WO2020070790A1 - Layered product and production method for cured sealing body - Google Patents

Layered product and production method for cured sealing body

Info

Publication number
WO2020070790A1
WO2020070790A1 PCT/JP2018/036812 JP2018036812W WO2020070790A1 WO 2020070790 A1 WO2020070790 A1 WO 2020070790A1 JP 2018036812 W JP2018036812 W JP 2018036812W WO 2020070790 A1 WO2020070790 A1 WO 2020070790A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin layer
energy ray
cured
curable resin
Prior art date
Application number
PCT/JP2018/036812
Other languages
French (fr)
Japanese (ja)
Inventor
明徳 佐藤
洋佑 高麗
高志 阿久津
康彦 垣内
岡本 直也
忠知 山田
中山 武人
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201880098044.9A priority Critical patent/CN112789334B/en
Priority to KR1020217007633A priority patent/KR102543787B1/en
Priority to PCT/JP2018/036812 priority patent/WO2020070790A1/en
Priority to JP2020550976A priority patent/JP7129110B2/en
Publication of WO2020070790A1 publication Critical patent/WO2020070790A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a method for producing a laminate and a cured sealing body.
  • CSP Chip Scale Package
  • WLP Wafer Level Package
  • PLP Panel Level Package
  • WLP and PLP are classified into a fan-in type and a fan-out type.
  • a fan-out type WLP hereinafter, also referred to as “FOWLP”
  • a PLP hereinafter, also referred to as “FOLP”
  • a sealing material so as to have an area larger than the chip size.
  • a rewiring layer and external electrodes are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing material.
  • FOWLP and FOPLP are, for example, a placing step of placing a plurality of semiconductor chips on a temporary fixing sheet, a covering step of covering with a thermosetting sealing material, and a thermosetting curing of the sealing material.
  • Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing at the time of cutting electronic components, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate.
  • a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate.
  • use of the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 1 is also conceivable.
  • the cured sealing body tends to warp due to heat shrinkage. This is because the semiconductor chip sealed in the cured sealing body is unevenly located on the surface side in contact with the temporary fixing sheet. A region where the ratio is relatively high and a region where the presence ratio of the cured resin having a large thermal expansion coefficient is relatively high occur, and a stress is generated due to a difference in the thermal shrinkage ratio between the two regions. Conceivable. This problem tends to become more pronounced as the package size increases, such as FOWLP and FOPLP.
  • the warped cured sealing body is, for example, easily cracked when the cured sealing body is ground in the next step, and is cured by the arm when the cured sealing body is transported by the device. A harmful effect may occur, such as an inconvenience during the delivery of the body.
  • a method of suppressing the warpage of the cured sealing body for example, a method of using a laminate including a temporary fixing layer provided with a thermally expandable pressure-sensitive adhesive layer containing thermally expandable particles and a thermosetting resin layer is also considered.
  • a mounting step and a covering step of the semiconductor chip are performed on the thermosetting resin layer provided in the laminate, and thereafter, the thermosetting resin layer and the sealing material are heat-cured to form a cured seal with the cured resin layer.
  • the thermally expandable particles are expanded to separate the cured sealing body with the cured resin layer from the temporary fixing layer.
  • the cured resin layer functions as a warp preventing layer of the cured sealing body, a cured sealing body in which the occurrence of warpage is suppressed can be obtained.
  • the treatment for expanding the thermally expandable particles and the treatment for curing the thermosetting resin layer are both heat treatments, so that the thermosetting resin layer is cured.
  • the heat-expandable particles in the temporary fixing layer are foamed during the heat treatment.
  • the thermally expandable particles in the temporary fixing layer expand, the separability of the temporary fixing layer deteriorates in the subsequent separation step. Is known. Therefore, it is possible to easily separate the cured resin layer and the temporary fixing layer after forming the cured sealing body with the cured resin layer while applying the cured resin layer as the warpage prevention layer to the cured sealing body. There is a need for a laminate that can be used to produce a cured encapsulant.
  • the present invention has a support layer and a curable resin layer, and can perform sealing by fixing an object to be sealed to the surface of the curable resin layer.
  • a laminated body which can provide a cured resin layer as a warpage preventing layer to a cured sealing body formed by processing, and can easily separate the cured resin layer and the support layer, and the laminated body It is an object of the present invention to provide a method for producing a cured sealing body using the same.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the following problems can be solved by the present invention, and have completed the present invention. That is, the present invention relates to the following [1] to [11].
  • the energy ray-curable resin layer (I) has a surface having tackiness
  • the support layer (II) has a substrate (Y) and an adhesive layer (X), and at least one of the substrate (Y) and the adhesive layer (X) contains thermally expandable particles;
  • the storage elastic modulus E ′ at 23 ° C.
  • the base material (Y) has a non-expandable base material layer (Y2) and an expandable base material layer (Y1)
  • the support layer (II) has a non-expandable base material layer (Y2), an expandable base material layer (Y1), and an adhesive layer (X) in this order,
  • An object to be sealed is placed on a part of the surface of the energy ray-curable resin layer (I), Irradiating the energy ray-curable resin layer (I) with energy rays to form a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I),
  • the object to be sealed and the surface of the cured resin layer (I ') at least in the peripheral portion of the object to be sealed are covered with a thermosetting sealing material, After the sealing material is thermally cured, the cured resin layer (I ′) and the support layer (II) are separated at the interface by a process of expanding the thermally expandable particles, and the object to be sealed is removed.
  • Step (iv): The cured resin layer (I ′) and the support layer (II) are separated at the interface by the treatment for expanding the thermally expandable particles to obtain a cured sealing body with the cured resin layer.
  • the present invention has a support layer and a curable resin layer, and can perform sealing by fixing an object to be sealed to the surface of the curable resin layer, and can be formed by the sealing.
  • a laminated body that can provide a cured resin layer as a warpage preventing layer to the cured encapsulant, and can easily separate the cured resin layer and the support layer, and curing using the laminated body
  • a method for manufacturing a sealed body can be provided.
  • FIG. 2 is a schematic cross-sectional view of the laminate, showing the configuration of the laminate of the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the laminate showing the configuration of the laminate of the second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the laminate showing a configuration of the laminate of the third embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a step of manufacturing a cured sealing body with a cured resin layer using the laminated body 1a shown in FIG. It is a cross-sectional schematic diagram which shows the processing method of a hardened sealing body.
  • a target layer is a “non-expandable layer” is determined by performing a process for expanding for 3 minutes, and then calculating a volume change rate before and after the process based on the following formula. Is less than 5%, it is determined that the layer is a “non-expandable layer”. On the other hand, when the volume change rate is 5% or more, it is determined that the layer is an “expandable layer”.
  • volume change rate (%) ⁇ (volume of the layer after treatment ⁇ volume of the layer before treatment) / volume of the layer before treatment ⁇ ⁇ 100
  • a heat treatment may be performed at the expansion start temperature (t) of the thermally expandable particles for 3 minutes.
  • the “active ingredient” refers to a component excluding a diluting solvent among components contained in a target composition.
  • the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically, a value measured based on the method described in Examples. It is.
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the lower limit and the upper limit described stepwise in a preferable numerical range can be independently combined.
  • a preferable numerical range for example, a range such as the content
  • preferably 10 to 90, more preferably 30 to 60 “preferable lower limit (10)” and “more preferable upper limit (60)” are combined to obtain “10 to 60”. You can also.
  • each component and material exemplified in this specification may be used alone, or two or more may be used in combination. When two or more are used in combination, their combination may be used. And the ratio can be arbitrarily selected.
  • the “energy beam” means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include an ultraviolet ray, a radiation, and an electron beam.
  • the ultraviolet light can be emitted by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet light source.
  • the electron beam can be emitted from an electron beam generated by an electron beam accelerator or the like.
  • “energy ray-curable” means a property of being cured by irradiation with an energy ray
  • “non-energy ray-curable” means a property of not being cured by irradiation of an energy ray. I do.
  • the laminate of one embodiment of the present invention includes an energy-ray-curable resin layer (I) and a support layer (II) that supports the energy-ray-curable resin layer (I).
  • the energy ray-curable resin layer (I) has an adhesive surface.
  • the support layer (II) has a substrate (Y) and an adhesive layer (X), and at least one of the substrate (Y) and the adhesive layer (X) contains thermally expandable particles.
  • the laminate of one embodiment of the present invention comprises a support for curing the energy ray-curable resin layer (I) by curing the heat-expandable particles in the support layer (II) and the cured resin layer (I ′).
  • Layer (II) can be separated at its interface.
  • the heat-expandable particles expand the heat-expandable particles, and the surface of the layer containing the heat-expandable particles has irregularities.
  • the contact area with the cured resin layer (I ′) obtained by curing the conductive resin layer (I) is reduced.
  • the support layer (II) As a result, at the interface between the support layer (II) and the cured resin layer (I ′), it can be easily and collectively separated with a small force.
  • the support layer since the laminate of one embodiment of the present invention does not require heating when curing the energy ray-curable resin layer (I), the support layer is used when the energy ray-curable resin layer (I) is cured.
  • the heat-expandable particles in (II) do not expand, and the separation property between the support layer (II) and the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) is excellent. It will be.
  • an object to be sealed is placed on part of the surface of the energy ray-curable resin layer (I), and the energy ray-curable resin layer (I) is irradiated with energy rays.
  • Is coated with a thermosetting sealing material and after the sealing material is thermoset, the cured resin layer (I ′) and the support layer (II) are expanded by expanding the thermally expandable particles.
  • the cured sealing body formed by the above method has the cured resin layer (I ′) on the surface on the side where the proportion of the semiconductor chips is relatively high.
  • the laminate of one embodiment of the present invention is useful as a laminate for preventing warpage, which is used for preventing warpage of the cured sealing body.
  • the laminate of one embodiment of the present invention includes the energy-ray-curable resin layer (I) which is easily adjusted to increase the adhesive strength more than the thermosetting resin layer, the object to be sealed is part of the surface. Can be fixed more reliably.
  • the thermosetting resin layer is heated at a high temperature, it is softened mainly in an initial stage of curing, which may cause a chip shift. Since it does not soften when cured by irradiation with rays, it is possible to avoid the occurrence of chip deviation due to the curing.
  • FIG. 1 to 3 are schematic cross-sectional views of a laminate showing the configuration of the laminate according to the first to third embodiments of the present invention.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X) (or the second pressure-sensitive adhesive layer (X2)) to be stuck to the support that is, May be configured such that a release material is further laminated on the surface of the energy ray-curable resin layer (I) opposite to the support layer (II) side.
  • the laminate of the first embodiment of the present invention includes the laminates 1a and 1b shown in FIG.
  • Each of the laminates 1a and 1b includes an energy ray-curable resin layer (I) and a support layer (II) having a substrate (Y) and an adhesive layer (X). It has a configuration in which a linear curable resin layer (I) is directly laminated.
  • the adhesive surface of the adhesive layer (X) is attached to a support (not shown).
  • the support layer (II) contains thermally expandable particles in at least one of the layers, and in the laminate 1a, the base material (Y) is formed of an expandable base material layer containing thermally expandable particles ( This is a base material having a single-layer structure consisting only of Y1).
  • the base material (Y) may be a single-layered base material composed of only the expandable base material layer (Y1) as in a laminate 1a shown in FIG. 1 (a).
  • a base material having a multilayer structure having an expandable base material layer (Y1) and a non-expandable base material layer (Y2) may be used.
  • the base material (Y) has an expandable base material layer (Y1) and a non-expandable base material layer (Y2)
  • the base material (Y) is an expandable base material layer (Y1) and a non-expandable base material layer ( Y2) alone.
  • the expandable base material layer (Y1) and the non-expandable base material layer (Y2) have a configuration in which they are directly laminated.
  • the thermal expansion particles contained in the expandable base material layer (Y1) expand due to the heat expansion treatment, and irregularities are generated on the surface of the base material (Y).
  • the contact area with the cured resin layer (I ′) obtained by previously curing the line-curable resin layer (I) is reduced.
  • the adhesive surface of the adhesive layer (X) is attached to a support (not shown).
  • the surface of the expansible base material layer (Y1) on the side of the pressure-sensitive adhesive layer (X) generates a force to generate irregularities.
  • a repulsive force from the pressure-sensitive adhesive layer (X) is easily generated.
  • the laminate 1a can be easily and collectively separated with a small force at the interface P between the base material (Y) of the support layer (II) and the cured resin layer (I ').
  • the pressure-sensitive adhesive layer (X) of the laminate 1a can be more easily separated at the interface P.
  • the base material (Y) is, as in the laminate 1b shown in FIG. It is preferable to have a material layer (Y1) and a non-expandable base material layer (Y2). Since the stress due to the expansion of the thermally expandable particles of the expandable base material layer (Y1) is suppressed by the non-expandable base material layer (Y2), it is difficult for the stress to be transmitted to the pressure-sensitive adhesive layer (X).
  • the surface of the pressure-sensitive adhesive layer (X) on the support side is unlikely to have irregularities, and the adhesion between the pressure-sensitive adhesive layer (X) and the support hardly changes before and after the heat expansion treatment, and good adhesion is maintained. can do.
  • irregularities are easily formed on the surface of the expandable base material layer (Y1) on the side of the energy ray-curable resin layer (I), and as a result, the support layer (II) and the expandable base material layer (Y1) harden.
  • the support layer (II) and the expandable base material layer (Y1) harden.
  • the interface P with the resin layer (I ′) it is possible to easily and collectively separate them with a small force.
  • the expandable base material layer (Y1) and the energy ray-curable resin layer (I) are directly laminated, and the non-expandable base material layer (Y2) is formed. It is preferable that the pressure-sensitive adhesive layer (X) is laminated on the surface opposite to the expandable base material layer (Y1).
  • the pressure-sensitive adhesive layer (X) of the support layer (II) has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), and the first pressure-sensitive adhesive layer (X1 ) And the second pressure-sensitive adhesive layer (X2) sandwich the substrate (Y), and the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is directly laminated with the energy ray-curable resin layer (I).
  • the adhesive surface of the second adhesive layer (X2) is attached to a support (not shown).
  • the substrate (Y) has an expandable substrate layer (Y1) containing thermally expandable particles.
  • the base material (Y) may be a single-layer base material composed of only the expandable base material layer (Y1) as in a laminate 2a shown in FIG. 2 (a).
  • the base material may be a multi-layered base material having an expandable base material layer (Y1) and a non-expandable base material layer (Y2).
  • the material (Y) has an expandable base material layer (Y1) and a non-expandable base material layer (Y2).
  • the first pressure-sensitive adhesive layer (X1) is laminated on the surface of the non-expandable base material layer (Y2) on the energy ray-curable resin layer (I) side of the non-expandable base material layer (Y2). It is preferable to have a configuration in which the second pressure-sensitive adhesive layer (X2) is laminated on the surface on the side opposite to (Y1).
  • the thermally expandable particles in the expandable base material layer (Y1) constituting the base material (Y) expand due to the heat expansion treatment, and Irregularities occur.
  • the first adhesive layer (X1) is also pushed up by the unevenness generated on the surface of the expandable base material layer (Y1), and the unevenness is also formed on the adhesive surface of the first adhesive layer (X1).
  • the contact area between the pressure-sensitive adhesive layer (X1) and the cured resin layer (I ′) obtained by previously curing the energy ray-curable resin layer (I) is reduced.
  • the laminate of the second embodiment of the present invention from the viewpoint of making the laminate easily separable at once at the interface P with a smaller force, the expansion of the base material (Y) of the support layer (II) It is preferable that the conductive base material layer (Y1) and the first pressure-sensitive adhesive layer (X1) are directly laminated.
  • the laminate 3 shown in FIG. 3 has a first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer containing thermally expandable particles, on one surface side of a substrate (Y).
  • the adhesive surface of the second adhesive layer (X2) is attached to a support (not shown).
  • the base material (Y) which the laminated body of the 3rd aspect of this invention has is comprised from a non-expandable base material layer.
  • the thermally expandable particles in the first pressure-sensitive adhesive layer (X1) which is the expandable pressure-sensitive adhesive layer, expand due to the heat expansion treatment, and the first pressure-sensitive adhesive layer (X1) Irregularities occur on the surface, and the contact area between the first pressure-sensitive adhesive layer (X1) and the cured resin layer (I ′) obtained by previously curing the energy ray-curable resin layer (I) decreases.
  • the base material (Y) is laminated on the surface of the first pressure-sensitive adhesive layer (X1) on the base material (Y) side, unevenness is unlikely to occur.
  • the heat-expansion treatment tends to form irregularities on the surface of the first pressure-sensitive adhesive layer (X1) on the side of the energy-ray-curable resin layer (I), and as a result, the first pressure-sensitive adhesive layer of the support layer (II) ( At the interface P between the X1) and the cured resin layer (I ′), it can be easily and collectively separated with a small force.
  • the laminate of one embodiment of the present invention may be composed of only the support layer (II) and the energy ray-curable resin layer (I), and the support layer (II) and the energy ray-curable resin layer (I) It may have another layer other than the above.
  • other layers include, for example, an adhesive layer provided on the surface of the energy ray-curable resin layer (I) on the side opposite to the support layer (II).
  • the laminate of one embodiment of the present invention preferably does not include a thermosetting resin layer from the viewpoint that heating is not required as much as possible in steps other than the heat expansion treatment.
  • the thermosetting resin layer here means a layer that has thermosetting properties and is non-energy ray curable.
  • the separation force (F 0 ) at the time of separation at the interface P is preferably 100 mN / 25 mm or more, more preferably 130 mN / 25 mm or more, still more preferably 160 mN / 25 mm or more, and preferably 50,000 mN / 25 mm. It is as follows.
  • the peeling force (F 0 ) is a value measured by the following measuring method. ⁇ Measurement of peeling force (F 0 )> After the laminate was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), an adhesive tape (manufactured by Lintec Corporation, product name “PL Synth”) was applied to the surface of the energy ray-curable resin layer (I).
  • the support layer (II) side of the laminate is attached to a glass plate (float plate glass, 3 mm (JISR 3202 product) manufactured by Yuko Shokai Co., Ltd.) via an adhesive.
  • a glass plate float plate glass, 3 mm (JISR 3202 product) manufactured by Yuko Shokai Co., Ltd.
  • the end of the glass plate to which the laminate is attached is fixed to a lower chuck of a universal tensile tester (manufactured by Orientec Co., Ltd., product name “Tensilon UTM-4-100”).
  • the adhesive tape and the support layer (II) are fixed by the upper chuck of the universal tensile tester so as to be separated at the interface P between the support layer (II) and the energy ray-curable resin layer (I) of the laminate. .
  • peeling force (F 0 ) the peeling force measured when peeling off at the interface P by the 180 ° peeling method at a tensile speed of 300 mm / min based on JIS Z 0237: 2000 is referred to as “peeling force (F 0 ) ".
  • the separation force (F 1 ) at the time of separation at the interface P with the ′) is usually 2000 mN / 25 mm or less, preferably 1000 mN / It is 25 mm or less, more preferably 500 mN / 25 mm or less, more preferably 150 mN / 25 mm or less, further preferably 100 mN / 25 mm or less, even more preferably 50 mN / 25 mm or less, and most preferably 0 mN / 25 mm.
  • the peeling force (F 1 ) is 0 mN / 25 mm, even if an attempt is made to measure the peeling force, it may be impossible to measure because the peeling force is too small.
  • the peeling force (F 1 ) is a value measured by the following measuring method. ⁇ Measurement of peeling force (F 1 )> After the laminate was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), an adhesive tape (manufactured by Lintec Corporation, product name) was applied to the surface of the energy ray-curable resin layer (I) of the laminate. "PL thin") is attached. Next, the support layer (II) side of the laminate is adhered to a glass plate (float plate glass, 3 mm (JIS R 3202), manufactured by Yuko Shokai Co., Ltd.) via an adhesive.
  • a glass plate float plate glass, 3 mm (JIS R 3202), manufactured by Yuko Shokai Co., Ltd.
  • ultraviolet rays are irradiated three times under the conditions of illuminance of 215 mW / cm 2 and light amount of 187 mJ / cm 2 to cure the energy ray-curable resin layer (I) to form a cured resin layer (I ′).
  • the glass plate and the laminate are heated at the maximum expansion temperature for 3 minutes to expand the thermally expandable particles in the expandable base material layer (Y1) of the laminate.
  • the peeling force measured when peeling off at the interface P between the support layer (II) and the cured resin layer (I ′) under the above conditions is determined.
  • peeling force (F 1 ) This is referred to as “peeling force (F 1 )”.
  • peeling force (F 1 ) In the measurement of the peeling force (F 1 ), when the support layer (II) of the laminate was fixed with the upper chuck of the universal tensile tester, the cured resin layer (I ′) was completely separated at the interface P. When fixing is not possible, the measurement is terminated, and the peeling force (F 1 ) at that time is set to “0 mN / 25 mm”.
  • the pressure-sensitive adhesive layer (X) (first pressure-sensitive adhesive layer (X1) and second pressure-sensitive adhesive layer (X2)) of the support layer (II) at room temperature (23 ° C.).
  • the adhesive strength is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.2 to 8.0 N / 25 mm, still more preferably 0.4 to 6.0 N / 25 mm, and even more preferably 0.5 to N / 25 mm. ⁇ 4.0 N / 25 mm.
  • the adhesive strength of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) is respectively although it is preferable that it is the said range, from a viewpoint of improving the adhesiveness with a support body, and separating easily and collectively at the interface P, the 2nd adhesive layer (X2) of a support body and a 2nd adhesive layer adhered. It is more preferable that the adhesive strength is higher than the adhesive strength of the first adhesive layer (X1).
  • the energy ray-curable resin layer (I) has a surface on which the object to be sealed is placed (that is, The surface opposite to the support layer (II)) has tackiness. Specifically, at room temperature (23 ° C.), the adhesive strength of the surface of the energy ray-curable resin layer (I) on the side on which the object to be sealed is placed is determined from the viewpoint of sufficiently fixing the object to be sealed.
  • the upper limit of the adhesive force of the surface is not particularly limited, but is usually 50 N / 25 mm or less, may be 40 N / 25 mm or less, or may be 30 N / 25 mm or less.
  • these adhesive forces are values measured by the following measuring method.
  • ⁇ Measurement of adhesive strength> A 50 ⁇ m-thick PET film (product name “Cosmoshine A4100”, manufactured by Toyobo Co., Ltd.) is laminated on the surface of the pressure-sensitive adhesive layer (X) or the energy ray-curable resin layer (I) formed on the release film. Then, the surface of the pressure-sensitive adhesive layer (X) or the energy ray-curable resin layer (I) is affixed to a stainless steel plate (SUS304 No. 360 polished), which is an adherend, at 23 ° C. and 50% RH (relative humidity). After standing for 24 hours under the environment, the adhesive force at 23 ° C. is measured under the same environment according to JIS Z0237: 2000 by a 180 ° peeling method at a pulling speed of 300 mm / min.
  • the substrate (Y) of the support layer (II) is a non-adhesive substrate.
  • the determination as to whether or not the substrate is a non-adhesive substrate is performed when the probe tack value measured according to JISZ 0237: 1991 with respect to the surface of the target substrate is less than 50 mN / 5 mm ⁇ . If so, the substrate is determined to be a “non-adhesive substrate”. On the other hand, if the probe tack value is 50 mN / 5 mm ⁇ or more, the base material is determined to be “adhesive base material”.
  • the probe tack value on the surface of the substrate (Y) included in the support layer (II) used in one embodiment of the present invention is generally less than 50 mN / 5 mm ⁇ , preferably less than 30 mN / 5 mm ⁇ , and more preferably less than 10 mN / 5 mm ⁇ . , More preferably less than 5 mN / 5 mm ⁇ .
  • the probe tack value on the surface of the substrate (Y) is a value measured by the following measurement method. ⁇ Measurement of probe tack value> A test sample is obtained by cutting a substrate to be measured into a square having a side of 10 mm and leaving it to stand at 23 ° C. and an environment of 50% RH (relative humidity) for 24 hours.
  • the probe tack value on the surface of the test sample was measured using a tacking tester (manufactured by Nippon Tokuseki Co., Ltd., product name “NTS-4800”) according to JIS. It is measured according to Z0237: 1991. Specifically, after a stainless steel probe having a diameter of 5 mm was brought into contact with the surface of the test sample for 1 second at a contact load of 0.98 N / cm 2 , the probe was contacted at a speed of 10 mm / sec. The force required to separate from the surface is measured, and the obtained value is used as the probe tack value of the test sample.
  • the support layer (II) included in the laminate of one embodiment of the present invention includes a base (Y) and an adhesive layer (X), and at least one of the base (Y) and the adhesive layer (X) is provided. It contains thermally expandable particles.
  • the support layer (II) is a layer separated from the energy-ray-curable resin layer (I), which is a support target, by a thermal expansion treatment, and is a layer that plays a role as a so-called temporary fixing layer. .
  • the support layer (II) used in one embodiment of the present invention includes a case where the layer containing the thermally expandable particles is included in the configuration of the base material (Y) and a case where the layer is included in the configuration of the pressure-sensitive adhesive layer (X). Is divided into the following modes. -The support layer (II) of the first embodiment: a support layer (II) including a base material (Y) having an expandable base material layer (Y1) containing thermally expandable particles.
  • the support layer (II) of the second embodiment a first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer containing heat-expandable particles, on both sides of the substrate (Y), and a non-expandable pressure-sensitive adhesive A support layer (II) having a second pressure-sensitive adhesive layer (X2) as a layer.
  • the base material (Y) has an expandable base material layer (Y1) containing thermally expandable particles.
  • the pressure-sensitive adhesive layer (X) is preferably a non-expandable pressure-sensitive adhesive layer, from the viewpoint of easily and collectively separating at a small force at the interface P.
  • the pressure-sensitive adhesive layer (X) is preferably a non-expandable pressure-sensitive adhesive layer.
  • both the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are non-expandable pressure-sensitive adhesive layers.
  • the pressure-sensitive adhesive layer (X) since the base material (Y) has the expandable base material layer (Y1), the pressure-sensitive adhesive layer (X) does not need to have the expandability, and the expandability is reduced. It is not restricted by the composition, composition and process for application. In this way, when designing the pressure-sensitive adhesive layer (X), for example, it is possible to perform a design that prioritizes desired performance other than expandability such as performance such as adhesiveness, productivity, economy, and the like. (X) The design flexibility can be improved.
  • the thickness of the substrate (Y) of the support layer (II) of the first embodiment before the heat expansion treatment is preferably from 10 to 1000 ⁇ m, more preferably from 20 to 700 ⁇ m, further preferably from 25 to 500 ⁇ m, and still more preferably from 30 to 30 ⁇ m. 300300 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (X) of the support layer (II) of the first embodiment before the heat expansion treatment is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably. It is 5 to 30 ⁇ m.
  • the “thickness of the pressure-sensitive adhesive layer (X)” It means the thickness of each pressure-sensitive adhesive layer (in FIG. 2, each thickness of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)). Further, in the present specification, the thickness of each layer constituting the laminate means a value measured by the method described in Examples.
  • the thickness ratio [(Y1) / (X)] between the expandable base material layer (Y1) and the pressure-sensitive adhesive layer (X) before the heat expansion treatment is as follows. It is preferably at most 1,000, more preferably at most 200, further preferably at most 60, even more preferably at most 30. When the thickness ratio is 1000 or less, a laminate that can be easily and collectively separated with a small force at the interface P between the support layer (II) and the cured resin layer (I ′) by the heat expansion treatment is provided. can do.
  • the thickness ratio is preferably 0.2 or more, more preferably 0.5 or more, further preferably 1.0 or more, and still more preferably 5.0 or more.
  • the base material (Y) may be composed of only the expandable base material layer (Y1) as shown in FIG. As shown in FIG. 1 (b), it has an expandable base material layer (Y1) on the energy ray-curable resin layer (I) side and a non-expandable base material layer (Y2) on the adhesive layer (X) side. May be provided.
  • the thickness ratio [(Y1) / (Y2)] between the expandable base material layer (Y1) and the non-expandable base material layer (Y2) before the heat expansion treatment is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
  • a first pressure-sensitive adhesive layer which is an expandable pressure-sensitive adhesive layer containing thermally expandable particles, is provided on both sides of the substrate (Y).
  • the first pressure-sensitive adhesive layer (X1) which is an expandable pressure-sensitive adhesive layer, and the energy ray-curable resin layer (I) are in direct contact.
  • the substrate (Y) is preferably a non-expandable substrate. It is preferable that the non-expandable base material is composed of only the non-expandable base material layer (Y2).
  • the first pressure-sensitive adhesive layer (X1) which is an expandable pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer (X2) which is a non-expandable pressure-sensitive adhesive layer before the heat expansion treatment.
  • the thickness ratio ((X1) / (X2)) is preferably 0.1 to 80, more preferably 0.3 to 50, and still more preferably 0.5 to 15.
  • the thickness ratio of the first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer, to the base material (Y) before the heat expansion treatment [(X1) / (Y)] is preferably from 0.05 to 20, more preferably from 0.1 to 10, and even more preferably from 0.2 to 3.
  • the expansible base material layer (Y1) constituting the base material (Y) and the non-expandable base material The layer (Y2) and the pressure-sensitive adhesive layer (X) will be described in detail.
  • Thermally expandable particles As the heat-expandable particles used in one embodiment of the present invention, any particles may be used as long as they are expanded by a predetermined heat expansion process.
  • the average particle size of the thermally expandable particles before expansion at 23 ° C. used in one embodiment of the present invention is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, further preferably 6 to 60 ⁇ m, and still more preferably 10 to 100 ⁇ m. 50 ⁇ m.
  • the average particle diameter of the thermally expandable particles before expansion is a volume median particle diameter (D 50 ), and is a laser diffraction particle size distribution analyzer (for example, product name “Master Sizer 3000” manufactured by Malvern).
  • the cumulative volume frequency calculated from the smaller particle diameter of the heat-expandable particles before expansion corresponds to a particle size corresponding to 50%.
  • the 90% particle diameter (D 90 ) of the thermally expandable particles before expansion at 23 ° C. used in one embodiment of the present invention is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, and still more preferably 25 to 90 ⁇ m. Even more preferably, it is 30 to 80 ⁇ m.
  • the 90% particle diameter (D 90 ) of the thermally expandable particles before expansion is measured using a laser diffraction type particle size distribution analyzer (for example, product name “Master Sizer 3000” manufactured by Malvern). In the particle distribution of the heat-expandable particles before, it means a particle diameter whose cumulative volume frequency calculated from the smaller particle diameter of the heat-expandable particles before expansion corresponds to 90%.
  • the thermally expandable particles used in one embodiment of the present invention may be particles that do not expand when the sealing material is cured and have an expansion start temperature (t) higher than the curing temperature of the sealing material. It is preferable that the thermal expansion particles have an expansion start temperature (t) adjusted to 60 to 270 ° C.
  • the expansion start temperature (t) is appropriately selected according to the curing temperature of the sealing material to be used. Further, in the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the method described in Examples.
  • a microencapsulated foaming agent comprising an outer shell made of a thermoplastic resin, and an inner component contained in the outer shell and vaporized when heated to a predetermined temperature.
  • the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include a vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Examples of the internal components included in the outer shell include, for example, propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane , Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isote
  • the maximum volume expansion coefficient of the heat-expandable particles used in one embodiment of the present invention when heated to a temperature equal to or higher than the expansion start temperature (t) is preferably 1.5 to 100 times, more preferably 2 to 80 times, and furthermore Preferably it is 2.5 to 60 times, more preferably 3 to 40 times.
  • the expandable base material layer (Y1) included in the support layer (II) used in one embodiment of the present invention is a layer that contains thermally expandable particles and can be expanded by a predetermined heat expansion treatment.
  • the surface of the expandable base material layer (Y1) is oxidized, surface-roughened, or the like.
  • Treatment, easy adhesion treatment, or primer treatment may be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet method), hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include a sand blast method and a solvent treatment method. And the like.
  • the expandable base material layer (Y1) preferably satisfies the following requirement (1).
  • the storage elastic modulus E '(t) of the expandable base material layer (Y1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 ⁇ 10 7 Pa or less.
  • the storage elastic modulus E ′ of the expandable base material layer (Y1) at a predetermined temperature means a value measured by the method described in Examples.
  • the requirement (1) can be said to be an index indicating the rigidity of the expandable base material layer (Y1) immediately before the expansion of the thermally expandable particles.
  • the support layer It is necessary to make it easy to form irregularities on the surface on the side laminated with the energy ray-curable resin layer (I) of (II).
  • the thermally expandable particles expand at the expansion start temperature (t) and become sufficiently large, and the energy ray-curable resin layer (I) is Irregularities are likely to be formed on the surface of the support layer (II) on the side where the coating is formed.
  • a laminate that can be easily separated with a small force at the interface P between the support layer (II) and the cured resin layer (I ′) can be obtained.
  • the storage elastic modulus E ′ (t) of the expandable base material layer (Y1) defined by the requirement (1) is preferably 9.0 ⁇ 10 6 Pa or less, more preferably 8.0 ⁇ 10 6 Pa. 6 Pa or less, more preferably 6.0 ⁇ 10 6 Pa or less, and even more preferably 4.0 ⁇ 10 6 Pa or less.
  • the storage elastic modulus E ′ (t) of the expandable base material layer (Y1) which is defined in the requirement (1), is preferably 1.0 ⁇ . It is at least 10 3 Pa, more preferably at least 1.0 ⁇ 10 4 Pa, even more preferably at least 1.0 ⁇ 10 5 Pa.
  • the expandable base material layer (Y1) is preferably formed from a resin composition (y) containing a resin and thermally expandable particles.
  • the resin composition (y) may contain an additive for a base material, if necessary, as long as the effects of the present invention are not impaired.
  • the base material additive include a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, a coloring agent, and the like.
  • these additives for base materials may be used independently, respectively, and may use 2 or more types together.
  • the content of each base material additive is preferably from 0.0001 to 20 parts by mass, more preferably from 0.001 to 20 parts by mass, based on 100 parts by mass of the resin. 10 parts by mass.
  • the content of the thermally expandable particles is preferably 1 to 40 with respect to the total amount (100% by mass) of the expandable base material layer (Y1) or the total amount (100% by mass) of the active ingredient of the resin composition (y). %, More preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
  • the resin contained in the resin composition (y) that is the material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y) is an adhesive resin, in the process of forming the expandable base material layer (Y1) from the resin composition (y), the adhesive resin becomes polymerizable. It suffices that the resin obtained by a polymerization reaction with the compound becomes a non-adhesive resin and the expandable base material layer (Y1) containing the resin becomes non-adhesive.
  • the weight average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably from 1,000 to 1,000,000, more preferably from 1,000 to 700,000, and further preferably from 1,000 to 500,000.
  • the form of the copolymer is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer. It may be.
  • the content of the resin is preferably 50 to 99% by mass based on the total amount (100% by mass) of the expandable base material layer (Y1) or the total amount of the active ingredients (100% by mass) of the resin composition (y). , More preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y) is selected from acrylic urethane-based resins and olefin-based resins. Preferably, it contains more than one species.
  • the following resin (U1) is preferable as the acrylic urethane-based resin. -An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylate.
  • urethane prepolymer (UP) serving as the main chain of the acrylic urethane-based resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
  • Examples of the polyol serving as a raw material of the urethane prepolymer (UP) include an alkylene type polyol, an ether type polyol, an ester type polyol, an ester amide type polyol, an ester ether type polyol, and a carbonate type polyol. These polyols may be used alone or in combination of two or more.
  • the polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, or a carbonate diol, and further preferably an ester diol or a carbonate diol.
  • ester type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; and phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, and diphenylmethane-4 , 4'-Dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, heptic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4
  • alkylene type diol examples include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, Alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol;
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
  • polyvalent isocyanate serving as a raw material of the urethane prepolymer (UP)
  • examples of the polyvalent isocyanate serving as a raw material of the urethane prepolymer (UP) include an aromatic polyisocyanate, an aliphatic polyisocyanate, and an alicyclic polyisocyanate. These polyvalent isocyanates may be used alone or in combination of two or more. In addition, these polyvalent isocyanates may be a modified trimethylolpropane adduct, a modified buret reacted with water, or a modified isocyanurate containing an isocyanurate ring.
  • diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 One or more selected from -tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • HMDI hexamethylene diisocyanate
  • alicyclic diisocyanate are more preferable.
  • alicyclic diisocyanate examples include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, and 1,4-cyclohexane
  • IPDI isophorone diisocyanate
  • diisocyanate, methyl-2,4-cyclohexane diisocyanate, and methyl-2,6-cyclohexane diisocyanate isophorone diisocyanate (IPDI) is preferable.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane-based resin (U1) is a reaction product of a diol and a diisocyanate, and has a straight chain having an ethylenically unsaturated group at both terminals.
  • Urethane prepolymers are preferred.
  • a NCO group at a terminal of the linear urethane prepolymer obtained by reacting a diol with a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Butyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • the vinyl compound serving as a side chain of the acrylic urethane resin (U1) contains at least a (meth) acrylate.
  • the (meth) acrylic acid ester one or more selected from alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are preferable, and it is more preferable to use the alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate together.
  • the mixing ratio of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 100 parts by mass. Preferably it is 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, even more preferably 1.5 to 10 parts by mass.
  • the alkyl group of the alkyl (meth) acrylate preferably has 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 8, and still more preferably 1 to 3.
  • hydroxyalkyl (meth) acrylate the same hydroxyalkyl (meth) acrylate used to introduce an ethylenically unsaturated group into both terminals of the above-mentioned linear urethane prepolymer can be used.
  • vinyl compounds other than (meth) acrylic acid esters include, for example, aromatic hydrocarbon-based vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate , (Meth) acrylonitrile, N-vinylpyrrolidone, polar group-containing monomers such as (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid and meth (acrylamide). These may be used alone or in combination of two or more.
  • the content of the (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of the alkyl (meth) acrylate and the hydroxyalkyl (meth) acrylate in the vinyl compound is preferably from 40 to 100% by mass, more preferably from 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. It is 100% by mass, more preferably 80 to 100% by mass, even more preferably 90 to 100% by mass.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably from 10/90 to 80/20, more preferably from 20/80 to 70/30, still more preferably from 30/70 to 60/40, and even more preferably 35 by mass ratio. / 65 to 55/45.
  • the olefin-based resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specific examples include ethylene, propylene, butylene, isobutylene, 1-hexene and the like. Among these, ethylene and propylene are preferred.
  • olefinic resins for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), medium density polyethylene (MDPE, density: 915 kg / m 3 or more 942kg / m less than 3), high density polyethylene (HDPE, density: 942kg / m 3 or higher), polyethylene resins such as linear low density polyethylene; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin-based elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefin terpolymers such as-(5-ethylidene-2-n
  • the olefin-based resin may be a modified olefin-based resin further subjected to at least one modification selected from acid modification, hydroxyl group modification, and acrylic modification.
  • the acid-modified olefin resin obtained by subjecting the olefin resin to acid modification a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or an anhydride thereof with the above-mentioned unmodified olefin resin. Is mentioned.
  • Examples of the above unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, and itaconic anhydride , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride and the like.
  • the unsaturated carboxylic acids or their anhydrides may be used alone or in combination of two or more.
  • the acrylic-modified olefin-based resin obtained by subjecting the olefin-based resin to an acrylic modification is a modified olefin-based resin obtained by graft-polymerizing an alkyl (meth) acrylate as a side chain to the unmodified olefin-based resin as a main chain.
  • the number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1 to 20, more preferably 1 to 16, and still more preferably 1 to 12.
  • Examples of the above-mentioned alkyl (meth) acrylate include the same compounds as the compounds that can be selected as the monomer (a1 ′) described below.
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting the olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as a main chain.
  • Examples of the hydroxyl-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; and unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y) may contain a resin other than the acrylic urethane resin and the olefin resin, as long as the effects of the present invention are not impaired.
  • resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; and acrylonitrile-butadiene-styrene copolymer.
  • Polycarbonate Polyether ether ketone; Polyether sulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorinated resins and the like can be mentioned.
  • the content ratio of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass, based on 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than 10 parts by weight, more preferably less than 5 parts by weight, even more preferably less than 1 part by weight.
  • solvent-free resin composition (y1) As the resin composition (y) used in one embodiment of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-described thermally expandable particles are blended. And a solvent-free resin composition (y1) containing no solvent. In the solventless resin composition (y1), no solvent is blended, but the energy ray polymerizable monomer contributes to the improvement of the plasticity of the oligomer. By irradiating the coating film formed from the solvent-free resin composition (y1) with an energy ray, it is easy to form the expandable base material layer (Y1) satisfying the requirement (1).
  • Mw mass average molecular weight
  • the type, shape and blending amount (content) of the thermally expandable particles blended in the solventless resin composition (y1) are as described above.
  • the weight average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y1) is 50,000 or less, preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and still more preferably 3,000 to 35,000, Still more preferably, it is 4000 to 30,000.
  • the oligomer may be any of the resins contained in the resin composition (y) described above, as long as the resin has an ethylenically unsaturated group having a weight average molecular weight of 50,000 or less. UP) is preferred.
  • a modified olefin-based resin having an ethylenically unsaturated group may be used as the oligomer.
  • the total content of the oligomer and the energy ray-polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 50% based on the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, even more preferably 70 to 85% by mass.
  • Examples of the energy beam polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, and adamantane ( Alicyclic polymerizable compounds such as meth) acrylate and tricyclodecane acrylate; aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol-ethylene oxide modified acrylate; tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- Heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. These energy ray polymerizable monomers may be used alone or in combination of two or more.
  • the mixing ratio of the oligomer and the energy ray-polymerizable monomer is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, and still more preferably 35/65. 8080/20.
  • the solvent-free resin composition (y1) preferably further contains a photopolymerization initiator.
  • the curing reaction can be sufficiently advanced even by irradiation with relatively low energy energy rays.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol Examples include nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like. These photopolymerization initiators may be used alone or in combination of two or more.
  • the compounding amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, based on the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. Preferably it is 0.02 to 3 parts by mass.
  • Non-expandable base material layer (Y2) As a material for forming the non-expandable base material layer (Y2) included in the base material (Y), for example, a paper material, a resin, a metal, or the like can be given. You can choose.
  • Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, parchment paper, glassine paper, and the like.
  • Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; Polyether sulfone; Polyphenylene sulfide; Polyimide-based resin such as polyetherimide and polyimide;
  • these forming materials may be composed of one type, or two or more types may be used in combination.
  • a method of forming the metal layer for example, a method in which the metal is deposited by a PVD method such as vacuum evaporation, sputtering, or ion plating, or a metal foil made of the metal is attached using a general adhesive. And the like.
  • the expandable base material layer (Y1) when the expandable particles contained in the expandable base material layer (Y1) expand, the expandable base material layer (Y1) is closer to the non-expandable base material layer (Y2).
  • the non-expandable base material layer ( Y2) preferably has such a rigidity that it does not deform due to expansion of the expandable particles.
  • the storage elastic modulus E ′ (t) of the non-expandable base material layer (Y2) at the temperature (t) at the time when the expansion of the expandable particles starts is 1.1 ⁇ 10 7 Pa or more. Is preferred.
  • the non-expandable base material layer (Y2) contains a resin
  • the non-expandable base material layer (Y2) may be subjected to a surface treatment such as an oxidation method or a concavo-convex method, an easy adhesion treatment, or a primer treatment as in the case of the above-described expandable base material layer (Y1).
  • the non-expandable base material layer (Y2) contains a resin
  • the above-mentioned base material additive which may be contained in the resin composition (y) may be contained together with the resin.
  • the non-intumescent base material layer (Y2) is a non-intumescent layer determined based on the method described above. Therefore, the volume change rate (%) of the non-expandable base material layer (Y2) calculated from the above equation is less than 5%, preferably less than 2%, more preferably less than 1%, and still more preferably. Is less than 0.1%, even more preferably less than 0.01%.
  • the non-expandable base material layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range.
  • the non-expandable base material layer (Y2) does not contain thermally expandable particles.
  • the content thereof is preferably as small as possible.
  • the pressure-sensitive adhesive layer (X) included in the support layer (II) used in one embodiment of the present invention can be formed from a pressure-sensitive adhesive composition (x) containing a pressure-sensitive adhesive resin. Further, the pressure-sensitive adhesive composition (x) may contain a pressure-sensitive adhesive additive such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator, if necessary.
  • a pressure-sensitive adhesive additive such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator, if necessary.
  • the support layer (II) has the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)
  • the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are also
  • the pressure-sensitive adhesive composition (x) containing the following components.
  • the pressure-sensitive adhesive resin used in one embodiment of the present invention is preferably a polymer having the pressure-sensitive adhesive alone and having a weight average molecular weight (Mw) of 10,000 or more.
  • the weight average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1.5,000,000, and still more preferably 30,000, from the viewpoint of improving the adhesive strength. ⁇ 1 million.
  • Specific adhesive resins include, for example, rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used alone or in combination of two or more. When these adhesive resins are copolymers having two or more types of constituent units, the form of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer. Any of polymers may be used.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of developing excellent adhesive strength.
  • the first pressure-sensitive adhesive layer By including an acrylic resin in X1), it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer (X1).
  • the content of the acrylic resin in the adhesive resin is preferably 30 to 30% based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x) or the adhesive layer (X). It is 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
  • the content of the pressure-sensitive adhesive resin is preferably 35 to 100% by mass relative to the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x) or the total amount (100% by mass) of the pressure-sensitive adhesive layer (X). %, More preferably 50 to 100% by mass, still more preferably 60 to 98% by mass, and still more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (x) when the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x) preferably further contains a crosslinking agent.
  • the crosslinking agent reacts with the adhesive resin having a functional group, and crosslinks the adhesive resins with the functional group as a crosslinking starting point.
  • crosslinking agent examples include an isocyanate-based crosslinking agent, an epoxy-based crosslinking agent, an aziridine-based crosslinking agent, and a metal chelate-based crosslinking agent. These crosslinking agents may be used alone or in combination of two or more. Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoint of increasing the cohesive force to improve the adhesive strength and from the viewpoint of easy availability.
  • the content of the crosslinking agent is appropriately adjusted depending on the number of functional groups contained in the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group. More preferably, it is 0.03 to 7 parts by mass, and still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
  • the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000, It is distinguished from the conductive resin.
  • the weight average molecular weight (Mw) of the tackifier is preferably 400 to 9000, more preferably 500 to 8000, and further preferably 800 to 5000.
  • tackifier examples include rosin-based resins, terpene-based resins, styrene-based resins, and copolymers of C5 fractions such as pentene, isoprene, piperine, and 1,3-pentadiene generated by thermal decomposition of petroleum naphtha.
  • C5 petroleum resin obtained a C9 petroleum resin obtained by copolymerizing a C9 fraction such as indene and vinyltoluene generated by thermal decomposition of petroleum naphtha, and a hydrogenated resin obtained by hydrogenating these.
  • the softening point of the tackifier is preferably from 60 to 170 ° C, more preferably from 65 to 160 ° C, and even more preferably from 70 to 150 ° C.
  • the “softening point” of the tackifier means a value measured according to JIS K 2531.
  • the tackifier may be used alone, or two or more kinds having different softening points and structures may be used in combination. When two or more tackifiers are used, the weighted average of the softening points of the tackifiers preferably falls within the above range.
  • the content of the tackifier is preferably 0.01 to 65% based on the total amount of the active ingredient (100% by mass) of the pressure-sensitive adhesive composition (x) or the total amount (100% by mass) of the pressure-sensitive adhesive layer (X). %, More preferably 0.1 to 50% by mass, still more preferably 1 to 40% by mass, and still more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive additive used for a general pressure-sensitive adhesive, in addition to the additives described above, as long as the effects of the present invention are not impaired. It may be.
  • adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
  • These pressure-sensitive adhesive additives may be used alone or in combination of two or more. When these adhesive additives are contained, the content of each adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 20 parts by mass, based on 100 parts by mass of the adhesive resin. 1010 parts by mass.
  • the first pressure-sensitive adhesive layer (X1) that is the expandable pressure-sensitive adhesive layer is used.
  • the forming material is formed from the expandable pressure-sensitive adhesive composition (x11) further containing the heat-expandable particles in the pressure-sensitive adhesive composition (x) described above.
  • the thermally expandable particles are as described above.
  • the content of the heat-expandable particles is preferably 1 to 100% based on the total amount of the active ingredient (100% by mass) or the total amount (100% by mass) of the expandable pressure-sensitive adhesive composition (x11). It is 70% by mass, more preferably 2 to 60% by mass, still more preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass.
  • the pressure-sensitive adhesive composition (x) which is a material for forming the non-expandable pressure-sensitive adhesive layer, preferably does not contain thermally expandable particles.
  • the content is preferably as small as possible.
  • the content is preferably based on the total amount of active ingredients (100% by mass) or the total amount (100% by mass) of the pressure-sensitive adhesive layer (X) of the pressure-sensitive adhesive composition (x). On the other hand, it is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
  • a support layer (II) having a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), which is a non-expandable pressure-sensitive adhesive layer, is used as in the laminates 2a and 2b shown in FIG.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1), which is a non-expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 ⁇ 10 8 Pa or less, more preferably 5.0 ⁇ 10 8 Pa or less.
  • the pressure is 0 ⁇ 10 7 Pa or less, more preferably 1.0 ⁇ 10 7 Pa or less.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) which is a non-expandable pressure-sensitive adhesive layer, is 1.0 ⁇ 10 8 Pa or less, for example, the laminates 2a and 2b shown in FIG.
  • the first pressure-sensitive adhesive layer (X1) in contact with the cured resin layer (I ′) due to the expansion of the thermally expandable particles in the expandable base material layer (Y1) due to the heat expansion treatment. ) Is likely to form irregularities on the surface.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1), which is a non-expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 ⁇ 10 4 Pa or more, and more preferably 5.10 ⁇ 10 4 Pa or more. 0 ⁇ 10 4 Pa or more, more preferably 1.0 ⁇ 10 5 Pa or more.
  • the light transmittance at a wavelength of 375 nm of the support layer (II) included in the laminate of one embodiment of the present invention is preferably 30% or more, more preferably 50% or more, and still more preferably 70% or more.
  • the degree is more improved.
  • the upper limit of the light transmittance at a wavelength of 375 nm is not particularly limited, but can be, for example, 95% or less.
  • the transmittance can be measured according to a known method using a spectrophotometer.
  • the effect of the present invention is not impaired. It is preferable to adjust the content.
  • the content is preferably as small as possible.
  • the content is based on the total amount of the active ingredient (100% by mass) or the total amount of the pressure-sensitive adhesive layer (X) (100% by mass). , Preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, even more preferably less than 0.001% by mass.
  • the content of the coloring agent is preferably less than 1% by mass, more preferably less than 1% by mass, based on the total amount (100% by mass) of the active ingredients of the resin composition (y) or the total amount (100% by mass) of the base material (Y). It is less than 0.1% by mass, more preferably less than 0.01% by mass, even more preferably less than 0.001% by mass.
  • the energy ray-curable resin layer (I) is not particularly limited as long as it is a layer that can be cured by irradiating an energy ray.
  • the energy ray-curable resin composition containing the energy ray-curable component (a) Is formed.
  • the energy ray-curable component (a) is a component that is cured by irradiation with energy rays.
  • the energy ray-curable component (a) a polymer (a1) having an energy ray-curable double bond and having a mass average molecular weight (Mw) of 80,000 to 2,000,000 (hereinafter, also simply referred to as “polymer (a1)”)
  • a compound (a2) having an energy-ray-curable double bond and a molecular weight of 100 to 80,000 hereinafter also simply referred to as “compound (a2)”.
  • the energy ray-curable component (a) may be used alone or in combination of two or more.
  • the polymer (a1) is a polymer having an energy ray-curable double bond and having a weight average molecular weight (Mw) of 80,000 to 2,000,000.
  • Examples of the polymer (a1) include an acrylic polymer (a11) having a functional group X capable of reacting with a group of another compound, a group Y reacting with the functional group X, and an energy ray-curable double.
  • An acrylic resin (a1-1) obtained by polymerizing the energy ray-curable compound (a12) having a bond and the polymer is exemplified.
  • the polymer (a1) may be used alone or in combination of two or more.
  • Acrylic polymer (a11) examples include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (in which one or two hydrogen atoms of an amino group are substituted with a group other than a hydrogen atom. Or an epoxy group.
  • acrylic polymer (a11) examples include those obtained by copolymerizing an acrylic monomer having the functional group X and an acrylic monomer having no functional group X. Further, a monomer (non-acrylic monomer) other than the acrylic monomer may be copolymerized.
  • the acrylic polymer (a11) may be a random copolymer or a block copolymer. The acrylic polymer (a11) may be used alone or in combination of two or more.
  • Examples of the acrylic monomer having the functional group X include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid.
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturated compounds such as vinyl alcohol and allyl alcohol Alcohol (unsaturated alcohol having no (meth) acryloyl skeleton) and the like.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citraconic acid Ethylenically unsaturated dicarboxylic acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above ethylenically unsaturated dicarboxylic acids; and carboxyalkyl (meth) acrylates such as 2-carboxyethyl methacrylate. .
  • a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
  • acrylic monomer having no functional group X examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylic acid.
  • n-butyl isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) ) Undecyl acrylate, dodecyl (meth) acrylate (lauryl (meth) acrylate), ( T) tridecyl acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pent
  • acrylic monomer having no functional group X examples include, for example, methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and the like.
  • (Meth) acrylic acid esters having an aromatic group including (meth) acrylic acid esters containing an alkoxyalkyl group of the following; aryl (meth) acrylic acid esters such as phenyl (meth) acrylate; non-crosslinkable (meth) Acrylamide and its derivatives; (meth) acrylates having a non-crosslinkable tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylate; No.
  • the non-acrylic monomer include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
  • the content of the structural unit derived from the acrylic monomer having the functional group X is preferably from 0.1 to 50% by mass, based on the total amount of the structural units constituting the polymer. Preferably it is 1 to 40% by mass, more preferably 3 to 30% by mass.
  • the content of the structural unit is within the above range, the content of the energy ray-curable double bond in the obtained acrylic resin (a1-1) can be easily adjusted to a preferable range.
  • the energy ray-curable compound (a12) is a compound having a group Y that reacts with the functional group X and an energy ray-curable double bond.
  • the group Y include one or more selected from the group consisting of an isocyanate group, an epoxy group, and a carboxy group, and among these, an isocyanate group is preferable.
  • the energy ray-curable compound (a12) has an isocyanate group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the number of energy beam-curable double bonds contained in the energy beam-curable compound (a12) is preferably 1 to 5, more preferably 1 to 3, in one molecule.
  • the energy ray-curable compound (a12) may be used alone or in combination of two or more.
  • Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meth-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate and 1,1- (bisacryloyloxymethyl) ethyl Isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; obtained by reaction of diisocyanate compound or polyisocyanate compound, polyol compound and hydroxyethyl (meth) acrylate Acryloyl monoisocyanate compound.
  • 2-methacryloyloxyethyl isocyanate is preferred.
  • the content of the energy ray-curable double bond derived from the energy ray-curable compound (a12) relative to the content of the functional group X derived from the acrylic polymer (a11) Is preferably 20 to 120 mol%, more preferably 5 to 100 mol%, and still more preferably 50 to 100 mol%.
  • the adhesive strength of the cured resin layer (I ′) formed by curing becomes larger.
  • the energy ray-curable compound (a12) is a monofunctional compound (having one of the above groups in one molecule)
  • the upper limit of the content is 100 mol%.
  • the curable compound (a12) is a polyfunctional compound (having two or more groups in one molecule)
  • the upper limit of the content may exceed 100 mol%.
  • the content of the acrylic resin (a1-1) is based on the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). , Preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and still more preferably 3 to 20% by mass.
  • the weight average molecular weight (Mw) of the polymer (a1) is preferably from 100,000 to 2,000,000, more preferably from 300,000 to 1500,000.
  • the polymer (a1) may be at least partially cross-linked by a cross-linking agent (e) described below, or may be non-cross-linked.
  • Compound (a2) is a compound having an energy ray-curable double bond and a molecular weight of 100 to 80,000.
  • As the energy ray-curable double bond of the compound (a2) a (meth) acryloyl group, a vinyl group and the like are preferable.
  • Examples of the compound (a2) include a low molecular weight compound having an energy ray-curable double bond, an epoxy resin having an energy ray-curable double bond, and a phenol resin having an energy ray-curable double bond. .
  • the compound (a2) may be used alone or in combination of two or more.
  • Examples of the low molecular weight compound having an energy ray-curable double bond include polyfunctional monomers and oligomers, and an acrylate compound having a (meth) acryloyl group is preferable.
  • Examples of the acrylate compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4- ((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [ 4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane, tricyclodecan
  • epoxy resin having an energy-ray-curable double bond and the phenol resin having an energy-ray-curable double bond for example, those described in paragraph 0043 of JP-A-2013-194102 are used. be able to.
  • a resin also corresponds to a resin constituting the thermosetting component (f) described later, but is handled as the compound (a2) in the present invention.
  • the mass average molecular weight (Mw) of the compound (a2) is preferably from 100 to 30,000, more preferably from 300 to 10,000.
  • the content of the compound (a2) is preferably 1% with respect to the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). It is preferably from 40 to 40% by mass, more preferably from 2 to 30% by mass, and still more preferably from 3 to 20% by mass.
  • the energy ray-curable resin composition contains the compound (a2)
  • the energy ray-curable resin composition further contains a polymer (b) having no energy ray-curable double bond (hereinafter, also simply referred to as “polymer (b)”). Is preferred.
  • the polymer (b) may be used alone or in combination of two or more.
  • polymer (b) examples include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, an acrylic urethane resin, polyvinyl alcohol (PVA), a butyral resin, and a polyester urethane resin.
  • an acrylic polymer hereinafter, also referred to as “acrylic polymer (b-1)” is preferable.
  • the acrylic polymer (b-1) may be a known one.
  • it may be a homopolymer of one acrylic monomer or a copolymer of two or more acrylic monomers.
  • it may be a copolymer of one or more acrylic monomers and one or more monomers other than acrylic monomers (non-acrylic monomers).
  • acrylic monomer constituting the acrylic polymer (b-1) examples include: (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, and hydroxyl group (Meth) acrylic acid esters, substituted amino group-containing (meth) acrylic acid esters, and the like.
  • the “substituted amino group” is as described above.
  • alkyl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
  • Examples of the (meth) acrylate having a cyclic skeleton include, for example, cycloalkyl (meth) acrylates such as isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate; benzyl (meth) acrylate and the like.
  • Examples of the glycidyl group-containing (meth) acrylate include glycidyl (meth) acrylate.
  • Examples of the hydroxyl group-containing (meth) acrylate include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth) acrylate. , 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • Examples of the substituted amino group-containing (meth) acrylate include N-methylaminoethyl (meth) acrylate.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
  • the polymer (b) may be at least partially cross-linked by the cross-linking agent (e), or may be non-cross-linked.
  • the polymer (b) at least partially crosslinked by the crosslinking agent (e) includes, for example, a polymer in which a reactive functional group in the polymer (b) has reacted with the crosslinking agent (e).
  • the reactive functional group may be appropriately selected according to the type of the crosslinking agent (e) and the like, and is not particularly limited.
  • the crosslinking agent (e) is a polyisocyanate compound
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, and an amino group. High hydroxyl groups are preferred.
  • the reactive functional group includes, for example, a carboxy group, an amino group, an amide group and the like. Are preferred. However, it is preferable that the reactive functional group be a group other than a carboxy group from the viewpoint of preventing corrosion of circuits of the semiconductor wafer and the semiconductor chip.
  • the polymer (b) having the reactive functional group for example, a polymer obtained by polymerizing at least the monomer having the reactive functional group can be mentioned.
  • the acrylic polymer (b-1) any one or both of the acrylic monomer and the non-acrylic monomer described above as the monomer constituting the acrylic polymer (b-1) having the reactive functional group is used. It may be used.
  • the polymer (b) having a hydroxyl group as a reactive functional group for example, a polymer obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester may be mentioned.
  • acrylic monomers or non-acrylic monomers there may be mentioned those obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional group.
  • the content of the structural unit derived from the monomer having a reactive functional group is preferably 1 to 25% by mass, more preferably 2 to 20% by mass, based on the total amount of the structural units constituting the polymer (b). is there.
  • the degree of crosslinking in the polymer (b) is in a more preferable range.
  • the mass average molecular weight (Mw) of the polymer (b) is preferably from 10,000 to 2,000,000, more preferably from 100,000 to 1500,000, from the viewpoint that the film formability of the energy ray-curable resin composition becomes better.
  • Examples of the energy ray-curable resin composition include those containing one or both of the polymer (a1) and the compound (a2).
  • the resin composition contains the compound (a2)
  • the polymer (b) is also used. It is preferred to contain.
  • the total content of the energy ray-curable component (a) and the polymer (b) is determined based on the total amount of the active components (100% by mass) of the energy ray-curable resin composition or the total amount of the energy ray-curable resin layer (I) ( 100% by mass), preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and still more preferably 15 to 70% by mass. When the total content is within the above range, the energy ray curability becomes better.
  • the content of the polymer (b) is The amount is preferably from 3 to 160 parts by mass, more preferably from 6 to 130 parts by mass, based on 100 parts by mass of the active ingredient (a).
  • the content of the polymer (b) is in the above range, the energy ray curability becomes better.
  • the energy ray-curable resin composition contains, in addition to the energy ray-curable component (a) and the polymer (b), a photopolymerization initiator (c), a coupling agent (d), and a crosslinking agent (e) according to the purpose. ), A coloring agent (g), a thermosetting component (f), a curing accelerator (g), a filler (h) and a general-purpose additive (z). Is also good.
  • the formed energy-ray-curable resin layer (I) is coated by heating. The adhesive strength to the adherend is improved, and the strength of the cured resin layer (I ′) formed from the energy ray-curable resin layer (I) is also improved.
  • Photopolymerization initiator (c) examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; Acetophenone compounds such as -hydroxy-2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethan-1-one; bis (2,4,6-trimethylbenzoyl) phenyl Acylphosphine oxide compounds such as phosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfides such as benzylphenyl sulfide and tetramethylthiuram monosulfide ⁇ -ketol compounds such as 1-hydroxycyclohexylphenyl
  • a quinone compound such as 1-chloroanthraquinone
  • a photosensitizer such as an amine
  • the photopolymerization initiator (c) may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator (c) in the energy ray-curable resin composition or the energy ray-curable resin layer (I) is preferably 0.1 to 100 parts by mass of the energy ray-curable compound (a).
  • the amount is from 01 to 20 parts by mass, preferably from 0.03 to 10 parts by mass, more preferably from 0.05 to 5 parts by mass.
  • Coupleling agent (d) By using a coupling agent (d) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness of the energy ray-curable resin layer (I) can be improved.
  • the cured resin layer (I ') obtained by curing the curable resin layer (I) has improved water resistance without impairing the heat resistance.
  • the coupling agent (d) may be used alone or in combination of two or more.
  • the coupling agent (d) is preferably a compound having a functional group capable of reacting with a functional group of the energy ray-curable component (a), the polymer (b) or the like, and is preferably a silane coupling agent. More preferred.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethylamino ) Propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Silane, 3-
  • the content of the coupling agent (d) in the energy ray-curable resin composition or the energy ray-curable resin layer (I) is 100 parts by mass in total of the energy ray-curable component (a) and the polymer (b). On the other hand, it is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and still more preferably 0.1 to 5 parts by mass.
  • the content of the coupling agent (d) is equal to or more than the above lower limit, effects such as improvement in dispersibility of the filler in the resin and improvement in adhesiveness of the energy ray-curable resin layer (I) are more remarkably obtained.
  • the generation of outgas is suppressed by being equal to or less than the upper limit.
  • Crosslinking agent (e) By cross-linking the energy ray-curable component (a), the polymer (b), and the like using the cross-linking agent (e), the initial adhesive strength and cohesion of the energy ray-curable resin layer (I) can be adjusted.
  • the crosslinking agent (e) may be used alone or in combination of two or more.
  • crosslinking agent (e) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based crosslinker (a crosslinker having a metal chelate structure), an aziridine-based crosslinker (a crosslinker having an aziridinyl group), and the like. Is mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively abbreviated as “aromatic polyvalent isocyanate compound, etc.”). Trimers, isocyanurates and adducts of the aromatic polyisocyanate compound, etc .; terminal isocyanate urethane prepolymers obtained by reacting the aromatic polyvalent isocyanate compound with a polyol compound, etc. Is mentioned.
  • the “adduct” is a mixture of the aromatic polyvalent isocyanate compound, the aliphatic polyvalent isocyanate compound or the alicyclic polyvalent isocyanate compound and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a compound having a molecular active hydrogen, and examples thereof include an adduct of xylylene diisocyanate of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and having an isocyanate group at the terminal of the molecule.
  • organic polyvalent isocyanate compound more specifically, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylolpropane To all or some of the hydroxyl groups of polyols such as tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate. Two or more compounds are added; lysine diisocyanate.
  • organic polyvalent imine compound examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylolmethane- Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • a crosslinked structure can be easily introduced into the energy ray-curable resin layer (I) by a reaction with the polymer (b).
  • the content of the crosslinking agent (e) in the energy ray-curable resin composition or the energy ray-curable resin layer (I) is based on 100 parts by mass of the total of the energy ray-curable component (a) and the polymer (b).
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.5 to 5 parts by mass.
  • thermosetting component (f) examples include an epoxy thermosetting resin, a thermosetting polyimide, a polyurethane, an unsaturated polyester, and a silicone resin. Of these, the epoxy thermosetting resin is preferable.
  • the thermosetting component (f) may be used alone or in combination of two or more.
  • the epoxy-based thermosetting resin contains an epoxy resin (f1), and may further contain a thermosetting agent (f2).
  • Examples of the epoxy resin (f1) include known epoxy resins, and examples thereof include a polyfunctional epoxy resin, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolak epoxy resin, dicyclopentadiene type epoxy resin, and biphenyl type epoxy resin. Bifunctional or higher functional epoxy compounds such as resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenylene skeleton type epoxy resin.
  • the epoxy resin (f1) may be used alone or in combination of two or more.
  • an epoxy resin having an unsaturated hydrocarbon group such as an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, a (meth) acrylamide group or the like is used. Is also good.
  • An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, the reliability of the obtained package is improved.
  • the number average molecular weight of the epoxy resin (f1) is preferably from 300 to 30,000, more preferably from the viewpoint of the curability of the energy ray-curable resin layer (I) and the strength and heat resistance of the cured resin layer (I ′). It is from 400 to 10,000, more preferably from 500 to 3,000.
  • the epoxy equivalent of the epoxy resin (f1) is preferably 100 to 1000 g / eq, more preferably 150 to 800 g / eq.
  • thermosetting agent (f2) functions as a curing agent for the epoxy resin (f1).
  • examples of the thermosetting agent (f2) include compounds having two or more functional groups capable of reacting with an epoxy group in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is converted to an anhydride. It is preferably a phenolic hydroxyl group or an amino group.
  • the thermosetting agent (f2) may be used alone or in combination of two or more.
  • thermosetting agents (f2) examples of the phenolic curing agent having a phenolic hydroxyl group include a polyfunctional phenol resin, biphenol, a novolak phenol resin, a dicyclopentadiene phenol resin, and an aralkyl phenol resin.
  • examples of the amine-based curing agent having an amino group include dicyandiamide.
  • the content of the thermosetting agent (f2) is preferably 0.01 to 20 parts by mass based on 100 parts by mass of the epoxy resin (f1).
  • thermosetting component (f) for example, the total content of the epoxy resin (f1) and the thermosetting agent (f2)
  • the content of the thermosetting component (f) is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the polymer (b). Department.
  • the curing accelerator (g) is a component for adjusting the curing speed of the energy ray-curable resin layer (I).
  • Preferred curing accelerators (g) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole , 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, imidazoles such as 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine, etc.
  • the curing accelerator (g) is used, the content of the curing accelerator (g) is preferably 0.01 to 10 parts by mass based on 100 parts by mass of the thermosetting component (f).
  • the general-purpose additive (z) may be a known one and can be arbitrarily selected according to the purpose, and is not particularly limited. Examples thereof include a filler, a coloring agent, a plasticizer, an antistatic agent, an antioxidant, and a gettering agent. And the like.
  • the general-purpose additive (z) may be used alone or in combination of two or more.
  • the filler examples include an inorganic filler and an organic filler, and by using these, the thermal expansion coefficient of the cured resin layer (I ′) can be adjusted.
  • the energy ray-curable resin layer (I) may or may not contain a filler, but if it contains a filler, its content can more effectively reduce the occurrence of warpage. From the viewpoint of suppression, it is preferably 5 to 87% by mass relative to the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). , More preferably 7 to 78% by mass.
  • the filler include those made of a heat conductive material.
  • the inorganic filler examples include powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc .; beads obtained by spheroidizing these inorganic fillers; surface-modified products of these inorganic fillers Single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the average particle size of the filler is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 15 ⁇ m, and still more preferably 0.3 to 10 ⁇ m. When the average particle diameter of the filler is in the above range, a decrease in the transmittance of the energy ray-curable resin layer (I) can be suppressed while maintaining the adhesiveness of the cured resin layer (I ′).
  • the energy ray-curable resin composition may or may not contain a coloring agent, but when the coloring agent is contained, the content is preferably as small as possible, and specifically,
  • the amount is preferably less than 5% by mass, more preferably 0%, based on the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). 0.1 mass%, more preferably less than 0.01 mass%, even more preferably less than 0.001 mass%.
  • the energy ray-curable resin composition is obtained by blending each component for constituting the composition.
  • the order of addition of each component is not particularly limited, and two or more components may be added simultaneously.
  • the solvent may be mixed with any of the components other than the solvent to dilute the components in advance, or any of the components other than the solvent may be diluted in advance.
  • a solvent may be used by mixing with these components.
  • the method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; What is necessary is just to select suitably.
  • the temperature and time during addition and mixing of each component are not particularly limited as long as each component is not deteriorated, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the solvent examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol; esters such as ethyl acetate; And amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • hydrocarbons such as toluene and xylene
  • alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol
  • esters such as ethyl acetate
  • amides compounds having an amide bond
  • dimethylformamide and N-methylpyrrolidone Among these, methyl ethyl ketone, toluene, and ethyl acetate are preferable in that the components contained in the energy ray-curable resin composition can be more uniformly
  • the energy ray-curable resin layer (I) may have a single-layer configuration or a configuration including two or more layers.
  • Examples of the energy ray-curable resin layer (I) composed of two or more layers include, for example, an energy ray-curable resin layer (I-) for providing a cured resin layer (I ′) having a high storage elastic modulus E ′. i) and an energy ray-curable resin layer (I-ii) having a high adhesive strength.
  • the object to be sealed can be firmly fixed and After the curing, the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (Ii) effectively suppresses the warpage. Performance can be more highly compatible.
  • the preferred composition and physical properties of the energy ray-curable resin layers (Ii) and (I-ii) depend on the desired function from the above-described preferred composition and physical properties of the energy ray-curable resin layer (I). What is necessary is just to select suitably and apply.
  • the thickness of the energy ray-curable resin layer (I) is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, further preferably 10 to 200 ⁇ m, still more preferably 15 to 100 ⁇ m, and still more preferably 20 to 50 ⁇ m. is there.
  • the thickness of the energy ray-curable resin layer (I) is equal to or more than the lower limit, a cured sealing body in which warpage is more effectively suppressed can be obtained. , And excellent curability can be obtained.
  • the “thickness of the energy-ray-curable resin layer (I)” means the entire thickness of the energy-ray-curable resin layer (I), for example, two or more energy-ray-curable resin layers.
  • the thickness of (I) means the total thickness of all the layers constituting the energy ray-curable resin layer (I).
  • the storage elastic modulus E ′ of the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) is such that the curl is suppressed and warpage is suppressed with the cured resin layer having a flat surface.
  • it is 1.0 ⁇ 10 7 Pa or more, more preferably 1.0 ⁇ 10 8 Pa or more, still more preferably 5.0 ⁇ 10 8 Pa or more, and still more.
  • It is preferably 1.0 ⁇ 10 9 or more, more preferably 1.0 ⁇ 10 13 Pa or less, more preferably 1.0 ⁇ 10 12 Pa or less, further more preferably 5.0 ⁇ 10 11 Pa or less. More preferably, it is 1.0 ⁇ 10 11 Pa or less.
  • the visible light (wavelength: 380 nm to 750 nm) transmittance of the energy ray-curable resin layer (I) is preferably 5% or more, more preferably 10% or more, further preferably 30% or more, and still more preferably 50% or more. It is. When the visible light transmittance is in the above range, sufficient energy ray curability can be obtained.
  • the upper limit of the visible light transmittance is not limited, but may be, for example, 95% or less.
  • the transmittance can be measured according to a known method using a spectrophotometer.
  • the pressure-sensitive adhesive layer (X), the base material (Y), and the energy ray-curable resin layer (I) are separately formed so that these have a desired configuration. It can be manufactured by laminating. Each layer can be formed, for example, by applying and drying a resin composition for forming each layer on a release material.
  • the manufacturing method of the laminate of one embodiment of the present invention is not limited to the above method.
  • the base material (Y) is formed on the pressure-sensitive adhesive layer (X) formed on the release material.
  • a method for manufacturing a cured sealing body according to one embodiment of the present invention is a method for manufacturing a cured sealing body using the laminate according to one embodiment of the present invention, and includes the following steps (i) to (iv). Step (i): Step of placing an object to be sealed on a part of the surface of the energy ray-curable resin layer (I) of the laminate. Step (ii): Applying the energy ray-curable resin layer (I).
  • Step (iv): The cured resin layer (I ′) and the support layer (II) are separated at the interface by the treatment for expanding the thermally expandable particles to obtain a cured sealing body with the cured resin layer.
  • the cured sealing body in one embodiment of the present invention is obtained by covering an object to be sealed with a sealing material and curing the sealing material. There, composed of a cured product of the sealing object and the sealing material.
  • FIG. 4 is a schematic cross-sectional view showing a step of manufacturing a cured sealing body using the laminate 1a shown in FIG.
  • the respective steps described above will be described with reference to FIG.
  • Step (i) is a step of placing an object to be sealed on a part of the surface of the energy ray-curable resin layer (I) included in the laminate of one embodiment of the present invention.
  • the adhesive surface of the adhesive layer (X) of the support layer (II) is attached to the support 50 using the laminate 1a, and the energy ray-curable resin layer ( A state in which the sealing target 60 is placed on a part of the surface of (I) is shown.
  • FIG. 4A illustrates an example in which the stacked body 1a illustrated in FIG. 1A is used; Then, a support, a laminate, and an object to be sealed are laminated or placed in this order.
  • the temperature condition in the step (i) is preferably performed at a temperature at which the thermally expandable particles do not expand, for example, in an environment of 0 to 80 ° C (provided that the expansion start temperature (t) is 60 to 80 ° C). In this case, it is preferable that the heat treatment be performed under an environment lower than the expansion start temperature (t).
  • the support is preferably attached to the entire surface of the adhesive surface of the adhesive layer (X) of the laminate. Therefore, the support is preferably plate-shaped. Further, as shown in FIG. 4, the area of the surface of the support on the side to be adhered to the adhesive surface of the adhesive layer (X) is preferably equal to or larger than the area of the adhesive surface of the adhesive layer (X).
  • the material constituting the support is appropriately determined in consideration of the required properties such as mechanical strength and heat resistance according to the type of the object to be sealed, the type of the sealing material used in step (ii), and the like. Selected. Specific examples of the material constituting the support include: metal materials such as SUS; nonmetallic inorganic materials such as glass and silicon wafer; epoxy resin, ABS resin, acrylic resin, engineering plastic, super engineering plastic, polyimide resin, Resin materials such as polyamideimide resin; composite materials such as glass epoxy resin; and the like, among which SUS, glass, and silicon wafer are preferable.
  • the support is preferably made of a transparent material such as glass from the viewpoint that the energy ray-curable resin layer (I) can be irradiated with energy rays through the support.
  • the engineering plastics include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
  • Examples of the super engineering plastic include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
  • the thickness of the support is appropriately selected according to the type of the object to be sealed, the type of the sealing material used in step (ii), and the like, but is preferably 20 ⁇ m or more and 50 mm or less, more preferably 60 ⁇ m or more. It is 20 mm or less.
  • a sealing target placed on a part of the surface of the energy ray-curable resin layer (I) for example, a semiconductor chip, a semiconductor wafer, a compound semiconductor, a semiconductor package, an electronic component, a sapphire substrate, a display, And a substrate for a panel.
  • a semiconductor chip with a cured resin layer can be manufactured by using the laminate of one embodiment of the present invention.
  • a conventionally known semiconductor chip can be used, and an integrated circuit including a circuit element such as a transistor, a resistor, and a capacitor is formed on a circuit surface thereof.
  • the semiconductor chip is preferably mounted so that the back surface opposite to the circuit surface is covered with the surface of the energy ray-curable resin layer (I). In this case, after mounting, the circuit surface of the semiconductor chip is exposed.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • the layout and the number of semiconductor chips to be arranged may be determined as appropriate according to the form of the target package, the number of products to be produced, and the like.
  • the laminated body of one embodiment of the present invention covers a semiconductor chip with a region larger than the chip size with a sealing material, such as FOWLP, FOPLP, or the like. It is preferable that the present invention is applied to a package in which a redistribution layer is formed even in the surface region of FIG. Therefore, the semiconductor chip is mounted on a part of the surface of the energy ray-curable resin layer (I), and a plurality of semiconductor chips are arranged on the surface in a state where they are arranged at regular intervals.
  • a sealing material such as FOWLP, FOPLP, or the like.
  • the semiconductor chips are mounted, and it is more preferable that the plurality of semiconductor chips are mounted on the surface in a state of being arranged in a matrix of a plurality of rows and a plurality of columns at a predetermined interval.
  • the distance between the semiconductor chips may be determined as appropriate depending on the desired package configuration and the like.
  • Step (ii) is a step of irradiating the energy ray-curable resin layer (I) with energy rays to form a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I). is there.
  • FIG. 4B shows a state where the energy ray-curable resin layer (I) is cured in this step to form a cured resin layer (I ′).
  • the kind and irradiation condition of the energy ray are not particularly limited as long as the kind and condition are such that the energy ray-curable resin layer (I) is sufficiently cured to exhibit its function. What is necessary is just to select suitably according to the process which performs.
  • the illuminance of the energy beam during curing of the energy ray-curable resin layer (I) is preferably from 4 to 280 mW / cm 2 , and the amount of energy beam during the curing is preferably from 5 to 1000 mJ / cm 2. It is more preferably 100 to 500 mJ / cm 2 .
  • the type of the energy beam and the irradiation device are as described above.
  • the energy ray may be irradiated from any direction as long as the energy ray can be irradiated to the energy ray-curable resin layer (I).
  • the support (II) and the support 50 may have a light transmittance
  • the light enters through the support (II) and the support 50 (that is, from the surface of the support 50 in FIG. 4B from the side opposite to the adhesive layer (X),
  • the energy ray can be irradiated to the energy ray-curable resin layer (I) and the support 50, the pressure-sensitive adhesive layer (X) and the base material (Y).
  • Step (iii)> the object to be sealed and the surface of the cured resin layer (I ′) at least at the peripheral portion of the object to be sealed are covered with a thermosetting sealing material (hereinafter referred to as “coating treatment”).
  • This is a step of thermally curing the sealing material to form a cured sealing body including the object to be sealed.
  • the covering process first, the object to be sealed and at least the peripheral portion of the object to be sealed on the surface of the cured resin layer (I ′) are covered with a sealing material.
  • the sealing material covers the entire exposed surface of the object to be sealed and also fills the gap between the plurality of semiconductor chips.
  • FIG. 4C shows a state in which the surface of the object 60 to be sealed and the surface of the cured resin layer (I ′) are entirely covered with the sealing material 70.
  • the sealing material has a function of protecting an object to be sealed and elements attached thereto from an external environment.
  • the sealing material used in the manufacturing method of one embodiment of the present invention is a thermosetting sealing material containing a thermosetting resin. Further, the sealing material may be solid at room temperature, such as granules, pellets, and films, or may be a liquid in the form of a composition. Is preferred.
  • the coating method it is possible to appropriately select and apply the coating method according to the type of the sealing material from the methods applied to the conventional sealing step.
  • a roll lamination method, a vacuum press method, a vacuum lamination method Method, spin coating method, die coating method, transfer molding method, compression molding method and the like can be applied.
  • the sealing material is thermally cured to obtain a cured sealing body in which the object to be sealed is sealed with the sealing material.
  • the thermosetting treatment in the step (iii) is performed at a temperature at which the thermally expandable particles do not expand. It is preferable that the heat treatment be performed under a temperature condition lower than the temperature (t).
  • the cured resin layer (I ′) is provided on the surface on the sealing object 60 side sealed with the sealing material 70.
  • a thermosetting treatment is performed. Since the cured resin layer (I ′) is provided, the difference in shrinkage stress between the two surfaces of the obtained cured sealing body can be reduced, and the warpage generated in the cured sealing body can be effectively suppressed. Conceivable.
  • FIG. 4D shows a state where the heat-expandable particles are separated at the interface P between the cured resin layer (I ′) and the support layer (II) by a process of expanding the particles.
  • a cured resin layer (I ′) having a cured sealing body 80 in which the sealing target 60 is sealed and a cured resin layer (I ′) is provided.
  • the cured sealing body 100 can be obtained.
  • the presence of the cured resin layer (I ') has a function of effectively suppressing the warpage generated in the cured sealing body, protects the sealing object, and improves the reliability of the sealing object. Contribute.
  • the “expansion treatment” in the step (iv) is a treatment for expanding the heat-expandable particles by heating at a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles, and the cured resin layer (I Unevenness occurs on the surface of the support layer (II) on the ') side. As a result, it is possible to easily separate the interface P at once with a small force.
  • the “temperature not lower than the expansion start temperature (t)” when expanding the thermally expandable particles is preferably “expansion start temperature (t) + 10 ° C.” or more and “expansion start temperature (t) + 60 ° C.” or less.
  • the temperature is not less than “expansion start temperature (t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”.
  • the heating method is not particularly limited, and examples thereof include a heating method using a hot plate, an oven, a baking furnace, an infrared lamp, a hot air blower, and the like. From the viewpoint of facilitating separation at the interface P, a method in which a heat source during heating can be provided on the support 50 side is preferable.
  • the cured sealing body with the cured resin layer thus obtained is further subjected to necessary processing thereafter.
  • One example is described below. In the following description, an embodiment in which the semiconductor chip 60 is used as the sealing target 60 will be described.
  • FIG. 5A shows the cured resin body 100 with the cured resin layer obtained by the above-described manufacturing method
  • FIG. A first grinding step is shown in which the surface 100a on the opposite side is ground by the grinding means 110 to expose the circuit surface 60a of the semiconductor chip 60.
  • the grinding means 110 is not particularly limited, and may be performed using a known grinding device such as a grinder.
  • the surface of the cured sealing body on the cured resin layer (I ′) side is preferably fixed on another support from the viewpoint of workability. Further, from the viewpoint of workability, dicing may be performed to a predetermined size including one or a plurality of chips before the first grinding step.
  • FIG. 5C illustrates a process of forming a rewiring layer 200 and an external terminal electrode 300 that are electrically connected to the circuit surface 60 a of the semiconductor chip 60 exposed on the surface of the cured sealing body 80 by the first grinding process.
  • a wiring layer and an external terminal electrode forming step are shown.
  • the material of the redistribution layer 200 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals.
  • the redistribution layer 200 can be formed by a known method such as a subtractive method or a semi-additive method. If necessary, one or more insulating layers may be provided.
  • the external terminal electrode 300 is electrically connected to an external electrode pad of the redistribution layer 200.
  • the external electronic electrode 300 can be formed, for example, by soldering a solder ball or the like.
  • FIG. 5D shows a step of dicing the cured sealing body 100 with the cured resin layer to which the external terminal electrodes 300 are connected. Dicing may be performed for each semiconductor chip, or may be performed for a predetermined size including a plurality of semiconductor chips.
  • the method for dicing the cured sealing body 100 with the cured resin layer is not particularly limited, and can be implemented by a cutting means such as a dicing saw.
  • FIG. 5E shows a second grinding step of grinding the cured resin layer (I ′) disposed on the side of the cured sealing body 80 opposite to the rewiring layer 200 by the grinding means 110. ing. At this time, the surface of the cured sealing body 80 on the rewiring layer 200 side is preferably fixed with a back grinding tape or the like.
  • the grinding means 110 includes the same means as in the first grinding step. In the second grinding step, a part of the cured resin layer (I ′) may be ground, or the entire cured resin layer (I ′) may be ground. By grinding the cured resin layer (I ′), the size of the obtained semiconductor package can be further reduced.
  • the cured resin layer (I ′) when the second grinding step is not performed or when only a part of the cured resin layer (I ′) is ground, the cured resin layer (I ′) also serves to protect the back surface of the semiconductor chip 60. be able to.
  • the curable resin layer (I) means both the “energy beam curable resin layer (I)” and the “thermosetting resin layer”.
  • the physical property values in each example are values measured by the following methods.
  • ⁇ Measurement of thickness of each layer> The thickness was measured using a constant pressure thickness measuring instrument (model number: “PG-02J”, standard: JIS K6783, Z 1702, Z 1709) manufactured by Teclock Corporation.
  • the expansion start temperature (t) of the thermally expandable particles used in each example was measured by the following method.
  • an aluminum cup having a diameter of 6.0 mm (5.65 mm inner diameter) and a depth of 4.8 mm 0.5 mg of the thermally expandable particles to be measured are added, and an aluminum lid (5.6 mm in diameter, thickness of 0. 1 mm) is prepared.
  • the height of the sample is measured from the upper part of the aluminum lid while a force of 0.01 N is applied to the sample by a pressurizer. Then, with the force of 0.01 N applied by the pressurizer, the heater is heated from 20 ° C.
  • the displacement start temperature be the expansion start temperature (t).
  • the maximum expansion temperature was defined as the temperature at which the amount of displacement measured by the above method became maximum.
  • the curable resin layer (I) of the sheet for forming the curable resin layer (I) produced in each example was attached to a silicon wafer (size: 12 inches, thickness: 100 ⁇ m).
  • a thermosetting resin composition a resin composition obtained by mixing an epoxy resin (manufactured by Struers, product name “Epofix resin”) and a curing agent (manufactured by Struers, product name “Epofix hardener”) A product was prepared, and the resin composition was applied to the surface of the silicon wafer on the side opposite to the curable resin layer (I) so as to have a thickness of 30 ⁇ m.
  • the curable resin layer (I) is the energy ray-curable resin layer (I)
  • the ultraviolet rays are irradiated with an irradiance of 215 mW / cm 2 using an ultraviolet irradiation apparatus RAD-2000 (manufactured by Lintec Corporation). Irradiation was performed three times under the condition of a light amount of 187 mJ / cm 2 to cure the energy ray-curable resin layer (I) to form a cured resin layer (I ′).
  • the curable resin layer (I) was a thermosetting resin layer (I)
  • it was cured by heating at 180 ° C. for 60 minutes to form a cured resin layer (I ′).
  • the thermosetting resin composition is heated and cured to form a thermosetting resin layer, and a cured measurement sample having a cured resin layer (I ′) / silicon wafer / thermosetting resin layer in this order is prepared. Obtained.
  • the “silicon wafer / thermosetting resin layer” portion in the measurement sample after curing has a configuration corresponding to a cured sealing body obtained by sealing a semiconductor chip with a thermosetting resin.
  • the performance of the layer (I ′) as a warp prevention layer can be evaluated.
  • the silicon wafer / thermosetting resin layer was formed in the same procedure as above without attaching the curable resin layer (I)
  • the amount of warpage was 15 mm.
  • the curable resin layer (I) is cured by energy rays or heat to form a cured resin layer (I ').
  • the expandable base material layer (Y1) is expanded by a heat expansion treatment to separate the cured resin layer (I ′) and the support layer (II), and the separation property is evaluated based on the following criteria. did.
  • the curing conditions for the curable resin layer (I) and the thermal expansion treatment for the support layer (II) manufactured in each example were the same as those described in Examples 1 to 5 and Reference Example 1 described later. .
  • A Separable, the appearance of the cured resin layer (I ') is good, and there is no adhesive residue.
  • B Separable, the appearance of the cured resin layer (I ') is good, but adhesive residue is partially present.
  • C It cannot be separated, or there is adhesive residue on the entire surface of the cured resin layer (I ′), or the appearance of the cured resin layer (I ′) is poor.
  • ⁇ Storage modulus E ′ of intumescent base material layer (Y1)> A 200 ⁇ m thick expandable base material layer (Y1) prepared for the measurement of the storage elastic modulus E ′ was 5 mm long ⁇ 30 mm wide ⁇ 200 ⁇ m thick, and a test sample was obtained by removing the release material. Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments Co., Ltd., product name “DMAQ800”), the test start temperature is 0 ° C., the test end temperature is 300 ° C., the heating rate is 3 ° C./min, the frequency is 1 Hz, and the amplitude is 20 ⁇ m. The storage elastic modulus E ′ of the test sample at a predetermined temperature was measured under the following conditions.
  • a viscoelasticity measuring device manufactured by Anton Paar, device name "MCR300”
  • a torsional shear method under the conditions of a test start temperature of 0 ° C, a test end temperature of 300 ° C, a heating rate of 3 ° C / min, and a frequency of 1 Hz.
  • ⁇ Storage elastic modulus E ′ of cured resin layer (I ′)> Using a cured specimen of the curable resin layer (I) obtained in each example as a test piece, using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name “DMAQ800”), the test start temperature The storage elastic modulus E ′ of the formed cured resin layer (I ′) was measured at 23 ° C. under the conditions of 0 ° C., a test termination temperature of 300 ° C., a temperature rising rate of 3 ° C./min, a vibration frequency of 11 Hz, and an amplitude of 20 ⁇ m.
  • the test piece was irradiated with ultraviolet light by using an ultraviolet irradiation device RAD-2000 (manufactured by Lintec Corporation) at an illuminance of 215 mW. / Cm 2 and a light amount of 187 mJ / cm 2 , and cured by heating three times. If the curable resin layer (I) is a thermosetting resin layer (I), heat at 180 ° C. for 60 minutes. And cured.
  • Synthesis Example 1 (Synthesis of "acrylic urethane resin" used for intumescent base material layer (Y1))
  • isophorone diisocyanate was added to 100 parts by mass of a polycarbonate diol (carbonate type diol) having a mass average molecular weight of 1,000, and the equivalent ratio of the hydroxyl group of the polycarbonate diol to the isocyanate group of isophorone diisocyanate was 1 / L, further added 160 parts by mass of toluene, and reacted at 80 ° C for 6 hours or more with stirring under a nitrogen atmosphere until the isocyanate group concentration reached the theoretical amount.
  • a polycarbonate diol carbonate type diol having a mass average molecular weight of 1,000
  • Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) 80.0 / 20.0 (mass ratio) An acrylic copolymer having a Mw of 600,000.
  • Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid 86.0 / 8.0 / 5.0 / 1.
  • ⁇ Release material> -Heavy release film manufactured by Lintec Co., Ltd., product name "SP-PET382150", a polyethylene terephthalate (PET) film provided with a release agent layer formed of a silicone release agent on one surface, thickness: 38 ⁇ m.
  • -Light release film manufactured by Lintec Co., Ltd., product name "SP-PET381031”
  • a PET film provided with a release agent layer formed of a silicone release agent on one side of the PET film, thickness: 38 ⁇ m.
  • (1-1) Formation of First Pressure-Sensitive Adhesive Layer (X1) 5.0 parts by mass of the isocyanate-based crosslinking agent (i) was added to 100 parts by mass of the solid content of the acrylic copolymer (i) as an adhesive resin. Parts were mixed, diluted with toluene, and uniformly stirred to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass. Then, the pressure-sensitive adhesive composition is applied to a surface of the release agent layer of the heavy release film (hereinafter, also referred to as a “release treated surface”) to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds.
  • a surface of the release agent layer of the heavy release film hereinafter, also referred to as a “release treated surface”
  • a first pressure-sensitive adhesive layer (X1) which was a non-thermally-expandable pressure-sensitive adhesive layer having a thickness of 5 ⁇ m, was formed.
  • the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 ⁇ 10 5 Pa.
  • the adhesion at 23 ° C. of the first pressure-sensitive adhesive layer (X1) measured based on the above method was 0.3 N / 25 mm.
  • Second pressure-sensitive adhesive layer (X2) 0.8 mass of the isocyanate-based crosslinking agent (i) is added to 100 mass parts of the solid content of the acrylic copolymer (ii), which is a pressure-sensitive resin. Parts were mixed, diluted with toluene, and uniformly stirred to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass. Then, the pressure-sensitive adhesive composition is applied to the release-treated surface of the light release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to form a second pressure-sensitive adhesive layer having a thickness of 10 ⁇ m ( X2).
  • the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) was 9.0 ⁇ 10 4 Pa. Further, the adhesion at 23 ° C. of the second pressure-sensitive adhesive layer (X2) measured according to the above method was 1.0 N / 25 mm.
  • a 50 ⁇ m thick polyethylene terephthalate (PET) film manufactured by Toyobo Co., Ltd., product name “Cosmoshine A4100”, probe tack value: 0 mN / 5 mm ⁇
  • the resin composition was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to form an intumescent base material layer (Y1) having a thickness of 50 ⁇ m.
  • the PET film as the non-expandable base material corresponds to the non-expandable base material layer (Y2).
  • the base material (Y) including the 50 ⁇ m-thick expandable base material layer (Y1) and the 50 ⁇ m-thick non-expandable base material layer (Y2) was produced.
  • the resin composition was applied to the release-treated surface of the light release film to form a coating film, The coating film was dried at an ambient temperature of 100 ° C. for 120 seconds to form a 200 ⁇ m thick expandable base material layer (Y1) in the same manner. Then, based on the above-described measurement method, the storage elastic modulus and the probe tack value at each temperature of the expandable base material layer (Y1) were measured.
  • the measurement results were as follows.
  • Production Example 2 (Supporting layer (II-B))
  • the heat-expandable particles A were changed to the following heat-expandable particles B, and the drying conditions after applying the resin composition to form a coating film were changed to an atmosphere temperature of 100 ° C. for 1 minute. Except for this, in the same manner as in Production Example 1, a sheet for forming a support layer (II-B) was produced.
  • Production Example 3 (Support layer (II-C))
  • the heat-expandable particles A were changed to the following heat-expandable particles C, and the drying conditions after applying the resin composition to form a coating film were changed to an atmosphere temperature of 100 ° C. for 1 minute. Except for this, in the same manner as in Production Example 1, a sheet for forming a support layer (II-C) was produced.
  • the drying temperature after applying the resin composition to form a coating film is set to the expansion starting temperature of the thermally expandable particles (although it was higher than t), no foaming was observed in the formed support layer (II) because the drying temperature was the ambient temperature.
  • Production Example 4 (Support layer (II-D))
  • the heat-expandable particles A were changed to the following heat-expandable particles D, and the drying conditions after applying the resin composition to form a coating film were changed to an atmosphere temperature of 100 ° C. for 1 minute. Except for this, in the same manner as in Production Example 1, a sheet for forming a support layer (II-D) was produced.
  • the solution of the curable composition prepared above was applied on the release-treated surface of the light release film to form a coating film, and the coating film was dried at 120 ° C. for 2 minutes, and the energy beam having a thickness of 25 ⁇ m was obtained.
  • the curable resin layer (IA) was formed, and a sheet for forming the energy ray-curable resin layer (IA) composed of the energy ray-curable resin layer (IA) and the light release film was prepared.
  • the solution of the curable composition prepared above was applied on the release-treated surface of the light release film to form a coating film, and the coating film was dried at 120 ° C. for 2 minutes, and the energy beam having a thickness of 25 ⁇ m was obtained.
  • the curable resin layer (IB) was formed, and a sheet for forming the energy ray-curable resin layer (IB) including the energy ray-curable resin layer (IB) and the light release film was prepared.
  • Production Example 7 (Thermosetting resin layer (IC)) The following types and amounts (all of which are “active ingredient ratios”) are blended, diluted with methyl ethyl ketone, and uniformly stirred to obtain a solid concentration (active ingredient concentration) of 61% by mass. A solution of the acidic composition was prepared.
  • Acrylic polymer butyl acrylate (BA) (1 part by mass), methyl acrylate (MA) (74 parts by mass), glycidyl methacrylate (GMA) (15 parts by mass) and 2-hydroxyethyl acrylate ( HEA) (10 parts by mass) acrylic resin (glass transition temperature: 8 ° C., Mw: 440,000): 18 parts by mass liquid bisphenol A type epoxy resin (product name: Nippon Shokubai Co., Ltd.) BPA328 ”): 3 parts by mass, solid bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name" Epicoat 1055 ”): 20 parts by mass, dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., product name" XD-1000L ”): 1.5 parts by mass dicyandiamide (ADEKA Corp., product name” Adecover donor 3636AS ”): 0.5 quality Part: imidazole (manufactured by Shikoku Kasei Kog
  • thermosetting resin layer (IC) was formed, and a thermosetting resin layer (IC) forming sheet composed of the thermosetting resin layer (IC) and the light release film was prepared.
  • thermosetting sealing resin film which is a stopper material
  • the sealing resin film is heat-cured using a vacuum heating / pressurizing laminator (product name: 7024HP5, manufactured by ROHM and HAAS) and cured and sealed.
  • a stop body was produced.
  • the sealing conditions are as follows. ⁇ Preheating temperature: 100 ° C for both table and diaphragm ⁇ Evacuation: 60 seconds ⁇ Dynamic press mode: 30 seconds ⁇ Static press mode: 10 seconds ⁇ Sealing temperature: 180 ° C. ⁇ 60 minutes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention pertains to a layered product having an energy ray curable resin layer (I), and a support layer (II) which supports the energy ray curable resin layer (I), wherein the energy ray curable resin layer (I) has an adhesive surface, the support layer (II) has a substrate (Y) and an adhesive layer, at least the substrate (Y) and the adhesive layer contains thermally expandable particles, and the support layer (II) and a cured resin layer (I') obtained by curing the energy ray curable resin layer (I) are separated at the boundary therebetween, by a process of expanding the thermally expandable particles.

Description

積層体及び硬化封止体の製造方法Manufacturing method of laminated body and cured sealing body
 本発明は、積層体及び硬化封止体の製造方法に関する。 The present invention relates to a method for producing a laminate and a cured sealing body.
 近年、電子機器の小型化、軽量化及び高機能化が進んでおり、半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、CSP(Chip Scale Package)と称されることもある。CSPとしては、ウエハサイズでパッケージ最終工程まで処理して完成させるWLP(Wafer Level Package)、ウエハサイズよりも大きいパネルサイズでパッケージ最終工程まで処理して完成させるPLP(Panel Level Package)等が挙げられる。 In recent years, electronic devices have become smaller, lighter, and more sophisticated, and semiconductor chips are sometimes mounted in packages close to their size. Such a package is sometimes called a CSP (Chip Scale Package). Examples of the CSP include a WLP (Wafer Level Package) that is completed by processing the wafer size to the final package process, and a PLP (Panel Level Package) that is processed and completed by the panel size larger than the wafer size until the final package process. .
 WLP及びPLPは、ファンイン(Fan-In)型とファンアウト(Fan-Out)型に分類される。ファンアウト型のWLP(以下、「FOWLP」ともいう)及びPLP(以下、「FOPLP」ともいう)においては、半導体チップを、チップサイズよりも大きな領域となるように封止材で覆って半導体チップの硬化封止体を形成し、再配線層及び外部電極を、半導体チップの回路面だけでなく封止材の表面領域においても形成する。 WLP and PLP are classified into a fan-in type and a fan-out type. In a fan-out type WLP (hereinafter, also referred to as “FOWLP”) and a PLP (hereinafter, also referred to as “FOLP”), a semiconductor chip is covered with a sealing material so as to have an area larger than the chip size. And a rewiring layer and external electrodes are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing material.
 FOWLP及びFOPLPは、例えば、複数の半導体チップを仮固定用シート上に載置する載置工程と、熱硬化性の封止材で被覆する被覆工程と、該封止材を熱硬化させて硬化封止体を得る硬化工程と、該硬化封止体と仮固定用シートとを分離する分離工程と、表出した半導体チップ側の表面に再配線層を形成する再配線層形成工程と、を経て製造される(以下、被覆工程及び硬化工程で行う加工を「封止加工」とも称する)。 FOWLP and FOPLP are, for example, a placing step of placing a plurality of semiconductor chips on a temporary fixing sheet, a covering step of covering with a thermosetting sealing material, and a thermosetting curing of the sealing material. A curing step of obtaining a sealed body, a separation step of separating the cured sealed body and the temporary fixing sheet, and a rewiring layer forming step of forming a rewiring layer on the exposed semiconductor chip side surface, (Hereinafter, the processing performed in the coating step and the curing step is also referred to as “sealing processing”).
 特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用加熱剥離型粘着シートが開示されている。FOWLP及びFOPLPの製造において、特許文献1に記載の加熱剥離型粘着シートを用いることも考えられる。 Patent Document 1 discloses a heat-peelable pressure-sensitive adhesive sheet for temporary fixing at the time of cutting electronic components, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of a substrate. In the production of FOWLP and FOPLP, use of the heat-peelable pressure-sensitive adhesive sheet described in Patent Document 1 is also conceivable.
特許第3594853号公報Japanese Patent No. 3594853
 しかしながら、特許文献1に記載された粘着シートを仮固定用シートとして用いて硬化封止体を作製すると、硬化封止体が熱収縮によって反る傾向にある。これは、硬化封止体中に封止された半導体チップが、仮固定用シートに接する面側に偏って存在しているため、硬化封止体中において、熱膨張係数が小さい半導体チップの存在比率が相対的に高い側の領域と、熱膨張係数が大きい硬化樹脂の存在比率が相対的に高い側の領域と、が発生し、両領域の熱収縮率の差によって応力が発生するためと考えられる。この問題は、FOWLP、FOPLP等、パッケージサイズが大きくなるにつれて顕著になる傾向にある。
 反りが生じた硬化封止体は、例えば、次工程で硬化封止体の研削を行った場合に、割れが発生し易くなる、硬化封止体を装置によって搬送する際にアームによる硬化封止体の受け渡し時に不具合が発生し易くなるなどの弊害が生じ得る。
However, when a cured sealing body is manufactured using the pressure-sensitive adhesive sheet described in Patent Document 1 as a temporary fixing sheet, the cured sealing body tends to warp due to heat shrinkage. This is because the semiconductor chip sealed in the cured sealing body is unevenly located on the surface side in contact with the temporary fixing sheet. A region where the ratio is relatively high and a region where the presence ratio of the cured resin having a large thermal expansion coefficient is relatively high occur, and a stress is generated due to a difference in the thermal shrinkage ratio between the two regions. Conceivable. This problem tends to become more pronounced as the package size increases, such as FOWLP and FOPLP.
The warped cured sealing body is, for example, easily cracked when the cured sealing body is ground in the next step, and is cured by the arm when the cured sealing body is transported by the device. A harmful effect may occur, such as an inconvenience during the delivery of the body.
 硬化封止体の反りを抑制する方法として、例えば、熱膨張性粒子を含有する熱膨張性粘着層が設けられた仮固定層と熱硬化性樹脂層とを備える積層体を使用する方法も考えられる。すなわち、該積層体が備える熱硬化性樹脂層上で半導体チップの載置工程及び被覆工程を実施し、その後、熱硬化性樹脂層及び封止材を熱硬化させて、硬化樹脂層付き硬化封止体を得た後、熱膨張性粒子を発泡させ、硬化樹脂層付き硬化封止体と仮固定層とを分離する方法である。この方法によると、硬化樹脂層が硬化封止体の反り防止層として機能するため、反りの発生が抑制された硬化封止体が得られる。 As a method of suppressing the warpage of the cured sealing body, for example, a method of using a laminate including a temporary fixing layer provided with a thermally expandable pressure-sensitive adhesive layer containing thermally expandable particles and a thermosetting resin layer is also considered. Can be That is, a mounting step and a covering step of the semiconductor chip are performed on the thermosetting resin layer provided in the laminate, and thereafter, the thermosetting resin layer and the sealing material are heat-cured to form a cured seal with the cured resin layer. After obtaining the stationary body, the thermally expandable particles are expanded to separate the cured sealing body with the cured resin layer from the temporary fixing layer. According to this method, since the cured resin layer functions as a warp preventing layer of the cured sealing body, a cured sealing body in which the occurrence of warpage is suppressed can be obtained.
 一方、上記の方法によると、熱膨張性粒子を発泡させるための処理と、熱硬化性樹脂層を硬化させるための処理とが、いずれも加熱処理であるため、熱硬化性樹脂層を硬化させるための加熱処理中に、仮固定層中の熱膨張性粒子が発泡する場合がある。本発明者等の検討によると、熱硬化性樹脂層が十分に硬化する前に、仮固定層中の熱膨張性粒子が発泡すると、その後の分離工程において仮固定層の分離性が悪化することが判明している。
 したがって、反り防止層としての硬化樹脂層を硬化封止体に付与しながらも、硬化樹脂層付き硬化封止体を形成した後には、硬化樹脂層と仮固定層とを容易に分離することができる、硬化封止体の製造に使用可能な積層体が望まれている。
On the other hand, according to the above method, the treatment for expanding the thermally expandable particles and the treatment for curing the thermosetting resin layer are both heat treatments, so that the thermosetting resin layer is cured. In some cases, the heat-expandable particles in the temporary fixing layer are foamed during the heat treatment. According to the study of the present inventors, before the thermosetting resin layer is sufficiently cured, if the thermally expandable particles in the temporary fixing layer expand, the separability of the temporary fixing layer deteriorates in the subsequent separation step. Is known.
Therefore, it is possible to easily separate the cured resin layer and the temporary fixing layer after forming the cured sealing body with the cured resin layer while applying the cured resin layer as the warpage prevention layer to the cured sealing body. There is a need for a laminate that can be used to produce a cured encapsulant.
 本発明は、上記問題に鑑み、支持層と硬化性樹脂層とを有し、封止対象物を前記硬化性樹脂層の表面に固定して封止加工を行うことができると共に、該封止加工によって形成された硬化封止体に反り防止層としての硬化樹脂層を付与することができ、かつ前記硬化樹脂層と前記支持層とを容易に分離することができる積層体、及び該積層体を用いた硬化封止体の製造方法を提供することを目的とする。 In view of the above problems, the present invention has a support layer and a curable resin layer, and can perform sealing by fixing an object to be sealed to the surface of the curable resin layer. A laminated body which can provide a cured resin layer as a warpage preventing layer to a cured sealing body formed by processing, and can easily separate the cured resin layer and the support layer, and the laminated body It is an object of the present invention to provide a method for producing a cured sealing body using the same.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、下記の本発明によって、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[11]に関する。
[1]エネルギー線硬化性樹脂層(I)と、
 該エネルギー線硬化性樹脂層(I)を支持する支持層(II)と、を有し、
 エネルギー線硬化性樹脂層(I)が、粘着性を有する表面を有し、
 支持層(II)が、基材(Y)及び粘着剤層(X)を有し、該基材(Y)及び粘着剤層(X)の少なくとも一方が熱膨張性粒子を含有し、
 エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)と支持層(II)とが、前記熱膨張性粒子を膨張させる処理によって、その界面で分離する、積層体。
[2]エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)の23℃における貯蔵弾性率E’が、1.0×10~1.0×1013Paである、上記[1]に記載の積層体。
[3]エネルギー線硬化性樹脂層(I)の厚さが、1~500μmである、上記[1]又は[2]に記載の積層体。
[4]エネルギー線硬化性樹脂層(I)の可視光透過率が、5%以上である、上記[1]~[3]のいずれかに記載の積層体。
[5]基材(Y)が、前記熱膨張性粒子を含有する膨張性基材層(Y1)を有する、上記[1]~[4]のいずれかに記載の積層体。
[6]粘着剤層(X)が、非膨張性粘着剤層である、上記[5]に記載の積層体。
[7]粘着剤層(X)とエネルギー線硬化性樹脂層(I)とが直接積層されてなる、上記[5]又は[6]に記載の積層体。
[8]基材(Y)が、非膨張性基材層(Y2)及び膨張性基材層(Y1)を有し、
 支持層(II)が、非膨張性基材層(Y2)、膨張性基材層(Y1)、及び粘着剤層(X)をこの順で有し、
 粘着剤層(X)とエネルギー線硬化性樹脂層(I)とが直接積層されてなる、上記[5]~[7]のいずれか1項に記載の積層体。
[9]エネルギー線硬化性樹脂層(I)の表面の一部に封止対象物を載置し、
 エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成し、
 前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し、
 当該封止材を熱硬化させた後に、前記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とをその界面で分離して、前記封止対象物を含む硬化封止体を形成するために用いられる、上記[1]~[8]のいずれかに記載の積層体。
[10]前記硬化封止体の反りを防止するために用いられる、上記[9]に記載の積層体。
[11]上記[1]~[10]のいずれかに記載の積層体を用いて硬化封止体を製造する方法であって、下記工程(i)~(iv)を有する、硬化封止体の製造方法。
工程(i):前記積層体が有するエネルギー線硬化性樹脂層(I)の表面の一部に、封止対象物を載置する工程
工程(ii):エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成する工程
工程(iii):前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し、当該封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成する工程
工程(iv):前記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る工程
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the following problems can be solved by the present invention, and have completed the present invention.
That is, the present invention relates to the following [1] to [11].
[1] an energy ray-curable resin layer (I),
A support layer (II) for supporting the energy ray-curable resin layer (I),
The energy ray-curable resin layer (I) has a surface having tackiness,
The support layer (II) has a substrate (Y) and an adhesive layer (X), and at least one of the substrate (Y) and the adhesive layer (X) contains thermally expandable particles;
A laminate in which a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) and a support layer (II) are separated at an interface thereof by a process of expanding the thermally expandable particles.
[2] The storage elastic modulus E ′ at 23 ° C. of the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) is 1.0 × 10 7 to 1.0 × 10 13 Pa. The laminate according to the above [1].
[3] The laminate according to the above [1] or [2], wherein the energy ray-curable resin layer (I) has a thickness of 1 to 500 μm.
[4] The laminate according to any one of the above [1] to [3], wherein the energy ray-curable resin layer (I) has a visible light transmittance of 5% or more.
[5] The laminate according to any one of the above [1] to [4], wherein the substrate (Y) has an expandable substrate layer (Y1) containing the thermally expandable particles.
[6] The laminate according to the above [5], wherein the pressure-sensitive adhesive layer (X) is a non-expandable pressure-sensitive adhesive layer.
[7] The laminate according to the above [5] or [6], wherein the pressure-sensitive adhesive layer (X) and the energy ray-curable resin layer (I) are directly laminated.
[8] The base material (Y) has a non-expandable base material layer (Y2) and an expandable base material layer (Y1),
The support layer (II) has a non-expandable base material layer (Y2), an expandable base material layer (Y1), and an adhesive layer (X) in this order,
The laminate according to any one of the above [5] to [7], wherein the pressure-sensitive adhesive layer (X) and the energy ray-curable resin layer (I) are directly laminated.
[9] An object to be sealed is placed on a part of the surface of the energy ray-curable resin layer (I),
Irradiating the energy ray-curable resin layer (I) with energy rays to form a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I),
The object to be sealed and the surface of the cured resin layer (I ') at least in the peripheral portion of the object to be sealed are covered with a thermosetting sealing material,
After the sealing material is thermally cured, the cured resin layer (I ′) and the support layer (II) are separated at the interface by a process of expanding the thermally expandable particles, and the object to be sealed is removed. The laminate according to any one of the above [1] to [8], which is used for forming a cured sealing body containing the same.
[10] The laminate according to the above [9], which is used to prevent the cured sealing body from warping.
[11] A method for producing a cured encapsulant using the laminate according to any one of the above [1] to [10], comprising the following steps (i) to (iv): Manufacturing method.
Step (i): Step of placing an object to be sealed on a part of the surface of the energy ray-curable resin layer (I) of the laminate. Step (ii): Applying the energy ray-curable resin layer (I). Step (iii) of forming a cured resin layer (I ′) obtained by irradiating an energy ray and curing the energy ray-curable resin layer (I): the sealing object and the sealing object At least the surface of the cured resin layer (I ′) at the peripheral portion is covered with a thermosetting sealing material, and the sealing material is thermoset to form a cured sealing body including the object to be sealed. Step (iv): The cured resin layer (I ′) and the support layer (II) are separated at the interface by the treatment for expanding the thermally expandable particles to obtain a cured sealing body with the cured resin layer. Process
 本発明によると、支持層と硬化性樹脂層とを有し、封止対象物を前記硬化性樹脂層の表面に固定して封止加工を行うことができると共に、該封止加工によって形成された硬化封止体に反り防止層としての硬化樹脂層を付与することができ、かつ前記硬化樹脂層と前記支持層とを容易に分離することができる積層体、及び該積層体を用いた硬化封止体の製造方法を提供することができる。 According to the present invention, it has a support layer and a curable resin layer, and can perform sealing by fixing an object to be sealed to the surface of the curable resin layer, and can be formed by the sealing. A laminated body that can provide a cured resin layer as a warpage preventing layer to the cured encapsulant, and can easily separate the cured resin layer and the support layer, and curing using the laminated body A method for manufacturing a sealed body can be provided.
本発明の第一態様の積層体の構成を示す、当該積層体の断面模式図である。FIG. 2 is a schematic cross-sectional view of the laminate, showing the configuration of the laminate of the first embodiment of the present invention. 本発明の第二態様の積層体の構成を示す、当該積層体の断面模式図である。FIG. 4 is a schematic cross-sectional view of the laminate showing the configuration of the laminate of the second embodiment of the present invention. 本発明の第三態様の積層体の構成を示す、当該積層体の断面模式図である。FIG. 4 is a schematic cross-sectional view of the laminate showing a configuration of the laminate of the third embodiment of the present invention. 図1(a)に示す積層体1aを用いて硬化樹脂層付き硬化封止体を製造する工程を示した断面模式図である。FIG. 2 is a schematic cross-sectional view showing a step of manufacturing a cured sealing body with a cured resin layer using the laminated body 1a shown in FIG. 硬化封止体の加工方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the processing method of a hardened sealing body.
 本明細書において、対象となる層が「非膨張性層」であるか否かは、膨張させるための処理を3分間行った後、当該処理の前後での下記式から算出される体積変化率が5%未満である場合、当該層は「非膨張性層」であると判断する。一方、上記体積変化率が5%以上である場合、当該層は「膨張性層」であると判断する。
・体積変化率(%)={(処理後の前記層の体積-処理前の前記層の体積)/処理前の前記層の体積}×100
 なお、「膨張させるための処理」としては、例えば、熱膨張性粒子を含有する層である場合、当該熱膨張性粒子の膨張開始温度(t)で3分間の加熱処理を行えばよい。
In the present specification, whether or not a target layer is a “non-expandable layer” is determined by performing a process for expanding for 3 minutes, and then calculating a volume change rate before and after the process based on the following formula. Is less than 5%, it is determined that the layer is a “non-expandable layer”. On the other hand, when the volume change rate is 5% or more, it is determined that the layer is an “expandable layer”.
Volume change rate (%) = {(volume of the layer after treatment−volume of the layer before treatment) / volume of the layer before treatment} × 100
As the “treatment for expanding”, for example, in the case of a layer containing thermally expandable particles, a heat treatment may be performed at the expansion start temperature (t) of the thermally expandable particles for 3 minutes.
 本明細書において、「有効成分」とは、対象となる組成物に含有される成分のうち、希釈溶媒を除いた成分を指す。 に お い て In the present specification, the “active ingredient” refers to a component excluding a diluting solvent among components contained in a target composition.
 本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。 In the present specification, the mass average molecular weight (Mw) is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method, and specifically, a value measured based on the method described in Examples. It is.
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。 に お い て In this specification, for example, “(meth) acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。 下限 In this specification, the lower limit and the upper limit described stepwise in a preferable numerical range (for example, a range such as the content) can be independently combined. For example, from the description "preferably 10 to 90, more preferably 30 to 60", "preferable lower limit (10)" and "more preferable upper limit (60)" are combined to obtain "10 to 60". You can also.
 本明細書において例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 Unless otherwise specified, each component and material exemplified in this specification may be used alone, or two or more may be used in combination. When two or more are used in combination, their combination may be used. And the ratio can be arbitrarily selected.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
In the present specification, the “energy beam” means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include an ultraviolet ray, a radiation, and an electron beam. The ultraviolet light can be emitted by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet light source. The electron beam can be emitted from an electron beam generated by an electron beam accelerator or the like.
In the present specification, “energy ray-curable” means a property of being cured by irradiation with an energy ray, and “non-energy ray-curable” means a property of not being cured by irradiation of an energy ray. I do.
[積層体]
 本発明の一態様の積層体は、エネルギー線硬化性樹脂層(I)と、該エネルギー線硬化性樹脂層(I)を支持する支持層(II)と、を有する。
 エネルギー線硬化性樹脂層(I)は、粘着性を有する表面を有する。
 支持層(II)は、基材(Y)及び粘着剤層(X)を有し、該基材(Y)及び粘着剤層(X)の少なくとも一方が熱膨張性粒子を含有する。
[Laminate]
The laminate of one embodiment of the present invention includes an energy-ray-curable resin layer (I) and a support layer (II) that supports the energy-ray-curable resin layer (I).
The energy ray-curable resin layer (I) has an adhesive surface.
The support layer (II) has a substrate (Y) and an adhesive layer (X), and at least one of the substrate (Y) and the adhesive layer (X) contains thermally expandable particles.
 本発明の一態様の積層体は、支持層(II)中の熱膨張性粒子を膨張させる処理によって、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)と支持層(II)とを、その界面で分離することができる。つまり、本発明の一態様の積層体は、加熱膨張処理によって、熱膨張性粒子が膨張し、当該熱膨張性粒子を含有する層の表面に凹凸が生じ、支持層(II)とエネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)との接触面積が減少する。その結果、支持層(II)と硬化樹脂層(I’)との界面にて、わずかな力で一括して容易に分離することができる。
 なお、本発明の一態様の積層体は、エネルギー線硬化性樹脂層(I)を硬化する際に加熱する必要がないため、エネルギー線硬化性樹脂層(I)を硬化する際に、支持層(II)中の熱膨張性粒子が膨張することがなく、支持層(II)とエネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)との分離性が優れたものとなる。
The laminate of one embodiment of the present invention comprises a support for curing the energy ray-curable resin layer (I) by curing the heat-expandable particles in the support layer (II) and the cured resin layer (I ′). Layer (II) can be separated at its interface. In other words, in the laminate of one embodiment of the present invention, the heat-expandable particles expand the heat-expandable particles, and the surface of the layer containing the heat-expandable particles has irregularities. The contact area with the cured resin layer (I ′) obtained by curing the conductive resin layer (I) is reduced. As a result, at the interface between the support layer (II) and the cured resin layer (I ′), it can be easily and collectively separated with a small force.
Note that since the laminate of one embodiment of the present invention does not require heating when curing the energy ray-curable resin layer (I), the support layer is used when the energy ray-curable resin layer (I) is cured. The heat-expandable particles in (II) do not expand, and the separation property between the support layer (II) and the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) is excellent. It will be.
 本発明の一態様の積層体は、エネルギー線硬化性樹脂層(I)の表面の一部に封止対象物を載置し、エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成し、前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し、当該封止材を熱硬化させた後に、前記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とをその界面で分離して、前記封止対象物を含む硬化封止体を形成するために用いられることが好ましい。
 上記の方法で形成される硬化封止体は、半導体チップの存在比率が相対的に高い側の面に、硬化樹脂層(I’)を備えたものとなる。その結果、硬化封止体の2つの表面間の収縮応力の差を小さくすることができ、反りが効果的に抑制された硬化封止体を得ることができる。
 すなわち、本発明の一態様の積層体は、硬化封止体の反りを防止するために用いられる、反り防止用積層体として有用である。
 その際、本発明の一態様の積層体は、熱硬化性樹脂層よりも粘着力を高める調整を行い易いエネルギー線硬化性樹脂層(I)を有するため、封止対象物を表面の一部により確実に固定することができる。また、熱硬化性樹脂層は、高温で加熱されると、主に硬化の初期段階において軟化するため、チップズレを招く可能性があるのに対して、エネルギー線硬化型粘着剤組成物は、エネルギー線照射による硬化では軟化しないため、硬化に伴うチップズレの発生を回避できる。
In the laminate of one embodiment of the present invention, an object to be sealed is placed on part of the surface of the energy ray-curable resin layer (I), and the energy ray-curable resin layer (I) is irradiated with energy rays. Forming a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I), and the sealing object and a cured resin layer (I ′) at least at a peripheral portion of the sealing object. Is coated with a thermosetting sealing material, and after the sealing material is thermoset, the cured resin layer (I ′) and the support layer (II) are expanded by expanding the thermally expandable particles. Is preferably used for separating a material at the interface to form a cured sealing body containing the object to be sealed.
The cured sealing body formed by the above method has the cured resin layer (I ′) on the surface on the side where the proportion of the semiconductor chips is relatively high. As a result, the difference in shrinkage stress between the two surfaces of the cured sealing body can be reduced, and a cured sealing body in which warpage is effectively suppressed can be obtained.
That is, the laminate of one embodiment of the present invention is useful as a laminate for preventing warpage, which is used for preventing warpage of the cured sealing body.
At that time, since the laminate of one embodiment of the present invention includes the energy-ray-curable resin layer (I) which is easily adjusted to increase the adhesive strength more than the thermosetting resin layer, the object to be sealed is part of the surface. Can be fixed more reliably. In addition, when the thermosetting resin layer is heated at a high temperature, it is softened mainly in an initial stage of curing, which may cause a chip shift. Since it does not soften when cured by irradiation with rays, it is possible to avoid the occurrence of chip deviation due to the curing.
<積層体の構成>
 次に、本発明の一態様の積層体の構成について図面を参照しながら説明する。
 図1~3は、本発明の第一態様~第三態様の積層体の構成を示す積層体の断面模式図である。なお、以下の本発明の第一態様~第三態様の積層体において、支持体と貼付する粘着剤層(X)(もしくは第2粘着剤層(X2))の粘着表面(すなわち、支持体とは反対側の表面)、及び、エネルギー線硬化性樹脂層(I)の支持層(II)側とは反対側の表面には、さらに剥離材を積層した構成としてもよい。
<Structure of laminate>
Next, a structure of a stack of one embodiment of the present invention will be described with reference to the drawings.
1 to 3 are schematic cross-sectional views of a laminate showing the configuration of the laminate according to the first to third embodiments of the present invention. In the following laminates according to the first to third aspects of the present invention, the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X) (or the second pressure-sensitive adhesive layer (X2)) to be stuck to the support (that is, May be configured such that a release material is further laminated on the surface of the energy ray-curable resin layer (I) opposite to the support layer (II) side.
〔第一態様の積層体〕
 本発明の第一態様の積層体としては、図1に示す積層体1a、1bが挙げられる。
 積層体1a、1bは、エネルギー線硬化性樹脂層(I)と、基材(Y)及び粘着剤層(X)を有する支持層(II)と、を備え、基材(Y)と、エネルギー線硬化性樹脂層(I)とが直接積層した構成を有する。
 なお、本発明の第一態様の積層体において、粘着剤層(X)の粘着表面は、支持体(図示せず)に貼付される。
(Laminated body of the first embodiment)
The laminate of the first embodiment of the present invention includes the laminates 1a and 1b shown in FIG.
Each of the laminates 1a and 1b includes an energy ray-curable resin layer (I) and a support layer (II) having a substrate (Y) and an adhesive layer (X). It has a configuration in which a linear curable resin layer (I) is directly laminated.
In the laminate of the first aspect of the present invention, the adhesive surface of the adhesive layer (X) is attached to a support (not shown).
 支持層(II)は、少なくともいずれかの層に熱膨張性粒子を含有するものであり、積層体1aにおいては、基材(Y)が、熱膨張性粒子を含有する膨張性基材層(Y1)のみからなる単層構成の基材である。
 基材(Y)は、図1(a)に示す積層体1aのように、膨張性基材層(Y1)のみからなる単層構成の基材であってもよく、図1(b)に示す積層体1bのように、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する複層構成の基材であってもよい。基材(Y)が膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する場合、基材(Y)は膨張性基材層(Y1)及び非膨張性基材層(Y2)のみからなるものであってもよい。
 また、膨張性基材層(Y1)と非膨張性基材層(Y2)とは直接積層した構成を有することが好ましい。
The support layer (II) contains thermally expandable particles in at least one of the layers, and in the laminate 1a, the base material (Y) is formed of an expandable base material layer containing thermally expandable particles ( This is a base material having a single-layer structure consisting only of Y1).
The base material (Y) may be a single-layered base material composed of only the expandable base material layer (Y1) as in a laminate 1a shown in FIG. 1 (a). As shown in the laminate 1b, a base material having a multilayer structure having an expandable base material layer (Y1) and a non-expandable base material layer (Y2) may be used. When the base material (Y) has an expandable base material layer (Y1) and a non-expandable base material layer (Y2), the base material (Y) is an expandable base material layer (Y1) and a non-expandable base material layer ( Y2) alone.
Moreover, it is preferable that the expandable base material layer (Y1) and the non-expandable base material layer (Y2) have a configuration in which they are directly laminated.
 図1(a)に示す積層体1aは、加熱膨張処理によって、膨張性基材層(Y1)に含有される熱膨張性粒子が膨張し、基材(Y)の表面に凹凸が生じ、エネルギー線硬化性樹脂層(I)を事前に硬化してなる硬化樹脂層(I’)との接触面積が減少する。
 このとき、粘着剤層(X)の粘着表面は図示しない支持体に貼付されている。粘着剤層(X)が支持体に十分に密着するように貼付されることで、膨張性基材層(Y1)の粘着剤層(X)側の表面に、凹凸を生じさせる力が発生しても、粘着剤層(X)からの反発する力が生じ易い。そのため、基材(Y)の粘着剤層(X)側の表面には、凹凸が形成され難い。
 その結果、積層体1aは、支持層(II)の基材(Y)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、積層体1aが有する粘着剤層(X)を、支持体に対する粘着力が高い粘着剤組成物から形成することで、界面Pでより容易に分離可能とすることも可能である。
In the laminate 1a shown in FIG. 1A, the thermal expansion particles contained in the expandable base material layer (Y1) expand due to the heat expansion treatment, and irregularities are generated on the surface of the base material (Y). The contact area with the cured resin layer (I ′) obtained by previously curing the line-curable resin layer (I) is reduced.
At this time, the adhesive surface of the adhesive layer (X) is attached to a support (not shown). When the pressure-sensitive adhesive layer (X) is sufficiently adhered to the support, the surface of the expansible base material layer (Y1) on the side of the pressure-sensitive adhesive layer (X) generates a force to generate irregularities. However, a repulsive force from the pressure-sensitive adhesive layer (X) is easily generated. Therefore, it is difficult to form irregularities on the surface of the base material (Y) on the side of the pressure-sensitive adhesive layer (X).
As a result, the laminate 1a can be easily and collectively separated with a small force at the interface P between the base material (Y) of the support layer (II) and the cured resin layer (I ').
In addition, by forming the pressure-sensitive adhesive layer (X) of the laminate 1a from a pressure-sensitive adhesive composition having a high adhesive force to the support, the pressure-sensitive adhesive layer can be more easily separated at the interface P.
 なお、熱膨張性粒子による応力を粘着剤層(X)側に伝達することを抑制する観点から、図1(b)に示す積層体1bのように、基材(Y)は、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有するものであることが好ましい。
 膨張性基材層(Y1)の熱膨張性粒子の膨張による応力は、非膨張性基材層(Y2)にて抑制されるため、粘着剤層(X)に伝達され難い。
 そのため、粘着剤層(X)の支持体側の表面に凹凸は生じ難く、粘着剤層(X)と支持体との密着性は、加熱膨張処理の前後でほとんど変わらず、良好な密着性を保持することができる。これにより、膨張性基材層(Y1)のエネルギー線硬化性樹脂層(I)側の表面に凹凸が形成され易く、その結果、支持層(II)の膨張性基材層(Y1)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、図1(b)に示す積層体1bのように、膨張性基材層(Y1)とエネルギー線硬化性樹脂層(I)とが直接積層し、非膨張性基材層(Y2)の膨張性基材層(Y1)とは反対側の表面上に粘着剤層(X)が積層した構成であることが好ましい。
In addition, from the viewpoint of suppressing transmission of the stress due to the thermally expandable particles to the pressure-sensitive adhesive layer (X) side, the base material (Y) is, as in the laminate 1b shown in FIG. It is preferable to have a material layer (Y1) and a non-expandable base material layer (Y2).
Since the stress due to the expansion of the thermally expandable particles of the expandable base material layer (Y1) is suppressed by the non-expandable base material layer (Y2), it is difficult for the stress to be transmitted to the pressure-sensitive adhesive layer (X).
Therefore, the surface of the pressure-sensitive adhesive layer (X) on the support side is unlikely to have irregularities, and the adhesion between the pressure-sensitive adhesive layer (X) and the support hardly changes before and after the heat expansion treatment, and good adhesion is maintained. can do. Thereby, irregularities are easily formed on the surface of the expandable base material layer (Y1) on the side of the energy ray-curable resin layer (I), and as a result, the support layer (II) and the expandable base material layer (Y1) harden. At the interface P with the resin layer (I ′), it is possible to easily and collectively separate them with a small force.
In addition, like the laminated body 1b shown in FIG. 1B, the expandable base material layer (Y1) and the energy ray-curable resin layer (I) are directly laminated, and the non-expandable base material layer (Y2) is formed. It is preferable that the pressure-sensitive adhesive layer (X) is laminated on the surface opposite to the expandable base material layer (Y1).
〔第二態様の積層体〕
 本発明の第二態様の積層体としては、図2に示す積層体2a、2bが挙げられる。
 積層体2a、2bは、支持層(II)が有する粘着剤層(X)が、第1粘着剤層(X1)及び第2粘着剤層(X2)を有し、第1粘着剤層(X1)及び第2粘着剤層(X2)により基材(Y)が挟持され、第1粘着剤層(X1)の粘着表面が、エネルギー線硬化性樹脂層(I)と直接積層した構成を有する。
 なお、本発明の第二態様の積層体において、第2粘着剤層(X2)の粘着表面は、支持体(図示せず)に貼付される。
(Laminated body of the second embodiment)
As the laminate according to the second embodiment of the present invention, there are laminates 2a and 2b shown in FIG.
In the laminates 2a and 2b, the pressure-sensitive adhesive layer (X) of the support layer (II) has a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), and the first pressure-sensitive adhesive layer (X1 ) And the second pressure-sensitive adhesive layer (X2) sandwich the substrate (Y), and the pressure-sensitive adhesive surface of the first pressure-sensitive adhesive layer (X1) is directly laminated with the energy ray-curable resin layer (I).
In the laminate of the second aspect of the present invention, the adhesive surface of the second adhesive layer (X2) is attached to a support (not shown).
 本発明の第二態様の積層体においても、基材(Y)が、熱膨張性粒子を含有する膨張性基材層(Y1)を有するものであることが好ましい。
 基材(Y)は、図2(a)に示す積層体2aのように、膨張性基材層(Y1)のみからなる単層構成の基材であってもよく、図2(b)に示す積層体2bのように、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する複層構成の基材であってもよい。
Also in the laminate of the second aspect of the present invention, it is preferable that the substrate (Y) has an expandable substrate layer (Y1) containing thermally expandable particles.
The base material (Y) may be a single-layer base material composed of only the expandable base material layer (Y1) as in a laminate 2a shown in FIG. 2 (a). Like the laminate 2b shown, the base material may be a multi-layered base material having an expandable base material layer (Y1) and a non-expandable base material layer (Y2).
 ただし、上述のとおり、加熱膨張処理の前後で第2粘着剤層(X2)と支持体との密着性を良好に保持する積層体とする観点から、図2(b)に示すように、基材(Y)が、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有するものであることが好ましい。
 なお、第二態様の積層体において、膨張性基材層(Y1)及び非膨張性基材層(Y2)を有する基材(Y)を用いる場合、図2(b)に示すように、膨張性基材層(Y1)の、エネルギー線硬化性樹脂層(I)側の表面上に第1粘着剤層(X1)が積層し、非膨張性基材層(Y2)の膨張性基材層(Y1)とは反対側の表面上に第2粘着剤層(X2)が積層した構成を有することが好ましい。
However, as described above, from the viewpoint of obtaining a laminate that maintains good adhesion between the second pressure-sensitive adhesive layer (X2) and the support before and after the heat expansion treatment, as shown in FIG. It is preferable that the material (Y) has an expandable base material layer (Y1) and a non-expandable base material layer (Y2).
In the case of using the base material (Y) having the expandable base material layer (Y1) and the non-expandable base material layer (Y2) in the laminate of the second embodiment, as shown in FIG. The first pressure-sensitive adhesive layer (X1) is laminated on the surface of the non-expandable base material layer (Y2) on the energy ray-curable resin layer (I) side of the non-expandable base material layer (Y2). It is preferable to have a configuration in which the second pressure-sensitive adhesive layer (X2) is laminated on the surface on the side opposite to (Y1).
 第二態様の積層体は、加熱膨張処理によって、基材(Y)を構成する膨張性基材層(Y1)中の熱膨張性粒子が膨張し、膨張性基材層(Y1)の表面に凹凸が生じる。
 そして、膨張性基材層(Y1)の表面に生じた凹凸によって第1粘着剤層(X1)も押し上げられ、第1粘着剤層(X1)の粘着表面にも凹凸が形成されるため、第1粘着剤層(X1)とエネルギー線硬化性樹脂層(I)を事前に硬化してなる硬化樹脂層(I’)との接触面積が減少する。その結果、支持層(II)の第1粘着剤層(X1)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
 なお、本発明の第二態様の積層体において、界面Pでよりわずかな力で一括して容易に分離可能な積層体とする観点から、支持層(II)が有する基材(Y)の膨張性基材層(Y1)と、第1粘着剤層(X1)とが直接積層した構成であることが好ましい。
In the laminate of the second aspect, the thermally expandable particles in the expandable base material layer (Y1) constituting the base material (Y) expand due to the heat expansion treatment, and Irregularities occur.
Then, the first adhesive layer (X1) is also pushed up by the unevenness generated on the surface of the expandable base material layer (Y1), and the unevenness is also formed on the adhesive surface of the first adhesive layer (X1). (1) The contact area between the pressure-sensitive adhesive layer (X1) and the cured resin layer (I ′) obtained by previously curing the energy ray-curable resin layer (I) is reduced. As a result, at the interface P between the first pressure-sensitive adhesive layer (X1) of the support layer (II) and the cured resin layer (I ′), it can be easily and collectively separated with a small force.
In addition, in the laminate of the second embodiment of the present invention, from the viewpoint of making the laminate easily separable at once at the interface P with a smaller force, the expansion of the base material (Y) of the support layer (II) It is preferable that the conductive base material layer (Y1) and the first pressure-sensitive adhesive layer (X1) are directly laminated.
〔第三態様の積層体〕
 本発明の第三態様の積層体としては、図3に示す積層体3が挙げられる。
 図3に示す積層体3は、基材(Y)の一方の表面側に、熱膨張性粒子を含有する膨張性粘着剤層である第1粘着剤層(X1)を有し、基材(Y)の他方の表面側に、非膨張性粘着剤層である第2粘着剤層(X2)を有する支持層(II)を備え、第1粘着剤層(X1)とエネルギー線硬化性樹脂層(I)とが直接積層した構成を有する。
 積層体3において、第2粘着剤層(X2)の粘着表面は、支持体(図示せず)に貼付される。
 なお、本発明の第三態様の積層体が有する基材(Y)は、非膨張性基材層から構成されていることが好ましい。
(Laminated body of the third embodiment)
As a laminate according to the third embodiment of the present invention, a laminate 3 shown in FIG. 3 is exemplified.
The laminate 3 shown in FIG. 3 has a first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer containing thermally expandable particles, on one surface side of a substrate (Y). A support layer (II) having a second pressure-sensitive adhesive layer (X2), which is a non-expandable pressure-sensitive adhesive layer, is provided on the other surface side of Y), and the first pressure-sensitive adhesive layer (X1) and the energy ray-curable resin layer (I) is directly laminated.
In the laminate 3, the adhesive surface of the second adhesive layer (X2) is attached to a support (not shown).
In addition, it is preferable that the base material (Y) which the laminated body of the 3rd aspect of this invention has is comprised from a non-expandable base material layer.
 本発明の第三態様の積層体は、加熱膨張処理によって、膨張性粘着剤層である第1粘着剤層(X1)中の熱膨張性粒子が膨張し、第1粘着剤層(X1)の表面に凹凸が生じ、第1粘着剤層(X1)とエネルギー線硬化性樹脂層(I)を事前に硬化してなる硬化樹脂層(I’)との接触面積が減少する。
 一方で、第1粘着剤層(X1)の基材(Y)側の表面は、基材(Y)が積層しているため、凹凸は生じ難い。
 そのため、加熱膨張処理によって、第1粘着剤層(X1)のエネルギー線硬化性樹脂層(I)側の表面に凹凸が形成され易く、その結果、支持層(II)の第1粘着剤層(X1)と硬化樹脂層(I’)との界面Pで、わずかな力で一括して容易に分離可能となる。
In the laminate according to the third aspect of the present invention, the thermally expandable particles in the first pressure-sensitive adhesive layer (X1), which is the expandable pressure-sensitive adhesive layer, expand due to the heat expansion treatment, and the first pressure-sensitive adhesive layer (X1) Irregularities occur on the surface, and the contact area between the first pressure-sensitive adhesive layer (X1) and the cured resin layer (I ′) obtained by previously curing the energy ray-curable resin layer (I) decreases.
On the other hand, since the base material (Y) is laminated on the surface of the first pressure-sensitive adhesive layer (X1) on the base material (Y) side, unevenness is unlikely to occur.
Therefore, the heat-expansion treatment tends to form irregularities on the surface of the first pressure-sensitive adhesive layer (X1) on the side of the energy-ray-curable resin layer (I), and as a result, the first pressure-sensitive adhesive layer of the support layer (II) ( At the interface P between the X1) and the cured resin layer (I ′), it can be easily and collectively separated with a small force.
 本発明の一態様の積層体は、支持層(II)及びエネルギー線硬化性樹脂層(I)のみからなるものであってもよく、支持層(II)及びエネルギー線硬化性樹脂層(I)以外のその他の層を有するものであってもよい。その他の層の一例としては、例えば、エネルギー線硬化性樹脂層(I)の支持層(II)とは反対側の面に設けられる粘着剤層等が挙げられる。
 また、本発明の一態様の積層体は、加熱膨張処理時以外の工程で極力加熱を必要としない観点から、熱硬化性樹脂層を有さないことが好ましい。但し、ここでの熱硬化性樹脂層とは、熱硬化性を有し、かつ非エネルギー線硬化性である層を意味する。
The laminate of one embodiment of the present invention may be composed of only the support layer (II) and the energy ray-curable resin layer (I), and the support layer (II) and the energy ray-curable resin layer (I) It may have another layer other than the above. Examples of other layers include, for example, an adhesive layer provided on the surface of the energy ray-curable resin layer (I) on the side opposite to the support layer (II).
In addition, the laminate of one embodiment of the present invention preferably does not include a thermosetting resin layer from the viewpoint that heating is not required as much as possible in steps other than the heat expansion treatment. However, the thermosetting resin layer here means a layer that has thermosetting properties and is non-energy ray curable.
<積層体の各種物性>
(剥離力(F))
 エネルギー線硬化性樹脂層(I)の硬化前かつ加熱膨張処理前において、封止対象物を十分に固定して、封止作業に悪影響を及ぼさないようにする観点から、支持層(II)とエネルギー線硬化性樹脂層(I)との密着性は高いことが好ましい。
 上記観点から、本発明の一態様の積層体において、エネルギー線硬化性樹脂層(I)の硬化前かつ加熱膨張処理を行う前における、支持層(II)とエネルギー線硬化性樹脂層(I)との界面Pで分離する際の剥離力(F)としては、好ましくは100mN/25mm以上、より好ましくは130mN/25mm以上、更に好ましくは160mN/25mm以上であり、また、好ましくは50000mN/25mm以下である。
 なお、剥離力(F)は下記測定方法によって測定される値である。
<剥離力(F)の測定>
 積層体を23℃、50%RH(相対湿度)の環境下で、24時間静置した後、エネルギー線硬化性樹脂層(I)の表面に粘着テープ(リンテック株式会社製、製品名「PLシン」)を貼付する。
 次に、積層体の支持層(II)側を粘着剤を介してガラス板(株式会社ユーコウ商会製、フロート板ガラス、3mm(JISR 3202品))に貼付する。次いで、積層体が貼付された上記ガラス板の端部を、万能引張試験機(株式会社オリエンテック製、製品名「テンシロン UTM-4-100」)の下部チャックへ固定する。
 続いて、積層体の支持層(II)とエネルギー線硬化性樹脂層(I)との界面Pで剥離するように、万能引張試験機の上部チャックで粘着テープ及び支持層(II)を固定する。そして、上記と同じ環境下で、JIS Z 0237:2000に基づき、180°引き剥がし法により、引張速度300mm/分で、界面Pで剥離した際に測定された剥離力を「剥離力(F)」とする。
<Various physical properties of laminate>
(Peeling force (F 0 ))
Before the energy ray-curable resin layer (I) is cured and before the heat expansion treatment, the support layer (II) and the support layer (II) are fixed from the viewpoint of sufficiently fixing the object to be sealed so as not to adversely affect the sealing operation. It is preferable that the adhesion to the energy ray-curable resin layer (I) is high.
In view of the above, in the laminate of one embodiment of the present invention, the support layer (II) and the energy-ray-curable resin layer (I) before the energy-ray-curable resin layer (I) is cured and before the thermal expansion treatment is performed. The separation force (F 0 ) at the time of separation at the interface P is preferably 100 mN / 25 mm or more, more preferably 130 mN / 25 mm or more, still more preferably 160 mN / 25 mm or more, and preferably 50,000 mN / 25 mm. It is as follows.
The peeling force (F 0 ) is a value measured by the following measuring method.
<Measurement of peeling force (F 0 )>
After the laminate was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), an adhesive tape (manufactured by Lintec Corporation, product name “PL Synth”) was applied to the surface of the energy ray-curable resin layer (I). )).
Next, the support layer (II) side of the laminate is attached to a glass plate (float plate glass, 3 mm (JISR 3202 product) manufactured by Yuko Shokai Co., Ltd.) via an adhesive. Next, the end of the glass plate to which the laminate is attached is fixed to a lower chuck of a universal tensile tester (manufactured by Orientec Co., Ltd., product name “Tensilon UTM-4-100”).
Subsequently, the adhesive tape and the support layer (II) are fixed by the upper chuck of the universal tensile tester so as to be separated at the interface P between the support layer (II) and the energy ray-curable resin layer (I) of the laminate. . Then, under the same environment as above, the peeling force measured when peeling off at the interface P by the 180 ° peeling method at a tensile speed of 300 mm / min based on JIS Z 0237: 2000 is referred to as “peeling force (F 0 ) ".
(剥離力(F))
 本発明の一態様の積層体において、エネルギー線硬化性樹脂層(I)を硬化させて硬化樹脂層(I’)とした後に、加熱膨張処理によって、支持層(II)と硬化樹脂層(I’)との界面Pで分離する際の剥離力(F)としては、界面Pで、わずかな力で一括して容易に分離可能とする観点から、通常2000mN/25mm以下、好ましくは1000mN/25mm以下、より好ましくは500mN/25mm以下、より好ましくは150mN/25mm以下、更に好ましくは100mN/25mm以下、より更に好ましくは50mN/25mm以下、最も好ましくは0mN/25mmである。
 剥離力(F)が0mN/25mmである場合には、剥離力を測定しようとしても、剥離力が小さ過ぎるために測定不可となる場合も含まれる。
 なお、剥離力(F)は下記測定方法によって測定される値である。
<剥離力(F)の測定>
 積層体を23℃、50%RH(相対湿度)の環境下で、24時間静置した後、積層体のエネルギー線硬化性樹脂層(I)の表面に粘着テープ(リンテック株式会社製、製品名「PLシン」)を貼付する。
 次に、積層体の支持層(II)側を粘着剤を介してガラス板(株式会社ユーコウ商会製、フロート板ガラス、3mm(JIS R 3202品))に貼付する。
 次いで、紫外線を、照度215mW/cm、光量187mJ/cmの条件で3回照射して、エネルギー線硬化性樹脂層(I)を硬化させ、硬化樹脂層(I’)を形成する。そして、ガラス板及び積層体を、最大膨張温度で3分間加熱し、積層体の膨張性基材層(Y1)中の熱膨張性粒子を膨張させる。その後は、上述の剥離力(F)の測定と同様にし、上記条件にて、支持層(II)と硬化樹脂層(I’)との界面Pで剥離した際に測定された剥離力を「剥離力(F)」とする。
 なお、剥離力(F)の測定において、万能引張試験機の上部チャックで、積層体の支持層(II)を固定しようとした際、界面Pで硬化樹脂層(I’)が完全に分離してしまい、固定ができない場合には、測定を終了し、その際の剥離力(F)は「0mN/25mm」とする。
(Peeling force (F 1 ))
In the laminate of one embodiment of the present invention, after the energy ray-curable resin layer (I) is cured to form a cured resin layer (I ′), the support layer (II) and the cured resin layer (I) are subjected to heat expansion treatment. The separation force (F 1 ) at the time of separation at the interface P with the ′) is usually 2000 mN / 25 mm or less, preferably 1000 mN / It is 25 mm or less, more preferably 500 mN / 25 mm or less, more preferably 150 mN / 25 mm or less, further preferably 100 mN / 25 mm or less, even more preferably 50 mN / 25 mm or less, and most preferably 0 mN / 25 mm.
When the peeling force (F 1 ) is 0 mN / 25 mm, even if an attempt is made to measure the peeling force, it may be impossible to measure because the peeling force is too small.
The peeling force (F 1 ) is a value measured by the following measuring method.
<Measurement of peeling force (F 1 )>
After the laminate was allowed to stand for 24 hours in an environment of 23 ° C. and 50% RH (relative humidity), an adhesive tape (manufactured by Lintec Corporation, product name) was applied to the surface of the energy ray-curable resin layer (I) of the laminate. "PL thin") is attached.
Next, the support layer (II) side of the laminate is adhered to a glass plate (float plate glass, 3 mm (JIS R 3202), manufactured by Yuko Shokai Co., Ltd.) via an adhesive.
Next, ultraviolet rays are irradiated three times under the conditions of illuminance of 215 mW / cm 2 and light amount of 187 mJ / cm 2 to cure the energy ray-curable resin layer (I) to form a cured resin layer (I ′). Then, the glass plate and the laminate are heated at the maximum expansion temperature for 3 minutes to expand the thermally expandable particles in the expandable base material layer (Y1) of the laminate. Thereafter, in the same manner as the measurement of the peeling force (F 0 ) described above, the peeling force measured when peeling off at the interface P between the support layer (II) and the cured resin layer (I ′) under the above conditions is determined. This is referred to as “peeling force (F 1 )”.
In the measurement of the peeling force (F 1 ), when the support layer (II) of the laminate was fixed with the upper chuck of the universal tensile tester, the cured resin layer (I ′) was completely separated at the interface P. When fixing is not possible, the measurement is terminated, and the peeling force (F 1 ) at that time is set to “0 mN / 25 mm”.
(粘着剤層(X)の粘着力)
 本発明の一態様の積層体において、室温(23℃)における、支持層(II)が有する粘着剤層(X)(第1粘着剤層(X1)及び第2粘着剤層(X2))の粘着力としては、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、更に好ましくは0.4~6.0N/25mm、より更に好ましくは0.5~4.0N/25mmである。
 支持層(II)が第1粘着剤層(X1)及び第2粘着剤層(X2)を有する場合、第1粘着剤層(X1)及び第2粘着剤層(X2)の粘着力は、それぞれ上記範囲であることが好ましいが、支持体との密着性を向上させ、界面Pで一括してより容易に分離可能とする観点から、支持体と貼付される第2粘着剤層(X2)の粘着力が、第1粘着剤層(X1)の粘着力よりも高いことがより好ましい。
(Adhesive strength of adhesive layer (X))
In the laminate of one embodiment of the present invention, the pressure-sensitive adhesive layer (X) (first pressure-sensitive adhesive layer (X1) and second pressure-sensitive adhesive layer (X2)) of the support layer (II) at room temperature (23 ° C.). The adhesive strength is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.2 to 8.0 N / 25 mm, still more preferably 0.4 to 6.0 N / 25 mm, and even more preferably 0.5 to N / 25 mm. ~ 4.0 N / 25 mm.
When the support layer (II) has the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), the adhesive strength of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) is respectively Although it is preferable that it is the said range, from a viewpoint of improving the adhesiveness with a support body, and separating easily and collectively at the interface P, the 2nd adhesive layer (X2) of a support body and a 2nd adhesive layer adhered. It is more preferable that the adhesive strength is higher than the adhesive strength of the first adhesive layer (X1).
(エネルギー線硬化性樹脂層(I)の粘着力)
 本発明の一態様の積層体において、封止対象物との密着性を良好とする観点から、エネルギー線硬化性樹脂層(I)は封止対象物が載置される側の表面(すなわち、支持層(II)とは反対側の面)が、粘着性を有する。
 具体的には、室温(23℃)における、エネルギー線硬化性樹脂層(I)の封止対象物が載置される側の表面の粘着力は、封止対象物を十分に固定する観点から、好ましくは0.05N/25mm以上、より好ましくは0.10N/25mm以上、更に好ましくは0.50N/25mm以上である。上記表面の粘着力の上限値は特に限定されないが、通常50N/25mm以下であり、40N/25mm以下であってもよく、30N/25mm以下であってもよい。
(Adhesive strength of energy ray-curable resin layer (I))
In the laminate of one embodiment of the present invention, from the viewpoint of improving the adhesion to the object to be sealed, the energy ray-curable resin layer (I) has a surface on which the object to be sealed is placed (that is, The surface opposite to the support layer (II)) has tackiness.
Specifically, at room temperature (23 ° C.), the adhesive strength of the surface of the energy ray-curable resin layer (I) on the side on which the object to be sealed is placed is determined from the viewpoint of sufficiently fixing the object to be sealed. It is preferably at least 0.05 N / 25 mm, more preferably at least 0.10 N / 25 mm, even more preferably at least 0.50 N / 25 mm. The upper limit of the adhesive force of the surface is not particularly limited, but is usually 50 N / 25 mm or less, may be 40 N / 25 mm or less, or may be 30 N / 25 mm or less.
 なお、本明細書において、これらの粘着力は、下記測定方法によって測定される値である。
<粘着力の測定>
 剥離フィルム上に形成した粘着剤層(X)又はエネルギー線硬化性樹脂層(I)の表面に、厚さ50μmのPETフィルム(東洋紡株式会社製、製品名「コスモシャインA4100」)を積層する。
 そして、粘着剤層(X)又はエネルギー線硬化性樹脂層(I)の表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置した後、同じ環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定する。
In the present specification, these adhesive forces are values measured by the following measuring method.
<Measurement of adhesive strength>
A 50 μm-thick PET film (product name “Cosmoshine A4100”, manufactured by Toyobo Co., Ltd.) is laminated on the surface of the pressure-sensitive adhesive layer (X) or the energy ray-curable resin layer (I) formed on the release film.
Then, the surface of the pressure-sensitive adhesive layer (X) or the energy ray-curable resin layer (I) is affixed to a stainless steel plate (SUS304 No. 360 polished), which is an adherend, at 23 ° C. and 50% RH (relative humidity). After standing for 24 hours under the environment, the adhesive force at 23 ° C. is measured under the same environment according to JIS Z0237: 2000 by a 180 ° peeling method at a pulling speed of 300 mm / min.
(基材(Y)のプローブタック値)
 支持層(II)が有する基材(Y)は、非粘着性の基材である。
 本発明の一態様において、非粘着性の基材か否かの判断は、対象となる基材の表面に対して、JISZ 0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、当該基材を「非粘着性の基材」と判断する。一方、上記プローブタック値が50mN/5mmφ以上であれば、当該基材を「粘着性の基材」と判断する。
 本発明の一態様で用いる支持層(II)が有する基材(Y)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 基材(Y)の表面におけるプローブタック値は、下記測定方法によって測定される値である。
<プローブタック値の測定>
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとする。23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定する。具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とする。
(Probe tack value of substrate (Y))
The substrate (Y) of the support layer (II) is a non-adhesive substrate.
In one embodiment of the present invention, the determination as to whether or not the substrate is a non-adhesive substrate is performed when the probe tack value measured according to JISZ 0237: 1991 with respect to the surface of the target substrate is less than 50 mN / 5 mmφ. If so, the substrate is determined to be a “non-adhesive substrate”. On the other hand, if the probe tack value is 50 mN / 5 mmφ or more, the base material is determined to be “adhesive base material”.
The probe tack value on the surface of the substrate (Y) included in the support layer (II) used in one embodiment of the present invention is generally less than 50 mN / 5 mmφ, preferably less than 30 mN / 5 mmφ, and more preferably less than 10 mN / 5 mmφ. , More preferably less than 5 mN / 5 mmφ.
The probe tack value on the surface of the substrate (Y) is a value measured by the following measurement method.
<Measurement of probe tack value>
A test sample is obtained by cutting a substrate to be measured into a square having a side of 10 mm and leaving it to stand at 23 ° C. and an environment of 50% RH (relative humidity) for 24 hours. In a 23 ° C., 50% RH (relative humidity) environment, the probe tack value on the surface of the test sample was measured using a tacking tester (manufactured by Nippon Tokuseki Co., Ltd., product name “NTS-4800”) according to JIS. It is measured according to Z0237: 1991. Specifically, after a stainless steel probe having a diameter of 5 mm was brought into contact with the surface of the test sample for 1 second at a contact load of 0.98 N / cm 2 , the probe was contacted at a speed of 10 mm / sec. The force required to separate from the surface is measured, and the obtained value is used as the probe tack value of the test sample.
 次に、本発明の一態様の積層体を構成する各層について説明する。 Next, each layer included in the laminate of one embodiment of the present invention will be described.
<支持層(II)>
 本発明の一態様の積層体が有する支持層(II)は、基材(Y)及び粘着剤層(X)を有し、該基材(Y)及び粘着剤層(X)の少なくとも一方が熱膨張性粒子を含有するものである。上記の通り、支持層(II)は加熱膨張処理によって、支持対象物であるエネルギー線硬化性樹脂層(I)から分離される層であり、所謂、仮固定層としての役割を担う層である。
 熱膨張性粒子を含有する層が、基材(Y)の構成に含まれる場合と、粘着剤層(X)の構成に含まれる場合とで、本発明の一態様で用いる支持層(II)は、以下の態様に分けられる。
・第一態様の支持層(II):熱膨張性粒子を含有する膨張性基材層(Y1)を有する基材(Y)を備える支持層(II)。
・第二態様の支持層(II):基材(Y)の両面側に、熱膨張性粒子を含有する膨張性粘着剤層である第1粘着剤層(X1)と、非膨張性粘着剤層である第2粘着剤層(X2)を有する支持層(II)。
<Support layer (II)>
The support layer (II) included in the laminate of one embodiment of the present invention includes a base (Y) and an adhesive layer (X), and at least one of the base (Y) and the adhesive layer (X) is provided. It contains thermally expandable particles. As described above, the support layer (II) is a layer separated from the energy-ray-curable resin layer (I), which is a support target, by a thermal expansion treatment, and is a layer that plays a role as a so-called temporary fixing layer. .
The support layer (II) used in one embodiment of the present invention includes a case where the layer containing the thermally expandable particles is included in the configuration of the base material (Y) and a case where the layer is included in the configuration of the pressure-sensitive adhesive layer (X). Is divided into the following modes.
-The support layer (II) of the first embodiment: a support layer (II) including a base material (Y) having an expandable base material layer (Y1) containing thermally expandable particles.
The support layer (II) of the second embodiment: a first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer containing heat-expandable particles, on both sides of the substrate (Y), and a non-expandable pressure-sensitive adhesive A support layer (II) having a second pressure-sensitive adhesive layer (X2) as a layer.
〔第一態様の支持層(II)〕
 第一態様の支持層(II)としては、図1~2に示すように、基材(Y)が、熱膨張性粒子を含有する膨張性基材層(Y1)を有するものが挙げられる。
 第一態様の支持層(II)において、界面Pでわずかな力で一括して容易に分離可能とする観点から、粘着剤層(X)は、非膨張性粘着剤層であることが好ましい。
 具体的には、図1に示す積層体1a、1bが有する支持層(II)においては、粘着剤層(X)が、非膨張性粘着剤層であることが好ましい。
 また、図2に示す積層体2a、2bが有する支持層(II)においては、第1粘着剤層(X1)及び第2粘着剤層(X2)のいずれもが、非膨張性粘着剤層であることが好ましい。
 第一態様の支持層(II)のように、基材(Y)が膨張性基材層(Y1)を有することで、粘着剤層(X)は膨張性を有する必要がなくなり、膨張性を付与するための組成、構成及びプロセスに拘束されない。これにより、粘着剤層(X)を設計する当たって、例えば、粘着性等の性能、生産性、経済性等、膨張性以外の所望する性能を優先した設計が可能となるため、粘着剤層(X)の設計自由度を向上させることができる。
[Supporting layer (II) of first embodiment]
As the support layer (II) of the first embodiment, as shown in FIGS. 1 and 2, the base material (Y) has an expandable base material layer (Y1) containing thermally expandable particles.
In the support layer (II) of the first embodiment, the pressure-sensitive adhesive layer (X) is preferably a non-expandable pressure-sensitive adhesive layer, from the viewpoint of easily and collectively separating at a small force at the interface P.
Specifically, in the support layer (II) of the laminates 1a and 1b shown in FIG. 1, the pressure-sensitive adhesive layer (X) is preferably a non-expandable pressure-sensitive adhesive layer.
In the support layer (II) of the laminates 2a and 2b shown in FIG. 2, both the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are non-expandable pressure-sensitive adhesive layers. Preferably, there is.
As in the case of the support layer (II) of the first embodiment, since the base material (Y) has the expandable base material layer (Y1), the pressure-sensitive adhesive layer (X) does not need to have the expandability, and the expandability is reduced. It is not restricted by the composition, composition and process for application. In this way, when designing the pressure-sensitive adhesive layer (X), for example, it is possible to perform a design that prioritizes desired performance other than expandability such as performance such as adhesiveness, productivity, economy, and the like. (X) The design flexibility can be improved.
 第一態様の支持層(II)の加熱膨張処理前の基材(Y)の厚さは、好ましくは10~1000μm、より好ましくは20~700μm、更に好ましくは25~500μm、より更に好ましくは30~300μmである。 The thickness of the substrate (Y) of the support layer (II) of the first embodiment before the heat expansion treatment is preferably from 10 to 1000 μm, more preferably from 20 to 700 μm, further preferably from 25 to 500 μm, and still more preferably from 30 to 30 μm. 300300 μm.
 第一態様の支持層(II)の加熱膨張処理前の粘着剤層(X)の厚さは、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the pressure-sensitive adhesive layer (X) of the support layer (II) of the first embodiment before the heat expansion treatment is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably. It is 5 to 30 μm.
 なお、本明細書において、例えば、図2に示すように、支持層(II)が、複数の粘着剤層(X)を有する場合、上記の「粘着剤層(X)の厚さ」は、それぞれの粘着剤層の厚さ(図2では、第1粘着剤層(X1)及び第2粘着剤層(X2)のそれぞれの厚さ)を意味する。
 また、本明細書において、積層体を構成する各層の厚さは、実施例に記載の方法により測定された値を意味する。
In the present specification, for example, as shown in FIG. 2, when the support layer (II) has a plurality of pressure-sensitive adhesive layers (X), the “thickness of the pressure-sensitive adhesive layer (X)” It means the thickness of each pressure-sensitive adhesive layer (in FIG. 2, each thickness of the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2)).
Further, in the present specification, the thickness of each layer constituting the laminate means a value measured by the method described in Examples.
 第一態様の支持層(II)において、加熱膨張処理前における、膨張性基材層(Y1)と、粘着剤層(X)との厚さ比〔(Y1)/(X)〕としては、好ましくは1000以下、より好ましくは200以下、更に好ましくは60以下、より更に好ましくは30以下である。
 当該厚さ比が1000以下であれば、加熱膨張処理によって、支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で一括して容易に分離可能となる積層体とすることができる。
 なお、当該厚さ比は、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは5.0以上である。
In the support layer (II) of the first embodiment, the thickness ratio [(Y1) / (X)] between the expandable base material layer (Y1) and the pressure-sensitive adhesive layer (X) before the heat expansion treatment is as follows. It is preferably at most 1,000, more preferably at most 200, further preferably at most 60, even more preferably at most 30.
When the thickness ratio is 1000 or less, a laminate that can be easily and collectively separated with a small force at the interface P between the support layer (II) and the cured resin layer (I ′) by the heat expansion treatment is provided. can do.
In addition, the thickness ratio is preferably 0.2 or more, more preferably 0.5 or more, further preferably 1.0 or more, and still more preferably 5.0 or more.
 また、第一態様の支持層(II)では、基材(Y)が、図1(a)に示すような、膨張性基材層(Y1)のみから構成されたものであってもよく、図1(b)に示すような、エネルギー線硬化性樹脂層(I)側に膨張性基材層(Y1)を有し、粘着剤層(X)側に非膨張性基材層(Y2)を有するものであってもよい。 Further, in the support layer (II) of the first embodiment, the base material (Y) may be composed of only the expandable base material layer (Y1) as shown in FIG. As shown in FIG. 1 (b), it has an expandable base material layer (Y1) on the energy ray-curable resin layer (I) side and a non-expandable base material layer (Y2) on the adhesive layer (X) side. May be provided.
 第一態様の支持層(II)において、加熱膨張処理前における、膨張性基材層(Y1)と非膨張性基材層(Y2)との厚さ比〔(Y1)/(Y2)〕としては、好ましくは0.02~200、より好ましくは0.03~150、更に好ましくは0.05~100である。 In the support layer (II) of the first embodiment, the thickness ratio [(Y1) / (Y2)] between the expandable base material layer (Y1) and the non-expandable base material layer (Y2) before the heat expansion treatment. Is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
〔第二態様の支持層(II)〕
 第二態様の支持層(II)としては、図3に示すように、基材(Y)の両面側に、それぞれ、熱膨張性粒子を含有する膨張性粘着剤層である第1粘着剤層(X1)と、非膨張性粘着剤層である第2粘着剤層(X2)とを有するものが挙げられる。
 なお、第二態様の支持層(II)は、膨張性粘着剤層である第1粘着剤層(X1)と、エネルギー線硬化性樹脂層(I)とが直接接触する。
 第二態様の支持層(II)において、基材(Y)は、非膨張性基材であることが好ましい。非膨張性基材は、非膨張性基材層(Y2)のみから構成されたものであることが好ましい。
[Supporting layer (II) of second embodiment]
As the support layer (II) of the second embodiment, as shown in FIG. 3, a first pressure-sensitive adhesive layer, which is an expandable pressure-sensitive adhesive layer containing thermally expandable particles, is provided on both sides of the substrate (Y). One having (X1) and a second pressure-sensitive adhesive layer (X2) which is a non-expandable pressure-sensitive adhesive layer.
In the support layer (II) of the second embodiment, the first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer, and the energy ray-curable resin layer (I) are in direct contact.
In the support layer (II) of the second embodiment, the substrate (Y) is preferably a non-expandable substrate. It is preferable that the non-expandable base material is composed of only the non-expandable base material layer (Y2).
 第二態様の支持層(II)において、加熱膨張処理前における、膨張性粘着剤層である第1粘着剤層(X1)と、非膨張性粘着剤層である第2粘着剤層(X2)との厚さ比〔(X1)/(X2)〕としては、好ましくは0.1~80、より好ましくは0.3~50、更に好ましくは0.5~15である。 In the support layer (II) of the second embodiment, the first pressure-sensitive adhesive layer (X1) which is an expandable pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer (X2) which is a non-expandable pressure-sensitive adhesive layer before the heat expansion treatment. The thickness ratio ((X1) / (X2)) is preferably 0.1 to 80, more preferably 0.3 to 50, and still more preferably 0.5 to 15.
 また、第二態様の支持層(II)において、加熱膨張処理前における、膨張性粘着剤層である第1粘着剤層(X1)と、基材(Y)との厚さ比〔(X1)/(Y)〕としては、好ましくは0.05~20、より好ましくは0.1~10、更に好ましくは0.2~3である。 In the support layer (II) of the second embodiment, the thickness ratio of the first pressure-sensitive adhesive layer (X1), which is an expandable pressure-sensitive adhesive layer, to the base material (Y) before the heat expansion treatment [(X1) / (Y)] is preferably from 0.05 to 20, more preferably from 0.1 to 10, and even more preferably from 0.2 to 3.
 以下、支持層(II)を構成するいずれかの層に含有される熱膨張性粒子について説明した上で、基材(Y)を構成する膨張性基材層(Y1)、非膨張性基材層(Y2)、及び粘着剤層(X)に関して詳述する。 Hereinafter, after describing the heat-expandable particles contained in any of the layers constituting the support layer (II), the expansible base material layer (Y1) constituting the base material (Y) and the non-expandable base material The layer (Y2) and the pressure-sensitive adhesive layer (X) will be described in detail.
〔熱膨張性粒子〕
 本発明の一態様で用いる熱膨張性粒子としては、所定の加熱膨張処理によって膨張する粒子であればよい。
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
(Thermally expandable particles)
As the heat-expandable particles used in one embodiment of the present invention, any particles may be used as long as they are expanded by a predetermined heat expansion process.
The average particle size of the thermally expandable particles before expansion at 23 ° C. used in one embodiment of the present invention is preferably 3 to 100 μm, more preferably 4 to 70 μm, further preferably 6 to 60 μm, and still more preferably 10 to 100 μm. 50 μm.
The average particle diameter of the thermally expandable particles before expansion is a volume median particle diameter (D 50 ), and is a laser diffraction particle size distribution analyzer (for example, product name “Master Sizer 3000” manufactured by Malvern). In the particle distribution of the heat-expandable particles before expansion, which is measured by using, the cumulative volume frequency calculated from the smaller particle diameter of the heat-expandable particles before expansion corresponds to a particle size corresponding to 50%.
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、更に好ましくは25~90μm、より更に好ましくは30~80μmである。
 なお、熱膨張性粒子の膨張前の90%粒子径(D90)とは、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
The 90% particle diameter (D 90 ) of the thermally expandable particles before expansion at 23 ° C. used in one embodiment of the present invention is preferably 10 to 150 μm, more preferably 20 to 100 μm, and still more preferably 25 to 90 μm. Even more preferably, it is 30 to 80 μm.
The 90% particle diameter (D 90 ) of the thermally expandable particles before expansion is measured using a laser diffraction type particle size distribution analyzer (for example, product name “Master Sizer 3000” manufactured by Malvern). In the particle distribution of the heat-expandable particles before, it means a particle diameter whose cumulative volume frequency calculated from the smaller particle diameter of the heat-expandable particles before expansion corresponds to 90%.
 本発明の一態様で用いる熱膨張性粒子は、封止材を硬化させる際には膨張しない、封止材の硬化温度よりも高い膨張開始温度(t)を有する粒子であればよく、具体的には、膨張開始温度(t)が60~270℃に調整された熱膨張性粒子であることが好ましい。なお、膨張開始温度(t)は、使用する封止材の硬化温度に応じて適宜選択される。
 また、本明細書において、熱膨張性粒子の膨張開始温度(t)は、実施例に記載の方法に基づき測定された値を意味する。
The thermally expandable particles used in one embodiment of the present invention may be particles that do not expand when the sealing material is cured and have an expansion start temperature (t) higher than the curing temperature of the sealing material. It is preferable that the thermal expansion particles have an expansion start temperature (t) adjusted to 60 to 270 ° C. The expansion start temperature (t) is appropriately selected according to the curing temperature of the sealing material to be used.
Further, in the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the method described in Examples.
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
As the heat-expandable particles, a microencapsulated foaming agent comprising an outer shell made of a thermoplastic resin, and an inner component contained in the outer shell and vaporized when heated to a predetermined temperature. Preferably, there is.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include a vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the internal components included in the outer shell include, for example, propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane , Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, iso Hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane, , 6,10,14-tetramethylpentadecane, cyclotridecane, heptylcyclohexane, n-octylcyclohexane, cyclopentadecane, nonylcyclohexane, decylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, heptadecylcyclohexane, octadecylcyclohexane and the like. .
These inclusion components may be used alone or in combination of two or more.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of the inclusion component.
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、更に好ましくは2.5~60倍、より更に好ましくは3~40倍である。 The maximum volume expansion coefficient of the heat-expandable particles used in one embodiment of the present invention when heated to a temperature equal to or higher than the expansion start temperature (t) is preferably 1.5 to 100 times, more preferably 2 to 80 times, and furthermore Preferably it is 2.5 to 60 times, more preferably 3 to 40 times.
<膨張性基材層(Y1)>
 本発明の一態様で用いる支持層(II)が有する膨張性基材層(Y1)は、熱膨張性粒子を含有し、所定の加熱膨張処理によって、膨張し得る層である。
<Expandable base material layer (Y1)>
The expandable base material layer (Y1) included in the support layer (II) used in one embodiment of the present invention is a layer that contains thermally expandable particles and can be expanded by a predetermined heat expansion treatment.
 なお、膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、膨張性基材層(Y1)の表面に対して、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、及び紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
In addition, from the viewpoint of improving the interlayer adhesion between the expandable base material layer (Y1) and another layer to be laminated, the surface of the expandable base material layer (Y1) is oxidized, surface-roughened, or the like. Treatment, easy adhesion treatment, or primer treatment may be performed.
Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet method), hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of the unevenness method include a sand blast method and a solvent treatment method. And the like.
 本発明の一態様において、膨張性基材層(Y1)は下記要件(1)を満たすものであることが好ましい。
・要件(1):熱膨張性粒子の膨張開始温度(t)における、膨張性基材層(Y1)の貯蔵弾性率E’(t)が、1.0×10Pa以下である。
 なお、本明細書において、所定の温度における膨張性基材層(Y1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
In one embodiment of the present invention, the expandable base material layer (Y1) preferably satisfies the following requirement (1).
-Requirement (1): The storage elastic modulus E '(t) of the expandable base material layer (Y1) at the expansion start temperature (t) of the thermally expandable particles is 1.0 × 10 7 Pa or less.
In the present specification, the storage elastic modulus E ′ of the expandable base material layer (Y1) at a predetermined temperature means a value measured by the method described in Examples.
 上記要件(1)は、熱膨張性粒子が膨張する直前の膨張性基材層(Y1)の剛性を示す指標といえる。
 支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で容易に分離可能とするためには、膨張開始温度(t)以上の温度まで加熱した際に、支持層(II)のエネルギー線硬化性樹脂層(I)と積層している側の表面に、凹凸が形成され易くする必要がある。
 つまり、上記要件(1)を満たす膨張性基材層(Y1)は、膨張開始温度(t)で熱膨張性粒子が膨張して十分に大きくなり、エネルギー線硬化性樹脂層(I)が積層している側の支持層(II)の表面に、凹凸が形成され易くなる。
 その結果、支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で容易に分離可能となる積層体となり得る。
The requirement (1) can be said to be an index indicating the rigidity of the expandable base material layer (Y1) immediately before the expansion of the thermally expandable particles.
In order to enable easy separation with a small force at the interface P between the support layer (II) and the cured resin layer (I ′), the support layer ( It is necessary to make it easy to form irregularities on the surface on the side laminated with the energy ray-curable resin layer (I) of (II).
That is, in the expandable base material layer (Y1) satisfying the requirement (1), the thermally expandable particles expand at the expansion start temperature (t) and become sufficiently large, and the energy ray-curable resin layer (I) is Irregularities are likely to be formed on the surface of the support layer (II) on the side where the coating is formed.
As a result, a laminate that can be easily separated with a small force at the interface P between the support layer (II) and the cured resin layer (I ′) can be obtained.
 要件(1)で規定する、膨張性基材層(Y1)の貯蔵弾性率E’(t)は、上記観点から、好ましくは9.0×10Pa以下、より好ましくは8.0×10Pa以下、更に好ましくは6.0×10Pa以下、より更に好ましくは4.0×10Pa以下である。
 また、膨張した熱膨張性粒子の流動を抑制し、エネルギー線硬化性樹脂層(I)が積層している側の支持層(II)の表面に形成される凹凸の形状維持性を向上させ、界面Pでわずかな力でより容易に分離可能とする観点から、要件(1)で規定する、膨張性基材層(Y1)の貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
From the above viewpoint, the storage elastic modulus E ′ (t) of the expandable base material layer (Y1) defined by the requirement (1) is preferably 9.0 × 10 6 Pa or less, more preferably 8.0 × 10 6 Pa. 6 Pa or less, more preferably 6.0 × 10 6 Pa or less, and even more preferably 4.0 × 10 6 Pa or less.
In addition, it suppresses the flow of the expanded thermally expandable particles, improves the shape retention of irregularities formed on the surface of the support layer (II) on the side where the energy ray-curable resin layer (I) is laminated, From the viewpoint that the separation can be performed more easily with a small force at the interface P, the storage elastic modulus E ′ (t) of the expandable base material layer (Y1), which is defined in the requirement (1), is preferably 1.0 ×. It is at least 10 3 Pa, more preferably at least 1.0 × 10 4 Pa, even more preferably at least 1.0 × 10 5 Pa.
 膨張性基材層(Y1)は、樹脂及び熱膨張性粒子を含有する樹脂組成物(y)から形成することが好ましい。
 なお、樹脂組成物(y)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、上記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
The expandable base material layer (Y1) is preferably formed from a resin composition (y) containing a resin and thermally expandable particles.
In addition, the resin composition (y) may contain an additive for a base material, if necessary, as long as the effects of the present invention are not impaired.
Examples of the base material additive include a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, a coloring agent, and the like.
In addition, these additives for base materials may be used independently, respectively, and may use 2 or more types together.
When these base material additives are contained, the content of each base material additive is preferably from 0.0001 to 20 parts by mass, more preferably from 0.001 to 20 parts by mass, based on 100 parts by mass of the resin. 10 parts by mass.
 熱膨張性粒子の含有量は、膨張性基材層(Y1)の全量(100質量%)又は樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。 The content of the thermally expandable particles is preferably 1 to 40 with respect to the total amount (100% by mass) of the expandable base material layer (Y1) or the total amount (100% by mass) of the active ingredient of the resin composition (y). %, More preferably 5 to 35% by mass, still more preferably 10 to 30% by mass, and still more preferably 15 to 25% by mass.
 膨張性基材層(Y1)の形成材料である樹脂組成物(y)に含有される樹脂は、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y)に含有される樹脂が粘着性樹脂であっても、樹脂組成物(y)から膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含有する膨張性基材層(Y1)が非粘着性となればよい。
The resin contained in the resin composition (y) that is the material for forming the expandable base material layer (Y1) may be a non-adhesive resin or an adhesive resin.
That is, even if the resin contained in the resin composition (y) is an adhesive resin, in the process of forming the expandable base material layer (Y1) from the resin composition (y), the adhesive resin becomes polymerizable. It suffices that the resin obtained by a polymerization reaction with the compound becomes a non-adhesive resin and the expandable base material layer (Y1) containing the resin becomes non-adhesive.
 樹脂組成物(y)に含有される上記樹脂の質量平均分子量(Mw)としては、好ましくは1000~100万、より好ましくは1000~70万、更に好ましくは1000~50万である。 The weight average molecular weight (Mw) of the resin contained in the resin composition (y) is preferably from 1,000 to 1,000,000, more preferably from 1,000 to 700,000, and further preferably from 1,000 to 500,000.
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。 When the resin is a copolymer having two or more types of structural units, the form of the copolymer is not particularly limited, and may be any of a block copolymer, a random copolymer, and a graft copolymer. It may be.
 上記樹脂の含有量は、膨張性基材層(Y1)の全量(100質量%)又は樹脂組成物(y)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass based on the total amount (100% by mass) of the expandable base material layer (Y1) or the total amount of the active ingredients (100% by mass) of the resin composition (y). , More preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and still more preferably 70 to 85% by mass.
 なお、上記要件(1)を満たす膨張性基材層(Y1)を形成する観点から、樹脂組成物(y)に含有される上記樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含有することが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
In addition, from a viewpoint of forming the expandable base material layer (Y1) satisfying the above requirement (1), the resin contained in the resin composition (y) is selected from acrylic urethane-based resins and olefin-based resins. Preferably, it contains more than one species.
The following resin (U1) is preferable as the acrylic urethane-based resin.
-An acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylate.
(アクリルウレタン系樹脂(U1))
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
(Acrylic urethane resin (U1))
Examples of the urethane prepolymer (UP) serving as the main chain of the acrylic urethane-based resin (U1) include a reaction product of a polyol and a polyvalent isocyanate.
The urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
Examples of the polyol serving as a raw material of the urethane prepolymer (UP) include an alkylene type polyol, an ether type polyol, an ester type polyol, an ester amide type polyol, an ester ether type polyol, and a carbonate type polyol.
These polyols may be used alone or in combination of two or more.
The polyol used in one embodiment of the present invention is preferably a diol, more preferably an ester diol, an alkylene diol, or a carbonate diol, and further preferably an ester diol or a carbonate diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of the ester type diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, One or more selected from diols such as alkylene glycols such as diethylene glycol and dipropylene glycol; and phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, and diphenylmethane-4 , 4'-Dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, heptic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa Hydrophthalic acid, Condensed polymers of dicarboxylic acids such as hexahydroisophthalic acid, hexahydroterephthalic acid, methylhexahydrophthalic acid, and one or more selected from anhydrides thereof are exemplified.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol and polyneo And pentyl terephthalate diol.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 Examples of the alkylene type diol include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, Alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; polyoxyalkylene glycols such as polytetramethylene glycol;
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
Examples of the polyvalent isocyanate serving as a raw material of the urethane prepolymer (UP) include an aromatic polyisocyanate, an aliphatic polyisocyanate, and an alicyclic polyisocyanate.
These polyvalent isocyanates may be used alone or in combination of two or more.
In addition, these polyvalent isocyanates may be a modified trimethylolpropane adduct, a modified buret reacted with water, or a modified isocyanurate containing an isocyanurate ring.
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。 Among these, as the polyvalent isocyanate used in one embodiment of the present invention, diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6 One or more selected from -tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 Examples of the alicyclic diisocyanate include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, and 1,4-cyclohexane Examples thereof include diisocyanate, methyl-2,4-cyclohexane diisocyanate, and methyl-2,6-cyclohexane diisocyanate, and isophorone diisocyanate (IPDI) is preferable.
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
In one embodiment of the present invention, the urethane prepolymer (UP) serving as the main chain of the acrylic urethane-based resin (U1) is a reaction product of a diol and a diisocyanate, and has a straight chain having an ethylenically unsaturated group at both terminals. Urethane prepolymers are preferred.
As a method for introducing an ethylenically unsaturated group into both terminals of the linear urethane prepolymer, a NCO group at a terminal of the linear urethane prepolymer obtained by reacting a diol with a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And a method of reacting
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy Butyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含有する。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
The vinyl compound serving as a side chain of the acrylic urethane resin (U1) contains at least a (meth) acrylate.
As the (meth) acrylic acid ester, one or more selected from alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are preferable, and it is more preferable to use the alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate together.
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。 When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the mixing ratio of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 100 parts by mass. Preferably it is 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, even more preferably 1.5 to 10 parts by mass.
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。 ア ル キ ル The alkyl group of the alkyl (meth) acrylate preferably has 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 8, and still more preferably 1 to 3.
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。 ヒ ド ロ キ シ As the hydroxyalkyl (meth) acrylate, the same hydroxyalkyl (meth) acrylate used to introduce an ethylenically unsaturated group into both terminals of the above-mentioned linear urethane prepolymer can be used.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
Examples of vinyl compounds other than (meth) acrylic acid esters include, for example, aromatic hydrocarbon-based vinyl compounds such as styrene, α-methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate , (Meth) acrylonitrile, N-vinylpyrrolidone, polar group-containing monomers such as (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid and meth (acrylamide).
These may be used alone or in combination of two or more.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The content of the (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, and still more preferably the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。 The total content of the alkyl (meth) acrylate and the hydroxyalkyl (meth) acrylate in the vinyl compound is preferably from 40 to 100% by mass, more preferably from 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. It is 100% by mass, more preferably 80 to 100% by mass, even more preferably 90 to 100% by mass.
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in one embodiment of the present invention, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11 ) / (U12)] is preferably from 10/90 to 80/20, more preferably from 20/80 to 70/30, still more preferably from 30/70 to 60/40, and even more preferably 35 by mass ratio. / 65 to 55/45.
(オレフィン系樹脂)
 樹脂組成物(y)に含有される樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
(Olefin resin)
The olefin-based resin suitable as the resin contained in the resin composition (y) is a polymer having at least a structural unit derived from an olefin monomer.
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specific examples include ethylene, propylene, butylene, isobutylene, 1-hexene and the like.
Among these, ethylene and propylene are preferred.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチルー1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレンービニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), medium density polyethylene (MDPE, density: 915 kg / m 3 or more 942kg / m less than 3), high density polyethylene (HDPE, density: 942kg / m 3 or higher), polyethylene resins such as linear low density polyethylene; polypropylene resin (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin-based elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); Vinyl alcohol copolymer (EVOH); ethylene-propylene Olefin terpolymers such as-(5-ethylidene-2-norbornene);
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 に お い て In one embodiment of the present invention, the olefin-based resin may be a modified olefin-based resin further subjected to at least one modification selected from acid modification, hydroxyl group modification, and acrylic modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
For example, as the acid-modified olefin resin obtained by subjecting the olefin resin to acid modification, a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or an anhydride thereof with the above-mentioned unmodified olefin resin. Is mentioned.
Examples of the above unsaturated carboxylic acid or anhydride thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, and itaconic anhydride , Glutaconic anhydride, citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride and the like.
The unsaturated carboxylic acids or their anhydrides may be used alone or in combination of two or more.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
The acrylic-modified olefin-based resin obtained by subjecting the olefin-based resin to an acrylic modification is a modified olefin-based resin obtained by graft-polymerizing an alkyl (meth) acrylate as a side chain to the unmodified olefin-based resin as a main chain. Polymers.
The number of carbon atoms in the alkyl group of the alkyl (meth) acrylate is preferably 1 to 20, more preferably 1 to 16, and still more preferably 1 to 12.
Examples of the above-mentioned alkyl (meth) acrylate include the same compounds as the compounds that can be selected as the monomer (a1 ′) described below.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by subjecting the olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound to the above-mentioned unmodified olefin resin as a main chain.
Examples of the hydroxyl-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl. Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; and unsaturated alcohols such as vinyl alcohol and allyl alcohol.
(アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂)
 本発明の一態様において、樹脂組成物(y)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
(Resins other than acrylic urethane resin and olefin resin)
In one embodiment of the present invention, the resin composition (y) may contain a resin other than the acrylic urethane resin and the olefin resin, as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; and acrylonitrile-butadiene-styrene copolymer. Polycarbonate; Polyether ether ketone; Polyether sulfone; Polyphenylene sulfide; Polyimide resin such as polyetherimide and polyimide; Polyamide resin; Acrylic resin; Fluorinated resins and the like can be mentioned.
 ただし、上記要件(1)を満たす膨張性基材層(Y1)を形成する観点から、樹脂組成物(y)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y)中に含有される樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
However, from the viewpoint of forming the expandable base material layer (Y1) satisfying the above requirement (1), the smaller the content ratio of the resin other than the acrylic urethane resin and the olefin resin in the resin composition (y), the better. preferable.
The content ratio of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass, based on 100 parts by mass of the total amount of the resin contained in the resin composition (y). Less than 10 parts by weight, more preferably less than 5 parts by weight, even more preferably less than 1 part by weight.
(無溶剤型樹脂組成物(y1))
 本発明の一態様で用いる樹脂組成物(y)として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の熱膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1)が挙げられる。
 無溶剤型樹脂組成物(y1)では、溶剤を配合しないが、エネルギー線重合性モノマーが、上記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1)から形成した塗膜に対して、エネルギー線を照射することで、上記要件(1)を満たす膨張性基材層(Y1)を形成し易い。
(Solvent-free resin composition (y1))
As the resin composition (y) used in one embodiment of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-described thermally expandable particles are blended. And a solvent-free resin composition (y1) containing no solvent.
In the solventless resin composition (y1), no solvent is blended, but the energy ray polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
By irradiating the coating film formed from the solvent-free resin composition (y1) with an energy ray, it is easy to form the expandable base material layer (Y1) satisfying the requirement (1).
 なお、無溶剤型樹脂組成物(y1)に配合される熱膨張性粒子の種類、形状及び配合量(含有量)については、上述のとおりである。 種類 The type, shape and blending amount (content) of the thermally expandable particles blended in the solventless resin composition (y1) are as described above.
 無溶剤型樹脂組成物(y1)に含有される上記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The weight average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y1) is 50,000 or less, preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and still more preferably 3,000 to 35,000, Still more preferably, it is 4000 to 30,000.
 また、上記オリゴマーとしては、上述の樹脂組成物(y)に含有される樹脂のうち、質量平均分子量が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
The oligomer may be any of the resins contained in the resin composition (y) described above, as long as the resin has an ethylenically unsaturated group having a weight average molecular weight of 50,000 or less. UP) is preferred.
In addition, a modified olefin-based resin having an ethylenically unsaturated group may be used as the oligomer.
 無溶剤型樹脂組成物(y1)中における、上記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy ray-polymerizable monomer in the solventless resin composition (y1) is preferably 50 to 50% based on the total amount (100% by mass) of the solventless resin composition (y1). It is 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, even more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
Examples of the energy beam polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, and adamantane ( Alicyclic polymerizable compounds such as meth) acrylate and tricyclodecane acrylate; aromatic polymerizable compounds such as phenylhydroxypropyl acrylate, benzyl acrylate and phenol-ethylene oxide modified acrylate; tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- Heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam.
These energy ray polymerizable monomers may be used alone or in combination of two or more.
 上記オリゴマーとエネルギー線重合性モノマーの配合比(上記オリゴマー/エネルギー線重合性モノマー)は、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The mixing ratio of the oligomer and the energy ray-polymerizable monomer (the oligomer / the energy ray-polymerizable monomer) is preferably 20/80 to 90/10, more preferably 30/70 to 85/15, and still more preferably 35/65. 8080/20.
 本発明の一態様において、無溶剤型樹脂組成物(y1)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In one embodiment of the present invention, the solvent-free resin composition (y1) preferably further contains a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low energy energy rays.
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol Examples include nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like.
These photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤の配合量は、上記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The compounding amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, based on the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. Preferably it is 0.02 to 3 parts by mass.
<非膨張性基材層(Y2)>
 基材(Y)を構成する非膨張性基材層(Y2)の形成材料としては、例えば、紙材、樹脂、金属等が挙げられ、本発明の一態様の積層体の用途に応じて適宜選択することができる。
<Non-expandable base material layer (Y2)>
As a material for forming the non-expandable base material layer (Y2) included in the base material (Y), for example, a paper material, a resin, a metal, or the like can be given. You can choose.
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
Examples of the paper material include thin paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, parchment paper, glassine paper, and the like.
Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer and ethylene-vinyl alcohol copolymer; polyethylene terephthalate, Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acrylic-modified polyurethane; polymethylpentene; polysulfone; Polyether sulfone; Polyphenylene sulfide; Polyimide-based resin such as polyetherimide and polyimide; Polyamide-based resin; Acrylic resin; Tsu Motokei resin, and the like.
Examples of the metal include aluminum, tin, chromium, and titanium.
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含有する樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
These forming materials may be composed of one type, or two or more types may be used in combination.
As the non-expandable base material layer (Y2) using two or more kinds of forming materials in combination, a paper material laminated with a thermoplastic resin such as polyethylene, or a metal film formed on the surface of a resin film or sheet containing the resin And the like.
In addition, as a method of forming the metal layer, for example, a method in which the metal is deposited by a PVD method such as vacuum evaporation, sputtering, or ion plating, or a metal foil made of the metal is attached using a general adhesive. And the like.
 ここで、本発明の一態様において、膨張性基材層(Y1)に含まれる膨張性粒子が膨張した際に、膨張性基材層(Y1)の非膨張性基材層(Y2)側の表面に凹凸が形成されるのを抑制して、膨張性基材層(Y1)の粘着剤層(X1)側の表面において凹凸を優占的に形成する観点から、非膨張性基材層(Y2)は、膨張性粒子の膨張により変形しない程度の剛性を備えることが好ましい。具体的には、膨張性粒子の膨張開始時の温度(t)における、非膨張性基材層(Y2)の貯蔵弾性率E’(t)が、1.1×10Pa以上であることが好ましい。 Here, in one embodiment of the present invention, when the expandable particles contained in the expandable base material layer (Y1) expand, the expandable base material layer (Y1) is closer to the non-expandable base material layer (Y2). From the viewpoint of suppressing the formation of irregularities on the surface and forming the irregularities predominantly on the surface of the expandable base material layer (Y1) on the side of the pressure-sensitive adhesive layer (X1), the non-expandable base material layer ( Y2) preferably has such a rigidity that it does not deform due to expansion of the expandable particles. Specifically, the storage elastic modulus E ′ (t) of the non-expandable base material layer (Y2) at the temperature (t) at the time when the expansion of the expandable particles starts is 1.1 × 10 7 Pa or more. Is preferred.
 なお、非膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非膨張性基材層(Y2)が樹脂を含有する場合、非膨張性基材層(Y2)の表面に対しても、上述の膨張性基材層(Y1)と同様に、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。 In addition, from the viewpoint of improving interlayer adhesion between the non-expandable base material layer (Y2) and another layer to be laminated, when the non-expandable base material layer (Y2) contains a resin, the non-expandable base material layer The surface of (Y2) may be subjected to a surface treatment such as an oxidation method or a concavo-convex method, an easy adhesion treatment, or a primer treatment as in the case of the above-described expandable base material layer (Y1).
 また、非膨張性基材層(Y2)が樹脂を含有する場合、当該樹脂と共に、樹脂組成物(y)にも含有し得る、上述の基材用添加剤を含有してもよい。 場合 In addition, when the non-expandable base material layer (Y2) contains a resin, the above-mentioned base material additive which may be contained in the resin composition (y) may be contained together with the resin.
 非膨張性基材層(Y2)は、上述の方法に基づき判断される、非膨張性の層である。
 そのため、上述の式から算出される非膨張性基材層(Y2)の体積変化率(%)としては、5%未満であるが、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
The non-intumescent base material layer (Y2) is a non-intumescent layer determined based on the method described above.
Therefore, the volume change rate (%) of the non-expandable base material layer (Y2) calculated from the above equation is less than 5%, preferably less than 2%, more preferably less than 1%, and still more preferably. Is less than 0.1%, even more preferably less than 0.01%.
 また、非膨張性基材層(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非膨張性基材層(Y2)に含有される樹脂を選択することで、熱膨張性粒子が含有されていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非膨張性基材層(Y2)は熱膨張性粒子を含有しないことが好ましい。非膨張性基材層(Y2)が熱膨張性粒子を含有する場合、その含有量は、少ないほど好ましく、具体的な熱膨張性粒子の含有量としては、非膨張性基材層(Y2)の全量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
In addition, the non-expandable base material layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range. For example, by selecting the resin contained in the non-expandable base material layer (Y2), it is possible to adjust the volume change rate to the above range even if the thermally expandable particles are contained.
However, it is preferable that the non-expandable base material layer (Y2) does not contain thermally expandable particles. When the non-expandable base material layer (Y2) contains heat-expandable particles, the content thereof is preferably as small as possible. Is usually less than 3% by mass, preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, more preferably less than 0.01% by mass, based on the total amount (100% by mass). Less than 001% by mass.
<粘着剤層(X)>
 本発明の一態様で用いる支持層(II)が有する粘着剤層(X)は、粘着性樹脂を含有する粘着剤組成物(x)から形成することができる。
 また、粘着剤組成物(x)は、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 以下、粘着剤組成物(x)に含有される各成分について説明する。
 なお、支持層(II)が、第1粘着剤層(X1)及び第2粘着剤層(X2)を有する場合においても、第1粘着剤層(X1)及び第2粘着剤層(X2)も、以下に示す各成分を含有する粘着剤組成物(x)から形成することができる。
<Adhesive layer (X)>
The pressure-sensitive adhesive layer (X) included in the support layer (II) used in one embodiment of the present invention can be formed from a pressure-sensitive adhesive composition (x) containing a pressure-sensitive adhesive resin.
Further, the pressure-sensitive adhesive composition (x) may contain a pressure-sensitive adhesive additive such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator, if necessary.
Hereinafter, each component contained in the pressure-sensitive adhesive composition (x) will be described.
In addition, even when the support layer (II) has the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2), the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) are also And the pressure-sensitive adhesive composition (x) containing the following components.
(粘着性樹脂)
 本発明の一態様で用いる粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であることが好ましい。
 本発明の一態様で用いる粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
(Adhesive resin)
The pressure-sensitive adhesive resin used in one embodiment of the present invention is preferably a polymer having the pressure-sensitive adhesive alone and having a weight average molecular weight (Mw) of 10,000 or more.
The weight average molecular weight (Mw) of the adhesive resin used in one embodiment of the present invention is preferably 10,000 to 2,000,000, more preferably 20,000 to 1.5,000,000, and still more preferably 30,000, from the viewpoint of improving the adhesive strength. ~ 1 million.
 具体的な粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Specific adhesive resins include, for example, rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins.
These adhesive resins may be used alone or in combination of two or more.
When these adhesive resins are copolymers having two or more types of constituent units, the form of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a graft copolymer. Any of polymers may be used.
 本発明の一態様において、優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含有することが好ましい。
 なお、第1粘着剤層(X1)及び第2粘着剤層(X2)を有する支持層(II)を用いる場合、エネルギー線硬化性樹脂層(I)と接触している第1粘着剤層(X1)にアクリル系樹脂が含まれることで、第1粘着剤層(X1)の表面に凹凸を形成させ易くすることができる。
In one embodiment of the present invention, the adhesive resin preferably contains an acrylic resin from the viewpoint of developing excellent adhesive strength.
When the support layer (II) having the first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) is used, the first pressure-sensitive adhesive layer ( By including an acrylic resin in X1), it is possible to easily form irregularities on the surface of the first pressure-sensitive adhesive layer (X1).
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物(x)又は粘着剤層(X)に含有される粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。 The content of the acrylic resin in the adhesive resin is preferably 30 to 30% based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x) or the adhesive layer (X). It is 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably 85 to 100% by mass.
 粘着性樹脂の含有量としては、粘着剤組成物(x)の有効成分の全量(100質量%)又は粘着剤層(X)の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~98質量%、より更に好ましくは70~95質量%である。 The content of the pressure-sensitive adhesive resin is preferably 35 to 100% by mass relative to the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x) or the total amount (100% by mass) of the pressure-sensitive adhesive layer (X). %, More preferably 50 to 100% by mass, still more preferably 60 to 98% by mass, and still more preferably 70 to 95% by mass.
(架橋剤)
 本発明の一態様において、粘着剤組成物(x)は、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
In one embodiment of the present invention, when the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x) preferably further contains a crosslinking agent.
The crosslinking agent reacts with the adhesive resin having a functional group, and crosslinks the adhesive resins with the functional group as a crosslinking starting point.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
Examples of the crosslinking agent include an isocyanate-based crosslinking agent, an epoxy-based crosslinking agent, an aziridine-based crosslinking agent, and a metal chelate-based crosslinking agent.
These crosslinking agents may be used alone or in combination of two or more.
Among these crosslinking agents, an isocyanate-based crosslinking agent is preferable from the viewpoint of increasing the cohesive force to improve the adhesive strength and from the viewpoint of easy availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。 The content of the crosslinking agent is appropriately adjusted depending on the number of functional groups contained in the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group. More preferably, it is 0.03 to 7 parts by mass, and still more preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~9000、より好ましくは500~8000、更に好ましくは800~5000である。
(Tackifier)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x) may further contain a tackifier from the viewpoint of further improving the adhesive strength.
In the present specification, the “tackifier” is a component that assists in improving the adhesive strength of the above-mentioned adhesive resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000, It is distinguished from the conductive resin.
The weight average molecular weight (Mw) of the tackifier is preferably 400 to 9000, more preferably 500 to 8000, and further preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 Examples of the tackifier include rosin-based resins, terpene-based resins, styrene-based resins, and copolymers of C5 fractions such as pentene, isoprene, piperine, and 1,3-pentadiene generated by thermal decomposition of petroleum naphtha. C5 petroleum resin obtained, a C9 petroleum resin obtained by copolymerizing a C9 fraction such as indene and vinyltoluene generated by thermal decomposition of petroleum naphtha, and a hydrogenated resin obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably from 60 to 170 ° C, more preferably from 65 to 160 ° C, and even more preferably from 70 to 150 ° C.
In the present specification, the “softening point” of the tackifier means a value measured according to JIS K 2531.
The tackifier may be used alone, or two or more kinds having different softening points and structures may be used in combination.
When two or more tackifiers are used, the weighted average of the softening points of the tackifiers preferably falls within the above range.
 粘着付与剤の含有量は、粘着剤組成物(x)の有効成分の全量(100質量%)又は粘着剤層(X)の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。 The content of the tackifier is preferably 0.01 to 65% based on the total amount of the active ingredient (100% by mass) of the pressure-sensitive adhesive composition (x) or the total amount (100% by mass) of the pressure-sensitive adhesive layer (X). %, More preferably 0.1 to 50% by mass, still more preferably 1 to 40% by mass, and still more preferably 2 to 30% by mass.
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤、帯電防止剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
(Adhesive additive)
In one embodiment of the present invention, the pressure-sensitive adhesive composition (x) contains a pressure-sensitive adhesive additive used for a general pressure-sensitive adhesive, in addition to the additives described above, as long as the effects of the present invention are not impaired. It may be.
Examples of such adhesive additives include antioxidants, softeners (plasticizers), rust inhibitors, pigments, dyes, retarders, reaction accelerators (catalysts), ultraviolet absorbers, antistatic agents, and the like. Is mentioned.
These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
When these adhesive additives are contained, the content of each adhesive additive is preferably 0.0001 to 20 parts by mass, more preferably 0.001 to 20 parts by mass, based on 100 parts by mass of the adhesive resin. 1010 parts by mass.
 なお、膨張性粘着剤層である第1粘着剤層(X1)を有する上述の第二態様の支持層(II)を用いる場合、膨張性粘着剤層である第1粘着剤層(X1)の形成材料としては、上述の粘着剤組成物(x)に、さらに熱膨張性粒子を含有する膨張性粘着剤組成物(x11)から形成される。
 当該熱膨張性粒子は、上述のとおりである。
 熱膨張性粒子の含有量としては、膨張性粘着剤組成物(x11)の有効成分の全量(100質量%)又は膨張性粘着剤層の全量(100質量%)に対して、好ましくは1~70質量%、より好ましくは2~60質量%、更に好ましくは3~50質量%、より更に好ましくは5~40質量%である。
In addition, when the support layer (II) of the above-described second embodiment having the first pressure-sensitive adhesive layer (X1) that is an expandable pressure-sensitive adhesive layer is used, the first pressure-sensitive adhesive layer (X1) that is the expandable pressure-sensitive adhesive layer is used. The forming material is formed from the expandable pressure-sensitive adhesive composition (x11) further containing the heat-expandable particles in the pressure-sensitive adhesive composition (x) described above.
The thermally expandable particles are as described above.
The content of the heat-expandable particles is preferably 1 to 100% based on the total amount of the active ingredient (100% by mass) or the total amount (100% by mass) of the expandable pressure-sensitive adhesive composition (x11). It is 70% by mass, more preferably 2 to 60% by mass, still more preferably 3 to 50% by mass, and still more preferably 5 to 40% by mass.
 一方、粘着剤層(X)が非膨張性粘着剤層である場合、非膨張性粘着剤層の形成材料である粘着剤組成物(x)は、熱膨張性粒子を含有しないことが好ましい。
 熱膨張性粒子を含有する場合、その含有量は極力少ないほど好ましく、粘着剤組成物(x)の有効成分の全量(100質量%)又は粘着剤層(X)の全量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
On the other hand, when the pressure-sensitive adhesive layer (X) is a non-expandable pressure-sensitive adhesive layer, the pressure-sensitive adhesive composition (x), which is a material for forming the non-expandable pressure-sensitive adhesive layer, preferably does not contain thermally expandable particles.
When heat-expandable particles are contained, the content is preferably as small as possible. The content is preferably based on the total amount of active ingredients (100% by mass) or the total amount (100% by mass) of the pressure-sensitive adhesive layer (X) of the pressure-sensitive adhesive composition (x). On the other hand, it is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and still more preferably less than 0.001% by mass.
 なお、図2に示す積層体2a、2bのように、非膨張性粘着剤層である、第1粘着剤層(X1)及び第2粘着剤層(X2)を有する支持層(II)を用いる場合、23℃における、非膨張性粘着剤層である第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以下、より好ましくは5.0×10Pa以下、更に好ましくは1.0×10Pa以下である。
 非膨張性粘着剤層である第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)が1.0×10Pa以下であれば、例えば、図2に示す積層体2a、2bのような構成とした際に、加熱膨張処理による膨張性基材層(Y1)中の熱膨張性粒子の膨張により、硬化樹脂層(I’)と接触している第1粘着剤層(X1)の表面に凹凸が形成され易くなる。
 その結果、支持層(II)と硬化樹脂層(I’)との界面Pでわずかな力で一括して容易に分離可能となる積層体とすることができる。
 なお、23℃における、非膨張性粘着剤層である第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
Note that a support layer (II) having a first pressure-sensitive adhesive layer (X1) and a second pressure-sensitive adhesive layer (X2), which is a non-expandable pressure-sensitive adhesive layer, is used as in the laminates 2a and 2b shown in FIG. In this case, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1), which is a non-expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 × 10 8 Pa or less, more preferably 5.0 × 10 8 Pa or less. The pressure is 0 × 10 7 Pa or less, more preferably 1.0 × 10 7 Pa or less.
If the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1), which is a non-expandable pressure-sensitive adhesive layer, is 1.0 × 10 8 Pa or less, for example, the laminates 2a and 2b shown in FIG. In such a configuration, the first pressure-sensitive adhesive layer (X1) in contact with the cured resin layer (I ′) due to the expansion of the thermally expandable particles in the expandable base material layer (Y1) due to the heat expansion treatment. ) Is likely to form irregularities on the surface.
As a result, it is possible to obtain a laminate that can be easily and collectively separated at a small force at the interface P between the support layer (II) and the cured resin layer (I ′).
The storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1), which is a non-expandable pressure-sensitive adhesive layer, at 23 ° C. is preferably 1.0 × 10 4 Pa or more, and more preferably 5.10 × 10 4 Pa or more. 0 × 10 4 Pa or more, more preferably 1.0 × 10 5 Pa or more.
 本発明の一態様の積層体が有する支持層(II)の、波長375nmの光透過率は、好ましくは30%以上、より好ましくは50%以上、更に好ましくは70%以上である。光透過率が上記範囲であると、支持層(II)を介してエネルギー線硬化性樹脂層(I)にエネルギー線(紫外線)を照射しときに、エネルギー線硬化性樹脂層(I)の硬化度がより向上する。波長375nmの光透過率の上限値は特に限定されないが、例えば、95%以下とすることが可能である。上記透過率は、分光光度計を用いた公知の方法に従って測定することができる。
 上記の光透過率を達成する観点から、支持層(II)が有する基材(Y)及び粘着剤層(X)が着色剤を含有する場合には、本発明の効果を妨げない程度に、その含有量を調整することが好ましい。
 着色剤を含有する場合、その含有量は極力少ないほど好ましく、粘着剤組成物(x)の有効成分の全量(100質量%)又は粘着剤層(X)の全量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満であり、また、基材(Y)中の着色剤の含有量は、樹脂組成物(y)の有効成分の全量(100質量%)又は基材(Y)の全量(100質量%)に対して、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
The light transmittance at a wavelength of 375 nm of the support layer (II) included in the laminate of one embodiment of the present invention is preferably 30% or more, more preferably 50% or more, and still more preferably 70% or more. When the light transmittance is within the above range, when the energy ray-curable resin layer (I) is irradiated with energy rays (ultraviolet rays) via the support layer (II), the energy ray-curable resin layer (I) is cured. The degree is more improved. The upper limit of the light transmittance at a wavelength of 375 nm is not particularly limited, but can be, for example, 95% or less. The transmittance can be measured according to a known method using a spectrophotometer.
From the viewpoint of achieving the above light transmittance, when the substrate (Y) and the pressure-sensitive adhesive layer (X) of the support layer (II) contain a colorant, the effect of the present invention is not impaired. It is preferable to adjust the content.
When a coloring agent is contained, the content is preferably as small as possible. The content is based on the total amount of the active ingredient (100% by mass) or the total amount of the pressure-sensitive adhesive layer (X) (100% by mass). , Preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, even more preferably less than 0.001% by mass. The content of the coloring agent is preferably less than 1% by mass, more preferably less than 1% by mass, based on the total amount (100% by mass) of the active ingredients of the resin composition (y) or the total amount (100% by mass) of the base material (Y). It is less than 0.1% by mass, more preferably less than 0.01% by mass, even more preferably less than 0.001% by mass.
<エネルギー線硬化性樹脂層(I)>
 エネルギー線硬化性樹脂層(I)は、エネルギー線を照射して硬化し得る層であれば特に限定されず、例えば、エネルギー線硬化性成分(a)を含有するエネルギー線硬化性樹脂組成物から形成されるものである。
<Energy ray-curable resin layer (I)>
The energy ray-curable resin layer (I) is not particularly limited as long as it is a layer that can be cured by irradiating an energy ray. For example, the energy ray-curable resin composition containing the energy ray-curable component (a) Is formed.
〔エネルギー線硬化性成分(a)〕
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分である。
 エネルギー線硬化性成分(a)としては、エネルギー線硬化性二重結合を有する質量平均分子量(Mw)が80000~2000000の重合体(a1)(以下、単に「重合体(a1)」ともいう)、エネルギー線硬化性二重結合を有する分子量が100~80000の化合物(a2)(以下、単に「化合物(a2)」ともいう)等が挙げられる。
 エネルギー線硬化性成分(a)は、単独で用いてもよく、2種以上を併用してもよい。
[Energy ray-curable component (a)]
The energy ray-curable component (a) is a component that is cured by irradiation with energy rays.
As the energy ray-curable component (a), a polymer (a1) having an energy ray-curable double bond and having a mass average molecular weight (Mw) of 80,000 to 2,000,000 (hereinafter, also simply referred to as “polymer (a1)”) And a compound (a2) having an energy-ray-curable double bond and a molecular weight of 100 to 80,000 (hereinafter also simply referred to as “compound (a2)”).
The energy ray-curable component (a) may be used alone or in combination of two or more.
(重合体(a1))
 重合体(a1)は、エネルギー線硬化性二重結合を有する質量平均分子量(Mw)が80000~2000000の重合体である。
 重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基Xを有するアクリル系重合体(a11)と、上記官能基Xと反応する基Y及びエネルギー線硬化性二重結合を有するエネルギー線硬化性化合物(a12)と、が重合してなるアクリル系樹脂(a1-1)が挙げられる。
 重合体(a1)は、単独で用いてもよく、2種以上を併用してもよい。
(Polymer (a1))
The polymer (a1) is a polymer having an energy ray-curable double bond and having a weight average molecular weight (Mw) of 80,000 to 2,000,000.
Examples of the polymer (a1) include an acrylic polymer (a11) having a functional group X capable of reacting with a group of another compound, a group Y reacting with the functional group X, and an energy ray-curable double. An acrylic resin (a1-1) obtained by polymerizing the energy ray-curable compound (a12) having a bond and the polymer is exemplified.
The polymer (a1) may be used alone or in combination of two or more.
・アクリル系重合体(a11)
 アクリル系重合体(a11)が有する官能基Xとしては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)及びエポキシ基からなる群から選ばれる1種以上が挙げられる。
・ Acrylic polymer (a11)
Examples of the functional group X of the acrylic polymer (a11) include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (in which one or two hydrogen atoms of an amino group are substituted with a group other than a hydrogen atom. Or an epoxy group.
 アクリル系重合体(a11)としては、例えば、上記官能基Xを有するアクリル系モノマーと、上記官能基Xを有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
 アクリル系重合体(a11)は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the acrylic polymer (a11) include those obtained by copolymerizing an acrylic monomer having the functional group X and an acrylic monomer having no functional group X. Further, a monomer (non-acrylic monomer) other than the acrylic monomer may be copolymerized. The acrylic polymer (a11) may be a random copolymer or a block copolymer.
The acrylic polymer (a11) may be used alone or in combination of two or more.
 上記官能基Xを有するアクリル系モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);上記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。
 これらの中でも、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
Examples of the acrylic monomer having the functional group X include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid. Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturated compounds such as vinyl alcohol and allyl alcohol Alcohol (unsaturated alcohol having no (meth) acryloyl skeleton) and the like.
Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citraconic acid Ethylenically unsaturated dicarboxylic acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above ethylenically unsaturated dicarboxylic acids; and carboxyalkyl (meth) acrylates such as 2-carboxyethyl methacrylate. .
Among these, a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
 上記官能基Xを有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。
 また、上記官能基Xを有しないアクリル系モノマーとしては、例えば、、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。
 上記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
Examples of the acrylic monomer having no functional group X include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylic acid. n-butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) ) Undecyl acrylate, dodecyl (meth) acrylate (lauryl (meth) acrylate), ( T) tridecyl acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, Examples thereof include (meth) acrylic acid alkyl esters in which the alkyl group constituting the alkyl ester has a chain structure having 1 to 18 carbon atoms, such as octadecyl (meth) acrylate (stearyl (meth) acrylate).
Examples of the acrylic monomer having no functional group X include, for example, methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and the like. (Meth) acrylic acid esters having an aromatic group, including (meth) acrylic acid esters containing an alkoxyalkyl group of the following; aryl (meth) acrylic acid esters such as phenyl (meth) acrylate; non-crosslinkable (meth) Acrylamide and its derivatives; (meth) acrylates having a non-crosslinkable tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylate; No.
Examples of the non-acrylic monomer include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
 アクリル系重合体(a11)において、これを構成する構成単位の全量に対する、上記官能基Xを有するアクリル系モノマー由来の構成単位の量の含有量は、好ましくは0.1~50質量%、より好ましくは1~40質量%、更に好ましくは3~30質量%である。上記構成単位の含有量が上記範囲であると、得られるアクリル系樹脂(a1-1)において、エネルギー線硬化性二重結合の含有量を好ましい範囲に容易に調節可能となる。 In the acrylic polymer (a11), the content of the structural unit derived from the acrylic monomer having the functional group X is preferably from 0.1 to 50% by mass, based on the total amount of the structural units constituting the polymer. Preferably it is 1 to 40% by mass, more preferably 3 to 30% by mass. When the content of the structural unit is within the above range, the content of the energy ray-curable double bond in the obtained acrylic resin (a1-1) can be easily adjusted to a preferable range.
・エネルギー線硬化性化合物(a12)
 エネルギー線硬化性化合物(a12)は、上記官能基Xと反応する基Y及びエネルギー線硬化性二重結合を有する化合物である。
 上記基Yとしては、例えば、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種以上が挙げられ、これらの中でも、イソシアネート基が好ましい。エネルギー線硬化性化合物(a12)がイソシアネート基を有する場合、このイソシアネート基が、上記官能基として水酸基を有するアクリル系重合体(a11)の水酸基と容易に反応する。
 エネルギー線硬化性化合物(a12)が有するエネルギー線硬化性二重結合の数は、1分子中、好ましくは1~5個、より好ましくは1~3個である。
 エネルギー線硬化性化合物(a12)は、単独で用いてもよく、2種以上を併用してもよい。
-Energy ray-curable compound (a12)
The energy ray-curable compound (a12) is a compound having a group Y that reacts with the functional group X and an energy ray-curable double bond.
Examples of the group Y include one or more selected from the group consisting of an isocyanate group, an epoxy group, and a carboxy group, and among these, an isocyanate group is preferable. When the energy ray-curable compound (a12) has an isocyanate group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
The number of energy beam-curable double bonds contained in the energy beam-curable compound (a12) is preferably 1 to 5, more preferably 1 to 3, in one molecule.
The energy ray-curable compound (a12) may be used alone or in combination of two or more.
 エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。これらの中でも、2-メタクリロイルオキシエチルイソシアネートが好ましい。 Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meth-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate and 1,1- (bisacryloyloxymethyl) ethyl Isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; obtained by reaction of diisocyanate compound or polyisocyanate compound, polyol compound and hydroxyethyl (meth) acrylate Acryloyl monoisocyanate compound. Among these, 2-methacryloyloxyethyl isocyanate is preferred.
 アクリル系樹脂(a1-1)において、アクリル系重合体(a11)に由来する上記官能基Xの含有量に対する、エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性二重結合の含有量の割合は、好ましくは20~120モル%、より好ましくは5~100モル%、更に好ましくは50~100モル%である。上記割合が上記範囲であると、硬化により形成された硬化樹脂層(I’)の接着力がより大きくなる。なお、エネルギー線硬化性化合物(a12)が一官能(上記基を1分子中に1個有する)化合物である場合には、上記含有量の割合の上限値は100モル%となるが、エネルギー線硬化性化合物(a12)が多官能(上記基を1分子中に2個以上有する)化合物である場合には、上記含有量の割合の上限値は100モル%を超えることがある。 In the acrylic resin (a1-1), the content of the energy ray-curable double bond derived from the energy ray-curable compound (a12) relative to the content of the functional group X derived from the acrylic polymer (a11) Is preferably 20 to 120 mol%, more preferably 5 to 100 mol%, and still more preferably 50 to 100 mol%. When the above ratio is in the above range, the adhesive strength of the cured resin layer (I ′) formed by curing becomes larger. When the energy ray-curable compound (a12) is a monofunctional compound (having one of the above groups in one molecule), the upper limit of the content is 100 mol%. When the curable compound (a12) is a polyfunctional compound (having two or more groups in one molecule), the upper limit of the content may exceed 100 mol%.
 アクリル系樹脂(a1-1)の含有量は、エネルギー線硬化性樹脂組成物の有効成分の全量(100質量%)又はエネルギー線硬化性樹脂層(I)の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは2~30質量%、更に好ましくは3~20質量%である。 The content of the acrylic resin (a1-1) is based on the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). , Preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and still more preferably 3 to 20% by mass.
 重合体(a1)の質量平均分子量(Mw)は、好ましくは100000~2000000、より好ましくは300000~1500000である。 質量 The weight average molecular weight (Mw) of the polymer (a1) is preferably from 100,000 to 2,000,000, more preferably from 300,000 to 1500,000.
 重合体(a1)は、その少なくとも一部が、後述する架橋剤(e)によって架橋されたものであってもよいし、架橋されていないものであってもよい。 The polymer (a1) may be at least partially cross-linked by a cross-linking agent (e) described below, or may be non-cross-linked.
(化合物(a2))
 化合物(a2)は、エネルギー線硬化性二重結合を有する、分子量が100~80000の化合物である。
 化合物(a2)が有するエネルギー線硬化性二重結合としては、(メタ)アクリロイル基、ビニル基等が好ましい。
 化合物(a2)としては、例えば、エネルギー線硬化性二重結合を有する、低分子量化合物、エネルギー線硬化性二重結合を有するエポキシ樹脂、エネルギー線硬化性二重結合を有するフェノール樹脂等が挙げられる。
 化合物(a2)は、単独で用いてもよく、2種以上を併用してもよい。
(Compound (a2))
Compound (a2) is a compound having an energy ray-curable double bond and a molecular weight of 100 to 80,000.
As the energy ray-curable double bond of the compound (a2), a (meth) acryloyl group, a vinyl group and the like are preferable.
Examples of the compound (a2) include a low molecular weight compound having an energy ray-curable double bond, an epoxy resin having an energy ray-curable double bond, and a phenol resin having an energy ray-curable double bond. .
The compound (a2) may be used alone or in combination of two or more.
 上記エネルギー線硬化性二重結合を有する低分子量化合物としては、例えば、多官能のモノマー、オリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート(トリシクロデカンジメチロールジ(メタ)アクリレート)、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。
Examples of the low molecular weight compound having an energy ray-curable double bond include polyfunctional monomers and oligomers, and an acrylate compound having a (meth) acryloyl group is preferable.
Examples of the acrylate compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4- ((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [ 4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane, tricyclodecanedimethanol di (meth) acrylate (tricyclo Decandimethylol di (meth) acryl ), 1,10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tri Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 2,2-bis [4-((meth) acryloxyethoxy) phenyl] propane, neopentyl glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy Bifunctional (meth) acrylates such as 1,3-di (meth) acryloxypropane; tris (2- (meth) acryloxyethyl) isocyanurate, ε-caprolactone-modified tris- (2- (meth) acryloxyethyl) Isocyanurate, ethoxylated glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol Polyfunctional (meth) acrylates such as tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa (meth) acrylate; urethane (meth) acrylate Polyfunctional (meth) acrylate oligomer such as Goma like.
 上記エネルギー線硬化性二重結合を有するエポキシ樹脂、エネルギー線硬化性二重結合を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分(f)を構成する樹脂にも該当するが、本発明においては化合物(a2)として取り扱う。 As the epoxy resin having an energy-ray-curable double bond and the phenol resin having an energy-ray-curable double bond, for example, those described in paragraph 0043 of JP-A-2013-194102 are used. be able to. Such a resin also corresponds to a resin constituting the thermosetting component (f) described later, but is handled as the compound (a2) in the present invention.
 化合物(a2)の質量平均分子量(Mw)は、好ましくは100~30000、より好ましくは300~10000である。 質量 The mass average molecular weight (Mw) of the compound (a2) is preferably from 100 to 30,000, more preferably from 300 to 10,000.
 化合物(a2)の含有量は、エネルギー線硬化性樹脂組成物の有効成分の全量(100質量%)又はエネルギー線硬化性樹脂層(I)の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは2~30質量%、更に好ましくは3~20質量%である。 The content of the compound (a2) is preferably 1% with respect to the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). It is preferably from 40 to 40% by mass, more preferably from 2 to 30% by mass, and still more preferably from 3 to 20% by mass.
〔エネルギー線硬化性二重結合を有しない重合体(b)〕
 エネルギー線硬化性樹脂組成物は、化合物(a2)を含有する場合、さらにエネルギー線硬化性二重結合を有しない重合体(b)(以下、単に「重合体(b)」ともいう)を含有することが好ましい。
 重合体(b)は、単独で用いてもよく、2種以上を併用してもよい。
[Polymer (b) having no energy beam-curable double bond]
When the energy ray-curable resin composition contains the compound (a2), the energy ray-curable resin composition further contains a polymer (b) having no energy ray-curable double bond (hereinafter, also simply referred to as “polymer (b)”). Is preferred.
The polymer (b) may be used alone or in combination of two or more.
 重合体(b)としては、例えば、アクリル系重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂、ポリビニルアルコール(PVA)、ブチラール樹脂、ポリエステルウレタン樹脂等が挙げられる。これらの中でも、アクリル系重合体(以下、「アクリル系重合体(b-1)」ともいう)が好ましい。 Examples of the polymer (b) include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, an acrylic urethane resin, polyvinyl alcohol (PVA), a butyral resin, and a polyester urethane resin. Among these, an acrylic polymer (hereinafter, also referred to as “acrylic polymer (b-1)”) is preferable.
 アクリル系重合体(b-1)は、公知のものでよく、例えば、1種のアクリル系モノマーの単独重合体であってもよいし、2種以上のアクリル系モノマーの共重合体であってもよいし、1種又は2種以上のアクリル系モノマーと、1種又は2種以上のアクリル系モノマー以外のモノマー(非アクリル系モノマー)と、の共重合体であってもよい。 The acrylic polymer (b-1) may be a known one. For example, it may be a homopolymer of one acrylic monomer or a copolymer of two or more acrylic monomers. Alternatively, it may be a copolymer of one or more acrylic monomers and one or more monomers other than acrylic monomers (non-acrylic monomers).
 アクリル系重合体(b-1)を構成するアクリル系モノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、先に説明したとおりである。 Examples of the acrylic monomer constituting the acrylic polymer (b-1) include: (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, and hydroxyl group (Meth) acrylic acid esters, substituted amino group-containing (meth) acrylic acid esters, and the like. Here, the “substituted amino group” is as described above.
 (メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate. , Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) 2-ethylhexyl acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) acrylic acid Undecyl, dodecyl (meth) acrylate (lauryl (meth) acrylate), (meth Tridecyl acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, (meth) ) Alkyl (meth) acrylates in which the alkyl group constituting the alkyl ester has a chain structure of 1 to 18 carbon atoms, such as octadecyl acrylate (stearyl (meth) acrylate).
 環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;(メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;(メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。 Examples of the (meth) acrylate having a cyclic skeleton include, for example, cycloalkyl (meth) acrylates such as isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate; benzyl (meth) acrylate and the like. Aralkyl (meth) acrylate; cycloalkenyl (meth) acrylate such as dicyclopentenyl (meth) acrylate; cycloalkenyloxyalkyl (meth) acrylate such as dicyclopentenyloxyethyl (meth) acrylate Esters and the like.
 グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
 水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。
Examples of the glycidyl group-containing (meth) acrylate include glycidyl (meth) acrylate.
Examples of the hydroxyl group-containing (meth) acrylate include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth) acrylate. , 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
Examples of the substituted amino group-containing (meth) acrylate include N-methylaminoethyl (meth) acrylate.
 アクリル系重合体(b-1)を構成する非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。 非 Examples of the non-acrylic monomer constituting the acrylic polymer (b-1) include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
 重合体(b)は、その少なくとも一部が架橋剤(e)によって架橋されたものであってもよいし、架橋されていないものであってもよい。
 少なくとも一部が架橋剤(e)によって架橋された重合体(b)としては、例えば、重合体(b)中の反応性官能基が架橋剤(e)と反応したものが挙げられる。
 上記反応性官能基は、架橋剤(e)の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤(e)がポリイソシアネート化合物である場合には、上記反応性官能基としては、例えば、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤(e)がエポキシ系化合物である場合には、上記反応性官能基としては、例えば、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でも、エポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハ及び半導体チップの回路の腐食を防止するという点では、上記反応性官能基はカルボキシ基以外の基であることが好ましい。
The polymer (b) may be at least partially cross-linked by the cross-linking agent (e), or may be non-cross-linked.
The polymer (b) at least partially crosslinked by the crosslinking agent (e) includes, for example, a polymer in which a reactive functional group in the polymer (b) has reacted with the crosslinking agent (e).
The reactive functional group may be appropriately selected according to the type of the crosslinking agent (e) and the like, and is not particularly limited. For example, when the crosslinking agent (e) is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group, and an amino group. High hydroxyl groups are preferred. When the crosslinking agent (e) is an epoxy compound, the reactive functional group includes, for example, a carboxy group, an amino group, an amide group and the like. Are preferred. However, it is preferable that the reactive functional group be a group other than a carboxy group from the viewpoint of preventing corrosion of circuits of the semiconductor wafer and the semiconductor chip.
 上記反応性官能基を有する重合体(b)としては、例えば、少なくとも上記反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル系重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、上記アクリル系モノマー及び非アクリル系モノマーのいずれか一方又は両方として、上記反応性官能基を有するものを用いればよい。例えば、反応性官能基として水酸基を有する重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた上記アクリル系モノマー又は非アクリル系モノマーにおいて、1個又は2個以上の水素原子が上記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。 重合 As the polymer (b) having the reactive functional group, for example, a polymer obtained by polymerizing at least the monomer having the reactive functional group can be mentioned. In the case of the acrylic polymer (b-1), any one or both of the acrylic monomer and the non-acrylic monomer described above as the monomer constituting the acrylic polymer (b-1) having the reactive functional group is used. It may be used. For example, as the polymer (b) having a hydroxyl group as a reactive functional group, for example, a polymer obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester may be mentioned. Among acrylic monomers or non-acrylic monomers, there may be mentioned those obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional group.
 重合体(b)において、これを構成する構成単位の全量に対する、反応性官能基を有するモノマー由来の構成単位の含有量は、好ましくは1~25質量%、より好ましくは2~20質量%である。上記構成単位の含有量が上記範囲であると、重合体(b)において、架橋の程度がより好ましい範囲となる。 In the polymer (b), the content of the structural unit derived from the monomer having a reactive functional group is preferably 1 to 25% by mass, more preferably 2 to 20% by mass, based on the total amount of the structural units constituting the polymer (b). is there. When the content of the structural unit is in the above range, the degree of crosslinking in the polymer (b) is in a more preferable range.
 重合体(b)の質量平均分子量(Mw)は、エネルギー線硬化性樹脂組成物の造膜性がより良好となる点から、好ましくは10000~2000000、より好ましくは100000~1500000である。 質量 The mass average molecular weight (Mw) of the polymer (b) is preferably from 10,000 to 2,000,000, more preferably from 100,000 to 1500,000, from the viewpoint that the film formability of the energy ray-curable resin composition becomes better.
 エネルギー線硬化性樹脂組成物としては、重合体(a1)及び化合物(a2)のいずれか一方又は両方を含有するものが挙げられ、化合物(a2)を含有する場合、さらに重合体(b)も含有することが好ましい。 Examples of the energy ray-curable resin composition include those containing one or both of the polymer (a1) and the compound (a2). When the resin composition contains the compound (a2), the polymer (b) is also used. It is preferred to contain.
 エネルギー線硬化性成分(a)及び重合体(b)の合計含有量は、エネルギー線硬化性樹脂組成物の有効成分の全量(100質量%)又はエネルギー線硬化性樹脂層(I)の全量(100質量%)に対して、好ましくは5~90質量%、より好ましくは10~80質量%、更に好ましくは15~70質量%である。合計含有量が上記範囲であると、エネルギー線硬化性がより良好となる。 The total content of the energy ray-curable component (a) and the polymer (b) is determined based on the total amount of the active components (100% by mass) of the energy ray-curable resin composition or the total amount of the energy ray-curable resin layer (I) ( 100% by mass), preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and still more preferably 15 to 70% by mass. When the total content is within the above range, the energy ray curability becomes better.
 エネルギー線硬化性樹脂組成物又はエネルギー線硬化性樹脂層(I)がエネルギー線硬化性成分(a)及び重合体(b)を含有する場合、重合体(b)の含有量は、エネルギー線硬化性成分(a)100質量部に対して、好ましくは3~160質量部、より好ましくは6~130質量部である。重合体(b)の含有量が上記範囲であると、エネルギー線硬化性がより良好となる。 When the energy ray-curable resin composition or the energy ray-curable resin layer (I) contains the energy ray-curable component (a) and the polymer (b), the content of the polymer (b) is The amount is preferably from 3 to 160 parts by mass, more preferably from 6 to 130 parts by mass, based on 100 parts by mass of the active ingredient (a). When the content of the polymer (b) is in the above range, the energy ray curability becomes better.
 エネルギー線硬化性樹脂組成物は、エネルギー線硬化性成分(a)及び重合体(b)以外に、目的に応じて、光重合開始剤(c)、カップリング剤(d)、架橋剤(e)、着色剤(g)、熱硬化性成分(f)、硬化促進剤(g)、充填材(h)及び汎用添加剤(z)からなる群より選択される1種以上を含有していてもよい。例えば、エネルギー線硬化性成分(a)及び熱硬化性成分(f)を含有するエネルギー線硬化性樹脂組成物を用いることにより、形成されるエネルギー線硬化性樹脂層(I)は、加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性樹脂層(I)から形成された硬化樹脂層(I’)の強度も向上する。 The energy ray-curable resin composition contains, in addition to the energy ray-curable component (a) and the polymer (b), a photopolymerization initiator (c), a coupling agent (d), and a crosslinking agent (e) according to the purpose. ), A coloring agent (g), a thermosetting component (f), a curing accelerator (g), a filler (h) and a general-purpose additive (z). Is also good. For example, by using an energy-ray-curable resin composition containing the energy-ray-curable component (a) and the thermosetting component (f), the formed energy-ray-curable resin layer (I) is coated by heating. The adhesive strength to the adherend is improved, and the strength of the cured resin layer (I ′) formed from the energy ray-curable resin layer (I) is also improved.
〔光重合開始剤(c)〕
 光重合開始剤(c)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;ベンゾフェノン、2-(ジメチルアミノ)-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタノン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のベンゾフェノン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;2-クロロアントラキノン等が挙げられる。また、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。
 光重合開始剤(c)は、単独で用いてもよく、2種以上を併用してもよい。
 エネルギー線硬化性樹脂組成物又はエネルギー線硬化性樹脂層(I)中の光重合開始剤(c)の含有量は、エネルギー線硬化性化合物(a)100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.03~10質量部、更に好ましくは0.05~5質量部である。
[Photopolymerization initiator (c)]
Examples of the photopolymerization initiator (c) include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; Acetophenone compounds such as -hydroxy-2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethan-1-one; bis (2,4,6-trimethylbenzoyl) phenyl Acylphosphine oxide compounds such as phosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfides such as benzylphenyl sulfide and tetramethylthiuram monosulfide Α-ketol compounds such as 1-hydroxycyclohexylphenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; benzophenone, 2- (dimethylamino) -1- (4-morpholinophenyl) -2-benzyl-1-butanone, ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime Benzophenone compounds such as benzophenone compounds; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzyl; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1- [4- (1-methyl Vinyl) phenyl] propanone; 2-chloroanthraquino And the like. Also, a quinone compound such as 1-chloroanthraquinone; a photosensitizer such as an amine can be used.
The photopolymerization initiator (c) may be used alone or in combination of two or more.
The content of the photopolymerization initiator (c) in the energy ray-curable resin composition or the energy ray-curable resin layer (I) is preferably 0.1 to 100 parts by mass of the energy ray-curable compound (a). The amount is from 01 to 20 parts by mass, preferably from 0.03 to 10 parts by mass, more preferably from 0.05 to 5 parts by mass.
〔カップリング剤(d)〕
 カップリング剤(d)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、エネルギー線硬化性樹脂層(I)の密着性を向上させることができ、また、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)が、耐熱性を損なうことなく、耐水性が向上する。
 カップリング剤(d)は、単独で用いてもよく、2種以上を併用してもよい。
[Coupling agent (d)]
By using a coupling agent (d) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness of the energy ray-curable resin layer (I) can be improved. The cured resin layer (I ') obtained by curing the curable resin layer (I) has improved water resistance without impairing the heat resistance.
The coupling agent (d) may be used alone or in combination of two or more.
 カップリング剤(d)は、エネルギー線硬化性成分(a)、重合体(b)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
The coupling agent (d) is preferably a compound having a functional group capable of reacting with a functional group of the energy ray-curable component (a), the polymer (b) or the like, and is preferably a silane coupling agent. More preferred.
Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethylamino ) Propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Silane, 3-mercaptopropyl methyl dimethoxy silane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazole silane, and the like.
 エネルギー線硬化性樹脂組成物又はエネルギー線硬化性樹脂層(I)中のカップリング剤(d)の含有量は、エネルギー線硬化性成分(a)及び重合体(b)の合計100質量部に対して、好ましくは0.03~20質量部、より好ましくは0.05~10質量部、更に好ましくは0.1~5質量部である。カップリング剤(d)の含有量が上記下限値以上であると、充填材の樹脂への分散性向上、エネルギー線硬化性樹脂層(I)の接着性の向上などの効果がより顕著に得られ、上記上限値以下であることで、アウトガスの発生が抑制される。 The content of the coupling agent (d) in the energy ray-curable resin composition or the energy ray-curable resin layer (I) is 100 parts by mass in total of the energy ray-curable component (a) and the polymer (b). On the other hand, it is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and still more preferably 0.1 to 5 parts by mass. When the content of the coupling agent (d) is equal to or more than the above lower limit, effects such as improvement in dispersibility of the filler in the resin and improvement in adhesiveness of the energy ray-curable resin layer (I) are more remarkably obtained. The generation of outgas is suppressed by being equal to or less than the upper limit.
〔架橋剤(e)〕
 架橋剤(e)を用いて、エネルギー線硬化性成分(a)、重合体(b)等を架橋することにより、エネルギー線硬化性樹脂層(I)の初期接着力及び凝集力を調節できる。
 架橋剤(e)は、単独で用いてもよく、2種以上を併用してもよい。
[Crosslinking agent (e)]
By cross-linking the energy ray-curable component (a), the polymer (b), and the like using the cross-linking agent (e), the initial adhesive strength and cohesion of the energy ray-curable resin layer (I) can be adjusted.
The crosslinking agent (e) may be used alone or in combination of two or more.
 架橋剤(e)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the crosslinking agent (e) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based crosslinker (a crosslinker having a metal chelate structure), an aziridine-based crosslinker (a crosslinker having an aziridinyl group), and the like. Is mentioned.
 有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);上記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;上記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。
 上記「アダクト体」は、上記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味し、その例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。
Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively abbreviated as “aromatic polyvalent isocyanate compound, etc.”). Trimers, isocyanurates and adducts of the aromatic polyisocyanate compound, etc .; terminal isocyanate urethane prepolymers obtained by reacting the aromatic polyvalent isocyanate compound with a polyol compound, etc. Is mentioned.
The “adduct” is a mixture of the aromatic polyvalent isocyanate compound, the aliphatic polyvalent isocyanate compound or the alicyclic polyvalent isocyanate compound and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a compound having a molecular active hydrogen, and examples thereof include an adduct of xylylene diisocyanate of trimethylolpropane as described later. Further, the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and having an isocyanate group at the terminal of the molecule.
 有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 As the organic polyvalent isocyanate compound, more specifically, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylolpropane To all or some of the hydroxyl groups of polyols such as tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate. Two or more compounds are added; lysine diisocyanate.
 有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate, tetramethylolmethane- Tri-β-aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
 架橋剤(e)として有機多価イソシアネート化合物を用いる場合、エネルギー線硬化性成分(a)及び/又は重合体(b)として、水酸基含有重合体を用いることが好ましい。架橋剤(e)がイソシアネート基を有し、エネルギー線硬化性成分(a)及び/又は重合体(b)が水酸基を有する場合、架橋剤(e)とエネルギー線硬化性成分(a)及び/又は重合体(b)との反応によって、エネルギー線硬化性樹脂層(I)に架橋構造を簡便に導入できる。 場合 When using an organic polyvalent isocyanate compound as the crosslinking agent (e), it is preferable to use a hydroxyl group-containing polymer as the energy ray-curable component (a) and / or the polymer (b). When the crosslinking agent (e) has an isocyanate group and the energy ray-curable component (a) and / or the polymer (b) has a hydroxyl group, the crosslinking agent (e) and the energy ray-curable component (a) and / or Alternatively, a crosslinked structure can be easily introduced into the energy ray-curable resin layer (I) by a reaction with the polymer (b).
 エネルギー線硬化性樹脂組成物又はエネルギー線硬化性樹脂層(I)中の架橋剤(e)の含有量は、エネルギー線硬化性成分(a)及び重合体(b)の合計100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.1~10質量部、更に好ましくは0.5~5質量部である。 The content of the crosslinking agent (e) in the energy ray-curable resin composition or the energy ray-curable resin layer (I) is based on 100 parts by mass of the total of the energy ray-curable component (a) and the polymer (b). The amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.5 to 5 parts by mass.
〔熱硬化性成分(f)〕
 熱硬化性成分(f)としては、例えば、エポキシ系熱硬化性樹脂、熱硬化性ポリイミド、ポリウレタン、不飽和ポリエステル、シリコーン樹脂等が挙げられ、これらの中でも、エポキシ系熱硬化性樹脂が好ましい。
 熱硬化性成分(f)は、単独で用いてもよく、2種以上を併用してもよい。
[Thermosetting component (f)]
Examples of the thermosetting component (f) include an epoxy thermosetting resin, a thermosetting polyimide, a polyurethane, an unsaturated polyester, and a silicone resin. Of these, the epoxy thermosetting resin is preferable.
The thermosetting component (f) may be used alone or in combination of two or more.
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(f1)を含有し、さらに熱硬化剤(f2)を含有していてもよい。
(Epoxy thermosetting resin)
The epoxy-based thermosetting resin contains an epoxy resin (f1), and may further contain a thermosetting agent (f2).
 エポキシ樹脂(f1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等の2官能以上のエポキシ化合物が挙げられる。
 エポキシ樹脂(f1)は、単独で用いてもよく、2種以上を併用してもよい。
Examples of the epoxy resin (f1) include known epoxy resins, and examples thereof include a polyfunctional epoxy resin, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolak epoxy resin, dicyclopentadiene type epoxy resin, and biphenyl type epoxy resin. Bifunctional or higher functional epoxy compounds such as resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenylene skeleton type epoxy resin.
The epoxy resin (f1) may be used alone or in combination of two or more.
 エポキシ樹脂(f1)としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等等の不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、得られるパッケージの信頼性が向上する。 As the epoxy resin (f1), an epoxy resin having an unsaturated hydrocarbon group such as an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, a (meth) acrylamide group or the like is used. Is also good. An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, the reliability of the obtained package is improved.
 エポキシ樹脂(f1)の数平均分子量は、エネルギー線硬化性樹脂層(I)の硬化性、並びに硬化樹脂層(I’)の強度及び耐熱性の点から、好ましくは300~30000、より好ましくは400~10000、更に好ましくは500~3000である。
 エポキシ樹脂(f1)のエポキシ当量は、好ましくは100~1000g/eq、より好ましくは150~800g/eqである。
The number average molecular weight of the epoxy resin (f1) is preferably from 300 to 30,000, more preferably from the viewpoint of the curability of the energy ray-curable resin layer (I) and the strength and heat resistance of the cured resin layer (I ′). It is from 400 to 10,000, more preferably from 500 to 3,000.
The epoxy equivalent of the epoxy resin (f1) is preferably 100 to 1000 g / eq, more preferably 150 to 800 g / eq.
 熱硬化剤(f2)は、エポキシ樹脂(f1)に対する硬化剤として機能する。
 熱硬化剤(f2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。上記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
 熱硬化剤(f2)は、単独で用いてもよく、2種以上を併用してもよい。
The thermosetting agent (f2) functions as a curing agent for the epoxy resin (f1).
Examples of the thermosetting agent (f2) include compounds having two or more functional groups capable of reacting with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is converted to an anhydride. It is preferably a phenolic hydroxyl group or an amino group.
The thermosetting agent (f2) may be used alone or in combination of two or more.
 熱硬化剤(f2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等が挙げられる。
 熱硬化剤(f2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド等が挙げられる。
 熱硬化剤(f2)の含有量は、エポキシ樹脂(f1)100質量部に対して、好ましくは0.01~20質量部である。
Among the thermal curing agents (f2), examples of the phenolic curing agent having a phenolic hydroxyl group include a polyfunctional phenol resin, biphenol, a novolak phenol resin, a dicyclopentadiene phenol resin, and an aralkyl phenol resin.
Among the thermosetting agents (f2), examples of the amine-based curing agent having an amino group include dicyandiamide.
The content of the thermosetting agent (f2) is preferably 0.01 to 20 parts by mass based on 100 parts by mass of the epoxy resin (f1).
 熱硬化性成分(f)の含有量(例えば、エポキシ樹脂(f1)及び熱硬化剤(f2)の総含有量)は、重合体(b)100質量部に対して、好ましくは1~500質量部である。 The content of the thermosetting component (f) (for example, the total content of the epoxy resin (f1) and the thermosetting agent (f2)) is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the polymer (b). Department.
〔硬化促進剤(g)〕
 硬化促進剤(g)は、エネルギー線硬化性樹脂層(I)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(g)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 硬化促進剤(g)を用いる場合、硬化促進剤(g)の含有量は、熱硬化性成分(f)100質量部に対して、好ましくは0.01~10質量部である。
[Curing accelerator (g)]
The curing accelerator (g) is a component for adjusting the curing speed of the energy ray-curable resin layer (I).
Preferred curing accelerators (g) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole , 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, imidazoles such as 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine, etc. Organic phosphines; and tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphine tetraphenylborate.
When the curing accelerator (g) is used, the content of the curing accelerator (g) is preferably 0.01 to 10 parts by mass based on 100 parts by mass of the thermosetting component (f).
〔汎用添加剤(z)〕
 汎用添加剤(z)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されないが、例えば、充填材、着色剤、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤等が挙げられる。
 汎用添加剤(z)は、各々について、単独で用いてもよく、2種以上を併用してもよい。
[General purpose additive (z)]
The general-purpose additive (z) may be a known one and can be arbitrarily selected according to the purpose, and is not particularly limited. Examples thereof include a filler, a coloring agent, a plasticizer, an antistatic agent, an antioxidant, and a gettering agent. And the like.
The general-purpose additive (z) may be used alone or in combination of two or more.
 充填材としては、無機充填材、有機充填材等が挙げられ、これらを用いることで、硬化樹脂層(I’)の熱膨張係数を調整することができる。
 エネルギー線硬化性樹脂層(I)は、充填材を含有していてもよく、含有していなくてもよいが、充填材を含有する場合、その含有量は、反りの発生をより効果的に抑制する観点から、エネルギー線硬化性樹脂組成物の有効成分の全量(100質量%)又はエネルギー線硬化性樹脂層(I)の全量(100質量%)に対して、好ましくは5~87質量%、より好ましくは7~78質量%である。
 充填材としては、例えば、熱伝導性材料からなるものが挙げられる。
 無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 充填材の平均粒子径は、好ましくは0.01~20μm、より好ましくは0.1~15μm、更に好ましくは0.3~10μmである。充填材の平均粒子径が上記範囲であると、硬化樹脂層(I’)の接着性を維持しつつ、エネルギー線硬化性樹脂層(I)の透過率の低下を抑制できる。
Examples of the filler include an inorganic filler and an organic filler, and by using these, the thermal expansion coefficient of the cured resin layer (I ′) can be adjusted.
The energy ray-curable resin layer (I) may or may not contain a filler, but if it contains a filler, its content can more effectively reduce the occurrence of warpage. From the viewpoint of suppression, it is preferably 5 to 87% by mass relative to the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). , More preferably 7 to 78% by mass.
Examples of the filler include those made of a heat conductive material.
Examples of the inorganic filler include powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc .; beads obtained by spheroidizing these inorganic fillers; surface-modified products of these inorganic fillers Single crystal fibers of these inorganic fillers; glass fibers and the like.
The average particle size of the filler is preferably 0.01 to 20 μm, more preferably 0.1 to 15 μm, and still more preferably 0.3 to 10 μm. When the average particle diameter of the filler is in the above range, a decrease in the transmittance of the energy ray-curable resin layer (I) can be suppressed while maintaining the adhesiveness of the cured resin layer (I ′).
 エネルギー線硬化性樹脂組成物は、着色剤を含有していてもよく、含有していなくてもよいが、着色剤を含有する場合においては、その含有量は、少ないほど好ましく、具体的には、エネルギー線硬化性樹脂組成物の有効成分の全量(100質量%)又はエネルギー線硬化性樹脂層(I)の全量(100質量%)に対して、好ましくは5質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。 The energy ray-curable resin composition may or may not contain a coloring agent, but when the coloring agent is contained, the content is preferably as small as possible, and specifically, The amount is preferably less than 5% by mass, more preferably 0%, based on the total amount (100% by mass) of the active ingredients of the energy ray-curable resin composition or the total amount (100% by mass) of the energy ray-curable resin layer (I). 0.1 mass%, more preferably less than 0.01 mass%, even more preferably less than 0.001 mass%.
<<エネルギー線硬化性樹脂組成物の製造方法>>
 エネルギー線硬化性樹脂組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Production method of energy ray-curable resin composition >>
The energy ray-curable resin composition is obtained by blending each component for constituting the composition.
The order of addition of each component is not particularly limited, and two or more components may be added simultaneously.
When a solvent is used, the solvent may be mixed with any of the components other than the solvent to dilute the components in advance, or any of the components other than the solvent may be diluted in advance. Alternatively, a solvent may be used by mixing with these components.
The method of mixing each component at the time of compounding is not particularly limited, and a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; What is necessary is just to select suitably.
The temperature and time during addition and mixing of each component are not particularly limited as long as each component is not deteriorated, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
 上記溶媒としては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。これらの中でも、エネルギー線硬化性樹脂組成物中の含有成分をより均一に混合できる点から、メチルエチルケトン、トルエン、酢酸エチルが好ましい。溶媒は、単独で用いてもよく、2種以上を併用してもよい。 Examples of the solvent include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol; esters such as ethyl acetate; And amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone. Among these, methyl ethyl ketone, toluene, and ethyl acetate are preferable in that the components contained in the energy ray-curable resin composition can be more uniformly mixed. The solvents may be used alone or in combination of two or more.
 エネルギー線硬化性樹脂層(I)は、単層構成であってもよく、2層以上の複数層から構成されるものであってもよい。
 2層以上から構成されるエネルギー線硬化性樹脂層(I)としては、例えば、高い貯蔵弾性率E’を有する硬化樹脂層(I’)を付与するためのエネルギー線硬化性樹脂層(I-i)と、高い粘着力を有するエネルギー線硬化性樹脂層(I-ii)と、を有するものが挙げられる。このような構成を有する場合、エネルギー線硬化性樹脂層(I-ii)を封止対象物を載置する側の面に配することで、封止対象物を強固に固定することができると共に、硬化後は、エネルギー線硬化性樹脂層(I-i)を硬化してなる硬化樹脂層(I’)が、反りを効果的に抑制するため、仮固定層としての性能と、反り防止層としての性能を、より高度に両立させることができる。エネルギー線硬化性樹脂層(I-i)及び(I-ii)の好ましい組成及び物性は、上記したエネルギー線硬化性樹脂層(I)の好ましい組成及び物性の中から、所望する機能に応じたものを適宜選択して適用すればよい。
The energy ray-curable resin layer (I) may have a single-layer configuration or a configuration including two or more layers.
Examples of the energy ray-curable resin layer (I) composed of two or more layers include, for example, an energy ray-curable resin layer (I-) for providing a cured resin layer (I ′) having a high storage elastic modulus E ′. i) and an energy ray-curable resin layer (I-ii) having a high adhesive strength. In the case of having such a configuration, by disposing the energy ray-curable resin layer (I-ii) on the surface on which the object to be sealed is placed, the object to be sealed can be firmly fixed and After the curing, the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (Ii) effectively suppresses the warpage. Performance can be more highly compatible. The preferred composition and physical properties of the energy ray-curable resin layers (Ii) and (I-ii) depend on the desired function from the above-described preferred composition and physical properties of the energy ray-curable resin layer (I). What is necessary is just to select suitably and apply.
 エネルギー線硬化性樹脂層(I)の厚さは、好ましくは1~500μm、より好ましくは5~300μm、更に好ましくは10~200μm、より更に好ましくは15~100μm、より更に好ましくは20~50μmである。エネルギー線硬化性樹脂層(I)の厚さが上記下限値以上であると、反りがより一層効果的に抑制された硬化封止体を得ることができ、上記上限値以下であると、コストの増加を抑制することができると共に、優れた硬化性が得られる。
 ここで、「エネルギー線硬化性樹脂層(I)の厚さ」とは、エネルギー線硬化性樹脂層(I)全体の厚さを意味し、例えば、2層以上からなるエネルギー線硬化性樹脂層(I)の厚さとは、エネルギー線硬化性樹脂層(I)を構成するすべての層の合計の厚さを意味する。
The thickness of the energy ray-curable resin layer (I) is preferably 1 to 500 μm, more preferably 5 to 300 μm, further preferably 10 to 200 μm, still more preferably 15 to 100 μm, and still more preferably 20 to 50 μm. is there. When the thickness of the energy ray-curable resin layer (I) is equal to or more than the lower limit, a cured sealing body in which warpage is more effectively suppressed can be obtained. , And excellent curability can be obtained.
Here, the “thickness of the energy-ray-curable resin layer (I)” means the entire thickness of the energy-ray-curable resin layer (I), for example, two or more energy-ray-curable resin layers. The thickness of (I) means the total thickness of all the layers constituting the energy ray-curable resin layer (I).
 23℃における、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)の貯蔵弾性率E’は、反りを抑制して平坦な表面を有する硬化樹脂層付きの硬化封止体を製造可能な積層体とする観点から、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは5.0×10Pa以上、より更に好ましくは1.0×10以上であり、また、好ましくは1.0×1013Pa以下、より好ましくは1.0×1012Pa以下、更に好ましくは5.0×1011Pa以下、より更に好ましくは1.0×1011Pa以下である。 At 23 ° C., the storage elastic modulus E ′ of the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) is such that the curl is suppressed and warpage is suppressed with the cured resin layer having a flat surface. From the viewpoint of obtaining a laminated body from which the stopper can be manufactured, preferably, it is 1.0 × 10 7 Pa or more, more preferably 1.0 × 10 8 Pa or more, still more preferably 5.0 × 10 8 Pa or more, and still more. It is preferably 1.0 × 10 9 or more, more preferably 1.0 × 10 13 Pa or less, more preferably 1.0 × 10 12 Pa or less, further more preferably 5.0 × 10 11 Pa or less. More preferably, it is 1.0 × 10 11 Pa or less.
 エネルギー線硬化性樹脂層(I)の可視光(波長:380nm~750nm)透過率は、好ましくは5%以上、より好ましくは10%以上、更に好ましくは30%以上、より更に好ましくは50%以上である。可視光透過率が上記範囲であると、十分なエネルギー線硬化性が得られる。可視光透過率の上限値に制限はないが、例えば、95%以下とすることができる。上記透過率は、分光光度計を用いた公知の方法に従って測定することができる。 The visible light (wavelength: 380 nm to 750 nm) transmittance of the energy ray-curable resin layer (I) is preferably 5% or more, more preferably 10% or more, further preferably 30% or more, and still more preferably 50% or more. It is. When the visible light transmittance is in the above range, sufficient energy ray curability can be obtained. The upper limit of the visible light transmittance is not limited, but may be, for example, 95% or less. The transmittance can be measured according to a known method using a spectrophotometer.
<積層体の製造方法>
 本発明の一態様の積層体は、例えば、粘着剤層(X)、基材(Y)及びエネルギー線硬化性樹脂層(I)を、別々に形成し、これらを所望する構成となるように貼り合わせることで製造することができる。各層の形成は、例えば、剥離材の上に、各層を形成するための樹脂組成物を塗布及び乾燥して形成することができる。
 但し、本発明の一態様の積層体の製造方法は、上記の方法に限られるものではなく、例えば、剥離材の上に形成した粘着剤層(X)の上に、基材(Y)を形成するための樹脂組成物(y)を塗布し、その上に、更にエネルギー線硬化性樹脂組成物を塗布する方法のように、特定の層の上に順次、樹脂組成物を塗布して層形成して多層化する方法であってもよい。その際、複数の層を、例えば、多層コーター等を用いて同時に塗布してもよい。
<Production method of laminate>
In the laminate of one embodiment of the present invention, for example, the pressure-sensitive adhesive layer (X), the base material (Y), and the energy ray-curable resin layer (I) are separately formed so that these have a desired configuration. It can be manufactured by laminating. Each layer can be formed, for example, by applying and drying a resin composition for forming each layer on a release material.
However, the manufacturing method of the laminate of one embodiment of the present invention is not limited to the above method. For example, the base material (Y) is formed on the pressure-sensitive adhesive layer (X) formed on the release material. A method in which a resin composition (y) to be formed is applied, and then a resin composition is sequentially applied on a specific layer as in a method of applying an energy-ray-curable resin composition thereon. It may be a method of forming and multi-layering. At that time, a plurality of layers may be simultaneously applied using, for example, a multilayer coater or the like.
[硬化封止体の製造方法]
 本発明の一態様の硬化封止体の製造方法は、本発明の一態様の積層体を用いて硬化封止体を製造する方法であって、下記工程(i)~(iv)を有する。
工程(i):前記積層体が有するエネルギー線硬化性樹脂層(I)の表面の一部に、封止対象物を載置する工程
工程(ii):エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成する工程
工程(iii):前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し、当該封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成する工程
工程(iv):前記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る工程
 なお、本発明の一態様における硬化封止体とは、封止対象物を封止材で被覆し、当該封止材を硬化させてなるものであり、封止対象物と封止材の硬化物とから構成される。
[Production method of cured sealing body]
A method for manufacturing a cured sealing body according to one embodiment of the present invention is a method for manufacturing a cured sealing body using the laminate according to one embodiment of the present invention, and includes the following steps (i) to (iv).
Step (i): Step of placing an object to be sealed on a part of the surface of the energy ray-curable resin layer (I) of the laminate. Step (ii): Applying the energy ray-curable resin layer (I). Step (iii) of irradiating an energy ray to form a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I): the sealing object and the sealing object At least the surface of the cured resin layer (I ′) at the peripheral portion is covered with a thermosetting sealing material, and the sealing material is thermoset to form a cured sealing body including the object to be sealed. Step (iv): The cured resin layer (I ′) and the support layer (II) are separated at the interface by the treatment for expanding the thermally expandable particles to obtain a cured sealing body with the cured resin layer. Step Note that the cured sealing body in one embodiment of the present invention is obtained by covering an object to be sealed with a sealing material and curing the sealing material. There, composed of a cured product of the sealing object and the sealing material.
 図4は、図1(a)に示す積層体1aを用いて硬化封止体を製造する工程を示した断面模式図である。以下、図4を適宜参照しながら、上述の各工程について説明する。 FIG. 4 is a schematic cross-sectional view showing a step of manufacturing a cured sealing body using the laminate 1a shown in FIG. Hereinafter, the respective steps described above will be described with reference to FIG.
<工程(i)>
 工程(i)は、本発明の一態様の積層体が有するエネルギー線硬化性樹脂層(I)の表面の一部に、封止対象物を載置する工程である。
 図4(a)には、本工程にて、積層体1aを用いて、支持層(II)の粘着剤層(X)の粘着表面を支持体50に貼付し、エネルギー線硬化性樹脂層(I)の表面の一部に、封止対象物60を載置した状態を示している。
 なお、図4(a)においては、図1(a)に示す積層体1aを用いた例を示しているが、他の構成を有する本発明の一態様の積層体を用いる場合においても、同様に、支持体、積層体、及び封止対象物をこの順で積層又は載置する。
<Step (i)>
Step (i) is a step of placing an object to be sealed on a part of the surface of the energy ray-curable resin layer (I) included in the laminate of one embodiment of the present invention.
In FIG. 4A, in this step, the adhesive surface of the adhesive layer (X) of the support layer (II) is attached to the support 50 using the laminate 1a, and the energy ray-curable resin layer ( A state in which the sealing target 60 is placed on a part of the surface of (I) is shown.
Note that FIG. 4A illustrates an example in which the stacked body 1a illustrated in FIG. 1A is used; Then, a support, a laminate, and an object to be sealed are laminated or placed in this order.
 工程(i)における温度条件としては、熱膨張性粒子が膨張しない温度で行われることが好ましく、例えば、0~80℃の環境下(但し、膨張開始温度(t)が60~80℃である場合には、膨張開始温度(t)未満の環境下)で行われることが好ましい。 The temperature condition in the step (i) is preferably performed at a temperature at which the thermally expandable particles do not expand, for example, in an environment of 0 to 80 ° C (provided that the expansion start temperature (t) is 60 to 80 ° C). In this case, it is preferable that the heat treatment be performed under an environment lower than the expansion start temperature (t).
 支持体は、積層体の粘着剤層(X)の粘着表面の全面に貼付されることが好ましい。
 したがって、支持体は、板状であることが好ましい。また、粘着剤層(X)の粘着表面と貼付される側の支持体の表面の面積は、図4に示すように、粘着剤層(X)の粘着表面の面積以上であることが好ましい。
The support is preferably attached to the entire surface of the adhesive surface of the adhesive layer (X) of the laminate.
Therefore, the support is preferably plate-shaped. Further, as shown in FIG. 4, the area of the surface of the support on the side to be adhered to the adhesive surface of the adhesive layer (X) is preferably equal to or larger than the area of the adhesive surface of the adhesive layer (X).
 支持体を構成する材質としては、封止対象物の種類、工程(ii)で使用する封止材の種類等に応じて、機械強度、耐熱性等の要求される特性を考慮の上、適宜選択される。
 具体的な支持体を構成する材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、及びシリコンウエハ等が好ましい。また、エネルギー線硬化性樹脂層(I)に対して、支持体を介してエネルギー線を照射することを可能にする観点からは、支持体はガラス等の透明材料であることが好ましい。
 なお、エンジニアリングプラスチックとしては、ナイロン、ポリカーボネート(PC)、及びポリエチレンテレフタレート(PET)等が挙げられる。
 スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、及びポリエーテルエーテルケトン(PEEK)等が挙げられる。
The material constituting the support is appropriately determined in consideration of the required properties such as mechanical strength and heat resistance according to the type of the object to be sealed, the type of the sealing material used in step (ii), and the like. Selected.
Specific examples of the material constituting the support include: metal materials such as SUS; nonmetallic inorganic materials such as glass and silicon wafer; epoxy resin, ABS resin, acrylic resin, engineering plastic, super engineering plastic, polyimide resin, Resin materials such as polyamideimide resin; composite materials such as glass epoxy resin; and the like, among which SUS, glass, and silicon wafer are preferable. The support is preferably made of a transparent material such as glass from the viewpoint that the energy ray-curable resin layer (I) can be irradiated with energy rays through the support.
The engineering plastics include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
Examples of the super engineering plastic include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
 支持体の厚さは、封止対象物の種類、工程(ii)で使用する封止材の種類等に応じて適宜選択されるが、好ましくは20μm以上50mm以下であり、より好ましくは60μm以上20mm以下である。 The thickness of the support is appropriately selected according to the type of the object to be sealed, the type of the sealing material used in step (ii), and the like, but is preferably 20 μm or more and 50 mm or less, more preferably 60 μm or more. It is 20 mm or less.
 一方、エネルギー線硬化性樹脂層(I)の表面の一部に載置される封止対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。 On the other hand, as a sealing target placed on a part of the surface of the energy ray-curable resin layer (I), for example, a semiconductor chip, a semiconductor wafer, a compound semiconductor, a semiconductor package, an electronic component, a sapphire substrate, a display, And a substrate for a panel.
 封止対象物が半導体チップである場合、本発明の一態様の積層体を用いることで、硬化樹脂層付き半導体チップを製造することができる。
 半導体チップは、従来公知のものを使用することができ、その回路面には、トランジスタ、抵抗、コンデンサー等の回路素子から構成される集積回路が形成されている。
 そして、半導体チップは、回路面とは反対側の裏面が、エネルギー線硬化性樹脂層(I)の表面で覆われるように載置されることが好ましい。この場合、載置後、半導体チップの回路面が表出した状態となる。
 半導体チップの載置には、フリップチップボンダー、ダイボンダー等の公知の装置を用いることができる。
 半導体チップの配置のレイアウト、配置数等は、目的とするパッケージの形態、生産数等に応じて適宜決定すればよい。
When the object to be sealed is a semiconductor chip, a semiconductor chip with a cured resin layer can be manufactured by using the laminate of one embodiment of the present invention.
A conventionally known semiconductor chip can be used, and an integrated circuit including a circuit element such as a transistor, a resistor, and a capacitor is formed on a circuit surface thereof.
The semiconductor chip is preferably mounted so that the back surface opposite to the circuit surface is covered with the surface of the energy ray-curable resin layer (I). In this case, after mounting, the circuit surface of the semiconductor chip is exposed.
For mounting the semiconductor chip, a known device such as a flip chip bonder or a die bonder can be used.
The layout and the number of semiconductor chips to be arranged may be determined as appropriate according to the form of the target package, the number of products to be produced, and the like.
 ここで、本発明の一態様の積層体は、FOWLP、FOPLP等のように、半導体チップをチップサイズよりも大きな領域を封止材で覆って、半導体チップの回路面だけではなく、封止材の表面領域においても再配線層を形成するパッケージに適用されることが好ましい。
 そのため、半導体チップは、エネルギー線硬化性樹脂層(I)の表面の一部に載置されるものであり、複数の半導体チップが、一定の間隔を空けて整列された状態で、当該表面に載置されることが好ましく、複数の半導体チップが、一定の間隔を空けて、複数行且つ複数列のマトリックス状に整列された状態で当該表面に載置されることがより好ましい。
 半導体チップ同士の間隔は、目的とするパッケージの形態等に応じて適宜決定すればよい。
Here, the laminated body of one embodiment of the present invention covers a semiconductor chip with a region larger than the chip size with a sealing material, such as FOWLP, FOPLP, or the like. It is preferable that the present invention is applied to a package in which a redistribution layer is formed even in the surface region of FIG.
Therefore, the semiconductor chip is mounted on a part of the surface of the energy ray-curable resin layer (I), and a plurality of semiconductor chips are arranged on the surface in a state where they are arranged at regular intervals. It is preferable that the semiconductor chips are mounted, and it is more preferable that the plurality of semiconductor chips are mounted on the surface in a state of being arranged in a matrix of a plurality of rows and a plurality of columns at a predetermined interval.
The distance between the semiconductor chips may be determined as appropriate depending on the desired package configuration and the like.
<工程(ii)>
 工程(ii)は、エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、該エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成する工程である。
 図4(b)は、本工程にて、エネルギー線硬化性樹脂層(I)を硬化して、硬化樹脂層(I’)が形成された状態を示している。
 エネルギー線の種類及び照射条件は、エネルギー線硬化性樹脂層(I)が十分にその機能を発揮する程度に硬化される種類及び条件であれば特に限定されず、公知の方法の中から、所望するプロセスに応じて適宜選択すればよい。
 エネルギー線硬化性樹脂層(I)の硬化時における、エネルギー線の照度は、4~280mW/cmであることが好ましく、前記硬化時における、エネルギー線の光量は、5~1000mJ/cmが好ましく、100~500mJ/cmがより好ましい。
 エネルギー線の種類及び照射装置は上記した通りである。
 エネルギー線は、エネルギー線硬化性樹脂層(I)にエネルギー線を照射できる方向であれば、どの方向から照射してもよいが、例えば、支持体(II)及び支持体50として、光透過率に優れるものを使用することで、支持体(II)及び支持体50を介して(すなわち、図4(b)における支持体50の粘着剤層(X)とは反対側の面から入射し、支持体50、粘着剤層(X)及び基材(Y)を通過して)、エネルギー線硬化性樹脂層(I)にエネルギー線を照射することができる。
<Step (ii)>
Step (ii) is a step of irradiating the energy ray-curable resin layer (I) with energy rays to form a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I). is there.
FIG. 4B shows a state where the energy ray-curable resin layer (I) is cured in this step to form a cured resin layer (I ′).
The kind and irradiation condition of the energy ray are not particularly limited as long as the kind and condition are such that the energy ray-curable resin layer (I) is sufficiently cured to exhibit its function. What is necessary is just to select suitably according to the process which performs.
The illuminance of the energy beam during curing of the energy ray-curable resin layer (I) is preferably from 4 to 280 mW / cm 2 , and the amount of energy beam during the curing is preferably from 5 to 1000 mJ / cm 2. It is more preferably 100 to 500 mJ / cm 2 .
The type of the energy beam and the irradiation device are as described above.
The energy ray may be irradiated from any direction as long as the energy ray can be irradiated to the energy ray-curable resin layer (I). For example, the support (II) and the support 50 may have a light transmittance By using a material excellent in the above, the light enters through the support (II) and the support 50 (that is, from the surface of the support 50 in FIG. 4B from the side opposite to the adhesive layer (X), The energy ray can be irradiated to the energy ray-curable resin layer (I) and the support 50, the pressure-sensitive adhesive layer (X) and the base material (Y).
<工程(iii)>
 工程(iii)は、上記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し(以下、「被覆処理」ともいう)、当該封止材を熱硬化させて、上記封止対象物を含む硬化封止体を形成する工程である。
 被覆処理においては、まず、封止対象物と、硬化樹脂層(I’)の表面の少なくとも封止対象物の周辺部と、を封止材で被覆する。
 封止材は、封止対象物の表出している面全体を覆いつつ、複数の半導体チップ同士の間隙にも充填される。
 例えば、図4(c)は、封止対象物60及び硬化樹脂層(I’)の表面をすべて覆うように封止材70で被覆した状態を示している。
<Step (iii)>
In the step (iii), the object to be sealed and the surface of the cured resin layer (I ′) at least at the peripheral portion of the object to be sealed are covered with a thermosetting sealing material (hereinafter referred to as “coating treatment”). This is a step of thermally curing the sealing material to form a cured sealing body including the object to be sealed.
In the covering process, first, the object to be sealed and at least the peripheral portion of the object to be sealed on the surface of the cured resin layer (I ′) are covered with a sealing material.
The sealing material covers the entire exposed surface of the object to be sealed and also fills the gap between the plurality of semiconductor chips.
For example, FIG. 4C shows a state in which the surface of the object 60 to be sealed and the surface of the cured resin layer (I ′) are entirely covered with the sealing material 70.
 封止材は、封止対象物及びそれに付随する要素を外部環境から保護する機能を有するものである。
 本発明の一態様の製造方法で用いる封止材は、熱硬化性樹脂を含有する、熱硬化性の封止材である。
 また、封止材は、室温で、顆粒状、ペレット状、フィルム状等の固形であってもよく、組成物の形態となった液状であってもよいが、作業性の観点から、フィルム状の封止材である封止樹脂フィルムが好ましい。
The sealing material has a function of protecting an object to be sealed and elements attached thereto from an external environment.
The sealing material used in the manufacturing method of one embodiment of the present invention is a thermosetting sealing material containing a thermosetting resin.
Further, the sealing material may be solid at room temperature, such as granules, pellets, and films, or may be a liquid in the form of a composition. Is preferred.
 被覆方法としては、従来の封止工程に適用されている方法の中から、封止材の種類に応じて適宜選択して適用することができ、例えば、ロールラミネート法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、トランスファーモールディング法、圧縮成形モールド法等を適用することができる。 As the coating method, it is possible to appropriately select and apply the coating method according to the type of the sealing material from the methods applied to the conventional sealing step. For example, a roll lamination method, a vacuum press method, a vacuum lamination method Method, spin coating method, die coating method, transfer molding method, compression molding method and the like can be applied.
 そして、被覆処理を行った後、封止材を熱硬化させて、封止対象物が封止材によって封止されてなる硬化封止体を得る。
 なお、工程(iii)の熱硬化処理は、熱膨張性粒子が膨張しない温度で行われ、例えば、熱膨張性粒子を含有する層を有する積層体を用いる場合、当該熱膨張性粒子の膨張開始温度(t)未満の温度条件で行われることが好ましい。
After performing the coating process, the sealing material is thermally cured to obtain a cured sealing body in which the object to be sealed is sealed with the sealing material.
Note that the thermosetting treatment in the step (iii) is performed at a temperature at which the thermally expandable particles do not expand. It is preferable that the heat treatment be performed under a temperature condition lower than the temperature (t).
 本発明の一態様の製造方法においては、図4(c)に示すように、封止材70で封止された封止対象物60側の面に硬化樹脂層(I’)が設けられた状態で、熱硬化処理を行う。
 硬化樹脂層(I’)が設けられているため、得られる硬化封止体の2つの表面間の収縮応力の差を小さくすることができ、硬化封止体に生じる反りが効果的に抑制できる考えられる。
In the manufacturing method of one embodiment of the present invention, as shown in FIG. 4C, the cured resin layer (I ′) is provided on the surface on the sealing object 60 side sealed with the sealing material 70. In the state, a thermosetting treatment is performed.
Since the cured resin layer (I ′) is provided, the difference in shrinkage stress between the two surfaces of the obtained cured sealing body can be reduced, and the warpage generated in the cured sealing body can be effectively suppressed. Conceivable.
<工程(iv)>
 工程(iv)は、上記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る工程である。
 図4(d)は、熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)との界面Pで分離した状態を示している。
 図4(d)に示すように、界面Pで分離させることで、封止対象物60が封止されてなる硬化封止体80と硬化樹脂層(I’)とを有する、硬化樹脂層付き硬化封止体100を得ることができる。
 なお、硬化樹脂層(I’)の存在は、硬化封止体に生じる反りが効果的に抑制し得る機能を有すると共に、封止対象物を保護し、封止対象物の信頼性の向上に寄与する。
<Step (iv)>
In the step (iv), the cured resin layer (I ′) and the support layer (II) are separated at the interface by the treatment for expanding the thermally expandable particles to obtain a cured sealing body with the cured resin layer. It is a process.
FIG. 4D shows a state where the heat-expandable particles are separated at the interface P between the cured resin layer (I ′) and the support layer (II) by a process of expanding the particles.
As shown in FIG. 4D, by separating at the interface P, a cured resin layer (I ′) having a cured sealing body 80 in which the sealing target 60 is sealed and a cured resin layer (I ′) is provided. The cured sealing body 100 can be obtained.
In addition, the presence of the cured resin layer (I ') has a function of effectively suppressing the warpage generated in the cured sealing body, protects the sealing object, and improves the reliability of the sealing object. Contribute.
 工程(iv)での「膨張させる処理」は、熱膨張性粒子の膨張開始温度(t)以上での加熱によって、当該熱膨張性粒子を膨張させる処理であり、該処理によって硬化樹脂層(I’)側の支持層(II)の表面に凹凸が生じる。その結果、界面Pでわずかな力で一括して容易に分離することができる。
 熱膨張性粒子を膨張させる際の「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。
 なお、加熱方法としては特に限定されず、例えば、ホットプレート、オーブン、焼成炉、赤外線ランプ、熱風送風機等による加熱方法が挙げられるが、支持層(II)と硬化樹脂層(I’)との界面Pで分離させ易くする観点から、加熱時の熱源を、支持体50側に設けることができる方法が好ましい。
The “expansion treatment” in the step (iv) is a treatment for expanding the heat-expandable particles by heating at a temperature equal to or higher than the expansion start temperature (t) of the heat-expandable particles, and the cured resin layer (I Unevenness occurs on the surface of the support layer (II) on the ') side. As a result, it is possible to easily separate the interface P at once with a small force.
The “temperature not lower than the expansion start temperature (t)” when expanding the thermally expandable particles is preferably “expansion start temperature (t) + 10 ° C.” or more and “expansion start temperature (t) + 60 ° C.” or less. It is more preferable that the temperature is not less than “expansion start temperature (t) + 15 ° C.” and not more than “expansion start temperature (t) + 40 ° C.”.
The heating method is not particularly limited, and examples thereof include a heating method using a hot plate, an oven, a baking furnace, an infrared lamp, a hot air blower, and the like. From the viewpoint of facilitating separation at the interface P, a method in which a heat source during heating can be provided on the support 50 side is preferable.
 このようにして得られた、硬化樹脂層付き硬化封止体は、この後、更に、必要な加工が施される。その一例を以下で説明する。なお、以下の説明においては、封止対象物60として、半導体チップ60を使用する態様について説明する。 硬化 The cured sealing body with the cured resin layer thus obtained is further subjected to necessary processing thereafter. One example is described below. In the following description, an embodiment in which the semiconductor chip 60 is used as the sealing target 60 will be described.
<第一の研削工程>
 図5(a)には上記製造方法で得られた硬化樹脂層付き硬化封止体100が示されており、図5(b)には、硬化封止体80の硬化樹脂層(I’)とは反対側の面100aを研削手段110によって研削し、半導体チップ60の回路面60aを露出させる第一の研削工程が示されている。
 研削手段110としては、特に限定されず、グラインダー等の公知の研削装置を使用して行えばよい。
 第一の研削工程を実施する際、作業性の観点から、硬化封止体の硬化樹脂層(I’)側の面は、別の支持体上に固定しておくことが好ましい。
 また、作業性の観点から、第一の研削工程の前に、1個又は複数のチップを含む所定の大きさでダイシングしてもよい。
<First grinding process>
FIG. 5A shows the cured resin body 100 with the cured resin layer obtained by the above-described manufacturing method, and FIG. A first grinding step is shown in which the surface 100a on the opposite side is ground by the grinding means 110 to expose the circuit surface 60a of the semiconductor chip 60.
The grinding means 110 is not particularly limited, and may be performed using a known grinding device such as a grinder.
When the first grinding step is performed, the surface of the cured sealing body on the cured resin layer (I ′) side is preferably fixed on another support from the viewpoint of workability.
Further, from the viewpoint of workability, dicing may be performed to a predetermined size including one or a plurality of chips before the first grinding step.
<再配線層及び外部端子電極形成工程>
 図5(c)には、第一の研削工程によって硬化封止体80の表面に露出した半導体チップ60の回路面60aと電気的に接続する再配線層200及び外部端子電極300を形成する再配線層及び外部端子電極形成工程が示されている。
 再配線層200の材質は、導電性材料であれば限定されず、金、銀、銅、アルミニウム等の金属、これらの金属を含有する合金等が挙げられる。再配線層200は、サブトラクティブ法、セミアディティブ法等の公知の方法により形成することができ、必要に応じて、1層以上の絶縁層を設けてもよい。
 外部端子電極300は、再配線層200の外部電極パッドと電気的に接続される。外部電子電極300は、例えば、はんだボール等をはんだ接合することで形成することができる。
<Re-wiring layer and external terminal electrode forming step>
FIG. 5C illustrates a process of forming a rewiring layer 200 and an external terminal electrode 300 that are electrically connected to the circuit surface 60 a of the semiconductor chip 60 exposed on the surface of the cured sealing body 80 by the first grinding process. A wiring layer and an external terminal electrode forming step are shown.
The material of the redistribution layer 200 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals. The redistribution layer 200 can be formed by a known method such as a subtractive method or a semi-additive method. If necessary, one or more insulating layers may be provided.
The external terminal electrode 300 is electrically connected to an external electrode pad of the redistribution layer 200. The external electronic electrode 300 can be formed, for example, by soldering a solder ball or the like.
<ダイシング工程>
 図5(d)には、外部端子電極300が接続された硬化樹脂層付き硬化封止体100をダイシングする工程が示されている。
 ダイシングは半導体チップ1個単位で行ってもよく、複数の半導体チップを含む所定の大きさでダイシングしてもよい。硬化樹脂層付き硬化封止体100をダイシングする方法は、特に限定されず、ダイシングソー等の切断手段によって実施することができる。
<Dicing process>
FIG. 5D shows a step of dicing the cured sealing body 100 with the cured resin layer to which the external terminal electrodes 300 are connected.
Dicing may be performed for each semiconductor chip, or may be performed for a predetermined size including a plurality of semiconductor chips. The method for dicing the cured sealing body 100 with the cured resin layer is not particularly limited, and can be implemented by a cutting means such as a dicing saw.
<第二の研削工程>
 図5(e)には、硬化封止体80の再配線層200とは反対側に配されている硬化樹脂層(I’)を、研削手段110によって研削する第二の研削工程が示されている。このとき、硬化封止体80の再配線層200側の面は、バックグラインドテープ等によって固定しておくことが好ましい。研削手段110は、第一の研削工程と同様の手段が挙げられる。
 第二の研削工程では、硬化樹脂層(I’)の一部を研削してもよいし、硬化樹脂層(I’)の全部を研削してもよい。
 硬化樹脂層(I’)を研削することによって、得られる半導体パッケージをより小型化することができる。したがって、当該観点からは、硬化樹脂層(I’)の全部を研削することが好ましい。
 一方、第二の研削工程を行わない場合、又は硬化樹脂層(I’)の一部のみを研削する場合、硬化樹脂層(I’)は、半導体チップ60の裏面を保護する役割をも果たすことができる。
<Second grinding process>
FIG. 5E shows a second grinding step of grinding the cured resin layer (I ′) disposed on the side of the cured sealing body 80 opposite to the rewiring layer 200 by the grinding means 110. ing. At this time, the surface of the cured sealing body 80 on the rewiring layer 200 side is preferably fixed with a back grinding tape or the like. The grinding means 110 includes the same means as in the first grinding step.
In the second grinding step, a part of the cured resin layer (I ′) may be ground, or the entire cured resin layer (I ′) may be ground.
By grinding the cured resin layer (I ′), the size of the obtained semiconductor package can be further reduced. Therefore, from this viewpoint, it is preferable to grind the entire cured resin layer (I ′).
On the other hand, when the second grinding step is not performed or when only a part of the cured resin layer (I ′) is ground, the cured resin layer (I ′) also serves to protect the back surface of the semiconductor chip 60. be able to.
 本実施形態について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 なお、以下の説明において、硬化性樹脂層(I)とは、「エネルギー線硬化性樹脂層(I)」及び「熱硬化性樹脂層」の両者を意味するものとする。
 また、各例における物性値は、以下の方法により測定した値である。
The present embodiment will be specifically described with reference to the following examples, but the present invention is not limited to the following examples.
In the following description, the curable resin layer (I) means both the “energy beam curable resin layer (I)” and the “thermosetting resin layer”.
The physical property values in each example are values measured by the following methods.
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Mass average molecular weight (Mw)>
Using a gel permeation chromatograph (manufactured by Tosoh Corporation, product name "HLC-8020"), the measurement was carried out under the following conditions, and the value measured in terms of standard polystyrene was used.
(Measurement condition)
-Column: TSK guard column HXL-L, TSK gel G2500HXL, TSK gel G2000HXL, TSK gel G1000HXL (all manufactured by Tosoh Corporation)-Column temperature: 40 ° C
・ Developing solvent: tetrahydrofuran ・ Flow rate: 1.0 mL / min
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JISK6783、Z 1702、Z 1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
The thickness was measured using a constant pressure thickness measuring instrument (model number: “PG-02J”, standard: JIS K6783, Z 1702, Z 1709) manufactured by Teclock Corporation.
<熱膨張性粒子の膨張開始温度(t)及び最大膨張温度の測定法>
 各例で使用した熱膨張性粒子の膨張開始温度(t)は、下記方法によって測定した。
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
 また、最大膨張温度は、上記の方法によって測定した変位量が最大となったときの温度とした。
<Methods for measuring expansion start temperature (t) and maximum expansion temperature of thermally expandable particles>
The expansion start temperature (t) of the thermally expandable particles used in each example was measured by the following method.
To an aluminum cup having a diameter of 6.0 mm (5.65 mm inner diameter) and a depth of 4.8 mm, 0.5 mg of the thermally expandable particles to be measured are added, and an aluminum lid (5.6 mm in diameter, thickness of 0. 1 mm) is prepared.
Using a dynamic viscoelasticity measuring apparatus, the height of the sample is measured from the upper part of the aluminum lid while a force of 0.01 N is applied to the sample by a pressurizer. Then, with the force of 0.01 N applied by the pressurizer, the heater is heated from 20 ° C. to 300 ° C. at a rate of 10 ° C./min, and the displacement of the pressurizer in the vertical direction is measured. Let the displacement start temperature be the expansion start temperature (t).
The maximum expansion temperature was defined as the temperature at which the amount of displacement measured by the above method became maximum.
<反りの評価>
 各例で作製した硬化性樹脂層(I)形成用シートの硬化性樹脂層(I)を、シリコンウエハ(サイズ:12インチ、厚さ:100μm)に貼付した。
 次に、熱硬化性樹脂組成物として、エポキシ樹脂(Struers社製、製品名「エポフィックスレジン」)と硬化剤(Struers社製、製品名「エポフィックスハードナー」)とを混合してなる樹脂組成物を準備し、該樹脂組成物を、上記シリコンウエハの、硬化性樹脂層(I)とは反対側の面に、厚さが30μmになるように塗布した。これにより、硬化性樹脂層(I)/シリコンウエハ/熱硬化性樹脂組成物層を、この順に有する硬化前測定サンプルを得た。
 続いて、硬化性樹脂層(I)がエネルギー線硬化性樹脂層(I)である場合には、紫外線を、紫外線照射装置RAD-2000(リンテック株式会社製)を用いて、照度215mW/cm、光量187mJ/cmの条件で3回照射して、エネルギー線硬化性樹脂層(I)を硬化させ、硬化樹脂層(I’)を形成した。また、硬化性樹脂層(I)が熱硬化性樹脂層(I)である場合には、180℃で60分間加熱して硬化させて、硬化樹脂層(I’)を形成した。その後、上記熱硬化性樹脂組成物を加熱して硬化させて、熱硬化樹脂層を形成し、硬化樹脂層(I’)/シリコンウエハ/熱硬化樹脂層を、この順に有する硬化後測定サンプルを得た。
 硬化後測定サンプルを水平台に載置した後、目視観察し、以下の基準に基づいて反りの有無を評価した。なお、硬化後測定サンプルにおける「シリコンウエハ/熱硬化樹脂層」部分は、半導体チップを熱硬化性樹脂によって封止加工してなる硬化封止体に相当する構成であるため、本評価によって硬化樹脂層(I’)の反り防止層としての性能を評価することができる。
 A:反り量が3mm以下である。
 B:反り量が3mmより大きく、15mm未満である。
 C:反り量が15mm以上である。
 なお、硬化性樹脂層(I)を貼付せずに、上記と同様の手順で、シリコンウエハ/熱硬化樹脂層を形成した場合の反り量は、15mmであった。
<Evaluation of warpage>
The curable resin layer (I) of the sheet for forming the curable resin layer (I) produced in each example was attached to a silicon wafer (size: 12 inches, thickness: 100 μm).
Next, as a thermosetting resin composition, a resin composition obtained by mixing an epoxy resin (manufactured by Struers, product name “Epofix resin”) and a curing agent (manufactured by Struers, product name “Epofix hardener”) A product was prepared, and the resin composition was applied to the surface of the silicon wafer on the side opposite to the curable resin layer (I) so as to have a thickness of 30 μm. As a result, a measurement sample before curing having the curable resin layer (I) / the silicon wafer / the thermosetting resin composition layer in this order was obtained.
Subsequently, when the curable resin layer (I) is the energy ray-curable resin layer (I), the ultraviolet rays are irradiated with an irradiance of 215 mW / cm 2 using an ultraviolet irradiation apparatus RAD-2000 (manufactured by Lintec Corporation). Irradiation was performed three times under the condition of a light amount of 187 mJ / cm 2 to cure the energy ray-curable resin layer (I) to form a cured resin layer (I ′). When the curable resin layer (I) was a thermosetting resin layer (I), it was cured by heating at 180 ° C. for 60 minutes to form a cured resin layer (I ′). Thereafter, the thermosetting resin composition is heated and cured to form a thermosetting resin layer, and a cured measurement sample having a cured resin layer (I ′) / silicon wafer / thermosetting resin layer in this order is prepared. Obtained.
After the cured sample was placed on a horizontal table, it was visually observed, and the presence or absence of warpage was evaluated based on the following criteria. The “silicon wafer / thermosetting resin layer” portion in the measurement sample after curing has a configuration corresponding to a cured sealing body obtained by sealing a semiconductor chip with a thermosetting resin. The performance of the layer (I ′) as a warp prevention layer can be evaluated.
A: The amount of warpage is 3 mm or less.
B: The amount of warpage is larger than 3 mm and smaller than 15 mm.
C: The amount of warpage is 15 mm or more.
In addition, when the silicon wafer / thermosetting resin layer was formed in the same procedure as above without attaching the curable resin layer (I), the amount of warpage was 15 mm.
<分離性の評価>
 各例で得られた積層体が有する硬化性樹脂層(I)の表面にシリコンウエハを貼付した後、エネルギー線又は熱によって硬化性樹脂層(I)を硬化させて硬化樹脂層(I’)を形成した。次に、加熱膨張処理によって膨張性基材層(Y1)を膨張させることで、硬化樹脂層(I’)と支持層(II)とを分離し、以下の基準に基づいて、分離性を評価した。なお、各例で製造した硬化性樹脂層(I)の硬化条件、及び支持層(II)の加熱膨張処理条件は後述する実施例1~5及び参考例1に記載の条件と同じ条件とした。
 A:分離可能であって、硬化樹脂層(I’)の外観が良好であり、糊残りもない。
 B:分離可能であって、硬化樹脂層(I’)の外観が良好だが、一部に糊残りがある。
 C:分離できない、又は、硬化樹脂層(I’)の全面に糊残りがある、又は、硬化樹脂層(I’)の外観が不良である。
<Evaluation of separability>
After attaching a silicon wafer to the surface of the curable resin layer (I) of the laminate obtained in each example, the curable resin layer (I) is cured by energy rays or heat to form a cured resin layer (I '). Was formed. Next, the expandable base material layer (Y1) is expanded by a heat expansion treatment to separate the cured resin layer (I ′) and the support layer (II), and the separation property is evaluated based on the following criteria. did. The curing conditions for the curable resin layer (I) and the thermal expansion treatment for the support layer (II) manufactured in each example were the same as those described in Examples 1 to 5 and Reference Example 1 described later. .
A: Separable, the appearance of the cured resin layer (I ') is good, and there is no adhesive residue.
B: Separable, the appearance of the cured resin layer (I ') is good, but adhesive residue is partially present.
C: It cannot be separated, or there is adhesive residue on the entire surface of the cured resin layer (I ′), or the appearance of the cured resin layer (I ′) is poor.
<膨張性基材層(Y1)の貯蔵弾性率E’>
 貯蔵弾性率E’測定用に作製した厚さ200μmの膨張性基材層(Y1)を、縦5mm×横30mm×厚さ200μmの大きさとし、剥離材を除去したものを試験サンプルとした。
 動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における、当該試験サンプルの貯蔵弾性率E’を測定した。
<Storage modulus E ′ of intumescent base material layer (Y1)>
A 200 μm thick expandable base material layer (Y1) prepared for the measurement of the storage elastic modulus E ′ was 5 mm long × 30 mm wide × 200 μm thick, and a test sample was obtained by removing the release material.
Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments Co., Ltd., product name “DMAQ800”), the test start temperature is 0 ° C., the test end temperature is 300 ° C., the heating rate is 3 ° C./min, the frequency is 1 Hz, and the amplitude is 20 μm. The storage elastic modulus E ′ of the test sample at a predetermined temperature was measured under the following conditions.
<第1粘着剤層(X1)及び第2粘着剤層(X2)の貯蔵せん断弾性率G’>
 第1粘着剤層(X1)及び第2粘着剤層(X2)を、直径8mmの円形に切断したものを、剥離材を除去し、重ね合わせて、厚さ3mmとしたものを試験サンプルとした。
 粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hzの条件で、ねじりせん断法によって、所定の温度における、試験サンプルの貯蔵せん断弾性率G’を測定した。
<Storage Shear Modulus G ′ of First Adhesive Layer (X1) and Second Adhesive Layer (X2)>
The first pressure-sensitive adhesive layer (X1) and the second pressure-sensitive adhesive layer (X2) were cut into a circle having a diameter of 8 mm, the release material was removed, and the resultant was superposed to form a test sample having a thickness of 3 mm. .
Using a viscoelasticity measuring device (manufactured by Anton Paar, device name "MCR300"), a torsional shear method under the conditions of a test start temperature of 0 ° C, a test end temperature of 300 ° C, a heating rate of 3 ° C / min, and a frequency of 1 Hz. The storage shear modulus G 'of the test sample at a predetermined temperature was measured.
<硬化樹脂層(I’)の貯蔵弾性率E’>
 各例で得られた硬化性樹脂層(I)を硬化させたものを試験片として、動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数11Hz、振幅20μmの条件で、23℃における、形成した硬化樹脂層(I’)の貯蔵弾性率E’を測定した。なお、試験片は、硬化性樹脂層(I)がエネルギー線硬化性樹脂層(I)である場合には、紫外線を、紫外線照射装置RAD-2000(リンテック株式会社製)を用いて、照度215mW/cm、光量187mJ/cmの条件で3回照射して硬化させたもの、硬化性樹脂層(I)が熱硬化性樹脂層(I)である場合には、180℃で60分間加熱して硬化させたものとした。
<Storage elastic modulus E ′ of cured resin layer (I ′)>
Using a cured specimen of the curable resin layer (I) obtained in each example as a test piece, using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name “DMAQ800”), the test start temperature The storage elastic modulus E ′ of the formed cured resin layer (I ′) was measured at 23 ° C. under the conditions of 0 ° C., a test termination temperature of 300 ° C., a temperature rising rate of 3 ° C./min, a vibration frequency of 11 Hz, and an amplitude of 20 μm. When the curable resin layer (I) is the energy ray-curable resin layer (I), the test piece was irradiated with ultraviolet light by using an ultraviolet irradiation device RAD-2000 (manufactured by Lintec Corporation) at an illuminance of 215 mW. / Cm 2 and a light amount of 187 mJ / cm 2 , and cured by heating three times. If the curable resin layer (I) is a thermosetting resin layer (I), heat at 180 ° C. for 60 minutes. And cured.
合成例1
(膨張性基材層(Y1)に使用する「アクリルウレタン系樹脂」の合成)
 窒素雰囲気下の反応容器内に、質量平均分子量1,000のポリカーボネートジオール(カーボネート型ジオール)100質量部に対して、イソホロンジイソシアネートを、ポリカーボネートジオールの水酸基とイソホロンジイソシアネートのイソシアネート基との当量比が1/1となるように配合し、さらにトルエン160質量部を加え、窒素雰囲気下にて、撹拌しながら、イソシアネート基濃度が理論量に到達するまで、80℃で6時間以上反応させた。
 次いで、2-ヒドロキシエチルメタクリレート(2-HEMA)1.44質量部をトルエン30質量部に希釈した溶液を添加して、両末端のイソシアネート基が消滅するまで、更に80℃で6時間反応させ質量平均分子量2.9万のウレタンプレポリマーを得た。
 続いて、窒素雰囲気下の反応容器内に、上記で得たウレタンプレポリマー100質量部、メチルメタクリレート(MMA)117質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)5.1質量部、1-チオグリセロール1.1質量部、及びトルエン50質量部を加え、撹拌しながら、105℃まで昇温した。そして、反応容器内に、さらにラジカル開始剤(株式会社日本ファインケム製、製品名「ABN-E」)2.2質量部をトルエン210質量部で希釈した溶液を、105℃に維持したまま4時間かけて滴下した。
 滴下終了後、105℃で6時間反応させ、質量平均分子量10.5万のアクリルウレタン系樹脂の溶液を得た。
Synthesis Example 1
(Synthesis of "acrylic urethane resin" used for intumescent base material layer (Y1))
In a reaction vessel under a nitrogen atmosphere, isophorone diisocyanate was added to 100 parts by mass of a polycarbonate diol (carbonate type diol) having a mass average molecular weight of 1,000, and the equivalent ratio of the hydroxyl group of the polycarbonate diol to the isocyanate group of isophorone diisocyanate was 1 / L, further added 160 parts by mass of toluene, and reacted at 80 ° C for 6 hours or more with stirring under a nitrogen atmosphere until the isocyanate group concentration reached the theoretical amount.
Next, a solution obtained by diluting 1.44 parts by mass of 2-hydroxyethyl methacrylate (2-HEMA) in 30 parts by mass of toluene was added, and the mixture was further reacted at 80 ° C. for 6 hours until the isocyanate groups at both ends disappeared. A urethane prepolymer having an average molecular weight of 29,000 was obtained.
Subsequently, 100 parts by mass of the urethane prepolymer obtained above, 117 parts by mass of methyl methacrylate (MMA), 5.1 parts by mass of 2-hydroxyethyl methacrylate (2-HEMA) were placed in a reaction vessel under a nitrogen atmosphere. 1.1 parts by mass of thioglycerol and 50 parts by mass of toluene were added, and the mixture was heated to 105 ° C. with stirring. Then, a solution prepared by diluting 2.2 parts by mass of a radical initiator (manufactured by Nippon Finechem Co., Ltd., product name “ABN-E”) with 210 parts by mass of toluene was further added to the reaction vessel for 4 hours while maintaining the temperature at 105 ° C. It dripped over.
After the completion of the dropwise addition, the mixture was reacted at 105 ° C. for 6 hours to obtain a solution of an acrylic urethane resin having a weight average molecular weight of 105,000.
[支持層(II)形成用シートの作製]
製造例1
(支持層(II-A))
 下記手順(1-1)~(1-4)に従って支持層(II-A)形成用シートを作製した。
 各層の形成に使用した材料の詳細は以下のとおりである。
[Production of sheet for forming support layer (II)]
Production Example 1
(Support layer (II-A))
A support layer (II-A) forming sheet was prepared according to the following procedures (1-1) to (1-4).
Details of the materials used for forming each layer are as follows.
<粘着性樹脂>
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
・アクリル系共重合体(ii):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)/アクリル酸=86.0/8.0/5.0/1.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体。
<添加剤>
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
<熱膨張性粒子>
・熱膨張性粒子A:株式会社クレハ製、製品名「S2640」、膨張開始温度(t)=208℃、平均粒子径(D50)=24μm、90%粒子径(D90)=49μm。
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
<Adhesive resin>
Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) = 80.0 / 20.0 (mass ratio) An acrylic copolymer having a Mw of 600,000.
Acrylic copolymer (ii): n-butyl acrylate (BA) / methyl methacrylate (MMA) / 2-hydroxyethyl acrylate (HEA) / acrylic acid = 86.0 / 8.0 / 5.0 / 1. An acrylic copolymer having a Mw of 600,000 and having a structural unit derived from a raw material monomer having a mass ratio of 0 (mass ratio).
<Additives>
-Isocyanate crosslinking agent (i): manufactured by Tosoh Corporation, product name "Coronate L", solid content concentration: 75% by mass.
<Thermal expandable particles>
- heat-expandable particles A: manufactured by Kureha Corporation, product name "S2640", expansion starting temperature (t) = 208 ℃, the average particle diameter (D 50) = 24μm, 90 % particle diameter (D 90) = 49μm.
<Release material>
-Heavy release film: manufactured by Lintec Co., Ltd., product name "SP-PET382150", a polyethylene terephthalate (PET) film provided with a release agent layer formed of a silicone release agent on one surface, thickness: 38 µm.
-Light release film: manufactured by Lintec Co., Ltd., product name "SP-PET381031", a PET film provided with a release agent layer formed of a silicone release agent on one side of the PET film, thickness: 38 µm.
(1-1)第1粘着剤層(X1)の形成
 粘着性樹脂である、上記アクリル系共重合体(i)の固形分100質量部に、上記イソシアネート系架橋剤(i)5.0質量部を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面(以下、「剥離処理面」ともいう)に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの非熱膨張性粘着剤層である第1粘着剤層(X1)を形成した。
 なお、23℃における、第1粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、2.5×10Paであった。
 また、上記方法に基づき測定した、第1粘着剤層(X1)の23℃における粘着力は、0.3N/25mmであった。
(1-1) Formation of First Pressure-Sensitive Adhesive Layer (X1) 5.0 parts by mass of the isocyanate-based crosslinking agent (i) was added to 100 parts by mass of the solid content of the acrylic copolymer (i) as an adhesive resin. Parts were mixed, diluted with toluene, and uniformly stirred to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass.
Then, the pressure-sensitive adhesive composition is applied to a surface of the release agent layer of the heavy release film (hereinafter, also referred to as a “release treated surface”) to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds. Thus, a first pressure-sensitive adhesive layer (X1), which was a non-thermally-expandable pressure-sensitive adhesive layer having a thickness of 5 μm, was formed.
In addition, the storage shear modulus G ′ (23) of the first pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 × 10 5 Pa.
Further, the adhesion at 23 ° C. of the first pressure-sensitive adhesive layer (X1) measured based on the above method was 0.3 N / 25 mm.
(1-2)第2粘着剤層(X2)の形成
 粘着性樹脂である、上記アクリル系共重合体(ii)の固形分100質量部に、上記イソシアネート系架橋剤(i)0.8質量部を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物を調製した。
 そして、上記軽剥離フィルムの剥離処理面に、当該粘着剤組成物を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ10μmの第2粘着剤層(X2)を形成した。
 なお、23℃における、第2粘着剤層(X2)の貯蔵せん断弾性率G’(23)は、9.0×10Paであった。
 また、上記方法に基づき測定した、第2粘着剤層(X2)の23℃における粘着力は、1.0N/25mmであった。
(1-2) Formation of the second pressure-sensitive adhesive layer (X2) 0.8 mass of the isocyanate-based crosslinking agent (i) is added to 100 mass parts of the solid content of the acrylic copolymer (ii), which is a pressure-sensitive resin. Parts were mixed, diluted with toluene, and uniformly stirred to prepare a pressure-sensitive adhesive composition having a solid content concentration (active ingredient concentration) of 25% by mass.
Then, the pressure-sensitive adhesive composition is applied to the release-treated surface of the light release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to form a second pressure-sensitive adhesive layer having a thickness of 10 μm ( X2).
At 23 ° C., the storage shear modulus G ′ (23) of the second pressure-sensitive adhesive layer (X2) was 9.0 × 10 4 Pa.
Further, the adhesion at 23 ° C. of the second pressure-sensitive adhesive layer (X2) measured according to the above method was 1.0 N / 25 mm.
(1-3)基材(Y)の作製
 合成例1で得たアクリルウレタン系樹脂の固形分100質量部に、上記イソシアネート系架橋剤(i)6.3質量部、触媒として、ジオクチルスズビス(2-エチルヘキサノエート)1.4質量部、及び上記熱膨張性粒子Aを配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の樹脂組成物を調製した。
 なお、得られた樹脂組成物中の有効成分の全量(100質量%)に対する、熱膨張性粒子Aの含有量は20質量%であった。
 そして、非膨張性基材である、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、製品名「コスモシャインA4100」、プローブタック値:0mN/5mmφ)の表面上に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を100℃で120秒間乾燥して、厚さ50μmの膨張性基材層(Y1)を形成した。
 ここで、上記の非膨張性基材であるPETフィルムは、非膨張性基材層(Y2)に相当する。
 以上のようにして、厚さ50μmの膨張性基材層(Y1)及び厚さ50μmの非膨張性基材層(Y2)からなる基材(Y)を作製した。
(1-3) Preparation of Base Material (Y) To 100 parts by mass of the solid content of the acrylic urethane-based resin obtained in Synthesis Example 1, 6.3 parts by mass of the isocyanate-based crosslinking agent (i), and dioctyltin bis as a catalyst 1.4 parts by mass of (2-ethylhexanoate) and the above-mentioned heat-expandable particles A were mixed, diluted with toluene, and uniformly stirred to obtain a resin composition having a solid content concentration (active ingredient concentration) of 30% by mass. Was prepared.
The content of the thermally expandable particles A was 20% by mass relative to the total amount (100% by mass) of the active ingredients in the obtained resin composition.
Then, on a surface of a non-expandable substrate, a 50 μm thick polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., product name “Cosmoshine A4100”, probe tack value: 0 mN / 5 mmφ), the resin composition The product was applied to form a coating film, and the coating film was dried at 100 ° C. for 120 seconds to form an intumescent base material layer (Y1) having a thickness of 50 μm.
Here, the PET film as the non-expandable base material corresponds to the non-expandable base material layer (Y2).
As described above, the base material (Y) including the 50 μm-thick expandable base material layer (Y1) and the 50 μm-thick non-expandable base material layer (Y2) was produced.
 なお、膨張性基材層(Y1)の貯蔵弾性率E’及びプローブタック値を測定するサンプルとして、上記軽剥離フィルムの剥離処理面に、当該樹脂組成物を塗布して塗膜を形成し、当該塗膜を雰囲気温度100℃で120秒間乾燥して、厚さ200μmの膨張性基材層(Y1)を同様に形成した。
 そして、上述の測定方法に基づき、膨張性基材層(Y1)の各温度における貯蔵弾性率及びプローブタック値を測定した。当該測定結果は、以下のとおりであった。
・23℃における貯蔵弾性率E’(23)=2.0×10Pa
・100℃における貯蔵弾性率E’(100)=3.0×10Pa
・208℃における貯蔵弾性率E’(208)=5.0×10Pa
・プローブタック値=0mN/5mmφ
As a sample for measuring the storage elastic modulus E ′ and the probe tack value of the expandable base material layer (Y1), the resin composition was applied to the release-treated surface of the light release film to form a coating film, The coating film was dried at an ambient temperature of 100 ° C. for 120 seconds to form a 200 μm thick expandable base material layer (Y1) in the same manner.
Then, based on the above-described measurement method, the storage elastic modulus and the probe tack value at each temperature of the expandable base material layer (Y1) were measured. The measurement results were as follows.
-Storage elastic modulus E '(23) at 23 ° C = 2.0 x 10 8 Pa
-Storage elastic modulus E '(100) at 100 ° C = 3.0 × 10 6 Pa
-Storage elastic modulus at 208 ° C E '(208) = 5.0 x 10 5 Pa
・ Probe tack value = 0mN / 5mmφ
(1-4)各層の積層
 上記(1-3)で作製した基材(Y)の非膨張性基材層(Y2)と、上記(1-2)で形成した第2粘着剤層(X2)とを貼り合わせると共に、膨張性基材層(Y1)と、上記(1-1)で形成した第1粘着剤層(X1)とを貼り合せた。
 そして、軽剥離フィルム/第2粘着剤層(X2)/非膨張性基材層(Y2)/膨張性基材層(Y1)/第1粘着剤層(X1)/重剥離フィルムをこの順で積層してなる、支持層(II-A)形成用シートを作製した。
(1-4) Lamination of Each Layer The non-expandable base material layer (Y2) of the base material (Y) prepared in the above (1-3) and the second pressure-sensitive adhesive layer (X2 ), And the expandable base material layer (Y1) and the first pressure-sensitive adhesive layer (X1) formed in (1-1) above were bonded.
Then, the light release film / second pressure-sensitive adhesive layer (X2) / non-expandable base material layer (Y2) / expandable base material layer (Y1) / first pressure-sensitive adhesive layer (X1) / heavy release film in this order. A laminated sheet for forming a support layer (II-A) was prepared.
製造例2
(支持層(II-B))
 製造例1において、熱膨張性粒子Aを、下記熱膨張性粒子Bに変更し、樹脂組成物を塗布して塗膜を形成した後の乾燥条件を、雰囲気温度100℃で1分間に変更したこと以外は、製造例1と同様にして、支持層(II-B)形成用シートを作製した。
・熱膨張性粒子B:日本フィライト株式会社製、製品名「031-40DU」、膨張開始温度(t)=80℃。
Production Example 2
(Supporting layer (II-B))
In Production Example 1, the heat-expandable particles A were changed to the following heat-expandable particles B, and the drying conditions after applying the resin composition to form a coating film were changed to an atmosphere temperature of 100 ° C. for 1 minute. Except for this, in the same manner as in Production Example 1, a sheet for forming a support layer (II-B) was produced.
Thermal expansion particles B: manufactured by Nippon Philite Co., Ltd., product name “031-40DU”, expansion start temperature (t) = 80 ° C.
製造例3
(支持層(II-C))
 製造例1において、熱膨張性粒子Aを、下記熱膨張性粒子Cに変更し、樹脂組成物を塗布して塗膜を形成した後の乾燥条件を、雰囲気温度100℃で1分間に変更したこと以外は、製造例1と同様にして、支持層(II-C)形成用シートを作製した。
・熱膨張性粒子C:日本フィライト株式会社製、製品名「053-40DU」、膨張開始温度(t)=100℃。
Production Example 3
(Support layer (II-C))
In Production Example 1, the heat-expandable particles A were changed to the following heat-expandable particles C, and the drying conditions after applying the resin composition to form a coating film were changed to an atmosphere temperature of 100 ° C. for 1 minute. Except for this, in the same manner as in Production Example 1, a sheet for forming a support layer (II-C) was produced.
Thermal expansion particles C: manufactured by Nippon Philite Co., Ltd., product name “053-40DU”, expansion start temperature (t) = 100 ° C.
 なお、製造例2及び3では、支持層(II)形成用シートを形成する際に、樹脂組成物を塗布して塗膜を形成した後の乾燥温度を、熱膨張性粒子の膨張開始温度(t)よりも高くしているが、上記の乾燥温度は雰囲気温度であるため、形成された支持層(II)に発泡は見られなかった。 In Production Examples 2 and 3, when forming the support layer (II) -forming sheet, the drying temperature after applying the resin composition to form a coating film is set to the expansion starting temperature of the thermally expandable particles ( Although it was higher than t), no foaming was observed in the formed support layer (II) because the drying temperature was the ambient temperature.
製造例4
(支持層(II-D))
 製造例1において、熱膨張性粒子Aを、下記熱膨張性粒子Dに変更し、樹脂組成物を塗布して塗膜を形成した後の乾燥条件を、雰囲気温度100℃で1分間に変更したこと以外は、製造例1と同様にして、支持層(II-D)形成用シートを作製した。
・熱膨張性粒子D:日本フィライト株式会社製、製品名「920-40DU」、膨張開始温度(t)=120℃。
Production Example 4
(Support layer (II-D))
In Production Example 1, the heat-expandable particles A were changed to the following heat-expandable particles D, and the drying conditions after applying the resin composition to form a coating film were changed to an atmosphere temperature of 100 ° C. for 1 minute. Except for this, in the same manner as in Production Example 1, a sheet for forming a support layer (II-D) was produced.
Thermal expansion particles D: manufactured by Nippon Philite Co., Ltd., product name “920-40DU”, expansion start temperature (t) = 120 ° C.
[硬化性樹脂層(I)形成用シートの作製]
製造例5
(エネルギー線硬化性樹脂層(I-A))
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチルケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の硬化性組成物の溶液を調製した。
[(a2)成分]
・ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、製品名「KAYARAD DPHA」):17.6質量部
[(b)成分]
・アクリル系重合体:アクリル酸ブチル(BA)(55質量部)、アクリル酸メチル(MA)(10質量部)、メタクリル酸グリシジル(GMA)(20質量部)及びアクリル酸-2-ヒドロキシエチル(HEA)(15質量部)を共重合してなるアクリル系樹脂(ガラス転移温度:-28℃、Mw:80万):17質量部
[(c)成分]
・フェニル1-ヒドロキシシクロヘキシルケトン(BASF社製、製品名「IRGACURE-184」):0.5質量部
[(d)成分]
・エポキシ基含有オリゴマー型シランカップリング剤(三菱ケミカル株式会社製、製品名「MSEP2」):0.6質量部
[(e)成分]
・TDI系架橋剤(トーヨーケム株式会社、製品名「BHS-8515」):0.5質量部
[(f)成分]
・液状ビスフェノールA型エポキシ樹脂(株式会社日本触媒製、製品名「BPA328」):16質量部
・ジシクロペンタジエン型エポキシ樹脂(株式会社日本触媒製、製品名「XD-1000L」):18質量部
・ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製、製品名「HP-7200HH」):27質量部
・ジシアンジアミド(株式会社ADEKA製、製品名「アデカバードナー3636AS」):1.5質量部
[(g)成分]
・イミダゾール(四国化成工業株式会社製、製品名「2PH-Z」):1.5質量部
[Production of sheet for forming curable resin layer (I)]
Production Example 5
(Energy ray-curable resin layer (IA))
A curable composition having a solid content (active ingredient concentration) of 61% by mass was prepared by blending the components of the types and amounts shown below (all of which are "active ingredient ratios"), further diluting with methyl ethyl ketone, and stirring uniformly. Was prepared.
[Component (a2)]
Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product name “KAYARAD DPHA”): 17.6 parts by mass [component (b)]
Acrylic polymer: butyl acrylate (BA) (55 parts by mass), methyl acrylate (MA) (10 parts by mass), glycidyl methacrylate (GMA) (20 parts by mass), and 2-hydroxyethyl acrylate ( Acrylic resin obtained by copolymerizing (HEA) (15 parts by mass) (glass transition temperature: -28 ° C., Mw: 800,000): 17 parts by mass [component (c)]
-Phenyl 1-hydroxycyclohexyl ketone (product name "IRGACURE-184" manufactured by BASF): 0.5 parts by mass [component (d)]
-Epoxy group-containing oligomeric silane coupling agent (manufactured by Mitsubishi Chemical Corporation, product name "MSEP2"): 0.6 parts by mass [component (e)]
・ TDI-based crosslinking agent (Toyochem Corporation, product name “BHS-8515”): 0.5 parts by mass [component (f)]
-Liquid bisphenol A type epoxy resin (manufactured by Nippon Shokubai Co., Ltd., product name "BPA328"): 16 parts by mass-Dicyclopentadiene type epoxy resin (Nippon Shokubai Co., Ltd., product name "XD-1000L"): 18 parts by mass・ Dicyclopentadiene type epoxy resin (manufactured by DIC Corporation, product name “HP-7200HH”): 27 parts by mass ・ Dicyandiamide (manufactured by ADEKA Corporation, product name “Adecover donor 3636AS”): 1.5 parts by mass [( g) component]
・ Imidazole (manufactured by Shikoku Chemicals Co., Ltd., product name “2PH-Z”): 1.5 parts by mass
 上記で調製した硬化性組成物の溶液を、上記軽剥離フィルムの剥離処理面上に、塗布し塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmのエネルギー線硬化性樹脂層(I-A)を形成し、エネルギー線硬化性樹脂層(I-A)及び軽剥離フィルムからなるエネルギー線硬化性樹脂層(I-A)形成用シートを作製した。 The solution of the curable composition prepared above was applied on the release-treated surface of the light release film to form a coating film, and the coating film was dried at 120 ° C. for 2 minutes, and the energy beam having a thickness of 25 μm was obtained. The curable resin layer (IA) was formed, and a sheet for forming the energy ray-curable resin layer (IA) composed of the energy ray-curable resin layer (IA) and the light release film was prepared.
製造例6
(エネルギー線硬化性樹脂層(I-B))
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチルケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の硬化性組成物の溶液を調製した。
[(a2)成分]
・ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(新中村化学工業株式会社製、製品名「A-9300-1CL」、3官能紫外線硬化性化合物):10質量部
[(b)成分]
・アクリル系樹脂:アクリル酸メチル(MA)(85質量部)/アクリル酸-2-ヒドロキシエチル(HEA)(15質量部)を共重合してなるアクリル系樹脂:28質量部
[(c)成分]
・2-(ジメチルアミノ)-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタノン(BASF社製、製品名「Irgacure(登録商標)369」):0.6質量部
[(d)成分]
・3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、製品名「KBM-503」):0.4質量部
[(h)成分]
・シリカフィラー(溶融石英フィラー、平均粒子径8μm):57質量部
[(z)成分]
・フタロシアニン系青色色素(Pigment Blue 15:3)32質量部と、イソインドリノン系黄色色素(Pigment Yellow 139)18質量部と、アントラキノン系赤色色素(Pigment Red 177)50質量部とを混合し、上記3種の色素の合計量/スチレンアクリル樹脂量=1/3(質量比)となるように顔料化して得られた顔料:4質量部
Production Example 6
(Energy ray-curable resin layer (IB))
A curable composition having a solid content (active ingredient concentration) of 61% by mass was prepared by blending the components of the types and amounts shown below (all of which are "active ingredient ratios"), further diluting with methyl ethyl ketone, and stirring uniformly. Was prepared.
[Component (a2)]
Ε-caprolactone-modified tris- (2-acryloxyethyl) isocyanurate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “A-9300-1CL”, trifunctional ultraviolet curable compound): 10 parts by mass [(b) component]
Acrylic resin: Acrylic resin obtained by copolymerizing methyl acrylate (MA) (85 parts by mass) / 2-hydroxyethyl acrylate (HEA) (15 parts by mass): 28 parts by mass [component (c) ]
-2- (dimethylamino) -1- (4-morpholinophenyl) -2-benzyl-1-butanone (manufactured by BASF, product name "Irgacure (registered trademark) 369"): 0.6 parts by mass [(d) component]
・ 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name “KBM-503”): 0.4 parts by mass [component (h)]
・ Silica filler (fused quartz filler, average particle size 8 μm): 57 parts by mass [(z) component]
32 parts by mass of a phthalocyanine-based blue pigment (Pigment Blue 15: 3), 18 parts by mass of an isoindolinone-based yellow pigment (Pigment Yellow 139), and 50 parts by mass of an anthraquinone-based red pigment (Pigment Red 177), Pigment obtained by pigmenting so that the total amount of the above three dyes / the amount of styrene acrylic resin = 1/3 (mass ratio): 4 parts by mass
 上記で調製した硬化性組成物の溶液を、上記軽剥離フィルムの剥離処理面上に、塗布し塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmのエネルギー線硬化性樹脂層(I-B)を形成し、エネルギー線硬化性樹脂層(I-B)及び軽剥離フィルムからなるエネルギー線硬化性樹脂層(I-B)形成用シートを作製した。 The solution of the curable composition prepared above was applied on the release-treated surface of the light release film to form a coating film, and the coating film was dried at 120 ° C. for 2 minutes, and the energy beam having a thickness of 25 μm was obtained. The curable resin layer (IB) was formed, and a sheet for forming the energy ray-curable resin layer (IB) including the energy ray-curable resin layer (IB) and the light release film was prepared.
製造例7
(熱硬化性樹脂層(I-C))
 下記に示す種類及び配合量(いずれも「有効成分比」)の各成分を配合し、さらにメチルエチケトンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)61質量%の硬化性組成物の溶液を調製した。
・アクリル系重合体:アクリル酸ブチル(BA)(1質量部)、アクリル酸メチル(MA)(74質量部)、メタクリル酸グリシジル(GMA)(15質量部)及びアクリル酸-2-ヒドロキシエチル(HEA)(10質量部)を共重合してなるアクリル系樹脂(ガラス転移温度:8℃、Mw:44万):18質量部
・液状ビスフェノールA型エポキシ樹脂(株式会社日本触媒製、製品名「BPA328」):3質量部
・固形ビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製、製品名「エピコート1055」):20質量部
・ジシクロペンタジエン型エポキシ樹脂(日本化薬株式会社製、製品名「XD-1000L」):1.5質量部
・ジシアンジアミド(ADEKA社製、製品名「アデカバードナー3636AS」):0.5質量部
・イミダゾール(四国化成工業株式会社製、製品名「2PH-Z」):0.5質量部
・エポキシ基含有オリゴマー型シランカップリング剤(三菱ケミカル株式会社製、製品名「MSEP2」):0.5質量部
・球状シリカフィラー(株式会社アドマテックス製、製品名「SC2050MA」):6質量部
・球状シリカフィラー(株式会社龍森、製品名「SV-10」):50質量部
Production Example 7
(Thermosetting resin layer (IC))
The following types and amounts (all of which are "active ingredient ratios") are blended, diluted with methyl ethyl ketone, and uniformly stirred to obtain a solid concentration (active ingredient concentration) of 61% by mass. A solution of the acidic composition was prepared.
Acrylic polymer: butyl acrylate (BA) (1 part by mass), methyl acrylate (MA) (74 parts by mass), glycidyl methacrylate (GMA) (15 parts by mass) and 2-hydroxyethyl acrylate ( HEA) (10 parts by mass) acrylic resin (glass transition temperature: 8 ° C., Mw: 440,000): 18 parts by mass liquid bisphenol A type epoxy resin (product name: Nippon Shokubai Co., Ltd.) BPA328 "): 3 parts by mass, solid bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name" Epicoat 1055 "): 20 parts by mass, dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., product name" XD-1000L "): 1.5 parts by mass dicyandiamide (ADEKA Corp., product name" Adecover donor 3636AS "): 0.5 quality Part: imidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., product name "2PH-Z"): 0.5 parts by mass-epoxy group-containing oligomer type silane coupling agent (manufactured by Mitsubishi Chemical Corporation, product name "MSEP2"): 0 0.5 parts by mass, spherical silica filler (manufactured by Admatechs Co., Ltd., product name "SC2050MA"): 6 parts by mass, spherical silica filler (Tatsumori Corporation, product name "SV-10"): 50 parts by mass
 上記で調製した硬化性組成物の溶液を、上記軽剥離フィルムの剥離処理面上に、塗布し塗膜を形成し、当該塗膜を120℃で2分間乾燥させて、厚さ25μmの熱硬化性樹脂層(I-C)を形成し、熱硬化性樹脂層(I-C)及び軽剥離フィルムからなる熱硬化性樹脂層(I-C)形成用シートを作製した。 The above-prepared solution of the curable composition is applied on the release-treated surface of the light release film to form a coating film, and the coating film is dried at 120 ° C. for 2 minutes, and thermally cured to a thickness of 25 μm. The thermosetting resin layer (IC) was formed, and a thermosetting resin layer (IC) forming sheet composed of the thermosetting resin layer (IC) and the light release film was prepared.
[積層体の作製]
実施例1~5、参考例1
 表1に示す支持層(II)形成用シートの重剥離フィルムを除去し、表出した第1粘着剤層(X1)と、表1に示す硬化性樹脂層(I)形成用シートの硬化性樹脂層(I)の表面とを貼り合せ、積層体を得た。なお、実施例5は、支持層(II-E)形成用シートとして、日東電工株式会社製の製品名「リバアルファ 3195」(膨張開始温度(t)=170℃)を使用した。
 各例で得られた積層体の分離性、及び反りの評価結果を表1に示す。
[Production of laminated body]
Examples 1 to 5, Reference Example 1
The heavy release film of the support layer (II) forming sheet shown in Table 1 was removed and the exposed first pressure-sensitive adhesive layer (X1) and the curable resin layer (I) forming sheet shown in Table 1 were cured. The surface of the resin layer (I) was bonded to obtain a laminate. In Example 5, as the sheet for forming the support layer (II-E), a product name “Riba Alpha 3195” (expansion start temperature (t) = 170 ° C.) manufactured by Nitto Denko Corporation was used.
Table 1 shows the evaluation results of the separability and warpage of the laminate obtained in each example.
[硬化封止体の作製]
 続いて、各例で得られた積層体を用いて、以下の手順により、硬化封止体を作製した。
[Production of cured sealing body]
Subsequently, using the laminate obtained in each example, a cured sealing body was produced by the following procedure.
(1)半導体チップの載置
 積層体が有する支持層(II)側の軽剥離フィルムを除去し、表出した支持層(II)の第2粘着剤層(X2)の粘着表面を支持体(ガラス)と貼付した。
 そして、硬化性樹脂層(I)側の軽剥離フィルムも除去し、表出した硬化性樹脂層(I)の表面上に、9個の半導体チップ(それぞれのチップサイズは6.4mm×6.4mm、チップ厚さは200μm(♯2000))を、各半導体チップの回路面とは反対側の裏面が硬化性樹脂層(I)の表面と接するように、必要な間隔で空けて載置した。
(1) Placement of Semiconductor Chip The light release film on the support layer (II) side of the laminate is removed, and the exposed adhesive surface of the second adhesive layer (X2) of the support layer (II) is exposed to the support ( (Glass).
Then, the light release film on the curable resin layer (I) side is also removed, and 9 semiconductor chips (each chip size is 6.4 mm × 6. 4 mm and a chip thickness of 200 μm (♯2000)) were mounted at necessary intervals so that the back surface opposite to the circuit surface of each semiconductor chip was in contact with the surface of the curable resin layer (I). .
(2)硬化樹脂層(I’)の形成
 実施例1~5においては、上記(1)の後、下記(3)の前に、硬化性樹脂層(I)であるエネルギー線硬化性樹脂層(I)に対して、紫外線(UV)を照射し、半導体チップが載置されてなる硬化樹脂層(I’)を形成した。なお、紫外線は、支持体(ガラス)側から、紫外線照射装置RAD-2000(リンテック株式会社製)を用いて、照度215mW/cm、光量187mJ/cmの条件で3回照射した。
 なお、参考例1は、(2)を実施せず、後述する(3)において、封止材を硬化させる過程で同時に硬化性樹脂層(I)である熱硬化性樹脂層を硬化させた。
(2) Formation of Cured Resin Layer (I ′) In Examples 1 to 5, after the above (1) and before the following (3), the energy ray curable resin layer which is the curable resin layer (I) Ultraviolet (UV) light was applied to (I) to form a cured resin layer (I ′) on which the semiconductor chip was mounted. The ultraviolet rays were irradiated three times from the support (glass) side using an ultraviolet irradiation apparatus RAD-2000 (manufactured by Lintec Corporation) under the conditions of illuminance of 215 mW / cm 2 and light amount of 187 mJ / cm 2 .
In Reference Example 1, the thermosetting resin layer, which is the curable resin layer (I), was simultaneously cured in the process of curing the sealing material in (3) described later without performing (2).
(3)硬化封止体の形成
 9個の上記半導体チップと、当該半導体チップの少なくとも周辺部の硬化樹脂層(I’)(参考例1においては熱硬化性樹脂層)の表面とを、封止材である、熱硬化性の封止樹脂フィルムによって被覆し、真空加熱加圧ラミネーター(ROHM and HAAS社製、製品名「7024HP5」)を用いて、封止樹脂フィルムを熱硬化させ、硬化封止体を作製した。なお、封止条件は、下記のとおりである。
・予熱温度:テーブル及びダイアフラム共に100℃
・真空引き:60秒間
・ダイナミックプレスモード:30秒間
・スタティックプレスモード:10秒間
・封止温度:180℃×60分間
(3) Formation of a cured sealing body Nine semiconductor chips and the surface of the cured resin layer (I ′) (the thermosetting resin layer in Reference Example 1) at least at the peripheral portion of the semiconductor chip are sealed. The sealing resin film is covered with a thermosetting sealing resin film, which is a stopper material, and the sealing resin film is heat-cured using a vacuum heating / pressurizing laminator (product name: 7024HP5, manufactured by ROHM and HAAS) and cured and sealed. A stop body was produced. The sealing conditions are as follows.
・ Preheating temperature: 100 ° C for both table and diaphragm
・ Evacuation: 60 seconds ・ Dynamic press mode: 30 seconds ・ Static press mode: 10 seconds ・ Sealing temperature: 180 ° C. × 60 minutes
(4)界面Pでの分離
 上記(3)の後、各積層体の支持層(II)に含有される熱膨張性粒子の膨張開始温度(t)+30℃の温度で3分間、加熱膨張処理を行い、支持層(II)の第1粘着剤層(X1)と硬化樹脂層(I’)との界面Pにて分離した。これによって、硬化樹脂層付き硬化封止体を得た。
(4) Separation at Interface P After the above (3), heat expansion treatment is performed for 3 minutes at the temperature of the expansion start temperature (t) of the thermally expandable particles contained in the support layer (II) of each laminate + 30 ° C for 3 minutes. Was carried out to separate at the interface P between the first pressure-sensitive adhesive layer (X1) of the support layer (II) and the cured resin layer (I ′). Thereby, a cured sealing body with a cured resin layer was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の一態様である積層体を用いた実施例1~5では、形成された硬化封止体に反りが発生せず、かつ、支持層(II)の分離性に優れていた。
 一方、硬化性樹脂層として、熱硬化性樹脂層を使用した参考例1では、硬化樹脂層(I’)から支持層(II)を分離することができなかった。
From Table 1, it is found that in Examples 1 to 5 using the laminated body which is one embodiment of the present invention, the formed cured body does not warp and has excellent separation of the support layer (II). Was.
On the other hand, in Reference Example 1 in which a thermosetting resin layer was used as the curable resin layer, the support layer (II) could not be separated from the cured resin layer (I ′).
1a、1b、2a、2b、3  積層体
(I)   エネルギー線硬化性樹脂層
(I’)   硬化樹脂層
(II)   支持層
(X)   粘着剤層
(X1)  第1粘着剤層
(X2)  第2粘着剤層
(Y)   基材
(Y1)  膨張性基材層
(Y2)  非膨張性基材層
50   支持体
60   封止対象物(半導体チップ)
70   封止材
80   硬化封止体
100  硬化樹脂層付き硬化封止体
100a 硬化封止体の面
110  研削手段
200  再配線層
300  外部端子電極
1a, 1b, 2a, 2b, 3 laminate (I) Energy ray-curable resin layer (I ') Cured resin layer (II) Support layer (X) Adhesive layer (X1) First adhesive layer (X2) 2 Adhesive layer (Y) Base material (Y1) Expandable base material layer (Y2) Non-expandable base material layer 50 Support body 60 Object to be sealed (semiconductor chip)
Reference Signs List 70 sealing material 80 cured sealing body 100 cured sealing layer 100a with cured resin layer cured sealing body surface 110 grinding means 200 rewiring layer 300 external terminal electrode

Claims (11)

  1.  エネルギー線硬化性樹脂層(I)と、
     該エネルギー線硬化性樹脂層(I)を支持する支持層(II)と、を有し、
     エネルギー線硬化性樹脂層(I)が、粘着性を有する表面を有し、
     支持層(II)が、基材(Y)及び粘着剤層(X)を有し、該基材(Y)及び粘着剤層(X)の少なくとも一方が熱膨張性粒子を含有し、
     エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)と支持層(II)とが、前記熱膨張性粒子を膨張させる処理によって、その界面で分離する、積層体。
    Energy ray-curable resin layer (I),
    A support layer (II) for supporting the energy ray-curable resin layer (I),
    The energy ray-curable resin layer (I) has a surface having tackiness,
    The support layer (II) has a substrate (Y) and an adhesive layer (X), and at least one of the substrate (Y) and the adhesive layer (X) contains thermally expandable particles;
    A laminate in which a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) and a support layer (II) are separated at an interface thereof by a process of expanding the thermally expandable particles.
  2.  エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)の23℃における貯蔵弾性率E’が、1.0×10~1.0×1013Paである、請求項1に記載の積層体。 The storage elastic modulus E ′ at 23 ° C. of the cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I) is 1.0 × 10 7 to 1.0 × 10 13 Pa. Item 7. The laminate according to Item 1.
  3.  エネルギー線硬化性樹脂層(I)の厚さが、1~500μmである、請求項1又は2に記載の積層体。 The laminate according to claim 1, wherein the energy ray-curable resin layer (I) has a thickness of 1 to 500 μm.
  4.  エネルギー線硬化性樹脂層(I)の可視光透過率が、5%以上である、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the visible ray transmittance of the energy ray-curable resin layer (I) is 5% or more.
  5.  基材(Y)が、前記熱膨張性粒子を含有する膨張性基材層(Y1)を有する、請求項1~4のいずれか1項に記載の積層体。 (5) The laminate according to any one of (1) to (4), wherein the base material (Y) has an expandable base material layer (Y1) containing the thermally expandable particles.
  6.  粘着剤層(X)が、非膨張性粘着剤層である、請求項5に記載の積層体。 The laminate according to claim 5, wherein the pressure-sensitive adhesive layer (X) is a non-expandable pressure-sensitive adhesive layer.
  7.  粘着剤層(X)とエネルギー線硬化性樹脂層(I)とが直接積層されてなる、請求項5又は6に記載の積層体。 The laminate according to claim 5, wherein the pressure-sensitive adhesive layer (X) and the energy ray-curable resin layer (I) are directly laminated.
  8.  基材(Y)が、非膨張性基材層(Y2)及び膨張性基材層(Y1)を有し、
     支持層(II)が、非膨張性基材層(Y2)、膨張性基材層(Y1)、及び粘着剤層(X)をこの順で有し、
     粘着剤層(X)とエネルギー線硬化性樹脂層(I)とが直接積層されてなる、請求項5~7のいずれか1項に記載の積層体。
    The base material (Y) has a non-expandable base material layer (Y2) and an expansible base material layer (Y1),
    The support layer (II) has a non-expandable base material layer (Y2), an expandable base material layer (Y1), and an adhesive layer (X) in this order,
    The laminate according to any one of claims 5 to 7, wherein the pressure-sensitive adhesive layer (X) and the energy ray-curable resin layer (I) are directly laminated.
  9.  エネルギー線硬化性樹脂層(I)の表面の一部に封止対象物を載置し、
     エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成し、
     前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し、
     当該封止材を熱硬化させた後に、前記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とをその界面で分離して、前記封止対象物を含む硬化封止体を形成するために用いられる、請求項1~8のいずれか1項に記載の積層体。
    An object to be sealed is placed on a part of the surface of the energy ray-curable resin layer (I),
    Irradiating the energy ray-curable resin layer (I) with energy rays to form a cured resin layer (I ′) obtained by curing the energy ray-curable resin layer (I),
    The object to be sealed and the surface of the cured resin layer (I ') at least in the peripheral portion of the object to be sealed are covered with a thermosetting sealing material,
    After the sealing material is thermally cured, the cured resin layer (I ′) and the support layer (II) are separated at the interface by a process of expanding the thermally expandable particles, and the object to be sealed is removed. The laminate according to any one of claims 1 to 8, which is used for forming a cured sealing body containing the laminate.
  10.  前記硬化封止体の反りを防止するために用いられる、請求項9に記載の積層体。 The laminate according to claim 9, which is used to prevent the cured sealing body from warping.
  11.  請求項1~10のいずれか1項に記載の積層体を用いて硬化封止体を製造する方法であって、下記工程(i)~(iv)を有する、硬化封止体の製造方法。
    工程(i):前記積層体が有するエネルギー線硬化性樹脂層(I)の表面の一部に、封止対象物を載置する工程
    工程(ii):エネルギー線硬化性樹脂層(I)にエネルギー線を照射して、エネルギー線硬化性樹脂層(I)を硬化してなる硬化樹脂層(I’)を形成する工程
    工程(iii):前記封止対象物と、当該封止対象物の少なくとも周辺部の硬化樹脂層(I’)の表面とを熱硬化性の封止材で被覆し、当該封止材を熱硬化させて、前記封止対象物を含む硬化封止体を形成する工程
    工程(iv):前記熱膨張性粒子を膨張させる処理によって、硬化樹脂層(I’)と支持層(II)とを、その界面で分離して、硬化樹脂層付き硬化封止体を得る工程
    A method for producing a cured encapsulant using the laminate according to any one of claims 1 to 10, wherein the method comprises the following steps (i) to (iv).
    Step (i): Step of placing an object to be sealed on a part of the surface of the energy ray-curable resin layer (I) of the laminate. Step (ii): Applying the energy ray-curable resin layer (I). Step (iii) of forming a cured resin layer (I ′) obtained by irradiating an energy ray and curing the energy ray-curable resin layer (I): the sealing object and the sealing object At least the surface of the cured resin layer (I ′) at the peripheral portion is covered with a thermosetting sealing material, and the sealing material is thermoset to form a cured sealing body including the object to be sealed. Step (iv): The cured resin layer (I ′) and the support layer (II) are separated at the interface by the treatment for expanding the thermally expandable particles to obtain a cured sealing body with the cured resin layer. Process
PCT/JP2018/036812 2018-10-02 2018-10-02 Layered product and production method for cured sealing body WO2020070790A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880098044.9A CN112789334B (en) 2018-10-02 2018-10-02 Laminate and method for producing cured sealing body
KR1020217007633A KR102543787B1 (en) 2018-10-02 2018-10-02 Manufacturing method of laminate and curing encapsulation
PCT/JP2018/036812 WO2020070790A1 (en) 2018-10-02 2018-10-02 Layered product and production method for cured sealing body
JP2020550976A JP7129110B2 (en) 2018-10-02 2018-10-02 Laminate and method for producing cured sealing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036812 WO2020070790A1 (en) 2018-10-02 2018-10-02 Layered product and production method for cured sealing body

Publications (1)

Publication Number Publication Date
WO2020070790A1 true WO2020070790A1 (en) 2020-04-09

Family

ID=70055751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036812 WO2020070790A1 (en) 2018-10-02 2018-10-02 Layered product and production method for cured sealing body

Country Status (4)

Country Link
JP (1) JP7129110B2 (en)
KR (1) KR102543787B1 (en)
CN (1) CN112789334B (en)
WO (1) WO2020070790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918912A (en) * 2021-01-20 2021-06-08 江苏金恒新型包装材料有限公司 Environment-friendly BOPP laser transfer film, production method and production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
JP2017092335A (en) * 2015-11-13 2017-05-25 日東電工株式会社 Method of manufacturing semiconductor package
JP2018041808A (en) * 2016-09-06 2018-03-15 太陽インキ製造株式会社 Warp correction material for fan-out type wafer level package

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594853B2 (en) 1981-02-23 1984-02-01 株式会社日立製作所 semiconductor equipment
JP5744434B2 (en) * 2010-07-29 2015-07-08 日東電工株式会社 Heat release sheet-integrated film for semiconductor back surface, semiconductor element recovery method, and semiconductor device manufacturing method
JP6000595B2 (en) 2012-03-27 2016-09-28 日東電工株式会社 Heat-peelable pressure-sensitive adhesive sheet for electronic component cutting and electronic component processing method
JP2014239154A (en) * 2013-06-07 2014-12-18 日東電工株式会社 Method of manufacturing semiconductor device
JP6120123B2 (en) * 2014-11-13 2017-04-26 Dic株式会社 Double-sided adhesive tape, article and separation method
WO2017078052A1 (en) * 2015-11-04 2017-05-11 リンテック株式会社 First protective film forming sheet
JP6835434B2 (en) * 2016-12-01 2021-02-24 富士通コネクテッドテクノロジーズ株式会社 Electronics
JP6908395B2 (en) * 2017-02-28 2021-07-28 日東電工株式会社 Adhesive tape
CN110461978B (en) * 2017-03-31 2022-04-19 琳得科株式会社 Adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
JP2017092335A (en) * 2015-11-13 2017-05-25 日東電工株式会社 Method of manufacturing semiconductor package
JP2018041808A (en) * 2016-09-06 2018-03-15 太陽インキ製造株式会社 Warp correction material for fan-out type wafer level package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918912A (en) * 2021-01-20 2021-06-08 江苏金恒新型包装材料有限公司 Environment-friendly BOPP laser transfer film, production method and production device

Also Published As

Publication number Publication date
JPWO2020070790A1 (en) 2021-09-24
KR20210044836A (en) 2021-04-23
KR102543787B1 (en) 2023-06-14
CN112789334B (en) 2023-04-07
JP7129110B2 (en) 2022-09-01
CN112789334A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
JP7340457B2 (en) Adhesive laminate, method for producing workpiece with resin film, and method for producing cured sealant with cured resin film
JP7240376B2 (en) Laminate for preventing warp of cured sealant, and method for manufacturing cured sealant
WO2020085220A1 (en) Semiconductor device manufacturing method
JP7340515B2 (en) Adhesive laminate, method for using adhesive laminate, and method for producing cured sealant with cured resin film
JP6438181B1 (en) Semiconductor device and manufacturing method thereof
WO2017078056A1 (en) Curable resin film and first protective film forming sheet
WO2017078053A1 (en) Kit for thermosetting resin film and second protective film forming film, thermosetting resin film, first protective film forming sheet, and method for forming first protective film for semiconductor wafer
WO2017078055A1 (en) Curable resin film and first protective film forming sheet
JP7129110B2 (en) Laminate and method for producing cured sealing body
JP6229222B2 (en) Curable resin film and first protective film forming sheet
WO2017061364A1 (en) Heat-curable resin film and sheet for forming first protective film
WO2017078042A1 (en) Protective film forming sheet
WO2017078039A1 (en) Thermosetting resin film, first protective film forming sheet, and method for forming first protective film
TWI793186B (en) Method for producing laminate and hardened seal
WO2021235005A1 (en) Production method for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550976

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217007633

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936006

Country of ref document: EP

Kind code of ref document: A1