WO2015133535A1 - Laminate body - Google Patents

Laminate body Download PDF

Info

Publication number
WO2015133535A1
WO2015133535A1 PCT/JP2015/056398 JP2015056398W WO2015133535A1 WO 2015133535 A1 WO2015133535 A1 WO 2015133535A1 JP 2015056398 W JP2015056398 W JP 2015056398W WO 2015133535 A1 WO2015133535 A1 WO 2015133535A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin layer
meth
laminate
acrylate
Prior art date
Application number
PCT/JP2015/056398
Other languages
French (fr)
Japanese (ja)
Inventor
倫仁 大石
和人 御宿
夕佳 高橋
伊藤 賢哉
山廣 幹夫
真範 石川
Original Assignee
グンゼ株式会社
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社, Jnc株式会社 filed Critical グンゼ株式会社
Publication of WO2015133535A1 publication Critical patent/WO2015133535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a laminate.
  • base substrates used for display devices such as flexible devices, transparent electrode films for touch panels, gas barrier films, etc. have not only high optical transmittance and low haze, but also low retardation. Therefore, characteristics such as high heat resistance are required.
  • An optical transparent film using an olefin resin such as a cyclic olefin resin is used as the base substrate having the above-mentioned characteristics.
  • An optical transparent film using such an olefin resin is promising as a base substrate for thin film transistors and next-generation transparent electrode films because it exhibits characteristics close to glass.
  • optically transparent film using the above cyclic olefin resin or the like is likely to be broken or damaged when forming a circuit of a thin film transistor or forming a transparent electrode film, in order to improve the scratch resistance of the film surface, A surface protective layer is provided on the surface of the olefin resin layer.
  • Such an optical transparent film has a problem in that it is cracked by stress applied during bending or cutting.
  • an optically transparent film that has solved the above-mentioned problems, it has a hard coat layer formed of an ionizing radiation curable resin on at least one surface of a cyclic olefin-based film having a thickness of 10 to 250 ⁇ m.
  • a hard coat film in which an elastomer layer formed of a thermoplastic elastomer is provided between the cyclic olefin-based film (see, for example, Patent Document 1).
  • Patent Document 1 the composition of the surface protective layer and the characteristics of the hard coat film have not been sufficiently studied, and the hard coat film is sent in a so-called roll-to-roll process in which the film is sent through a roll during production. There is a problem of breaking. If the film breaks during production, it causes a decrease in yield, which is a major obstacle to commercialization.
  • An object of the present invention is to provide a laminate that can be suitably used for a display device or the like, has excellent optical characteristics, and is prevented from being broken during the manufacturing process.
  • the present inventor has at least a curable resin layer A, an olefinic optical film B, and a curable resin layer C laminated in this order in the above curable property.
  • the resin layer A contains a specific urethane acrylate, and the laminate exhibits the number of bendings in a specific range of MIT bending fatigue tests, and exhibits a specific range of tear propagation strength. Has been found to be able to be achieved, and the present invention has been completed.
  • this invention relates to the following laminated body.
  • At least a curable resin layer A, an olefin-based optical film B, and a curable resin layer C are laminated in this order,
  • the curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bi- or higher functional (meth) acryloyl group,
  • the laminate has a bending number of 15 or more in the MIT bending fatigue test in accordance with JIS P8115, and the tear propagation strength measured by a measuring method in accordance with JIS P8116 is 110 mN or more.
  • Item 3. The laminate according to Item 1 or 2, wherein the curable resin layer C contains a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group. 4).
  • the curable resin layer A contains a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher (meth) acryloyl group, the curable resin layer A has an appropriate hardness. It is difficult to break when the curable resin layer A is laminated on the olefin-based optical film B, and breakage of the laminate of the present invention is suppressed.
  • the laminate of the present invention has a bending number of times of 15 or more in the MIT bending fatigue test according to JIS P8115, and a tear propagation strength measured by a measuring method according to JIS P8116 is 110 mN or more.
  • a roll-to-roll process in the manufacturing process when a film is fed through a roll in a state where tension is applied to the laminate, the laminate is bent or friction is generated between the roll and the roll. Body breakage is suppressed.
  • the curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bifunctional or higher (meth) acryloyl group, and the MIT resistance of the laminate in accordance with JIS P8115.
  • the number of flexing in the bending fatigue test is 15 times or more and the tear propagation strength measured by a measuring method based on JIS P8116 is 110 mN or more, the optical characteristics are excellent, and the manufacturing process Breakage at is suppressed. Since the laminated body of the present invention is prevented from being broken during the production process, it has a good yield and is very advantageous when commercialized. For this reason, the laminated body of this invention can be used suitably for a display display apparatus etc.
  • the laminate of the present invention is a laminate in which at least the curable resin layer A, the olefin-based optical film B, and the curable resin layer C are laminated in this order, and the curable resin layer A includes (a) It contains a urethane acrylate having a urethane skeleton and a bi- or higher functional (meth) acryloyl group, and the laminate has a flex number of 15 or more in a MIT folding fatigue test in accordance with JIS P8115, and JIS The tear propagation strength measured by the measurement method based on P8116 is 110 mN or more.
  • the curable resin layer A contains urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group.
  • urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group.
  • the laminate of the present invention has a bending number of times of 15 or more in the MIT bending fatigue test according to JIS P8115, and a tear propagation strength measured by a measuring method according to JIS P8116 is 110 mN or more.
  • a roll-to-roll process in the manufacturing process when a film is fed through a roll in a state where tension is applied to the laminate, the laminate is bent or friction is generated between the roll and the roll. Body breakage is suppressed.
  • the curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bifunctional or higher (meth) acryloyl group, and the MIT resistance of the laminate in accordance with JIS P8115.
  • the number of flexing in the bending fatigue test is 15 times or more and the tear propagation strength measured by a measuring method based on JIS P8116 is 110 mN or more, the optical characteristics are excellent, and the manufacturing process Breakage at is suppressed. Since the laminated body of the present invention is prevented from being broken during the production process, it has a good yield and is very advantageous when commercialized.
  • Such a laminate of the present invention can be suitably used for a display device or the like.
  • the curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bifunctional or higher-functional (meth) acryloyl group (hereinafter also simply referred to as “component (a)”).
  • the urethane acrylate having the (a) urethane skeleton and the bifunctional or higher (meth) acryloyl group is not particularly limited.
  • the urethane acrylate has a bifunctional or higher (meth) acryloyl group and has a urethane skeleton.
  • active energy ray-curable resins such as ultraviolet curable resins.
  • the component (a) imparts flexibility to the curable resin layer A.
  • the component (a) examples include urethane (meth) acrylate resins.
  • the urethane (meth) acrylate resin is a radically polymerizable unsaturated group that can be obtained by reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol and then further reacting with a hydroxyl group-containing (meth) acrylic compound.
  • examples thereof include oligomers, prepolymers and polymers.
  • polycarbonate urethane acrylates using polycarbonate polyols as polyhydric alcohols are preferred.
  • the formed curable resin layer A can exhibit excellent stretchability and toughness.
  • polyisocyanate examples include 2,4-tolylene diisocyanate and its isomer, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, Phenylmethane triisocyanate is mentioned.
  • polyhydroxy compound examples include polyester polyol, polyether polyol, and the like.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3- Butanediol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4 -Cyclohexane glycol, para-xylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, 2,7-decalin glycol and the like.
  • the hydroxyl group-containing (meth) acrylic compound is not particularly limited, but a hydroxyl group-containing (meth) acrylic acid ester is preferable, and specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) acrylate, etc. Can be mentioned.
  • the method for synthesizing the component (a), for example, urethane (meth) acrylate resin is not particularly limited, and it can be synthesized by a conventionally known synthesis method.
  • a synthesis method for example, a predetermined amount of an organic polyisocyanate and a polycarbonate polyol are reacted under a condition of 70 to 80 ° C. until the residual isocyanate concentration reaches a predetermined amount, and then, further, a predetermined amount of the molecule is introduced into the molecule.
  • (Meth) acrylate containing one or more hydroxyl groups is added, and the residual isocyanate concentration is 0.1% by weight or less at a temperature of 70 to 80 ° C. in the presence of a polymerization inhibitor (for example, hydroquinone monomethyl ether).
  • a polymerization inhibitor for example, hydroquinone monomethyl ether
  • the content of the component (a) is preferably 10 to 90% by weight, more preferably 30 to 70% by weight, based on 100% by weight of the resin composition forming the curable resin layer A. By setting the content of the component (a) within the above range, the curable resin layer A is more excellent in extensibility and flexibility.
  • the weight average molecular weight (Mw) of the component (a) is preferably 3000 to 500,000, more preferably 5000 to 200,000.
  • flexibility can be imparted to the curable resin layer A. It can suppress that the crosslinking density in the curable resin layer A becomes it too high that the weight average molecular weight of (a) component is 3000 or more.
  • the curable resin layer A further includes (b) a polyfunctional acrylate having a trifunctional or higher polymerizable functional group not having a urethane skeleton in the main chain (hereinafter sometimes simply referred to as “component (b)”). It is preferable to contain.
  • component (b) is not required to have a urethane skeleton in the main chain, and may include a urethane bond in the side chain.
  • the component (b) does not have a urethane skeleton in the main chain and has a trifunctional or higher polymerizable functional group to form a crosslinked structure in the curable resin layer A. For this reason, by setting it as the structure containing the said (b) component, the abrasion resistance of the curable resin layer A and abrasion resistance can be improved more.
  • the active energy ray curable acrylate resin which has a trifunctional or more functional group which does not have a urethane skeleton in a principal chain is mentioned, Especially, a urethane skeleton is in a principal chain.
  • An ultraviolet curable resin having a trifunctional or higher functional (meth) acryloyl group that does not contain benzene can be suitably used.
  • polyfunctional acrylate (b) having a trifunctional or higher polymerizable functional group having no urethane skeleton in the main chain a polymer obtained by polymerizing a (meth) acrylic monomer may be used.
  • the method for synthesizing the “polymer obtained by polymerizing the (meth) acrylic monomer” is not particularly limited, and can be synthesized by a conventionally known method.
  • a polymer precursor is first obtained by addition polymerization of single or different (meth) acrylic monomers.
  • the (meth) acrylic monomer a (meth) acrylic monomer having a reactive group is used.
  • the polymer precursor is reacted with a reactive group on the side chain of the polymer precursor (for example, an epoxy group, a carboxylic acid, a hydroxyl group, a glycidyl group, etc.) and the compound having an acryloyl group is reacted with the polymer precursor.
  • a reactive group on the side chain of the polymer precursor for example, an epoxy group, a carboxylic acid, a hydroxyl group, a glycidyl group, etc.
  • the compound that reacts with a reactive group on the side chain of the polymer precursor and has an acryloyl group can react with the above-mentioned reactive group and has one or more (meth) acryloyl groups.
  • Monomers can be used.
  • Examples of the (meth) acrylic monomer having a reactive group for preparing the polymer precursor include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and glycidyl methacrylate. Etc. Examples of these commercially available products include light ester P-2M (2-methacryloyloxyethyl acid phosphate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester HO-MS (N) (2-methacryloyloxyethyl succinic acid).
  • the (meth) acrylic monomer for preparing the polymer precursor may contain a (meth) acrylic monomer having no reactive group.
  • examples of the (meth) acrylic monomer having no reactive group for preparing the polymer precursor include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, etc. Is mentioned.
  • Acrix C-1 (trade name; manufactured by Toa Gosei Co., Ltd.), Acrix CHA (trade name; produced by Toa Gosei Co., Ltd.), Aron DA (trade name; produced by Toa Gosei Co., Ltd.)
  • A-LEN-10 ethoxylated phenylphenol acrylate / trade name; manufactured by Shin-Nakamura Chemical Co., Ltd.
  • AM90-G methoxy polyethylene acrylate / trade name; manufactured by Shin-Nakamura Chemical Co., Ltd.
  • S-1800A Isosteric acrylate / trade name; Shin-Nakamura Scientific Co., Ltd.
  • AMP-20GY phenoxypolyethylene glycol acrylate / trade name; Shin-Nakamura Chemical Co., Ltd.
  • light ester CH cyclohexyl methacrylate / trade name; Kyoeisha Chemical Co., Ltd.) Co., Ltd.
  • Examples of the (meth) acrylic monomer having no reactive group for preparing the polymer precursor include fluorosilsesquioxane having one (meth) acryloyl group.
  • Examples of the fluorosilsesquioxane having the (meth) acryloyl group include compounds represented by the following formula (1).
  • R f in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6. , 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2, 2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or ⁇ , ⁇ , ⁇ -trifluoromethylphenyl Etc. are included.
  • Examples of the monomer that can react with the reactive group on the side chain of the polymer precursor and has one or more (meth) acryloyl groups include a carboxylic acid compound, a carboxylic acid ester compound, and an epoxy compound. It is done.
  • Examples of the carboxylic acid compound having a (meth) acryloyl group include acrylic acid, methacrylic acid, and vinyl benzoic acid.
  • a known esterification reaction can be used.
  • the esterification reaction is a dehydration condensation reaction between a carboxylic acid compound and a group having active hydrogen (preferably a hydroxyl group).
  • Examples of the carboxylic acid ester compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, 1-propyl (meth) acrylate, 1-butyl (meth) acrylate, and t-butyl (meth). Examples thereof include acrylate and 2-ethylhexyl (meth) acrylate.
  • a known esterification reaction can be used.
  • the esterification reaction is a transesterification reaction between a carboxylic acid ester compound and a group having active hydrogen (preferably a hydroxyl group).
  • Examples of the epoxy compound having a (meth) acryloyl group include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and the like.
  • a known epoxy ring-opening reaction between a cyclic ether and a hydroxyl group can be used. .
  • a part of the isocyanate group of a compound having a plurality of isocyanate groups such as isophorone diisocyanate is urethanated with a hydroxyl group-containing addition polymerizable monomer such as 2-hydroxyethyl acrylate to obtain an isocyanate compound having a polymerizable unsaturated bond.
  • the component (b) having a polymerizable unsaturated bond in the side chain can be obtained by utilizing a urethanization reaction between the isocyanate compound and a group having active hydrogen (preferably a hydroxyl group).
  • various known polymerizable compounds can also be used.
  • trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and isocyanuric acid-modified tri (meth) acrylate as a polyfunctional acrylate compound having no hydroxyl group in the molecule
  • pentaerythritol tetra (meth) Examples include tetrafunctional (meth) acrylates such as acrylate; hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate.
  • prepolymers and oligomers can also be used.
  • examples of these include polyester (meth) acrylate, silicone (meth) acrylate, epoxy (meth) acrylate, and the like.
  • polyfunctional polyester (meth) acrylate used for the component (b) commercially available products include M-8030 (manufactured by Toa Gosei Co., Ltd.).
  • a polyfunctional acrylic polymer used for the component (b) commercially available products include Hitaroid 7975D (Mw 15000 / trade name; Hitachi Chemical), Hitaroid 7988 (Mw 60000 / trade name; Hitachi Chemical), and Hitaroid (Mw 78000 / trade name).
  • Hitachi Chemical Hitachi Chemical
  • ACRYT 8kx-01 trade name; manufactured by Taisei Fine Chemical Co., Ltd.
  • the content of the component (b) is preferably 5 to 60% by weight, more preferably 5 to 30% by weight, based on 100% by weight of the resin composition forming the curable resin layer A.
  • content of (b) component is more excellent in extensibility and flexibility.
  • the weight average molecular weight (Mw) of the component (b) is preferably 1000 to 500,000, more preferably 2000 to 100,000.
  • Mw weight average molecular weight
  • the curable resin layer A exhibits good flexibility, and the crosslink density in the curable resin layer A increases, which is favorable for the curable resin layer A. Abrasion resistance, abrasion resistance, and tack resistance can be imparted.
  • the curable resin layer A may further contain a surface modifier.
  • the surface modifier is preferably contained in at least one layer selected from the curable resin layer A and the curable resin layer C described later.
  • the anti-blocking property is excellent when the laminate of the present invention is rolled up. Indicates.
  • a silicon compound can be used, and a general surface modifier having a silicone compound as a main component can be used. Among these, it is preferable to use a fluorine-modified silicon compound.
  • silicone compounds examples include BYK-UV3500, BYK-UV-3570 (both trade names; manufactured by Big Chemie Japan Co., Ltd.), TEGO Rad2100, 2200N, 2250, 2500, 2600, 2700 (both trade names; Manufactured by Evonik Degussa Japan Co., Ltd.), X-22-2445, X-22-2455, X-22-2457, X-22-2458, X-22-2459, X-22-1602, X-22-1603, X-22-1615, X-22-1616, X-22-1618, X-22-1619, X-22-2404, X-22-2474, X-22-174DX, X-22-8201, X- 22-2426, X-22-164A, X-22-164C (all trade names; Shin-Etsu Chemical Co., Ltd.) ), And the like.
  • silicon compound one or more compounds selected from the group consisting of fluorosilsesquioxane compounds, fluorosilsesquioxane polymers described in WO2008 / 072766 and WO2008 / 072765 may be used.
  • fluorosilsesquioxane compound examples include a fluorosilsesquioxane compound having a molecular structure represented by the following formula (1).
  • examples of the fluorosilsesquioxane polymer include a polymer (homopolymer or copolymer) containing a fluorosilsesquioxane compound represented by the following formula (1). Since the polymer polymerized using the compound represented by the following formula (1) is a fluorinated silicone compound, it can impart slip properties and anti-blocking properties to the surface of the cured film.
  • R f in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6. , 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2, 2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or ⁇ , ⁇ , ⁇ -trifluoromethylphenyl Etc. are included.
  • the fluorosilsesquioxane polymer is a structural unit a derived from fluorosilsesquioxane having one addition polymerizable functional group in the molecule, a structural unit b derived from organopolysiloxane having an addition polymerizable functional group.
  • a structural unit derived from an addition polymerizable monomer and having a group having a polymerizable unsaturated bond in the side chain, and optionally a fluorosilsesquioxy having one addition polymerizable functional group in the molecule A structural unit d derived from an addition polymerizable monomer other than Sun, an organopolysiloxane having an addition polymerizable functional group, and an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond; It is a polymer containing. “Derived” means a polymerized residue when each monomer constitutes a fluorosilsesquioxane polymer.
  • the structural unit a is derived from fluorosilsesquioxane having a molecular structure represented by the above formula (1).
  • the structural unit b is derived from an organopolysiloxane having an addition polymerizable functional group having a molecular structure represented by the following formula (2).
  • the organopolysiloxane having an addition polymerizable functional group preferably has a molecular structure represented by the following formula (2).
  • n is an integer of 1 to 1,000;
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently hydrogen, carbon number
  • An arylalkyl composed of 1-30 alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted aryl and alkylene, in R 1 , R 2 , R 3 , R 4 , and R 5 , At least one hydrogen may be replaced by fluorine and at least one —CH 2 — may be replaced by —O— or cycloalkylene;
  • a 2 is an addition polymerizable functional group.
  • R 1 , R 2 , R 3 and R 4 are preferably methyl at the same time.
  • a 2 in the above formula (2) is a radical polymerizable functional group, more preferably the A 2 contains a (meth) acrylic or styryl, A 2 is represented by the following formula (3), (4 ) Or (5) is more preferred.
  • Y 1 is alkylene having 2 to 10 carbons
  • R 6 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons
  • R 7 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons
  • X 1 is alkylene having 2 to 20 carbons
  • Y is —OCH 2 CH 2 —, —OCH (CH 3 ) CH 2 —, or —OCH 2 CH (CH 3 ) —
  • p is an integer of 0 to 3.
  • Y 2 is a single bond or alkylene having 1 to 10 carbon atoms.
  • the alkyl having 1 to 5 carbon atoms may be linear or branched.
  • Y 1 is alkylene having 2 to 6 carbon atoms, and R 6 is hydrogen or methyl.
  • X 1 is —CH 2 CH 2 CH 2 —
  • Y is —OCH 2 CH 2 —
  • p is 0 or 1
  • R 7 is hydrogen or methyl.
  • Y 2 is preferably a single bond or alkylene having 1 or 2 carbon atoms.
  • organopolysiloxanes examples include Silaplane FM0711 (trade name; manufactured by JNC Corporation), Silaplane FM0721 (trade name; manufactured by JNC Corporation), Silaplane FM0725 (trade name; manufactured by JNC Corporation), Silaplane TM0701 (trade name; manufactured by JNC Corporation), Silaplane TM0701T (trade name; manufactured by JNC Corporation), and the like are included.
  • the structural unit c is a structural unit derived from an addition polymerizable monomer and derived from a monomer having a group having a polymerizable unsaturated bond in the side chain.
  • an addition polymerizable monomer containing a structural unit a, a structural unit b, and a monovalent functional group containing a group having active hydrogen described below a precursor obtained using a hydroxyl group-containing vinyl monomer, By reacting with an isocyanate compound having a polymerizable unsaturated bond, a polymer containing a structural unit c (fluorosilsesquioxane polymer) is obtained.
  • the structural unit c is obtained from an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond.
  • the fluorosilsesquioxane polymer containing a group having a polymerizable unsaturated bond in the side chain can obtain a polymer having a functional group capable of introducing a group having a polymerizable unsaturated bond as a precursor.
  • the functional group into which such a group having a polymerizable unsaturated bond can be introduced include a group having active hydrogen and a monovalent functional group containing a cyclic ether.
  • Active hydrogen is hydrogen bonded to an atom (eg, nitrogen atom, sulfur atom, oxygen atom) whose electronegativity value is greater than or equal to carbon among hydrogen atoms existing in the molecule of an organic compound. It is.
  • a preferred precursor for obtaining a fluorosilsesquioxane polymer is a polymer containing a group having active hydrogen, and a fluorosilsesquioxane having one addition polymerizable functional group in the molecule, addition polymerization.
  • a fluorosilsesquioxane polymer precursor is obtained using an addition-polymerizable monomer containing an active hydrogen-containing group and a monovalent functional group containing a cyclic ether together with an organopolysiloxane having a functional functional group. be able to.
  • Examples of the group having active hydrogen include —OH, —SH, —COOH, —NH, —NH 2 , —CONH 2 , —NHCONH—, —NHCOO—, Na + [CH (COOC 2 H 5 )], — CH 2 NO 2 , OOH, —SiOH, —B (OH) 2 , —PH 3 , —SH and the like can be mentioned. Carboxyl, amino and hydroxyl are preferred, and hydroxyl is more preferred.
  • the addition polymerizable monomer c containing a group having active hydrogen may be a compound having a group having active hydrogen and an addition polymerizable double bond in the molecule, and is a vinyl containing a group having active hydrogen. Any of a compound, a vinylidene compound, and a vinylene compound may be sufficient. An acrylic acid derivative or a styrene derivative containing a group having active hydrogen is preferable.
  • Examples of the addition polymerizable monomer containing a group having active hydrogen include monomers disclosed in JP-A-9-208681, JP-A-2002-348344, and JP-A-2006-158961. Specific examples include the following monomers.
  • carboxyl group-containing vinyl monomer examples include (meth) acrylic acid, (anhydrous) maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, and itacone.
  • examples include acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, hexamethan (meth) acrylate and cinnamic acid.
  • hydroxyl group-containing vinyl monomer examples include a hydroxyl group-containing monofunctional vinyl monomer and a hydroxyl group-containing polyfunctional vinyl monomer.
  • a hydroxyl group-containing monofunctional vinyl monomer a vinyl monomer having one vinyl group is used.
  • hydroxystyrene N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4- Hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-buten-3-ol, 2-butene- 1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether (2-propenoxyethanol), 16-hydroxyhexadecane methacrylate Such as microcrystalline sucrose allyl ether.
  • a hydroxyl group-containing monofunctional vinyl monomer is preferable, and hydroxyethyl (meth) acrylate is more preferable.
  • the group having a polymerizable unsaturated bond reacts with a precursor of a fluorosilsesquioxane polymer and a functional group (a group having active hydrogen) capable of introducing a group having a polymerizable unsaturated bond. It can be introduced by reacting a functional group with a compound having a polymerizable unsaturated bond in the same molecule.
  • Examples of the compound having a functional group that reacts with a group having active hydrogen and a group having a polymerizable unsaturated bond in the same molecule include, for example, an isocyanate compound having a polymerizable unsaturated bond, and a polymerizable unsaturated bond.
  • the acid halide which has, the carboxylic acid compound which has a polymerizable unsaturated bond, the carboxylic acid ester compound which has a polymerizable unsaturated bond, and an epoxy compound can be mentioned.
  • the group having such a polymerizable unsaturated bond is preferably a radical polymerizable group, and examples thereof include (meth) acryl, allyl, and styryl.
  • isocyanate compound having a (meth) acryl group a compound having the following structure can be used.
  • R 8 and R 9 are hydrogen or methyl
  • B is oxygen, alkylene having 1 to 3 carbon atoms, or —OR 10 —
  • R 10 is alkylene having 2 to 12 carbon atoms, carbon number 2 Represents an oxyalkylene having ⁇ 12 or arylene having 6 to 12 carbon atoms.
  • the content of the silicon compound as the surface modifier is preferably 0.01 to 20% by weight with respect to 100% by weight of the resin composition forming the curable resin layer A.
  • slip property can be imparted to the surface of the curable resin base layer A, and the tack resistance of the curable resin layer A can be improved. Therefore, adhesion between laminates (films) and adhesion to a metal roll can be suppressed during coating by roll-to-roll.
  • the above-mentioned fluorosilsesquioxane polymer can be synthesized by the method described in International Publication No. 2008/072765 or International Publication No. 2008/072766.
  • the thickness of the curable resin layer A is not particularly limited, but is preferably 1 to 30 ⁇ m, and more preferably 3 to 10 ⁇ m. When the said thickness is too thick, manufacture may become difficult and there exists a possibility that it may be inferior to economical efficiency. If the thickness is too thin, the scratch resistance may be poor.
  • the olefinic optical film B is not particularly limited as long as it contains an olefinic resin and is a film suitable for use in optical applications.
  • Examples of the film suitable for use in the optical application include a film having high transparency.
  • the total light transmittance of the olefin optical film B is preferably 90% or more.
  • the haze of the olefinic optical film B is preferably 1% or less, and more preferably 0.5% or less.
  • the olefin-based resin contained in the olefin-based optical film B is not particularly limited as long as the olefin-based optical film B can be a film suitable for optical use, but is preferably a cyclic olefin polymer.
  • Olefin-based resin film B By containing the cyclic olefin polymer, the olefin-based resin film B is excellent in optical properties and heat resistance.
  • cyclic olefin polymer examples include polymers having an alicyclic structure in the main chain and / or side chain. From the viewpoint of weather resistance, moisture resistance, etc., the main chain preferably has an alicyclic structure.
  • Examples of the alicyclic structure of the cyclic olefin polymer include a saturated cyclic hydrocarbon (cycloalkane) structure and an unsaturated cyclic hydrocarbon (cycloalkene) structure. In terms of excellent mechanical strength, heat resistance, etc., Those having an alkane structure are preferred.
  • the cyclic olefin polymer may be a cyclic olefin homopolymer or a cyclic olefin copolymer. Among these, a cyclic olefin copolymer is preferable in terms of excellent heat resistance.
  • Examples of the cyclic olefin copolymer include a copolymer of norbornene and ethylene.
  • the copolymer of norbornene and ethylene preferably has a copolymerization ratio in terms of mass of norbornene and ethylene of 80:20 to 90:10. If the copolymerization ratio is within this range, the glass transition temperature is 170 ° C to 200 ° C. When the ratio of norbornene is lower than this range, the glass transition temperature becomes less than 170 ° C., so that the heat resistance may be lowered. Moreover, when the ratio of ethylene is lower than this range, it may be difficult to process a film having a strength that can withstand necessary post-processes (coating process, thin film forming process, etc.).
  • F1 film As a commercial product of the film containing the copolymer of norbornene and ethylene as the cyclic olefin copolymer, “F1 film” (trade name, manufactured by Gunze Co., Ltd.) may be mentioned.
  • the above copolymer of norbornene and ethylene usually has a refractive index of about 1.49 to 1.55, and usually has a light transmittance of about 90.8% to 93.0%.
  • Various known additives such as an ultraviolet absorber, an inorganic or organic antiblocking agent, a lubricant, an antistatic agent, and a stabilizer may be added to the copolymer of norbornene and ethylene for a proper purpose.
  • the olefin resin contained in the olefin optical film B is not limited to the above resin, and a known olefin resin can be used.
  • a known olefin resin examples include those described in JP2013-202989A, JP2003-103718A, JP5-17776A, or JP2003-504523A. Can be mentioned.
  • the content of the olefinic resin in the olefinic optical film B is preferably 70% by weight or more, more preferably 80% by weight, even more preferably 90% by weight or more, with the olefinic optical film B being 100% by weight.
  • the thickness of the olefin-based optical film B is not particularly limited, but is preferably 20 to 300 ⁇ m, more preferably 50 to 200 ⁇ m. When the said thickness is too thick, there exists a possibility that a laminated body may be inferior to a softness
  • the curable resin layer C is a layer that is laminated on the side of the olefin optical film B opposite to the surface on which the curable resin layer A is laminated.
  • the resin for forming the curable resin layer C is not particularly limited as long as it does not deteriorate the optical characteristics of the laminate of the present invention and does not prevent the breakage in the production process.
  • the curable resin layer C preferably contains a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group.
  • a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group.
  • the curable resin layer C preferably further contains (b) a polyfunctional acrylate having a trifunctional or higher functional group.
  • the curable resin layer C is more excellent in hardness, which can further improve the scratch resistance of the laminate of the present invention.
  • the said polyfunctional acrylate (b) can use the same thing as the polyfunctional acrylate (b) which the said curable resin layer A contains.
  • the curable resin layer C may further contain a surface modifier.
  • the surface modifier is preferably contained in at least one layer selected from the curable resin layer A and the curable resin layer C.
  • the anti-blocking property is excellent when the laminate of the present invention is rolled up. Indicates.
  • the same surface modifier as that contained in the curable resin layer A can be used.
  • the thickness of the curable resin layer C is not particularly limited, but is preferably 1 to 30 ⁇ m, and more preferably 3 to 10 ⁇ m. If the thickness is too thick, the laminate may be easily broken. If the thickness is too thin, the scratch resistance may be poor.
  • the number of bendings in the MIT bending fatigue test according to JIS P8115 is 15 or more. Due to the fact that the MIT bending fatigue test is in the above-mentioned range, in the roll-to-roll process in the manufacturing process, the laminate is bent when the laminate is fed through the roll in a tensioned state. Breakage of the laminate is suppressed.
  • the number of bends in the MIT bending fatigue test is preferably 20 times or more.
  • the laminate of the present invention has a tear propagation strength of 110 mN or more measured by a measuring method based on JIS P8116.
  • the tear propagation strength is in the above-mentioned range, in the roll-to-roll process in the manufacturing process, when a film is fed through the roll in a state where tension is applied to the laminate, friction is generated between the roll and the roll. Breakage of the resulting laminate is suppressed.
  • the layer configuration is not particularly limited, and other layers are used.
  • It does not specifically limit as adhesive resin which forms the said easily bonding layer For example, a silicone resin can be used.
  • the surface of the olefin optical film B may be subjected to a surface treatment such as plasma treatment or corona treatment.
  • a surface treatment such as plasma treatment or corona treatment.
  • curable resin layer A, the olefin type optical film B, and curable resin layer C can be laminated
  • the curable resin layer A forming composition is applied to one surface of the olefin-based optical film B, and the curable resin layer C forming composition is applied to the other surface.
  • the laminate of the present invention can be produced by a method of forming the curable resin layers A and B by drying and irradiating and curing with ultraviolet rays using a UV irradiation apparatus.
  • the method for applying the curable resin layer A forming composition and B to the olefin optical film B is not particularly limited.
  • the olefin optical film B is drawn from the roll of the roll-shaped olefin optical film B.
  • coating these compositions with a roll knife is mentioned.
  • the method for drying the curable resin layer A forming composition and the curable resin layer C forming composition is not particularly limited.
  • the curable resin layer A forming composition and the curable resin layer C forming composition are not limited.
  • a method of passing the product through the dryer in a state where the product is applied onto the olefin-based optical film B is exemplified.
  • the drying temperature for drying the curable resin layer A forming composition and the curable resin layer C forming composition is preferably 40 to 100 ° C.
  • the conditions for the ultraviolet irradiation when the dried composition for forming the curable resin layer A and the composition for forming the curable resin layer C are cured by irradiating with ultraviolet rays are preferably an integrated dose of 200 to 1000 mJ / cm 2 .
  • the conditions for ultraviolet irradiation are appropriately set depending on conditions such as the viscosity of the composition to be cured.
  • the laminate of the present invention can be produced by the production method described above.
  • acryloyloxyethyl isocyanate (AOI, manufactured by Showa Denko KK) was introduced to start the reaction. After reacting for 6 hours, the reaction was terminated by cooling to room temperature and introducing 10.0 g of MeOH. After completion of the reaction, 65 mL of Solmix AP-1 was added to the reaction solution and poured into 1300 mL of Solmix AP-1 to precipitate the reaction product. The supernatant was removed, followed by drying under reduced pressure (drying at 40 ° C. for 3 hours and then drying at 70 ° C. for 3 hours) to obtain 11.8 g of a polymer (d-1) having an acryloyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer was 32,800. In addition, the acryloyl group equivalent determined from 1 H-NMR measurement of the polymer (d-1) was 6,900 g / eq.
  • AOI acryloyloxyethyl isocyanate
  • Example 1 (Preparation of olefin-based optical film B) An ethylene-norbornene copolymer (trade name: “TOPAS” manufactured by TOPAS Advanced Polymers) having a copolymerization ratio of norbornene and ethylene of 82:18 was obtained by melt extrusion using a resin temperature of 300 ° C. and a take-up roll temperature of 130 ° C. The olefin-based optical film B having a thickness of 100 ⁇ m was prepared by extrusion molding under the above conditions.
  • TOPAS ethylene-norbornene copolymer manufactured by TOPAS Advanced Polymers
  • the coating 1 prepared as described above was applied to one surface of the olefin-based optical film B using a wire bar.
  • the olefin-based optical film B coated with the paint 1 is placed in an oven at 80 ° C. and dried for 2 minutes, irradiated with ultraviolet rays under the condition of an integrated light quantity of 500 mJ / cm 2 , and the thickness of one surface of the olefin-based optical film B is increased.
  • a curable resin layer A having a thickness of 5 ⁇ m was formed.
  • the coating 2 prepared as described above was applied to the surface of the olefin-based optical film B opposite to the surface on which the curable resin layer A was formed using a wire bar. Moreover, the coating material 2 was hardened by the same method as the said curable resin layer A was formed, the curable resin layer C with a thickness of 5 micrometers was formed, and the laminated body was prepared.
  • Example 2 As the olefin-based optical film B, a thermoplastic cyclic olefin-based film having a thickness of 100 ⁇ m and containing a norbornene homopolymer (trade name: ZENOR film ZF16 manufactured by Nippon Zeon Co., Ltd.) was used in the same manner as in Example 1, A laminate was prepared.
  • a thermoplastic cyclic olefin-based film having a thickness of 100 ⁇ m and containing a norbornene homopolymer (trade name: ZENOR film ZF16 manufactured by Nippon Zeon Co., Ltd.) was used in the same manner as in Example 1, A laminate was prepared.
  • Example 3 A laminate was prepared in the same manner as in Example 1 except that paint 3 was used instead of paint 1 and paint 2.
  • Comparative Example 1 The curable resin layers A and C were not provided, and the olefin optical film B alone was used as Comparative Example 1.
  • Comparative Example 2 As a paint for forming the curable resin layer A and the curable resin layer C, an acrylic photocurable resin (trade name: NAB001 manufactured by Nippon Paint Co., Ltd.) is used, and the thickness of the curable resin layers A and C is 3 ⁇ m. A laminate was prepared in the same manner as in Example 1 except that.
  • Comparative Example 3 As the olefin-based optical film B, a thickness of 100 ⁇ m, a thermoplastic cyclic olefin-based film containing a norbornene homopolymer (trade name: ZENOR film ZF16, manufactured by Nippon Zeon Co., Ltd.) was used in the same manner as in Comparative Example 2, A laminate was prepared.
  • a thermoplastic cyclic olefin-based film containing a norbornene homopolymer trade name: ZENOR film ZF16, manufactured by Nippon Zeon Co., Ltd.
  • Total light transmittance The total light transmittance of the laminate was measured using a haze meter NDH5000 (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.) by a measuring method based on JIS-K7361-1.
  • the haze of the laminate was measured using a haze meter NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.) by a measuring method based on JIS-K7136.
  • the laminate was sampled to a size of 15 mm wide ⁇ 110 mm long to obtain a test piece.
  • a MIT folding fatigue tester D type manufactured by Toyo Seiki Seisakusyo Co., Ltd.
  • the number of bends in the MIT folding fatigue test of the laminate was measured under the measurement conditions of R0.38 mm for the bending clamp and 0.25 mm for the opening of the bending clamp.
  • the laminate was sampled to a size of 50 mm width ⁇ 63.5 mm length to obtain a test piece. Using this test piece, the tear propagation strength of the laminate was measured using a light load tear tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) by a measuring method based on JIS P8116. The measurement was performed after setting the sample in a testing machine and making a notch of about 10 mm in the length direction.
  • FIG. 2 is a schematic cross-sectional view showing a method for measuring the loop breaking strength. First, as shown in FIG. 2, the test piece 10 was folded back in the length direction, the end portions 11 and 11 in the length direction were overlapped, and the folded portion 12 was formed in a loop shape.
  • the overlapped end portions 11 and 11 are passed between rolls 13 and 13 having a roll gap of 1 mm, the overlapped end portions 11 and 11 are pulled at a pulling speed of 200 mm / min, and the tension when the loop-shaped portion 12 passes through the roll gap is pulled.
  • the strength was measured and used as the loop strength of the laminate.
  • the laminate was sampled to a size of 50 mm width ⁇ 180 mm length to obtain a test piece.
  • the peel strength of the laminate was measured by Autograph AG-500NX (manufactured by Shimadzu Corporation). Specifically, two test pieces were overlapped and reciprocated 5 times with a 2 kg rubber roll. The pressure-bonded test piece is peeled off from the end and attached to the autograph, and the tensile strength is measured under the measurement conditions of a tensile speed of 200 mm / min, a load range of 500 mN, a measurement position of 30-100 mm, and a chuck distance of 7.5 cm, and the average value is calculated. The peel force was used.
  • Table 1 shows the measurement results.
  • the numerical value of each evaluation of Table 1 is the average value of the measured value measured about 5 samples.
  • the curable resin layer A, the olefin-based optical film B, and the curable resin layer C are laminated in this order, and the curable resin layer A includes (a) a urethane skeleton, It contains a urethane acrylate having a bifunctional or higher functional (meth) acryloyl group, and the laminate has a flex number of 15 times or more in the MIT bending fatigue test based on JIS P8115, and conforms to JIS P8116.
  • the laminates of Examples 1 to 3 having a tear propagation strength measured by the measurement method of 110 mN or more had high total light transmittance, low haze, and excellent optical characteristics. Further, it was found that the laminates of Examples 1 to 3 had high loop breaking strength, and the breaking during the manufacturing process was suppressed.
  • the curable resin layers A and C included the surface modifier in the laminates of Examples 1 and 2, the friction coefficient and the peel force were low, and the laminate was wound up in a roll shape. Since the anti-blocking property at the time was also excellent, it was found that breakage in the production process was further suppressed.
  • Comparative Example 1 uses the olefin-based optical film B as a single layer, and in the laminates of Comparative Examples 2 and 3, the curable resin layers A and C are (a) urethane skeleton and bifunctional. Since it does not contain the above urethane acrylate having a (meth) acryloyl group, the number of flexing times in the MIT folding fatigue test is less than 15 times, and the tear propagation strength is less than 110 mN. It turned out that intensity
  • SYMBOLS 1 Laminated body, 2 ... Curable resin layer A, 3 ... Olefin type optical film B, 4 ... Curable resin layer C, 10 ... Test piece, 11 ... End part of length direction of test piece, 12 ... Folded part , 13 ... roll

Abstract

The present invention addresses the problem of providing a laminate body that can be suitably used in a display device or the like, that has excellent optical properties, and that resists breakage during production. The present invention is a laminate body wherein at least a curable resin layer (A), an olefin optical film (B), and a curable resin layer (C) are laminated in said order, the laminate body being characterized in that the curable resin layer (A) contains a urethane acrylate (a) that has a urethane skeleton and a methacryloyl group that has two or more functional groups, and in that the laminate body bends 15 or more times in an MIT folding endurance test that conforms to JIS P8115 and has a tear propagation strength of 110 mN or more as measured by a measurement method that conforms to JIS P8116.

Description

積層体Laminated body
 本発明は、積層体に関する。 The present invention relates to a laminate.
 近年、フレキシブルデバイス、タッチパネル用透明電極フィルム、ガスバリアフィルム等のディスプレイ表示装置等に用いられるベース基材には、高透過率を示し、低ヘイズである等の光学特性を備えるのみならず、低リタデーション、高耐熱性等の特性が求められている。 In recent years, base substrates used for display devices such as flexible devices, transparent electrode films for touch panels, gas barrier films, etc. have not only high optical transmittance and low haze, but also low retardation. Therefore, characteristics such as high heat resistance are required.
 上述の特性を有するベース基材として、環状オレフィン樹脂等のオレフィン樹脂を用いた光学透明フィルムが用いられている。このようなオレフィン樹脂を用いた光学透明フィルムは、ガラスに近い特性を示すことから、薄膜トランジスターや、次世代の透明電極フィルムのベース基材として有望視されている。 An optical transparent film using an olefin resin such as a cyclic olefin resin is used as the base substrate having the above-mentioned characteristics. An optical transparent film using such an olefin resin is promising as a base substrate for thin film transistors and next-generation transparent electrode films because it exhibits characteristics close to glass.
 上記環状オレフィン樹脂等を用いた光学透明フィルムは、薄膜トランジスターの回路形成や、透明電極フィルム形成時に破断や傷付きが生じ易いので、フィルム表面の耐傷性を向上させるために、環状オレフィン樹脂等のオレフィン樹脂層の表面に、表面保護層が設けられている。このような光学透明フィルムは、折り曲げや断裁の際に加えられる応力によって割れを生じてしまうという問題がある。 Since the optically transparent film using the above cyclic olefin resin or the like is likely to be broken or damaged when forming a circuit of a thin film transistor or forming a transparent electrode film, in order to improve the scratch resistance of the film surface, A surface protective layer is provided on the surface of the olefin resin layer. Such an optical transparent film has a problem in that it is cracked by stress applied during bending or cutting.
 上述の問題を解消した光学透明フィルムとして、厚み10~250μmの環状オレフィン系フィルムの少なくとも一方の表面に電離放射線硬化型樹脂から形成されてなるハードコート層を有してなり、上記ハードコート層と上記環状オレフィン系フィルムとの間に、熱可塑性エラストマーから形成されてなるエラストマー層を設けてなるハードコートフィルムが提案されている(例えば、特許文献1参照)。 As an optically transparent film that has solved the above-mentioned problems, it has a hard coat layer formed of an ionizing radiation curable resin on at least one surface of a cyclic olefin-based film having a thickness of 10 to 250 μm. There has been proposed a hard coat film in which an elastomer layer formed of a thermoplastic elastomer is provided between the cyclic olefin-based film (see, for example, Patent Document 1).
 しかしながら、特許文献1では、表面保護層の組成、及びハードコートフィルムの特性が十分に検討されておらず、製造の際にロールを介してフィルムを送る、いわゆるロールツーロールプロセスにおいてハードコートフィルムが破断するという問題がある。製造の際にフィルムが破断すると、歩留り低下を引き起こすため、製品化の大きな障害となる。 However, in Patent Document 1, the composition of the surface protective layer and the characteristics of the hard coat film have not been sufficiently studied, and the hard coat film is sent in a so-called roll-to-roll process in which the film is sent through a roll during production. There is a problem of breaking. If the film breaks during production, it causes a decrease in yield, which is a major obstacle to commercialization.
 従って、光学特性に優れ、且つ、製造工程での破断が抑制されている、ディスプレイ表示装置等に好適に用いることができる積層体の開発が望まれている。 Therefore, it is desired to develop a laminate that can be suitably used for a display device or the like that has excellent optical characteristics and is prevented from being broken during the manufacturing process.
特開2002-254561号公報JP 2002-254561 A
 本発明は、ディスプレイ表示装置等に好適に用いることができ、光学特性に優れ、且つ、製造工程での破断が抑制されている積層体を提供することを目的とする。 An object of the present invention is to provide a laminate that can be suitably used for a display device or the like, has excellent optical characteristics, and is prevented from being broken during the manufacturing process.
 本発明者は上記目的を達成すべく鋭意研究を重ねた結果、少なくとも、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cがこの順に積層された積層体において、上記硬化性樹脂層Aが特定のウレタンアクリレートを含有し、且つ、上記積層体が特定の範囲のMIT耐折疲労試験における屈曲回数を示し、特定の範囲の引裂伝播強度を示す構成とすることにより、上記目的を達成することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has at least a curable resin layer A, an olefinic optical film B, and a curable resin layer C laminated in this order in the above curable property. The resin layer A contains a specific urethane acrylate, and the laminate exhibits the number of bendings in a specific range of MIT bending fatigue tests, and exhibits a specific range of tear propagation strength. Has been found to be able to be achieved, and the present invention has been completed.
 即ち、本発明は、下記の積層体に関する。
1.少なくとも、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cがこの順に積層された積層体であって、
 前記硬化性樹脂層Aは、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有し、
 前記積層体は、JIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上である、
ことを特徴とする積層体。
2.前記硬化性樹脂層Aが、更に、(b)主鎖にウレタン骨格を有しない、3官能以上の重合性官能基を有する多官能アクリレートを含有する、上記項1に記載の積層体。
3.前記硬化性樹脂層Cが、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有する、上記項1又は2に記載の積層体。
4.前記硬化性樹脂層Cが、更に、(b)主鎖にウレタン骨格を有しない、3官能以上の重合性官能基を有する多官能アクリレートを含有する、上記項1~3のいずれか1項に記載の積層体。
5.前記硬化性樹脂層A、及び前記硬化性樹脂層Cから選択される少なくとも一層が、表面改質剤を含む、上記項1~4のいずれか1項に記載の積層体。
6.前記表面改質剤は、フッ素修飾されたケイ素化合物である、上記項5に記載の積層体。
7.前記フッ素修飾されたケイ素化合物が、フルオロシルセスキオキサン化合物、又は、フルオロシルセスキオキサンを含む重合体である、上記項6に記載の積層体。
8.前記オレフィン系光学フィルムBは、環状オレフィンポリマーを含有する、上記項1~7のいずれか1項に記載の積層体。
That is, this invention relates to the following laminated body.
1. At least a curable resin layer A, an olefin-based optical film B, and a curable resin layer C are laminated in this order,
The curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bi- or higher functional (meth) acryloyl group,
The laminate has a bending number of 15 or more in the MIT bending fatigue test in accordance with JIS P8115, and the tear propagation strength measured by a measuring method in accordance with JIS P8116 is 110 mN or more.
A laminate characterized by the above.
2. Item 2. The laminate according to Item 1, wherein the curable resin layer A further contains (b) a polyfunctional acrylate having a trifunctional or higher functional group that does not have a urethane skeleton in the main chain.
3. Item 3. The laminate according to Item 1 or 2, wherein the curable resin layer C contains a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group.
4). Item 4. The curable resin layer C according to any one of Items 1 to 3, further comprising (b) a polyfunctional acrylate having a trifunctional or higher functional group having no urethane skeleton in the main chain. The laminated body of description.
5. Item 5. The laminate according to any one of Items 1 to 4, wherein at least one layer selected from the curable resin layer A and the curable resin layer C contains a surface modifier.
6). Item 6. The laminate according to Item 5, wherein the surface modifier is a fluorine-modified silicon compound.
7). Item 7. The laminate according to Item 6, wherein the fluorine-modified silicon compound is a fluorosilsesquioxane compound or a polymer containing fluorosilsesquioxane.
8). Item 8. The laminate according to any one of Items 1 to 7, wherein the olefin-based optical film B contains a cyclic olefin polymer.
 本発明の積層体は、硬化性樹脂層Aが、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有するので、硬化性樹脂層Aが適度な硬さと柔軟性とを備えており、オレフィン系光学フィルムBの上に硬化性樹脂層Aが積層することで破断し難くなっており、本発明の積層体の破断が抑制されている。 In the laminate of the present invention, since the curable resin layer A contains a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher (meth) acryloyl group, the curable resin layer A has an appropriate hardness. It is difficult to break when the curable resin layer A is laminated on the olefin-based optical film B, and breakage of the laminate of the present invention is suppressed.
 また、本発明の積層体は、JIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上であるので、製造工程でのロールツーロールプロセスにおいて、積層体に張力がかかった状態でロールを介してフィルムを送る際に積層体が屈曲したり、ロールとの間で摩擦を生じたりすることにより生じる積層体の破断が抑制されている。 In addition, the laminate of the present invention has a bending number of times of 15 or more in the MIT bending fatigue test according to JIS P8115, and a tear propagation strength measured by a measuring method according to JIS P8116 is 110 mN or more. In a roll-to-roll process in the manufacturing process, when a film is fed through a roll in a state where tension is applied to the laminate, the laminate is bent or friction is generated between the roll and the roll. Body breakage is suppressed.
 すなわち、本発明の積層体は、硬化性樹脂層Aが(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有し、積層体のJIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上であるとの構成を備えることにより、光学特性に優れ、且つ、製造工程での破断が抑制されている。本発明の積層体は、製造工程での破断が抑制されているので、歩留りが良く、製品化の際に非常に有利である。このため、本発明の積層体は、ディスプレイ表示装置等に好適に用いることができる。 That is, in the laminate of the present invention, the curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bifunctional or higher (meth) acryloyl group, and the MIT resistance of the laminate in accordance with JIS P8115. By providing a configuration in which the number of flexing in the bending fatigue test is 15 times or more and the tear propagation strength measured by a measuring method based on JIS P8116 is 110 mN or more, the optical characteristics are excellent, and the manufacturing process Breakage at is suppressed. Since the laminated body of the present invention is prevented from being broken during the production process, it has a good yield and is very advantageous when commercialized. For this reason, the laminated body of this invention can be used suitably for a display display apparatus etc.
本発明の積層体の層構成の一例を示す模式図である。It is a schematic diagram which shows an example of the layer structure of the laminated body of this invention. ループ破断強度の測定方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the measuring method of loop breaking strength.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の積層体は、少なくとも、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cがこの順に積層された積層体であって、上記硬化性樹脂層Aは、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有し、上記積層体は、JIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上である。 The laminate of the present invention is a laminate in which at least the curable resin layer A, the olefin-based optical film B, and the curable resin layer C are laminated in this order, and the curable resin layer A includes (a) It contains a urethane acrylate having a urethane skeleton and a bi- or higher functional (meth) acryloyl group, and the laminate has a flex number of 15 or more in a MIT folding fatigue test in accordance with JIS P8115, and JIS The tear propagation strength measured by the measurement method based on P8116 is 110 mN or more.
 上記本発明の積層体は、硬化性樹脂層Aが、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有するので、硬化性樹脂層Aが適度な硬さと柔軟性とを備えることができ、オレフィン系光学フィルムBの上に硬化性樹脂層Aが積層することで破断し難くなっており、本発明の積層体の破断が抑制されている。 In the laminate of the present invention, the curable resin layer A contains urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group. When the curable resin layer A is laminated on the olefin optical film B, it is difficult to break, and the breakage of the laminate of the present invention is suppressed.
 また、本発明の積層体は、JIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上であるので、製造工程でのロールツーロールプロセスにおいて、積層体に張力がかかった状態でロールを介してフィルムを送る際に積層体が屈曲したり、ロールとの間で摩擦を生じたりすることにより生じる積層体の破断が抑制されている。 In addition, the laminate of the present invention has a bending number of times of 15 or more in the MIT bending fatigue test according to JIS P8115, and a tear propagation strength measured by a measuring method according to JIS P8116 is 110 mN or more. In a roll-to-roll process in the manufacturing process, when a film is fed through a roll in a state where tension is applied to the laminate, the laminate is bent or friction is generated between the roll and the roll. Body breakage is suppressed.
 すなわち、本発明の積層体は、硬化性樹脂層Aが(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有し、積層体のJIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上であるとの構成を備えることにより、光学特性に優れ、且つ、製造工程での破断が抑制されている。本発明の積層体は、製造工程での破断が抑制されているので、歩留りが良く、製品化の際に非常に有利である。このような本発明の積層体は、ディスプレイ表示装置等に好適に用いることができる。 That is, in the laminate of the present invention, the curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bifunctional or higher (meth) acryloyl group, and the MIT resistance of the laminate in accordance with JIS P8115. By providing a configuration in which the number of flexing in the bending fatigue test is 15 times or more and the tear propagation strength measured by a measuring method based on JIS P8116 is 110 mN or more, the optical characteristics are excellent, and the manufacturing process Breakage at is suppressed. Since the laminated body of the present invention is prevented from being broken during the production process, it has a good yield and is very advantageous when commercialized. Such a laminate of the present invention can be suitably used for a display device or the like.
 (硬化性樹脂層A)
 硬化性樹脂層Aは、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレート(以下、単に「(a)成分」ともいう場合がある。)を含有する。
(Curable resin layer A)
The curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bifunctional or higher-functional (meth) acryloyl group (hereinafter also simply referred to as “component (a)”).
 上記(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートとしては特に限定されないが、例えば、2官能以上の(メタ)アクリロイル基を有し、且つ、ウレタン骨格をもつ、紫外線硬化型樹脂等の活性エネルギー線硬化性樹脂が挙げられる。上記(a)成分は、硬化性樹脂層Aに屈曲性を付与する。 The urethane acrylate having the (a) urethane skeleton and the bifunctional or higher (meth) acryloyl group is not particularly limited. For example, the urethane acrylate has a bifunctional or higher (meth) acryloyl group and has a urethane skeleton. And active energy ray-curable resins such as ultraviolet curable resins. The component (a) imparts flexibility to the curable resin layer A.
 上記(a)成分としては、例えば、ウレタン(メタ)アクリレート樹脂を挙げることができる。ウレタン(メタ)アクリレート樹脂としては、ポリイソシアネートとポリヒドロキシ化合物あるいは多価アルコール類とを反応させた後、さらに水酸基含有(メタ)アクリル化合物を反応させることによって得ることができるラジカル重合性不飽和基含有オリゴマー、プレポリマー、ポリマーを挙げることができる。特に、多価アルコール類にポリカーボネート系ポリオール類を用いたポリカーボネート系ウレタンアクリレートが好ましい。ポリカーボネート系ウレタンアクリレートを用いることで、形成された硬化性樹脂層Aが優れた伸縮性と強靭性を示すことができる。 Examples of the component (a) include urethane (meth) acrylate resins. The urethane (meth) acrylate resin is a radically polymerizable unsaturated group that can be obtained by reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol and then further reacting with a hydroxyl group-containing (meth) acrylic compound. Examples thereof include oligomers, prepolymers and polymers. In particular, polycarbonate urethane acrylates using polycarbonate polyols as polyhydric alcohols are preferred. By using polycarbonate urethane acrylate, the formed curable resin layer A can exhibit excellent stretchability and toughness.
 上記ポリイソシアネートとしては、具体的には2,4-トリレンジイソシアネート及びその異性体、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネートが挙げられる。 Specific examples of the polyisocyanate include 2,4-tolylene diisocyanate and its isomer, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, Phenylmethane triisocyanate is mentioned.
 上記ポリイソシアネートの市販品としては、バノックD-750、クリスボンNK(商品名;DIC株式会社製)、デスモジュールL(商品名;住友バイエルウレタン株式会社製)、コロネートL(商品名;日本ポリウレタン工業株式会社製)、タケネートD102(商品名;三井武田ケミカル株式会社製)、イソネート143L(商品名;三菱化学株式会社製)等を用いることができる。 Commercially available products of the above polyisocyanates include Banoc D-750, Crisbon NK (trade name; manufactured by DIC Corporation), Death Module L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Nippon Polyurethane Industry) Co., Ltd.), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like can be used.
 上記ポリヒドロキシ化合物としては、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられ、具体的にはグリセリン-エチレンオキシド付加物、グリセリン-プロピレンオキシド付加物、グリセリン-テトラヒドロフラン付加物、グリセリン-エチレンオキシド-プロピレンオキシド付加物、トリメチロールプロパン-エチレンオキシド付加物、トリメチロールプロパン-プロピレンオキシド付加物、トリメチロールプロパン-テトラヒドロフラン付加物、トリメチロールプロパン-エチレンオキシド-プロピレンオキシド付加物、ジペンタエリスリトール-エチレンオキシド付加物、ジペンタエリスリトール-プロピレンオキシド付加物、ジペンタエリスリトール-テトラヒドロフラン付加物、ジペンタエリスリトール-エチレンオキシド-プロピレンオキシド付加物等が挙げられる。 Examples of the polyhydroxy compound include polyester polyol, polyether polyol, and the like. Specifically, glycerin-ethylene oxide adduct, glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethylene oxide-propylene oxide adduct, Trimethylolpropane-ethylene oxide adduct, trimethylolpropane-propylene oxide adduct, trimethylolpropane-tetrahydrofuran adduct, trimethylolpropane-ethylene oxide-propylene oxide adduct, dipentaerythritol-ethylene oxide adduct, dipentaerythritol-propylene oxide Adduct, dipentaerythritol-tetrahydrofuran adduct, dipentaerythritol-e Ren'okishido - propylene oxide adduct and the like.
 上記多価アルコール類としては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4-ジオール、2,6-デカリングリコール、2,7-デカリングリコール等が挙げられる。 Specific examples of the polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3- Butanediol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4 -Cyclohexane glycol, para-xylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, 2,7-decalin glycol and the like.
 上記水酸基含有(メタ)アクリル化合物としては、特に限定されないが、水酸基含有(メタ)アクリル酸エステルが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。 The hydroxyl group-containing (meth) acrylic compound is not particularly limited, but a hydroxyl group-containing (meth) acrylic acid ester is preferable, and specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) acrylate, etc. Can be mentioned.
 (a)成分、例えばウレタン(メタ)アクリレート樹脂の合成方法としては特に限定されず、従来公知の合成方法で合成することが可能である。このような合成方法としては、例えば、所定量の有機ポリイソシアネート、及びポリカーボネートポリオールを70~80℃の条件下で残存イソシアネート濃度が所定量になるまで反応させ、その後、さらに所定量の分子内に1個以上の水酸基を含有する(メタ)アクリレートを添加して、重合禁止剤(例えば、ハイドロキノンモノメチルエーテル等)の存在下で、70~80℃の温度で残存イソシアネート濃度が0.1重量%以下になるまで反応させる合成方法が挙げられる。 The method for synthesizing the component (a), for example, urethane (meth) acrylate resin, is not particularly limited, and it can be synthesized by a conventionally known synthesis method. As such a synthesis method, for example, a predetermined amount of an organic polyisocyanate and a polycarbonate polyol are reacted under a condition of 70 to 80 ° C. until the residual isocyanate concentration reaches a predetermined amount, and then, further, a predetermined amount of the molecule is introduced into the molecule. (Meth) acrylate containing one or more hydroxyl groups is added, and the residual isocyanate concentration is 0.1% by weight or less at a temperature of 70 to 80 ° C. in the presence of a polymerization inhibitor (for example, hydroquinone monomethyl ether). A synthesis method in which the reaction is carried out until is obtained.
 (a)成分の含有量は、硬化性樹脂層Aを形成する樹脂組成物を100重量%として、10~90重量%が好ましく、30~70重量%がより好ましい。(a)成分の含有量を上述の範囲とすることで、硬化性樹脂層Aが伸張性や屈曲性により優れる。 The content of the component (a) is preferably 10 to 90% by weight, more preferably 30 to 70% by weight, based on 100% by weight of the resin composition forming the curable resin layer A. By setting the content of the component (a) within the above range, the curable resin layer A is more excellent in extensibility and flexibility.
 (a)成分の重量平均分子量(Mw)は3000~50万が好ましく、5000~20万がより好ましい。(a)成分の重量平均分子量を上述の範囲とすることで、硬化性樹脂層Aに柔軟性を付与することができる。(a)成分の重量平均分子量が3000以上であると、硬化性樹脂層A中の架橋密度が高くなり過ぎることを抑制することができる。 The weight average molecular weight (Mw) of the component (a) is preferably 3000 to 500,000, more preferably 5000 to 200,000. By setting the weight average molecular weight of the component (a) within the above range, flexibility can be imparted to the curable resin layer A. It can suppress that the crosslinking density in the curable resin layer A becomes it too high that the weight average molecular weight of (a) component is 3000 or more.
 硬化性樹脂層Aは、更に、(b)主鎖にウレタン骨格を有しない3官能以上の重合性官能基を有する多官能アクリレート(以下、単に「(b)成分」ともいう場合がある。)を含有することが好ましい。当該(b)成分は、主鎖にウレタン骨格を有していなければよく、側鎖にウレタン結合を含んでもよい。上記(b)成分は、主鎖にウレタン骨格をもたず、3官能以上の重合性官能基を有することで、硬化性樹脂層A中に架橋構造を形成する。このため、上記(b)成分を含有する構成とすることで、硬化性樹脂層Aの耐擦傷性、耐摩耗性をより向上させることができる。 The curable resin layer A further includes (b) a polyfunctional acrylate having a trifunctional or higher polymerizable functional group not having a urethane skeleton in the main chain (hereinafter sometimes simply referred to as “component (b)”). It is preferable to contain. The component (b) is not required to have a urethane skeleton in the main chain, and may include a urethane bond in the side chain. The component (b) does not have a urethane skeleton in the main chain and has a trifunctional or higher polymerizable functional group to form a crosslinked structure in the curable resin layer A. For this reason, by setting it as the structure containing the said (b) component, the abrasion resistance of the curable resin layer A and abrasion resistance can be improved more.
 上記(b)成分としては特に限定されないが、例えば、主鎖にウレタン骨格を有しない3官能以上の重合性官能基を有する活性エネルギー線硬化性アクリレート樹脂が挙げられ、中でも、主鎖にウレタン骨格を有しない3官能以上の(メタ)アクリロイル基を有する紫外線硬化性樹脂を好適に用いることができる。 Although it does not specifically limit as said (b) component, For example, the active energy ray curable acrylate resin which has a trifunctional or more functional group which does not have a urethane skeleton in a principal chain is mentioned, Especially, a urethane skeleton is in a principal chain. An ultraviolet curable resin having a trifunctional or higher functional (meth) acryloyl group that does not contain benzene can be suitably used.
 上記(b)主鎖にウレタン骨格を有しない3官能以上の重合性官能基を有する多官能アクリレートとしては、(メタ)アクリル系モノマーを重合して得られる重合体を用いてもよい。 As the polyfunctional acrylate (b) having a trifunctional or higher polymerizable functional group having no urethane skeleton in the main chain, a polymer obtained by polymerizing a (meth) acrylic monomer may be used.
 上記「(メタ)アクリル系モノマーを重合して得られる重合体」の合成方法としては特に限定されず、従来公知の方法で合成することが可能である。例えば、先ず単一の、又は異なる(メタ)アクリル系モノマー同士の付加重合により重合体前駆体を得る。上記(メタ)アクリル系モノマーは、反応性基を持つ(メタ)アクリル系モノマーが用いられる。 The method for synthesizing the “polymer obtained by polymerizing the (meth) acrylic monomer” is not particularly limited, and can be synthesized by a conventionally known method. For example, a polymer precursor is first obtained by addition polymerization of single or different (meth) acrylic monomers. As the (meth) acrylic monomer, a (meth) acrylic monomer having a reactive group is used.
 次いで、上記重合体前駆体の側鎖の反応性基(例えば、エポキシ基、カルボン酸、水酸基、グリシジル基等)と反応し、且つ、アクリロイル基を有する化合物と、上記重合体前駆体とを反応させることにより、上記(メタ)アクリル系モノマーを重合して得られる重合体を得ることができる。 Next, the polymer precursor is reacted with a reactive group on the side chain of the polymer precursor (for example, an epoxy group, a carboxylic acid, a hydroxyl group, a glycidyl group, etc.) and the compound having an acryloyl group is reacted with the polymer precursor. By making it, the polymer obtained by superposing | polymerizing the said (meth) acrylic-type monomer can be obtained.
 上記重合体前駆体の側鎖の反応性基と反応し、且つ、アクリロイル基を有する化合物としては、上述の反応性基と反応することができ、且つ、1以上の(メタ)アクリロイル基を有するモノマーを用いることができる。 The compound that reacts with a reactive group on the side chain of the polymer precursor and has an acryloyl group can react with the above-mentioned reactive group and has one or more (meth) acryloyl groups. Monomers can be used.
 上記重合体前駆体を調製するための、反応性基を持つ(メタ)アクリル系モノマーとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリシジルメタクリレート等が挙げられる。これらの市販品としては、例えば、ライトエステルP-2M(2-メタックロイロキシエチルアシッドフォスフェート/共栄社化学株式会社製)、ライトエステルHO-MS(N)(2-メタクリロイロキシエチルコハク酸/商品名;共栄社化学株式会社製)、ライトエステルHO-HH(N)(2-メタリロイロキシエチルヘキサヒドロフタル酸/商品名;共栄社化学株式会社製)、ライトエステルEG(エチレングリコールジメタクリレート/商品名;共栄社化学株式会社製)、ライトエステル9EG(PEG#400ジメタクリレート/商品名;共栄社化学株式会社製)、ライトエステルG-101P(グリセリンジメタクリレート/商品名;共栄社化学株式会社製)、ライトエステルM-3F(トリフロロエチルメタクリレート/商品名;共栄社化学株式会社製)、HEA(商品名;東亜合成株式会社製)、ATBS(2-アクリルアミド-2-メチルプロパンスルホン酸/商品名;東亜合成株式会社製)、A-SA(2-アクリロイルオキシエチレンサクシネート/商品名;新中村化学工業株式会社製)等が挙げられる。 Examples of the (meth) acrylic monomer having a reactive group for preparing the polymer precursor include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and glycidyl methacrylate. Etc. Examples of these commercially available products include light ester P-2M (2-methacryloyloxyethyl acid phosphate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester HO-MS (N) (2-methacryloyloxyethyl succinic acid). / Product name: manufactured by Kyoeisha Chemical Co., Ltd., Light Ester HO-HH (N) (2-Metalliloyloxyethyl hexahydrophthalic acid / Product name: manufactured by Kyoeisha Chemical Co., Ltd.), Light Ester EG (ethylene glycol dimethacrylate / Product name: manufactured by Kyoeisha Chemical Co., Ltd.), light ester 9EG (PEG # 400 dimethacrylate / product name: manufactured by Kyoeisha Chemical Co., Ltd.), light ester G-101P (glycerin dimethacrylate / product name: manufactured by Kyoeisha Chemical Co., Ltd.), LIGHT ESTER M-3F (Trifluoroethyl methacrylate / quotient Name: manufactured by Kyoeisha Chemical Co., Ltd.), HEA (trade name; manufactured by Toa Gosei Co., Ltd.), ATBS (2-acrylamido-2-methylpropanesulfonic acid / trade name; manufactured by Toa Gosei Co., Ltd.), A-SA (2- And acryloyloxyethylene succinate / trade name; manufactured by Shin-Nakamura Chemical Co., Ltd.).
 上記重合体前駆体を調製するための(メタ)アクリル系モノマーには、反応性基を持たない(メタ)アクリル系モノマーが含まれていてもよい。重合体前駆体を調製するための、反応性基を持たない(メタ)アクリル系モノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、アクリル酸2エチルヘキシル、アクリル酸イソブチル等が挙げられる。これらの市販品としえは、例えば、アクリックスC-1(商品名;東亜合成株式会社製)、アクリックスCHA(商品名;東亜合成株式会社製)、アロンDA(商品名;東亜合成株式会社製)、A-LEN-10(エトキシ化フェニルフェノールアクリレート/商品名;新中村化学工業株式会社製)、AM90-G(メトキシポリエチレンアクリレート/商品名;新中村化学工業株式会社製)、S-1800A(イソステリアルアクリレート/商品名;新中村科学工業株式会社製)、AMP-20GY(フェノキシポリエチレングリコールアクリレート/商品名;新中村化学工業株式会社製)、ライトエステルCH(シクロヘキシルメタクリレート/商品名;共栄社化学株式会社製)、ライトエステルBZ(ベンジルメタクリレート/商品名;共栄社化学株式会社製)、ライトエステルIB-X(イソボニルメタクリレート/商品名;共栄社化学株式会社製)等が挙げられる。 The (meth) acrylic monomer for preparing the polymer precursor may contain a (meth) acrylic monomer having no reactive group. Examples of the (meth) acrylic monomer having no reactive group for preparing the polymer precursor include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, etc. Is mentioned. These commercially available products include, for example, Acrix C-1 (trade name; manufactured by Toa Gosei Co., Ltd.), Acrix CHA (trade name; produced by Toa Gosei Co., Ltd.), Aron DA (trade name; produced by Toa Gosei Co., Ltd.) ), A-LEN-10 (ethoxylated phenylphenol acrylate / trade name; manufactured by Shin-Nakamura Chemical Co., Ltd.), AM90-G (methoxy polyethylene acrylate / trade name; manufactured by Shin-Nakamura Chemical Co., Ltd.), S-1800A ( Isosteric acrylate / trade name; Shin-Nakamura Scientific Co., Ltd.), AMP-20GY (phenoxypolyethylene glycol acrylate / trade name; Shin-Nakamura Chemical Co., Ltd.), light ester CH (cyclohexyl methacrylate / trade name; Kyoeisha Chemical Co., Ltd.) Co., Ltd., light ester BZ (benzyl methacrylate / trade name) Manufactured by Kyoeisha Chemical Co., Ltd.), Light Ester IB-X (isobornyl methacrylate / trade name; manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 重合体前駆体を調製するための、反応性基を持たない(メタ)アクリル系モノマーとしては、また、1つの(メタ)アクリロイル基を有するフルオロシルセスキオキサンが挙げられる。上記(メタ)アクリロイル基を有するフルオロシルセスキオキサンとしては、下記式(1)で示される化合物が挙げられる。 Examples of the (meth) acrylic monomer having no reactive group for preparing the polymer precursor include fluorosilsesquioxane having one (meth) acryloyl group. Examples of the fluorosilsesquioxane having the (meth) acryloyl group include compounds represented by the following formula (1).
 式(1)におけるRはそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニルまたはα,α,α-トリフルオロメチルフェニルなどが含まれる。 R f in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6. , 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2, 2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or α, α, α-trifluoromethylphenyl Etc. are included.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記重合体前駆体の側鎖の反応性基と反応することができ、且つ、1以上の(メタ)アクリロイル基を有するモノマーとしては、例えば、カルボン酸化合物、カルボン酸エステル化合物、エポキシ化合物が挙げられる。 Examples of the monomer that can react with the reactive group on the side chain of the polymer precursor and has one or more (meth) acryloyl groups include a carboxylic acid compound, a carboxylic acid ester compound, and an epoxy compound. It is done.
 (メタ)アクリロイル基を有するカルボン酸化合物としては、例えば、アクリル酸、メタクリル酸、ビニル安息香酸等を挙げることができる。(メタ)アクリロイル基を有するカルボン酸化合物を用いて、側鎖に重合性不飽和結合を有する上記(b)成分を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、カルボン酸化合物と活性水素を有する基(好ましくは水酸基)との脱水縮合反応である。 Examples of the carboxylic acid compound having a (meth) acryloyl group include acrylic acid, methacrylic acid, and vinyl benzoic acid. In order to obtain the component (b) having a polymerizable unsaturated bond in the side chain using a carboxylic acid compound having a (meth) acryloyl group, a known esterification reaction can be used. Here, the esterification reaction is a dehydration condensation reaction between a carboxylic acid compound and a group having active hydrogen (preferably a hydroxyl group).
 (メタ)アクリロイル基を有するカルボン酸エステル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、1-プロピル(メタ)アクリレート、1-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等を挙げることができる。(メタ)アクリロイル基を有するカルボン酸エステル化合物を用いて、側鎖に重合性不飽和結合を有する上記(b)成分を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、カルボン酸エステル化合物と活性水素を有する基(好ましくは水酸基)とのエステル交換反応である。 Examples of the carboxylic acid ester compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, 1-propyl (meth) acrylate, 1-butyl (meth) acrylate, and t-butyl (meth). Examples thereof include acrylate and 2-ethylhexyl (meth) acrylate. In order to obtain the component (b) having a polymerizable unsaturated bond in the side chain using a carboxylic acid ester compound having a (meth) acryloyl group, a known esterification reaction can be used. Here, the esterification reaction is a transesterification reaction between a carboxylic acid ester compound and a group having active hydrogen (preferably a hydroxyl group).
 (メタ)アクリロイル基を有するエポキシ化合物としては、例えば、グリシジル(メタ)クリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等を挙げることができる。(メタ)アクリロイル基を有する化合物を用いて、側鎖に重合性不飽和結合を有する上記(b)成分を得るには、環状エーテルと水酸基との公知のエポキシ開環反応を利用することができる。 Examples of the epoxy compound having a (meth) acryloyl group include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and the like. In order to obtain the component (b) having a polymerizable unsaturated bond in the side chain using a compound having a (meth) acryloyl group, a known epoxy ring-opening reaction between a cyclic ether and a hydroxyl group can be used. .
 また、イソホロンジイソシアネートなどのイソシアネート基を複数個有する化合物のイソシアネート基の一部を2-ヒドロキシエチルアクリレートなどの水酸基含有付加重合性単量体とウレタン化させ、重合性不飽和結合を有するイソシアネート化合物とし、さらに、上記イソシアネート化合物と活性水素を有する基(好ましくは水酸基)とのウレタン化反応を利用することにより、側鎖に重合性不飽和結合を有する上記(b)成分を得ることができる。 Further, a part of the isocyanate group of a compound having a plurality of isocyanate groups such as isophorone diisocyanate is urethanated with a hydroxyl group-containing addition polymerizable monomer such as 2-hydroxyethyl acrylate to obtain an isocyanate compound having a polymerizable unsaturated bond. Furthermore, the component (b) having a polymerizable unsaturated bond in the side chain can be obtained by utilizing a urethanization reaction between the isocyanate compound and a group having active hydrogen (preferably a hydroxyl group).
 上記(b)成分としては、また、公知の各種重合性化合物を用いることができる。例えば、ヒドロキシル基を分子中に有さない多官能アクリレート系化合物として、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸変性トリ(メタ)アクリレート等の3官能(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート等が挙げられる。 As the component (b), various known polymerizable compounds can also be used. For example, trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and isocyanuric acid-modified tri (meth) acrylate as a polyfunctional acrylate compound having no hydroxyl group in the molecule; pentaerythritol tetra (meth) Examples include tetrafunctional (meth) acrylates such as acrylate; hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate.
 上記(b)成分としては、また、プレポリマー、オリゴマーを用いることができ、これらの例としては、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。 As the component (b), prepolymers and oligomers can also be used. Examples of these include polyester (meth) acrylate, silicone (meth) acrylate, epoxy (meth) acrylate, and the like.
 上記(b)成分に用いられる多官能ポリエステル(メタ)アクリレートとして、市販品では、M-8030(東亜合成株式会社製)等が挙げられる。 As the polyfunctional polyester (meth) acrylate used for the component (b), commercially available products include M-8030 (manufactured by Toa Gosei Co., Ltd.).
 さらに、上記(b)成分に用いられる多官能アクリルポリマーとして、市販品では、ヒタロイド7975D(Mw15000/商品名;日立ケミカル)、ヒタロイド7988(Mw60000/商品名;日立ケミカル)、ヒタロイド(Mw78000/商品名;日立ケミカル)、アクリット8kx-01(商品名;大成ファインケミカル株式会社製)等が挙げられる。 Furthermore, as a polyfunctional acrylic polymer used for the component (b), commercially available products include Hitaroid 7975D (Mw 15000 / trade name; Hitachi Chemical), Hitaroid 7988 (Mw 60000 / trade name; Hitachi Chemical), and Hitaroid (Mw 78000 / trade name). Hitachi Chemical), ACRYT 8kx-01 (trade name; manufactured by Taisei Fine Chemical Co., Ltd.), and the like.
 (b)成分の含有量は、硬化性樹脂層Aを形成する樹脂組成物を100重量%として、5~60重量%が好ましく、5~30重量%がより好ましい。(b)成分の含有量を上述の範囲とすることで、硬化性樹脂層Aが伸張性や屈曲性により優れる。 The content of the component (b) is preferably 5 to 60% by weight, more preferably 5 to 30% by weight, based on 100% by weight of the resin composition forming the curable resin layer A. By making content of (b) component into the above-mentioned range, the curable resin layer A is more excellent in extensibility and flexibility.
 (b)成分の重量平均分子量(Mw)は、1000~50万が好ましく、2000~10万がより好ましい。(b)成分の重量平均分子量が1000以上であると、硬化性樹脂層Aが良好な屈曲性を示し、さらに硬化性樹脂層A内の架橋密度が大きくなり、硬化性樹脂層Aに良好な耐擦傷性、耐摩耗性、耐タック性を付与することができる。 The weight average molecular weight (Mw) of the component (b) is preferably 1000 to 500,000, more preferably 2000 to 100,000. When the weight average molecular weight of the component (b) is 1000 or more, the curable resin layer A exhibits good flexibility, and the crosslink density in the curable resin layer A increases, which is favorable for the curable resin layer A. Abrasion resistance, abrasion resistance, and tack resistance can be imparted.
 硬化性樹脂層Aは、更に、表面改質剤を含有していてもよい。当該表面改質剤は、硬化性樹脂層A、及び、後述する硬化性樹脂層Cから選択される少なくとも一層に含まれていることが好ましい。硬化性樹脂層A、及び、硬化性樹脂層Cから選択される少なくとも一層が表面改質剤を含有することにより、本発明の積層体が、ロール状に巻き取った際に優れたアンチブロッキング性を示す。 The curable resin layer A may further contain a surface modifier. The surface modifier is preferably contained in at least one layer selected from the curable resin layer A and the curable resin layer C described later. When at least one layer selected from the curable resin layer A and the curable resin layer C contains a surface modifier, the anti-blocking property is excellent when the laminate of the present invention is rolled up. Indicates.
 上記表面改質剤としては、例えば、ケイ素化合物を用いることができ、シリコーン化合物を主成分とした一般的な表面改質剤を用いることができる。中でも、フッ素修飾されたケイ素化合物を用いることが好ましい。 As the surface modifier, for example, a silicon compound can be used, and a general surface modifier having a silicone compound as a main component can be used. Among these, it is preferable to use a fluorine-modified silicon compound.
 上記シリコーン化合物の市販品としては、BYK-UV3500、BYK-UV-3570(いずれも商品名;ビックケミー・ジャパン株式会社製)、TEGO Rad2100、2200N、2250、2500、2600、2700(何れも商品名;エボニックデグサジャパン株式会社製)、X-22-2445、X-22-2455、X-22-2457、X-22-2458、X-22-2459、X-22-1602、X-22-1603、X-22-1615、X-22-1616、X-22-1618、X-22-1619、X-22-2404、X-22-2474、X-22-174DX、X-22-8201、X-22-2426、X-22-164A、X-22-164C(いずれも商品名;信越化学工業株式会社製)等を挙げることができる。 Examples of commercially available silicone compounds include BYK-UV3500, BYK-UV-3570 (both trade names; manufactured by Big Chemie Japan Co., Ltd.), TEGO Rad2100, 2200N, 2250, 2500, 2600, 2700 (both trade names; Manufactured by Evonik Degussa Japan Co., Ltd.), X-22-2445, X-22-2455, X-22-2457, X-22-2458, X-22-2459, X-22-1602, X-22-1603, X-22-1615, X-22-1616, X-22-1618, X-22-1619, X-22-2404, X-22-2474, X-22-174DX, X-22-8201, X- 22-2426, X-22-164A, X-22-164C (all trade names; Shin-Etsu Chemical Co., Ltd.) ), And the like.
 上記ケイ素化合物として、フルオロシルセスキオキサン化合物、WO2008/072766およびWO2008/072765に記載されているフルオロシルセスキオキサン重合体からなる群から選ばれる1種以上の化合物を用いてもよい。 As the silicon compound, one or more compounds selected from the group consisting of fluorosilsesquioxane compounds, fluorosilsesquioxane polymers described in WO2008 / 072766 and WO2008 / 072765 may be used.
 フルオロシルセスキオキサン化合物としては、下記式(1)に示される分子構造を有するフルオロシルセスキオキサン化合物を挙げることができる。 Examples of the fluorosilsesquioxane compound include a fluorosilsesquioxane compound having a molecular structure represented by the following formula (1).
 また、フルオロシルセスキオキサン重合体としては、下記式(1)のフルオロシルセスキオキサン化合物を含有する重合体(ホモポリマーまたはコポリマー)を挙げることができる。下記式(1)に示す化合物を用いて重合された重合体は、フッ素系のシリコーン化合物であるため、硬化膜表面にスリップ性とアンチブロッキング性を付与することができる。 Further, examples of the fluorosilsesquioxane polymer include a polymer (homopolymer or copolymer) containing a fluorosilsesquioxane compound represented by the following formula (1). Since the polymer polymerized using the compound represented by the following formula (1) is a fluorinated silicone compound, it can impart slip properties and anti-blocking properties to the surface of the cured film.
 式(1)におけるRはそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニルまたはα,α,α-トリフルオロメチルフェニルなどが含まれる。 R f in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6. , 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2, 2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or α, α, α-trifluoromethylphenyl Etc. are included.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 フルオロシルセスキオキサン重合体とは、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位a、付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位b、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位cおよび任意に、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン、付加重合性官能基を有するオルガノポリシロキサン、および重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体以外の付加重合性単量体に由来する構成単位dを含む重合体である。なお、「由来する」とは、各モノマーがフルオロシルセスキオキサン重合体を構成したときの重合残基を意味する。 The fluorosilsesquioxane polymer is a structural unit a derived from fluorosilsesquioxane having one addition polymerizable functional group in the molecule, a structural unit b derived from organopolysiloxane having an addition polymerizable functional group. , A structural unit derived from an addition polymerizable monomer and having a group having a polymerizable unsaturated bond in the side chain, and optionally a fluorosilsesquioxy having one addition polymerizable functional group in the molecule A structural unit d derived from an addition polymerizable monomer other than Sun, an organopolysiloxane having an addition polymerizable functional group, and an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond; It is a polymer containing. “Derived” means a polymerized residue when each monomer constitutes a fluorosilsesquioxane polymer.
 構成単位aは、上記式(1)に示される分子構造を有するフルオロシルセスキオキサンに由来する。 The structural unit a is derived from fluorosilsesquioxane having a molecular structure represented by the above formula (1).
 構成単位bは、下記式(2)に示される分子構造を有する付加重合性官能基を有するオルガノポリシロキサンに由来する。 The structural unit b is derived from an organopolysiloxane having an addition polymerizable functional group having a molecular structure represented by the following formula (2).
 付加重合性官能基を有するオルガノポリシロキサンは、好ましくは下記式(2)に示される分子構造を有する。 The organopolysiloxane having an addition polymerizable functional group preferably has a molecular structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 オルガノポリシロキサンは、上記式(2)において、nは1~1,000の整数であり;R、R、R、R、およびRは、それぞれ独立して水素、炭素数が1~30であるアルキル、置換もしくは非置換のアリール、および置換もしくは非置換のアリールと、アルキレンとで構成されるアリールアルキルであり、R、R、R、R、およびRにおいて、少なくとも1つの水素はフッ素に置き換えられてもよく、少なくとも1つの-CH-は-O-またはシクロアルキレンで置き換えられてもよく;Aは付加重合性官能基である。 In the organopolysiloxane, in the above formula (2), n is an integer of 1 to 1,000; R 1 , R 2 , R 3 , R 4 , and R 5 are each independently hydrogen, carbon number An arylalkyl composed of 1-30 alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted aryl and alkylene, in R 1 , R 2 , R 3 , R 4 , and R 5 , At least one hydrogen may be replaced by fluorine and at least one —CH 2 — may be replaced by —O— or cycloalkylene; A 2 is an addition polymerizable functional group.
 さらに、付加重合性官能基を有するオルガノポリシロキサンは、上記式(2)において、R、R、RおよびRが、それぞれ同時にメチルであることが好ましい。また、上記式(2)においてAがラジカル重合性官能基であることが好ましく、Aが(メタ)アクリルまたはスチリルを含むことがより好ましく、Aが、下記式(3)、(4)または(5)で示されるいずれかであることがさらに好ましい。 Furthermore, in the organopolysiloxane having an addition polymerizable functional group, in the above formula (2), R 1 , R 2 , R 3 and R 4 are preferably methyl at the same time. Also preferably, A 2 in the above formula (2) is a radical polymerizable functional group, more preferably the A 2 contains a (meth) acrylic or styryl, A 2 is represented by the following formula (3), (4 ) Or (5) is more preferred.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(3)において、Yが炭素数2~10のアルキレンであり、Rが水素、または炭素数1~5のアルキル、または炭素数6~10のアリールである。上記式(4)において、Rは水素、または炭素数1~5のアルキル、または炭素数6~10のアリールであり、Xは炭素数が2~20のアルキレンであり、Yは-OCHCH-、-OCH(CH)CH-、または-OCHCH(CH)-であり、pは0~3の整数である。上記式(5)において、Yが単結合または炭素数1~10のアルキレンである。ここで、炭素数1~5のアルキルは、直鎖状または分岐鎖状のいずれでもよい。 In the above formula (3), Y 1 is alkylene having 2 to 10 carbons, and R 6 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons. In the above formula (4), R 7 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons, X 1 is alkylene having 2 to 20 carbons, and Y is —OCH 2 CH 2 —, —OCH (CH 3 ) CH 2 —, or —OCH 2 CH (CH 3 ) —, and p is an integer of 0 to 3. In the above formula (5), Y 2 is a single bond or alkylene having 1 to 10 carbon atoms. Here, the alkyl having 1 to 5 carbon atoms may be linear or branched.
 または、上記式(3)において、Yが炭素数2~6のアルキレンであり、Rが水素またはメチルである。上記式(4)において、Xは-CHCHCH-であり、Yは-OCHCH-であり、pは0または1であり、Rは水素またはメチルである。上記式(5)において、Yが単結合または炭素数1あるいは2のアルキレンであることが好ましい。 Alternatively, in the above formula (3), Y 1 is alkylene having 2 to 6 carbon atoms, and R 6 is hydrogen or methyl. In the above formula (4), X 1 is —CH 2 CH 2 CH 2 —, Y is —OCH 2 CH 2 —, p is 0 or 1, and R 7 is hydrogen or methyl. In the above formula (5), Y 2 is preferably a single bond or alkylene having 1 or 2 carbon atoms.
 好ましく用いられるオルガノポリシロキサンの例には、サイラプレーン FM0711(商品名;JNC株式会社製)、サイラプレーン FM0721(商品名;JNC株式会社製)、サイラプレーン FM0725(商品名;JNC株式会社製)、サイラプレーン TM0701(商品名;JNC株式会社製)、サイラプレーン TM0701T(商品名;JNC株式会社製)等が含まれる。 Examples of organopolysiloxanes preferably used include Silaplane FM0711 (trade name; manufactured by JNC Corporation), Silaplane FM0721 (trade name; manufactured by JNC Corporation), Silaplane FM0725 (trade name; manufactured by JNC Corporation), Silaplane TM0701 (trade name; manufactured by JNC Corporation), Silaplane TM0701T (trade name; manufactured by JNC Corporation), and the like are included.
 上記構成単位cは、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する単量体に由来する。例えば、構成単位a、構成単位b、および下記の活性水素を有する基を含む一価の官能基を含む付加重合性単量体の成分として、水酸基含有ビニルモノマーを用いて得られる前駆体と、重合性不飽和結合を有するイソシアネート化合物とを反応して、構成単位cを含む重合体(フルオロシルセスキオキサン重合体)が得られる。 The structural unit c is a structural unit derived from an addition polymerizable monomer and derived from a monomer having a group having a polymerizable unsaturated bond in the side chain. For example, as a component of an addition polymerizable monomer containing a structural unit a, a structural unit b, and a monovalent functional group containing a group having active hydrogen described below, a precursor obtained using a hydroxyl group-containing vinyl monomer, By reacting with an isocyanate compound having a polymerizable unsaturated bond, a polymer containing a structural unit c (fluorosilsesquioxane polymer) is obtained.
 このように、構成単位cは、重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体から得られる。 As described above, the structural unit c is obtained from an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond.
 すなわち、側鎖に重合性不飽和結合を有する基を含むフルオロシルセスキオキサン重合体は、重合性不飽和結合を有する基を導入できる官能基を有する重合体を前駆体として得ることができる。このような重合性不飽和結合を有する基を導入できる官能基としては、活性水素を有する基や環状エーテルを含む一価の官能基を挙げることができる。活性水素とは、有機化合物の分子内に存在している水素原子のうち、電気陰性度の値が炭素以上である原子(例えば窒素原子、硫黄原子、酸素原子)と結合している水素のことである。従って、フルオロシルセスキオキサン重合体を得るための好ましい前駆体は、活性水素を有する基を含む重合体であり、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン、付加重合性官能基を有するオルガノポリシロキサンと共に、活性水素を有する基や環状エーテルを含む一価の官能基を含む付加重合性単量体を必須成分として、フルオロシルセスキオキサン重合体の前駆体を得ることができる。 That is, the fluorosilsesquioxane polymer containing a group having a polymerizable unsaturated bond in the side chain can obtain a polymer having a functional group capable of introducing a group having a polymerizable unsaturated bond as a precursor. Examples of the functional group into which such a group having a polymerizable unsaturated bond can be introduced include a group having active hydrogen and a monovalent functional group containing a cyclic ether. Active hydrogen is hydrogen bonded to an atom (eg, nitrogen atom, sulfur atom, oxygen atom) whose electronegativity value is greater than or equal to carbon among hydrogen atoms existing in the molecule of an organic compound. It is. Therefore, a preferred precursor for obtaining a fluorosilsesquioxane polymer is a polymer containing a group having active hydrogen, and a fluorosilsesquioxane having one addition polymerizable functional group in the molecule, addition polymerization. A fluorosilsesquioxane polymer precursor is obtained using an addition-polymerizable monomer containing an active hydrogen-containing group and a monovalent functional group containing a cyclic ether together with an organopolysiloxane having a functional functional group. be able to.
 上記活性水素を有する基としては、-OH、-SH、-COOH、-NH、-NH、-CONH、-NHCONH-、-NHCOO-、Na[CH(COOC)]、-CHNO、OOH、-SiOH、-B(OH)、-PH、-SHなどが挙げられる。カルボキシル、アミノ、ヒドロキシルが好ましく、ヒドロキシルがより好ましい。活性水素を有する基を含む付加重合性単量体cとしては、分子内に活性水素を有する基と付加重合性二重結合とを有する化合物であればよく、活性水素を有する基を含む、ビニル化合物、ビニリデン化合物、ビニレン化合物のいずれでもよい。好ましくは、活性水素を有する基を含む、アクリル酸誘導体、またはスチレン誘導体である。 Examples of the group having active hydrogen include —OH, —SH, —COOH, —NH, —NH 2 , —CONH 2 , —NHCONH—, —NHCOO—, Na + [CH (COOC 2 H 5 )], — CH 2 NO 2 , OOH, —SiOH, —B (OH) 2 , —PH 3 , —SH and the like can be mentioned. Carboxyl, amino and hydroxyl are preferred, and hydroxyl is more preferred. The addition polymerizable monomer c containing a group having active hydrogen may be a compound having a group having active hydrogen and an addition polymerizable double bond in the molecule, and is a vinyl containing a group having active hydrogen. Any of a compound, a vinylidene compound, and a vinylene compound may be sufficient. An acrylic acid derivative or a styrene derivative containing a group having active hydrogen is preferable.
 活性水素を有する基を含む付加重合性単量体としては、特開平9-208681号公報、特開2002-348344号公報、および特開2006-158961号公報に開示された単量体を挙げることができ、具体的には以下のような単量体が挙げられる。 Examples of the addition polymerizable monomer containing a group having active hydrogen include monomers disclosed in JP-A-9-208681, JP-A-2002-348344, and JP-A-2006-158961. Specific examples include the following monomers.
 カルボキシル基含有ビニルモノマーとしては、例えば、(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸、イタコン酸モノアルキルエステル、イタコン酸グリコールモノエーテル、シトラコン酸、シトラコン酸モノアルキルエステル、(メタ)アクリル酸ヘキサデカンおよび桂皮酸などが挙げられる。 Examples of the carboxyl group-containing vinyl monomer include (meth) acrylic acid, (anhydrous) maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, and itacone. Examples include acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, hexamethan (meth) acrylate and cinnamic acid.
 水酸基含有ビニルモノマーとしては、ヒドロキシル基含有単官能ビニルモノマーおよびヒドロキシル基含有多官能ビニルモノマーなどが用いられる。ヒドロキシル基含有単官能ビニルモノマーとしては、ビニル基を一個有するビニルモノマーが用いられ、例えば、ヒドロキシスチレン、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-ブテン-3-オール、2-ブテン-1-オール、2-ブテン-1,4-ジオール、プロパルギルアルコール、2-ヒドロキシエチルプロペニルエーテル(2-プロペノキシエタノール)、16-ヒドロキシヘキサデカンメタアクリレートおよび庶糖アリルエーテルなどが挙げられる。 Examples of the hydroxyl group-containing vinyl monomer include a hydroxyl group-containing monofunctional vinyl monomer and a hydroxyl group-containing polyfunctional vinyl monomer. As the hydroxyl group-containing monofunctional vinyl monomer, a vinyl monomer having one vinyl group is used. For example, hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4- Hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-buten-3-ol, 2-butene- 1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether (2-propenoxyethanol), 16-hydroxyhexadecane methacrylate Such as microcrystalline sucrose allyl ether.
 活性水素基を含む付加重合性単量体としては、ヒドロキシル基含有単官能ビニルモノマーが好ましく、さらには、ヒドロキシエチル(メタ)アクリレートが好ましい。 As the addition polymerizable monomer containing an active hydrogen group, a hydroxyl group-containing monofunctional vinyl monomer is preferable, and hydroxyethyl (meth) acrylate is more preferable.
 重合性不飽和結合を有する基は、前述したように、フルオロシルセスキオキサン重合体の前駆体と、重合性不飽和結合を有する基を導入できる官能基(活性水素を有する基)と反応する官能基と重合性不飽和結合を有する基を同一分子内に有する化合物とを反応させることにより導入することができる。 As described above, the group having a polymerizable unsaturated bond reacts with a precursor of a fluorosilsesquioxane polymer and a functional group (a group having active hydrogen) capable of introducing a group having a polymerizable unsaturated bond. It can be introduced by reacting a functional group with a compound having a polymerizable unsaturated bond in the same molecule.
 このような、活性水素を有する基と反応する官能基と重合性不飽和結合を有する基を同一分子内に有する化合物としては、例えば重合性不飽和結合を有するイソシアネート化合物、重合性不飽和結合を有する酸ハロゲン化物、重合性不飽和結合を有するカルボン酸化合物、重合性不飽和結合を有するカルボン酸エステル化合物およびエポキシ化合物を挙げることができる。このような重合性不飽和結合を有する基としては、ラジカル重合性基が好ましく、(メタ)アクリル、アリル、スチリルなどが挙げられる。 Examples of the compound having a functional group that reacts with a group having active hydrogen and a group having a polymerizable unsaturated bond in the same molecule include, for example, an isocyanate compound having a polymerizable unsaturated bond, and a polymerizable unsaturated bond. The acid halide which has, the carboxylic acid compound which has a polymerizable unsaturated bond, the carboxylic acid ester compound which has a polymerizable unsaturated bond, and an epoxy compound can be mentioned. The group having such a polymerizable unsaturated bond is preferably a radical polymerizable group, and examples thereof include (meth) acryl, allyl, and styryl.
 (メタ)アクリル基を有するイソシアネート化合物としては、以下の構造を有する化合物を用いることができる。 As the isocyanate compound having a (meth) acryl group, a compound having the following structure can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、R、Rは、水素またはメチルであり、Bは酸素、炭素数1~3のアルキレン、または-OR10-である;R10は炭素数2~12のアルキレン、炭素数2~12のオキシアルキレン、炭素数6~12のアリーレンを表す。 In the formula, R 8 and R 9 are hydrogen or methyl, B is oxygen, alkylene having 1 to 3 carbon atoms, or —OR 10 —; R 10 is alkylene having 2 to 12 carbon atoms, carbon number 2 Represents an oxyalkylene having ˜12 or arylene having 6 to 12 carbon atoms.
 表面改質剤としてのケイ素化合物の含有量は、硬化性樹脂層Aを形成する樹脂組成物を100重量%として、0.01~20重量%であることが好ましい。表面改質剤により、硬化性樹脂素層Aの表面にスリップ性を付与でき、硬化性樹脂層Aの耐タック性を改善することができる。そのため、ロールツーロールでの塗工の際に積層体(フィルム)同士のくっつきや、金属ロールへのくっつきを抑制することができる。 The content of the silicon compound as the surface modifier is preferably 0.01 to 20% by weight with respect to 100% by weight of the resin composition forming the curable resin layer A. By the surface modifier, slip property can be imparted to the surface of the curable resin base layer A, and the tack resistance of the curable resin layer A can be improved. Therefore, adhesion between laminates (films) and adhesion to a metal roll can be suppressed during coating by roll-to-roll.
 上記フルオロシルセスキオキサン重合体は、国際公開第2008/072765号または国際公開第2008/072766号に記載されている方法により合成することができる。 The above-mentioned fluorosilsesquioxane polymer can be synthesized by the method described in International Publication No. 2008/072765 or International Publication No. 2008/072766.
 硬化性樹脂層Aを形成する樹脂組成物にさらに表面改質剤を加えることで、硬化性樹脂層Aに表面改質(耐擦傷性、耐ブロッキング性、タック性、レべリング性向上等)の効果を付与することができる。 Surface modification to the curable resin layer A by adding a surface modifier to the resin composition forming the curable resin layer A (improving scratch resistance, blocking resistance, tackiness, leveling properties, etc.) The effect of can be provided.
 硬化性樹脂層Aの厚みは特に限定されないが、1~30μmが好ましく、3~10μmがより好ましい。上記厚みが厚過ぎると、製造が困難になるおそれがあり、また、経済性に劣るおそれがある。上記厚みが薄過ぎると、耐傷性に劣るおそれがある。 The thickness of the curable resin layer A is not particularly limited, but is preferably 1 to 30 μm, and more preferably 3 to 10 μm. When the said thickness is too thick, manufacture may become difficult and there exists a possibility that it may be inferior to economical efficiency. If the thickness is too thin, the scratch resistance may be poor.
 (オレフィン系光学フィルムB)
 オレフィン系光学フィルムBは、オレフィン系樹脂を含有し、光学用途に用いるのに適したフィルムであれば特に限定されない。上記光学用途に用いるのに適したフィルムとは、例えば、透明性が高いフィルムが挙げられる。上記オレフィン系光学フィルムBの全光線透過率は90%以上が好ましい。また、上記オレフィン系光学フィルムBのヘイズは1%以下が好ましく、0.5%以下がより好ましい。
(Olefin optical film B)
The olefinic optical film B is not particularly limited as long as it contains an olefinic resin and is a film suitable for use in optical applications. Examples of the film suitable for use in the optical application include a film having high transparency. The total light transmittance of the olefin optical film B is preferably 90% or more. The haze of the olefinic optical film B is preferably 1% or less, and more preferably 0.5% or less.
 オレフィン系光学フィルムBに含まれるオレフィン系樹脂としては、オレフィン系光学フィルムBを、光学用途に用いるのに適したフィルムとすることができれば特に限定されないが、環状オレフィンポリマーであることが好ましい。オレフィン系樹脂フィルムB上記環状オレフィンポリマーを含有することで、オレフィン系樹脂フィルムBが光学特性に優れ、且つ、耐熱性に優れる。 The olefin-based resin contained in the olefin-based optical film B is not particularly limited as long as the olefin-based optical film B can be a film suitable for optical use, but is preferably a cyclic olefin polymer. Olefin-based resin film B By containing the cyclic olefin polymer, the olefin-based resin film B is excellent in optical properties and heat resistance.
 上記環状オレフィンポリマーとしては、主鎖及び/又は側鎖に脂環式構造を有するポリマーが挙げられる。耐候性および防湿性等の観点から、主鎖に脂環式構造を有することが好ましい。 Examples of the cyclic olefin polymer include polymers having an alicyclic structure in the main chain and / or side chain. From the viewpoint of weather resistance, moisture resistance, etc., the main chain preferably has an alicyclic structure.
 環状オレフィンポリマーの脂環式構造としては、飽和環状炭化水素(シクロアルカン)構造、不飽和環状炭化水素(シクロアルケン)構造等が挙げられるが、機械的強度、耐熱性等に優れる点で、シクロアルカン構造を有するものが好ましい。 Examples of the alicyclic structure of the cyclic olefin polymer include a saturated cyclic hydrocarbon (cycloalkane) structure and an unsaturated cyclic hydrocarbon (cycloalkene) structure. In terms of excellent mechanical strength, heat resistance, etc., Those having an alkane structure are preferred.
 上記環状オレフィンポリマーは、環状オレフィンホモポリマーであってもよいし、環状オレフィンコポリマーであってもよい。中でも、耐熱性に優れる点で、環状オレフィンコポリマーが好ましい。 The cyclic olefin polymer may be a cyclic olefin homopolymer or a cyclic olefin copolymer. Among these, a cyclic olefin copolymer is preferable in terms of excellent heat resistance.
 上記環状オレフィンコポリマーとしては、例えば、ノルボルネンとエチレンとのコポリマーが挙げられる。ノルボルネンとエチレンとのコポリマーは、ノルボルネンとエチレンとの質量換算における共重合比率が80:20~90:10であることが好ましい。共重合比率がこの範囲であれば、ガラス転移温度は170℃~200℃になる。この範囲よりもノルボルネンの比率が低い場合は、ガラス転移温度が170℃未満となるため耐熱性が低下するおそれがある。また、この範囲よりもエチレンの比率が低い場合は、必要な後工程(コーティング工程、薄膜形成工程等)に耐える強度のフィルムに加工することが困難となるおそれがある。 Examples of the cyclic olefin copolymer include a copolymer of norbornene and ethylene. The copolymer of norbornene and ethylene preferably has a copolymerization ratio in terms of mass of norbornene and ethylene of 80:20 to 90:10. If the copolymerization ratio is within this range, the glass transition temperature is 170 ° C to 200 ° C. When the ratio of norbornene is lower than this range, the glass transition temperature becomes less than 170 ° C., so that the heat resistance may be lowered. Moreover, when the ratio of ethylene is lower than this range, it may be difficult to process a film having a strength that can withstand necessary post-processes (coating process, thin film forming process, etc.).
 環状オレフィンコポリマーとして、上記ノルボルネンとエチレンとのコポリマーを含有するフィルムの市販品としては、「F1フィルム」(商品名、グンゼ株式会社製)が挙げられる。 As a commercial product of the film containing the copolymer of norbornene and ethylene as the cyclic olefin copolymer, “F1 film” (trade name, manufactured by Gunze Co., Ltd.) may be mentioned.
 上記ノルボルネンとエチレンとのコポリマーは、通常、屈折率が1.49~1.55程度であり、通常、光線透過率が90.8%~93.0%程度である。なお、ノルボルネンとエチレンとのコポリマーには、紫外線吸収剤、無機や有機のアンチブロッキング剤、滑剤、静電気防止剤、安定剤等の各種公知の添加剤が合目的に添加されていてもよい。 The above copolymer of norbornene and ethylene usually has a refractive index of about 1.49 to 1.55, and usually has a light transmittance of about 90.8% to 93.0%. Various known additives such as an ultraviolet absorber, an inorganic or organic antiblocking agent, a lubricant, an antistatic agent, and a stabilizer may be added to the copolymer of norbornene and ethylene for a proper purpose.
 なお、オレフィン系光学フィルムBに含まれるオレフィン系樹脂は、上記樹脂に限定されず、公知のオレフィン系樹脂を用いることができる。このような公知のオレフィン系樹脂としては、例えば、特開2013-202989号公報、特開2003-103718号公報、特開平5-177776号公報、又は特表2003-504523号公報に記載のものが挙げられる。 In addition, the olefin resin contained in the olefin optical film B is not limited to the above resin, and a known olefin resin can be used. Examples of such known olefin resins include those described in JP2013-202989A, JP2003-103718A, JP5-17776A, or JP2003-504523A. Can be mentioned.
 オレフィン系光学フィルムBのオレフィン系樹脂の含有量は、当該オレフィン系光学フィルムBを100重量%として、70重量%以上が好ましく、80質量%がより好ましく、90重量%以上が更に好ましい。 The content of the olefinic resin in the olefinic optical film B is preferably 70% by weight or more, more preferably 80% by weight, even more preferably 90% by weight or more, with the olefinic optical film B being 100% by weight.
 オレフィン系光学フィルムBの厚みは特に限定されないが、20~300μmが好ましく、50~200μmがより好ましい。上記厚みが厚過ぎると、積層体が柔軟性に劣るおそれがある。上記厚みが薄過ぎると、積層体の強度が低下するおそれがある。 The thickness of the olefin-based optical film B is not particularly limited, but is preferably 20 to 300 μm, more preferably 50 to 200 μm. When the said thickness is too thick, there exists a possibility that a laminated body may be inferior to a softness | flexibility. When the said thickness is too thin, there exists a possibility that the intensity | strength of a laminated body may fall.
 (硬化性樹脂層C)
 硬化性樹脂層Cは、オレフィン系光学フィルムBの、硬化性樹脂層Aが積層される面とは反対側に積層される層である。
(Curable resin layer C)
The curable resin layer C is a layer that is laminated on the side of the olefin optical film B opposite to the surface on which the curable resin layer A is laminated.
 硬化性樹脂層Cを形成する樹脂としては、本発明の積層体の光学特性を低下させず、また、製造工程での破断の抑制を妨げなければ特に限定されない。 The resin for forming the curable resin layer C is not particularly limited as long as it does not deteriorate the optical characteristics of the laminate of the present invention and does not prevent the breakage in the production process.
 硬化性樹脂層Cは、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有することが好ましい。上記(a)成分を含有する構成とすることで、積層体の製造工程での硬化性樹脂層Cの破断が抑制され、これにより本発明の積層体の破断がより抑制される。上記(a)ウレタンアクリレートは、上記硬化性樹脂層Aが含有するウレタンアクリレート(a)と同一のものを用いることができる。 The curable resin layer C preferably contains a urethane acrylate having (a) a urethane skeleton and a bifunctional or higher functional (meth) acryloyl group. By setting it as the structure containing the said (a) component, the fracture | rupture of the curable resin layer C in the manufacturing process of a laminated body is suppressed, and, thereby, the fracture | rupture of the laminated body of this invention is suppressed more. As the (a) urethane acrylate, the same urethane acrylate (a) contained in the curable resin layer A can be used.
 硬化性樹脂層Cは、更に、(b)3官能以上の重合性官能基を有する多官能アクリレートを含有することが好ましい。硬化性樹脂層Cが、上記(b)成分を含有する構成とすることで、硬化性樹脂層Cがより硬度に優れ、これにより本発明の積層体の耐傷性をより向上させることができる。上記多官能アクリレート(b)は、上記硬化性樹脂層Aが含有する多官能アクリレート(b)と同一のものを用いることができる。 The curable resin layer C preferably further contains (b) a polyfunctional acrylate having a trifunctional or higher functional group. When the curable resin layer C is configured to contain the component (b), the curable resin layer C is more excellent in hardness, which can further improve the scratch resistance of the laminate of the present invention. The said polyfunctional acrylate (b) can use the same thing as the polyfunctional acrylate (b) which the said curable resin layer A contains.
 硬化性樹脂層Cは、更に、表面改質剤を含有していてもよい。当該表面改質剤は、上記硬化性樹脂層A、及び、硬化性樹脂層Cから選択される少なくとも一層に含まれていることが好ましい。硬化性樹脂層A、及び、硬化性樹脂層Cから選択される少なくとも一層が表面改質剤を含有することにより、本発明の積層体が、ロール状に巻き取った際に優れたアンチブロッキング性を示す。 The curable resin layer C may further contain a surface modifier. The surface modifier is preferably contained in at least one layer selected from the curable resin layer A and the curable resin layer C. When at least one layer selected from the curable resin layer A and the curable resin layer C contains a surface modifier, the anti-blocking property is excellent when the laminate of the present invention is rolled up. Indicates.
 上記表面改質剤としては、上記硬化性樹脂層Aが含有する表面改質剤と同一のものを用いることができる。 As the surface modifier, the same surface modifier as that contained in the curable resin layer A can be used.
 硬化性樹脂層Cの厚みは特に限定されないが、1~30μmが好ましく、3~10μmがより好ましい。上記厚みが厚過ぎると、積層体が破断し易くなるおそれがある。上記厚みが薄過ぎると、耐傷性に劣るおそれがある。 The thickness of the curable resin layer C is not particularly limited, but is preferably 1 to 30 μm, and more preferably 3 to 10 μm. If the thickness is too thick, the laminate may be easily broken. If the thickness is too thin, the scratch resistance may be poor.
 (積層体)
 本発明の積層体は、JIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上である。MIT耐折疲労試験が上述の範囲であることにより、製造工程でのロールツーロールプロセスにおいて、積層体に張力がかかった状態でロールを介してフィルムを送る際に積層体が屈曲することにより生じる積層体の破断が抑制される。上記MIT耐折疲労試験における屈曲回数は、20回以上が好ましい。
(Laminate)
In the laminate of the present invention, the number of bendings in the MIT bending fatigue test according to JIS P8115 is 15 or more. Due to the fact that the MIT bending fatigue test is in the above-mentioned range, in the roll-to-roll process in the manufacturing process, the laminate is bent when the laminate is fed through the roll in a tensioned state. Breakage of the laminate is suppressed. The number of bends in the MIT bending fatigue test is preferably 20 times or more.
 本発明の積層体は、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上である。引裂伝播強度が上述の範囲であることにより、製造工程でのロールツーロールプロセスにおいて、積層体に張力がかかった状態でロールを介してフィルムを送る際にロールとの間で摩擦を生じることにより生じる積層体の破断が抑制される。 The laminate of the present invention has a tear propagation strength of 110 mN or more measured by a measuring method based on JIS P8116. When the tear propagation strength is in the above-mentioned range, in the roll-to-roll process in the manufacturing process, when a film is fed through the roll in a state where tension is applied to the laminate, friction is generated between the roll and the roll. Breakage of the resulting laminate is suppressed.
 本発明の積層体は、少なくとも、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cがこの順に積層されていれば、その層構成については特に限定されず、他の層を備えていてもよい。例えば、硬化性樹脂層Aとオレフィン系光学フィルムBとの間に易接着層を有していてもよく、同様に、硬化性樹脂層Cとオレフィン系光学フィルムBとの間に易接着層を有していてもよい。上記易接着層を形成する接着剤樹脂としては特に限定されず、例えば、シリコーン樹脂を用いることができる。 In the laminate of the present invention, as long as at least the curable resin layer A, the olefin-based optical film B, and the curable resin layer C are laminated in this order, the layer configuration is not particularly limited, and other layers are used. You may have. For example, you may have an easily bonding layer between the curable resin layer A and the olefin type optical film B, and similarly, an easy bonding layer is provided between the curable resin layer C and the olefin type optical film B. You may have. It does not specifically limit as adhesive resin which forms the said easily bonding layer, For example, a silicone resin can be used.
 上記オレフィン系光学フィルムBの表面には、プラズマ処理、コロナ処理等の表面処理が施されていてもよい。オレフィン系光学フィルムBの表面に表面処理が施されることにより、本発明の積層体の層間密着性を、より向上させることができる。 The surface of the olefin optical film B may be subjected to a surface treatment such as plasma treatment or corona treatment. By subjecting the surface of the olefin-based optical film B to surface treatment, the interlayer adhesion of the laminate of the present invention can be further improved.
 (製造方法)
 本発明の積層体の製造方法としては、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cをこの順に積層することができれば特に限定されず、従来公知の方法により製造することができる。例えば、オレフィン系光学フィルムBの一方面に硬化性樹脂層A形成用組成物を塗布し、且つ、もう一方の面に硬化性樹脂層C形成用組成物を塗布して、これらの組成物を乾燥させ、UV照射装置により紫外線を照射して硬化させることにより、硬化性樹脂層A及びBを形成する方法により、本発明の積層体を製造することができる。
(Production method)
As a manufacturing method of the laminated body of this invention, if curable resin layer A, the olefin type optical film B, and curable resin layer C can be laminated | stacked in this order, it will not specifically limit, It manufactures by a conventionally well-known method. Can do. For example, the curable resin layer A forming composition is applied to one surface of the olefin-based optical film B, and the curable resin layer C forming composition is applied to the other surface. The laminate of the present invention can be produced by a method of forming the curable resin layers A and B by drying and irradiating and curing with ultraviolet rays using a UV irradiation apparatus.
 上記オレフィン系光学フィルムBに硬化性樹脂層A形成用組成物及びBを塗布する方法としては特に限定されず、例えば、ロール状のオレフィン系光学フィルムBのロールから、オレフィン系光学フィルムBを引き出しながら、これらの組成物をロールナイフで塗布する方法が挙げられる。 The method for applying the curable resin layer A forming composition and B to the olefin optical film B is not particularly limited. For example, the olefin optical film B is drawn from the roll of the roll-shaped olefin optical film B. However, the method of apply | coating these compositions with a roll knife is mentioned.
 硬化性樹脂層A形成用組成物及び硬化性樹脂層C形成用組成物を乾燥させる方法としては特に限定されず、例えば、硬化性樹脂層A形成用組成物及び硬化性樹脂層C形成用組成物を、オレフィン系光学フィルムB上に塗布された状態で乾燥器内を通過させる方法が挙げられる。上記硬化性樹脂層A形成用組成物及び硬化性樹脂層C形成用組成物を乾燥させる際の乾燥温度は、40~100℃であることが好ましい。 The method for drying the curable resin layer A forming composition and the curable resin layer C forming composition is not particularly limited. For example, the curable resin layer A forming composition and the curable resin layer C forming composition are not limited. A method of passing the product through the dryer in a state where the product is applied onto the olefin-based optical film B is exemplified. The drying temperature for drying the curable resin layer A forming composition and the curable resin layer C forming composition is preferably 40 to 100 ° C.
 乾燥させた硬化性樹脂層A形成用組成物及び硬化性樹脂層C形成用組成物に紫外線を照射して硬化させる際の紫外線照射の条件は、積算照射量200~1000mJ/cmが好ましい。紫外線照射の条件は、硬化させる組成物の粘度等の条件によって適宜設定される。 The conditions for the ultraviolet irradiation when the dried composition for forming the curable resin layer A and the composition for forming the curable resin layer C are cured by irradiating with ultraviolet rays are preferably an integrated dose of 200 to 1000 mJ / cm 2 . The conditions for ultraviolet irradiation are appropriately set depending on conditions such as the viscosity of the composition to be cured.
 以上説明した製造方法により、本発明の積層体を製造することができる。 The laminate of the present invention can be produced by the production method described above.
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
 (合成例1)
 (a)成分の合成(ポリカーボネート系ウレタンアクリレート(a-1)の合成例) 4,4’-ジシクロヘキシルメタンジイソシアネート(商品名:デスモジュール(登録商標)、住化バイエルウレタン株式会社製)を305.7g(1.17モル)、1,4-シクロヘキサンジメタノールを用いたポリカーボネートポリオール(商品名:ETERNACOLL(登録商標)UC-100、宇部興産株式会社製)を1000g(1モル)、2-ブタノン(MEK、メチルエチルケトン)1699.2gを仕込み、70℃~80℃の条件にて反応を行い、所定の残存イソシアネート濃度になるまで反応させた。
(Synthesis Example 1)
Synthesis of component (a) (Synthesis example of polycarbonate urethane acrylate (a-1)) 4,4'-dicyclohexylmethane diisocyanate (trade name: Desmodur (registered trademark), manufactured by Sumika Bayer Urethane Co., Ltd.) 7 g (1.17 mol), polycarbonate polyol (trade name: ETERRNACOLL (registered trademark) UC-100, manufactured by Ube Industries, Ltd.) using 1,4-cyclohexanedimethanol, 1000 g (1 mol), 2-butanone ( (MEK, methyl ethyl ketone) 1699.2 g was charged, and the reaction was carried out at 70 ° C. to 80 ° C. until the predetermined residual isocyanate concentration was reached.
 次いで、2-ヒドロキシエチルアクリレート(商品名:BHEA、株式会社日本触媒製)255.2g(2.2モル)、及び重合禁止剤としてハイドロキノンモノメチルエーテル(商品名:MQ、川口化学工業株式会社製)0.85gを添加後、さらに70℃~80℃の条件にて残存イソシアネート濃度が0.1重量%になるまで反応させ、ポリカーボネート系ウレタンアクリレート(a-1)を得た。得られた重合体(a-1)のGPC分析により求めた重量平均分子量は100,000であった。 Subsequently, 2-hydroxyethyl acrylate (trade name: BHEA, manufactured by Nippon Shokubai Co., Ltd.) 255.2 g (2.2 mol) and hydroquinone monomethyl ether as a polymerization inhibitor (trade name: MQ, manufactured by Kawaguchi Chemical Industry Co., Ltd.) After adding 0.85 g, the reaction was continued under the conditions of 70 ° C. to 80 ° C. until the residual isocyanate concentration became 0.1% by weight to obtain a polycarbonate-based urethane acrylate (a-1). The obtained polymer (a-1) had a weight average molecular weight of 100,000 by GPC analysis.
 (合成例2)
 (b)成分の合成
 還流冷却器、温度計および滴下ロートを取り付けた内容積200mLの四つ口フラスコに、メチルメタクリレート(MMA)を25.00g、メタクリル酸グリシジル(GMA)を25.00g、2-ブタノン(MEK)を50.00g導入し、窒素シールした。80℃に保ったオイルバスにセットして還流させ、10分間脱酸素を行った。次いで0.70gの2,2'-アゾビスイソブチロニトリル(AIBN)、及び0.08gのメルカプト酢酸(AcSH)を7.00gのMEKに溶解させた溶液を導入し、還流温度に保ったまま重合を開始した。3時間重合した後、0.70gのAIBNを7.00gのMEKに溶解させた溶液を導入し、さらに5時間重合を継続した。
(Synthesis Example 2)
(B) Synthesis of Component Into a 200 mL four-necked flask equipped with a reflux condenser, a thermometer and a dropping funnel, 25.00 g of methyl methacrylate (MMA), 25.00 g of glycidyl methacrylate (GMA), 2 -50.00 g of butanone (MEK) was introduced and sealed with nitrogen. It was set in an oil bath maintained at 80 ° C. and refluxed, and deoxygenated for 10 minutes. Subsequently, a solution prepared by dissolving 0.70 g of 2,2′-azobisisobutyronitrile (AIBN) and 0.08 g of mercaptoacetic acid (AcSH) in 7.00 g of MEK was introduced and kept at the reflux temperature. Polymerization was started as it was. After polymerization for 3 hours, a solution in which 0.70 g of AIBN was dissolved in 7.00 g of MEK was introduced, and the polymerization was further continued for 5 hours.
 重合終了後、重合液に変性アルコール(ソルミックスAP-1、日本アルコール販売株式会社製)を65mL加え、1300mLのソルミックスAP-1に注ぎ込んで重合体を析出させた。上澄みを除去し、減圧乾燥(40℃、3時間、70℃、3時間)させて40gのグリシジル基を有する重合体を得た。得られた重合体のGPC分析により求めた重量平均分子量は31,200、分子量分布は1.43であった。また重合体のH-NMR測定より求めたモノマー成分の組成モル分率はMMA:GMA=50:50であった。 After completion of the polymerization, 65 mL of denatured alcohol (Solmix AP-1, manufactured by Nippon Alcohol Sales Co., Ltd.) was added to the polymerization solution and poured into 1300 mL of Solmix AP-1, to precipitate a polymer. The supernatant was removed and dried under reduced pressure (40 ° C., 3 hours, 70 ° C., 3 hours) to obtain 40 g of a polymer having a glycidyl group. The weight average molecular weight calculated | required by GPC analysis of the obtained polymer was 31,200, and molecular weight distribution was 1.43. The compositional mole fraction of the monomer component determined from 1 H-NMR measurement of the polymer was MMA: GMA = 50: 50.
 [側鎖へのアクリロイル基の付加(エポキシ基反応)]
 続いて、還流冷却器、温度計およびセプタムキャップを取り付けた内容積200mLの四つ口フラスコに、グリシジル基を有する重合体を50.0g、アクリル酸(AA)を16.48g、MEHQを0.13g、テトラメチルアンモニウムクロライドを1.25g、2-ブタノン(MEK)を33.24g導入し、窒素シールした。80℃に保ったオイルバスにセットし、昇温し反応を開始した。10時間反応した後、室温まで冷却してMeOH10.0gを導入して反応を終了した。反応終了後、反応液にソルミックスAP-1を65mL加えた後、1300mLのソルミックスAP-1に注ぎ込んで反応物を析出させた。上澄みを除去し、減圧乾燥(40℃で3時間乾燥後、70℃で3時間乾燥)させてアクリロイル基を有する重合体(b-1)を得た。得られた重合体(b-1)のGPC分析により求めた重量平均分子量は47,000であった。
[Addition of acryloyl group to side chain (epoxy group reaction)]
Subsequently, 50.0 g of a polymer having a glycidyl group, 16.48 g of acrylic acid (AA), and MEHQ of 0.004 were added to a 200 mL internal flask having a reflux condenser, a thermometer, and a septum cap. 13 g, 1.25 g of tetramethylammonium chloride and 33.24 g of 2-butanone (MEK) were introduced and sealed with nitrogen. It set to the oil bath maintained at 80 degreeC, and it heated up and started reaction. After reacting for 10 hours, the reaction was terminated by cooling to room temperature and introducing 10.0 g of MeOH. After completion of the reaction, 65 mL of Solmix AP-1 was added to the reaction solution, and then poured into 1300 mL of Solmix AP-1 to precipitate the reaction product. The supernatant was removed, followed by drying under reduced pressure (drying at 40 ° C. for 3 hours and then drying at 70 ° C. for 3 hours) to obtain a polymer (b-1) having an acryloyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer (b-1) was 47,000.
 (合成例3)
 表面改質剤の合成(ケイ素化合物としてのフルオロシルセスキオキサン含有化合物(d-1)の合成)
 [ヒドロキシル基を有する重合体前駆体の合成]
(Synthesis Example 3)
Synthesis of surface modifier (synthesis of fluorosilsesquioxane-containing compound (d-1) as silicon compound)
[Synthesis of polymer precursor having hydroxyl group]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 還流冷却器、温度計および滴下ロートを取り付けた内容積200mLの四つ口フラスコに、上記式により示される化合物(d-1)を36.65g、メチルメタクリレート(MMA)を3.37g、2-ヒドロキシエチルメタクリレート(HEMA)を0.97g、片末端メタクリロキシ基変性ジメチルシリコーン(FM-0721、分子量約6,300)を24.00g、2-ブタノン(MEK)を64.45g導入し、窒素シールした。95℃に保ったオイルバスにセットして還流させ、10分間脱酸素を行った。次いで、0.35gの2,2'-アゾビスイソブチロニトリル(AIBN)と0.20gのメルカプト酢酸(AcSH)を4.94gのMEKに溶解させた溶液を導入し、還流温度に保ったまま重合を開始した。3時間重合した後、0.35gのAIBNを3.16gのMEKに溶解させた溶液を導入し、さらに5時間重合を継続した。重合終了後、重合液に変性アルコール(ソルミックスAP-1、日本アルコール販売株式会社製)を65mL加えた後、1300mLのソルミックスAP-1に注ぎ込んで重合体を析出させた。上澄みを除去し、減圧乾燥(40℃で3時間乾燥後、70℃で3時間乾燥)させて40gのヒドロキシル基を有する重合体前駆体を得た。得られた重合体前駆体のGPC分析により求めた重量平均分子量は31,200、分子量分布は1.43であった。また重合体前駆体の1H-NMR測定より求めたモノマー成分の組成モル分率は、化合物(d-1):MMA:HEMA:FM-0721=41.7:42.8:10.1:5.4であった。また、ヒドロキシル基当量は9,400g/eqであった。 In a 200 mL four-necked flask equipped with a reflux condenser, thermometer and dropping funnel, 36.65 g of the compound (d-1) represented by the above formula, 3.37 g of methyl methacrylate (MMA), 2- 0.97 g of hydroxyethyl methacrylate (HEMA), 24.00 g of dimethylsilicone modified with one end methacryloxy group (FM-0721, molecular weight of about 6,300) and 64.45 g of 2-butanone (MEK) were introduced and sealed with nitrogen. . It was set in an oil bath maintained at 95 ° C. and refluxed, and deoxygenated for 10 minutes. Next, a solution prepared by dissolving 0.35 g of 2,2′-azobisisobutyronitrile (AIBN) and 0.20 g of mercaptoacetic acid (AcSH) in 4.94 g of MEK was introduced and maintained at the reflux temperature. Polymerization was started as it was. After polymerization for 3 hours, a solution prepared by dissolving 0.35 g of AIBN in 3.16 g of MEK was introduced, and polymerization was further continued for 5 hours. After completion of the polymerization, 65 mL of denatured alcohol (Solmix AP-1, manufactured by Nippon Alcohol Sales Co., Ltd.) was added to the polymerization solution, and then poured into 1300 mL of Solmix AP-1, to precipitate a polymer. The supernatant was removed and dried under reduced pressure (after drying at 40 ° C. for 3 hours and then at 70 ° C. for 3 hours) to obtain 40 g of a polymer precursor having a hydroxyl group. The weight average molecular weight calculated | required by GPC analysis of the obtained polymer precursor was 31,200, and molecular weight distribution was 1.43. The compositional molar fraction of the monomer component determined from 1 H-NMR measurement of the polymer precursor was as follows: Compound (d-1): MMA: HEMA: FM-0721 = 41.7: 42.8: 10.1: 5.4. Moreover, the hydroxyl group equivalent was 9,400 g / eq.
 [側鎖にアクリロイル基を有する重合体の合成(フルオロシルセスキオキサン含有化合物(d-1)の合成)
 還流冷却器、温度計およびセプタムキャップを取り付けた内容積200mLの四つ口フラスコに、ヒドロキシル基を有する重合体前駆体を15.0g、MEHQを0.015g、DBTDLを0.0263g、酢酸エチルを130g導入し、窒素シールした。48℃に保ったオイルバスにセットし、昇温した。次いで液温が45℃になったところで、アクリロイルオキシエチルイソシアネート(AOI、昭和電工株式会社製)2.35gを導入し、反応を開始した。6時間反応した後、室温まで冷却してMeOH10.0gを導入して反応を終了した。反応終了後、反応液にソルミックスAP-1を65mL加え、1300mLのソルミックスAP-1に注ぎ込んで反応物を析出させた。上澄みを除去し、減圧乾燥(40℃で3時間乾燥後、70℃で3時間乾燥)させて11.8gのアクリロイル基を有する重合体(d-1)を得た。得られた重合体のGPC分析により求めた重量平均分子量は32,800、であった。また、重合体(d-1)の1H-NMR測定より求めたアクリロイル基当量は6,900g/eqであった。
[Synthesis of polymer having acryloyl group in side chain (synthesis of fluorosilsesquioxane-containing compound (d-1))
Into a 200 mL four-necked flask equipped with a reflux condenser, a thermometer and a septum cap, 15.0 g of a polymer precursor having a hydroxyl group, 0.015 g of MEHQ, 0.0263 g of DBTDL, and ethyl acetate 130 g was introduced and sealed with nitrogen. It set to the oil bath maintained at 48 degreeC, and heated up. Next, when the liquid temperature reached 45 ° C., 2.35 g of acryloyloxyethyl isocyanate (AOI, manufactured by Showa Denko KK) was introduced to start the reaction. After reacting for 6 hours, the reaction was terminated by cooling to room temperature and introducing 10.0 g of MeOH. After completion of the reaction, 65 mL of Solmix AP-1 was added to the reaction solution and poured into 1300 mL of Solmix AP-1 to precipitate the reaction product. The supernatant was removed, followed by drying under reduced pressure (drying at 40 ° C. for 3 hours and then drying at 70 ° C. for 3 hours) to obtain 11.8 g of a polymer (d-1) having an acryloyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer was 32,800. In addition, the acryloyl group equivalent determined from 1 H-NMR measurement of the polymer (d-1) was 6,900 g / eq.
 実施例1
(オレフィン系光学フィルムBの調製)
 ノルボルネンとエチレンとの共重合比率が82:18のエチレン-ノルボルネン共重合体(商品名:「TOPAS」 TOPAS Advanced Polymers社製)を、溶融押出法にて樹脂温度300℃、引取りロール温度130℃の条件で押出成形して、厚みが100μmのオレフィン系光学フィルムBを調製した。
Example 1
(Preparation of olefin-based optical film B)
An ethylene-norbornene copolymer (trade name: “TOPAS” manufactured by TOPAS Advanced Polymers) having a copolymerization ratio of norbornene and ethylene of 82:18 was obtained by melt extrusion using a resin temperature of 300 ° C. and a take-up roll temperature of 130 ° C. The olefin-based optical film B having a thickness of 100 μm was prepared by extrusion molding under the above conditions.
 [調製例1(塗料1の調製)]
 合成例1により得られたポリカーボネート系ウレタンアクリレート(a-1)11.4g(固形分100%)、合成例2により得られたアクリロイル基を有する重合体(b-1)25.4g(固形分30重量%MEK溶液)、及び2-ブタノン(MEK)62.2gを遮光されたプラスチックボトルに導入し、攪拌・混合した。透明な溶液になったことを確認した後、光重合開始剤(c)(商品名:イルガキュア184、BASF社製)0.95gを添加し、さらに攪拌・混合することにより、塗料1を調製した。
[Preparation Example 1 (Preparation of Paint 1)]
11.4 g of the polycarbonate-based urethane acrylate (a-1) obtained in Synthesis Example 1 (solid content 100%), 25.4 g of the polymer (b-1) having an acryloyl group obtained in Synthesis Example 2 (solid content) 30 wt% MEK solution) and 62.2 g of 2-butanone (MEK) were introduced into a light-shielded plastic bottle and stirred and mixed. After confirming that the solution became transparent, 0.95 g of a photopolymerization initiator (c) (trade name: Irgacure 184, manufactured by BASF) was added, and the mixture was further stirred and mixed to prepare paint 1. .
 [調製例2(塗料2の調製)]
 合成例1により得られたポリカーボネート系ウレタンアクリレート(a-1)11.4g(固形分100%)、合成例2により得られたアクリロイル基を有する重合体(b-1)25.3g(固形分30重量%MEK溶液)、及び2-ブタノン(MEK)62.1gを遮光されたプラスチックボトルに導入し、攪拌・混合した。透明な溶液になったことを確認した後、光重合開始剤(c)(商品名:イルガキュア184、BASF社製)0.95g、及びフルオロシルセスキオキサン含有化合物(d-1)0.32g(固形分30重量%MEK溶液)を添加し、さらに攪拌・混合することにより、表面改質剤を含む塗料2を調製した。
[Preparation Example 2 (Preparation of Paint 2)]
11.4 g of the polycarbonate-based urethane acrylate (a-1) obtained in Synthesis Example 1 (100% solid content), 25.3 g of the polymer (b-1) having an acryloyl group obtained in Synthesis Example 2 (solid content) 30 wt% MEK solution) and 62.1 g of 2-butanone (MEK) were introduced into a light-shielded plastic bottle and stirred and mixed. After confirming that the solution became transparent, 0.95 g of the photopolymerization initiator (c) (trade name: Irgacure 184, manufactured by BASF) and 0.32 g of the fluorosilsesquioxane-containing compound (d-1) (Solid content 30 wt% MEK solution) was added, and further stirred and mixed to prepare paint 2 containing a surface modifier.
 [調製例3(塗料3の調製)]
 合成例1により得られたポリカーボネート系ウレタンアクリレート(a-1)15.2g(固形分100%)、合成例2により得られたアクリロイル基を有する重合体(b-1)12.7g(固形分30重量%MEK溶液)、2-ブタノン(MEK)71.1gを遮光されたプラスチックボトルに導入し、攪拌・混合した。透明な溶液になったことを確認した後、光重合開始剤(c)(商品名:イルガキュア184、BASF社製)0.95gを添加し、さらに攪拌・混合することにより、塗料3を調製した。
[Preparation Example 3 (Preparation of Paint 3)]
15.2 g of the polycarbonate-based urethane acrylate (a-1) obtained in Synthesis Example 1 (solid content: 100%), 12.7 g of the polymer (b-1) having an acryloyl group obtained in Synthesis Example 2 (solid content) 30 wt% MEK solution) and 71.1 g of 2-butanone (MEK) were introduced into a light-shielded plastic bottle and stirred and mixed. After confirming that the solution became transparent, 0.95 g of a photopolymerization initiator (c) (trade name: Irgacure 184, manufactured by BASF) was added, and the mixture was further stirred and mixed to prepare paint 3. .
 <積層体の製造>
 オレフィン系光学フィルムBの一方面に、上述のようにして調製した塗料1をワイヤーバーを用いて塗布した。塗料1が塗布されたオレフィン系光学フィルムBを80℃の乾燥器内に入れて2分間乾燥し、積算光量500mJ/cmの条件で紫外線を照射し、オレフィン系光学フィルムBの一方面に厚みが5μmの硬化性樹脂層Aを形成した。
<Manufacture of laminates>
The coating 1 prepared as described above was applied to one surface of the olefin-based optical film B using a wire bar. The olefin-based optical film B coated with the paint 1 is placed in an oven at 80 ° C. and dried for 2 minutes, irradiated with ultraviolet rays under the condition of an integrated light quantity of 500 mJ / cm 2 , and the thickness of one surface of the olefin-based optical film B is increased. A curable resin layer A having a thickness of 5 μm was formed.
 上記オレフィン系光学フィルムBの、硬化性樹脂層Aが形成された面とは反対側の面に、上述のようにして調製した塗料2をワイヤーバーを用いて塗布した。また、上記硬化性樹脂層Aを形成したのと同一の方法により、塗料2を硬化させて、厚みが5μmの硬化性樹脂層Cを形成して、積層体を調製した。 The coating 2 prepared as described above was applied to the surface of the olefin-based optical film B opposite to the surface on which the curable resin layer A was formed using a wire bar. Moreover, the coating material 2 was hardened by the same method as the said curable resin layer A was formed, the curable resin layer C with a thickness of 5 micrometers was formed, and the laminated body was prepared.
 実施例2
 オレフィン系光学フィルムBとして、厚みが100μmの、ノルボルネンのホモポリマーを含む熱可塑性環状オレフィン系フィルム(商品名:ZENORフィルム ZF16 日本ゼオン株式会社製)を用いた以外は実施例1と同様にして、積層体を調製した。
Example 2
As the olefin-based optical film B, a thermoplastic cyclic olefin-based film having a thickness of 100 μm and containing a norbornene homopolymer (trade name: ZENOR film ZF16 manufactured by Nippon Zeon Co., Ltd.) was used in the same manner as in Example 1, A laminate was prepared.
 実施例3
 塗料1及び塗料2に代えて、塗料3を用いた以外は実施例1と同様にして、積層体を調製した。
Example 3
A laminate was prepared in the same manner as in Example 1 except that paint 3 was used instead of paint 1 and paint 2.
 比較例1
 硬化性樹脂層A及びCを設けず、オレフィン系光学フィルムB単体を比較例1とした。
Comparative Example 1
The curable resin layers A and C were not provided, and the olefin optical film B alone was used as Comparative Example 1.
 比較例2
 硬化性樹脂層A及び硬化性樹脂層Cを形成するための塗料として、アクリル系光硬化性樹脂(商品名:NAB001 日本ペイント株式会社製)を用い、硬化性樹脂層A及びCの厚みを3μmとした以外は実施例1と同様にして、積層体を調製した。
Comparative Example 2
As a paint for forming the curable resin layer A and the curable resin layer C, an acrylic photocurable resin (trade name: NAB001 manufactured by Nippon Paint Co., Ltd.) is used, and the thickness of the curable resin layers A and C is 3 μm. A laminate was prepared in the same manner as in Example 1 except that.
 比較例3
 オレフィン系光学フィルムBとして、厚みが100μmの、ノルボルネンのホモポリマーを含む熱可塑性環状オレフィン系フィルム(商品名:ZENORフィルム ZF16 日本ゼオン株式会社製)を用いた以外は比較例2と同様にして、積層体を調製した。
Comparative Example 3
As the olefin-based optical film B, a thickness of 100 μm, a thermoplastic cyclic olefin-based film containing a norbornene homopolymer (trade name: ZENOR film ZF16, manufactured by Nippon Zeon Co., Ltd.) was used in the same manner as in Comparative Example 2, A laminate was prepared.
 上記実施例及び比較例について、以下の評価を行った。 The following evaluations were performed on the above examples and comparative examples.
 (全光線透過率)
 JIS-K7361-1に準拠した測定方法により、ヘイズメーターNDH5000(商品名 日本電色工業株式会社製)を用いて積層体の全光線透過率を測定した。
(Total light transmittance)
The total light transmittance of the laminate was measured using a haze meter NDH5000 (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.) by a measuring method based on JIS-K7361-1.
 (ヘイズ)
 JIS-K7136に準拠した測定方法により、ヘイズメーターNDH5000(日本電色工業株式会社製)を用いて積層体のヘイズを測定した。
(Haze)
The haze of the laminate was measured using a haze meter NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.) by a measuring method based on JIS-K7136.
 (MIT耐折疲労試験における屈曲回数)
 積層体を幅15mm×長さ110mmの大きさにサンプリングし、試験片とした。この試験片を用いて、JIS-P8115に準拠した測定方法により、MIT耐折疲労試験機D型(株式会社東洋精機製作所製)を用いて、試験速度90cpm、折り曲げ角度90°、荷重0.25kgf、折り曲げクランプのR0.38mm、折り曲げクランプの開き0.25mmの測定条件により積層体のMIT耐折疲労試験における屈曲回数を測定した。
(Number of flexing in MIT folding fatigue test)
The laminate was sampled to a size of 15 mm wide × 110 mm long to obtain a test piece. Using this test piece, a MIT folding fatigue tester D type (manufactured by Toyo Seiki Seisakusyo Co., Ltd.) was used in a measurement method in accordance with JIS-P8115, with a test speed of 90 cpm, a bending angle of 90 °, and a load of 0.25 kgf. The number of bends in the MIT folding fatigue test of the laminate was measured under the measurement conditions of R0.38 mm for the bending clamp and 0.25 mm for the opening of the bending clamp.
 (引裂伝播強度)
 積層体を幅50mm×長さ63.5mmの大きさにサンプリングし、試験片とした。この試験片を用いて、JIS P8116に準拠した測定方法により、軽荷重引裂試験機(株式会社東洋精機製作所製)を用いて積層体の引裂伝播強度を測定した。測定は、サンプルを試験機にセットし、長さ方向に約10mmのノッチを入れてから行った。
(Tear propagation strength)
The laminate was sampled to a size of 50 mm width × 63.5 mm length to obtain a test piece. Using this test piece, the tear propagation strength of the laminate was measured using a light load tear tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) by a measuring method based on JIS P8116. The measurement was performed after setting the sample in a testing machine and making a notch of about 10 mm in the length direction.
 (ループ破断強度)
 積層体を幅25mm×長さ200mmの大きさにサンプリングし、試験片とした。この試験片を用いて、剥離強度測定機(商品名:トライボギアHEIDON17 新東科学株式会社製)を用いて積層体のループ破断強度を測定した。測定は、図2に示す方法で、以下の手順により行った。図2はループ破断強度の測定方法を示す断面模式図である。先ず、図2に示すように、試験片10を長さ方向に折り返して長さ方向の端部11,11を重ね、折り返し部分12をループ形状とした。重ねた端部11,11をロール間隙1mmのロール13,13間に通し、引張速度200mm/minで重ねた端部11,11を引張り、ループ形状12の部位がロール間隙を通過する際の引張強度を測定し、積層体のループ強度とした。なお、ループ破断強度は、高い程積層体の破断が抑制されていることを示しており、3.0N/25mm以上であると、製造工程での積層体の破断が十分に抑制される。
(Loop breaking strength)
The laminate was sampled to a size of 25 mm wide × 200 mm long to obtain a test piece. Using this test piece, the loop breaking strength of the laminate was measured using a peel strength measuring machine (trade name: Tribogear HEIDON17 manufactured by Shinto Kagaku Co., Ltd.). The measurement was performed by the following procedure according to the method shown in FIG. FIG. 2 is a schematic cross-sectional view showing a method for measuring the loop breaking strength. First, as shown in FIG. 2, the test piece 10 was folded back in the length direction, the end portions 11 and 11 in the length direction were overlapped, and the folded portion 12 was formed in a loop shape. The overlapped end portions 11 and 11 are passed between rolls 13 and 13 having a roll gap of 1 mm, the overlapped end portions 11 and 11 are pulled at a pulling speed of 200 mm / min, and the tension when the loop-shaped portion 12 passes through the roll gap is pulled. The strength was measured and used as the loop strength of the laminate. In addition, it has shown that the fracture | rupture of a laminated body is suppressed, so that the loop breaking strength is high, and the fracture | rupture of a laminated body in a manufacturing process is fully suppressed as it is 3.0 N / 25mm or more.
 (摩擦係数)
 ASTM-D-1894に準拠した測定方法により、表面性測定機(商品名:トライボギアHEIDON14FW 新東科学株式会社製)を用いて平板圧子63.5×63.5mm、荷重200gf、表面圧力0.49kPa、速度5.0mm/sec、移動距離50mmの条件で測定した。具体的には、試験片を移動テーブルに固定し、平面圧子板(アルミ製)を滑らせたときの試験力(荷重)を計測し、下記式に基づいて摩擦係数を算出した。
[静摩擦係数(μs)]=[ピーク試験力(gf)]/[荷重(gf)]
[動摩擦係数(μk)]=[平均試験力(gf)]/[荷重(gf)]
(Coefficient of friction)
Using a surface property measuring instrument (trade name: Tribogear HEIDON14FW, manufactured by Shinto Kagaku Co., Ltd.) by a measuring method based on ASTM-D-1894, a flat plate indenter 63.5 × 63.5 mm, load 200 gf, surface pressure 0.49 kPa The measurement was performed under the conditions of a speed of 5.0 mm / sec and a moving distance of 50 mm. Specifically, the test force (load) when the test piece was fixed to the moving table and the flat indenter plate (aluminum) was slid was measured, and the friction coefficient was calculated based on the following formula.
[Static friction coefficient (μs)] = [Peak test force (gf)] / [Load (gf)]
[Dynamic friction coefficient (μk)] = [Average test force (gf)] / [Load (gf)]
 (剥離力)
 積層体を幅50mm×長さ180mmの大きさにサンプリングし、試験片とした。この試験片を用いて、オートグラフAG-500NX(株式会社島津製作所製)により積層体の剥離力を測定した。具体的には、試験片を2枚重ね合わせ、2kgのゴムロールで5往復し圧着させた。圧着した試験片を端部から剥がしオートグラフに装着して、引張速度200mm/min、荷重レンジ500mN、計測位置30-100mm、チャック間7.5cmの測定条件で引張強度を測定し、平均値を剥離力とした。
(Peeling force)
The laminate was sampled to a size of 50 mm width × 180 mm length to obtain a test piece. Using this test piece, the peel strength of the laminate was measured by Autograph AG-500NX (manufactured by Shimadzu Corporation). Specifically, two test pieces were overlapped and reciprocated 5 times with a 2 kg rubber roll. The pressure-bonded test piece is peeled off from the end and attached to the autograph, and the tensile strength is measured under the measurement conditions of a tensile speed of 200 mm / min, a load range of 500 mN, a measurement position of 30-100 mm, and a chuck distance of 7.5 cm, and the average value is calculated. The peel force was used.
 測定結果を表1に示す。なお、表1の各評価の数値は、5サンプルについて測定した測定値の平均値である。 Table 1 shows the measurement results. In addition, the numerical value of each evaluation of Table 1 is the average value of the measured value measured about 5 samples.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1の結果から明らかな通り、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cがこの順に積層されており、上記硬化性樹脂層Aは、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有しており、積層体のJIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上である実施例1~3の積層体は、全光線透過率が高く、ヘイズが低くなっており、光学特性に優れていた。また、実施例1~3の積層体は、ループ破断強度が高くなっており、製造工程での破断が抑制されていることが分かった。 As is apparent from the results in Table 1, the curable resin layer A, the olefin-based optical film B, and the curable resin layer C are laminated in this order, and the curable resin layer A includes (a) a urethane skeleton, It contains a urethane acrylate having a bifunctional or higher functional (meth) acryloyl group, and the laminate has a flex number of 15 times or more in the MIT bending fatigue test based on JIS P8115, and conforms to JIS P8116. The laminates of Examples 1 to 3 having a tear propagation strength measured by the measurement method of 110 mN or more had high total light transmittance, low haze, and excellent optical characteristics. Further, it was found that the laminates of Examples 1 to 3 had high loop breaking strength, and the breaking during the manufacturing process was suppressed.
 更に、実施例1及び2の積層体は、硬化性樹脂層A及びCが表面改質剤を含んでいるため、摩擦係数及び剥離力が低くなっており、積層体をロール状に巻き取った際のアンチブロッキング性にも優れるため、製造工程での破断がより抑制されることが分かった。 Furthermore, since the curable resin layers A and C included the surface modifier in the laminates of Examples 1 and 2, the friction coefficient and the peel force were low, and the laminate was wound up in a roll shape. Since the anti-blocking property at the time was also excellent, it was found that breakage in the production process was further suppressed.
 これに対し、比較例1はオレフィン系光学フィルムBを単層で用いており、また、比較例2及び3の積層体は、硬化性樹脂層A及びCが(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有しておらず、上記MIT耐折疲労試験における屈曲回数が15回未満であり、且つ、上記引裂伝播強度が110mN未満であるので、ループ破断強度が低くなっており、製造工程での破断が抑制されていないことが分かった。 On the other hand, Comparative Example 1 uses the olefin-based optical film B as a single layer, and in the laminates of Comparative Examples 2 and 3, the curable resin layers A and C are (a) urethane skeleton and bifunctional. Since it does not contain the above urethane acrylate having a (meth) acryloyl group, the number of flexing times in the MIT folding fatigue test is less than 15 times, and the tear propagation strength is less than 110 mN. It turned out that intensity | strength is low and the fracture | rupture in a manufacturing process is not suppressed.
 1…積層体、2…硬化性樹脂層A、3…オレフィン系光学フィルムB、4…硬化性樹脂層C、10…試験片、11…試験片の長さ方向の端部、12…折り返し部分、13…ロール DESCRIPTION OF SYMBOLS 1 ... Laminated body, 2 ... Curable resin layer A, 3 ... Olefin type optical film B, 4 ... Curable resin layer C, 10 ... Test piece, 11 ... End part of length direction of test piece, 12 ... Folded part , 13 ... roll

Claims (8)

  1.  少なくとも、硬化性樹脂層A、オレフィン系光学フィルムB、及び硬化性樹脂層Cがこの順に積層された積層体であって、
     前記硬化性樹脂層Aは、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有し、
     前記積層体は、JIS P8115に準拠したMIT耐折疲労試験における屈曲回数が15回以上であり、且つ、JIS P8116に準拠した測定方法により測定した引裂伝播強度が110mN以上である、
    ことを特徴とする積層体。
    At least a curable resin layer A, an olefin-based optical film B, and a curable resin layer C are laminated in this order,
    The curable resin layer A contains (a) a urethane acrylate having a urethane skeleton and a bi- or higher functional (meth) acryloyl group,
    The laminate has a bending number of 15 or more in the MIT bending fatigue test in accordance with JIS P8115, and the tear propagation strength measured by a measuring method in accordance with JIS P8116 is 110 mN or more.
    A laminate characterized by the above.
  2.  前記硬化性樹脂層Aが、更に、(b)主鎖にウレタン骨格を有しない、3官能以上の重合性官能基を有する多官能アクリレートを含有する、請求項1に記載の積層体。 The laminate according to claim 1, wherein the curable resin layer A further contains (b) a polyfunctional acrylate having a trifunctional or higher functional group that does not have a urethane skeleton in the main chain.
  3.  前記硬化性樹脂層Cが、(a)ウレタン骨格と、2官能以上の(メタ)アクリロイル基とを有するウレタンアクリレートを含有する、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the curable resin layer C contains (a) a urethane acrylate having a urethane skeleton and a bi- or higher functional (meth) acryloyl group.
  4.  前記硬化性樹脂層Cが、更に、(b)主鎖にウレタン骨格を有しない、3官能以上の重合性官能基を有する多官能アクリレートを含有する、請求項1~3のいずれか1項に記載の積層体。 4. The curable resin layer C according to any one of claims 1 to 3, further comprising (b) a polyfunctional acrylate having a trifunctional or higher functional group having no urethane skeleton in the main chain. The laminated body of description.
  5.  前記硬化性樹脂層A、及び前記硬化性樹脂層Cから選択される少なくとも一層が、表面改質剤を含む、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein at least one layer selected from the curable resin layer A and the curable resin layer C contains a surface modifier.
  6.  前記表面改質剤は、フッ素修飾されたケイ素化合物である、請求項5に記載の積層体。 The laminate according to claim 5, wherein the surface modifier is a fluorine-modified silicon compound.
  7.  前記フッ素修飾されたケイ素化合物が、フルオロシルセスキオキサン化合物、又は、フルオロシルセスキオキサンを含む重合体である、請求項6に記載の積層体。 The laminate according to claim 6, wherein the fluorine-modified silicon compound is a fluorosilsesquioxane compound or a polymer containing fluorosilsesquioxane.
  8.  前記オレフィン系光学フィルムBは、環状オレフィンポリマーを含有する、請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the olefin-based optical film B contains a cyclic olefin polymer.
PCT/JP2015/056398 2014-03-05 2015-03-04 Laminate body WO2015133535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-042785 2014-03-05
JP2014042785A JP2015168095A (en) 2014-03-05 2014-03-05 laminate

Publications (1)

Publication Number Publication Date
WO2015133535A1 true WO2015133535A1 (en) 2015-09-11

Family

ID=54055338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056398 WO2015133535A1 (en) 2014-03-05 2015-03-04 Laminate body

Country Status (2)

Country Link
JP (1) JP2015168095A (en)
WO (1) WO2015133535A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083935A (en) * 2016-11-17 2018-05-31 信越化学工業株式会社 Elastic film and method of forming the same, and elastic wiring film and method for producing the same
WO2019073952A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modified film for automotive interior/exterior components
WO2019073953A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modifying film for automobile interior/exterior components
WO2019225476A1 (en) * 2018-05-23 2019-11-28 Jnc株式会社 Coating liquid and article using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673128B2 (en) * 2016-09-30 2020-03-25 Jnc株式会社 Laminated film
EP3312209B1 (en) * 2016-10-20 2023-09-27 Samsung Electronics Co., Ltd. Self-healing composition, self-healing film, and device including the self-healing film
JP6356844B1 (en) * 2017-02-07 2018-07-11 グンゼ株式会社 Optical laminate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247618A (en) * 1990-02-27 1991-11-05 Daicel Chem Ind Ltd Ultraviolet-curable heat-resistant urethane acrylate
JPH0812787A (en) * 1994-06-27 1996-01-16 Mitsubishi Rayon Co Ltd Thermoplastic norbornene resin molding with hard coat layer and production thereof
WO2007046292A1 (en) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Polyurethane compound, photosensitive resin composition containing the same, cured article obtained therefrom, and film comprising the same
JP2008127475A (en) * 2006-11-21 2008-06-05 Negami Kogyo Kk Unsaturated group-containing urethane resin and actinic energy ray-curing resin composition containing the same
WO2008072766A1 (en) * 2006-12-15 2008-06-19 Chisso Corporation Fluorine-containing polymer and resin composition
JP2009227915A (en) * 2008-03-25 2009-10-08 Dai Ichi Kogyo Seiyaku Co Ltd Energy ray-curable type resin composition and paint using the same
JP2010053231A (en) * 2008-08-27 2010-03-11 Aica Kogyo Co Ltd Resin composition and molded product
JP2010222568A (en) * 2009-02-24 2010-10-07 Mitsubishi Chemicals Corp Active energy ray-curing resin composition, cured film and laminated body
JP2010280832A (en) * 2009-06-05 2010-12-16 Chisso Corp Curable resin composition and optical film
JP2012067259A (en) * 2010-09-27 2012-04-05 Mitsubishi Chemicals Corp Active energy ray-curable polymer composition, cured film produced from the composition and laminate having the cured film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247618A (en) * 1990-02-27 1991-11-05 Daicel Chem Ind Ltd Ultraviolet-curable heat-resistant urethane acrylate
JPH0812787A (en) * 1994-06-27 1996-01-16 Mitsubishi Rayon Co Ltd Thermoplastic norbornene resin molding with hard coat layer and production thereof
WO2007046292A1 (en) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Polyurethane compound, photosensitive resin composition containing the same, cured article obtained therefrom, and film comprising the same
JP2008127475A (en) * 2006-11-21 2008-06-05 Negami Kogyo Kk Unsaturated group-containing urethane resin and actinic energy ray-curing resin composition containing the same
WO2008072766A1 (en) * 2006-12-15 2008-06-19 Chisso Corporation Fluorine-containing polymer and resin composition
JP2009227915A (en) * 2008-03-25 2009-10-08 Dai Ichi Kogyo Seiyaku Co Ltd Energy ray-curable type resin composition and paint using the same
JP2010053231A (en) * 2008-08-27 2010-03-11 Aica Kogyo Co Ltd Resin composition and molded product
JP2010222568A (en) * 2009-02-24 2010-10-07 Mitsubishi Chemicals Corp Active energy ray-curing resin composition, cured film and laminated body
JP2010280832A (en) * 2009-06-05 2010-12-16 Chisso Corp Curable resin composition and optical film
JP2012067259A (en) * 2010-09-27 2012-04-05 Mitsubishi Chemicals Corp Active energy ray-curable polymer composition, cured film produced from the composition and laminate having the cured film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083935A (en) * 2016-11-17 2018-05-31 信越化学工業株式会社 Elastic film and method of forming the same, and elastic wiring film and method for producing the same
WO2019073952A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modified film for automotive interior/exterior components
WO2019073953A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modifying film for automobile interior/exterior components
WO2019225476A1 (en) * 2018-05-23 2019-11-28 Jnc株式会社 Coating liquid and article using same
JP2019203077A (en) * 2018-05-23 2019-11-28 Jnc株式会社 Coating liquid and product using the same
CN112020542A (en) * 2018-05-23 2020-12-01 捷恩智株式会社 Coating liquid and its use product
JP7135439B2 (en) 2018-05-23 2022-09-13 Jnc株式会社 Coating liquid and its uses

Also Published As

Publication number Publication date
JP2015168095A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
WO2015133535A1 (en) Laminate body
JP4807604B2 (en) Protective adhesive film, screen panel, and portable electronic terminal
JP5057775B2 (en) Resin molded body, method for producing resin molded body, and use thereof
JP5599177B2 (en) Optical pressure-sensitive adhesive composition, optical pressure-sensitive adhesive, and optical film
JP5446071B2 (en) Protective adhesive film, screen panel and portable electronic terminal
JP5470957B2 (en) Active energy ray-curable resin composition for film protective layer
KR20180096448A (en) Protective film for window film, optical member comprising the same and display apparatus comprising the same
JP5558257B2 (en) Curable composition
WO2015133517A1 (en) Coating agent, cured film, laminate, molded product
TW201038701A (en) Radiation-cure adhesive composition for optical member and adhesive optical member
TWI687447B (en) Photocurable composition and coating layer including cured product thereof
JP6525726B2 (en) Adhesive sheet and display
WO2017170522A1 (en) Flexible polarizing film, manufacturing method for same and image display device
JP5616187B2 (en) Molded body and resin composition for molded body
KR20170020344A (en) Ultraviolet curable resin composition for touch panel, bonding method using same, and product
JP2016186039A (en) Urethane (meth)acrylate oligomer
JP6618038B2 (en) Adhesive composition
JP2015218324A (en) Acrylic adhesive composition for optically functional material, adhesive, adhesive sheet, display device, and method for producing the device
TW202128934A (en) Adhesive sheet, flexible image display device member, optical member, and image display device
TWI758597B (en) Active energy ray-curable resin composition, cured product, and laminate
CN109207103B (en) Adhesive film and adhesive composition for polarizing plate, polarizing plate including the same, and optical display including the same
KR102403279B1 (en) Adhesive for optical film, adhesive layer, optical member and display apparatus
JP2018016782A (en) Urethane (meth) acrylate oligomer
JP2020060689A (en) Image display device and impact absorption film
JP7037591B2 (en) Method of manufacturing a laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758048

Country of ref document: EP

Kind code of ref document: A1