不飽和基的能量線硬化 ® 型官能基而成之丙烯酸系聚合物與視需要之光聚合引發劑 的高分子材料等。 於則述(1)的局分子材料中,作爲丙備酸系聚合物,可 舉出酯部分的院基之碳數爲1〜20的(甲基)丙嫌酸酯、與 視需要使用的具有含活性氫的官能基之單體及其它單體之 共聚物,即(甲基)丙烯酸酯共聚物。於本發明中,「(甲基) 丙烯酸···」係意味「丙烯酸酯···」及「甲基丙烯酸··· 」兩者。 ^ 此處,作爲酯部分的烷基之碳數爲1〜20的(甲基)丙烯 酸酯之例,可舉出(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯 、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸戊 酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯 酸2-乙基己酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸癸酯 、(甲基)丙烯酸十二酯、(甲基)丙烯酸十四酯、(甲基)丙烯 酸十六酯、(甲基)丙烯酸十八酯等。此等可單獨使用,亦 可組合2種以上來使用。 -10- .200846802 另一方面,作爲視需要使用的具有含活性氫的官能基 之單體之例,可舉出(甲基)丙烯酸2-羥乙酯、(甲基)丙烯 酸2_羥丙酯、(甲基)丙烯酸3-羥丙酯、(甲基)丙烯酸2-羥 丁酯、(甲基)丙烯酸3-羥丁酯、(甲基)丙烯酸4 -羥丁酯等 的(甲基)丙烯酸羥烷酯;(甲基)丙烯酸單甲基胺基乙酯、( 甲基)丙烯酸單乙基胺基乙酯、(甲基)丙烯酸單甲基胺基丙 酯、(甲基)丙烯酸單乙基胺基丙酯等的(甲基)丙烯酸單烷 基胺基院酯;丙烯酸、甲基丙嫌酸、巴豆酸、馬來酸、伊 ® 康酸、檸康酸等的乙烯性不飽和羧酸等。此等可單獨使用 ,亦可組合2種以上來使用。 於(甲基)丙烯酸酯共聚物中,含有5〜1 0 0重量%,較 佳50〜95重量%的(甲基)丙烯酸酯,含有〇〜95重量%, 較佳5〜5 0重量%的具有含活性氫的官能基之單體。 又,作爲視需要使用的其它單體之例,可舉出醋酸艺 烯酯、丙酸乙烯酯等的乙烯酯類;乙烯、丙烯、異丁烯等 的烯烴類;氯乙烯、二氯乙烯等的鹵化烯烴類;苯乙烯、 ^ α-甲基苯乙烯等的苯乙烯系單體;丁二烯、異戊二烯、氯 丁二烯等的二烯系單體;丙烯腈、甲基丙烯腈等的腈系單 體;丙烯醯胺、Ν -甲基丙烯醯胺、Ν,Ν-二甲基丙烯醯胺等 的丙烯醯胺類等。此等可單獨使用,亦可組合2種以上來 使用。於(甲基)丙烯酸酯共聚物中,可含有0〜30重量% 的此等單體。 於該高分子材料中,作爲丙烯酸系聚合物所用的(甲基) 丙烯酸酯系共聚合物,其共聚合形態並沒有特別的限制, -11- .200846802 可爲無規、嵌段、接枝共聚合物中任一者。又,分子量以 重量平均分子量計較佳爲5萬以上。 再者,上述重量平均分子量係藉由凝膠滲透層析(GPC) 法所測定的標準聚甲基丙烯酸甲酯換算之値。而且,重量 平均分子量的測定方法係稍後說明。 於本發明中,此(甲基)丙烯酸酯系共聚合物係可單獨i 種使用,亦可組合2種以上來使用。 再者’前述儲存彈性模數的測定方法係稍後說明。 ® 又’作爲能量線硬化型聚合性寡聚物,例如可舉出聚 酯丙烯酸酯系、環氧丙烯酸酯系、胺甲酸酯丙烯酸酯系、 聚醚丙烯酸酯系、聚丁二烯丙烯酸酯系、聚矽氧丙烯酸酯 系等。此處,作爲聚酯丙烯酸酯系寡聚物,例如可藉由將 由多元羧酸與多元醇之縮合所得之兩末端具有羥基的聚酯 寡聚物之羥基,以(甲基)丙烯酸來酯化,或藉由將在多元 羧酸附加環氧烷類而得之寡聚物的末端之羥基,以(甲基) 丙烯酸來酯化而獲得。環氧丙烯酸酯系寡聚物,例如可藉 • 由對比較低分子量的雙酚型環氧樹脂或酚醛清漆型環氧樹 脂的環氧乙烷環,以(甲基)丙烯酸來反應及酯化而獲得。 又’亦可以使用此環氧丙烯酸酯系寡聚物經二元羧酸酐所 改性的羧基改性型之環氧丙烯酸酯寡聚物。胺甲酸酯丙嫌 酸酯系寡聚物,例如可藉由對由聚醚多元醇或聚酯多元醇 與聚異氰酸酯反應所得之聚胺甲酸酯寡聚物,以(甲基)丙 烯酸來酯化而獲得;多元醇丙烯酸酯系寡聚物,係可藉由 以(甲基)丙烯酸來酯化聚醚多元醇的羥基而獲得。 -12- 200846802 上述聚合性寡聚物的重量平均分子量,以GPC法所測j 定的標準聚甲基丙烯酸甲酯換算之値,較佳爲在5〇〇〜 100,000 的範圍,更佳爲在 1,000 〜70,000,3,000 〜4〇,〇〇〇 的範圍內選定。 此聚合性寡聚物可單獨1種使用,亦可組合2種以上 來使用。 另一方面,作爲能量線硬化型聚合性單體,例如可舉 出(甲基)丙烯酸環己酯、(甲基)丙烯酸2 -乙基己酯、(甲基) • 丙烯酸月桂酯 '(甲基)丙烯酸硬脂基酯、(甲基)丙烯酸異 冰片酯等的單官能性丙烯酸酯類,二(甲基)丙烯酸1,4 - 丁 二醇酯、二(甲基)丙烯酸丨,6 _己二醇酯、二(甲基)丙烯酸 辛戊二醇酯、二(甲基)丙烯酸聚乙二醇酯、二(甲基)丙烯 酸辛戊二醇己二酯、二(甲基)丙烯酸羥基三甲基乙酸辛戊 二醇酯、二(甲基)丙烯酸二環戊酯、二(甲基)丙烯酸己內 酯改性二環戊烯酯、二(甲基)丙烯酸環氧乙烷改性磷酸酯 、二(甲基)丙烯酸烯丙基化環己酯、二(甲基)丙烯酸異氰 • 尿酸酯、二羥甲基三環癸烷二(甲基)丙烯酸酯、三(甲基) 丙烯酸三羥甲基丙烷酯、三(甲基)丙烯酸二季戊四醇酯、 三(甲基)丙烯酸丙酸改性二季戊四醇酯、三(甲基)丙烯酸 季戊四醇酯、三(甲基)丙烯酸環氧丙烷改性三羥甲基丙烷 酯、異氰尿酸三(丙烯醯氧基乙酯)、五(甲基)丙烯酸丙酸 改性二季戊四醇酯、六(甲基)丙烯酸二季戊四醇酯、六(甲 基)丙烯酸己內酯改性二季戊四醇酯、己內酯改性三(丙烯 醯氧基乙基)異氰尿酸酯等。此等聚合性單體可使用1種, -13- 200846802 也可組合2種以上來使用。 此等聚合性寡聚物或聚合性單體的使用量係選擇使用 在藉由能量線的施加而硬化後,高分子材料具有前述的性 質和狀態,但通常對於1 0 0重量份的(甲基)丙烯酸酯共聚 物之固體成分而言,可摻合3〜400重量份。 又,作爲能量線,通常照射紫外線或電子線,但於照 射紫外線時,可以使用光聚合引發劑。作爲此光聚合引發 劑,例如可舉出苯偶姻、苯偶姻甲基醚、苯偶姻乙基醚、 Φ 苯偶姻異丙基醚、苯偶姻正丁基醚、苯偶姻異丁基醚、苯 乙酮、二甲基胺基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、 2,2-二甲氧基-1,2-二苯基苯乙烷-1-酮、2,2-二乙氧基-2-苯 基本乙醒、2 -經基-2 -甲基-1-苯基丙院-1-鋼、;經基環己 基本基酬、2 -甲基-1-[ 4-(甲硫基)苯基]-2 -嗎琳基-丙垸-1-酮、4-(2-羥基乙氧基)苯基-2(羥基-2-丙基)酮、二苯甲酮 、對苯基二苯甲酮、4,4、二乙基胺基二苯甲酮、二氯二苯 甲酮、2 -甲基蒽醌、2 -乙基蒽醌、2 -第三丁基蒽醌、2 -胺 ® 基蒽醌、2-甲基噻噸酮、2-乙基噻噸酮、2-氯噻噸酮、2,4-二甲噻噸酮、2,4 -二乙基噻噸酮、苄基二甲基縮酮、苯乙 酮二甲基縮酮、對二甲基胺苯甲酸酯、寡聚(2 -羥基-2 -甲 基-l-[4-(l-丙醯基)苯基]丙酮)等。此等可使用1種,也可 組合2種以上來使用。 摻合量,對於1 〇〇重量份的上述能量線硬化型高分子 材料的固體成分而言,通常爲〇·1〜10重量份。 其次,於前述(2)的高分子材料中,作爲在側鏈導入有 -14- 200846802 自由基聚合性不飽和基的能量線硬化型官能基而成的丙烯 酸系聚合物,例如可舉出於前述(1)的高分子材料中所說明 的丙烯酸系聚合物之聚合物鏈中導入- COOH、-NCO、環氧 基、-OH、-NH2等的活性點,使此活性點與具有自由基聚 合性不飽和基的化合物反應,以在該丙烯酸系聚合物的側 鏈導入具有自由基聚合性不飽和基的能量線硬化型官能基 而成者。 爲了在丙烯酸系聚合物中導入前述活性點,於製造該 ® 丙烯酸系聚合物時,亦可使具有-COOH、-NCO、環氧基 、-OH、-NH2等的官能基、及自由基聚合性不飽和基的單 體或寡聚物共存在於反應系中。 具體地,於製造前述(1)的高分子材料中所說明的丙烯 酸系聚合物時,可用(甲基)丙烯酸等來導入-COOH基,可 用2-(甲基)丙烯醯氧基乙基異氰酸酯等來導入-NCO基,可 用(甲基)丙烯酸縮水甘油酯等來導入環氧基,可用(甲基) 丙烯酸2-羥基乙酯、單(甲基)丙烯酸1,6-己二醇酯等來導 ® 入- OH基,可用N-甲基(甲基)丙烯醯胺等來導入-NH2基。 作具有自由基聚合性不飽和基可與此等活性點反應的 化合物,例如從2-(甲基)丙烯醯氧基乙基異氰酸酯、(甲基) 丙烯酸縮水甘油酯、單(甲基)丙烯酸季戊四醇酯、單(甲基) 丙烯酸二季戊四醇酯、單(甲基)丙烯酸三羥甲基丙烷酯等 中,按照活性點的種類來適當地選擇使用。 如此地,可以得到在丙烯酸系聚合物的側鏈,經由前 述活性點,導入具有自由基聚合性不飽和基的能量線硬化 -15- 200846802 型官能基而成之丙烯酸系聚合物,即(甲基)丙烯酸酯共聚 合物。 此導入有能量線硬化型官能基的(甲基)丙烯酸酯共聚合 物,較佳爲具有100,〇〇〇以上的重量平均分子量,特佳爲 具有3 00,0 00以上的重量平均分子量。再者,上述重量平 均分子量係以GPC法所測定的標準聚甲基丙烯酸甲酯換算 之値。 又,作爲視需要使用光聚合引發劑,可以使用前述(1 ) ® 的高分子材料之說明中所例示的光聚合引發劑。於本發明 的電路基板用樹脂片中,以抑制活性能量線所致的硬化時 之體積收縮,且提高耐熱性等爲目的,要求含有無機微粒 子。因此,於前述(1 )及(2)的能量線硬化型高分子材料中 ,添加無機微粒子當作必要成分。再者,本發明中的無機 微粒子,係指粒徑爲1 μ m左右以下的無機粒子。 作爲前述無機微粒子,例如可以使用矽、鈦、鉻、錫 、鋁、鐵等的各種金屬元素之氧化物或碳化物等,於此等 ^ 之中,從體積收縮的抑制效果、透光性、經濟性等之平衡 的觀點來看,較佳爲矽石系微粒子。 於本發明中,此無機微粒子單獨1種使用,亦可組合2 種以上來使用。又,其平均粒徑,從透明性、均勻分散性 、體積收縮的抑制效果等的觀點來看,較佳爲在3〜50nm 的範圍,更佳爲在5〜30nm的範圍。再者’本發明中的平 均粒徑係以BET法的算出値爲基礎。 使用矽石系微粒子時,較佳爲矽石系微粒子分散於醇 -16- 200846802 系或溶纖劑系等的有機溶劑中而成之有機矽石溶膠< 於本發明中,該無機微粒子,爲了抑制二次凝 勻分散在能量線硬化型高分子材料中,較佳爲使用 表面修飾處理的無機微粒子。作爲表面修飾處理方 沒有特別限制,可舉出以往眾所周知的方法,例如 用有機矽烷化合物的方法或使用界面活性劑的方法 佳爲按照無機微粒子的種類及能量線硬化型高分子 種類來適當地選擇。例如,於使用矽石系微粒子當 ® 微粒子時,使用有機矽烷化合物進行表面修飾處理 :於矽石系微粒子以外的無機微粒子時,使用界面 進行表面修飾係有利。 作爲前述有機矽烷化合物,例如可舉出矽烷系 或有機聚矽氧烷等,於此等之中,較佳爲具有與構 線硬化型高分子材料的至少一個成分可鍵結的官能 烷系偶合劑。作爲如此的矽烷系偶合劑,例如可舉 (I)所示的化合物: 聚,均 已進行 法,並 可以使 等,較 材料的 作無機 係有利 活性劑 偶合劑 成能量 基之矽 出通式[Technical Field] The present invention relates to a resin sheet for a circuit board for a display, a sheet for a circuit board, and a circuit board for a display. More specifically, the present invention relates to a resin sheet for a display circuit board which is excellent in quality and high in productivity, and which is particularly useful for a display, and a circuit board for controlling a circuit chip for controlling each pixel for a flat display. A circuit board for a circuit board, and a circuit board for a display obtained by using the obtained circuit board. [Prior Art] Conventionally, in a flat panel display represented by a liquid crystal display, for example, an insulating film, a semiconductor film, or the like is laminated on a glass substrate by a CVD method (chemical vapor deposition method) or the like, and a semiconductor is manufactured. In the same procedure as the integrated circuit, a microelectronic device such as a thin film transistor (TFT) is formed in the vicinity of each pixel constituting the screen, thereby controlling the opening, closing, and shading of each pixel. That is, a microelectronic device such as a TFT is fabricated on the glass substrate. However, in such a technique, the steps are complicated and complicated, and the cost cannot be increased. When the display area is enlarged, the CVD apparatus for forming a film on the glass substrate is also increased in size, and the cost is remarkably increased. . Therefore, in order to reduce the cost, it has been revealed that a minute crystal entangled circuit chip is attached to a printing plate as a printing ink, and is moved to a predetermined position on a glass substrate for display by a printing technique or the like. Fixed technique (for example, refer to Patent Document 1). In this case, a polymer film is formed on a glass substrate in advance, and a minute crystal slab circuit chip is transferred thereto by a printing technique or the like, and the wafer 200846802 is buried by a method such as thermoforming or heat pressing. Into the polymer film. However, in such a method, the deformation or foaming of the high molecular film is liable to occur, and since heating takes time, there is no efficiency. In order to solve such a problem, the present inventors have previously used a resin sheet for a circuit board made of an energy ray-curable polymer material instead of the polymer film, and each storage elasticity when the circuit wafer is buried and after embedding The module is controlled to be within the specified range, and the invention is a circuit board for embedding a circuit wafer without heating. For this reason, it has been found that a circuit board for a display in which a circuit wafer is embedded can be produced with high quality and high productivity, and an invention patent application is proposed (for example, refer to Patent Document 2). However, when only the energy ray-curable polymer material is used as the resin sheet for a circuit board, the volume shrinkage rate at the time of hardening by the active energy ray is large, and there is a problem that the support body is peeled off. Further, only the energy ray-curable polymer material is insufficient in heat resistance, and under the condition of heating, the surface of the obtained circuit board in which the circuit wafer is buried is easily expanded and contracted, and cracks are introduced into the wiring of the circuit board. It may not be fully satisfied, but it is hoped to improve. [Patent Document 1] JP-A-2003-248436 [Patent Document 2] JP-A-2006-3 23 3 3 5 SUMMARY OF THE INVENTION Problems to be Solved by the Invention In such a case, the object of the present invention is Provided is a resin sheet for a circuit board, which is a resin sheet for a display substrate made of an energy ray-curable polymer material for embedding a circuit wafer. The resin sheet for a circuit board can be suppressed by active energy. Volume at the time of hardening by the wire-6-200846802 shrinkage, a circuit board for display having a circuit board having high heat resistance and having high heat resistance; and the sheet is laminated on the support A circuit board for a circuit board; and a circuit board for a display using the obtained circuit board of the circuit. Means for Solving the Problems In order to achieve the above object, the present inventors have found that inorganic fine particles, particularly having a specific particle diameter, are contained in a resin sheet for a circuit board formed of an energy ray-curable polymer material. And the inorganic microparticles of the nature # state can achieve its purpose, based on this knowledge, 'finally complete the present invention. In other words, the present invention provides: [1] A resin sheet for a circuit board, which is a circuit board for a display substrate made of an energy ray-curable polymer material for embedding a circuit wafer, and is characterized in that [2] The resin sheet for a circuit board according to the above [1], wherein the resin sheet for a circuit board has a storage elastic modulus before curing at 23 ° C according to JIS K 7244-7. It is IxlO4~lxl〇7Pa, and the storage elastic modulus after hardening according to JIS K 7244-4® at 23 °C is 1 X 1 08 Pa or more; [3] as described in [1] or [2] above. The resin sheet for a circuit board, wherein the inorganic fine particles are in the form of a resin sheet for a circuit board according to any one of the above aspects, wherein the inorganic fine particle system is a vermiculite system. [5] The resin sheet for a circuit board according to any one of the above [1], wherein the inorganic fine particles are surface-modified with an organodecane compound; [6] as described in the above [5] Resin sheet for circuit substrate, wherein organic 矽200846802 alkyl compound has configurable energy The resin sheet for a circuit board according to any one of the above-mentioned [1], wherein the solid content of the inorganic fine particles is contained in the resin sheet for a circuit board. For 3 to 70 mass. /. [8] A circuit board for a circuit board is formed by laminating a resin sheet for a circuit board according to any one of the above [1] to [7], and [9] A circuit board for a display, in which a circuit wafer is embedded in a resin sheet surface for a circuit board for a circuit board sheet as described in the above [8], and is irradiated with an energy ray to be cured. According to the present invention, there is provided a resin sheet for a circuit board, which is a resin sheet for a circuit board for display used for embedding an energy ray-curable polymer material of a circuit wafer, and on a support. The circuit board sheet is formed, and the circuit board sheet can be provided with a circuit that suppresses volume shrinkage due to active energy rays, has sufficient adhesion to the support, and has a high heat resistance embedded circuit. A circuit board for a display of a wafer; a sheet for a circuit board; and a circuit board for a display obtained by using the obtained circuit chip. [Embodiment] The resin sheet for a circuit board of the present invention is a resin sheet for a circuit board for display, which is formed of an energy ray-curable polymer material for embedding a circuit wafer, and is characterized in that The sheet contains inorganic fine particles. 200846802 In the resin sheet for a circuit board of the present invention, the storage elastic modulus before hardening measured according to JIS Κ 7244-7 at 23 ° C is preferably IxlO4 to lxl07Pa, and according to JIS K 7244-4 at 23 °C. The storage elastic modulus after the hardening is preferably ixl 〇 8 Pa or more. If the storage elastic modulus before curing at 23 ° C is within the above range, the resin sheet shape retention and support of the circuit board before curing is supported. The body adhesion is good, and the embedding property of the circuit chip is also good. Preferably, the storage elastic modulus before hardening at 23 ° C is in the range of 5 χ 104 〜 5 x 10 6 Pa. Furthermore, the storage elasticity before curing at 80 ° C # modulus is usually about 5 X 1 03~1 X 106 Pa. On the other hand, when the resin sheet for a circuit board is cured, if the storage elastic modulus of the hardened layer at 23 ° C according to the measurement of IS K 7244-4 is 1 X 1 〇 8 Pa or more, The buried circuit chip has good retention. The upper limit of the storage elastic modulus is not particularly limited, but is usually about 9 χ 1 09 Pa. Preferably, the storage elastic modulus after hardening at 23 ° C is in the range of 5 X 1 08 〜 5 X 1 0 9 P a . Furthermore, 1 50. (: The storage elastic modulus after hardening measured according to JI SK 7 2 4 4 · 4 is usually 5χ107~5xl09Pa left and right. When the circuit chip is buried, if the temperature is too high, there is gas generation. The optical defect such as scattering of light or the flatness of the circuit board is impaired. From this point of view, the embedding temperature of the circuit wafer is preferably 〇 150 150 ° C, more preferably 5 to 100 ° C. In the present invention, the resin sheet for a circuit board after curing has a transmittance of 80% or more at a wavelength of 400 nm, which is preferably 200846802 from the viewpoint of light transmittance. Further, the method of measuring the transmittance will be described later. In the present invention, the 'energy ray-curable polymer material refers to a person who has an energy beam by irradiating electromagnetic waves or in a charged particle beam, that is, an ultraviolet ray or an electron line temple. The above-mentioned energy ray-curable polymer material used in the present invention includes, for example, an acrylic polymer, an energy ray-curable polymerizable oligomer, and/or a polymerizable monomer, and As needed The polymer material of the photopolymerization initiator (2) contains an acrylic polymer obtained by introducing an energy ray-hardening type-type functional group having a polymerizable unsaturated group into a side chain, and a photopolymerization initiator as needed. In the local molecular material of the above (1), the acrylic acid-based polymer may be a (meth)propionic acid ester having a carbon number of 1 to 20 in the base of the ester moiety, and the like. A copolymer of a monomer having an active hydrogen-containing functional group and another monomer, that is, a (meth) acrylate copolymer. In the present invention, "(meth)acrylic acid" means "acrylic acid In the case of the (meth) acrylate having an alkyl group having an alkyl group of 1 to 20 as an ester moiety, an example of (meth) acrylate is exemplified. ) methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Cyclohexyl ester, 2-ethylhexyl (meth)acrylate, (meth)acrylic acid Ester, decyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, etc. In the case of using a monomer having an active hydrogen-containing functional group as an example, a 2-hydroxyl (meth)acrylate may be used. Ethyl ester, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, (methyl) a hydroxyalkyl (meth) acrylate such as 4-hydroxybutyl acrylate; monomethylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, or (meth) acrylate (meth)acrylic acid monoalkylamine based esters such as methylaminopropyl propyl ester and monoethylaminopropyl (meth)acrylate; acrylic acid, methyl propyl succinic acid, crotonic acid, maleic acid, y ® Ethylene unsaturated carboxylic acid such as citric acid or citraconic acid. These may be used alone or in combination of two or more. The (meth) acrylate copolymer contains 5 to 100% by weight, preferably 50 to 95% by weight, of (meth) acrylate, and contains 5% to 95% by weight, preferably 5 to 50% by weight. A monomer having a functional group containing an active hydrogen. Further, examples of other monomers to be used as needed include vinyl esters such as acetaminophen and vinyl propionate; olefins such as ethylene, propylene and isobutylene; and halogenation of vinyl chloride and dichloroethylene. Olefin; styrene monomer such as styrene or α-methylstyrene; diene monomer such as butadiene, isoprene or chloroprene; acrylonitrile, methacrylonitrile, etc. Nitrile-based monomer; acrylamide such as acrylamide, hydrazine-methacrylamide, hydrazine, hydrazine-dimethyl methacrylate or the like. These may be used alone or in combination of two or more. The (meth) acrylate copolymer may contain 0 to 30% by weight of such monomers. In the polymer material, the (meth) acrylate-based copolymer used as the acrylic polymer is not particularly limited in its copolymerization form, and -11-.200846802 may be random, block, or graft. Any of the copolymers. Further, the molecular weight is preferably 50,000 or more in terms of a weight average molecular weight. Further, the above weight average molecular weight is a standard polymethyl methacrylate conversion measured by a gel permeation chromatography (GPC) method. Further, the method of measuring the weight average molecular weight will be described later. In the present invention, the (meth) acrylate-based copolymer may be used singly or in combination of two or more. Further, the measurement method of the aforementioned storage elastic modulus will be described later. Further, 'as an energy ray-curable polymerizable oligomer, for example, a polyester acrylate type, an epoxy acrylate type, a urethane acrylate type, a polyether acrylate type, and a polybutadiene acrylate. System, polyoxy acrylate system, and the like. Here, as the polyester acrylate-based oligomer, for example, esterification of (meth)acrylic acid can be carried out by a hydroxyl group of a polyester oligomer having a hydroxyl group at both terminals obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol. Alternatively, it can be obtained by esterifying a hydroxyl group at the terminal of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth)acrylic acid. Epoxy acrylate oligomers, for example, can be reacted and esterified with (meth)acrylic acid by comparing epoxide rings of lower molecular weight bisphenol type epoxy resins or novolak type epoxy resins And get. Further, a carboxyl group-modified epoxy acrylate oligomer in which the epoxy acrylate oligomer is modified with a dicarboxylic acid anhydride can also be used. a urethane acrylate acrylate oligomer, for example, by a polyurethane oligomer obtained by reacting a polyether polyol or a polyester polyol with a polyisocyanate, with (meth)acrylic acid It is obtained by esterification; a polyol acrylate type oligomer can be obtained by esterifying a hydroxyl group of a polyether polyol with (meth)acrylic acid. -12- 200846802 The weight average molecular weight of the above polymerizable oligomer is preferably in the range of 5 Å to 100,000, more preferably in the range of 5 Å to 100,000 in terms of the standard polymethyl methacrylate measured by the GPC method. 1,000 to 70,000, 3,000 to 4 inches, selected within the range of 〇〇〇. These polymerizable oligomers may be used alone or in combination of two or more. On the other hand, examples of the energy ray-curable polymerizable monomer include cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and (methyl) • lauryl acrylate. Monofunctional acrylates such as stearyl acrylate, isobornyl (meth)acrylate, 1,4-butylene di(meth)acrylate, bis(meth)acrylate, 6 _ Hexanediol ester, octyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, octyl glycol di(meth)acrylate, hydroxyl group of di(meth)acrylate Octyl glycol octyl glycolate, dicyclopentanyl di(meth)acrylate, dicyclopentenyl ester of caprolactone di(meth)acrylate, ethylene oxide modification of di(meth)acrylate Phosphate ester, allylated cyclohexyl di(meth)acrylate, isocyanuric acid di(meth)acrylate, dimethylol tricyclodecane di(meth)acrylate, tris(methyl) ) Trimethylolpropane acrylate, dipentaerythritol tris(meth)acrylate, tris(meth)acrylic acid Acid-modified dipentaerythritol ester, pentaerythritol tri(meth)acrylate, propylene oxide modified trimethylolpropane tris(meth)acrylate, tris(propylene methoxyethyl) isocyanurate, five (a) Acrylic acid propionic acid modified dipentaerythritol ester, dipentaerythritol hexa(meth)acrylate, hexa (meth) acrylate caprolactone modified dipentaerythritol ester, caprolactone modified tris(propylene oxiranyloxy) Isocyanurate and the like. One type of these polymerizable monomers may be used, and -13-200846802 may be used in combination of two or more types. The amount of such a polymerizable oligomer or polymerizable monomer is selected and used after being hardened by application of an energy ray, and the polymer material has the aforementioned properties and states, but usually for 100 parts by weight (A) The solid content of the acrylate copolymer may be blended in an amount of from 3 to 400 parts by weight. Further, as the energy ray, ultraviolet rays or electron beams are usually irradiated, but when ultraviolet rays are irradiated, a photopolymerization initiator can be used. Examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, Φ benzoin isopropyl ether, benzoin n-butyl ether, and benzoin Butyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-dimethoxy-1,2-diphenyl Phenylethane-1-one, 2,2-diethoxy-2-phenyl, acetonide, 2-cyano-2-methyl-1-phenylpropene-1-steel; Basic basis, 2-methyl-1-[4-(methylthio)phenyl]-2-oxalinyl-propan-1-one, 4-(2-hydroxyethoxy)phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4, diethylaminobenzophenone, dichlorobenzophenone, 2-methylindole , 2-ethyl hydrazine, 2-tributyl hydrazine, 2-amine hydrazinium, 2-methyl thioxanthone, 2-ethyl thioxanthone, 2-chlorothioxanthone, 2, 4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzyldimethylketal, acetophenone dimethyl ketal, p-dimethylamine benzoate, oligomerization (2 -Hydroxy-2-methyl-l-[4-(l-propionyl)phenyl]propanone). These may be used alone or in combination of two or more. The blending amount is usually from 1 to 10 parts by weight based on 1 part by weight of the solid content of the energy ray-curable polymer material. In the polymer material of the above (2), an acrylic polymer obtained by introducing an energy ray-curable functional group having a radical polymerizable unsaturated group of -14 to 200846802 into a side chain is exemplified. An active point of -COOH, -NCO, epoxy group, -OH, -NH2, etc. is introduced into the polymer chain of the acrylic polymer described in the polymer material of the above (1), and the active site and the radical are introduced. The polymerizable unsaturated group compound is reacted to introduce an energy ray-curable functional group having a radical polymerizable unsaturated group in the side chain of the acrylic polymer. In order to introduce the above-mentioned active site into the acrylic polymer, functional groups having -COOH, -NCO, epoxy, -OH, -NH2, and the like may be polymerized in the production of the acrylic polymer. The monounsaturated monomers or oligomers are co-present in the reaction system. Specifically, when the acrylic polymer described in the polymer material of the above (1) is produced, a -COOH group may be introduced by (meth)acrylic acid or the like, and 2-(meth)acryloxyethyl isocyanate may be used. When an -NCO group is introduced, an epoxy group may be introduced by using glycidyl (meth)acrylate or the like, and 2-hydroxyethyl (meth)acrylate or 1,6-hexanediol mono(meth)acrylate may be used. The -OH group can be introduced into the -NH2 group by N-methyl(meth)acrylamide or the like. A compound having a radical polymerizable unsaturated group reactive with such active sites, for example, from 2-(meth)acryloxyethyl isocyanate, glycidyl (meth)acrylate, mono(meth)acrylic acid Pentaerythritol ester, dipentaerythritol mono(meth)acrylate, trimethylolpropane mono(meth)acrylate, and the like are appropriately selected and used depending on the type of active site. In this way, an acrylic polymer obtained by introducing an energy ray-hardening -15-200846802-type functional group having a radical polymerizable unsaturated group into a side chain of an acrylic polymer through the active site can be obtained. Base) acrylate copolymer. The (meth) acrylate copolymer having an energy ray-curable functional group is preferably a weight average molecular weight of 100 or more, and particularly preferably a weight average molecular weight of 300 Å or more. Further, the above weight average molecular weight is calculated by the standard polymethyl methacrylate measured by the GPC method. Further, as the photopolymerization initiator, if necessary, a photopolymerization initiator exemplified in the description of the polymer material of the above (1) ® can be used. In the resin sheet for a circuit board of the present invention, it is required to contain inorganic fine particles for the purpose of suppressing volume shrinkage at the time of curing by the active energy ray and improving heat resistance. Therefore, in the energy ray-curable polymer material of the above (1) and (2), inorganic fine particles are added as an essential component. Further, the inorganic fine particles in the present invention mean inorganic particles having a particle diameter of about 1 μm or less. As the inorganic fine particles, for example, an oxide or a carbide of various metal elements such as ruthenium, titanium, chromium, tin, aluminum, or iron can be used, and among these, the effect of suppressing volume shrinkage, light transmittance, and From the viewpoint of the balance of economy and the like, it is preferable that the particles are fine particles. In the present invention, the inorganic fine particles may be used alone or in combination of two or more. In addition, the average particle diameter is preferably in the range of 3 to 50 nm, and more preferably in the range of 5 to 30 nm from the viewpoints of transparency, uniform dispersibility, and suppression effect of volume shrinkage. Further, the average particle diameter in the present invention is based on the calculated 値 of the BET method. When the vermiculite-based fine particles are used, it is preferably an organic vermiculite sol obtained by dispersing fine particles of the vermiculite in an organic solvent such as an alcohol-16-200846802 system or a cellosolve system. In the present invention, the inorganic fine particles are In order to suppress secondary aggregation and dispersion in the energy ray-curable polymer material, it is preferred to use surface-modified inorganic fine particles. The surface modification treatment is not particularly limited, and a conventionally known method can be mentioned. For example, a method using an organic decane compound or a method using a surfactant is preferably selected in accordance with the type of inorganic fine particles and the type of energy ray-curable polymer. . For example, when using vermiculite microparticles as ® microparticles, surface modification treatment is carried out using an organic decane compound: in the case of inorganic fine particles other than vermiculite microparticles, surface modification is advantageous by using an interface. Examples of the organic decane compound include a decane-based or an organopolyoxyalkylene. Among them, a functional alkane couple which is bondable to at least one component of the conformation-curable polymer material is preferable. mixture. As such a decane-based coupling agent, for example, a compound represented by (I): a poly-polymer, which has been subjected to a method, can be used, and the like, and an inorganic-based active agent coupling agent is formed into an energy-based group.

Z - R1 - Si / R2〇 \ (ORVn (I) 於前述通式(I)中,Z表示與前述能量線硬化型 材料的成分可共聚合的含乙烯性雙之基、或與該會g 化型高分子材料中的交聯性官能基進行反應的官會g 有此官能基的有機基。作爲如此的官能基,例如可 基)丙烯醯氧基、環氧基、異氰酸酯基、胺基、锍_ 且作爲該具有官能基的有機基,例如可舉出縮水货 高分子 :量線硬 :基或具 舉出(甲 ^等,而 ~油氧基 -17- 200846802 、3,4-環氧基環己基等挙。 R1表示碳數2〜4的伸烷基。此伸烷基可爲直鏈狀、支 鏈狀中任一者,例如可舉出伸乙基、伸丙基、三亞甲基、 四亞甲基、1-甲基二亞甲基寺’此等之中較佳爲碳數2或 3的伸烷基,具體地較佳爲伸乙基及三亞甲基。R2表示碳 數1〜1 0的烴基。此烴基表示碳數1〜1 〇的直鏈狀、支鏈 狀、環狀的烷基、碳數6〜10的伸芳基或碳數7〜10的芳 烷基。作爲碳數1〜1 〇的烷基,例如可舉出甲基、乙基、 # 正丙基、異丙基、各種丁基、各種戊基、各種己基、各種 辛基、各種癸基、環戊基、環己基等。作爲碳數6〜10的 芳基,例如可舉出苯基、甲苯基、二甲苯基、萘基等;作 爲碳數7〜10的芳烷基,例如可舉出苄基、甲基苄基、苯 乙基、甲基苯乙基等。 η表示0或1,R3表示碳數1〜4的烷基,例如甲基、 乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第 三丁基。2或3個的R3 〇可爲互相相同一或不同,從此矽 ® 烷偶合劑的製造上之容易點來看’該R30較佳爲相同。 作爲前述通式(I)所示的矽烷偶合劑’例如可舉出3-(甲 基·)丙烯醯氧基丙基三乙氧基矽院、2_(甲基)丙烯醯氧基乙 基三乙氧基矽烷、3 -異氰酸基丙基三乙氧基矽烷、3 -異氰 酸基丙基(甲基)二乙氧基矽烷、2_異氰酸基乙基三乙氧基 矽烷、2 -異氰酸基乙基(甲基)二乙氧基矽烷、3 -縮水甘油 氧基丙基三乙氧基矽烷、3-縮水甘油氧基丙基(甲基)二乙 氧基矽烷、2 -縮水甘油氧基乙基三乙氧基矽烷、2 -縮水甘 -18- 200846802 油氧基乙基(甲基)二乙氧基矽烷、3-(3,4 -環氧基環己基)丙 基三乙氧基矽烷、3-(3,4-環氧基環己基)丙基(甲基)二乙氧 基砂院、2-(3,4 -環氧基環己基)乙基三乙氧基砂院、2 _(3,4-環氧基環己基)乙基(甲基)二乙氧基矽烷、N-2-(胺基乙基)-3 -胺基丙基三乙氧基矽烷、N-2 -胺基乙基-3-胺基丙基甲基 二乙氧基矽烷、3-胺基丙基三乙氧基矽烷、N-苯基-3-胺基 丙基三乙氧基矽烷、3 -锍丙基三乙氧基矽烷等的乙氧基系 矽烷偶合劑、及前述乙氧基系矽烷偶合劑的乙氧基經甲氧 基取代的甲氧基系矽烷偶合劑等。此等可單獨1種使用, 亦可組合2種以上來使用。 於前述(1)及(2)的能量線硬化型高分子材料中,在不損 害本發明之效果的範圍內,視需要可添加交聯劑、賦黏劑 、抗氧化劑、紫外線吸收劑、光安定劑、軟化劑等。 作爲前述交聯劑,例如可舉出多異氰酸酯化合物、環 氧樹脂、蜜胺樹脂、尿素樹脂、二醛類、羥甲基聚合物、 氮雜環丙烷系化合物、金屬螯合化合物、金屬烷氧化物、 金屬鹽等,但較佳爲使用多異氰酸酯化合物。此交聯劑對 於100質量份的上述(甲基)丙烯酸酯共聚物的固體成分而 言,較佳爲摻合〇〜3 〇質量份。 此處,作爲多異氰酸酯化合物之例,可舉出伸甲苯二 異氰酸酯、二苯基甲烷二異氰酸酯、苯二甲基二異氰酸酯 等的芳香族多異氰酸酯、六亞甲基二異氰酸酯等的脂肪族 多異氰酸醋、異佛爾酮一異氰酸酯、加氯苯基甲院一異氰 酸酯等的脂環式多異氰酸酯等,及此等的縮二脲體、異氰 -19- 200846802 尿酸酯體,以及與乙二醇、丙二醇、新戊二醇、三羥甲基 丙烷、蓖麻油等的低分子含活性氫的化合物之反應物即加 成物等。此等交聯劑可單獨1種使用,也可組合2種以上 來使用。 再者,前述(1)及(2)的能量線硬化型高分子材料,爲了 控制儲存彈性模數,對於(1)的能量線硬化型高分子材料, 可添加(2)的在側鏈具有自由基聚合性不飽和基的能量線硬 化性基之(甲基)丙烯酸酯共聚合物。同樣地,對於(2)的能 量線硬化型高分子材料,可添加(1)的丙烯酸系聚合物、或 能量線硬化型聚合性寡聚物或能量線硬化型聚合性單體。 以下例示本發明的電路基板用樹脂片之製造方法。但 是,本發明不受此等所特別限制。 於剝離片的剝離劑層上,將含有前述能量線硬化型高 分子材料及前述無機微粒子等的經調整到適當濃度的塗佈 液,藉由眾所周知的方法,例如刀塗法、輥塗法、桿塗法 、刮板塗佈法、口模式塗佈法、凹槽輥塗佈法等,塗佈及 乾燥成指定的厚度,而形成電路基板用樹脂片。亦可層合 前述剝離片以用於電路基板用樹脂片的保管或保護。再者 ,於電路基板用樹脂片的另一面,可層合與前述剝離片有 不同剝離力的剝離片,也可不層合而照原樣地使用於後述 的電路基板用片之製作。 此處,電路基板用樹脂片的厚度,雖然取決於其使用 條件,但通常爲20〜ΙΟΟΟμιη左右,較佳爲80〜 再者,於加大電路基板用樹脂片的厚度時,可藉由層合前 -20- 200846802 述電路基板用樹脂片之製造方法所製作的樹脂層,而成爲 電路基板用樹脂片。 又,作爲前述剝離片,並沒有特別的限制,可舉出於 聚乙烯薄膜或聚丙烯薄膜等的聚烯烴薄膜、聚對酞酸乙二 酯等的聚酯薄膜上塗佈聚矽氧樹脂等的剝離劑,而設有剝 離劑層者。此剝離片的厚度,通常爲20〜150 μπι左右。 接著,說明本發明的電路基板用片。本發明的電路基 板用片,係由在支持體的一面上層合前述電路基板用樹脂 片而構成者。該電路基板用樹脂片的較佳配合等之構成, 係如前述。 另一方面,支持體係沒有特別的限制,可從通常作爲 顯示器用支持體所使用的透明支持體中選擇任意者而使用 。作爲如此的支持體,可舉出玻璃基板、或板狀或薄膜狀 的塑膠支持體等。作爲玻璃基板,例如可以使用由鈉鈣玻 璃、含鋇·緦的玻璃、鋁矽酸玻璃、鉛玻璃、硼矽酸玻璃 、鋇硼矽酸玻璃、石英等所成的支持體。另一方面,作爲 板狀或薄膜狀的塑膠支持體,例如可以使用由聚碳酸酯樹 脂、丙烯酸樹脂、聚對酞酸乙二酯樹脂、聚醚硫化物樹脂 、聚颯樹脂、聚環烯烴樹脂等所成的支持體。此等支持體 的厚度雖然係按照用途來適宜選定,但通常爲2 0 μπι〜5 mm 左右,較佳爲50μιη〜2mm。 接著,以下例示製造此電路基板用片的方法。但是’ 本發明係不受此所特別限制。 作爲第1方法,於前述電路基板用樹脂片的兩側層合 -21- 200846802 彔!J離片時,首先剝離輕剝離型剝離片,將其剝離面與前述 支持體貼合,而製作電路基板用片。 作爲第2方法,於剝離片上藉由前述方法來製作電路 基板用樹脂片,然後與直接支持體貼合,而製作電路基板 用片。 作爲第3方法,於前述支持體上直接地將前述塗佈液 ’藉由眾所周知的方法,例如刀塗法、輥塗法、桿塗法、 刮板塗佈法、口模式塗佈法、凹槽輥塗佈法等,塗佈及乾 • 燥成指定的厚度,以層合電路基板用樹脂片,而直接作製 電路基板用片。 第1方法於使用如玻璃基板的剛性支持體之情況係較 佳;第2、第3方法係薄膜狀塑膠般的支持體係較佳。 本發明的顯示器用電路基板,係可藉由在如前述所得 之電路基板用片的電路基板用樹脂片面,埋入電路晶片, 對其照射能量線而使硬化以製作。 若說明具體的方法,則在剝離片上等放被埋入的電路 ^ 晶片,於其上載置電路基板用片,以使電路基板用樹脂片 面(電路基板用樹脂與剝離片貼合時,預先剝離而使用)與 該電路晶片接觸,在〇· 05〜2 .OMPa左右的荷重下,較佳爲 在0〜1 5 0 °C,更佳爲在5〜1 0 0 °C的、溫度,將該晶片埋入 ,照射能量線而使電路基板用樹脂片硬化後,剝離置有前 述電路晶片的剝離片,可得到本發明的顯示器用電路基板 。再者,於加熱以埋入電路晶片時,能量線的照射亦可在 電路基板用樹脂片經加熱的狀態下進行,也可冷卻到室溫 -22- 200846802 後才進行。 作爲能量線,通常使用紫外線或電子線。紫外線可藉 由高壓水銀燈、熔融Η燈、氙燈等來獲得;另一方面,電 子線可藉由電子線加速器等來獲得。於此能量線之中,特 佳爲紫外線。適當地選擇此能量線的照射量,以使硬化後 的硬化層之儲存彈性模數在前述範圍內,例如於紫外線的 情況’光量較佳爲100〜500〇mJ/cm2,於電子線的情況, 較佳爲10〜lOOOkrad左右。 ® 第i(a)圖、第Ub)圖及第1(c)圖係顯示使用本發明的 電路基板用片,將電路晶片埋入的方法之1例的步驟說明 圖。 首先,於支持體1上,準備由未硬化狀態的能量線硬化 型高分子材料及無機微粒子等所成的本發明的電路基板用 樹脂片2,同時於剝離片4上放置電路晶片3[第1(a)圖]。 其次,將電路基板用樹脂片2載置於電路晶片3及使接觸 ,於荷重下將該晶片埋入,照射能量線而使硬化[第1 (b)圖] ^ ,經由此操作,使未硬化狀態的回路基板用樹脂片2成爲 硬化層5,其中埋有電路晶片3,使固定同時使本發明的顯 示器用電路基板7可從剝離片4容易剝離[第1(c)圖]。 依照如此的方法,不是加熱高分子薄膜來將電路晶片 埋入,而是使用能量線硬化型高分子材料,將電路晶片埋 入,然後進行硬化,將電路晶片固定化,故不易發生使用 高分子薄膜時的不良情形,亦可縮短操作時間’且有效率 的。 -23- 200846802 於本發明中,可提供適合如此的方法,以及埋入性亦 優異,且硬化時的體積收縮小,對支持體具有充分的密接 性,同時具有高的耐熱性之埋有電路晶片的顯示器用電路 基板。 實施例 接著,藉由實施例來更詳細說明本發明,惟本發明完 全不受此等例子所限定。但是,除了特別規定的情況以外 ,本發明中所言及的諸物性値係藉由下述(1)〜(7)的方法 Φ 來測定。 再者,各例所得之電路基板用樹脂片的諸特性,係藉 由以下所示的方法來進行。 (1) 硬化後的透射率 硬化後的電路基板用樹脂片之透射率,係使用UV-Vis 測定裝置[島津製作所公司製,裝置名「MPC-3100」],測 定在測定波長4 0 0 n m的透射率。 (2) 體積收縮率 ® 硬化時的電路基板用樹脂片之體積收縮率△ d,係測定 硬化後及硬化前對於水的比重d b、d a,依照△ d = ( d a - d b ) / d a 之式來算出。 (3) 線膨脹係數 硬化後的電路基板用樹脂片之線膨脹係數,係使用熱 機械分析裝置[BRUKER AXS公司製,裝置名「TMA-4000S」] ,在49mN的荷重、30°C的初期溫度、100°C的最高溫度, 3 °C /分鐘的升溫速度下進行測定。 -24- 200846802 (4)基板密接性(紫外線硬化後的黏著力) 將電路基板用樹脂片黏貼於玻璃基板以當作電路基板 用片。所得到的電路基板用片,自將電路基板用樹脂片黏 貼於玻璃基板起經過3 0分鐘後,從電路基板用樹脂片面 側照射紫外線(光源:熔融Η燈,照度條件:400mW/cm2, 光量條件30〇mJ/cm2)以成爲試料。對該試料,使用拉伸試 驗機[Instron公司製,裝置名「Instron 55 81」],在300m /分 鐘的剝離速度、180。的剝離角度之條件下測定黏著力(mN) Φ (5)硬化前的儲存彈性模數測定 層合約3 mm厚度的電路基板用樹脂片,切割成直徑 8mm的圓形以成爲試料。對該試料,依照ns K 7244-7, 使用黏彈性測定裝置[RheomeUics公司(現爲TA儀器公司) 製,裝置名「DYNAMIC ANALYZER RDAII」],測定在 1Hz 的23t及8 0°C之儲存彈性模數G'(Pa)。 (6) 硬化後的儲存彈性模數測定 對於厚度1〇〇 μηι的電路基板用樹脂片,照射紫外線(光 ® 源:熔融 Η燈,照度條件:4〇〇mW/cm2,光量條件 3 00mJ/cm2)而使硬化,將其切割成5 mm x 3 0 mm的長方形以 成爲試料。對該試料,依照HS K 7244-4,使用動態黏彈 性測定裝置[TA儀器公司製,裝置名「Q 800DMA」],測定在 1 1Hz的23°C及150°C的儲存彈性模數E’(Pa)。 (7) 重量平均分子量 使用凝膠滲透層析術(GPC),在以下的條件下,求得聚 甲基丙烯酸甲酯換算的重量平均分子量。 -25- 200846802 (測定條件) GPC測定裝置:東曹(股)公司製HLC-8020 GPC管柱(依以下的順序通過)··東曹(股)公司製 TSK guard column HXL-H TSK gel GMHXL(x2) TSK gel G2000HXL 測定溶劑:四氫呋喃 測定溫度:4 0 °C • 實施例1 對於100質量份的聚(甲基丙烯酸甲酯)[Aldrich公司製, Mw(重量平均分子量)=1 20,000]固體成分而言,溶解9.0質 量份的光聚合引發劑之2,2-二甲氧基-1,2-二苯基乙烷-1-酮 [汽巴特殊化學品公司製、商品名「Irgacure 651」]固體成分 、200質量份的己內酯改性三(丙烯醯氧基乙基)異氰尿酸 酯[新中村化學工業公司製,商品名「NK Ester 93 00- 1 CL」] 固體成分、及1 6.0質量份的預先經表面修飾的有機矽石溶 ^ 膠固體成分及使分散,最後添加甲基乙基酮’將固體成分 濃度調整爲3 8質量%,攪拌直到成爲均勻液爲止,當作塗 佈液。再者,有機矽石溶膠表面修飾方法’係藉由對於 1 00質量份的有機矽石溶膠[日產化學公司製,商品名「 MEK-ST」,平均粒徑10〜15nm(型錄値,BET法的平均粒 徑)、溶劑:甲基乙基酮、微粒子含有率:3 0質量%]固體 成分,添加4 · 0克當作有機矽烷化合物的3 -甲基丙烯醯氧 基丙基三甲氧基矽烷[信越化學公司製,商品名「KBM503」] -26- 200846802 ,在室溫攪拌4日而另途調製者來進行。 將前述所調製的塗佈液,藉由刀塗機,塗佈在聚對酞 酸乙二酯薄膜之一面設有聚矽氧系剝離劑層的重剝離型剝 離片[LINTEC公司製,商品名「SP-PET50C」]之剝離處理面 上,在100 °C加熱乾燥90秒,形成厚度50μπι的由能量線 硬化型高分子材料所成的樹脂層。同樣地,於聚對酞酸乙 二酯薄膜之一面設有聚矽氧系剝離劑層的輕剝離型剝離片 [LINTEC公司製,商品名「SP-PET38GS」]的剝離處理面上 • ,塗佈厚度5 0 μιη的由能量線硬化型高分子材料所成的樹 脂層(矽石微粒子的固體成分含有率:4·9質量%)。所得到 的前述2個樹脂層係使用層合機而層合爲厚度1 ΟΟμιη,當 作電路基板用樹脂片。 實施例2 除了有機矽石溶膠的摻合量爲3 4 · 0質量份的固體成分 以外,與實施例1同樣地調製塗佈液及塗佈和層合,成爲 厚度1 0 0 μιη的由能量線硬化型高分子材料所成的電路基板 ® 用樹脂片(矽石微粒子的固體成分含有率:9.8質量%)。 實施例3 除了有機矽石溶膠的摻合量爲77.0質量份的固體成分 以外,與實施例1同樣地調製塗佈液及塗佈和層合,成爲 厚度1 0 0 μιη的由能量線硬化型高分子材料所成的電路基板 用樹脂片(矽石微粒子的固體成分含有率:19·4質量%)。 實施例4 除了有機矽石溶膠的摻合量爲132質量份的固體成分 -27- ,200846802 以外’與實施例1同樣地調製塗佈液及塗佈和層合,成爲 厚度ΙΟΟμπι的由能量線硬化型高分子材料所成的電路基板 用樹脂片(矽石微粒子的固體成分含有率:2 8.8質量%)。 實施例5 除了不施予有機矽石溶膠的表面處理以外,與實施例4 同樣地調製塗佈液及塗佈和層合,成爲厚度1 ΟΟμπι的由能 量線硬化型高分子材料所成的電路基板用樹脂片(矽石微粒 子的固體成分含有率:28.8質量%)。 _ 實施例6 除了有機矽石溶膠的摻合量爲463質量份的固體成分 以外,與實施例1同樣地調製塗佈液及塗佈和層合,成爲 厚度ΙΟΟμπι的由能量線硬化型高分子材料所成的電路基板 用樹脂片(矽石微粒子的固體成分含有率:55.5質量%)。 比較例1 除了不摻合有機矽石溶膠以外,與實施例1同樣地調 製塗佈液,成爲厚度1 0 0 的由能量線硬化型高分子材料 • 所成的電路基板用樹脂片(矽石微粒子的固體成分含有率: 0質量%)。 表1中顯示前述實施例1〜6及比較例1所得之電路基 板用樹脂片的諸特性。 -28- .200846802Z - R1 - Si / R2〇\ (ORVn (I) In the above formula (I), Z represents an ethylenic double group copolymerizable with the component of the energy ray-curable material, or The reactive group in the polymerizable polymer material reacts with an organic group having such a functional group. As such a functional group, for example, a acryloxy group, an epoxy group, an isocyanate group, or an amine group can be used. And 锍_ and the organic group having a functional group, for example, a shrinkable polymer: a wire hard: a base or a exemplified (meth), and ~oleyloxy-17-200846802, 3,4- Epoxycyclohexyl isomer. R1 represents an alkylene group having 2 to 4 carbon atoms. The alkylene group may be either linear or branched, and examples thereof include an ethyl group and a propyl group. The trimethylene group, the tetramethylene group, and the 1-methyldimethylidene temple are preferably an alkylene group having 2 or 3 carbon atoms, and particularly preferably an ethylidene group and a trimethylene group. a hydrocarbon group having a carbon number of 1 to 10. The hydrocarbon group represents a linear, branched, cyclic alkyl group having a carbon number of 1 to 1 fluorene, an extended aryl group having 6 to 10 carbon atoms or a carbon number of 7 to 10 Aralkyl group. As carbon Examples of the alkyl group having a number of 1 to 1 fluorene include a methyl group, an ethyl group, a #-n-propyl group, an isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various octyl groups, various fluorenyl groups, and cyclopentyl groups. Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group; and examples of the aralkyl group having 7 to 10 carbon atoms include a benzyl group. , methylbenzyl, phenethyl, methylphenethyl, etc. η represents 0 or 1, and R3 represents an alkyl group having 1 to 4 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, or Butyl, isobutyl, t-butyl, tert-butyl. 2 or 3 of R3 〇 may be the same or different from each other, from the point of view of the manufacture of the 矽® alkane coupling agent The decane coupling agent represented by the above formula (I) is exemplified by 3-(methyl·)acryloxypropyltriethoxy oxime, 2-(meth) propylene oxime Ethyl triethoxy decane, 3-isocyanate propyl triethoxy decane, 3-isocyanate propyl (methyl) diethoxy decane, 2-isocyanatoethyl three Ethoxy decane, 2-isocyano Ethyl ethyl (methyl) diethoxy decane, 3-glycidoxy propyl triethoxy decane, 3-glycidoxy propyl (methyl) diethoxy decane, 2-glycidyl oxygen Ethyl triethoxy decane, 2-glycidyl-18- 200846802 oleyloxyethyl (methyl) diethoxy decane, 3-(3,4-epoxycyclohexyl) propyl triethoxy Baseline, 3-(3,4-epoxycyclohexyl)propyl(methyl)diethoxylate, 2-(3,4-epoxycyclohexyl)ethyltriethoxy sand , 2 _(3,4-epoxycyclohexyl)ethyl(methyl)diethoxydecane, N-2-(aminoethyl)-3-aminopropyltriethoxydecane, N -2 -Aminoethyl-3-aminopropylmethyldiethoxydecane, 3-aminopropyltriethoxydecane, N-phenyl-3-aminopropyltriethoxydecane An ethoxylated decane coupling agent such as 3-mercaptopropyltriethoxysilane or a methoxy decane coupling agent in which an ethoxy group of the ethoxylated decane coupling agent is substituted with a methoxy group. These may be used alone or in combination of two or more. In the energy ray-curable polymer material of the above (1) and (2), a crosslinking agent, a tackifier, an antioxidant, an ultraviolet absorber, and a light may be added as needed within a range not impairing the effects of the present invention. Stabilizers, softeners, etc. Examples of the crosslinking agent include a polyisocyanate compound, an epoxy resin, a melamine resin, a urea resin, a dialdehyde, a methylol polymer, an aziridine compound, a metal chelate compound, and a metal alkoxide. A compound, a metal salt or the like, but a polyisocyanate compound is preferably used. The crosslinking agent is preferably a blend of 〇3 to 3 parts by mass based on 100 parts by mass of the solid content of the above (meth) acrylate copolymer. Here, examples of the polyisocyanate compound include aliphatic polyisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate, and benzodimethyl diisocyanate, and aliphatic polyisophthalides such as hexamethylene diisocyanate. An alicyclic polyisocyanate such as cyanic acid vinegar, isophorone monoisocyanate, chlorinated phenyl ketone monoisocyanate, etc., and such biuret, isocyanide-19-200846802 urate body, and A reaction product of a low molecular weight active hydrogen-containing compound such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil, that is, an adduct or the like. These crosslinking agents may be used alone or in combination of two or more. Further, in the energy ray-curable polymer material of the above (1) and (2), in order to control the storage elastic modulus, the energy ray-curable polymer material of (1) may have (2) added to the side chain. A (meth) acrylate copolymer of an energy ray-curable group of a radical polymerizable unsaturated group. Similarly, the energy ray-curable polymer material of (2) may be an acrylic polymer (1) or an energy ray-curable polymerizable oligomer or an energy ray-curable polymerizable monomer. The method for producing the resin sheet for a circuit board of the present invention is exemplified below. However, the present invention is not particularly limited by these. The coating liquid containing the energy ray-curable polymer material, the inorganic fine particles, and the like adjusted to an appropriate concentration is applied to the release agent layer of the release sheet by a known method such as a knife coating method or a roll coating method. A resin coating for a circuit board is formed by a bar coating method, a blade coating method, a die coating method, a gravure coating method, and the like, and coating and drying to a predetermined thickness. The release sheet may be laminated to be used for storage or protection of a resin sheet for a circuit board. Further, on the other surface of the resin sheet for a circuit board, a release sheet having a different peeling force from the release sheet may be laminated, or may be used as it is for the production of a sheet for a circuit board to be described later without lamination. Here, the thickness of the resin sheet for a circuit board is usually about 20 to ΙΟΟΟμηη, preferably 80 Ω depending on the conditions of use. Further, when the thickness of the resin sheet for a circuit board is increased, the layer can be used. The resin layer produced by the method for producing a resin sheet for a circuit board described above is a resin sheet for a circuit board. In addition, the release sheet is not particularly limited, and a polysiloxane resin such as a polyolefin film such as a polyethylene film or a polypropylene film or a polyester film such as polyethylene terephthalate may be applied. The stripper is provided with a release agent layer. The thickness of the release sheet is usually about 20 to 150 μπι. Next, a sheet for a circuit board of the present invention will be described. The sheet for a circuit board of the present invention is formed by laminating the resin sheet for a circuit board on one surface of a support. The configuration of the resin sheet for a circuit board is preferably as described above. On the other hand, the support system is not particularly limited, and any one of the transparent supports generally used as a support for a display can be selected and used. Examples of such a support include a glass substrate, a plate-shaped or film-shaped plastic support, and the like. As the glass substrate, for example, a support made of soda lime glass, glass containing ruthenium and osmium, aluminosilicate glass, lead glass, borosilicate glass, borofluoride glass, quartz or the like can be used. On the other hand, as the plastic support of a plate shape or a film shape, for example, polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, polyfluorene resin, polycycloolefin resin can be used. Wait for the support. Although the thickness of these supports is appropriately selected depending on the application, it is usually about 20 μm to 5 mm, preferably 50 μm to 2 mm. Next, a method of manufacturing the sheet for a circuit board will be exemplified below. However, the present invention is not particularly limited thereto. In the first method, when the separator is separated from the two sides of the resin sheet for the circuit board, the light release type release sheet is first peeled off, and the release surface is bonded to the support to form a circuit board. Use tablets. In the second method, a resin sheet for a circuit board is produced on the release sheet by the above method, and then bonded to a direct support to form a sheet for a circuit board. As a third method, the coating liquid is directly applied to the support by a known method such as a knife coating method, a roll coating method, a rod coating method, a blade coating method, a die coating method, and a concave method. By a groove roll coating method, etc., it is applied and dried to a predetermined thickness to laminate a resin sheet for a circuit board, and a circuit board sheet is directly produced. The first method is preferably a case where a rigid support such as a glass substrate is used; and the second and third methods are preferably a film-like plastic support system. The circuit board for a display of the present invention can be produced by embedding a circuit wafer on a resin sheet surface of a circuit board for a circuit board sheet obtained as described above, and irradiating the energy line with the energy source. When a specific method is described, the embedded circuit wafer is placed on the peeling sheet, and the circuit board sheet is placed thereon so that the circuit board resin sheet surface (the circuit board resin and the peeling sheet are bonded together) And using) in contact with the circuit wafer, at a load of about 〜 05~2 .OMPa, preferably at 0 to 150 ° C, more preferably at a temperature of 5 to 100 ° C, After the wafer is embedded and irradiated with an energy ray to cure the circuit board resin sheet, the release sheet on which the circuit wafer is placed is peeled off, whereby the circuit board for a display of the present invention can be obtained. Further, when heating to embed the circuit chip, the irradiation of the energy ray may be performed while the resin sheet for the circuit board is heated, or may be cooled to room temperature -22-200846802. As the energy line, ultraviolet rays or electron wires are usually used. The ultraviolet rays can be obtained by a high pressure mercury lamp, a fused xenon lamp, a xenon lamp or the like; on the other hand, the electron beam can be obtained by an electron beam accelerator or the like. Among the energy lines, ultraviolet rays are particularly preferred. The irradiation amount of the energy ray is appropriately selected so that the storage elastic modulus of the hardened layer after hardening is within the above range. For example, in the case of ultraviolet ray, the amount of light is preferably 100 to 500 〇mJ/cm 2 in the case of an electron beam. Preferably, it is about 10~lOOkrad. (i), (i), (b), and (c) are diagrams showing an example of a method of embedding a circuit board using the sheet for a circuit board of the present invention. First, the resin sheet 2 for a circuit board of the present invention which is formed of an energy-hardening type polymer material and inorganic fine particles in an uncured state is prepared on the support 1, and a circuit wafer 3 is placed on the release sheet 4 1(a) Figure]. Next, the resin sheet 2 for a circuit board is placed on the circuit wafer 3 and brought into contact, and the wafer is buried under a load, and the energy line is irradiated to be hardened [Fig. 1 (b)] ^, and the operation is performed. The resin sheet 2 for a circuit board in a hardened state is a hardened layer 5 in which the circuit wafer 3 is embedded, and the circuit board 7 for a display of the present invention can be easily peeled off from the peeling sheet 4 [Fig. 1 (c)]. According to such a method, instead of heating the polymer film to embed the circuit wafer, the energy ray-curable polymer material is used, the circuit wafer is buried, and then hardened to fix the circuit wafer, so that the polymer is less likely to be used. In the case of a film, the operation time can be shortened and it is efficient. -23- 200846802 In the present invention, it is possible to provide a buried circuit which is suitable for such a method, and which is excellent in embedding property, has small volume shrinkage upon hardening, has sufficient adhesion to a support, and has high heat resistance. A circuit board for a display of a wafer. EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited by the examples. However, the physical properties described in the present invention are measured by the method Φ of the following (1) to (7), except for the case where it is specifically specified. In addition, the characteristics of the resin sheet for a circuit board obtained in each example were carried out by the method described below. (1) The transmittance of the resin sheet for the circuit board after the curing of the cured layer is measured by using a UV-Vis measuring device [manufactured by Shimadzu Corporation, device name "MPC-3100"], and measuring at a measuring wavelength of 400 nm. Transmittance. (2) Volume shrinkage ratio ○ d The volume shrinkage ratio Δ d of the resin sheet for circuit board during hardening is measured by the weight db and da of water after hardening and hardening, according to Δ d = ( da - db ) / da To calculate. (3) The linear expansion coefficient of the resin sheet for the circuit board after the linear expansion coefficient is hardened is a thermomechanical analyzer [manufactured by BRUKER AXS, the device name "TMA-4000S"], at a load of 49 mN and an initial stage of 30 °C. The temperature was measured at a maximum temperature of 100 ° C at a temperature increase rate of 3 ° C /min. -24- 200846802 (4) Substrate adhesion (adhesive force after ultraviolet curing) A resin sheet for a circuit board is adhered to a glass substrate to serve as a sheet for a circuit board. The obtained circuit board sheet was irradiated with ultraviolet rays from the resin sheet surface side of the circuit board after the resin sheet for the circuit board was adhered to the glass substrate for 30 minutes (light source: melting xenon lamp, illuminance condition: 400 mW/cm 2 , light amount) The condition is 30 〇 mJ/cm 2 ) to be a sample. For the sample, a tensile tester (manufactured by Instron Co., Ltd., device name "Instron 55 81") was used, and the peeling speed at 300 m/min was 180. The adhesion force (mN) was measured under the peeling angle condition. (5) Measurement of the storage elastic modulus before hardening The resin sheet for a circuit board having a thickness of 3 mm was cut into a circular shape having a diameter of 8 mm to obtain a sample. For the sample, according to ns K 7244-7, the storage elasticity at 23 Hz and 80 ° C at 1 Hz was measured using a viscoelasticity measuring device [Rheome Uics (now TA Instruments), device name "DYNAMIC ANALYZER RDAII"]. Modulus G' (Pa). (6) Measurement of storage elastic modulus after hardening The resin sheet for a circuit board having a thickness of 1 μm is irradiated with ultraviolet light (light source: melting xenon lamp, illuminance condition: 4 〇〇 mW/cm2, light quantity condition 300 00 mJ/ Cm2) was hardened, and it was cut into a rectangle of 5 mm x 30 mm to become a sample. For the sample, a storage elastic modulus E' at 23 ° C and 150 ° C at 11 Hz was measured in accordance with HS K 7244-4 using a dynamic viscoelasticity measuring device [manufactured by TA Instruments, device name "Q 800DMA"). (Pa). (7) Weight average molecular weight The weight average molecular weight in terms of polymethyl methacrylate was determined by gel permeation chromatography (GPC) under the following conditions. -25- 200846802 (Measurement conditions) GPC measuring device: HLC-8020 GPC pipe made by Tosoh Corporation (passed in the following order) · TSK guard column HXL-H TSK gel GMHXL (x2) TSK gel G2000HXL Determination solvent: tetrahydrofuran measurement temperature: 40 ° C • Example 1 For 100 parts by mass of poly(methyl methacrylate) [Mw (weight average molecular weight) = 120,000], manufactured by Aldrich Co., Ltd. In the component, 2,2-dimethoxy-1,2-diphenylethane-1-one which is a photopolymerization initiator of 9.0 parts by mass [manufactured by Ciba Specialty Chemicals Co., Ltd., trade name "Irgacure 651" Solid component, 200 parts by mass of caprolactone-modified tris(propylene methoxyethyl) isocyanurate [manufactured by Shin-Nakamura Chemical Co., Ltd., trade name "NK Ester 93 00-1 CL"] Solid content And 16.0 parts by mass of the surface-modified organic vermiculite solid content and dispersion, and finally adding methyl ethyl ketone', the solid content concentration is adjusted to 38% by mass, and stirred until it becomes a homogeneous liquid. Used as a coating liquid. In addition, the surface modification method of the organic vermiculite sol is based on 100 parts by mass of an organic vermiculite sol [manufactured by Nissan Chemical Co., Ltd., trade name "MEK-ST", and the average particle diameter is 10 to 15 nm (type 値, BET The average particle diameter of the method), solvent: methyl ethyl ketone, microparticle content: 30% by mass] solid content, and 4·0 g of 3-methylpropenyloxypropyltrimethoxy as an organic decane compound was added. The decane [manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBM503"] -26-200846802 was stirred at room temperature for 4 days and was prepared by another method. The coating liquid prepared as described above was applied to a heavy release type release sheet having a polyoxynitride-based release agent layer on one side of a polyethylene terephthalate film by a knife coater [manufactured by LINTEC Co., Ltd., trade name The peeling-treated surface of "SP-PET50C"] was dried by heating at 100 ° C for 90 seconds to form a resin layer made of an energy ray-curable polymer material having a thickness of 50 μm. In the same manner, a light-peelable release sheet (manufactured by LINTEC Co., Ltd., trade name "SP-PET38GS") on a surface of a polyethylene terephthalate film is provided with a polyether oxide release layer. A resin layer made of an energy ray-curable polymer material having a thickness of 50 μm (solid content of vermiculite particles: 4.9% by mass). The obtained two resin layers were laminated to a thickness of 1 μm by using a laminator, and used as a resin sheet for a circuit board. Example 2 A coating liquid, a coating solution, and a lamination were prepared in the same manner as in Example 1 except that the amount of the organic vermiculite sol was 3 4 · 0 parts by mass, and the energy was 1 0 0 μηη. A resin sheet for a circuit board® made of a wire-curable polymer material (solid content of vermiculite particles: 9.8% by mass). Example 3 A coating liquid, a coating solution, and a lamination were prepared in the same manner as in Example 1 except that the amount of the organic vermiculite sol blended was 77.0 parts by mass, and the thickness was 1 0 0 μη. A resin sheet for a circuit board formed of a polymer material (solid content of vermiculite particles: 19.4% by mass). Example 4 A coating liquid, a coating liquid, and a coating and lamination were prepared in the same manner as in Example 1 except that the blending amount of the organic vermiculite sol was 132 parts by mass of solid content -27-, 200846802, and the thickness was ΙΟΟμπι. A resin sheet for a circuit board formed of a curable polymer material (solid content of vermiculite particles: 28.8 mass%). Example 5 A coating liquid, a coating liquid, and a coating and lamination were prepared in the same manner as in Example 4 except that the surface treatment of the organic vermiculite sol was carried out to obtain a circuit made of an energy ray-curable polymer material having a thickness of 1 μm. Resin sheet for substrate (solid content of vermiculite particles: 28.8% by mass). Example 6 A coating liquid, a coating liquid, and a coating and lamination were prepared in the same manner as in Example 1 except that the blending amount of the organic vermiculite sol was 463 parts by mass, to obtain an energy ray-curable polymer having a thickness of ΙΟΟμπι. A resin sheet for a circuit board formed of a material (solid content of vermiculite fine particles: 55.5 mass%). Comparative Example 1 A resin sheet for a circuit board made of an energy ray-curable polymer material having a thickness of 100 Å was prepared in the same manner as in Example 1 except that the organic vermiculite sol was not blended. The solid content of the fine particles was 0% by mass. Table 1 shows the characteristics of the resin sheets for circuit boards obtained in the above Examples 1 to 6 and Comparative Example 1. -28- .200846802

τ-撇 硬化後的儲存彈性模數 E,(Pa) 150°C 1.65x10s 1.45χ108 1.50χ!08 1·53χ108 1·47χ108 1·35χ108 Ι.ΙΟχΙΟ8 23 °C 3.06χ109 _I [2.80χ109 3.00χ109 3·10χ109 3.01 χΙΟ9 3.20χ!09 2.94χ109 硬化前的儲存彈性模數 Gf(Pa) 80°C . —— ---------- - ---- 1 3·80χ104 3.75χ104 ί 4.76χ104 4.10χ104 3.92χ104 4.32χ105 5.76χ104 23〇C Ι.ΙόχΙΟ5 ι Ι.ΙόχΙΟ5 1.71χ105 1·55χ105 1·43χ105 1.23χ106 1.69x105 紫外線 硬化後 的透射 率 (%) | 86.0 86.9 1 87.0 85.7 86.8 85.5 86.9 線膨脹係 數 (/K) _______1 Ι.ΟχΙΟ'5 6.0χ10"5 1 2.8χ10'5 3·4χ1(Τ5 4.0χ1(Γ5 4.5χ10'5 Ι.ΟχΙΟ"4 紫外線 硬化後 的黏著 力 (mN) _1 360 400 590 690 410 700 270 體積 收縮率 5.49 4.92 1 4.70 4.43 4.89 4.20 5.77 矽石 含有率 (質量%) 1 1 00 Os 19.4 28.8 28.8 55.5 ο ο 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 比較例1 — 63, .200846802 由表1可知,實施例的電路基板用樹脂片,與比較例 者比較下,係體積收縮率小’對紫外線硬化後的玻璃基板 之黏著力高。 實施例7 剝離實施例1所得之電路基板用樹脂片的輕剝離型剝 離片,進行與鈉鈣玻璃板的貼合,作成電路基板用片。接 著,於經固定的台上放置剝離片,在該剝離片上排列矽晶 片(縱500 μιηχ橫5 00 μιηχ厚度50μιη)。然後,剝離與前述鈉 # 鈣玻璃板貼合的電路基板用片之重剝輕型剝離片矽晶片’ 在0.2MPa的壓力下與排列有矽晶片的剝離片貼合。於該 情況下,將用於放置剝離片的台置於可溫度控制的板上, 保持在80°C。然後,將壓力保持5分鐘後,回到常溫常壓 ,於照度40 0mW/cm2、光量3 00mJ/cm2的條件下’以熔融 Η燈泡當作光源照射紫外線使硬化,得到顯示器用電路基 板。然後,從所得到的顯示器用電路基板剝離剝離片,藉 由接觸式表面粗度計[MITUTOYO公司製,商品名「 ΐ 3 000」]來觀察如第2圖之矽晶片的埋入狀態。 結果突出量h爲2 μπι,埋入性良好。 再者,第2圖係顯示晶片的埋入狀態之說明圖,圖中h 的突出量低於5μπι,表示合格。突出量若爲5μπι以上,由 於在電路基板用片上,晶片的配線變困難,故不宜。 產業上的利用可能件 本發明的電路基板用樹脂片,係由用於埋入電路晶片 的能量線硬化型高分子材料所成的顯示器用的電路基板用 -30- 200846802Storage elastic modulus E after τ-撇 hardening, (Pa) 150°C 1.65x10s 1.45χ108 1.50χ!08 1·53χ108 1·47χ108 1·35χ108 Ι.ΙΟχΙΟ8 23 °C 3.06χ109 _I [2.80χ109 3.00χ109 3 ·10χ109 3.01 χΙΟ9 3.20χ!09 2.94χ109 Storage elastic modulus before hardening Gf(Pa) 80°C . —— ---------- - ---- 1 3·80χ104 3.75χ104 ί 4.76 Χ104 4.10χ104 3.92χ104 4.32χ105 5.76χ104 23〇C Ι.ΙόχΙΟ5 ι Ι.ΙόχΙΟ5 1.71χ105 1·55χ105 1·43χ105 1.23χ106 1.69x105 Transmittance after UV curing (%) | 86.0 86.9 1 87.0 85.7 86.8 85.5 86.9 Line Expansion coefficient (/K) _______1 Ι.ΟχΙΟ'5 6.0χ10"5 1 2.8χ10'5 3·4χ1(Τ5 4.0χ1(Γ5 4.5χ10'5 Ι.ΟχΙΟ"4 Adhesion after UV curing (mN) _1 360 400 590 690 410 700 270 Volume shrinkage 5.49 4.92 1 4.70 4.43 4.89 4.20 5.77 Vermiculite content (% by mass) 1 1 00 Os 19.4 28.8 28.8 55.5 ο 例 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 - 63, .200846802 As can be seen from Table 1, the circuit board for the embodiment uses a tree In the film, the film has a small volume shrinkage ratio, and the adhesion to the glass substrate after the ultraviolet curing is high. Example 7 The light release type release sheet of the resin sheet for a circuit board obtained in Example 1 was peeled off. A soda-lime glass plate was bonded to each other to form a sheet for a circuit board. Next, a release sheet was placed on a fixed stage, and a tantalum wafer (500 μm in width, 500 μm in thickness) was placed on the sheet, and then peeled off and Sodium # The glass substrate to which the calcium glass plate is bonded is a heavy-peeled release sheet ' wafer which is bonded to the release sheet in which the ruthenium wafer is arranged under a pressure of 0.2 MPa. In this case, it will be used for placing the release sheet. The table was placed on a temperature-controlled plate and kept at 80 ° C. Then, after maintaining the pressure for 5 minutes, it was returned to normal temperature and normal pressure, and under the conditions of illuminance of 40 0 mW/cm 2 and light amount of 300 mJ/cm 2 . The light bulb is irradiated with ultraviolet light as a light source to be hardened, and a circuit board for a display is obtained. Then, the release sheet was peeled off from the obtained circuit board for display, and the state of embedding of the wafer as shown in Fig. 2 was observed by a contact type surface roughness meter [manufactured by MITUTOYO Co., Ltd., trade name "ΐ3 000"). As a result, the amount of protrusion h was 2 μm, and the embedding property was good. Further, Fig. 2 is an explanatory view showing the state of embedding of the wafer, in which the amount of protrusion of h is less than 5 μm, indicating that it is acceptable. When the amount of protrusion is 5 μm or more, it is not preferable because the wiring of the wafer becomes difficult on the sheet for a circuit board. INDUSTRIAL APPLICABILITY The resin sheet for a circuit board of the present invention is a circuit board for display made of an energy ray-curable polymer material for embedding a circuit wafer -30- 200846802

樹脂片,其可給予抑制由於 積收縮,對於支持體具有充 性的埋有電路晶片之顯示器. 【圖式簡單說明】 第 1(a)圖、第 1(b)圖及 電路基板用樹脂片,埋入電 明圖。 第2圖係顯示晶片的埋入 【主要元件符號說明】 1 支持體 2 電路基板用樹脂片 3 電路晶片 §性能量線所致的硬化時之體 h的密接性,而且具有高耐熱 電路基板。 I 1 (C)圖係顯示使用本發明的 各晶片的方法之一例的步驟說 狀態之說明圖。 4 剝離片 硬化層The resin sheet can be provided with a display for embedding a circuit wafer that is rechargeable to the support due to product shrinkage. [Simplified Schematic] 1(a), 1(b), and a resin sheet for a circuit board , buried in the electricity map. Fig. 2 shows the embedding of the wafer. [Description of main components] 1. Support 2 Resin sheet for circuit board 3 Circuit wafer § The adhesion of the body h at the time of hardening due to the energy ray, and a high heat-resistant circuit board. The I 1 (C) diagram shows an explanatory view of the state of the steps of an example of the method of using each wafer of the present invention. 4 peeling sheet hardened layer

電路基板用片 顯示器用電路基板 突出量 -31-Sheet for circuit board, circuit board for display, protrusion amount -31-

Claims (1)

200846802 十、申請專利範圍: 1. 一種電路基板用樹脂片’係由用於埋入電路晶片^ 線硬化型高分子材料所成的顯示器用之電路基板) 片,該片中含有無機微粒子。 2. 如申請專利範圍第1項之電路基板用樹脂片,其 基板用樹脂片的23 °c之根據JIS K 7244-7所測定I 前之儲存彈性模數爲1χ1〇4〜lxl〇7Pa,23°C之根 K 7244-4所測定的硬化後之儲存彈性模數爲lxlC 上。 3. 如申請專利範圍第1項之電路基板用樹脂片,其 微粒子的平均粒徑爲3〜50nm。 4. 如申請專利範圍第2項之電路基板用樹脂片,其 微粒子的平均粒徑爲3〜50nm。 5 .如申請專利範圍第1至4項中任一項之電路基板 片,其中無機微粒子係矽石系微粒子。 6.如申請專利範圍第1至4項中任一項之電路基板 片,其中無機微粒子係經有機矽烷化合物所表 7·如申請專利範圍第6項之電路基板用樹脂片,其 矽烷化合物係具有可與構成能量線硬化型高分子 至少一個成分可鍵結的官能基。 8·如申請專利範圍第1至4項中任一項之電路基板 片,其中無機微粒子的固體成分含量爲3〜70質j -32- Ϊ勺能量 毛樹脂 中電路 的硬化 據JIS i8Pa 以 中無機 中無機 用樹脂 用樹脂 面修飾 中有機 材料的 :用樹脂 1 % 〇 200846802 9. 一種電路基板用片,其係由在支持體的一面上層合如申 請專利範圍第1至8項中任一項之電路基板用樹脂片而 成。 1G•一種顯示器用電路基板,其特徵爲在如申請專利範圍第 9項之電路基板用片的電路基板用樹脂片面,埋入電路 晶片,對其照射能量線而使硬化。200846802 X. Patent application scope: 1. A resin sheet for a circuit board ′ is a circuit board for a display formed by embedding a circuit chip-hardened polymer material, and the sheet contains inorganic fine particles. 2. The resin sheet for a circuit board according to the first aspect of the patent application, wherein the storage resin modulus of the substrate resin sheet at 23 ° C according to JIS K 7244-7 is 1χ1〇4 to lxl〇7Pa, The storage elastic modulus after hardening measured by root K 7244-4 at 23 ° C was lxlC. 3. The resin sheet for a circuit board according to the first aspect of the invention, wherein the fine particles have an average particle diameter of 3 to 50 nm. 4. The resin sheet for a circuit board of claim 2, wherein the fine particles have an average particle diameter of 3 to 50 nm. The circuit substrate sheet according to any one of claims 1 to 4, wherein the inorganic fine particles are fine particles of vermiculite. 6. The circuit substrate sheet according to any one of claims 1 to 4, wherein the inorganic fine particles are made of an organic decane compound, and the ruthenium compound is a resin sheet for a circuit board according to claim 6 of the patent application. It has a functional group bondable to at least one component constituting the energy ray-curable polymer. 8. The circuit substrate sheet according to any one of claims 1 to 4, wherein the solid content of the inorganic fine particles is 3 to 70, and the hardening of the circuit in the energy resin is according to JIS i8Pa. Inorganic inorganic resin for resin surface modification of organic material: resin 1% 〇200846802 9. A circuit board sheet which is laminated on one side of a support as in any of claims 1 to 8 The circuit board of the item is made of a resin sheet. 1G. A circuit board for a display, which is characterized in that a circuit chip is embedded in a resin sheet surface for a circuit board for a circuit board sheet according to claim 9 of the invention, and is irradiated with an energy ray to be cured. -33--33-
TW97110287A 2007-03-27 2008-03-24 Resin sheet for circuit substrate, sheet for circuit substrate and circuit substrate for display TW200846802A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081907 2007-03-27

Publications (1)

Publication Number Publication Date
TW200846802A true TW200846802A (en) 2008-12-01

Family

ID=39788609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97110287A TW200846802A (en) 2007-03-27 2008-03-24 Resin sheet for circuit substrate, sheet for circuit substrate and circuit substrate for display

Country Status (2)

Country Link
TW (1) TW200846802A (en)
WO (1) WO2008117879A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200939172A (en) * 2008-01-31 2009-09-16 Lintec Corp Resin sheet for circuit substrates, sheet for circuit substrates, and circuit substrate for displays
KR20200047447A (en) * 2017-08-31 2020-05-07 린텍 가부시키가이샤 Resin sheet, semiconductor device, and method of using resin sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696131B2 (en) * 2001-07-10 2005-09-14 株式会社東芝 Active matrix substrate and manufacturing method thereof
JP2005048058A (en) * 2003-07-29 2005-02-24 Fuji Photo Film Co Ltd Plastic substrate and method for producing the same
JP2005247904A (en) * 2004-03-01 2005-09-15 Sumitomo Bakelite Co Ltd Transparent composite material and display element, optical recording medium, and optical semiconductor package each using the same
JP4875340B2 (en) * 2004-10-06 2012-02-15 リンテック株式会社 Manufacturing method of circuit board sheet for display and circuit board sheet used in the manufacturing method
JP2007008989A (en) * 2005-06-28 2007-01-18 Nippon Zeon Co Ltd Formed article, transparent conductive film or sheet, and flat panel display

Also Published As

Publication number Publication date
WO2008117879A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5552338B2 (en) Adhesive composition, adhesive and adhesive sheet
JP5599177B2 (en) Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive, and optical film
TWI392715B (en) Resin compositin, pressure-sensitive adhesive for optical member, and process for producing pressure-sensitive adhesive for optical member
JP6139862B2 (en) (Meth) acrylic resin composition and adhesion / disassembly method
TWI478999B (en) Adhesive composition, adhesive and optical film
JP6554377B2 (en) Adhesive composition and adhesive sheet
KR102040263B1 (en) Surface protecting adhesive film for semiconductor wafer
JP5020975B2 (en) Display substrate for embedding pixel control elements
TWI375252B (en) Sheet for circuit substrate for display, sheet of circuit substrate for display and method for manufacturing sheet of circuit substrate for display
JP5889365B2 (en) Adhesive composition, adhesive and adhesive sheet
WO2015133535A1 (en) Laminate body
TW201424996A (en) Method of manufacturing resin layer having patterns, and resin composition applied in the same
WO2015145633A1 (en) Adhesive composition, adhesive agent, and adhesive sheet
TWI621530B (en) Heat-resistant laminated sheet and manufacturing method thereof
JP2022156355A (en) Display body
TW200846802A (en) Resin sheet for circuit substrate, sheet for circuit substrate and circuit substrate for display
TWI532817B (en) Double-faced pressure-sensitive adhesive sheet
TWI764885B (en) Complex sheet for forming protective film
WO2016121001A1 (en) Adhesive composition, adhesive and adhesive sheet
JP6356844B1 (en) Optical laminate
TWI731874B (en) Composite sheet for forming protective film
TW200941071A (en) Resin sheet for circuit substrates, sheet for circuit substrates, and circuit substrate for displays
TW201722723A (en) Adhesive sheet
JP6502999B2 (en) Adhesive composition, adhesive and adhesive sheet
WO2020070790A1 (en) Layered product and production method for cured sealing body