TW200839007A - Grease - Google Patents

Grease Download PDF

Info

Publication number
TW200839007A
TW200839007A TW096138907A TW96138907A TW200839007A TW 200839007 A TW200839007 A TW 200839007A TW 096138907 A TW096138907 A TW 096138907A TW 96138907 A TW96138907 A TW 96138907A TW 200839007 A TW200839007 A TW 200839007A
Authority
TW
Taiwan
Prior art keywords
conductive material
grease
thermally conductive
heat
thermal
Prior art date
Application number
TW096138907A
Other languages
Chinese (zh)
Other versions
TWI457434B (en
Inventor
Toshitaka Yamagata
Takuya Okada
Akira Ubukata
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW200839007A publication Critical patent/TW200839007A/en
Application granted granted Critical
Publication of TWI457434B publication Critical patent/TWI457434B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • C10M2229/025Unspecified siloxanes; Silicones used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • C10M2229/0445Siloxanes with specific structure containing silicon-to-hydrogen bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Abstract

It is intended to provide a grease which shows a low heat resistance and has been improved in degradation due to heat cycle, in particular, a grease which is suitable for a heat-conductive material of a heat-generating electronic component. A grease comprising a heat-conductive material powder made up of one or more members selected from the group consisting of a heat-conductive material (A), a heat-conductive material (B) and a heat-conductive (C), in which the heat-conductive material powder has frequency peaks within the ranges of 2.0 to 10 μm, 1.0 to 1.9 μm and 0.1 to 0.9 μm in the grain size distribution determined by the laser diffraction grain size distribution method and which contains a base oil having a surface tension at 25<o>C in the range from 25 to 40 dyn/cm.

Description

200839007 九、發明說明 【發明所屬之技術領域】 本發明係有關導熱性潤滑脂。 【先前技術】 伴隨個人電腦之CPU (中央處理裝置)等發熱性電子 零件之小型化、高輸出功率化,由此等電子零件所產生之 單位面積熱量均變得極大。該熱量約達電熨斗之20倍熱量 。爲使該發熱性.電子零件長期使用後不致出現故障,因此 務必使發熱之電子零件冷卻。冷卻時,使用金屬製之散熱 片、框體,更爲由發熱性電子零件有效導熱於散熱片、框 體等之冷卻部,而使用導熱性材料。作爲使用該導熱性材 料之理由,直接接觸發熱性電子零件與散熱片等時,其界 面稍微觀察後,出現空氣存在之導熱障礙。因此,將導熱 性材料介存於發熱性電子零件與散熱片等之間,取代存在 於界面之空氣,則可有效導熱。 作爲導熱性材料者有:聚矽氧橡膠中塡入導熱性粉末 之硬化物所成之導熱性薄片;矽膠類之聚矽氧中塡入導熱 性粉末之具有柔軟性硬化物所成之導熱性墊片;液狀聚矽 氧中塡入導熱性粉末之具有流動性之導熱性潤滑脂;於發 熱電子零件之運作溫度下,進行軟化或流動化之相變化型 導熱性材料等。其中又特別以導熱性潤滑脂最易導熱。 導熱性潤滑脂係由聚矽氧油等液狀聚矽氧之基油中含 有導熱性粉末所成者。爲滿足高導熱化之要求,被揭示以 200839007 氮化鋁粉末作爲導熱性粉末使用(專利文獻1)。惟,氮 化鋁粉末爲六方晶之結晶構造,其形狀爲非球狀’因此提 高導熱性粉末之塡充量進行高導熱化時有界限° 於二甲基聚矽氧油之基油中塡入氧化鋁粉末與氮化鋁 粉末(專利文獻2、3 )、或氧化鋁粉末與金屬鋁粉末(專 利文獻4 )後使用時,雖具有高導熱性,惟於低溫與高溫 下之熱循環長期重覆使用後,基油之聚矽氧油成份產生分 離,所謂「離油」,而提昇熱電阻。 另外,爲解決基油之聚砂氧油成份之分離問題’被提 出使用特殊之聚矽氧(專利文獻5),該專利文獻5中並未 記載有關高導熱化。 專利文獻1 :特開2 000- 1 69 8 73號公報 專利文獻2 :特開2002- 1 943 79號公報 專利文獻3 ··特開2005-5 4099號公報 專利文獻4 :特開2005- 1 70 97 1號公報 專利文獻5 :特開2004-9 1 7743號公報 【發明內容】 本發明之目的係提供一種顯示低熱電阻,經由加熱循 環後改善劣化之潤滑脂,特別適用於發熱性電子零件之導 熱性材料之潤滑脂。 本發明爲解決上述課題,而採用以下方法。 (1)其特徵爲含有1種或2種以上選自導熱性材料( A )、導熱性材料(B )、及導熱性材料(C )所成群之導 200839007 熱材料粉末,該導熱性材料粉末藉由雷射繞射式粒度分佈 法所測定之粒度分佈中,於2.0〜1 0 # m、1 · 〇〜1 · 9 // m、 及0.1〜0.9/zm之範圍內具有頻度極大値,且表面張力於 25°〇下含有25〜40dyn/cm之基油所成之潤滑脂。 (2)其特徵爲含有平均粒徑2.0〜1.0// m之導熱性材 料(A)與平均粒徑1.0〜1.9/zm之導熱性材料(B)與平 均粒徑0.1〜〇.9/zm之導熱性材料(C),以及表面張力於 25°C下爲25〜40dyn/cm之基油所成之潤滑脂。 (3 )導熱性材料(A ) 、( B )或(C )爲1種或2種 以上選自金屬鋁、氮化鋁及氧化鋅所成群之上述(1)或 (2)所載之潤滑脂。 (4 )導熱性材料(A )爲金屬鋁,導熱性材料(B ) 爲氮化鋁,且導熱性材料(C )爲氧化鋅之該(1 )或(2 )所載之潤滑脂。 (5)基油之黏度爲300〜1000 mPa*s之該(1)至(4 )中任一項之潤滑脂。 (6 )基油係被烷基所改性之聚矽氧油之該(1 )至( 5 )中任一項之潤滑脂。 (7)導熱性材料(A) 、( B )、及(C)之含量爲 60〜8 0體積%之該(1 )至(6 )中任一項之潤滑脂。 (8 )全導熱性材料中,導熱性材料(A )爲5 0〜7 0 體積%、導熱性材料(B )爲30〜20體積%,且導熱性材 料(C )爲20〜10體積%之該(1 )至(7 )中任一項所載 之潤滑脂。 200839007 (9 )更含有矽烷偶合劑所成之該(1 )至(8 )中任 一項之潤滑脂。 (1〇 )熱電阻爲〇.2°C /W以下之該(1)至(9)中任 一項之潤滑脂。 本發明係對於由電子零件所產生之熱等,提供一種適 於導熱性之潤滑脂。顯示低熱電阻,經由熱循環可改善劣 化之潤滑脂。 【實施方式】 [發明實施之最佳形態]200839007 IX. Description of the Invention [Technical Field of the Invention] The present invention relates to a thermally conductive grease. [Prior Art] With the miniaturization and high output of the heat-generating electronic components such as the CPU (central processing unit) of the personal computer, the amount of heat per unit area generated by the electronic components is extremely large. This heat is about 20 times the heat of the electric iron. In order to make this heat-generating. Electronic parts do not malfunction after long-term use, it is necessary to cool the electronic parts that generate heat. At the time of cooling, a metal heat sink and a frame are used, and a heat-conductive electronic component is used to efficiently conduct heat to a cooling portion such as a heat sink or a frame, and a heat conductive material is used. As a reason for using the heat conductive material, when the heat-generating electronic component and the heat sink are directly contacted, the interface is slightly observed, and a heat conduction barrier of air is present. Therefore, the thermally conductive material is interposed between the heat-generating electronic component and the heat sink, and the heat is effectively exchanged instead of the air existing at the interface. Examples of the thermally conductive material include a thermally conductive sheet made of a cured product of a thermally conductive powder in a polyoxyxene rubber; and a thermal conductive property of a flexible cured product in which a thermal conductive powder is incorporated into a polysiloxane of a silicone rubber. A gasket; a thermally conductive grease having fluidity in which thermal conductive powder is incorporated into a liquid polyfluorene; and a phase change type thermally conductive material which is softened or fluidized at an operating temperature of a heat-generating electronic component. Among them, thermal grease is particularly easy to conduct heat. The thermally conductive grease is composed of a thermally conductive powder containing a liquid polyoxymethylene base oil such as polyoxygenated oil. In order to satisfy the requirement of high thermal conductivity, it is disclosed that 200839007 aluminum nitride powder is used as a thermal conductive powder (Patent Document 1). However, the aluminum nitride powder has a hexagonal crystal structure and its shape is non-spherical. Therefore, when the amount of charge of the thermal conductive powder is increased and the thermal conductivity is high, there is a limit in the base oil of the dimethyl polyphthalate oil. When aluminum oxide powder and aluminum nitride powder (Patent Documents 2 and 3) or alumina powder and metal aluminum powder (Patent Document 4) are used, they have high thermal conductivity, but have long thermal cycling at low temperatures and high temperatures. After repeated use, the base oil's polyoxygenated oil component is separated, so-called "oil", and the thermal resistance is increased. In addition, in order to solve the problem of separation of the component of the shale oil of the base oil, a special polyfluorene (Patent Document 5) has been proposed, and Patent Document 5 does not describe high thermal conductivity. [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 5] Japanese Patent Application Laid-Open No. Hei. No. Hei. No. 2004-9 1 7743. SUMMARY OF THE INVENTION The object of the present invention is to provide a grease which exhibits low thermal resistance and improves deterioration after a heating cycle, and is particularly suitable for use in a heat-generating electronic component. The grease of the thermal conductive material. In order to solve the above problems, the present invention employs the following method. (1) A conductive material powder containing one or two or more kinds selected from the group consisting of a thermally conductive material (A), a thermally conductive material (B), and a thermally conductive material (C), the thermally conductive material The particle size distribution measured by the laser diffraction type particle size distribution method has a frequency extremely large in the range of 2.0 to 10 0 m, 1 · 〇 〜1 · 9 // m, and 0.1 to 0.9/zm. And the surface tension is 25 ° 〇 under the base oil containing 25 ~ 40dyn / cm of grease. (2) It is characterized by a thermally conductive material (A) having an average particle diameter of 2.0 to 1.0/m and a thermally conductive material (B) having an average particle diameter of 1.0 to 1.9/zm and an average particle diameter of 0.1 to 〇.9/zm. The thermally conductive material (C) and the grease having a surface tension of 25 to 40 dyn/cm at 25 ° C. (3) The thermally conductive material (A), (B) or (C) is one or more of the above (1) or (2) selected from the group consisting of metal aluminum, aluminum nitride and zinc oxide. grease. (4) The thermally conductive material (A) is metallic aluminum, the thermally conductive material (B) is aluminum nitride, and the thermally conductive material (C) is the grease contained in the zinc oxide (1) or (2). (5) The grease of any one of (1) to (4) wherein the viscosity of the base oil is from 300 to 1000 mPa*s. (6) The grease of any one of (1) to (5), wherein the base oil is a polyoxyxamic oil modified with an alkyl group. (7) The grease of any one of (1) to (6), wherein the content of the heat conductive material (A), (B), and (C) is 60 to 80% by volume. (8) In the total thermal conductive material, the thermally conductive material (A) is 50 to 70% by volume, the thermally conductive material (B) is 30 to 20% by volume, and the thermally conductive material (C) is 20 to 10% by volume. The grease as set forth in any one of (1) to (7). 200839007 (9) A grease according to any one of (1) to (8) which is further prepared by a decane coupling agent. (1〇) The grease having any one of the above (1) to (9) having a thermal resistance of 〇.2 ° C /W or less. The present invention provides a grease suitable for thermal conductivity for heat generated by an electronic component or the like. The low thermal resistance is shown and the deteriorated grease can be improved via thermal cycling. [Embodiment] [Best Mode for Carrying Out the Invention]

含於本發明潤滑脂之導熱性材料(A ) 、( B )或(C )係1種或2種以上選自金屬鋁、氮化鋁、及氧化鋅之群。 導熱性材料(A ) 、( B )、或(C )亦可含有如:金屬錫 、金屬銀、金屬銅、碳化矽、氧化鋁、氮化矽、氮化硼粉 末等之導熱性粉末,而金屬鋁、氮化鋁及氧化鋅之合計量 φ 最大以5體積%爲宜,特別變更爲3體積%爲最佳使用者。 本發明潤滑脂其所含導熱性材料之粉末藉由雷射繞射 式粒度分佈法所測定之粒度分佈中,於2.0〜1 0 // m、1 . 〇 〜1 · 9 /z m、及0.1〜0 · 9 /z m之範圍內具有頻度極大値後, 可提昇導熱性材料間之接觸點數。其結果,可提昇作爲潤 滑脂之導熱性。作爲具有此頻度極大値之導熱性材料粉末 之粒度分佈之手段之一者,有:具有不同粒度分佈的混合 導熱性材料之方法。 藉由不同平均粒徑之混合導熱性材料(A ) 、 ( B ) -8- 200839007 、及(C ) 3種導熱性材料後,可提昇導熱性材料之塡充性 。亦即,藉由混合平均粒徑2 · 0〜1 0 // m之導熱性材料(A )與平均粒徑1 · 0〜1 · 9 /z m之導熱性材料(b )、及平均粒 徑0.1〜0.9 // m之導熱性材料(C )後,可提昇導熱性材料 之塡充性。其結果可提昇作爲潤滑脂之導熱性。更藉由含 有平均粒徑爲〇 · 1〜1 〇 // m之小粒徑材料,更佳者爲〇 . 3〜6 // m所成之導熱性材料後,可使塡充其導熱性材料之潤滑 脂薄膜化,熱電阻(導熱容易度)變小。藉由此,可製造 極易導熱之潤滑脂。 本發明所使用之平均粒徑爲2 · 0〜1 〇 // m之導熱性材料 (A )其平均粒徑務必爲2 · 0〜1 0 // m,平均粒徑爲3〜6 // m者更佳。當平均粒徑大於1 〇 m時,則潤滑脂不易薄 膜化,有提昇潤滑脂熱電阻之傾向。相反的,平均粒徑小 於2.0 // m則作爲導熱性材料(A )者以金屬鋁爲宜。 本發明所使用之平均粒徑爲1.0〜1.9 // m之導熱性材 料(B )其平均粒徑務必爲1 · 〇〜1.9 // m,其平均粒徑爲 1·3〜1.7/zm爲更佳。當平均粒徑大於1.9/zm時,則與平 均粒徑2.0〜1 0 // m之導熱性材料粒子之粒徑相近,將使塡 充性變差,提昇熱電阻。反之,平均粒徑小於1 // m,則 近於平均粒徑0.1〜0.9 // m之導熱性材料之粒子,粒子變 小導致導熱性材料之塡充性變差,提昇熱電阻。作爲導熱 性材料(B )者以氮化鋁爲宜。 本發明所使用之氧化鋅粉末其平均粒徑爲〇.1〜0.9/z m之導熱性材料(C )務必爲平均粒徑〇·1〜〇·9 # m,更佳 - 9 - 200839007 者爲平均粒徑0.3〜0.7/zm。當平均粒徑大於0.9// m時, 則接近平均粒徑爲1 · 〇〜1 .9 // m之導熱性材料粒子之粒徑 ,將使塡充性變差,提昇熱電阻。當平均粒徑小於〇. 1 // m 則整體導熱性材料之塡充性將變差,熱電阻上昇。作爲導 熱性材料(C )者以氧化鋅爲宜。 潤滑脂中之導熱性材料(A ) 、( B )、及(C )之含 量爲60〜8 0體積%者宜,更佳者爲65〜75體積%。當導熱 g 性材料之含量超出80體積%時,則潤滑脂將變硬,熱電阻 變大。反之,導熱性材料之含量低於60體積%,則導熱性 材料之塡充量小,不易導熱,熱電阻變大。 3種不同平均粒徑之導熱性材料的配合比例其導熱性 材料(A )爲50〜70體積%者宜,特別以55〜65體積%爲 最佳,導熱性材料(B )爲30〜20體積%者宜,特別以27 〜25體積%爲最佳,而導熱性材料(C )爲20〜10體積% 者宜,特別以1 7〜1 3體積%爲最佳。當導熱性材料(A ) φ 之含有比例小於50體積%則潤滑脂變硬,熱電阻變大。反 之,大於70體積%則導熱性材料之塡充性變差,熱電阻變 大。 本發明之平均粒徑係利用島津製作所製「雷射衍射式 粒度分佈測定裝置SALD-200」進行測定之。評定樣本係 於燒杯中添加50xc純水與5g所測定之導熱性粉末,利用刮 刀進行攪拌,之後,於超音波洗淨機進行10分鐘分散處理 ,利用滴管將分散處理之導熱性材料之粉末溶液1滴滴加 入裝置之採樣器中,等待穩定至可測定吸光度爲止。如此 -10- 200839007 測定吸光度呈穩定時。於雷射繞射式粒度分佈測定裝置中 ,以感應器由經由檢出粒子之繞射/散射光之光強度分佈 數據計算粒度分佈。平均粒徑係於所測定粒徑之値加上相 對粒子量(差分% ),以相對粒子量之合計(1 00 % )除 後求出。又,平均粒徑爲粒子之平均直徑。 本發明所使用之基油其表面張力於25 °c下爲25〜 40dyn/cm者宜,特別以30〜35dyn/cm爲最佳。當表面張力 _ 小於25dyn/cm時,則對於潤滑脂重覆熱循環後,容易引起 基油分離,藉此導致潤滑脂變硬,進而使導熱性變差。又 ,表面張力大於40dyn/cm則作成潤滑脂時之濕潤度不良, 不易使潤滑脂散開,導熱性變差。 表面張力爲具有儘可能縮小表面之液體性質,因此爲 界面張力之一種。液體與氣體接觸時液體具有僅可能縮小 表面積之性質。相較於液體內之分子由周邊被引力拉引, 而表面上之分子僅於液體未接觸部份,不受液體分子之引 φ 力影響。僅有該部份,表面上之分子具多餘的能量,此乃 表面張力之強度。該表面張力變強顯示大値,由潤滑脂之 基油變得不易分離。 本發明中,作爲表面張力之測定方法者,爲Wilhelmy 法者宜。Wilhelmy法係對於液面呈垂直浸漬平板(主爲鉑 板)後,提昇液濕潤度,而此時出現減低增加液面之面積 傾向,運作表面張力。該力以平板之周圍長度(寬度與厚 度合計之2倍)除後,作成長度之力(dyn/cm )被算出。 藉此求出表面張力,表面張力之測定裝置係使用協和界面 -11 - 200839007 化學製「自動表面張力計」等。 基油之表面張力即使對於表面張力小之基油添加表面 張力大之添加劑,仍可進行調整。如:表面張力小之二甲 基聚矽氧油等藉由添加具有烷基之矽烷偶合劑後,可調整 表面張力。 基油之黏度爲300〜lOOOmPaw者宜,特別以500m〜 700mPa”爲最佳。基油之黏度若未達300mPa*s時,則進行 加熱循環後,將易產生潤滑脂之基油與導熱性材料之分離 ,熱電阻變高之傾向。基油黏度若超出1000mPa*s時,則 不易進行導熱性材料之高塡充,潤滑脂之導熱性變差。 基油之黏度係利用布魯克菲爾製「數字黏度計DV-I」 所測定。利用RV主軸設置,使用圓筒No. 1,放入該圓筒 ,使用可置入至基準線爲止之基油之容器。將圓筒浸漬於 基油中,進行評定旋輥數lOrpm之黏度値。 本發明中,作爲基油之表面張力爲25〜40dyn/cm,且 黏度爲3 00〜lOOOmP a”之二甲基聚矽氧油之甲基爲碳數3 以上者宜,特別以8〜1 2之烷基進行改性後,表面張力爲 27〜3 7dyn/cm,且黏度爲400〜800mPa*s之聚矽氧油使用 者宜。以烷基進行改性之聚矽氧油其表面張力變大,作成 潤滑脂時,可抑制經由加熱循環後熱電阻之劣化。 本發明之潤滑脂中,含有矽烷偶合劑,作爲表面改質 劑者,可進行塡料之疏水化、及分散性提昇,其他有機樹 脂之改質等。作爲理想之矽烷偶合劑者,如:具有碳數8 〜1 〇之烷基的烷基矽之例。理想之矽烷偶合劑之例如:η -12- 200839007 一辛基三甲氧基矽烷、η-辛基三乙氧基矽烷、n一癸基三 甲氧基矽烷等例。 另外,本發明之潤滑脂除上述各成份之外,必要時亦 可配合抗氧化劑、抗金屬腐蝕劑等。 本發明之潤滑脂可使上述材料以萬能混合攪拌器、揑 合器、混種混合器等進行混煉後製造之。 作爲潤滑脂之熱電阻測定方法者,於埋入加熱器之垂 直體之銅製機架其頂端爲lcm2 ( lemx lcm),與於裝置冷 卻散熱片之垂直體之銅製機架其頂端爲1cm2 ( Icmxlcm) 之間,挾住潤滑脂,每1平方公分荷重4kg,將試料與銅製 機架密合之。試料之量作成埋入整體密合面之狀態。加熱 器中加入電力20W,維持30分鐘,測定銅製機架相互之溫 度差(°C ),以式:熱電阻(°C /W ) ={溫度差(°C ) /電 力(W ) }算取之。 作爲本發明潤滑脂之熱電阻者,考量其潤滑脂之導熱 性,以0.2°C /W以下者宜,特別以0.1°C /W以下爲最佳。 針對本發明潤滑脂之分離狀態,於厚度1mm、 10000mm2 ( l〇〇mm xlOOmm)之面積的透明玻璃板相互之 間,進行塗佈厚度β m、900mm2 ( 30mmX30mm )之潤 滑脂,該狀態下’ —4 0、3 0分鐘、1 3 0 °c、3 0分鐘之條件 下,進行加熱循環試驗,評定之。循環數爲1 0 0循環。測 定由導熱性潤滑脂所分離基油之重量’評定分離狀態。 [實施例] -13- 200839007 (實施例1〜24、比較例1〜8) 將表1所示之導熱性材料(A ) 、( B ) 、( C ),表2 所不之基油(D),表3所示之砂院偶合劑(E),以表4 〜6之比例進行配合,利用Synchi製「脫泡練太郎AR-250 」,進行5分鐘混合,製造潤滑脂。表4顯示評定所得潤滑 脂之熱電阻與分離狀態之結果。又,評定結果中,熱電阻 爲超出〇·2 °C /W之導熱性潤滑脂,作爲熱特性者,不易有 效將熱由發熱部導入冷卻部,因此作成比較例。The heat conductive material (A), (B) or (C) contained in the grease of the present invention is one or more selected from the group consisting of metal aluminum, aluminum nitride, and zinc oxide. The thermally conductive material (A), (B), or (C) may also contain a thermally conductive powder such as metal tin, metallic silver, metallic copper, tantalum carbide, aluminum oxide, tantalum nitride, or boron nitride powder, and The total amount φ of metal aluminum, aluminum nitride, and zinc oxide is preferably 5% by volume, and particularly preferably 3% by volume. The powder of the thermally conductive material contained in the grease of the present invention has a particle size distribution determined by a laser diffraction type particle size distribution method, and is in the range of 2.0 to 1 0 // m, 1. 〇 〜1 · 9 /zm, and 0.1 After the frequency is extremely large in the range of ~0 · 9 /zm, the number of contact points between the thermally conductive materials can be increased. As a result, the thermal conductivity of the grease can be improved. As one of the means for having a particle size distribution of the thermally conductive material powder having such a high frequency, there is a method of mixing a thermally conductive material having a different particle size distribution. The thermal conductivity of the thermally conductive material can be improved by mixing the thermally conductive materials (A), (B) -8- 200839007, and (C) three different thermal conductive materials having different average particle diameters. That is, by mixing a thermally conductive material (A) having an average particle diameter of 2 · 0 to 1 0 / m and a thermally conductive material (b) having an average particle diameter of 1 · 0 to 1 · 9 /zm, and an average particle diameter After the thermal conductive material (C) of 0.1 to 0.9 // m, the thermal conductivity of the material can be improved. As a result, the thermal conductivity of the grease can be improved. Further, by containing a small-diameter material having an average particle diameter of 〇·1 to 1 〇//m, and more preferably a thermal conductive material formed by 〇. 3 to 6 // m, it can be filled with thermal conductivity. The grease of the material is thinned, and the thermal resistance (easier of heat conduction) becomes small. By this, it is possible to manufacture a grease that is extremely heat-conductive. The thermal conductive material (A) having an average particle diameter of 2 · 0 to 1 〇 / / m used in the present invention must have an average particle diameter of 2 · 0 to 1 0 / m, and an average particle diameter of 3 to 6 // m is better. When the average particle diameter is more than 1 〇 m, the grease is not easily thinned, and there is a tendency to improve the thermal resistance of the grease. On the contrary, if the average particle diameter is less than 2.0 // m, it is preferable to use metallic aluminum as the thermally conductive material (A). The thermal conductive material (B) having an average particle diameter of 1.0 to 1.9 // m used in the present invention must have an average particle diameter of 1 · 〇 to 1.9 // m, and an average particle diameter of 1·3 to 1.7/zm. Better. When the average particle diameter is more than 1.9/zm, the particle diameter of the thermally conductive material particles having an average particle diameter of 2.0 to 10 // m is similar, which deteriorates the chargeability and improves the thermal resistance. On the other hand, when the average particle diameter is less than 1 // m, the particles of the thermally conductive material having an average particle diameter of 0.1 to 0.9 // m become smaller, and the particles become smaller, which deteriorates the thermal conductivity of the thermally conductive material and improves the thermal resistance. As the thermally conductive material (B), aluminum nitride is preferred. The zinc oxide powder used in the present invention has a thermal conductive material (C) having an average particle diameter of 〇.1 to 0.9/zm, which must have an average particle diameter of 〇·1 to 〇·9 # m, more preferably - 9 - 200839007 The average particle diameter is 0.3 to 0.7/zm. When the average particle diameter is more than 0.9//m, the particle diameter of the thermally conductive material particles having an average particle diameter of 1 · 〇 〜1. 9 // m is deteriorated, and the thermal resistance is improved. When the average particle diameter is less than 〇. 1 // m, the thermal conductivity of the overall thermal conductive material will deteriorate and the thermal resistance will rise. As the heat conductive material (C), zinc oxide is preferred. The content of the thermally conductive materials (A), (B), and (C) in the grease is preferably 60 to 80% by volume, more preferably 65 to 75% by volume. When the content of the thermally conductive g-material exceeds 80% by volume, the grease becomes hard and the thermal resistance becomes large. On the other hand, when the content of the thermally conductive material is less than 60% by volume, the amount of charge of the thermally conductive material is small, heat conduction is difficult, and the thermal resistance is increased. The ratio of the thermally conductive material of the three different average particle diameters is preferably 50 to 70% by volume of the thermally conductive material (A), particularly preferably 55 to 65 % by volume, and the thermally conductive material (B) is 30 to 20%. The volume % is preferably, particularly preferably 27 to 25 vol%, and the thermal conductive material (C) is preferably 20 to 10 vol%, particularly preferably 17 to 13 vol%. When the content ratio of the thermally conductive material (A) φ is less than 50% by volume, the grease becomes hard and the thermal resistance becomes large. On the other hand, when it is more than 70% by volume, the thermal conductivity of the thermally conductive material is deteriorated, and the thermal resistance is increased. The average particle diameter of the present invention is measured by a "laser diffraction type particle size distribution measuring apparatus SALD-200" manufactured by Shimadzu Corporation. The sample was evaluated by adding 50xc pure water and 5g of the thermally conductive powder measured in a beaker, stirring with a spatula, and then dispersing it in an ultrasonic cleaning machine for 10 minutes, and dispersing the powder of the thermally conductive material by a dropper. Solution 1 was added dropwise to the sampler of the apparatus and waited for stabilization until the absorbance was measurable. So -10- 200839007 When the absorbance is stable. In the laser diffraction type particle size distribution measuring apparatus, the particle size distribution is calculated by the sensor from the light intensity distribution data of the diffracted/scattered light passing through the detected particles. The average particle diameter is obtained by adding the relative particle amount (% difference) to the measured particle diameter and adding the relative particle amount (% difference). Further, the average particle diameter is the average diameter of the particles. The base oil used in the present invention preferably has a surface tension of 25 to 40 dyn/cm at 25 ° C, particularly preferably 30 to 35 dyn/cm. When the surface tension _ is less than 25 dyn/cm, the base oil is easily separated after the thermal cycle is repeated for the grease, whereby the grease is hardened and the thermal conductivity is deteriorated. Further, when the surface tension is more than 40 dyn/cm, the wetness is poor when the grease is formed, and the grease is not easily dispersed, and the thermal conductivity is deteriorated. The surface tension is one of the interfacial tensions with the properties of the liquid which minimizes the surface. The liquid has the property of only reducing the surface area when the liquid is in contact with the gas. Compared with the molecules in the liquid, the molecules are pulled by the periphery, and the molecules on the surface are only in the uncontacted part of the liquid, and are not affected by the force of the liquid molecules. Only this part, the molecules on the surface have extra energy, which is the strength of the surface tension. The surface tension becomes strong and shows a large flaw, and the base oil of the grease becomes difficult to separate. In the present invention, the method for measuring the surface tension is preferably a Wilhelmy method. The Wilhelmy method lifts the wettability of the liquid after the liquid surface is vertically immersed in the plate (mainly platinum plate), and at this time there is a tendency to reduce the area of the liquid surface and to operate the surface tension. This force was calculated by dividing the length of the circumference of the flat plate (twice the total width and thickness) by the force (dyn/cm) of the length. The surface tension was determined by this, and the surface tension measuring device was a Kobak interface -11 - 200839007 chemical "automatic surface tension meter". The surface tension of the base oil can be adjusted even if the additive having a large surface tension is added to the base oil having a small surface tension. For example, a dimethyl sulfonate having a small surface tension can be adjusted by adding a decane coupling agent having an alkyl group. The viscosity of the base oil is preferably 300~lOOmPaw, especially 500m~700mPa". If the viscosity of the base oil is less than 300mPa*s, the base oil and thermal conductivity of the grease will be easily generated after heating cycle. The separation of materials, the tendency of the thermal resistance to become higher. If the viscosity of the base oil exceeds 1000 mPa*s, it is difficult to carry out the high thermal charge of the thermal conductive material, and the thermal conductivity of the grease is deteriorated. The viscosity of the base oil is made by Brookfield Measured by "Digital Viscometer DV-I". Using the RV spindle setting, use the cylinder No. 1, put it in the cylinder, and use the base oil container that can be placed in the reference line. The cylinder was immersed in a base oil, and the viscosity 値 of the number of spinning rolls of 10 rpm was evaluated. In the present invention, as the base oil, the surface tension is 25 to 40 dyn/cm, and the methyl group of the dimethylpolyphthalic acid having a viscosity of 300 to 100 mP a" is preferably a carbon number of 3 or more, particularly 8 to 1 After modifying the alkyl group of 2, the surface tension is 27~3 7dyn/cm, and the viscosity of the polyoxyxene oil is 400~800mPa*s. The surface tension of the polyoxyxene oil modified by alkyl group When the grease is formed, the deterioration of the thermal resistance after the heating cycle can be suppressed. The grease of the present invention contains a decane coupling agent, and as a surface modifier, the hydrophobicity and the dispersibility of the dip can be improved. , other organic resin modification, etc. As an ideal decane coupling agent, for example, an alkyl hydrazine having an alkyl group having a carbon number of 8 to 1 Torr. An ideal decane coupling agent such as η -12- 200839007 Examples of octyltrimethoxydecane, η-octyltriethoxydecane, n-decyltrimethoxydecane, etc. Further, in addition to the above components, the grease of the present invention may be formulated with an antioxidant, if necessary. Anti-metal corrosion agent, etc. The grease of the invention can make the above materials universally mixed Agitator, kneader, hybrid mixer, etc. are produced by kneading. As a method of measuring the thermal resistance of the grease, the top of the copper frame embedded in the vertical body of the heater is lcm2 (lemx lcm), and The copper frame of the vertical body of the device cooling fins is between 1cm2 (Icmxlcm) at the top, and the grease is clamped, and the load is 4kg per square centimeter. The sample is closely adhered to the copper frame. The amount of the sample is buried. The state of the integral sealing surface. Add 20W of electric power to the heater for 30 minutes, and measure the temperature difference (°C) between the copper frames. The equation: thermal resistance (°C /W) = {temperature difference (°C) The electric resistance of the grease of the present invention is considered to be the thermal resistance of the grease, and it is preferably 0.2 ° C / W or less, particularly preferably 0.1 ° C / W or less. For the separation state of the grease of the present invention, a grease having a thickness of β m and 900 mm 2 (30 mm×30 mm) is applied between transparent glass plates having a thickness of 1 mm and 10000 mm 2 (10 mm×100 mm). - 4 0, 30 minutes, 1 30 °c, 30 minutes, The heating cycle test was carried out and evaluated. The number of cycles was 1000 cycles. The weight of the base oil separated by the thermally conductive grease was measured to evaluate the separation state. [Examples] -13- 200839007 (Examples 1 to 24, Comparative Examples) 1 to 8) The thermal conductive materials (A), (B), (C) shown in Table 1, the base oil (D) shown in Table 2, and the sand chamber coupling agent (E) shown in Table 3, The ratios in Tables 4 to 6 were combined, and the "defoaming Ryotaro AR-250" manufactured by Synchi was used for mixing for 5 minutes to produce a grease. Table 4 shows the results of evaluating the thermal resistance and separation state of the resulting grease. In addition, in the evaluation results, the thermal resistance is a thermal conductive grease exceeding 〇·2 °C /W, and as a thermal characteristic, it is not easy to efficiently introduce heat from the heat generating portion into the cooling portion, and thus a comparative example is prepared.

-14 - 200839007 [表l] 表1 號碼 種 別 形 狀 平均粒徑(# m) A-1 金 屬 鋁 粉 末 不 定 形 2.0 A-2 金 屬 鋁 粉 末 不 定 形 5.5 A-3 金 屬 鋁 粉 末 不 定 形 10 A-4 金 屬 鋁 粉 末 不 定 形 0.05 A-5 金 屬 鋁 粉 末 球 狀 30 A-6 金 屬 銘 粉 末 不 定 形 3.0 A-7 金 屬 鋁 粉 末 不 定 形 6.0 B-1 氧 化 鋁 粉 末 不 定 形 1.0 B-2 氧 化 鋁 粉 末 不 定 形 1.6 B-3 氧 化 鋁 粉 末 不 定 形 1.9 B-4 氧 化 鋁 粉 末 不 定 形 0.05 B-5 氧 化 鋁 粉 末 不 定 形 30 B-6 氧 化 鋁 粉 末 不 定 形 1.3 B-7 氧 化 鋁 粉 末 不 定 形 1.7 C-1 氧 化 鋅 粉 末 不 定 形 0.1 C-2 氧 化 鋅 粉 末 不 定 形 0.6 C-3 氧 化 鋅 粉 末 不 定 形 0.9 C-4 氧 化 鋅 粉 末 不 定 形 0.0 5 C-5 氧 化 鋅 粉 末 不 疋 形 30 C-6 氧 化 鋅 粉 末 不 定 形 0.3 C-7 氧 化 鋅 粉 末 不 定 形 0.7 15- 200839007 [表2] 表2 號碼 種別 表面張力 (dyn/cm) 黏度 (mPa*s) D-1 烷基改性聚矽氧油 25 500 D-2 烷基改性聚矽氧油 30 550 D-3 烷基改性聚矽氧油 35 60 0 D-4 烷基改性聚矽氧油 40 1000 D-5 烷基改性聚矽氧油 45 2000 D-6 二甲基聚矽氧油 20 100 D-7 烷基改性聚矽氧油 30 300 D-8 烷基改性聚矽氧油 30 700 D-9 烷基改性聚矽氧油 30 1000 D- 1 0 烷基改性聚矽氧油 30 200 D-1 1 烷基改性聚矽氧油 30 120 0 [表3] 表3 號碼 種別 Erl η-癸基三甲氧基矽烷-14 - 200839007 [Table l] Table 1 Number of species shape Average particle size (# m) A-1 Metal aluminum powder amorphous 2.0 A-2 Metal aluminum powder amorphous 5.5 A-3 Metal aluminum powder amorphous 10 A-4 Metal Aluminum Powder Unshaped 0.05 A-5 Metal Aluminum Powder Spherical 30 A-6 Metal Ming Powder Unshaped 3.0 A-7 Metal Aluminum Powder Unshaped 6.0 B-1 Alumina Powder Unshaped 1.0 B-2 Alumina Powder Unshaped 1.6 B-3 Alumina powder amorphous 1.9 B-4 Alumina powder amorphous 0.05 B-5 Alumina powder amorphous 30 B-6 Alumina powder amorphous 1.3 B-7 Alumina powder amorphous 1.7 C-1 Oxidation Zinc powder amorphous 0.1 C-2 Zinc oxide powder amorphous 0.6 C-3 Zinc oxide powder Unshaped 0.9 C-4 Zinc oxide powder Unshaped 0.0 5 C-5 Zinc oxide powder does not form 30 C-6 Zinc oxide powder Shape 0.3 C-7 Zinc Oxide Powder Unshaped 0.7 15- 200839007 [Table 2] Table 2 Number Type Surface Tension (dyn/cm) Sticky Degree (mPa*s) D-1 Alkyl modified polyoxyxide 25 500 D-2 Alkyl modified polyoxyxene 30 550 D-3 Alkyl modified polyoxyl oil 35 60 0 D-4 Base modified polyoxyl oil 40 1000 D-5 alkyl modified polyoxyl oil 45 2000 D-6 dimethyl polyoxyn 20 100 D-7 alkyl modified polyoxyl 30 300 D-8 Alkyl modified polyoxyxide 30 700 D-9 Alkyl modified polyoxyxene 30 1000 D- 1 0 Alkyl modified polyoxyxene 30 200 D-1 1 Alkyl modified polyoxyxene 30 120 0 [Table 3] Table 3 Number category Erl η-mercaptotrimethoxydecane

-16- 200839007 [表4] 表4 導熱性材料(體積%) 基油 (體積%) 矽烷偶 合劑 (體積%) 熱電阻 (°CAV) 分離 各材料 合計 實施例1 32.5 (A-1) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.09 0g 實施例2 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.07 〇g 實施例3 32.5 (A-3) 19.5 (B-2) 13 (C-2) 65 35 (D-1) 戀’ 0.09 〇g 實施例4 32.5 (A-2) 19.5 (B-1) 13 (C-2) 65 35 (D-1) - 0.10 0g 實施例5 32.5 (A-2) 19.5 (B-3) 13 (C-1) 65 35 (D-1) - 0.09 〇g 實施例6 32.5 (A-2) 19.5 (B-2) 13 (C-3) 65 35 (D-1) - 0.09 〇g 實施例7 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-2) - 0.06 〇g 實施例8 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-3) - 0.06 〇g 實施例9 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-4) - 0.08 0g 實施例10 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-7) -. 0.07 Og 實施例11 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-8) - 0.07 Og 實施例12 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-9) - 0.07 Og -17- 200839007 [表5] 表5 導熱性材料(體積%) 基油 mm%) 矽烷偶 合劑 (體積%) 熱電阻 (°C/W) 分離 各材料 合計 實施例13 30 (A-2) 18 (B-2) 12 (C-2) 60 40 (D-l) 羅 0.09 〇g 實施例Μ 40 (A-2) 24 (B-2) 16 (C-2) 80 20 (D-l) - 0.07 〇g 實施例15 32.5 (A-6) 19.5 (B-2) 13 (C-2) 65 35 (D-l) - 0.07 Og 實施例16 32.5 (A-7) 19.5 (B-2) 13 (C-2) 65 35 (D-l) _ 0.07 Og 實施例17 32.5 (A-2) 19.5 (B-6) 13 (C-2) 65 35 (D-l) - 0.06 Og 實施例18 32.5 (A,2) 19.5 (B-7) 13 (C-2) 65 35 (D-l) - 0.06 Og 實施例19 32.5 (A-2) 19.5 (B-2) 13 (C-6) 65 35 (D-l) - 0.06 Og 實施例20 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-l) - 0.06 Og 實施例21 45.5 (A-2) 13 (B-2) 6.5 (C-2) 65 35 (D-l) - 0.08 Og 實施例22 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-10) - 0.15 Og 實施例23 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-ll) - 0.18 Og 實施例24 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 34 (D-l) l(E-l) 0.06 Og -18- 200839007 [表6] 表6 導熱性材料(體積%) 基油 (體積%) 矽烷偶 合劑 mm%) 熱電阻 (°C/W) 分離 各材料 合計 比較例1 32.5 (A-4) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.83 〇g 比較例2 32.5 (A-5) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.73 〇g 比較例3 32.5 (A-2) 19.5 (B-4) 13 (C-2) 65 35 (D-1) - 0.55 〇g 比較例4 32.5 (A-2) 19.5 (B-5) 13 (C-2) 65 35 (D-1) - 0.25 〇g 比較例5 32.5 (A-2) 19.5 (B-2) 13 (C-4) 65 35 (D-1) - 0.73 Og 比較例6 32.5 (A-2) 19.5 (B-2) 13 (C-5) 65 35 (D-1) - 0.55 〇g 比較例7 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-5) - 0.73 Og 比較例8 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-6) - 0.55 Og 本發明之潤滑脂顯示低熱電阻,經由加熱循環之劣化 少,可有效將熱由發熱性電子零件導入散熱片、框體等之 冷卻部。 [產業上可利用性] 本發明之導熱性潤滑脂適用於各種領域,而特別藉由 存在於發熱性電子零件與散熱片等之間’可有效導熱,因 此被用於發熱之電子零件的冷卻等。 -19- 200839007 又,其中引用2006年10月17日所申請之日本專利申請 2006-282457號之明細書,申請專利範圍及摘要之總內容 ,作成本發明說明書之揭示,採用者。-16- 200839007 [Table 4] Table 4 Thermal conductive material (% by volume) Base oil (% by volume) decane coupling agent (% by volume) Thermal resistance (°CAV) Separation of materials Total Example 1 32.5 (A-1) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.09 0g Example 2 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.07 〇g Example 3 32.5 (A-3) 19.5 (B-2) 13 (C-2) 65 35 (D-1) Love ' 0.09 〇g Example 4 32.5 (A-2) 19.5 (B-1 13 (C-2) 65 35 (D-1) - 0.10 0g Example 5 32.5 (A-2) 19.5 (B-3) 13 (C-1) 65 35 (D-1) - 0.09 〇g Implementation Example 6 32.5 (A-2) 19.5 (B-2) 13 (C-3) 65 35 (D-1) - 0.09 〇g Example 7 32.5 (A-2) 19.5 (B-2) 13 (C- 2) 65 35 (D-2) - 0.06 〇g Example 8 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-3) - 0.06 〇g Example 9 32.5 ( A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-4) - 0.08 0g Example 10 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 ( D-7) -. 0.07 Og Example 11 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-8) - 0.07 Og Example 12 32.5 (A-2) 19.5 ( B-2) 13 (C-2) 65 35 (D-9) - 0.07 Og -17- 200839007 [Table 5] Table 5 Thermal conductive material (% by volume) Base oil mm%) decane coupling agent (% by volume) Thermal resistance (°C/W) Separation of materials Total Example 13 30 (A-2) 18 (B-2) 12 (C-2) 60 40 (Dl)罗0.09 〇g Example Μ 40 (A-2) 24 (B-2) 16 (C-2) 80 20 (Dl) - 0.07 〇g Example 15 32.5 (A-6) 19.5 (B-2) 13 (C-2) 65 35 (Dl) - 0.07 Og Example 16 32.5 (A-7) 19.5 (B-2) 13 (C-2) 65 35 (Dl) _ 0.07 Og Example 17 32.5 (A-2 19.5 (B-6) 13 (C-2) 65 35 (Dl) - 0.06 Og Example 18 32.5 (A, 2) 19.5 (B-7) 13 (C-2) 65 35 (Dl) - 0.06 Og Example 19 32.5 (A-2) 19.5 (B-2) 13 (C-6) 65 35 (Dl) - 0.06 Og Example 20 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (Dl) - 0.06 Og Example 21 45.5 (A-2) 13 (B-2) 6.5 (C-2) 65 35 (Dl) - 0.08 Og Example 22 32.5 (A-2) 19.5 (B- 2) 13 (C-2) 65 35 (D-10) - 0.15 Og Example 23 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D-ll) - 0.18 Og Implementation Example 24 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 34 (Dl) l (El) 0.06 Og -18- 200839007 [Table 6] Table 6 Thermally conductive material (% by volume) Base oil (% by volume) decane coupling agent mm%) Thermal resistance (°C/W) Total of Materials Comparative Example 1 32.5 (A-4) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.83 〇g Comparative Example 2 32.5 (A-5) 19.5 (B-2) 13 (C-2) 65 35 (D-1) - 0.73 〇g Comparative Example 3 32.5 (A-2) 19.5 (B-4) 13 (C-2) 65 35 (D-1) - 0.55 〇g Comparison Example 4 32.5 (A-2) 19.5 (B-5) 13 (C-2) 65 35 (D-1) - 0.25 〇g Comparative Example 5 32.5 (A-2) 19.5 (B-2) 13 (C- 4) 65 35 (D-1) - 0.73 Og Comparative Example 6 32.5 (A-2) 19.5 (B-2) 13 (C-5) 65 35 (D-1) - 0.55 〇g Comparative Example 7 32.5 (A -2) 19.5 (B-2) 13 (C-2) 65 35 (D-5) - 0.73 Og Comparative Example 8 32.5 (A-2) 19.5 (B-2) 13 (C-2) 65 35 (D -6) - 0.55 Og The grease of the present invention exhibits a low thermal resistance and is less deteriorated by a heating cycle, and can efficiently introduce heat from a heat-generating electronic component into a cooling portion such as a heat sink or a frame. [Industrial Applicability] The thermally conductive grease of the present invention is suitable for use in various fields, and is particularly effective in heat conduction of electronic components used for heat generation by being present between heat-generating electronic components and heat sinks. Wait. -19- 200839007 In addition, the contents of the patent application scope and abstracts of the patent application No. 2006-282457 filed on October 17, 2006 are hereby incorporated by reference.

-20--20-

Claims (1)

200839007 十、申請專利範圍 1 . 一種潤滑脂,其特徵係含有1種或2種以上選自 導熱性材料(A )、導熱性材料(B )、及導熱性材料(C )所成群之導熱材料粉末,該導熱性材料粉末藉由雷射繞 射式粒度分佈法所測定之粒度分佈中,於2. 〇〜丨〇 # m、 1.0〜1.9/zm、及〇·ι〜〇9//m之範圍內具有頻度極大値, 且表面張力於25C下含有25〜40dyn/cm之基油所成。 2 · —種潤滑脂,其特徵爲含有平均粒徑2 . 〇〜丨〇 v m 之導熱性材料(A )與平均粒徑1 . 〜.9 # m之導熱性材 料(B )與平均粒徑〇.丨〜〇 . 9 μ m之導熱性材料(c ),以 及表面張力於25°C下爲25〜40dyn/cm之基油所成。 3 ·如申請專利範圍第1項或第2項之潤滑脂,其中 導熱性材料(A ) 、( B )、或(c )爲1種或2種以上選 自金屬鋁、氮化鋁、及氧化鋅之群。 4·如申請專利範圍第1項或第2項之潤滑脂,其中 導熱性材料(A )爲金屬鋁、導熱性材料(B )爲氮化鋁、 且導熱性材料(C )爲氧化鋅。 5·如申請專利範圍第1項至第4項中任一項之潤滑 脂,其中基油之黏度爲3 00〜1 000mPa*s。 6. 如申請專利範圍第1項至第5項中任一項之潤滑 脂,其中基油係被烷基所改性之聚矽氧油。 7. 如申請專利範圍第1項至第6項中任一項之潤滑 脂,其中導熱性材料(A) 、(B)及(C)之含量爲60〜 80體積%。 -21 - 200839007 8. 如申請專利範圍第1項至第7項中任一項之潤滑 脂,其中全導熱性材料中,.導熱性材料(A )爲5 0〜70 體積%、導熱性材料(B )爲3 0〜20體積%,且導熱性材 料(C )爲20〜10體積%。 9. 如申請專利範圍第1項至第8項中任一項之潤滑 脂,其中更含有矽烷偶合劑。 1 0.如申請專利範圍第1項至第9項中任一項之潤滑 脂,其中熱電阻爲〇.2°C /W以下。 200839007 七、指定代表圖: (一) 、本案指定代表圖為:無 (二) 、本代表圖之元件代表符號簡單說明:無200839007 X. Patent application scope 1. A grease characterized by one or more heat conduction groups selected from the group consisting of a thermal conductive material (A), a thermal conductive material (B), and a thermal conductive material (C) The powder of the material, the particle size distribution of the thermal conductive material powder measured by a laser diffraction particle size distribution method, in 2. 〇~丨〇# m, 1.0~1.9/zm, and 〇·ι~〇9// The range of m has a frequency extremely large, and the surface tension is formed by a base oil containing 25 to 40 dyn/cm at 25C. 2 - a kind of grease characterized by a thermal conductive material (A) having an average particle diameter of 2 〇 丨〇 丨〇 vm and an average particle diameter of 1. ~.9 # m of thermal conductive material (B) and an average particle diameter 〇.丨~〇. The thermal conductive material (c) of 9 μm and the base oil having a surface tension of 25 to 40 dyn/cm at 25 °C. 3. The grease of claim 1 or 2, wherein the thermal conductive material (A), (B), or (c) is one or more selected from the group consisting of aluminum metal, aluminum nitride, and A group of zinc oxide. 4. The grease of claim 1 or 2, wherein the thermally conductive material (A) is metallic aluminum, the thermally conductive material (B) is aluminum nitride, and the thermally conductive material (C) is zinc oxide. 5. The grease of any one of claims 1 to 4, wherein the viscosity of the base oil is from 300 to 1 000 mPa*s. 6. The grease of any one of claims 1 to 5 wherein the base oil is a polyoxyxane oil modified with an alkyl group. 7. The grease according to any one of claims 1 to 6, wherein the content of the thermally conductive materials (A), (B) and (C) is 60 to 80% by volume. -21 - 200839007 8. The grease according to any one of claims 1 to 7, wherein the thermally conductive material (A) is 50 to 70% by volume, a thermally conductive material. (B) is 30 to 20% by volume, and the thermally conductive material (C) is 20 to 10% by volume. 9. The grease of any one of claims 1 to 8, which further comprises a decane coupling agent. A grease according to any one of claims 1 to 9, wherein the thermal resistance is 〇.2 ° C /W or less. 200839007 VII. Designated representative map: (1) The representative representative of the case is: None (2), the representative symbol of the representative figure is simple: no 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式·無8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention.
TW096138907A 2006-10-17 2007-10-17 Grease TWI457434B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282457 2006-10-17

Publications (2)

Publication Number Publication Date
TW200839007A true TW200839007A (en) 2008-10-01
TWI457434B TWI457434B (en) 2014-10-21

Family

ID=39314036

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096138907A TWI457434B (en) 2006-10-17 2007-10-17 Grease

Country Status (5)

Country Link
US (1) US20100048435A1 (en)
JP (1) JP5231236B2 (en)
CN (1) CN101528902A (en)
TW (1) TWI457434B (en)
WO (1) WO2008047809A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284655B2 (en) * 2008-02-07 2013-09-11 電気化学工業株式会社 Thermally conductive grease
JP2010106209A (en) * 2008-10-31 2010-05-13 Eishindo:Kk Lubricant
CN103221520A (en) * 2010-11-18 2013-07-24 电气化学工业株式会社 High durability thermally conductive composite and low pump-out grease
CN102250589B (en) * 2011-05-18 2013-05-29 杨福河 High performance silica-free heat conductive paste, and preparation method thereof
JP2017504715A (en) 2013-12-05 2017-02-09 ハネウェル・インターナショナル・インコーポレーテッド Stannous methanesulfonate solution with controlled pH
CA2951437C (en) 2014-07-07 2022-03-15 Honeywell International Inc. Thermal interface material with ion scavenger
ES2886846T3 (en) 2014-12-05 2021-12-21 Honeywell Int Inc High performance thermal interface materials with low thermal impedance
US10138439B2 (en) * 2015-09-30 2018-11-27 Northwestern University Lubrication material using self-dispersed crumpled graphene balls as additives in oil for friction and wear reduction
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
KR102554661B1 (en) 2016-03-08 2023-07-13 허니웰 인터내셔널 인코포레이티드 phase change material
KR102335616B1 (en) * 2016-07-22 2021-12-06 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Thermally conductive polysiloxane composition
KR102362116B1 (en) 2016-07-22 2022-02-11 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Surface treatment agent for thermally conductive polyorganosiloxane composition
EP3489305B1 (en) 2016-07-22 2023-10-18 Momentive Performance Materials Japan LLC Thermally conductive polysiloxane composition
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11359124B2 (en) 2017-05-31 2022-06-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
JP7073939B2 (en) * 2018-06-26 2022-05-24 住友金属鉱山株式会社 Thermally conductive grease
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142800B2 (en) * 1996-08-09 2001-03-07 信越化学工業株式会社 Thermal conductive silicone composition, thermal conductive material, and thermal conductive silicone grease
JP2000169873A (en) * 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd Silicone grease composition
JP2001152175A (en) * 1999-11-30 2001-06-05 Ntn Corp Low-dusting lubricant and low-dusting grease
JP4864188B2 (en) * 2000-02-17 2012-02-01 Ntn株式会社 Low dust generation lubricating grease, rolling bearing and linear motion device
JP4603700B2 (en) * 2001-01-04 2010-12-22 株式会社日立製作所 High thermal conductive grease composition and cooling device using the same
JP4796704B2 (en) * 2001-03-30 2011-10-19 株式会社タイカ Manufacturing method of containers filled and sealed with extrudable grease-like heat dissipation material
JP3957596B2 (en) * 2002-09-04 2007-08-15 電気化学工業株式会社 Thermally conductive grease
JP3891969B2 (en) * 2003-08-06 2007-03-14 電気化学工業株式会社 Thermally conductive grease
JP4219793B2 (en) * 2003-11-25 2009-02-04 信越化学工業株式会社 Silicone grease composition for heat dissipation
JP4124459B2 (en) * 2003-12-08 2008-07-23 電気化学工業株式会社 Grease
JP2005330426A (en) * 2004-05-21 2005-12-02 Shin Etsu Chem Co Ltd Heat-dissipating silicone grease composition
TWI385246B (en) * 2004-05-21 2013-02-11 Shinetsu Chemical Co Silicone grease compositions
JP4687887B2 (en) * 2004-10-14 2011-05-25 信越化学工業株式会社 Thermally conductive silicone grease composition

Also Published As

Publication number Publication date
CN101528902A (en) 2009-09-09
JPWO2008047809A1 (en) 2010-02-25
WO2008047809A1 (en) 2008-04-24
JP5231236B2 (en) 2013-07-10
TWI457434B (en) 2014-10-21
US20100048435A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
TW200839007A (en) Grease
CN109890900B (en) One-component curable heat-conductive silicone grease composition and electronic/electrical component
TWI743247B (en) Thermally conductive silicone composition and its hardened product, and manufacturing method
KR101244566B1 (en) Heat conductive silicone grease composition and cured products thereof
TWI385246B (en) Silicone grease compositions
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5614909B2 (en) Putty-like heat transfer material and manufacturing method thereof
JP5497458B2 (en) Thermally conductive resin composition
JP5463116B2 (en) Thermally conductive material
TWI780100B (en) Thermally conductive resin composition, heat dissipation sheet, heat dissipation member, and manufacturing method thereof
JPWO2015087620A1 (en) Thermal storage composition
CN110709474B (en) Thermally conductive polyorganosiloxane composition
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP2009209165A (en) Thermally-conductive cured product and method for producing same
JP6727471B1 (en) Two-component curable composition set, thermally conductive cured product and electronic device
CN107177345A (en) A kind of heat conduction Silica hydrogel and preparation method
JP2011122000A (en) Silicone composition for high thermal conductivity potting material and method for selecting high thermal conductivity potting material
JP6919716B2 (en) Thermally conductive silicone grease composition
US20130248755A1 (en) High durability thermally conductive composite and low de-oioling grease
JP2008222776A (en) Heat-conductive silicone grease composition
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP7047199B1 (en) Thermally conductive grease composition
WO2022158029A1 (en) Thermally conductive silicone grease composition and production method for same
JP5284655B2 (en) Thermally conductive grease
JP2009256428A (en) Heat conductive silicone composition, adhesion structure, and semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent