WO2008047809A1 - Grease - Google Patents

Grease Download PDF

Info

Publication number
WO2008047809A1
WO2008047809A1 PCT/JP2007/070200 JP2007070200W WO2008047809A1 WO 2008047809 A1 WO2008047809 A1 WO 2008047809A1 JP 2007070200 W JP2007070200 W JP 2007070200W WO 2008047809 A1 WO2008047809 A1 WO 2008047809A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
heat
grease
heat conductive
particle size
Prior art date
Application number
PCT/JP2007/070200
Other languages
French (fr)
Japanese (ja)
Inventor
Toshitaka Yamagata
Takuya Okada
Akira Ubukata
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to JP2008539832A priority Critical patent/JP5231236B2/en
Priority to US12/445,746 priority patent/US20100048435A1/en
Publication of WO2008047809A1 publication Critical patent/WO2008047809A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • C10M2229/025Unspecified siloxanes; Silicones used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • C10M2229/0445Siloxanes with specific structure containing silicon-to-hydrogen bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to a thermally conductive grease.
  • the amount of heat per unit area generated by these electronic component forces is becoming extremely large.
  • the amount of heat is about 20 times that of an iron.
  • a metal heat sink or case is used for cooling, and a heat-conducting material is used to efficiently transfer heat from heat-generating electronic components to the heat sink or case.
  • a heat-conducting material is used to efficiently transfer heat from heat-generating electronic components to the heat sink or case.
  • the thermally conductive material is a thermally conductive sheet made of a cured product obtained by filling a silicone rubber with a thermally conductive powder; a soft silicone such as a silicone gel is filled with the thermally conductive powder and has flexibility.
  • Thermally conductive pads made of cured products; fluid thermal grease with liquid silicone filled with thermal conductive powder; phase change thermal conductive material that softens or fluidizes at the operating temperature of heat-generating electronic components is there.
  • heat conductive grease is particularly easy to conduct heat.
  • Thermally conductive grease is obtained by adding thermally conductive powder to a base oil which is a liquid silicone such as silicone oil.
  • a base oil which is a liquid silicone such as silicone oil.
  • aluminum nitride powder as the thermal conductive powder (Patent Document 1).
  • aluminum nitride powder has a hexagonal crystal structure and is non-spherical in shape, there is a limit to increasing the filling amount of the heat conductive powder to achieve high heat conductivity.
  • Alumina powder and aluminum nitride powder (Patent Documents 2 and 3), or alumina powder and metal
  • Patent Document 4 When Noreminium powder (Patent Document 4) is used in a base oil that is dimethylsilicone oil, it has high heat conductivity. A so-called “oil-release” occurs in which the silicone oil component separates, increasing the thermal resistance.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-169873
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-194379
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-54099
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2005-1 70971
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-91 7743
  • An object of the present invention is to provide a grease exhibiting low thermal resistance and improved deterioration due to heat cycle, particularly a grease suitable for a heat conductive material of a heat-generating electronic component.
  • the present invention employs the following means in order to solve the above problems.
  • the thermally conductive material powder has a particle size distribution measured by the laser diffraction particle size distribution method of 2.0-lO ⁇ m, 1.0-; ⁇ ⁇ ⁇ ⁇ and 0 ⁇ ;!-0 ⁇ Grease having a frequency maximum in the range of 9 m and containing a base oil with a surface tension of 25 to 40 dyn / cm at 25 ° C.
  • Thermally conductive material (A), (B), or (C) is composed of metallic aluminum, aluminum nitride and The grease according to (1) or 2, wherein the grease is one or more selected from the group consisting of zinc oxide.
  • the thermal conductive material (A) is metallic aluminum
  • the thermal conductive material (B) is aluminum nitride
  • the thermal conductive material (C) is zinc oxide (1) or Grease as described in said (2).
  • the heat conductive material (A), (B), and (C) content is 60 to 80% by volume.
  • the thermally conductive material (A) is 50 to 70% by volume
  • the thermally conductive material (B) is 30 to 20% by volume
  • the thermally conductive material (C) is 20 to 10% by volume.
  • the present invention provides a grease suitable for thermal conductivity against heat generated from an electronic component. Grease with low thermal resistance and improved deterioration due to heat cycle.
  • the thermal conductive material (A), (B), or (C) contained in the grease of the present invention is one or two selected from the group consisting of metallic aluminum, aluminum nitride, and zinc oxide. More than a seed.
  • the thermally conductive material (A), (B), or (C) is, for example, a thermally conductive powder such as metal tin, metal silver, metal copper, silicon carbide, aluminum oxide, silicon nitride, or boron nitride powder.
  • the total amount of metallic aluminum, aluminum nitride and zinc oxide is preferable. Up to 5% by volume, particularly preferably up to 3% by volume, can be used.
  • the powder of the heat conductive material contained in the particle size distribution measured by the laser diffraction particle size distribution method is 2 ⁇ O-lO ⁇ m, 1.0 ⁇ ;
  • the force S can be increased to increase the number of contact points between the thermally conductive materials.
  • the thermal conductivity as grease can be improved.
  • One of the means having the particle size distribution of the heat conductive material powder having such a frequency maximum value is a method of mixing heat conductive materials having different particle size distributions.
  • Thermally conductive materials (A), ( ⁇ ), and (C) with different average particle diameters are mixed to increase the fillability of the thermally conductive material by mixing the three types of thermally conductive materials.
  • a thermally conductive material ( ⁇ ) having an average particle diameter of 2.0 to 10 m a thermally conductive material (B) having an average particle diameter of 1.0 to 1.9 m, and an average particle diameter
  • the heat conductive material (C) which is 0.;! ⁇ 0.9 ⁇ 111 By mixing the heat conductive material (C) which is 0.;! ⁇ 0.9 ⁇ 111, the filling property of the heat conductive material can be improved. As a result, the thermal conductivity as grease can be improved.
  • the heat conductive material is preferably contained by including a heat conductive material made of a material having an average particle size of preferably 0.;! To 10 m, preferably 0.3 to 6 m.
  • the grease filled with can be made thinner, and the thermal resistance (easy heat transfer) becomes smaller. This makes it possible to produce grease that is very easy to conduct heat.
  • the heat conductive material ( ⁇ ) having an average particle diameter of 2.0 to 10 ⁇ m used in the present invention needs to have an average particle diameter of 20 ⁇ 10 to 10 m, and further has an average particle diameter of Is preferably in the range of 3 to 6 m.
  • the average particle size is larger than 10 inches, it is difficult to make the grease thin, and the thermal resistance of the grease tends to increase.
  • the heat conductive material (A) is preferably metallic aluminum.
  • the thermally conductive material ( ⁇ ) having an average particle size of 1.0 to 1. 9 um used in the present invention needs to have an average particle size of 1 ⁇ 0 to;
  • the average particle size is preferably in the range of 1-3.
  • the average particle size is larger than 1.9 in, the particle size is close to that of the thermally conductive material with an average particle size of 2.0 to 10 m, so the packing property tends to deteriorate and the thermal resistance tends to increase. It is in.
  • the average particle size is smaller than 1 am, the average particle size becomes 0.;! ⁇ 0.9 in.
  • the filling property of the material tends to deteriorate, and the thermal resistance tends to increase.
  • As the heat conductive material (B) aluminum nitride is preferable.
  • the zinc oxide powder used in the present invention has an average particle size of 0 .;! To 0.9.
  • the heat conductive material (C) must have an average particle size of 0 .;! To 0.9. Further, those having an average particle diameter in the range of 0.3 to 0.7 ⁇ m are preferable.
  • the average particle size is larger than 0.9 mm, the average particle size is 1.0 to 1.9. Resistance tends to increase.
  • the average particle size is smaller than 0.1 l ⁇ m, the filling property of the whole heat conductive material tends to deteriorate, and the thermal resistance tends to increase.
  • the heat conductive material (C) zinc oxide is preferable.
  • the content of the heat conductive material (A), (B), and (C) in the grease is 60 to 80% by volume, preferably S, and more preferably 65 to 75% by volume.
  • the content of the heat conductive material exceeds 80% by volume, the grease tends to become hard and the thermal resistance tends to increase.
  • the content of the heat conductive material is less than 60% by volume, the heat conductive material tends to be difficult to transfer because the filling amount of the heat conductive material is small, and the thermal resistance tends to increase.
  • the blending ratio of the three types of heat conductive materials having different average particle diameters is preferably 50 to 70% by volume, particularly preferably 55 to 65% by volume in the heat conductive material (A).
  • the material (B) is preferably 30-20% by volume, particularly preferably 27-25% by volume
  • the thermally conductive material (C) is preferably 20-; 10% by volume, particularly preferably 17-13% by volume. % Is preferred.
  • the content of the heat conductive material (A) is less than 50% by volume, the dullies tend to become hard and the thermal resistance tends to increase.
  • it exceeds 70% by volume the filling property of the heat conductive material tends to deteriorate, and the thermal resistance tends to increase.
  • the average particle size in the present invention was measured using “Laser Diffraction Particle Size Distribution Measuring Device SALD-200” manufactured by Shimadzu Corporation.
  • SALD-200 “Laser Diffraction Particle Size Distribution Measuring Device SALD-200” manufactured by Shimadzu Corporation.
  • 5 g of 50 cc pure water and a heat conductive powder to be measured were added to a glass beaker, stirred with a spatula, and then subjected to a dispersion treatment for 10 minutes with an ultrasonic cleaner.
  • the powder solution of the thermally conductive material that had been subjected to the dispersion treatment was added drop-wise to the sambra portion of the apparatus using a spoid, and waited until the absorbance became measurable. When the absorbance becomes stable in this way, measure.
  • Laser diffraction particle size distribution analyzers use particles detected by sensors.
  • the particle size distribution is calculated from the light intensity distribution data of diffracted / scattered light.
  • the average particle size is obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).
  • the average particle diameter is the average diameter of the particles.
  • the base oil used in the present invention has a surface tension of 25 to 40 dyn / cm at 25 ° C, particularly preferably 30 to 35 dyn / cm. If the surface tension is less than 25 dyn / cm, the base oil tends to separate due to repeated heat cycles on the grease, which tends to cause the grease to become harder and heat conductivity to deteriorate. . On the other hand, if the surface tension force is greater than 0 dyn / cm, the wettability of the grease tends to be poor, and the thermal conductivity tends to be poor because the grease is difficult to spread.
  • Surface tension is a property of a liquid that tends to make the surface as small as possible, and is a kind of interfacial tension.
  • the liquid When in contact with a liquid or gas, the liquid has the property of reducing the surface area as much as possible. While the molecules in the liquid are attracted from the surroundings, the molecules on the surface are not affected by the attraction of the liquid molecules only in the parts not touching the liquid. Accordingly, the molecules on the surface have excess energy, which is the strength of the surface tension. When this surface tension becomes strong and shows a large value, the base oil is separated from the dull.
  • the Wilhelmy method is preferable as a method for measuring the surface tension.
  • a plate mainly a platinum plate
  • the surface tension works to reduce the area of the increased liquid level.
  • This force is calculated as the force per length (dyne / cm) divided by the perimeter of the plate (twice the sum of width and thickness). This determines the surface tension.
  • an “automatic surface tension meter” manufactured by Kyowa Interface Chemical is used as an apparatus for measuring surface tension.
  • the surface tension of the base oil can also be adjusted by adding an additive having a low surface tension and a large base oil surface tension.
  • the force S is used to adjust the surface tension by adding a silane coupling agent having an alkyl group to dimethylsilicone oil having a low surface tension.
  • the viscosity of the base oil is preferably 300 to 1000 mPa-s, and particularly preferably 500 m to 700 mPa's. If the base oil has a viscosity of less than 300 mPa's, One base oil and a thermally conductive material tend to be separated, and the thermal resistance tends to increase. When the viscosity of the base oil exceeds lOOOOmPa's, it tends to be difficult to fill the heat conductive material at a high level, and the thermal conductivity of the grease tends to deteriorate.
  • the viscosity of the base oil is measured using "Digital Viscometer DV-I" manufactured by Brookfield. Using the RV spindle set, use rotor No. 1 and use a container that can contain the rotor and base oil up to the reference line. Immerse the rotor in base oil and evaluate the viscosity value at lOrp m.
  • the surface tension is preferably 25 to 40 dyn / cm and the viscosity is 300 to; the methyl group of dimethylsilicone oil having lOOOOPa's has 3 or more carbon atoms, It is particularly preferable to use a silicone oil which is modified with an alkyl group of 8 to 12 and has a surface tension of preferably 27 to 37 dy n / cm and a viscosity of 400 to 800 mPa's. Silicone oil modified with an alkyl group has a large surface tension, and when it is made dull, it can suppress deterioration of thermal resistance due to heat cycle.
  • the grease of the present invention contains a silane coupling agent, and can make the filler hydrophobic as a surface modifier, improve dispersibility, and modify other organic resins.
  • Suitable silane coupling agents include alkyl silanes having an alkyl group having 8 to 10 carbon atoms. Examples of preferred silane coupling agents include n-octyltrimethoxysilane, n-octyltriethoxysilane, n -decyltrimethoxysilane and the like.
  • the grease of the present invention may further contain an antioxidant, a metal corrosion inhibitor and the like as necessary.
  • the grease of the present invention can be produced by kneading the above materials with a universal mixing stirrer, kneader, hybrid mixer or the like.
  • the thermal resistance of the grease according to the present invention is preferably in consideration of the thermal conductivity of the grease.
  • a thickness of lmm 10000mm 2 (100mm X 10 Omm ) of 900mm in thickness 100 mu m between the transparent glass plates are of the area 2 (30mm X 30 mm)
  • a heat cycle test was performed at 40 ° C for 30 minutes and 130 ° C for 30 minutes. The number of cycles is 100.
  • the weight of the base oil separated from the thermally conductive dull was measured to evaluate the separation.
  • the heat conductive materials (A), (B), (C) shown in Table 1, the base oil (D) shown in Table 2, and the silane coupling agent (E) shown in Table 3 are used in Tables 4-6. And blended for 5 minutes using “Shintaro Awatori AR-250” manufactured by Shinky to produce grease.
  • Table 4 shows the results of evaluating the thermal resistance and separation state of the obtained grease. In the evaluation results, a heat conductive grease with a thermal resistance exceeding 0.2 ° C / W has a thermal characteristic and can efficiently transfer heat from the heat generating part to the cooling part.
  • the grease of the present invention exhibits low thermal resistance, and can efficiently transfer heat from a heat generating electronic component that is less deteriorated by heat cycle to a cooling part such as a heat sink or a casing.
  • the thermally conductive grease according to the present invention is suitably used in various fields, but in particular, because it can efficiently transfer heat by being present between a heat-generating electronic component and a heat sink, etc. Used for cooling electronic parts that generate heat.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2006-282457, filed on October 17, 2006, are cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

It is intended to provide a grease which shows a low heat resistance and has been improved in degradation due to heat cycle, in particular, a grease which is suitable for a heat-conductive material of a heat-generating electronic component. A grease comprising a heat-conductive material powder made up of one or more members selected from the group consisting of a heat-conductive material (A), a heat-conductive material (B) and a heat-conductive (C), in which the heat-conductive material powder has frequency peaks within the ranges of 2.0 to 10 μm, 1.0 to 1.9 μm and 0.1 to 0.9 μm in the grain size distribution determined by the laser diffraction grain size distribution method and which contains a base oil having a surface tension at 25oC of from 25 to 40 dyn/cm.

Description

明 細 書  Specification
グリース  Grease
技術分野  Technical field
[0001] 本発明は、熱伝導性グリースに関する。  [0001] The present invention relates to a thermally conductive grease.
背景技術  Background art
[0002] ノ ソコンの CPU (中央処理装置)等の発熱性電子部品の小型化、高出力化に伴い [0002] With the downsizing and higher output of heat-generating electronic components such as CPUs (central processing units)
、それらの電子部品力 発生する単位面積当たりの熱量は非常に大きくなつてきてい る。それらの熱量はアイロンの約 20倍の熱量にも達する。この発熱性の電子部品を 長期にわたり故障しないようにするためには、発熱する電子部品の冷却が必要とされ る。冷却には金属製のヒートシンクや筐体が使用され、さらに発熱性電子部品からヒ ートシンクや筐体などの冷却部 効率よく熱を伝えるために熱伝導性材料が使用さ れる。この熱伝導性材料を使用する理由として発熱性電子部品とヒートシンク等をそ のまま接触させた場合、その界面には微視的にみると、空気が存在し熱伝導の障害 となる。したがって、界面に存在する空気の代わりに熱伝導性材料を発熱性電子部 品とヒートシンク等の間に存在させることによって、効率よく熱を伝えることができる。 The amount of heat per unit area generated by these electronic component forces is becoming extremely large. The amount of heat is about 20 times that of an iron. In order to prevent this heat generating electronic component from failing for a long time, it is necessary to cool the heat generating electronic component. A metal heat sink or case is used for cooling, and a heat-conducting material is used to efficiently transfer heat from heat-generating electronic components to the heat sink or case. As a reason for using this heat conductive material, when the heat-generating electronic component and the heat sink are brought into contact with each other as they are, microscopically, air is present at the interface, which hinders heat conduction. Therefore, heat can be efficiently transferred by allowing a heat conductive material to exist between the heat-generating electronic component and the heat sink in place of the air present at the interface.
[0003] 熱伝導性材料としては、シリコーンゴムに熱伝導性粉末を充填した硬化物からなる 熱伝導性シート;シリコーンゲルのような柔らかいシリコーンに熱伝導性粉末が充填さ れ、柔軟性を有する硬化物からなる熱伝導性パッド;液状シリコーンに熱伝導性粉末 が充填された流動性のある熱伝導性グリース;発熱電子部品の作動温度で軟化又は 流動化する相変化型熱伝導性材料などがある。これらの中で、熱伝導性グリースが 特に熱を伝えやすい。 [0003] The thermally conductive material is a thermally conductive sheet made of a cured product obtained by filling a silicone rubber with a thermally conductive powder; a soft silicone such as a silicone gel is filled with the thermally conductive powder and has flexibility. Thermally conductive pads made of cured products; fluid thermal grease with liquid silicone filled with thermal conductive powder; phase change thermal conductive material that softens or fluidizes at the operating temperature of heat-generating electronic components is there. Among these, heat conductive grease is particularly easy to conduct heat.
[0004] 熱伝導性グリースは、シリコーンオイル等の液状シリコーンである基油に熱伝導性 粉末を含有させてなるものである。高熱伝導化の要求を満たさせるため、窒化アルミ ニゥム粉末を熱伝導性粉末として用いることが提案されている(特許文献 1)。しかし ながら、窒化アルミニウム粉末は六方晶の結晶構造であり、その形状は非球状である ため熱伝導性粉末の充填量を高めて高熱伝導化することには限界がある。  [0004] Thermally conductive grease is obtained by adding thermally conductive powder to a base oil which is a liquid silicone such as silicone oil. In order to satisfy the requirement for high thermal conductivity, it has been proposed to use aluminum nitride powder as the thermal conductive powder (Patent Document 1). However, since aluminum nitride powder has a hexagonal crystal structure and is non-spherical in shape, there is a limit to increasing the filling amount of the heat conductive powder to achieve high heat conductivity.
[0005] アルミナ粉末と窒化アルミニウム粉末(特許文献 2、 3)、又はアルミナ粉末と金属ァ ノレミニゥム粉末(特許文献 4)をジメチルシリコーンオイルである基油に充填して用い た場合、高熱伝導性ではある力 低温と高温でのヒートサイクルが長期間繰り返され るところで使用すると、基油であるシリコーンオイル成分が分離するいわゆる、「離油」 を生じ、熱抵抗が上昇する。 [0005] Alumina powder and aluminum nitride powder (Patent Documents 2 and 3), or alumina powder and metal When Noreminium powder (Patent Document 4) is used in a base oil that is dimethylsilicone oil, it has high heat conductivity. A so-called “oil-release” occurs in which the silicone oil component separates, increasing the thermal resistance.
[0006] 一方、基油であるシリコーンオイル成分の分離の問題を解決するため、特殊なシリ コーンを用いることが提案されているが(特許文献 5)、この特許文献 5には高熱伝導 化につ!/、ては記載されて!/ヽなレ、。 [0006] On the other hand, in order to solve the problem of separation of the silicone oil component, which is a base oil, it has been proposed to use a special silicone (Patent Document 5). Tsu! /, It ’s listed here!
特許文献 1 :特開 2000— 169873号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-169873
特許文献 2:特開 2002— 194379号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-194379
特許文献 3:特開 2005— 54099号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-54099
特許文献 4 :特開 2005— 1 70971号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2005-1 70971
特許文献 5 :特開 2004— 91 7743号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-91 7743
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、低熱抵抗を示し、ヒートサイクルによる劣化を改善したグリース、 特に発熱性電子部品の熱伝導性材料に適したグリースを提供することである。 [0007] An object of the present invention is to provide a grease exhibiting low thermal resistance and improved deterioration due to heat cycle, particularly a grease suitable for a heat conductive material of a heat-generating electronic component.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、上記の課題を解決するために、以下の手段を採用する。 The present invention employs the following means in order to solve the above problems.
( 1 )熱伝導性材料 (A)、熱伝導性材料 (B)、及び熱伝導性材料 (C)からなる群より 選ばれた 1種又は 2種以上の熱伝導材料粉末を含有し、該熱伝導性材料粉末が、レ 一ザ一回折式粒度分布方法によって測定された粒度分布において、 2. 0- l O ^ m 、 1 . 0〜; ί · μ ΐΐΐ^及び 0 ·;!〜 0 · 9 mの範囲に頻度極大値を有し、かつ、表面張 力が 25°Cで 25〜40dyn/cmの基油を含有してなることを特徴とするグリース。  (1) containing one or more heat conductive material powders selected from the group consisting of a heat conductive material (A), a heat conductive material (B), and a heat conductive material (C), The thermally conductive material powder has a particle size distribution measured by the laser diffraction particle size distribution method of 2.0-lO ^ m, 1.0-; ί · μΐΐΐ ^ and 0 ·;!-0 · Grease having a frequency maximum in the range of 9 m and containing a base oil with a surface tension of 25 to 40 dyn / cm at 25 ° C.
(2)平均粒子径が 2. 0〜; 10 である熱伝導性材料 (A)と、平均粒子径が 1 . 0〜1 . 9 である熱伝導性材料(B)と、平均粒子径が 0.;!〜 0. 9 である熱伝導性 材料(C)と、表面張力が 25°Cで 25〜40dyn/cmの基油と、を含有してなることを特 徴とするグリース。  (2) a heat conductive material (A) having an average particle size of 2.0 to 10; a heat conductive material (B) having an average particle size of 1.0 to 1.9; and an average particle size of A grease characterized by comprising a thermally conductive material (C) of 0 to; to 0.9 and a base oil having a surface tension of 25 to 40 dyn / cm at 25 ° C.
(3)熱伝導性材料 (A)、 (B)、又は(C)が、金属アルミニウム、窒化アルミニウム及び 酸化亜鉛からなる群から選ばれる 1種又は 2種以上である前記(1)又は 2に記載のグ リース。 (3) Thermally conductive material (A), (B), or (C) is composed of metallic aluminum, aluminum nitride and The grease according to (1) or 2, wherein the grease is one or more selected from the group consisting of zinc oxide.
(4)熱伝導性材料 (A)が金属アルミニウムであり、熱伝導性材料 (B)が窒化アルミ二 ゥムであり、かつ熱伝導性材料 (C)が酸化亜鉛である前記(1)又は前記(2)に記載 のグリース。  (4) The thermal conductive material (A) is metallic aluminum, the thermal conductive material (B) is aluminum nitride, and the thermal conductive material (C) is zinc oxide (1) or Grease as described in said (2).
(5)基油の粘度力 00〜; !OOOmPa · sである前記(1)及至前記(4)の!/、ずれか一項 に記載のグリース。  (5) The grease according to any one of (1) to (4)! /, Which is a viscosity of 00--OOOOmPa · s.
(6)基油がアルキル基で変性されたシリコーンオイルである前記(1)乃至前記(5)の いずれか一項に記載のグリース。  (6) The grease according to any one of (1) to (5), wherein the base oil is a silicone oil modified with an alkyl group.
(7)熱伝導性材料 (A)、(B)、及び (C)の含有量が 60〜80体積%である前記(1)乃 至前記(6)の!/、ずれか一項に記載のグリース。  (7) The heat conductive material (A), (B), and (C) content is 60 to 80% by volume. Grease.
(8)全熱伝導性材料中、熱伝導性材料 (A)が 50〜70体積%であり、熱伝導性材料 (B)が 30〜20体積%であり、かつ熱伝導性材料(C)が 20〜; 10体積%である前記( 1)乃至前記(7)の!/、ずれか一項に記載のグリース。  (8) Among all the thermally conductive materials, the thermally conductive material (A) is 50 to 70% by volume, the thermally conductive material (B) is 30 to 20% by volume, and the thermally conductive material (C). The grease according to any one of the above (1) to (7)! /, Which is 20 to 10% by volume.
(9)さらに、シランカップリング剤を含有してなる前記(1)乃至前記(8)のいずれか一 項に記載のグリース。  (9) The grease according to any one of (1) to (8), further comprising a silane coupling agent.
(10)熱抵抗が 0. 2°C/W以下である前記(1)乃至前記(9)のいずれか一項に記載 のグリース。  (10) The grease according to any one of (1) to (9), wherein the thermal resistance is 0.2 ° C / W or less.
発明の効果  The invention's effect
[0009] 本発明は、電子部品から発生した熱などに対して、熱伝導性に適したグリースを提 供するものである。低熱抵抗を示し、ヒートサイクルによる劣化を改善したグリースで ある。  The present invention provides a grease suitable for thermal conductivity against heat generated from an electronic component. Grease with low thermal resistance and improved deterioration due to heat cycle.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明のグリースに含有される熱伝導性材料 (A)、 (B)、又は(C)は、金属アルミ 二ゥム、窒化アルミニウム、及び酸化亜鉛の群から選ばれる 1種又は 2種以上である。 熱伝導性材料 (A)、 (B)、又は(C)は、例えば、金属錫、金属銀、金属銅、炭化ケィ 素、酸化アルミニウム、窒化ケィ素、窒化ホウ素粉末等の熱伝導性粉末が含有されて もよいが、金属アルミニウム、窒化アルミニウム及び酸化亜鉛の合計量の好ましくは 最大 5体積%、特に好ましくは 3体積%までを置き換えて使用することができる。 [0010] The thermal conductive material (A), (B), or (C) contained in the grease of the present invention is one or two selected from the group consisting of metallic aluminum, aluminum nitride, and zinc oxide. More than a seed. The thermally conductive material (A), (B), or (C) is, for example, a thermally conductive powder such as metal tin, metal silver, metal copper, silicon carbide, aluminum oxide, silicon nitride, or boron nitride powder. The total amount of metallic aluminum, aluminum nitride and zinc oxide is preferable. Up to 5% by volume, particularly preferably up to 3% by volume, can be used.
[0011] 本発明のグリースは、含有される熱伝導性材料の粉末が、レーザー回折式粒度分 布法によって測定された粒度分布において、 2· O-lO^m, 1. 0〜; ί· 9μΐ ^及び 0. ;!〜 0. 9 inの範囲に頻度極大値を有することにより、熱伝導性材料間の接触点 数を上げること力 Sできる。その結果、グリースとしての熱伝導性が向上することができ る。このような頻度極大値を有する熱伝導性材料の粉末の粒度分布をもつ手段の一 つとしては、異なる粒度分布をもつ熱伝導性材料を混合する方法がある。 [0011] In the grease of the present invention, the powder of the heat conductive material contained in the particle size distribution measured by the laser diffraction particle size distribution method is 2 · O-lO ^ m, 1.0∼; By having a frequency maximum in the range of 9 μΐ ^ and 0.;! To 0.9 in, the force S can be increased to increase the number of contact points between the thermally conductive materials. As a result, the thermal conductivity as grease can be improved. One of the means having the particle size distribution of the heat conductive material powder having such a frequency maximum value is a method of mixing heat conductive materials having different particle size distributions.
[0012] 平均粒子径の異なる、熱伝導性材料 (A)、 (Β)、及び (C)の 3種類の熱伝導性材 料を混合することにより、熱伝導性材料の充填性を上げることができる。即ち、平均粒 子径 2. 0〜; 10 mである熱伝導性材料 (Α)と、平均粒子径 1. 0〜; 1. 9 mである 熱伝導性材料 (B)と、平均粒子径 0. ;!〜 0. 9^ 111である熱伝導性材料 (C)を混合 することにより、熱伝導性材料の充填性を上げることができる。その結果、グリースとし ての熱伝導性が向上することができる。さらに、平均粒子径が好ましくは 0. ;!〜 10 mの小さい、好ましくは 0. 3〜6 mの小さい粒子径の材料からなる熱伝導性材を含 有させることにより、その熱伝導性材料を充填したグリースの薄膜化が可能となり熱抵 抗 (熱の伝わりやすさ)は小さくなる。これにより、非常に熱を伝え易いグリースが製造 可能となる。 [0012] Thermally conductive materials (A), (Β), and (C) with different average particle diameters are mixed to increase the fillability of the thermally conductive material by mixing the three types of thermally conductive materials. Can do. That is, a thermally conductive material (Α) having an average particle diameter of 2.0 to 10 m, a thermally conductive material (B) having an average particle diameter of 1.0 to 1.9 m, and an average particle diameter By mixing the heat conductive material (C) which is 0.;! ~ 0.9 ^ 111, the filling property of the heat conductive material can be improved. As a result, the thermal conductivity as grease can be improved. Further, the heat conductive material is preferably contained by including a heat conductive material made of a material having an average particle size of preferably 0.;! To 10 m, preferably 0.3 to 6 m. The grease filled with can be made thinner, and the thermal resistance (easy heat transfer) becomes smaller. This makes it possible to produce grease that is very easy to conduct heat.
[0013] 本発明で使用する平均粒子径が 2. 0〜10μ mである熱伝導性材料 (Α)は平均粒 子径が 2· 0〜; 10 mである必要があり、さらに平均粒子径は 3〜6 mの範囲のもの が好ましい。平均粒子径が 10 inより大きくなるとグリースの薄膜化が難しくなる傾向 にあり、グリースの熱抵抗が上昇する傾向にある。反対に平均粒子径が 2. 0 111より 小さくなると熱伝導性材料 (A)としては、金属アルミニウムが好ましい。  [0013] The heat conductive material (Α) having an average particle diameter of 2.0 to 10 μm used in the present invention needs to have an average particle diameter of 20 · 10 to 10 m, and further has an average particle diameter of Is preferably in the range of 3 to 6 m. When the average particle size is larger than 10 inches, it is difficult to make the grease thin, and the thermal resistance of the grease tends to increase. On the other hand, when the average particle size is smaller than 2.0 111, the heat conductive material (A) is preferably metallic aluminum.
[0014] 本発明で使用する平均粒子径が 1. 0-1. 9u mである熱伝導性材料 (Β)は平均 粒子径が 1· 0〜; !· 9 mである必要があり、さらに平均粒子径は 1· 3〜; !· 7 /imの 範囲のものが好ましい。平均粒子径が 1. 9 inより大きくなると平均粒子径が 2. 0〜 10 mの熱伝導性材料の粒子と粒子径が近いため、充填性が悪くなる傾向にあり、 熱抵抗が上昇する傾向にある。反対に平均粒子径が 1 a mより小さくなると平均粒子 径が 0. ;!〜 0. 9 inの熱伝導性材料の粒子と粒子径が小さくなるため熱伝導性材 料の充填性が悪くなる傾向にあり、熱抵抗が上昇する傾向にある。熱伝導性材料 (B )としては、窒化アルミユウムが好ましい。 [0014] The thermally conductive material (Β) having an average particle size of 1.0 to 1. 9 um used in the present invention needs to have an average particle size of 1 · 0 to; The average particle size is preferably in the range of 1-3. When the average particle size is larger than 1.9 in, the particle size is close to that of the thermally conductive material with an average particle size of 2.0 to 10 m, so the packing property tends to deteriorate and the thermal resistance tends to increase. It is in. On the other hand, if the average particle size is smaller than 1 am, the average particle size becomes 0.;! ~ 0.9 in. The filling property of the material tends to deteriorate, and the thermal resistance tends to increase. As the heat conductive material (B), aluminum nitride is preferable.
[0015] 本発明で使用する酸化亜鉛粉末は平均粒子径が 0. ;!〜 0. 9 である熱伝導性 材料(C)は平均粒子径はが 0. ;!〜 0. 9 である必要があり、さらに平均粒子径が 0. 3〜0. 7〃mの範囲のものが好ましい。平均粒子径が 0. 9〃mより大きくなると平 均粒子径が 1. 0〜; 1. 9 inの熱伝導性材料の粒子と粒子径が近くなり、充填性が 悪くなる傾向にあり、熱抵抗が上昇する傾向にある。平均粒子径が 0. l ^ mより小さ くなると全体の熱伝導性材料の充填性が悪くなる傾向にあり、熱抵抗が上昇する傾 向にある。熱伝導性材料 (C)としては、酸化亜鉛が好ましい。  [0015] The zinc oxide powder used in the present invention has an average particle size of 0 .;! To 0.9. The heat conductive material (C) must have an average particle size of 0 .;! To 0.9. Further, those having an average particle diameter in the range of 0.3 to 0.7 μm are preferable. When the average particle size is larger than 0.9 mm, the average particle size is 1.0 to 1.9. Resistance tends to increase. When the average particle size is smaller than 0.1 l ^ m, the filling property of the whole heat conductive material tends to deteriorate, and the thermal resistance tends to increase. As the heat conductive material (C), zinc oxide is preferable.
[0016] グリース中の熱伝導性材料 (A)、 (B)、及び(C)の含有量は 60〜80体積%である こと力 S好ましく、 65〜75体積%であることがさらに好ましい。熱伝導性材料の含有量 が 80体積%を超えると、グリースが硬くなる傾向にあり、熱抵抗が大きくなる傾向にあ る。また、熱伝導性材料の含有量が 60体積%より小さくなると、熱伝導性材料の充填 量が小さいため、熱が伝わりにくい傾向にあり、熱抵抗が大きくなる傾向にある。  [0016] The content of the heat conductive material (A), (B), and (C) in the grease is 60 to 80% by volume, preferably S, and more preferably 65 to 75% by volume. When the content of the heat conductive material exceeds 80% by volume, the grease tends to become hard and the thermal resistance tends to increase. Also, if the content of the heat conductive material is less than 60% by volume, the heat conductive material tends to be difficult to transfer because the filling amount of the heat conductive material is small, and the thermal resistance tends to increase.
[0017] 平均粒子径の異なる 3種類の熱伝導性材料の配合割合は、熱伝導性材料 (A)が 好ましくは 50〜70体積%、特に好ましくは 55〜65体積%であり、熱伝導性材料 (B) が好ましくは 30〜20体積%、特に好ましくは 27〜25体積%であり、そして、熱伝導 性材料(C)が好ましくは 20〜; 10体積%、特に好ましくは 17〜 13体積%が好適であ る。熱伝導性材料 (A)の含有割合が 50体積%より少なくなるとダリースが硬くなる傾 向にあり、熱抵抗が大きくなる傾向にある。また、 70体積%より多くなると、熱伝導性 材料の充填性が悪くなる傾向にあり、熱抵抗が大きくなる傾向にある。  [0017] The blending ratio of the three types of heat conductive materials having different average particle diameters is preferably 50 to 70% by volume, particularly preferably 55 to 65% by volume in the heat conductive material (A). The material (B) is preferably 30-20% by volume, particularly preferably 27-25% by volume, and the thermally conductive material (C) is preferably 20-; 10% by volume, particularly preferably 17-13% by volume. % Is preferred. When the content of the heat conductive material (A) is less than 50% by volume, the dullies tend to become hard and the thermal resistance tends to increase. On the other hand, if it exceeds 70% by volume, the filling property of the heat conductive material tends to deteriorate, and the thermal resistance tends to increase.
[0018] 本発明における平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装 置 SALD— 200」を用いて測定を行った。評価サンプルは、ガラスビーカーに 50cc の純水と測定する熱伝導性粉末を 5g添加して、スパチュラを用いて撹拌し、その後 超音波洗浄機で 10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉 末の溶液をスポイドを用いて、装置のサンブラ部に一滴ずつ添加して、吸光度が測 定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で 測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による 回折/散乱光の光強度分布のデータから粒度分布を計算する。平均粒子径は測定 される粒子径の値に相対粒子量 (差分%)を掛けて、相対粒子量の合計(100%)で 割って求められる。なお、平均粒子径は粒子の平均直径である。 The average particle size in the present invention was measured using “Laser Diffraction Particle Size Distribution Measuring Device SALD-200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc pure water and a heat conductive powder to be measured were added to a glass beaker, stirred with a spatula, and then subjected to a dispersion treatment for 10 minutes with an ultrasonic cleaner. The powder solution of the thermally conductive material that had been subjected to the dispersion treatment was added drop-wise to the sambra portion of the apparatus using a spoid, and waited until the absorbance became measurable. When the absorbance becomes stable in this way, measure. Laser diffraction particle size distribution analyzers use particles detected by sensors. The particle size distribution is calculated from the light intensity distribution data of diffracted / scattered light. The average particle size is obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average diameter of the particles.
[0019] 本発明で用いられる基油は、表面張力が 25°Cで 25〜40dyn/cmであり、特に 30 〜35dyn/cmであることが好ましい。表面張力が 25dyn/cmより小さいとグリース に対してヒートサイクルを繰り返すことにより、基油が分離を起こしやすい傾向にあり、 それによつてグリースが硬くなる傾向がり、熱伝導性が悪くなる傾向にある。また、表 面張力力 0dyn/cmより大きいとグリースにした場合のぬれが悪くなる傾向にあり、 グリースが広がりにくい傾向のため、熱伝導性が悪くなる傾向にある。  [0019] The base oil used in the present invention has a surface tension of 25 to 40 dyn / cm at 25 ° C, particularly preferably 30 to 35 dyn / cm. If the surface tension is less than 25 dyn / cm, the base oil tends to separate due to repeated heat cycles on the grease, which tends to cause the grease to become harder and heat conductivity to deteriorate. . On the other hand, if the surface tension force is greater than 0 dyn / cm, the wettability of the grease tends to be poor, and the thermal conductivity tends to be poor because the grease is difficult to spread.
[0020] 表面張力は、表面を出来るだけ小さくしょうとする傾向を持つ液体の性質のことで、 界面張力の一種である。液体か気体と接してレ、るとき液体はできるだけ表面積を縮 小しょうとする性質がある。液体内の分子は周りから引力で引かれているのに対して 、表面上にある分子は液体に触れていない部分だけ、液体分子の引力の影響を受 けていない。その分だけ、表面上にある分子は余ったエネルギーをもつことになり、こ れが表面張力の強さとなる。この表面張力が強くなり大きい値を示すことにより、ダリ ースからの基油の分離が生じに《なる。  [0020] Surface tension is a property of a liquid that tends to make the surface as small as possible, and is a kind of interfacial tension. When in contact with a liquid or gas, the liquid has the property of reducing the surface area as much as possible. While the molecules in the liquid are attracted from the surroundings, the molecules on the surface are not affected by the attraction of the liquid molecules only in the parts not touching the liquid. Accordingly, the molecules on the surface have excess energy, which is the strength of the surface tension. When this surface tension becomes strong and shows a large value, the base oil is separated from the dull.
[0021] 本発明において、表面張力の測定方法として、 Wilhelmy法が好ましい。 Wilhelm y法は、液面に対してプレート(主に白金板)を垂直に浸すと、液がぬれ上がるが、こ のとき増加した液面の面積を減らそうとして表面張力が働く。この力はプレートの周囲 長(幅と厚みの合計の 2倍)で割ると、長さ当たりの力(dyne/cm)として算出される。 これによつて表面張力が求められる。表面張力の測定装置としては、協和界面化学 製「自動表面張力計」等が用いられる。  In the present invention, the Wilhelmy method is preferable as a method for measuring the surface tension. In the Wilhelmy method, when a plate (mainly a platinum plate) is immersed perpendicularly to the liquid level, the liquid wets, but the surface tension works to reduce the area of the increased liquid level. This force is calculated as the force per length (dyne / cm) divided by the perimeter of the plate (twice the sum of width and thickness). This determines the surface tension. As an apparatus for measuring surface tension, an “automatic surface tension meter” manufactured by Kyowa Interface Chemical is used.
[0022] 基油の表面張力は、表面張力の小さい基油 表面張力の大きい添加剤を添加す ることによつても調整は可能である。例えば、表面張力の小さいジメチルシリコーンォ ィル等にアルキル基をもつシランカップリング剤を添加することによって表面張力を調 整をすること力 Sでさる。  [0022] The surface tension of the base oil can also be adjusted by adding an additive having a low surface tension and a large base oil surface tension. For example, the force S is used to adjust the surface tension by adding a silane coupling agent having an alkyl group to dimethylsilicone oil having a low surface tension.
[0023] 基油の粘度は、好ましく 300〜; 1000mPa - sであり、特に好ましくは 500m〜700m Pa ' sである。基油の粘度が 300mPa ' s未満では、ヒートサイクルを行った後に、ダリ 一スの基油と熱伝導性材料が分離を生じやすい傾向にあり、熱抵抗が高くなる傾向 にある。基油の粘度が lOOOmPa ' sを超える場合には、熱伝導性材料を高充填する ことが難しくなる傾向にあり、グリースの熱伝導性が悪くなる傾向にある。 [0023] The viscosity of the base oil is preferably 300 to 1000 mPa-s, and particularly preferably 500 m to 700 mPa's. If the base oil has a viscosity of less than 300 mPa's, One base oil and a thermally conductive material tend to be separated, and the thermal resistance tends to increase. When the viscosity of the base oil exceeds lOOOOmPa's, it tends to be difficult to fill the heat conductive material at a high level, and the thermal conductivity of the grease tends to deteriorate.
[0024] 基油の粘度は、ブルックフィールド製「デジタル粘度計 DV—I」を用いて測定される 。 RVスピンドルセットを用いて、ローター No. 1を使用し、そのローターが入り、基準 線まで基油を入れることができる容器を用いる。ローターを基油に浸し、回転数 lOrp mでの粘度値を評価する。  [0024] The viscosity of the base oil is measured using "Digital Viscometer DV-I" manufactured by Brookfield. Using the RV spindle set, use rotor No. 1 and use a container that can contain the rotor and base oil up to the reference line. Immerse the rotor in base oil and evaluate the viscosity value at lOrp m.
[0025] 本発明では、基油として、表面張力が好ましくは 25〜40dyn/cmであり、かつ粘 度が 300〜; lOOOmPa ' sであるジメチルシリコーンオイルのメチル基を炭素数が 3以 上、特に好ましくは 8〜; 12のアルキル基で変性し、表面張力が好ましくは 27〜37dy n/cmであり、かつ粘度が 400〜800mPa ' sであるシリコーンオイルを用いることが 好ましい。アルキル基で変性したシリコーンオイルは、表面張力は大きくなり、ダリー スとした場合に、ヒートサイクルによる熱抵抗の劣化を抑制することができる。  [0025] In the present invention, as the base oil, the surface tension is preferably 25 to 40 dyn / cm and the viscosity is 300 to; the methyl group of dimethylsilicone oil having lOOOOPa's has 3 or more carbon atoms, It is particularly preferable to use a silicone oil which is modified with an alkyl group of 8 to 12 and has a surface tension of preferably 27 to 37 dy n / cm and a viscosity of 400 to 800 mPa's. Silicone oil modified with an alkyl group has a large surface tension, and when it is made dull, it can suppress deterioration of thermal resistance due to heat cycle.
[0026] 本発明のグリースには、シランカップリング剤が含有され、表面改質剤としてフィラー の疎水化、及び分散性向上、その他有機樹脂の改質等ができる。好適なシランカツ プリング剤としては、炭素数 8〜; 10のアルキル基を有するアルキルシランが挙げられ る。好ましいシランカップリング剤の例としては、 n—ォクチルトリメトキシシラン、 n—ォ クチルトリエトキシシラン、 n—デシルトリメトキシシランなどが例示される。 [0026] The grease of the present invention contains a silane coupling agent, and can make the filler hydrophobic as a surface modifier, improve dispersibility, and modify other organic resins. Suitable silane coupling agents include alkyl silanes having an alkyl group having 8 to 10 carbon atoms. Examples of preferred silane coupling agents include n-octyltrimethoxysilane, n-octyltriethoxysilane, n -decyltrimethoxysilane and the like.
[0027] なお、本発明のグリースは上述した各成分に加えて、さらに必要に応じて酸化防止 剤、金属腐食防止剤などを配合してもよい。  In addition to the above-described components, the grease of the present invention may further contain an antioxidant, a metal corrosion inhibitor and the like as necessary.
[0028] 本発明のグリースは、上記材料を万能混合攪拌機、ニーダー、ハイブリッドミキサー 等で混練りすることによって製造することができる。  [0028] The grease of the present invention can be produced by kneading the above materials with a universal mixing stirrer, kneader, hybrid mixer or the like.
[0029] グリースの熱抵抗の測定方法としては、ヒーターが埋め込まれた直方体の銅製治具 で先端が lcm2 (lcm X lcm)と、冷却フィンを取り付けた直方体の銅製治具で先端 が lcm2 (lcm X lcm)との間に、グリースを挟んで、 1平方センチメートル当たり 4kg の荷重をかけて、試料と銅製治具を密着させる。試料の量は、密着面の全体を埋め る状態とする。ヒーターに電力 20Wをかけて 30分間保持し、銅製治具同士の温度差 (°C)を測定し、式、熱抵抗 (°C/W) = {温度差 (°C) / 電力 (W) }、にて算出する。 本発明のグリースの熱抵抗としては、グリースの熱伝導性を考慮すると、好ましくは[0029] The thermal resistance of the grease can be measured using a rectangular copper jig with a heater embedded in a lcm 2 (lcm X lcm) tip and a rectangular copper jig with a cooling fin attached to a lcm 2 tip. (1cm x lcm) with grease between them, applying a load of 4kg per square centimeter to bring the sample and the copper jig in close contact. The amount of the sample should be such that the entire contact surface is filled. Apply 20W power to the heater and hold it for 30 minutes, measure the temperature difference (° C) between copper jigs, formula, thermal resistance (° C / W) = (temperature difference (° C) / power (W) }. The thermal resistance of the grease according to the present invention is preferably in consideration of the thermal conductivity of the grease.
0. 2°C/W以下、特に好ましくは 0. C/W以下が好ましい好適である。 0.2 ° C / W or less, particularly preferably 0. C / W or less is preferred.
[0030] 本発明のグリースの分離状態については、厚さ lmmで 10000mm2 (100mm X 10 Omm)の面積の透明なガラス板同士の間に厚さ 100 μ mで 900mm2 (30mm X 30 mm)のグリースを塗布し、その状態で 40°Cで 30分、 130°Cで 30分の条件で、ヒ ートサイクル試験を行って評価した。サイクル数は 100サイクルである。熱伝導性ダリ ースから分離した基油の重量を測定し、分離を評価した。 [0030] For grease separation conditions of the present invention, a thickness of lmm 10000mm 2 (100mm X 10 Omm ) of 900mm in thickness 100 mu m between the transparent glass plates are of the area 2 (30mm X 30 mm) In this state, a heat cycle test was performed at 40 ° C for 30 minutes and 130 ° C for 30 minutes. The number of cycles is 100. The weight of the base oil separated from the thermally conductive dull was measured to evaluate the separation.
実施例  Example
[0031] (実施例;!〜 24 比較例;!〜 8)  [0031] (Examples;! To 24 comparative examples;! To 8)
表 1に示される熱伝導性材料 (A)、 (B)、 (C)、表 2に示される基油(D)、表 3に示さ れるシランカップリング剤(E)を、表 4〜6の割合で配合し、シンキー製「あわとり練太 郎 AR— 250」を用い、 5分間混合し、グリースを製造した。得られたグリースの熱抵抗 と分離状態を評価した結果を表 4に示した。また評価結果において、熱抵抗が 0. 2 °C/Wを超える熱伝導性グリースは熱特性として、発熱部から冷却部へ効率よく熱を 伝えに《なるため比較例とした。  The heat conductive materials (A), (B), (C) shown in Table 1, the base oil (D) shown in Table 2, and the silane coupling agent (E) shown in Table 3 are used in Tables 4-6. And blended for 5 minutes using “Shintaro Awatori AR-250” manufactured by Shinky to produce grease. Table 4 shows the results of evaluating the thermal resistance and separation state of the obtained grease. In the evaluation results, a heat conductive grease with a thermal resistance exceeding 0.2 ° C / W has a thermal characteristic and can efficiently transfer heat from the heat generating part to the cooling part.
[0032] [表 1] [0032] [Table 1]
表 1 table 1
Figure imgf000010_0001
Figure imgf000010_0001
[0033] [表 2] 表 2  [0033] [Table 2] Table 2
Figure imgf000010_0002
Figure imgf000010_0002
[0034] [表 3] 表 3
Figure imgf000011_0001
[0034] [Table 3] Table 3
Figure imgf000011_0001
[0035] [表 4] [0035] [Table 4]
Figure imgf000011_0002
Figure imgf000011_0002
[0036] [表 5] [0036] [Table 5]
Figure imgf000012_0001
6]
Figure imgf000012_0001
6]
6 6
Figure imgf000013_0001
Figure imgf000013_0001
[0038] 本発明のグリースは、低熱抵抗を示し、ヒートサイクルによる劣化が少なぐ発熱性 電子部品からヒートシンクや筐体等の冷却部へ熱を効率良く伝えることができる。 産業上の利用可能性  [0038] The grease of the present invention exhibits low thermal resistance, and can efficiently transfer heat from a heat generating electronic component that is less deteriorated by heat cycle to a cooling part such as a heat sink or a casing. Industrial applicability
[0039] 本発明による熱伝導性グリースは、種々の分野に好適に使用されるが、特に、発熱 性電子部品とヒートシンク等の間に存在させることによって、効率よく熱を伝えることが できるため、発熱する電子部品の冷却などに使用される。 なお、 2006年 10月 17曰に出願された曰本特許出願 2006— 282457号の明細書 、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示とし て、取り入れるものである。 [0039] The thermally conductive grease according to the present invention is suitably used in various fields, but in particular, because it can efficiently transfer heat by being present between a heat-generating electronic component and a heat sink, etc. Used for cooling electronic parts that generate heat. The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2006-282457, filed on October 17, 2006, are cited herein as the disclosure of the specification of the present invention. Incorporated.

Claims

請求の範囲 The scope of the claims
[1] 熱伝導性材料 (A)、熱伝導性材料 (B)、及び熱伝導性材料 (C)からなる群より選 ばれた 1種又は 2種以上の熱伝導材料粉末を含有し、該熱伝導性材料粉末が、レー ザ一回折式粒度分布法によって測定された粒度分布において、 2. 1. 0〜; ί · 9 μ ΐ ^及び 0.;!〜 0· 9 mの範囲に頻度極大値を有し、かつ、表面張力が 25°Cで 25〜40dyn/cmの基油を含有してなることを特徴とするグリース。  [1] containing one or more heat conductive material powders selected from the group consisting of a heat conductive material (A), a heat conductive material (B), and a heat conductive material (C), The frequency of the thermal conductive material powder in the range of 2. 1. 0 ~; ί · 9 μ ΐ ^ and 0 .;! ~ 0 · 9 m in the particle size distribution measured by the laser diffraction particle size distribution method. A grease having a maximum value and containing a base oil having a surface tension of 25 to 40 dyn / cm at 25 ° C.
[2] 平均粒子径 2. 0〜10 μ mである熱伝導性材料 (Α)と、平均粒子径 1. 0~ 1. 9 μ mである熱伝導性材料 (Β)と、平均粒子径 0.;!〜 0. 9 である熱伝導性材料(C) と、表面張力が 25°Cで 25〜40dyn/cmの基油と、を含有してなることを特徴とする グリース。  [2] Thermally conductive material (Α) with an average particle size of 2.0 to 10 μm, thermal conductive material (Β) with an average particle size of 1. 0 to 1.9 μm, and average particle size A grease characterized by comprising a thermally conductive material (C) of 0 .;! To 0.9, and a base oil having a surface tension of 25 to 40 dyn / cm at 25 ° C.
[3] 熱伝導性材料 (A)、 (B)、又は(C)が金属アルミニウム、窒化アルミニウム、及び酸 化亜鉛の群から選ばれる 1種又は 2種以上であるある請求項 1又は 2に記載のダリー ス。  [3] The heat conductive material (A), (B), or (C) is one or more selected from the group consisting of metallic aluminum, aluminum nitride, and zinc oxide. Dally listed.
[4] 熱伝導性材料 (A)が金属アルミニウムであり、熱伝導性材料 (B)が窒化アルミユウ ムであり、かつ熱伝導性材料 (C)が酸化亜鉛である請求項 1又は 2に記載のグリース  [4] The heat conductive material (A) is metallic aluminum, the heat conductive material (B) is aluminum nitride, and the heat conductive material (C) is zinc oxide. Grease
[5] 基油の粘度が 300〜1000mPa ' sである請求項 1乃至 4のいずれ力、 1項に記載の グリース。 [5] The grease according to any one of claims 1 to 4, wherein the base oil has a viscosity of 300 to 1000 mPa's.
[6] 基油がアルキル基で変性されたシリコーンオイルである請求項 1乃至 5のいずれか 1項に記載のグリース。  6. The grease according to any one of claims 1 to 5, wherein the base oil is a silicone oil modified with an alkyl group.
[7] 熱伝導性材料 (A)、 (B)、及び (C)の含有量が 60〜80体積%である請求項 1乃至 [7] The content of the heat conductive material (A), (B), and (C) is 60 to 80% by volume.
6のいずれ力、 1項に記載のグリース。 Any force of 6, grease according to item 1.
[8] 全熱伝導性材料中、熱伝導性材料 (A)が 50〜70体積%であり、熱伝導性材料 (B[8] Among all the heat conductive materials, the heat conductive material (A) is 50 to 70% by volume, and the heat conductive material (B
)が 30〜20体積%であり、かつ熱伝導性材料(C)が 20〜; 10体積%である請求項 1 乃至 7のいずれ力、 1項に記載のグリース。 The grease according to any one of claims 1 to 7, wherein the thermal conductive material (C) is 20 to 10% by volume.
[9] さらに、シランカップリング剤を含有してなる請求項 1乃至 8のいずれ力、 1項に記載 のグリース。 [9] The grease according to any one of claims 1 to 8, further comprising a silane coupling agent.
[10] 熱抵抗が 0. 2°C/W以下である請求項 1乃至 9のいずれか 1項に記載のグリース。  [10] The grease according to any one of claims 1 to 9, having a thermal resistance of 0.2 ° C / W or less.
PCT/JP2007/070200 2006-10-17 2007-10-16 Grease WO2008047809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008539832A JP5231236B2 (en) 2006-10-17 2007-10-16 Grease
US12/445,746 US20100048435A1 (en) 2006-10-17 2007-10-16 Grease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006282457 2006-10-17
JP2006-282457 2006-10-17

Publications (1)

Publication Number Publication Date
WO2008047809A1 true WO2008047809A1 (en) 2008-04-24

Family

ID=39314036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070200 WO2008047809A1 (en) 2006-10-17 2007-10-16 Grease

Country Status (5)

Country Link
US (1) US20100048435A1 (en)
JP (1) JP5231236B2 (en)
CN (1) CN101528902A (en)
TW (1) TWI457434B (en)
WO (1) WO2008047809A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185212A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Thermal conductive grease
JP2010106209A (en) * 2008-10-31 2010-05-13 Eishindo:Kk Lubricant
WO2012067247A1 (en) * 2010-11-18 2012-05-24 電気化学工業株式会社 High durability thermally conductive composite and low pump-out grease
JP6246986B1 (en) * 2016-07-22 2017-12-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
WO2018016566A1 (en) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
JP2020002212A (en) * 2018-06-26 2020-01-09 住友金属鉱山株式会社 Thermal conductive grease
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US11286349B2 (en) 2016-07-22 2022-03-29 Momentive Performance Materials Japan Llc Surface treatment agent for thermally conductive polyorganosiloxane composition
US11359124B2 (en) 2017-05-31 2022-06-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250589B (en) * 2011-05-18 2013-05-29 杨福河 High performance silica-free heat conductive paste, and preparation method thereof
EP3077578A4 (en) 2013-12-05 2017-07-26 Honeywell International Inc. Stannous methansulfonate solution with adjusted ph
CA2951437C (en) 2014-07-07 2022-03-15 Honeywell International Inc. Thermal interface material with ion scavenger
SG11201704238YA (en) 2014-12-05 2017-06-29 Honeywell Int Inc High performance thermal interface materials with low thermal impedance
US10138439B2 (en) * 2015-09-30 2018-11-27 Northwestern University Lubrication material using self-dispersed crumpled graphene balls as additives in oil for friction and wear reduction
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
BR112018067991A2 (en) 2016-03-08 2019-01-15 Honeywell Int Inc thermal interface material, and electronic component
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169873A (en) * 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd Silicone grease composition
JP2001152175A (en) * 1999-11-30 2001-06-05 Ntn Corp Low-dusting lubricant and low-dusting grease
JP2002201483A (en) * 2001-01-04 2002-07-19 Hitachi Ltd High thermal conductive grease composition and cooling apparatus using the same
JP2004091743A (en) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk Thermal conductive grease
JP2005054099A (en) * 2003-08-06 2005-03-03 Denki Kagaku Kogyo Kk Thermally conductive grease
JP2005154532A (en) * 2003-11-25 2005-06-16 Shin Etsu Chem Co Ltd Heat-dissipating silicone grease composition
JP2005170971A (en) * 2003-12-08 2005-06-30 Denki Kagaku Kogyo Kk Grease
JP2005330426A (en) * 2004-05-21 2005-12-02 Shin Etsu Chem Co Ltd Heat-dissipating silicone grease composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142800B2 (en) * 1996-08-09 2001-03-07 信越化学工業株式会社 Thermal conductive silicone composition, thermal conductive material, and thermal conductive silicone grease
JP4864188B2 (en) * 2000-02-17 2012-02-01 Ntn株式会社 Low dust generation lubricating grease, rolling bearing and linear motion device
JP4796704B2 (en) * 2001-03-30 2011-10-19 株式会社タイカ Manufacturing method of containers filled and sealed with extrudable grease-like heat dissipation material
TWI385246B (en) * 2004-05-21 2013-02-11 Shinetsu Chemical Co Silicone grease compositions
JP4687887B2 (en) * 2004-10-14 2011-05-25 信越化学工業株式会社 Thermally conductive silicone grease composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169873A (en) * 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd Silicone grease composition
JP2001152175A (en) * 1999-11-30 2001-06-05 Ntn Corp Low-dusting lubricant and low-dusting grease
JP2002201483A (en) * 2001-01-04 2002-07-19 Hitachi Ltd High thermal conductive grease composition and cooling apparatus using the same
JP2004091743A (en) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk Thermal conductive grease
JP2005054099A (en) * 2003-08-06 2005-03-03 Denki Kagaku Kogyo Kk Thermally conductive grease
JP2005154532A (en) * 2003-11-25 2005-06-16 Shin Etsu Chem Co Ltd Heat-dissipating silicone grease composition
JP2005170971A (en) * 2003-12-08 2005-06-30 Denki Kagaku Kogyo Kk Grease
JP2005330426A (en) * 2004-05-21 2005-12-02 Shin Etsu Chem Co Ltd Heat-dissipating silicone grease composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185212A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Thermal conductive grease
JP2010106209A (en) * 2008-10-31 2010-05-13 Eishindo:Kk Lubricant
WO2012067247A1 (en) * 2010-11-18 2012-05-24 電気化学工業株式会社 High durability thermally conductive composite and low pump-out grease
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
KR102335616B1 (en) 2016-07-22 2021-12-06 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Thermally conductive polysiloxane composition
KR20190034575A (en) * 2016-07-22 2019-04-02 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Thermally conductive polysiloxane composition
US20210147681A1 (en) 2016-07-22 2021-05-20 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
US11118056B2 (en) 2016-07-22 2021-09-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
WO2018016566A1 (en) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
JP6246986B1 (en) * 2016-07-22 2017-12-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
US11286349B2 (en) 2016-07-22 2022-03-29 Momentive Performance Materials Japan Llc Surface treatment agent for thermally conductive polyorganosiloxane composition
US11359124B2 (en) 2017-05-31 2022-06-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
JP2020002212A (en) * 2018-06-26 2020-01-09 住友金属鉱山株式会社 Thermal conductive grease
JP7073939B2 (en) 2018-06-26 2022-05-24 住友金属鉱山株式会社 Thermally conductive grease

Also Published As

Publication number Publication date
TW200839007A (en) 2008-10-01
TWI457434B (en) 2014-10-21
CN101528902A (en) 2009-09-09
JPWO2008047809A1 (en) 2010-02-25
JP5231236B2 (en) 2013-07-10
US20100048435A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008047809A1 (en) Grease
JP5463116B2 (en) Thermally conductive material
JP4933094B2 (en) Thermally conductive silicone grease composition
TWI302923B (en)
CN107207858B (en) Silicon composition
KR102478791B1 (en) Low Heat Resistance Silicone Composition
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
WO2015087620A1 (en) Heat-storage composition
CN111315825B (en) Thermally conductive silicone grease composition
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP2007051227A (en) Thermally conductive silicone grease composition and cured product thereof
JP2007106809A (en) Heat-conductive grease composition
JP2008222776A (en) Heat-conductive silicone grease composition
JP2017519888A (en) Thermal interface material with mixed aspect ratio particle dispersion
WO2012067247A1 (en) High durability thermally conductive composite and low pump-out grease
JP7015424B1 (en) Thermally conductive silicone grease composition and its manufacturing method
KR101775288B1 (en) Silicone composition having excellent long-term storage stability and heat-radiating function
JP2009185212A (en) Thermal conductive grease
WO2006132253A1 (en) Thermally conductive oil composition, heat radiating agent and electronic equipment
KR20110121881A (en) Silicone composition having excellent long-term storage stability and heat-radiating function
JP2005170971A (en) Grease
JP2009215362A (en) Thermally conductive silicone grease composition and semiconductor device using the same
WO2022215292A1 (en) Thermally conductive grease composition
JP2002093970A (en) Thermal conducting material and its manufacture

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038547.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539832

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12445746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829934

Country of ref document: EP

Kind code of ref document: A1