TW200836203A - Reducing program disturb in non-volatile memory using multiple boosting modes and non-volatile storage system thereof - Google Patents

Reducing program disturb in non-volatile memory using multiple boosting modes and non-volatile storage system thereof Download PDF

Info

Publication number
TW200836203A
TW200836203A TW096141503A TW96141503A TW200836203A TW 200836203 A TW200836203 A TW 200836203A TW 096141503 A TW096141503 A TW 096141503A TW 96141503 A TW96141503 A TW 96141503A TW 200836203 A TW200836203 A TW 200836203A
Authority
TW
Taiwan
Prior art keywords
word line
storage element
switching
volatile storage
stylization
Prior art date
Application number
TW096141503A
Other languages
Chinese (zh)
Other versions
TWI357603B (en
Inventor
Jeffrey W Lutze
Ying-Da Dong
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/555,856 external-priority patent/US7468911B2/en
Priority claimed from US11/555,850 external-priority patent/US7440323B2/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200836203A publication Critical patent/TW200836203A/en
Application granted granted Critical
Publication of TWI357603B publication Critical patent/TWI357603B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written

Abstract

A method for operating a non-volatile storage system which reduces program disturb. Multiple boosting modes are implemented while programming non-volatile storage. For example, self-boosting, local self-boosting, erased area self-boosting and revised erased area self-boosting may be used. One or more switching criteria are used to determine when to switch to a different boosting mode. The boosting mode may be used to prevent program disturb in unselected NAND strings while storage elements are being programmed in selected NAND strings. By switching boosting modes, an optimal boosting mode can be used as conditions change. The boosting mode can be switched based on various criteria such as program pulse number, program pulse amplitude, program pass number, the position of a selected word line, whether coarse or fine programming is used, whether a storage element reaches a program condition and/or a number of program cycles of the non-volatile storage device.

Description

200836203 九、發明說明: 【發明所屬之技術領域】 本發明係關於非揮發記憶體。 【先前技術】 半導體記憶體用於各種電子裝置中已變得日益風行。舉 例而言,非揮發半導體記憶體用於蜂巢式電話、數位攝影 機、個人數位助理、行動計算裝置、非行動計算裝置及其 他裝置中。電可擦可程式化唯讀記憶體(EEPr〇m)及快閃 記憶體在最風行之非揮發半導體記憶體之列。與傳統之全 特徵EEPROM相比,在快閃記憶體(亦為一類型之 EEPROM)之情況下’可單步地擦除整個記憶體陣列之内容 或ό己丨思、體之一部分之内容。 傳統EEPROM與快閃記憶體使用位於半導體基板中之通 迢區上方且與其絕緣之浮動閘極。浮動閘極位於源極區與 汲極區之間。控制閘極提供於浮動閘極上方且與其絕緣。 如此形成之電晶體之臨限電壓(Vth)受保留於浮動閘極上 之電何量的控制。亦#,在接通電晶體之前必須施加至控 制閘極以准斗笔θ曰體之源極與汲極之間的傳導之電壓之最 小量受浮動閘極上之電荷含量的控制。 某二EEPROM及快閃記憶體裝置具有用於儲存兩個範圍 之電荷的浮動㈣’且因此記憶體元件可在兩個狀態(例 =t除狀恶及程式化狀態)之間得以程式化/擦除。因為 母3己憶體7L件可儲存一個位元之資料,所以此種快閃記 U體衣置有時被稱為二進位快閃記憶體裝置。 126206.doc 200836203 多悲(亦被稱為多階)快閃記憶體裝置藉由識別多個相異 容許/有效程式化之臨限電壓範圍而予以實施。每一相異 臨限電壓範圍對應於在記憶體裝置中被編碼之資料位元之 集合的預疋值。舉例而言,當每一記憶體元件可置於對應 於四個相異臨限電壓範圍之四個離散電荷帶中之一者中 時,該元件可儲存兩個位元之資料。200836203 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to non-volatile memory. [Prior Art] Semiconductor memory has become increasingly popular in various electronic devices. For example, non-volatile semiconductor memory is used in cellular phones, digital cameras, personal digital assistants, mobile computing devices, inactive computing devices, and other devices. Electrically erasable and programmable read-only memory (EEPr〇m) and flash memory are among the most popular non-volatile semiconductor memories. Compared with the traditional full-featured EEPROM, in the case of flash memory (also a type of EEPROM), the content of the entire memory array or the contents of one part of the body can be erased in a single step. Conventional EEPROMs and flash memories use floating gates that are above and insulated from the via regions in the semiconductor substrate. The floating gate is located between the source and drain regions. The control gate is provided above and insulated from the floating gate. The threshold voltage (Vth) of the thus formed transistor is controlled by the amount of electricity remaining on the floating gate. Also, the minimum amount of voltage that must be applied to the control gate before the transistor is turned on to conduct the conduction between the source and the drain of the quasi-pen θ body is controlled by the charge content on the floating gate. A second EEPROM and flash memory device has a floating (four)' for storing two ranges of charge's and thus the memory element can be programmed between two states (eg, t-deletion and stylized state). Erase. Because the mother 3 recalls 7L pieces can store one bit of data, such a flash U body is sometimes referred to as a binary flash memory device. 126206.doc 200836203 A multi-sorrow (also known as multi-order) flash memory device is implemented by identifying a plurality of distinct allowable/effectively programmed threshold voltage ranges. Each distinct threshold voltage range corresponds to an expected value of a set of data bits encoded in the memory device. For example, when each memory component can be placed in one of four discrete charge bands corresponding to four distinct threshold voltage ranges, the component can store two bits of data.

通常’將在程式化操作期間施加至控制閘極的程式化電 壓VPGM係作為隨著時間逝去增加量值之一連串脈衝而施 加。在一種可能方法中,脈衝之量值隨著每一連續脈衝而 被增加預定步長,例如,〇·2至〇·4 V。VPGM可施加至快閃 u己L、體元件之控制閘極。在程式化脈衝之間的週期中,執 行驗證操作。亦即,在連續程式化脈衝之間讀取正並行地 私式化之群元件中之每一元件的程式化位準以判定其是 等於還是大於元件正被程式化至之驗證位準。對於多態快 閃。己隐體7L件陣列而言,可對元件之每—狀態執行驗證步 驟以判定元件是否已達到其與資料相關聯之驗證位準。舉 例而言,能夠在四個狀態中儲存資料之多態記憶體元件可 能需要對三個比較點執行驗證操作。 此外’當程式化EEPR0M5il快閃記憶體裝置(諸如「反 之「反及」快閃記憶體裝置)時’通常將vpgm施 加至‘制閘極且使位元線接地,進而使得來 憶體元件(例如,蚀左-从、 ^ (㈣储存%件)之通道之電子注人至浮動閉極 二虽電子累積於浮動閘財時,浮㈣極變為帶負電且 吕己體元件之臨限雷段i > 、 限電屋升尚’使得記憶體元件被認為係處 126206.doc 200836203 於程式化狀態。可在標題為”s〇urce Side Self B⑽α叩 Technique For Non-Volatile Mem〇ry” 之美國專利第 6,859,397號及2005年2月3日公布之標題為,,Detecting 〇ver Programmed Memory’,之美國專利申請公開案第 2005/0024939號中找到關於此程式化之更多資訊;兩個專 利文獻以引用之方式全文併入本文中。 然而,歸因於非揮發儲存元件彼此之接近,已在程式化 期間經歷各種形式之程式干擾。此外,預期此問題隨著 「反及」技術之進一步擴展而惡化。當未選定之非揮發儲 存元件之臨限電壓歸因於其他非揮發儲存元件之程式化而 移位時,發生程式干擾。各種程式干擾_可限制非揮發 儲存裝置(諸如,「反及」快閃記憶體)之可用操作窗。升壓 技術_藉由使被抑制程式化之「反及」串之通道區域升 壓至高電位並將含有待程式化之儲存元件的「反及」串之 通道區域連接至低電位(諸如,G v)來解決此問題。然而, 給疋升壓模式不可最佳地解決多個故障機制。 【發明内容】 本發明藉由提供用於操作減少程式干擾之非揮發儲存系 統之方法來解決上述及其他問題。 在μ知例中’-種用於操作非揮發儲存器之方法包括 程式化在-非揮發儲存元件集合中之一儲存元件,其中該 非揮發儲存元件集合與許多字線通信,且該儲存元件盥一 選定之字線通信。該方法進一步包括在程式化期間將電麼 之第一集合施加至未選定之字線及基於升_式切換桿準 126206.doc 200836203 自將電壓之第-集合施加至未敎之字線切換至將電壓之 第二集合施加至未選定之字線。電壓之第一集合至少部分 地不同於電麼之第二集合。舉例而言,該程式化可包括: 一脈衝串施加至選定之字線’其中當將該脈衝串中具有指 定振幅之程式化脈衝施加至選定之字線時’或當已將該脈 衝串中指定數目之程式化脈衝施加至選定之字線時,觸發 升壓模式切換標準。 x 在另-實施例中’-種用於操作非揮發儲存器之方法包 括在發生-非揮發儲存元件集合中之儲存元件之程式化的 第一程式化階段期間實施第一升壓模式,及在繼續該儲存 元件之程式化的第二程式化階段期間實施第二升壓模式。 該儲存元件之臨限電壓在第一程式化階段期間自第一位準 增加至第二位準且在第二程式化階段期間自第二位準增加 至第三位準。另外’第一程式化階段可包括多遍次程式化 技術中之第-遍次’且第二程式化階段可包括多遍次程式 化技術中之第二遍次。 /在7方法中,在第一程式化階段中,將一脈衝串中之脈 衝第子集把加至s亥儲存元件,且在第二程式化階段 中’將該脈衝串中之脈衝之第二子集施加至該儲存元件。 在另-方法中,在第一程式化階段中,將第一脈衝串施 加至該儲存元件,且在第二程式化階段中’將第二脈衝串 施加至該儲存元件。 在另—實施例中’―種用於操作非揮發儲存器之方法包 括程式化在—非揮發儲存元件集合中之一儲存元件,其中 126206.doc 200836203 該非揮發儲存元件集合與許 -脈衝串施加至一與該儲 通通信。該程式化包括將 法進-步包括當將該脈衝串二通;:之選定之字線。該方 加至該選定之字線時對未 =化脈衝之第一子集施 ㈣模式,及當將該脈衝串中之=發儲存元件實施第- 加至該選定之字線時自對未 ^脈衝之第二子集施 -升_式切換至對未選定之:揮發儲存元件實施第 壓模式。 之非揮發儲存元件實施第二升Typically, the stylized voltage VPGM applied to the control gate during the stylization operation is applied as a series of pulses that increase in magnitude over time. In one possible approach, the magnitude of the pulse is increased by a predetermined step size with each successive pulse, for example, 〇·2 to 〇·4 V. The VPGM can be applied to the control gate of the flash element. The verification operation is performed during the period between the stylized pulses. That is, the programmed level of each of the group elements that are being parallelized in parallel is read between successive stylized pulses to determine whether it is equal to or greater than the verify level to which the component is being programmed. For multi-state flashing. In the case of a hidden 7L array, a verification step can be performed on each state of the component to determine if the component has reached its verification level associated with the data. For example, a polymorphic memory component capable of storing data in four states may need to perform a verify operation on three comparison points. In addition, 'when stylized EEPR0M5il flash memory device (such as "oppositely" reverse flash memory device), 'vpgm is usually applied to the 'gate' and the bit line is grounded, thus making the memory element ( For example, the eclipse left-slave, ^ ((4)% of the storage of the channel of the electronic injection to the floating closed-pole two, although the electrons accumulate in the floating gate, the floating (four) pole becomes negatively charged and the Lu-body component of the thunder Section i > , power-limited housing upgrades make the memory component considered to be in a stylized state at 126206.doc 200836203. Available under the heading "s〇urce Side Self B(10)α叩Technique For Non-Volatile Mem〇ry" Further information on this stylization can be found in U.S. Patent No. 6,859,397 and issued on Feb. 3, 2005, entitled Detecting 〇ver Programmed Memory, U.S. Patent Application Publication No. 2005/0024939; The literature is hereby incorporated by reference in its entirety. However, due to the proximity of non-volatile storage elements to each other, various forms of programmatic interference have been experienced during stylization. Moreover, this problem is expected to Further expansion of the technology deteriorates. Programmatic interference occurs when the threshold voltage of an unselected non-volatile storage element is shifted due to the stylization of other non-volatile storage elements. Various program interferences may limit the non-volatile storage device ( An operational window such as "reverse" flash memory. Boost technology - boosts the channel region of the "reverse" string that is suppressed by stylization to a high potential and contains the storage elements to be programmed The channel area of the "reverse" string is connected to a low potential (such as Gv) to solve this problem. However, the 疋 boost mode does not optimally solve multiple failure mechanisms. [Invention] The present invention provides The above and other problems are solved by operating a non-volatile storage system that reduces program interference. In the example of the invention, a method for operating a non-volatile storage device includes storing one of a set of non-volatile storage elements. An element, wherein the set of non-volatile storage elements is in communication with a plurality of word lines, and the storage element communicates with a selected word line. The method further includes during stylization The first set of electricity is applied to the unselected word line and based on the riser switch bar 126206.doc 200836203 from applying the first set of voltages to the untwisted word line switching to applying the second set of voltages to a selected word line. The first set of voltages is at least partially different from the second set of electricity. For example, the stylization can include: applying a pulse train to the selected word line 'where the pulse train has The boost mode switching criterion is triggered when a programmed pulse of a specified amplitude is applied to the selected word line' or when a specified number of stylized pulses in the burst have been applied to the selected word line. x In another embodiment, a method for operating a non-volatile memory includes performing a first boost mode during a stylized first stylization phase of a storage component in a set of non-volatile storage components, and The second boost mode is implemented during the second stylized phase of continuing the stylization of the storage element. The threshold voltage of the storage element increases from a first level to a second level during the first stylization phase and from a second level to a third level during the second stylization phase. In addition, the 'first stylization stage may include the first pass in the multi-pass stylization technique' and the second stylization stage may include the second pass of the multi-pass stylization technique. / In the 7 method, in the first stylization phase, the subset of the pulses in a burst is added to the storage element, and in the second stylization phase, the pulse in the burst is Two subsets are applied to the storage element. In another method, in a first stylization phase, a first pulse train is applied to the storage element and a second pulse train is applied to the storage element in a second stylization phase. In another embodiment, a method for operating a non-volatile reservoir includes staging a storage element in a collection of non-volatile storage elements, wherein 126206.doc 200836203 the non-volatile storage element set and the Xu-burst application Up to the communication with the store. The stylization includes the step-by-step method of including the pulse train in two steps: the selected word line. When the square is applied to the selected word line, the (four) mode is applied to the first subset of the unconformed pulses, and when the = storage element in the burst is implemented - added to the selected word line, ^ The second subset of pulses is applied to the unselected: the volatile storage element implements the first pressure mode. Non-volatile storage element implements second liter

:非揮發儲存元件集合可提供於許多「反及」串中,包 亥儲存元件之選定之「反及」串,及未敎之「反 串其中第一及第二升壓模式將該未選定之 ^之通道升屢。另夕卜,在一方法中,實施第—升壓模& 括將通道升壓而不使在「反及 八 」申之源極側上之通道之部 反及」_之汲極側上之通道之部分隔離,且實施 /第一升壓模式包括使在「反及」串之源極側上之通道之部 刀/、在反及」串之汲極側上之通道之部分隔離。 【實施方式】 本發明提供減少程式干擾之非揮發儲存系統及方法。 適用於實施本發明之記憶體系統之一實例使用「反及 快閃記憶體結構,該結構包括在兩個選擇閘極之間串聯配 置多個電晶體。該等串聯電晶體及該等選擇閘極被稱為 「反及」串。圖丨為展示r反及」串之俯視圖。圖$為其等 效電路。圖1及圖2中所描繪之「反及」串包括串聯的且夾 於第一選擇閘極120與第二選擇閘極122之間的四個電晶體 126206.doc -11 - 200836203 100、102、104及106。選擇閘極12〇閘控「反及」串至位 兀線126之連接。選擇閘極122閘控「反及」串至源極線 128之連接。藉由將適當電壓施加至控制閘極12〇CG而控 制選擇閘極120。藉由將適當電壓施加至控制閘極122cg 而控制選擇閘極122。電晶體1〇〇、102、1〇4及1〇6中之每 一者具有一控制閘極及一浮動閘極。電晶體1 〇〇具有控制 閘極100CG及浮動閘極100FG。電晶體1〇2包括控制閘極 1 02CG及浮動閘極丨02FG。電晶體丨〇4包括控制閘極丨〇4Cg 及浮動閘極104FG。電晶體ι〇6包括控制閘極1〇6CG及浮動 閘極106FG。控制閘極100CG連接至(或係)字線WL3,控制 閘極102CG連接至字線WL2,控制閘極1〇4CG連接至字線 WL1,且控制閘極1〇6CG連接至字線WL〇。在一實施例 中’電晶體100、102、1〇4及1〇6為每一儲存元件,亦被稱 為記憶體單元。在其他實施例中,儲存元件可包括多個電 晶體或可不同於圖丨及圖2中所描繪之記憶體元件。選擇閘 極120連接至選擇線SGD。選擇閘極122連接至選擇線 SGS 〇 圖3為描繪三個r反及」串之電路圖。使用「反及」〜 構之快閃記憶體系統之典型架構將包括若干「反及」串。 牛「丨而〇在具有更多「反及」串之記憶體陣列中展示三 個「反及」串320、34〇及360。該等「反及」串中之每一 兩個選擇閘極及四個儲存元件。雖然為簡單起見而 說明四個儲存元件,但現代「反及」_可具有高達(例如) 二十二個或六十四個儲存元件。 126206.doc •12- 200836203 舉例而言,「反及」串320包括選擇閘極322及327以及儲 存元件3 23至326,「反及」串340包括選擇閘極342及347以 及儲存元件3 43至3 46,「反及」串360包括選擇閘極362及 367以及儲存元件363至366。每一「反及」串藉由其選擇 閘極(例如,選擇閘極327、347或367)而連接至源極線。使 用選擇線SGS來控制源極側選擇閘極。各個「反及」串 320、340及360藉由選擇閘極322、342、362等中之選擇電 晶體而連接至各別位元線321、341及361。此等選擇電晶 體由汲極選擇線SGD控制。在其他實施例中,選擇線在 反及」串中未必為共同的。亦即,可對不同「反及」串 提供不同選擇線。字線WL3連接至儲存元件323、343及 363之控制閘極.字線WL2連接至儲存元件以斗、及%* 之控制閘極。字線WL1連接至儲存元件奶、%及奶之 控制閘極。予線WLG連接至儲存元件326、⑽及鳩之控 制閘極。如可看出’每一位元線及各別「反及」串包含儲: a collection of non-volatile storage elements can be provided in a number of "reverse" strings, the selected "reverse" string of the storage element, and the "reverse string" in which the first and second boost modes are unselected. In addition, in one method, the implementation of the first-boost mode & boosts the channel without reversing the channel on the source side of the "anti-eight" application. Part of the channel on the drain side of the _ is isolated, and the implementation/first boost mode includes the knives of the channel on the source side of the "reverse" string, on the opposite side of the string Part of the channel is isolated. [Embodiment] The present invention provides a non-volatile storage system and method for reducing program interference. One example of a memory system suitable for use in practicing the present invention uses a "reverse flash memory structure that includes a plurality of transistors arranged in series between two select gates. The series transistors and the select gates It is called the "reverse" string. Figure 丨 is a top view showing the r and the string. Figure $ is its equivalent circuit. The "reverse" string depicted in Figures 1 and 2 includes four transistors 126206.doc -11 - 200836203 100, 102 connected in series and sandwiched between a first selection gate 120 and a second selection gate 122. , 104 and 106. Select the connection of the gate 12 〇 gate "reverse" string to the 兀 line 126. The connection of the gate 122 gate control "reverse" string to the source line 128 is selected. The selection gate 120 is controlled by applying an appropriate voltage to the control gate 12 CG. The selection gate 122 is controlled by applying an appropriate voltage to the control gate 122cg. Each of the transistors 1〇〇, 102, 1〇4, and 1〇6 has a control gate and a floating gate. The transistor 1 has a control gate 100CG and a floating gate 100FG. The transistor 1〇2 includes a control gate 102C and a floating gate 丨02FG. The transistor 丨〇4 includes a control gate 丨〇4Cg and a floating gate 104FG. The transistor 〇6 includes a control gate 1〇6CG and a floating gate 106FG. The control gate 100CG is connected to (or is) a word line WL3, the control gate 102CG is connected to the word line WL2, the control gate 1〇4CG is connected to the word line WL1, and the control gate 1〇6CG is connected to the word line WL〇. In one embodiment, 'transistors 100, 102, 1〇4, and 1〇6 are each storage element, also referred to as a memory unit. In other embodiments, the storage element can comprise a plurality of transistors or can be different from the memory elements depicted in Figure 2 and Figure 2. The selection gate 120 is connected to the selection line SGD. Select gate 122 is connected to select line SGS 〇 Figure 3 is a circuit diagram depicting three r and "strings". A typical architecture using a "reverse" ~ structured flash memory system will include a number of "reverse" strings. The cows "show" three "reverse" strings 320, 34 and 360 in an array of memory with more "reverse" strings. Each of the "reverse" strings selects a gate and four storage elements. Although four storage elements are illustrated for simplicity, modern "reverse" _ can have up to, for example, twenty-two or sixty-four storage elements. 126206.doc •12- 200836203 For example, the "reverse" string 320 includes selection gates 322 and 327 and storage elements 3 23 to 326. The "reverse" string 340 includes selection gates 342 and 347 and storage elements 3 43 To 3 46, the "reverse" string 360 includes select gates 362 and 367 and storage elements 363 through 366. Each "reverse" string is connected to the source line by its selection gate (e.g., selection gate 327, 347, or 367). The selection line SGS is used to control the source side selection gate. The respective "reverse" strings 320, 340 and 360 are connected to the respective bit lines 321, 341 and 361 by selecting a selection transistor among the gates 322, 342, 362 and the like. These selective transistors are controlled by the drain select line SGD. In other embodiments, the selection lines are not necessarily common in the "reverse" string. That is, different selection lines can be provided for different "reverse" strings. Word line WL3 is coupled to the control gates of storage elements 323, 343, and 363. Word line WL2 is coupled to the storage element to the bucket and the control gate of %*. Word line WL1 is connected to the storage element milk, % and the control gate of the milk. The pre-wire WLG is connected to the storage gates of storage elements 326, (10) and 鸠. As can be seen, 'every bit line and each "reverse" string contains

C 存元件之陣列或隼人夕^ ^ ^ 飞果口之仃。字線(WL3、WL2、WL1及 机〇)包含該陣列或集合之列。每一字線連接行中之每一 兀件之控制閘極。或’控㈣極可由字線自身提供。 線WL2對儲存元件324、344及糾提供控制 雜二貫泰上,在一字線上可存在上千個儲存元件。 母儲存元件可儲存資料 之赵仞次刺士 貝枓舉例而言,當儲存一個位元 分成兩個範圍,^二 限電壓(VTH)之範圍 厂 、固範圍指派邏輯資料” 1 ”及”〇,,。在 反及」型快閃記情、許 己匕體之—實財,Vth在擦除儲存元件 126206.doc 200836203C Array of components or 隼人夕 ^ ^ ^ 果 口 仃. The word lines (WL3, WL2, WL1, and chassis) contain the array or set of columns. Each word line connects the control gate of each of the rows. Or the 'control' (four) pole can be provided by the word line itself. Line WL2 provides control over storage elements 324, 344 and corrections, and there may be thousands of storage elements on a word line. For example, when the storage element can store data, the storage of one bit is divided into two ranges, and the range of the voltage of the second limit voltage (VTH) is assigned to the logical data "1" and "〇". ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

之後$負,且被定義為邏輯”丨”。Vth在程式化操作後為正 且被定義為邏輯”G’’°當vTH為負且試圖進行讀取時,儲存 :件將接通以指示正儲存邏輯,,”。當%為正且試圖進行 喝取刼作時,儲存元件將不接通,此指示儲存邏輯,,0,,。 儲:元件亦可儲存多個階層之資訊,例如,多個位元之數 :貝料。在此狀況下,將Vth值之範圍分成該數目之資料 P白層外。舉例而言,若儲存四個階層之資訊,則將存在四個 VtH範圍,對其指派資料值"11"、"10"、”01”及”〇〇”。在 、反及」型記憶體之一實例中,Vth在擦除操作後為負且 被定義為”11’’。正Vth值用於狀態”10”、,,〇1,,及”〇〇”。程式 化至儲存兀件中之資料與元件之臨限電壓範圍之間的特^ 關係取決於對儲存元件採用之資料編碼機制。舉例而言, 均以引用之方式全文併入本文中的美國專利第6,222,犯號 及吴國專利中請公開案第搬55_號描述用於多態快 閃儲存元件之各種資料編碼機制。 〜、 反及」型快閃記憶體及其操作之相關實例提供於美國 專利第 5,386,422號、帛 5,522,號、第 5,57〇,315號、第 5,774,397 號、帛 6,〇46,935 號、第 Μ%,·號及第 6,522,580號中,其中之每一者以引用之方式併入本文中。 當程式化快閃儲存元件時,將程式化電壓施加至該儲存 兀件之控Φ]閘極且將與該儲存元件㈣聯《位元線接地。 來自通道之電子被注入浮動閘極中。當電子在浮動閘極中 累積時,洋動閘極變為帶負電且儲存元件之Vth上升。為 了將程式化電壓施加至正被程式化之儲存元件的控制閘 126206.doc •14- 200836203 極,將此程式化電壓施加於適當之字線上。如上所述,在 該等「反及」串中之每一者中之一儲存元件共用同一字 線。舉例而言,當程式化圖3之儲存元件324時,程式化電 壓亦將施加至儲存元件344及364之控制閘極。Then $ negative, and is defined as logical "丨". Vth is positive after the stylization operation and is defined as logic "G''. When vTH is negative and an attempt is made to read, the store will be turned "on" to indicate that the logic is being stored,". When % is positive and an attempt is made to make a drink, the storage element will not be turned on. This indication stores the logic, 0,,. Storage: Components can also store information from multiple levels, for example, the number of multiple bits: bedding. In this case, the range of the Vth value is divided into the number of data P outside the white layer. For example, if you store four levels of information, there will be four VtH ranges assigned to the data values "11", "10", "01", and "〇〇". In one example of the inverse memory type, Vth is negative after the erase operation and is defined as "11''. The positive Vth value is used for the state "10", ,, 〇1,, and "〇〇" The relationship between the data stored in the storage element and the threshold voltage range of the component depends on the data encoding mechanism used for the storage component. For example, the full text is incorporated herein by reference. U.S. Patent No. 6,222, the issue of the U.S. Patent and the U.S. Patent No. 55-No. describes the various data encoding mechanisms for multi-state flash memory components. ~, and the related types of flash memory and its operation Examples are provided in U.S. Patent Nos. 5,386,422, 5,522, 5, 57, 315, 5,774, 397, 帛 6, 〇 46, 935, Μ%, and No. 6,522, 580, each of which This is incorporated herein by reference. When the flash storage component is programmed, a programmed voltage is applied to the control Φ] gate of the storage element and will be coupled to the storage element (4). Electrons from the channel are injected into the floating gate. When electrons accumulate in the floating gate, the oceanic gate becomes negatively charged and the Vth of the storage element rises. To apply a stylized voltage to the control gate 126206.doc •14- 200836203 pole of the memory element being programmed, this stylized voltage is applied to the appropriate word line. As described above, one of the storage elements in each of the "reverse" strings shares the same word line. For example, when the storage element 324 of Figure 3 is programmed, the programmed voltage will also be applied to the control gates of storage elements 344 and 364.

然而,在程式化其他「反及」串期間,在經抑制之「反 及」串處可能發生程式干擾,且有時在經程式化之「反 及」串自身處發生程式干擾。舉例而言,若「反及」串 320被抑制(例如,其為不含有當前正程式化之儲存元件的 未選定之「反及」串)且「反及」串34〇正被程式化(例如, 其為含有當前正程式化之儲存元件的選定之「反及」 串),則在「反及」串320處可能發生程式干擾。舉例而 5 ’若導通電壓Vpass較低,則不會將經抑制之r反及」 串之通道良好地升壓,且可無意地程式化未選定之「反 及」串的選定之字線。在另一種可能情況下,所升壓之電 壓可由閘極引發汲極漏電(GIDL)或其他漏電機制降低,進 而導致相同問題。其他效應(諸如,歸因於儲存元件之間 的電谷性耦合的經程式化之儲存元件中所儲存之電荷的移 位)亦可為有問題的。 圖4描繪展示升壓模式決定過程之概念圖。如開頭所提 及’程式干擾仍然為非揮發儲存系統之顯著問題。當未選 定之非揮發儲存元件之臨限電壓歸因於其他非揮發儲存元 件之程式化而移位時,發生程式干擾。可在先前程式化之 儲存凡件以及尚未程式化之經擦除之儲存元件上發生程式 干擾。各種程式干擾機制可限制非揮發儲存裝置(諸如, 126206.doc -15- 200836203 …反及^閃吕己憶體)之可用操作窗。舉例而t,升塵技 術,式圖藉由將經抑制之「反及」串之通道區域升壓至高電 位並將含有待程式化之儲存元件之「反及」串的通道區域 •連接至低電位(諸如,〇 v)來解決此問題。然而,給定升塵 式不可最仏地解決多種故障機制。,亦即,、給定升壓模式 ΰ有效也解决特疋&式干擾故障機制但在解決其他故障機 制時可能為低效的。通常,對升壓模式進行折衷或最佳化 以給出最好操作窗。此處’建議在程式化期間使用不同升 壓模式以更好地最佳化升壓。舉例而言,在一方法中,在 初始程式化期間使用一升壓模式且在矛呈式化單個頁面或字 線接近結束時使用第二升壓模式以相對於程式干擾而改良 總裕度(margin)。 可使用各種標準來決定使用哪一升壓模式,及自一升壓 模式切換至另一升壓模式之時刻。作為實例,可由升壓模 式決定過程(區塊41 5)來選擇在區塊4〇〇、405及410處指示 之三個不同升壓模式。升壓模式包括(例如)在下文進一步 論述之自升壓(SB)、局部自升壓(LSB)、擦除區域自升壓 (EASB)及修正擦除區域自升壓(REASB)。一旦作出決定, (例如)藉由將對應於選定之升壓模式之電壓集合施加至未 選定之字線來應用選定之升壓模式(區塊420)。舉例而言, 可由升壓模式切換決定過程(區塊41 5)使用一或多個升壓模 式切換標準(區塊425)。此等標準可包括程式化脈衝數目 (區塊430)、程式化脈衝振幅(區塊43 5)、程式化遍次號(區 塊440)、選定之字線之位置(區塊445)、粗略/精細程式化 126206.doc -16- 200836203 杈式狀態(區塊450)、儲存元件 45” ’及由記憶體襄置經歷之程式化循程式化條件(區塊 460)。 循展之數目(區塊 ,式化遍次號可&(例如)多遍切式However, during the stylization of other "reverse" strings, program disturb may occur at the suppressed "reverse" string, and sometimes program disturb occurs at the stylized "reverse" string itself. For example, if the "reverse" string 320 is suppressed (eg, it is an unselected "reverse" string that does not contain the currently-synchronized storage element) and the "reverse" string 34 is being stylized ( For example, if it is a selected "reverse" string containing the currently stylized storage element, program disturb may occur at the "reverse" string 320. For example, if the turn-on voltage Vpass is low, the suppressed r is not boosted by the "string" channel, and the selected word line of the unselected "reverse" string can be unintentionally programmed. In another possible case, the boosted voltage can be reduced by gate-induced drain leakage (GIDL) or other leakage mechanisms, which in turn causes the same problem. Other effects, such as shifting of charge stored in stylized storage elements due to electrical valley coupling between storage elements, can also be problematic. Figure 4 depicts a conceptual diagram showing the boost mode decision process. As mentioned at the outset, the program disturb is still a significant problem for non-volatile storage systems. Program disturb occurs when the threshold voltage of an unselected non-volatile storage element is shifted due to the stylization of other non-volatile storage elements. Program disturb can occur on previously stylized storage objects and erased storage elements that have not yet been programmed. Various program disturb mechanisms can limit the available operational windows of non-volatile storage devices (such as 126206.doc -15-200836203 ... and syllabary). For example, t, the dust-cleaning technique, the pattern is boosted to a high potential by the channel region of the suppressed "reverse" string and the channel region containing the "reverse" string of the storage element to be programmed is connected to the low Potential (such as 〇v) to solve this problem. However, given the dust-up type, it is not possible to solve many failure mechanisms most. That is, given the boost mode ΰ is also effective to solve the special & type of interference failure mechanism but may be inefficient in solving other failure mechanisms. Typically, the boost mode is traded off or optimized to give the best operating window. Here, it is recommended to use different boost modes during stylization to better optimize boost. For example, in one method, a boost mode is used during initial stylization and the second boost mode is used to improve the total margin relative to program disturb when the spear renders a single page or the word line is nearing the end ( Margin). Various criteria can be used to determine which boost mode to use and when to switch from one boost mode to another. As an example, the three different boost modes indicated at blocks 4A, 405, and 410 can be selected by the boost mode decision process (block 41 5). The boost mode includes, for example, self-boost (SB), local self-boost (LSB), erased area self-boost (EASB), and modified erase area self-boost (REASB), discussed further below. Once a decision is made, the selected boost mode (block 420) is applied, for example, by applying a set of voltages corresponding to the selected boost mode to the unselected word lines. For example, the boost mode switching decision process (block 41 5) may use one or more boost mode switching criteria (block 425). Such criteria may include the number of programmed pulses (block 430), the programmed pulse amplitude (block 43 5), the programmed pass number (block 440), the location of the selected word line (block 445), rough /Fine stylized 126206.doc -16- 200836203 杈 state (block 450), storage element 45" 'and stylized programmatic conditions experienced by memory device (block 460). Block, style pass number can be & (for example) multi-pass type

VV

遍次還是第二遍次在進行中。關於儲存元件 2弟一 化條件之標準可(例如^疋達到耘式 m )猎由伯測-群儲存元件(諸如,一F 塊或陣列)中之第-儲存元件或健存元件之部 = :厂錢式之切換。關於由記憶體裝置經歷之程式 : 數目的標準可(例如)藉由追蹤程式化 之 基礎來調整切換點而實施。舉:目及以此為 貝他举例而έ,若在脈衝串期 現切換點’則在記憶體裝置已經歷相對較多之循環後 脈衝串中可相對較早地出現該切換點,因為儲存元… 文額外程式化循環時傾向於較快地程式化。在下文中更二 細地描述升魔模式切換標準。 子 圖5描纷用於在程式化期間切換升壓模式之過程。可布 據流程圖來進一步理解上文所呈現之概念圖。在步驟㈣ 處,程式化開始,且在步驟51〇處,應用第一升壓模式 :決定步驟520處’若滿足切換標準,則切換至第二;屋 模式(步驟530)且程式化繼續(步驟54〇)直至其完成(步騍 550)為止。若在決定步驟52〇處不滿足切換標準,則繼續 應用第一升壓模式且程式化繼續(步驟525)。通常,藉由杈 悲記憶體裝置之一或多個控制電路以將適當電壓施加至與 儲存元件集合通信之字線而實施升壓模式。 126206.doc -17- 200836203 切換升壓杈式之決定可基於許多因素。通常,需要實施 對於當前程式化機制以及儲存元件及「反及」串之當前條 件而a為最佳的升壓模式。例如,非EASB#壓模式(諸 •如,SB*LSB)對於初始程式化脈衝(在VPGM較低時)可相對 % 較有效’ WASB升壓模式(包括REASB)對於較高程式化 脈衝(在VPGM較高時)可相對較有效。在此狀況下,可基於 VPGM之振幅而作出自非EASB模式至EASB模式的切換。另 f ,夕卜除程式化脈衝振幅之外,故障模式可對許多程式化脈 衝作出響應。在此狀況下,可基於程式化脈衝之數目(其 通常又與vPGM相關)來作出自非EASB模式sEAsb模式的 切換。此夕卜,某I升壓模式可較有㈣基於選定之字線在 其他字線中之位置。通常,取決於給定非揮發健存裝置之 特性,可使用產生可接受之較低故障率的多個升壓模式來 界定操作窗。 圖6描繪經由複數個字線而實施之自升壓模式。如所提 1 &,已開發各種類型之升壓模式以對抗程式干擾。在儲存 元件於選定之字線上之程式化期間,藉由將㈣集合施加 • i與當前未程式化之儲存元件通信之未選定之字線來實施 升壓核式。JL被程式化之健存元件與選定之「反及」串相 •關聯,而其他儲存元件與未選定之「反及」串相關聯。程 式干擾通常涉及未選定之「反及」串中之儲存元件,Μ 可因在相同「反及」串中之其他儲存元件而發生。 在一方法中,自升屬模式由與配置⑨「反及」串中之儲 存兀件集合通信之實例字線描繪6〇〇。在此實例中,存在 126206.doc 200836203 標註為WL0至WL7之八個字線(例如,控制線)、標註為 SGS之源極侧選擇閘極控制線及標註為SGD之汲極側選擇 閘極控制線。亦描繪施加至該等控制線之電壓集合。作為 說明,將WL4指定為選定之字線。自「反及」串之源極側 至汲極側,程式化通常每次前進一字線。所施加之電壓包 括·· vSGS,其施加至源極側選擇閘極控制線SGS ;導通電 壓VPASS,其施加至未選定之字線WL〇至WL3及wl5至My 中之每一者,程式化電壓VpGM,其施加至選定之字線 WL4 ;及VSGD,其經由汲極侧選擇閘極控制線s(}d來施 加。通常,vSGSg 〇 v,使得源極侧選擇閘極關閉。 為約2.5 V,使得歸因於相應低位元線電壓諸如,〇至1 V)之她加,對於述疋之r反及」串而言,汲極側選擇閘極 開啟。歸因於相應較高Vbl(諸如15至3 v)之施加,對於未 選疋之「反及」串而言,汲極側選擇閘極關閉。 另外,VPASS可為約7至1〇 v,且VpGM可在約12至2〇 v間 變化。在一程式化機制中,將程式化電壓之脈衝串施加至 選定之字線。亦見圖23及圖24。該脈衝串中之每一連續程 式化脈衝之振幅以階梯方式增加,通常每一脈衝增加約 0 · 3至0 · 5 V另外了在程式化脈衝之間施加驗證脈衝以 驗證選定之儲存元件是否已達到目標程式化條件。注意, 每一個別程式化脈衝亦可具有固定振幅,或可具有變化振 幅。舉例而言,一些程式化機制施加振幅以斜坡或階梯方 式變化之脈衝。可使用任一類型之程式化脈衝。 在WL4為程式化字線且程式化自每一「反及」串之源極 126206.doc -19- 200836203 侧至汲極侧前進之情況下,在正程式化WL4上之儲存元件 時,已程式化與WL0至WL3相關聯之儲存元件,且將擦除 與WL5至WL7相關聯之儲存元件。未選定之字線上之導通 電麼搞合至與未選定之「反及」串相關聯之通道,使在通 道中存在一電壓,該電壓傾向於藉由降低儲存元件之穿随 乳化物上之電壓來減少程式干擾。 圖7描繪經由複數個字線而實施之局部自升壓(ls…模 式。在一方法中,局部自升壓模式由與配置於「反及」串 中之儲存元件集合通信之實例字線描繪7〇〇。局部自升壓 與圖6之自升壓模式的相異之處在於··相鄰於選定之字線 之字線接收〇 v之隔離電壓VlS0或接近〇 v之另一電壓而非 VPASS。剩餘之未選定之字線處於VpAss。局部自升壓試圖 藉由使先别私式化之儲存元件之通道與正被抑制之儲存元 件之通道隔離來減少程式干擾。雖然LSB模式對於較低值 之Vpgm而言為有效的,但LSB模式之缺點在於··當VpGM較 同時,在選定之字線下方經升壓之通道的電壓可為非常 高,因為通道之彼部分與在未選定之字線下方之其他通道 區域隔離。因此,升壓電壓主要由較高程式化電壓%㈣判 疋。歸因於較高升壓,在偏壓至〇 V之字線附近,可發生 f對帶穿隧或閘極引發汲極漏電(GIDL)。可藉由使用下文 ’述之擦除區域自升壓(EASB)或修正easb(REASB)模式 將通道升壓量限制於較低值。 圖8描繪經由複數個字線而實施之擦除區域自升壓模 式。在一方法中,EASB模式由與配置於「反及」串中之 126206.doc -20- 200836203 儲存元件集合通信之實例字線描繪80〇。eASB類似於 LSB ’不同之處在於:僅源極側鄰近字線WL3處於隔離電 壓’ VISO=〇 V ’使得未選定之「反及」串之源極及汲極側 上之經升壓之通道隔離。選定之字線下方之通道區域與選 定之儲存元件之汲極側處之通道區域被連接,使得通道升 壓主要由施加至未選定之字線之VpASs替代…⑽來判定。 亦見圖13。汲極侧鄰近字線WL5處於VpASs。若VpASS過 低’則在通道中升壓將不足以防止程式干擾。然而,若 VPASS過高’則可程式化選定之「反及」串中的未選定之 字線(其中位元線處於〇 V),或可發生歸因KGIDL之程式 干擾。 圖9描繪經由複數個字線而實施之第一修正擦除區域自 升壓模式。在一方法中,第一 REASB模式由與配置於「反 及」串中之儲存元件集合通信之實例字線描繪9〇〇。 REASB類似於EASB但將較小隔離電壓VlS0(諸如,25 v) 施加至相鄰隔離字線(例如,WL3)。 圖10描繪經由複數個字線而實施之第二修正擦除區域自 升壓模式。在一方法中,第二REASB模式由與配置於「反 及」串中之儲存元件集合通信之實例字線描繪丨〇〇〇。在此 狀況下,vIS0施加至在選定之字線WL4之源極側上的多個 字線,諸如,WL2及WL3。可使用相同Vls〇或不同Vis〇 值。舉例而言,vIS0可以漸進方式減小,例如,自wl3上 之4 V減小至WL2上之2.5 V。亦可使用各種其他方法。舉 例而言,可將vIS0施加於三個相鄰字線(例如,wli至 126206.doc -21 - 200836203 WL3)上,在此狀況下,最末字線(WL1)接收最低之Vis〇, 且WL2及WL3接收共同VIS〇。 圖1 la描繪經由複數個字線而實施之第三修正擦除區域 自升壓模式。在一方法中,第三REASB模式由與配置於 「反及」串中之儲存元件集合通信之實例字線描繪11〇〇。 在此狀況下,當vPGM具有相對較低之值(由Vpgm l〇w表示) 時,將相對較低之導通電壓(由VPASS_L0W表示)施加至末端 字線(例如,WL0及WL7)中之一者或兩者,而將通常、較 高之VPASS施加至其他未選定之字線。舉例而言,若%⑽ 在12至20V間變化,則VPGM_L〇w可表示12至16从之範圍。 此升壓模式可解決影響末端字線之程式干擾機制。具體言 之,若將具相同值之VPASS施加至所有未選定之字線(包括 末端字線),則歸因於將電子注入至與末端字線相關聯之 儲存元件中的緩慢速率,在選擇閘極上可發生漏電或 GIDL·。所描繪之升壓模式可解決此問題。 另外,當vPGM在較高範圍(由Vpgmhigh表示)中時,例 如,在16至20 V之範圍中時,如圖nb中所描繪,可使 末端字線上之導通電壓升高返回至其他未選定之字線之 位準,例如,至VpASS。或,可使末端字線之導通電壓升 咼至中間位準vPASS_INT,該中間位準小於VpAss但大於The second or the second time is in progress. The criteria for the storage element 2 may be (for example, 疋m) reach the first storage element or the storage element in the beta-group storage element (such as an F-block or array)= : Factory money type switching. Regarding the program experienced by the memory device: the number of criteria can be implemented, for example, by tracking the basis of the stylization to adjust the switching point. To cite the example of the beta, if the switching point is in the burst period, then the switching point can appear relatively early in the burst after the memory device has experienced a relatively large number of cycles, because the storage Meta... The extra stylized loop tends to be faster programmed. The mode of the sorcer mode switching is described in more detail below. Sub Figure 5 illustrates the process of switching the boost mode during stylization. The conceptual diagram presented above can be further understood based on the flow chart. At step (4), the stylization begins, and at step 51, the first boost mode is applied: at decision 520, 'If the switching criteria are met, then switch to the second; the house mode (step 530) and the stylization continues ( Step 54 〇) until it is completed (step 550). If the switching criteria are not met at decision step 52, the first boost mode continues to be applied and the stylization continues (step 525). Typically, the boost mode is implemented by one or more control circuits of the memory device to apply an appropriate voltage to the word line in communication with the set of storage elements. 126206.doc -17- 200836203 The decision to switch the boost mode can be based on many factors. In general, it is necessary to implement a boost mode that is optimal for the current stylization mechanism and the current conditions of the storage component and the "reverse" string. For example, the non-EASB# voltage mode (such as SB*LSB) can be relatively effective for initial stylized pulses (when VPGM is low) 'WASB boost mode (including REASB) for higher stylized pulses (in When VPGM is high, it can be relatively effective. In this case, switching from the non-EASB mode to the EASB mode can be made based on the amplitude of the VPGM. In addition to f, in addition to the programmed pulse amplitude, the fault mode responds to many stylized pulses. In this case, switching from the non-EASB mode sEAsb mode can be made based on the number of stylized pulses, which are typically associated with vPGM. Furthermore, an I boost mode may be more than (4) based on the position of the selected word line in other word lines. Generally, depending on the characteristics of a given non-volatile storage device, a plurality of boost modes that produce an acceptable lower failure rate can be used to define the operating window. Figure 6 depicts a self boosting mode implemented via a plurality of word lines. As mentioned in 1 &, various types of boost modes have been developed to combat program disturb. During the stylization of the storage element on the selected word line, the boost nucleus is implemented by applying (4) a set of unselected word lines that communicate with the currently unprogrammed storage element. JL is associated with the selected "reverse" string, and other storage elements are associated with the unselected "reverse" string. Programmable interference typically involves storage elements in unselected "reverse" strings, which may occur due to other storage elements in the same "reverse" string. In one method, the self-elevation mode is depicted by an example word line that communicates with the set of storage elements in the "reverse" string of configuration 9. In this example, there are eight word lines labeled WL0 through WL7 (eg, control lines), the source side select gate control lines labeled SGS, and the drain side select gates labeled SGD. Control line. The set of voltages applied to the control lines are also depicted. As an illustration, specify WL4 as the selected word line. From the source side to the drain side of the "reverse" string, stylization usually advances one word line at a time. The applied voltage includes ··vSGS applied to the source side selection gate control line SGS; the on voltage VPASS applied to each of the unselected word lines WL〇 to WL3 and wl5 to My, stylized Voltage VpGM, which is applied to the selected word line WL4; and VSGD, which is applied via the drain side select gate control line s(}d. Typically, vSGSg 〇v causes the source side select gate to be turned off. V, such that it is attributed to the corresponding low bit line voltage, such as 〇 to 1 V), for the r's r and the string, the drain side selects the gate to be turned on. Due to the application of a correspondingly higher Vbl (such as 15 to 3 v), for the "reverse" string of unselected turns, the drain side select gate is turned off. Additionally, VPASS can be about 7 to 1 〇 v, and VpGM can vary between about 12 and 2 〇 v. In a stylized mechanism, a burst of stylized voltage is applied to the selected word line. See also Figure 23 and Figure 24. The amplitude of each successive stylized pulse in the burst is increased in a stepwise manner, typically increasing from about 0. 3 to 0. 5 V per pulse. Additionally, a verify pulse is applied between the stylized pulses to verify that the selected storage element is The target stylization condition has been reached. Note that each individual stylized pulse can also have a fixed amplitude or can have a varying amplitude. For example, some stylized mechanisms apply pulses whose amplitude changes in a ramp or step manner. Any type of stylized pulse can be used. In the case where WL4 is a stylized word line and is programmed to advance from the source 126206.doc -19- 200836203 side of each "reverse" string to the drain side, when the component is being programmed on the WL4, The storage elements associated with WL0 through WL3 are programmed and the storage elements associated with WL5 through WL7 will be erased. The conduction of the unselected word line is coupled to the channel associated with the unselected "reverse" string such that there is a voltage in the channel that tends to reduce the wear of the storage element by the emulsion Voltage to reduce program interference. 7 depicts a partial auto boost (ls... mode implemented via a plurality of word lines. In one method, the local auto boost mode is depicted by an example word line in communication with a set of storage elements disposed in a "reverse" string. 7. The local self-boost differs from the self-boost mode of Figure 6 in that the word line adjacent to the selected word line receives the isolated voltage VlS0 of 〇v or another voltage close to 〇v. Non-VPASS. The remaining unselected word lines are at VpAss. Local auto-boost attempts to reduce program disturb by isolating the channels of the previously stored storage elements from the channels of the storage elements being suppressed. Although the LSB mode is The lower value of Vpgm is effective, but the disadvantage of LSB mode is that when VpGM is at the same time, the voltage of the channel under the selected word line can be very high, because the part of the channel is not The other channel areas below the selected word line are isolated. Therefore, the boost voltage is mainly judged by the higher stylized voltage % (four). Due to the higher boost, near the word line biased to 〇V, f can occur. Leakage caused by tunneling or gate Electrical (GIDL). The channel boost can be limited to a lower value by using the erase region self-boost (EASB) or modified easb (REASB) modes described below. Figure 8 depicts implementation via a plurality of word lines The erase region self-boost mode. In one method, the EASB mode is depicted by an example word line that communicates with the set of 126206.doc -20-200836203 storage elements disposed in the "reverse" string. The eASB is similar to the LSB. 'The difference is that only the source side adjacent word line WL3 is at the isolation voltage 'VISO=〇V' to isolate the boosted channel on the source and drain sides of the unselected "reverse" string. The channel region below the word line is connected to the channel region at the drain side of the selected storage element such that the channel boost is primarily determined by the VpASs applied to the unselected word lines instead of (10). See also Figure 13. Bungee The side adjacent word line WL5 is at VpASs. If VpASS is too low, then boosting in the channel will not be sufficient to prevent program interference. However, if VPASS is too high, the unselected words in the selected "reverse" string can be programmed. Line (where the bit line is at 〇V), or The program is attributed to KGIDL. Figure 9 depicts a first modified erase region self-boost mode implemented via a plurality of word lines. In one method, the first REASB mode is configured and placed in the "reverse" string. The example word line of the storage element set communication depicts 9 〇〇 REASB is similar to EASB but applies a smaller isolation voltage VlS0 (such as 25 v) to an adjacent isolated word line (eg, WL3). Figure 10 depicts a plurality of words The second modified erase region self-boost mode implemented in the line. In one method, the second REASB mode is depicted by an example word line in communication with the set of storage elements disposed in the "reverse" string. In this case, vIS0 is applied to a plurality of word lines, such as WL2 and WL3, on the source side of the selected word line WL4. You can use the same Vls〇 or different Vis〇 values. For example, vIS0 can be reduced in a progressive manner, for example, from 4 V on wl3 to 2.5 V on WL2. Various other methods are also available. For example, vIS0 can be applied to three adjacent word lines (eg, wli to 126206.doc -21 - 200836203 WL3), in which case the last word line (WL1) receives the lowest Vis 〇, and WL2 and WL3 receive the common VIS〇. Figure la depicts a third modified erase region self-boost mode implemented via a plurality of word lines. In one method, the third REASB mode is depicted by an example word line that is in communication with the set of storage elements disposed in the "reverse" string. In this case, when vPGM has a relatively low value (represented by Vpgm l〇w), a relatively low on-voltage (represented by VPASS_L0W) is applied to one of the end word lines (eg, WL0 and WL7). Or both, applying the usual, higher VPASS to other unselected word lines. For example, if %(10) varies between 12 and 20V, then VPGM_L〇w can represent a range from 12 to 16. This boost mode resolves the program interference mechanism that affects the end word line. In particular, if VPASS having the same value is applied to all unselected word lines (including the end word lines), the slow rate is due to the injection of electrons into the storage elements associated with the end word lines. Leakage or GIDL can occur on the gate. The boost mode depicted can solve this problem. In addition, when vPGM is in a higher range (represented by Vpgmhigh), for example, in the range of 16 to 20 V, as shown in Figure nb, the turn-on voltage on the end word line can be raised back to other unselected The level of the word line, for example, to VpASS. Or, the on-voltage of the end word line can be raised to the intermediate level vPASS_INT, which is less than VpAss but greater than

VpASS-LOW 0 圖11b描繪經由複數個字線而實施之第四修正擦除區域 自升壓杈式。在一方法中,第四REASB模式由與配置於 「反及」帛中之儲存元件集合通信之實例字線描緣1150。 126206.doc -22- 200836203 此處,當選定之字線WL4上之VPGM在值之較高範圍(由 VPGM-HIGh表示)中時,使末端字線(WL0及WL7)上之導通電 壓升高返回至其他未選定之字線之位準,例如,至 VpASS 〇VpASS-LOW 0 Figure 11b depicts a fourth modified erase region self-boosting mode implemented via a plurality of word lines. In one method, the fourth REASB mode is depicted by an instance word line 1150 in communication with the set of storage elements disposed in the "reverse" port. 126206.doc -22- 200836203 Here, when the VPGM on the selected word line WL4 is in the higher range of values (represented by VPGM-HIGh), the turn-on voltage on the end word lines (WL0 and WL7) is raised back. To other unselected word lines, for example, to VpASS 〇

另外,可基於選定之字線之位置來實施不同升壓模式。 舉例而言’當在脈衝串期間發生升壓模式切換時,可在脈 衝串中之基於選定之字線之相對位置的位置處發生切換。 在一方法中,當選定之字線之位置相對較接近於未選定之 「反及」串之汲極側時,在脈衝串中相對較遲地發生自SB 或LSB至EASB或REASB之切換。 圖11 c描繪經由複數個字線而實施之第五修正擦除區域 自升壓模式。在一方法中,第五rEASB模式由與配置於 「反及」串中之儲存元件集合通信之實例字線描繪丨丨7〇。 此升壓模式類似於圖1U之升壓模式,但當…⑽在較低範 圍(由VPGM_L0W表示)中時,對未選定之字線中之每一者使 用較低vPASS(vPASS.L0W)。當vPGM達到較高範圍(由Vp⑽偏 表示)時,此模式之後可為圖llb之升壓模式。亦可使用各 種其他組合。I例而f,除末端字線外之4選定之字線的 VPASS可高於末端字線之VpAss,而與^⑽無關。另外,可 存在觸發升壓模式之改變的兩個以上之%⑽範圍。 圖12描繪展示如何藉由設定位元線抑制電壓來達成粗略 及精細程式化之時間線。如所提及,可基於粗略/精細模 式程式化狀態而發生升壓板式 丌&杈式之切換。粗略/精細程式化 允許儲存元件之臨限電壓(VTT、音止+, 电&(VTH)百先在粗略程式化期間較 126206.doc -23- 200836203 陕地且接著在精細程式化期間較慢地增加至所要位準。為 十對、、、°疋私式化狀態,可分別使用較低驗證位準vL及 較高驗證位畢V 。A^ 早νΗ。特疋5之,當電壓臨限值低於VL時發生 粗略程式化,而當電壓臨限值在VL與VH之間時發生精細程 式化。粗略/精細程式化可對經程式化之儲存元件提供緊 密之電壓分布。亦見圖21d。 ”Additionally, different boost modes can be implemented based on the location of the selected word line. For example, when a boost mode switch occurs during a burst, switching can occur at a location in the burst based on the relative position of the selected word line. In one method, switching from SB or LSB to EASB or REASB occurs relatively late in the burst when the position of the selected word line is relatively close to the drain side of the unselected "reverse" string. Figure 11c depicts a fifth modified erase region self-boost mode implemented via a plurality of word lines. In one method, the fifth rEASB mode is depicted by an example word line that communicates with the set of storage elements disposed in the "reverse" string. This boost mode is similar to the boost mode of Figure 1U, but when ... (10) is in the lower range (represented by VPGM_L0W), a lower vPASS (vPASS.L0W) is used for each of the unselected word lines. When vPGM reaches a higher range (represented by Vp(10) offset), this mode can be followed by the boost mode of Figure 11b. Various other combinations are also possible. For example I and f, the VPASS of the selected word line other than the end word line may be higher than the VpAss of the end word line, regardless of ^(10). Additionally, there may be more than two (10) ranges that trigger a change in boost mode. Figure 12 depicts a timeline showing how rough and fine stylization can be achieved by setting the bit line suppression voltage. As mentioned, the boost panel 丌 & 切换 switching can occur based on the coarse/fine mode stylized state. Rough/fine stylization allows the threshold voltage of the storage component (VTT, singularity +, electric & (VTH) to be more severe during the stylized period than 126206.doc -23- 200836203 and then during fine stylization Slowly increase to the desired level. For the ten pairs, , and ° private state, you can use the lower verification level vL and the higher verification bit to complete V. A^ early νΗ. Special 5, when the voltage A coarse stylization occurs when the threshold is below VL, and a fine stylization occurs when the voltage threshold is between VL and VH. Rough/fine stylization provides a tight voltage distribution to the programmed storage element. See Figure 21d."

曲線1200指示儲存元件之Vth隨著時間之改變,而曲線 1250指示施加至與該儲存元件相關聯之位元線之位元線電 壓(VBL) 可藉由提供位元線抑制電壓VpARTIAL inhibit來使 褚存元件之程式化減慢,此抵制所施加之程式化電壓脈衝 效應¥ Vth超過Vh時’將VFULL INHIBIT施加至位元線以 將該儲存元件置於抑制模式下,在抑制模式下,儲存元件 被鎖定以防進一步程式化及驗證。不同乂及值可與多態 儲存兀件之不同狀態(例如,狀態A、;3及c)相關聯以允許 不同狀態之粗略/精細程式化。抑制電壓使程式化減慢且 藉此允許較精確地控制程式化電壓臨限位準。在一方法 中,vPARTIALINHIBIT(通常為0 5至1() v)減少跨越氧化物之 電場且在程式化期間傳遞至r反及」串。此情形要求選擇 閘極電壓足夠高以傳遞此電壓,通常為2.5 v。此外, VPGM脈衝串中減少之步長亦可用於提供精細程式化模式。 此可在位元線上具有或不具有抑制電壓之情況下實現。 因此,在一方法中,當將程式化脈衝之單個脈衝串施加 至選定之字線時,可藉由在判定某數目之儲存元件(例 如’一或多個)已達到較低驗證位準時自粗略程式化模式 126206.doc -24- 200836203 切換至精細程式化模 A ^ ^ u A使用粗略/精細程式化。另外, 在多遍次程式化機制中 力外 莖、皂 使用粗略/精細程式化,其中在 式化而將儲存元件程式化至接近於 取終程式化條件之臨時 稷近於 才牲式化條件,且在第二遍次中 精細程式化而將儲存元件自 時私式化條件程式化至最終 :U 〃夕遍次程式化亦可使用不同VPGM範圍。舉例Curve 1200 indicates a change in the Vth of the storage element over time, and curve 1250 indicates that the bit line voltage (VBL) applied to the bit line associated with the storage element can be made by providing a bit line suppression voltage VpARTIAL inhibit The stylization of the memory component is slowed down. When the resistive voltage pulse effect applied by the rejection is more than Vh, 'VFULL INHIBIT is applied to the bit line to place the storage element in the suppression mode. In the suppression mode, the storage is performed. Components are locked to prevent further stylization and verification. Different values and values can be associated with different states of the polymorphic storage element (e.g., states A,; 3, and c) to allow for coarse/fine stylization of different states. Suppressing the voltage slows down the stylization and thereby allows for more precise control of the stylized voltage threshold level. In one method, vPARTIALINHIBIT (usually 0 5 to 1 () v) reduces the electric field across the oxide and passes it to the r-"string during stylization. This situation requires that the gate voltage be chosen high enough to pass this voltage, typically 2.5 v. In addition, the reduced step size in the VPGM burst can also be used to provide a fine stylized mode. This can be done with or without a suppression voltage on the bit line. Thus, in a method, when a single pulse train of a programmed pulse is applied to a selected word line, it can be determined by determining that a certain number of storage elements (eg, 'one or more') have reached a lower verify level. Rough stylized mode 126206.doc -24- 200836203 Switch to fine stylized mode A ^ ^ u A uses coarse/fine stylization. In addition, in the multi-pass stylization mechanism, the stems and soaps are roughly/finely programmed, in which the storage elements are programmed to be close to the final stylization conditions. And in the second pass, the programmatically digitizes the storage element from the time to the finalization: U 〃 遍 程式 程式 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可 亦可Example

VPG祕圍可(例如)自使用粗略程式化時在第-遍次 之12至20 V減少至使用精細程式化時在第 至 20V。 圖13描縿展示在EASB(諸如,圖时所描繪)或REASB(諸 ^圖9中所描繪)之情況下程式化區域及擦除區域的未選 疋之反及」_之橫截面圖。該視圖為簡化的且未按比例 、、曰製反及」串1300包括形成於基板1390上之源極側選 擇閘極1306、汲極側選擇閘極1324及八個儲存元件㈠⑽、 1310、1312、1314、1316、1318、1320及 1322。該等組件 可形成於基板之P井區上之n井區上。除具電位Vdd之位元 線1326(位元線)外,提供具電位Vs〇urce之源極供應線 13 04在程式化期間’將VPGM提供於選定之字線(在此狀 況下’ WL4)上,該字線與儲存元件1316相關聯。另外, 重申儲存元件之控制閘極可作為字線之一部分而提供。舉 例而言,WL0、WL1、WL2、WL3、WL4、WL5、WL6及 WL7可分別經由儲存元件1308、131〇、、m4、 1316、1318、1320及1322之控制閘極而延伸。將Vls〇施加 至選定之字線之源極側字線(WL3,被稱為隔離字線)。將 126206.doc -25- 200836203 :_施加至與「反及」串1300相關聯之剩餘字線。將VsG, 把加至選擇閘㈣寫’且將¥咖施加至選擇閘極⑽。 假定沿著「反及」串1300之儲存元件之程式化自儲存元 件1308前進至儲存元件1322,當正程式化其他「反及」串 中與編相關聯之儲存元件時,儲存元件1308至13 14將已 被程式化,且儲存元件1318至1322將尚未程式化。注意, 當抑制「反及」串·時’未程式化儲存元件131二因 此,取決於程式化模式,儲存元件13〇8至1314中之所有或 些將具有程式化至且儲存於其各別浮動閘極中之電子, 且可擦除或部分地程式化儲存元件1318至1322。舉例而 言,在兩步程式化技術中之第—步中可能在㈣已程式化 儲存元件1318至1322。 另外,在EASB或REASB升壓模式之情況下,將足夠低 之隔離電壓VIS0施加至選定之字線之源極側鄰近者以使基 板中之程式化及擦除通道區域隔離。亦即,在未選定之 「反及」串之源極侧或程式化侧上的基板之通道之一部分 (例如,區域1350)與在未選定之r反及」串之汲極側或未 程式化側上的通道之一部分(例如,區域1360)隔離❶藉由 將VPASS施加於WL0至WL2上而將通道區域135〇升壓,而藉 由將VPGM施加於WL4上及將VPASS施加於WL5至WL7上而將 通道區域1360升壓。因為VPGM佔優勢,所以擦除區域136〇 將經歷比程式化區域1350相對較高之升壓。 圖14說明「反及」儲存元件之陣列14〇〇的實例,諸如圖 1及圖2所示之陣列。沿著每一行,位元線14〇6耦接至「反 126206.doc -26- 200836203 及」串1450之汲極選擇閘極之汲極端子1426。沿著「反 及」串之每一列,源極線14〇4可連接「反及」串之源極選 擇閘極之所有源極端子1428。在美國專利第5,57〇,315號; 第5,774,397號;&第6,G46,935號巾會找到「反及」架構陣 列及其作為記憶體系統之部分之操作的實例。 將儲存元件陣列分成大量儲存元件區塊。如對於快閃 EEPROM系統而言為共同的,區塊為擦除之單位。亦即, 每一區塊含有被一起擦除之最小數目的儲存元件。通常將 每一區塊分成許多頁面。頁面為程式化單位。在一實施例 中,個別頁面可被分為區段且該等區段可含有隨著基本程 式化操作而一次寫入的最少數目的儲存元件。通常將一或 多個頁面之資料儲存於一列儲存元件中。頁面可儲存一或 多個扇區。扇區包括使用者資料及附加資料。附加資料通 荜包括自扇區之使用者資料計算出的錯誤校正碼(Ecc)。 控制器(下文描述)之一部分在將資料程式化至陣列中時計 异ECC ’且亦在自陣列讀取資料時檢查ecc。或者,將 ECC及/或其他附加資料儲存於與其所屬之使用者資料不同 的頁面或甚至不同的區塊中。 扇區之使用者資料通常為512個位元組,此對應於磁 碟機中之扇區的大小。附加資料通常為額外的16至2〇個位 元組。大ϊ頁面形成包括自8個頁面(例如)直至32、64、 12 8或更多頁面的區塊。在一些實施例中,一列「反及」 串包含一區塊。 在一實施例中,藉由使ρ井升高至擦除電壓(例如,2〇 ν) 126206.doc -27- 200836203 持續足夠之時間週期及在源極線及位元線為浮動時使 區塊之字線接地來擦除記憶體儲存元件。歸因於電容性輕 合’未選定之字線、位元線、選擇線及ϋ亦升高至該 擦除電壓之大部分。因此將強電場施加至選^之儲存X 之穿隧氧化層’且在通常藉由F〇wler_N〇rdheim穿隧 將浮動閘極之電子發射至基板側時擦除敎之儲存元件之 資料。在電子自浮動閘極傳送“井區時,選定之儲存元 件之臨限電料低。可對整個記憶體陣列、獨立 存元件之3 —單位執彳t㈣。VPG secrets can be reduced, for example, from 12 to 20 V in the first pass to the first 20 V when using fine stylization. Figure 13 depicts a cross-sectional view of the unselected "" of the stylized and erased regions in the case of an EASB (such as that depicted in the figure) or REASB (depicted in Figure 9). The view is simplified and not to scale, and the series 1300 includes a source side select gate 1306, a drain side select gate 1324, and eight storage elements (1) (10), 1310, 1312 formed on the substrate 1390. , 1314, 1316, 1318, 1320, and 1322. The components can be formed on the n-well region on the P-well region of the substrate. In addition to the bit line 1326 (bit line) having the potential Vdd, the source supply line 13 04 with the potential Vs〇urce is provided to provide VPGM to the selected word line during the stylization (in this case 'WL4) The word line is associated with storage element 1316. In addition, it is reiterated that the control gate of the storage element can be provided as part of the word line. For example, WL0, WL1, WL2, WL3, WL4, WL5, WL6, and WL7 may extend through the control gates of storage elements 1308, 131A, m4, 1316, 1318, 1320, and 1322, respectively. Vls is applied to the source side word line (WL3, referred to as the isolated word line) of the selected word line. 126206.doc -25-200836203:_ is applied to the remaining word lines associated with the "reverse" string 1300. Put VsG, add to the selection gate (four) write ' and apply ¥ coffee to the selection gate (10). Assume that the stylized self-storage element 1308 along the storage element of the "reverse" string 1300 is advanced to the storage element 1322. When the other "reverse" strings are stored in the associated storage element, the storage elements 1308 through 13 are stored. 14 will have been programmed and storage elements 1318 through 1322 will not be programmed. Note that when the "reverse" string is suppressed, the unprogrammed storage element 131 is therefore, depending on the stylized mode, all or some of the storage elements 13〇8 to 1314 will be stylized and stored in their respective categories. The electrons in the floating gate, and the storage elements 1318 through 1322 can be erased or partially programmed. For example, in the first step of the two-step stylization technique, the storage elements 1318 to 1322 may be programmed in (4). Additionally, in the case of the EASB or REASB boost mode, a sufficiently low isolation voltage VIS0 is applied to the source side neighbors of the selected word line to isolate the stylized and erased channel regions in the substrate. That is, a portion of the channel (eg, region 1350) of the substrate on the source side or the stylized side of the unselected "reverse" string is opposite to the unselected r and the bottom side of the string or unprogrammed A portion of the channel on the side (eg, region 1360) is isolated by boosting channel region 135 by applying VPASS to WL0 through WL2, by applying VPGM to WL4 and applying VPASS to WL5. The channel region 1360 is boosted on WL7. Because VPGM is dominant, the erase region 136〇 will experience a relatively higher boost than the stylized region 1350. Figure 14 illustrates an example of an array of "reverse" storage elements, such as the arrays shown in Figures 1 and 2. Along each row, the bit line 14〇6 is coupled to the “reverse 126206.doc -26-200836203 and” string 1450 of the drain select terminal of the drain terminal 1426. Along the respective columns of the "reverse" string, the source line 14〇4 can be connected to all source terminals 1428 of the source selection gate of the "reverse" string. U.S. Patent Nos. 5, 57, 315; 5,774,397; & 6, G46, 935 will find examples of "reverse" architecture arrays and their operation as part of a memory system. The array of storage elements is divided into a plurality of storage element blocks. As is common to flash EEPROM systems, the block is the unit of erasure. That is, each block contains a minimum number of storage elements that are erased together. Each block is usually divided into a number of pages. The page is a stylized unit. In an embodiment, individual pages may be divided into segments and the segments may contain a minimum number of storage elements that are written once with the basic programming operation. The data of one or more pages is typically stored in a list of storage elements. The page can store one or more sectors. The sector includes user data and additional information. The additional information includes an error correction code (Ecc) calculated from the user data of the sector. One portion of the controller (described below) counts the ECC' when programming the data into the array and also checks for ecc when reading data from the array. Alternatively, store the ECC and/or other additional materials on a different page than the user profile to which it belongs or in a different block. The user data of the sector is usually 512 bytes, which corresponds to the size of the sector in the disk drive. Additional information is usually an additional 16 to 2 bytes. The big page forms a block that includes pages from 8 pages (for example) up to 32, 64, 12 8 or more. In some embodiments, a column of "reverse" strings contains a block. In one embodiment, by raising the p-well to an erase voltage (eg, 2〇ν) 126206.doc -27-200836203 for a sufficient period of time and when the source line and the bit line are floating The word line of the block is grounded to erase the memory storage element. Due to the capacitive coupling, the unselected word lines, bit lines, select lines, and turns are also raised to the majority of the erase voltage. Therefore, a strong electric field is applied to the tunneling oxide layer ' of the storage X' and the material of the memory element is erased when the electrons of the floating gate are normally emitted to the substrate side by F〇wler_N〇rdheim tunneling. When the electronic self-floating gate transmits the "well area, the threshold energy of the selected storage element is low. It can be performed on the entire memory array and the independent component.

圖15為使用單列/行解碼器及讀取/寫入電路之非揮發記 憶體糸統之方塊圖。該圖說明根據本發明之—實施例之具 有用於並行地讀取及程式化—頁面之儲存元件的讀取/寫 入電路的記憶體裝置1596。記憶體裝置1596可包括一或多 個記憶體晶粒1598。記憶體晶粒1598包括儲存元件之2_维 ㈣剛、控制電路151〇及讀取/寫入電路1565。在一些 實施例中’該儲存元件陣列可為3•維的。可經由列解碼琴 1530由字線及經由行解碼器⑽由位元線來對記憶體陣列 剛定址。讀取/寫人電路⑽包括多個感測區塊】綱且 料並行地讀取或程式化—頁面之儲存元件。通常,控制 器1550包括於與該或該等記憶體晶粒丨598相同之記憶體褒 置岡例如,抽取式儲存卡)中。在主機與控制器⑽之 間經由線1520來傳送命令及資料,且在控制器與該或該等 §己憶體晶粒1598之間經由線⑸8來傳送命令及資料。Figure 15 is a block diagram of a non-volatile memory system using a single column/row decoder and a read/write circuit. The figure illustrates a memory device 1596 having a read/write circuit for storing and staging a storage element of a page in parallel, in accordance with an embodiment of the present invention. Memory device 1596 can include one or more memory dies 1598. The memory die 1598 includes a 2' dimension (4) of the storage element, a control circuit 151A, and a read/write circuit 1565. In some embodiments, the array of storage elements can be 3 dimensional. The memory array can be just addressed by the column line 1530 from the word line and by the row decoder (10) by the bit line. The read/write circuit (10) includes a plurality of sensing blocks that are read or programmed in parallel - the storage elements of the page. Typically, controller 1550 is included in the same memory port as the or so memory die 598, e.g., a removable memory card. Commands and data are transmitted between the host and the controller (10) via line 1520, and commands and data are transmitted between the controller and the or such memory die 1598 via line (5) 8.

控制電路1 5 1 〇盘讀敌/宜λA ” 寫電路1565協作以對記憶體陣 126206.doc -28- 200836203 列1400執行記憶操作。控制電路151〇包括狀態機⑸2、晶 載位^解碼器1514及功率控制模組1516。狀態提供 對屺操作之晶片級控制。晶載位址解碼器ΜΗ在由主機 或圯L、體抆制器使用之位址與由解碼器及Η6〇使用之 硬體位址之間提供位址介面。功率控制模組1516控制在記 憶操作期間供應至字線及位元線之功率及電壓。 在某些實施例中,可組合圖15之組件中的某些。在各種 。又。十中,可將除儲存元件陣列丨400外的組件中之一或多者 (單獨或組合)視為管理電路。舉例而言,一或多個管理電 路可包括控制電路1510、狀態機1512、解碼器 1514/1560、功率控制1516、感測區塊15〇〇、讀取/寫入電 路1565、控制器155〇等中之任一者或組合。 圖16為使用雙列/行解碼器及讀取/寫入電路之非揮發記 憶體系統之方塊圖。此處,提供圖15中所示之記憶體裝置 1 596之另一配置。以對稱方式在陣列之相對側上實施由各 種周邊電路對記憶體陣列14〇〇之存取,以使得每一側上之 存取線及電路的搶度減少一半。因此,列解碼器分成列解 碼器⑸从及moB,且行解碼器分成行解碼器及 1560B。類似地,讀取/寫入電路分成自陣列14〇〇之底部連 接至位兀線的讀取/寫入電路1565八及自陣列14〇〇之頂部連 接至位元線的讀取/寫入電路1565B。以此方式,讀取/寫 入模組之密度基本上減少一帛。如針對圖15之裳置在上文 所描述,圖16中之裝置亦可包括一控制器。 圖17為描緣感測區塊之一實施例之方塊圖。將個別感測 126206.doc -29- 200836203 區塊1500分割成一核心部分(被稱為感測模組158〇)及一共 同部分1 590。在一實施例中,針對每一位元線將存在一獨 立感測模組1580,且針對多個感測模組158〇之一集合將具 有一共同部分1 590。在一實例中,感測區塊將包括一個共 同部分1590及八個感測模組1580。一群組中之感測模組中 之每一者將經由資料匯流排1572而與相關聯之共同部分通 信。關於更多細節請參考於2006年6月29日公布且以引用 之方式全文併入本文中的標題為” Non_v〇latUe MemQ1T &The control circuit 1 5 1 敌 读 宜 λ ” ” 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写 写1514 and power control module 1516. The state provides wafer level control for the operation. The crystal address decoder is used by the host or the device and the address used by the decoder and the device. An address interface is provided between the body addresses. The power control module 1516 controls the power and voltage supplied to the word lines and bit lines during the memory operation. In some embodiments, some of the components of FIG. 15 may be combined. In various aspects, one or more of the components other than the storage element array 400 (alone or in combination) may be considered as a management circuit. For example, one or more management circuits may include the control circuit 1510. Any one or combination of state machine 1512, decoder 1514/1560, power control 1516, sensing block 15A, read/write circuit 1565, controller 155, etc. Figure 16 is a use of dual columns /row decoder and read/write circuit non-swing A block diagram of a memory system. Here, another configuration of the memory device 1 596 shown in Figure 15 is provided. The memory array 14 is stored by various peripheral circuits on opposite sides of the array in a symmetrical manner. Take so that the access line and circuit robbing on each side is reduced by half. Therefore, the column decoder is divided into column decoder (5) slave and moB, and the row decoder is divided into row decoder and 1560B. Similarly, read / The write circuit is divided into a read/write circuit 15658 connected to the bit line from the bottom of the array 14A and a read/write circuit 1565B connected to the bit line from the top of the array 14A. The density of the read/write module is substantially reduced by one. As described above with respect to Figure 15, the device of Figure 16 may also include a controller. Figure 17 is a touch sensing block. A block diagram of one embodiment. The individual sensing 126206.doc -29-200836203 block 1500 is divided into a core portion (referred to as sensing module 158A) and a common portion 1590. In an embodiment, There will be an independent sensing module 1580 for each bit line, and the needle One of the plurality of sensing modules 158 will have a common portion 1 590. In one example, the sensing block will include a common portion 1590 and eight sensing modules 1580. Sensing in a group Each of the modules will communicate with the associated common portion via data bus 1572. For more details, please refer to the title published on June 29, 2006 and incorporated herein by reference in its entirety. Non_v〇latUe MemQ1T &

Method with Shared Processing for an Aggregate of Sense Amplifiers”之美國專利申請公開案第2〇〇6/〇14〇〇〇7號。 感測模組1580包含判定所連接之位元線中之傳導電流是 局於還是低於預定臨限位準的感測電路丨5 7〇。感測模組 15 80亦包括用於對所連接之位元線設定電壓條件的位元線 鎖存器1582。舉例而言,位元線鎖存器1582中所鎖存之預 定狀態將導致所連接之位元線被拉向指定程式化抑制之狀 態(例如,Vdd)。 共同部分1590包含一處理器1592、一資料鎖存器集合 1 594及一耦接於該資料鎖存器集合1 594與資料匯流排1 wo 之間的I/O介面1596。處理器1592執行計算。舉例而言, 其功能中之一者為判定儲存於所感測之儲存元件中之資料 且將所判定之資料儲存於該資料鎖存器集合中。該資料鎖 存器集合15 94用於儲存在讀取操作期間由處理器1 $92判定 之資料位元。其亦用於儲存在程式化操作期間自資料匯流 排1 520輸入之資料位元。所輸入之資料位元表示意欲程式 126206.doc -30- 200836203 化至ό己憶體中之寫入資料。I/O介面1596在資料鎖存器 1594與資料匯流排1520之間提供介面。 在讀取或感測期間,系統之操作受狀態機丨5丨2控制,狀 態機15 12控制不同控制閘極電壓對所定址之儲存元件的供 應。在其單步遍曆(step through)對應於由記憶體支援之各 種記憶體狀態之各種預定控制閘極電壓時,感測模組15 8 〇 可在此等電壓中之一者處跳脫,且輸出將經由匯流排1572 而自感測模組1580提供至處理器1592。此時,處理器1592 藉由考慮感測模組之跳脫事件及經由輸入線1593來自狀態 機之關於所施加之控制閘極電壓的資訊來判定所得記憶體 狀恕。接I其關於記憶體狀態而計算二進位編碼且將所得 資料位元儲存至資料鎖存器1594中。在核心部分之另一實 施例中,位元線鎖存器1582用於雙重用途,既用作用於二 存感測模組1580之輸出的鎖存器且亦用作如上所述之位元 線鎖存器。 ^ 預期-些實施例將包括多個處理器1592。在一實 中,每一處理器⑽將包括一輸出線(未描綠於圖7中= 得輸出線中之每-者共同被線或連接。在一些實施例中, ^將輸线連接至線或線之前將輸线反相。此組能 =程式化驗證過程期間快速地判定完成程 程時 刻,因為接收線或之狀態機可判定正 ^時 達到所要位準之時刻。舉例而言,當每—位位几 ^立準時,該位元之邏輯零將被發送至線 ^所 被反相)。當所有位元輸出資料。(或經反相之資Λ:: 126206.doc .31 - 200836203 既而狀l株;知曉終止程式化過程。因為每一處理器與八個 感測模組通信’所以狀態機需要讀取線或線八次,或邏輯 被=加至處理器1592以累積相關聯之位元線的結果,使得 狀〜、枝僅茜要磧取線或線一次。類似地,藉由正確地選擇 ㉝輯位準,整體狀態機可積㈣第一纟元改變其&態之時刻 且因此改變演算法。 在程式化或驗證期間,將來自資料匯流排1520的待程式 化之資料儲存於該資料鎖存器集合159钟。在狀態機之控 制下,程式化操作包含施加至所定址之健存元件之控制閑 極的連串程式化電壓脈衝。每一程式化脈衝之後為回讀 (驗證)以判定儲存元件是否已程式化至所要記憶體狀態。 處理器1 592相對於所要記憶體狀態而監視回讀之記憶體狀 悲。當該兩個狀態一致時,處理器1592設定位元線鎖存器 1582以使位儿線被拉向指定程式化抑制之狀態。此情形抑 制耦接至位元線之儲存元件免受進一步程式化,即使程式 化脈衝出現於其控制閘極上亦如此。在其他實施例中,處 理器最初載入位元線鎖存器1582,且感測電路在驗證過2 期間將其設定至抑制值。 ^ 資料鎖存器堆疊1594含有對應於感測模組之資料鎖存器 之堆豐。在-實施例中,每一感測模組158時在三個資料 鎖存器。在-些實施例中(但並非必需),將資料鎖存器每 施為移位暫存H,使得料於其巾之並行倾被轉換^ 於資料匯流排152G之串行資料,且反之亦然。在較佳每於 例中,可將對應於m個儲存元件之讀取/寫入區塊之所二= 126206.doc -32- 200836203 料鎖存器鏈接在一起以形成區塊移位暫存器,使得可藉由 串行傳送來輸入或輸出資料之區塊。詳言之,調適該組r 個讀取/寫入模組,以使得其資料鎖存器之集合中之每一 者將資料順序地移進或移出資料匯流排,如同其係用於整 個讀取/寫入區塊之移位暫存器之部分一樣。 可在以下各者中找到關於非揮發儲存裝置之各種實施例 之結構及/或操作的額外資訊:(1)於2004年3月25日公布之 美國專利申請公開案第2004/0057287號,’’Non-Volatile Memory And Method With Reduced Source Line Bias Errors” ;(2)於2004年6月10曰公布之美國專利申請公開案 第 2004/0109357 號,,’Non-Volatile Memory And Method with Improved Sensing” ;(3)於2004年 12月 16 曰申請之美國 專利申請案第11/〇15,199號,標題為"Improved Memory Sensing Circuit And Method For Low Voltage Operation” ; (4)於2005年4月5曰申請之美國專利申請案第11/099,133 號,標題為"Compensating for Coupling During ReadUS Patent Application Publication No. 2〇〇6/〇14〇〇〇7, which is incorporated by reference. The sensing module 1580 includes determining that the conduction current in the connected bit line is a bureau. The sensing circuit is further below a predetermined threshold level. The sensing module 158 also includes a bit line latch 1582 for setting a voltage condition to the connected bit line. The predetermined state latched in the bit line latch 1582 will cause the connected bit line to be pulled to a specified stabilizing state (eg, Vdd). The common portion 1590 includes a processor 1592, a data lock The memory set 1 594 and an I/O interface 1596 coupled between the data latch set 1 594 and the data bus 1 wo. The processor 1592 performs calculations. For example, one of its functions is Determining the data stored in the sensed storage element and storing the determined data in the data latch set. The data latch set 15 94 is for storage by the processor 1 $92 during the read operation. Data bit. It is also used to store The data bit input from the data bus 1 520 during the operation. The input data bit indicates the data to be written in the intended program 126206.doc -30- 200836203. The I/O interface 1596 is in An interface is provided between the data latch 1594 and the data bus 1520. During reading or sensing, the operation of the system is controlled by a state machine 丨5丨2, which controls the storage of different control gate voltage pairs. Supply of components. The sensing module 15 8 can be one of the voltages when it is stepped through various predetermined control gate voltages corresponding to various memory states supported by the memory. At the moment, the output is provided from the sensing module 1580 to the processor 1592 via the bus 1572. At this time, the processor 1592 takes the tripping event of the sensing module and the state machine from the input line 1593. The information about the applied control gate voltage is used to determine the resulting memory shape. The binary code is calculated for the memory state and the resulting data bit is stored in the data latch 1594. One real In the example, the bit line latch 1582 is used for dual purposes, both as a latch for the output of the second memory sensing module 1580 and also as a bit line latch as described above. ^ Expected - Some embodiments will include a plurality of processors 1592. In one implementation, each processor (10) will include an output line (not depicted in Figure 7 = each of the output lines are commonly lined or connected. In some embodiments, ^ inverts the transmission line before connecting the transmission line to the line or line. This group can quickly determine the completion time during the stylized verification process because the receive line or state machine can determine the positive time The moment to reach the desired level. For example, when each bit is aligned, the logical zero of the bit will be sent to the line ^ to be inverted. When all bits output data. (or the reversed asset: 126206.doc .31 - 200836203 is the same as the strain; knows to terminate the stylization process. Because each processor communicates with eight sensing modules' so the state machine needs to read the line or The line is eight times, or the logic is added to the processor 1592 to accumulate the result of the associated bit line, such that the line ~, the branch only draws the line or line once. Similarly, by correctly selecting the 33 position Quasi, the overall state machine is integrable (4) The first unit changes its & state and thus changes the algorithm. During stylization or verification, the data to be programmed from the data bus 1520 is stored in the data latch. The set is 159. Under the control of the state machine, the stylization operation includes a series of stylized voltage pulses applied to the control idle of the addressed memory element. Each stylized pulse is then read back (verified) to determine Whether the storage element has been programmed to the desired memory state. The processor 1 592 monitors the memory of the readback with respect to the desired memory state. When the two states are identical, the processor 1592 sets the bit line latch. 1582 to make the line Specifies the state of stylization suppression. This situation suppresses storage elements coupled to bit lines from further stylization, even if stylized pulses appear on their control gates. In other embodiments, the processor is initially loaded. Bit line latch 1582, and the sense circuit sets it to a suppressed value during verify 2. ^ Data latch stack 1594 contains a stack of data latches corresponding to the sense module. In the example, each sensing module 158 is in three data latches. In some embodiments (but not necessarily), the data latch is applied to the shift register H, so that it is expected to be in its towel. The parallel dump is converted to the serial data of the data bus 152G, and vice versa. In each of the preferred examples, the read/write block corresponding to the m storage elements can be replaced by two = 126206 .doc -32- 200836203 The material latches are linked together to form a block shift register so that the block of data can be input or output by serial transfer. In detail, the set of r reads is adapted. /write module so that each of its data latch sets will be The data bus is sequentially moved in or out as if it were part of a shift register for the entire read/write block. Various embodiments for non-volatile storage devices can be found in the following Additional information on the structure and/or operation: (1) US Patent Application Publication No. 2004/0057287, published on March 25, 2004, ''Non-Volatile Memory And Method With Reduced Source Line Bias Errors'; U.S. Patent Application Publication No. 2004/0109357, issued June 10, 2004, 'Non-Volatile Memory And Method with Improved Sensing'; (3) US Patent Application filed on December 16, 2004 Clause 11/15, 199, entitled "Improved Memory Sensing Circuit And Method For Low Voltage Operation"; (4) U.S. Patent Application No. 11/099,133, filed on April 5, 2005, entitled &quot ;Compensating for Coupling During Read

Operations of Non-Volatile Memory” ;及(5)於 2005 年 12 月 2S日申請之美國專利申請案第11/321,953號,標題為 ’’Reference Sense Amplifier For Non-Volatile Memory" 〇 岡丨J 在上文列出之所有五個專利文獻以引用之方式全文併入本 文中。 圖1 8說明針對全位元線記憶體架構或針對奇偶記憶體架 構而將記憶體陣列組織成區塊的實例。描述儲存元件陣列 1400之例示性結構。作為一實例,描述分割成ι,〇24個區 126206.doc -33- 200836203 元線 BL0、BL1 塊之「反及」快閃EEPROM。可同時擦除儲存於每一區塊 中之資料。在一實施例中,區塊為同時被擦除之儲存元件 之最小單位。在每一區塊中,在此實例中’存在對Z於位 在被稱為全位元 BL8511 之 8,512個行。 線(ABL)架構(架構1810)之一實施例中,在讀取及程式化 操作期間可同時選擇一區塊之所有位元線。可同時程式化 沿著共同字線且連接至任一位元線的儲存元件。 fOperations of Non-Volatile Memory"; and (5) U.S. Patent Application Serial No. 11/321,953, filed on Dec. 2, 2005, entitled "Reference Sense Amplifier For Non-Volatile Memory" All of the five patent documents listed above are hereby incorporated by reference in their entirety. FIG. 18 illustrates an example of organizing memory arrays into blocks for a full bit line memory architecture or for a parity memory architecture. An exemplary structure for the storage element array 1400 is described. As an example, a "reverse" flash EEPROM that is divided into ι, 24 regions 126206.doc - 33 - 200836203, and the BL0, BL1 blocks are described. The data stored in each block can be erased at the same time. In one embodiment, the block is the smallest unit of storage elements that are simultaneously erased. In each block, in this example 'there is a pair of Z bits in 8,512 rows called the all-bit BL8511. In one embodiment of the line (ABL) architecture (architecture 1810), all of the bit lines of a block can be selected simultaneously during read and program operations. Storage elements along a common word line and connected to any bit line can be programmed simultaneously. f

在所提供之實例中,四個儲存元件串聯地連接以形成 「反及」串。雖然展示四個儲存元件被包括於每一「反 及」串中,但可使用多於或少於四個(例如,16、U、Μ 或另-數目)。該「反及」串之—端子經由沒極選擇問極 (連接至選擇閘極沒極線SGD)而連接至相應位元線,且另 一端子經由源極選擇閘極(連接至選擇閘極源極線sgs)連 接至c -源極。 在被稱為奇偶架構(架構18〇〇)之另一實施例中,將位元 線分成偶數位元線(BLe)及奇數位元線(BL〇)。在奇/偶位元 線架構中,在-時間程式化沿著共同字線錢接至奇數位 元線之儲存it件,而在另—時間程式化沿著共同字線且連 接至偶數位元線之儲存元件。可同時將資料程式化至不同 區塊中且自不同區塊讀取資料。在此實例中,在每一區塊 中存在8,5 12個行,其被分成偶數行及奇數行。在此實例 中,展不四個儲存元件被串聯連接以形成「反及」串。雖 然展示四個儲存^件被包括於每—「反及」串巾,但可使 用多於或少於四個之儲存元件。 126206.doc -34- 200836203 在項取及权式化操作之一 儲;开杜带、联 、,心/月間,同時選擇4,256個 1省存7L件。所選之儲在 一知 件八有同一字線及同一種類之位 疋線(例如,偶數或奋盤 .,Γ ^ ^ ^ 一 。口此,可同時讀取或程式化形 ^ ^ 、、且之貝枓,且記憶體之一區塊可 及偶…、广 字線,每一者具有奇數頁面 心儲存兀件而言,當每一儲存元件 儲存兩個位元之資料日本,甘士 貝枓時(其中,此兩個位元In the example provided, four storage elements are connected in series to form a "reverse" string. Although four storage elements are shown to be included in each "reverse" string, more or less than four (e.g., 16, U, 或 or another number) may be used. The "reverse" string-terminal is connected to the corresponding bit line via the poleless selection pole (connected to the selected gate electrode line SGD), and the other terminal is connected to the selection gate via the source selection gate The source line sgs) is connected to the c-source. In another embodiment, referred to as an odd-even architecture (architecture 18), the bit lines are divided into even bit lines (BLe) and odd bit lines (BL〇). In the odd/even bit line architecture, the -it stylized along the common word line to the odd bit line store it, and the other time stylized along the common word line and connected to the even bit Line storage component. Data can be programmed into different blocks at the same time and data can be read from different blocks. In this example, there are 8, 5 12 rows in each block, which are divided into even rows and odd rows. In this example, four storage elements are connected in series to form a "reverse" string. Although four storage elements are shown to be included in each "reverse" string, more or less than four storage elements can be used. 126206.doc -34- 200836203 In the item acquisition and weighting operation, store; open Du belt, joint, heart / month, select 4,256 at the same time 1 save 7L pieces. The selected storage has the same word line and the same type of position line (for example, even number or Fen disk., Γ ^ ^ ^ one. The mouth can be read or stylized at the same time ^ ^ , And the bells, and one block of the memory can be even..., wide word lines, each with an odd page heart storage element, when each storage element stores two bits of information, Japan, Ganzibei Time (where the two bits

儲存於不同頁面中),一@掄蚀六丄 母者係 ) Q塊儲存十六個邏輯頁面。亦可 使用具有其他大小之區塊及頁面。 對於狐架構或奇偶架構而言,可藉由使p井升高至捧 =電壓(例如,2GV)且使選定之區塊之字線接地來擦除儲 存元件。源極線及位元線係㈣的。可對整個記憶體陣 列、獨立區塊或為記憶體裝置之—部分的儲存元件之另一 單位執行擦除。電子自儲存S件之浮動閘極傳送至P井 區,使得儲存元件之VTH變為負的。 在讀取及驗證操作中,選擇閘極(SGD及SGS)連接至在 2·5 V至4.5 V之範圍巾的電壓,且未選定之字線(例如,當 WL2為選定之字線時為㈣、wl1&wl3)升高至讀取導通 電壓vREAD(通常為在4·5 ¥至6 v之範圍中之電壓)以使電晶 體作為導通閘極而操作。選定之字線WL2連接至一電壓, 針對每一讀取及驗證操作而指定該電壓之位準以便判定相 關儲存元件之VTH是高於還是低於此位準。舉例而言,在 雙階儲存元件之讀取操作巾,選定之字線WL2可為接地 的,使得偵測VTH是否高於〇 V。舉例而言,在雙階儲存元 126206.doc -35- 200836203 件之驗證操作中,選定之字線WL2連接至〇·8 v,使得驗證 VTH是否已達到至少0.8 v。源極及p井為〇 v。選定之位元 線(假定為偶數位元線(BLe))預先充電至(例如)〇 Η之2 準。若VTH高於字線上之讀取或驗證位準,則與有關儲存 元件相關聯之位元線(BLe)的電位位準由於非傳導儲存元 件而維持高位準。另一方面,若%低於讀取或驗證位 準,則相關位元線(BLe)之電位位準減小至低位準(例如, 小於〇·5 V),因為傳導儲存元件使位元線放電。儲存元件 之狀態可藉此由連接至位元線之電壓比較器感測放大器谓 根據此項技術中已知之技術來勃 仅仉木執仃上述擦除、讀取及驗 證操作。因此,所解釋之細簖中 即中之許多可由熟習此項技術 者改變。亦可使用此項技術中 證技術。 以之其他擦除,取及驗 =描緣臨限„分布之實例集合。針對每—錯存元件 :存兩個位元之資料之狀況而提供儲存元件陣列之實例Stored on different pages), one @抡蚀六丄 The mother's system) The Q block stores sixteen logical pages. Blocks and pages of other sizes can also be used. For a fox architecture or a parity architecture, the storage elements can be erased by raising the p-well to a voltage of (e.g., 2GV) and grounding the word lines of the selected block. Source line and bit line system (4). Erasing can be performed on the entire memory array, on a separate block, or on another unit of the storage element of the memory device. The floating gate of the electron self-storing S piece is transferred to the P well area, so that the VTH of the storage element becomes negative. In the read and verify operations, the select gate (SGD and SGS) is connected to the voltage in the range of 2·5 V to 4.5 V, and the unselected word line (for example, when WL2 is the selected word line) (d), wl1 & wl3) is raised to the read turn-on voltage vREAD (typically a voltage in the range of 4·5 ¥ to 6 v) to operate the transistor as a turn-on gate. The selected word line WL2 is coupled to a voltage that is specified for each read and verify operation to determine if the VTH of the associated storage element is above or below this level. For example, in the read operation wipe of the double-order storage element, the selected word line WL2 can be grounded so that the detection of VTH is higher than 〇V. For example, in the verify operation of the two-level storage element 126206.doc -35 - 200836203, the selected word line WL2 is coupled to 〇·8 v such that it verifies that the VTH has reached at least 0.8 volts. The source and p wells are 〇 v. The selected bit line (assumed to be an even bit line (BLe)) is precharged to, for example, 2 〇. If VTH is above the read or verify level on the word line, the potential level of the bit line (BLe) associated with the associated memory element remains high due to the non-conductive storage element. On the other hand, if the % is lower than the read or verify level, the potential level of the associated bit line (BLe) is reduced to a low level (eg, less than 〇·5 V) because the conductive storage element makes the bit line Discharge. The state of the storage element can thereby be determined by the voltage comparator sense amplifier connected to the bit line, according to techniques known in the art, to perform the above erase, read and verify operations. Therefore, many of the explained details can be changed by those skilled in the art. This technology can also be used. Other erasures, acquisitions, and inspections = a set of examples of distributions. Examples of storage element arrays for each of the conditions of the data: two bits of data.

Vth分布。對經擦除之儲存 认 兩仔兀件如供弟一臨限電壓分布E。 亦搖繪經程式化之儲存元件 牛之一個臨限電壓分布A、B及 C。在一實施例中,E分布中之餘 τ及‘限電壓為負且A、分 帝中之臨限電壓為正。 每一相異臨限電壓範圍斟_ μ m 播 、 W對應於用於資料位元集合之預定 值。程式化至儲存元件中之資 it ^ pe ^ ^ 貝科與儲存元件之臨限電壓位 早之間的特定關係取決於對 ΦΙ ο βι, J 、、邊存兀件採用之資料編碼機 制。舉例而言,均以引用 方式王文併入本文令的美國專 126206.doc -36 - 200836203 利第6,222,762號及於2004年12月16日公布之美國專利申請 公開案第2004/0255090號描述用於多態快閃儲存元件之各 種資料編碼機制。在-實施例中,使用格雷(叫)碼指派 來將資料值指派給臨限電壓範圍,使得在浮動閘極之臨限 電壓錯誤地移位至其鄰近實體狀態時,將僅影響一位元。Vth distribution. For the erased storage, the two pieces of the device are given a threshold voltage distribution E. It also shakes the stylized storage components of a cow's threshold voltage distribution A, B and C. In one embodiment, the remainder of the E distribution τ and the 'limit voltage are negative and the threshold voltage in A, the division is positive. Each distinct threshold voltage range 斟_μm broadcast, W corresponds to a predetermined value for the set of data bits. Stylized to the storage component it ^ pe ^ ^ The specific relationship between Beike and the storage device's threshold voltage is determined by the data encoding mechanism used for ΦΙ ο βι, J , and side storage components. For example, U.S. Patent Application Serial No. 126,206, filed on Jun. Various data encoding mechanisms for polymorphic flash storage elements. In an embodiment, a Gray (call) code assignment is used to assign a data value to a threshold voltage range such that when the threshold voltage of the floating gate is erroneously shifted to its neighboring entity state, only one bit element is affected .

一實例將”11”指派給臨限電壓範圍E(狀態E),將,,1〇"指派 給臨限電壓範圍A(狀態A),將”〇〇”指派給臨限電壓範圍 B(狀態B)且將”〇1”指派給臨限電壓範圍c(狀態c)。然而, 在其他實施例中,不使用格雷碼。雖然展示了四個狀態, 但本發明亦可用於其他多態結構,包括會包括多於或少於 四個狀態之多態結構。 亦提供三個讀取參考電壓Vra、Vrb及Vrc以用於自儲存 元件讀取資料。藉由測試給定儲存元件之臨限電壓是高於 還是低於Vra、Vrb及Vrc,系統可判定儲存元件所處Z狀 態,例如,程式化條件。 另外,提供三個驗證參考電壓Vva、Vvb及Vvc。當將儲 存兀件程式化至狀態A時,系統將測試此等儲存元件是否 具有大於或等於Vva之臨限電壓。當將儲存元件程式化至 狀態B時’系統將測試儲存元件是否具有大於或等於w =臨限電壓。當將儲存元件程式化至狀態c時,系統將判 疋儲存元件疋否具有其大於或等於Vvc之臨限電壓。 在被稱為全序列程式化之—實施财,可將儲存元件自 擦除狀態E直接程式化至程式化狀態A、B或c中之任一 者舉例而s,可首先擦除待程式化之儲存元件之群體, 126206.doc -37- 200836203 使得該群體中之所有儲存元件處於擦除狀態E。接著將使 用堵如由圖2 3之控制閘極電壓序列描、纟會之一連串程式化脈 衝來將儲存元件直接程式化至狀態A、B或C。雖然一些儲 存元件係自狀態E程式化至狀態A,但其他儲存元件係自 狀態E程式化至狀態B及/或自狀態E程式化至狀態c。當在 WLn上自狀態E程式化至狀態c時,對WLn-Ι下方之相鄰浮 f 動閘極之寄生耦合的量為最大的,因為與自狀態E程式化 至狀態A或自狀態E程式化至狀態b時之電壓之改變相比, 在WLn下方之浮動閘極上的電荷量之改變為最大的。當自 狀態E程式化至狀態b時,對相鄰浮動閘極之耦合之量減少 但仍為顯著的。當自狀態E程式化至狀態A時,耦合之量 更進一步地減少。因此,隨後讀取WLndi每一狀態所需 的校正之量將取決於WLn上之相鄰之儲存元件的狀態而改 變〇 圖20說明程式化針對兩個不同頁面(下部頁面及上部頁 面)而儲存資料之多態儲存元件的兩遍次技術之實例。描 繪四個狀態:狀離^ 心(υ狀悲A(10)、狀態B(00)及狀態 C(〇l)。對於狀態E’兩個頁面皆儲存””。對於狀態a,下 部:面儲存"〇"且上部頁面儲存"1”。對於狀態B,兩個頁 面皆儲存”0”。對於狀態C, 儲存, 、、疋位元樣式指派給該等狀態 中之母-者,但亦可指派不同位元樣式。 在第一程式化遍次中,根據 之位元來設定儲存元件之臨至下部邏輯頁面中 艮冤屋位準。若此位元為邏輯 126206.doc -38- 200836203 τ,則不改變臨限電壓,因為此位元由於已較早擦除而 處於適田狀怨。然而,若待程式化之位元為邏輯,則 儲存70件之臣品限位準增加而處於狀態A,如由箭頭i 1⑼所 示。第一程式化遍次結束。 在第二程式化遍次_,根據正程式化至上部邏輯頁面中 之位元來設定儲存元件之臨限電壓位準。若上部邏輯頁面 位元將儲存邏輯,,r,則不發生程式化,因為取決於下部 頁面位元之程式化,儲存元件處於狀態E或A中之一者, 兩個狀態皆載運上部頁面位元”Γ,。若上部頁面位元為邏 輯’’〇,’,縣臨限電壓移位。若第—遍次使儲存元件維持 在擦除狀態E ’則在第二階段中程式化儲存元件,使得臨 限電塵增加以在狀態c内’如由箭頭2〇2〇所描緣。若由於 第一程式化遍次,儲存元件已程式化至狀態A,則在第二 遍次中進一步程式化儲存元件’使得臨限電壓增加以在狀 態B内,如由箭頭测所描繪。第二遍次之結果為將儲存 兀件程式化至經指定以對上部頁面儲存邏輯”〇”而不改變 下部頁面之資料的狀態。在圖19及圖2〇中,對相鄰字線上 之浮動閘極之耦合的量取決於最終狀態。An example assigns "11" to the threshold voltage range E (state E), assigns 1〇" to the threshold voltage range A (state A), and assigns "〇〇" to the threshold voltage range B ( State B) and assign "〇1" to the threshold voltage range c (state c). However, in other embodiments, the Gray code is not used. Although four states are shown, the invention can also be applied to other polymorphic structures, including polymorphic structures that would include more or less than four states. Three read reference voltages Vra, Vrb, and Vrc are also provided for reading data from the storage element. By testing whether the threshold voltage of a given storage element is above or below Vra, Vrb, and Vrc, the system can determine the Z state of the storage element, such as a stylized condition. In addition, three verification reference voltages Vva, Vvb, and Vvc are provided. When the storage element is programmed to state A, the system will test if the storage elements have a threshold voltage greater than or equal to Vva. When the storage element is programmed to state B, the system will test whether the storage element has a greater than or equal to w = threshold voltage. When the storage element is programmed to state c, the system will determine if the storage element has its threshold voltage greater than or equal to Vvc. In the so-called full sequence stylization-implementation, the storage element can be directly programmed from the erased state E to the stylized state A, B or c. For example, s can be erased first. A population of storage elements, 126206.doc -37- 200836203 causes all storage elements in the population to be in an erased state E. The storage element is then directly programmed to state A, B or C using a series of programmed pulses, such as the control gate voltage sequence diagram of Figure 23. While some of the storage elements are programmed from state E to state A, other storage elements are programmed from state E to state B and/or from state E to state c. When staging from state E to state c on WLn, the amount of parasitic coupling to the adjacent floating-flip gate below WLn-Ι is maximized because it is stylized from state E to state A or self-state E. The change in the amount of charge on the floating gate below WLn is greatest compared to the change in voltage when stylized to state b. When staging from state E to state b, the amount of coupling to adjacent floating gates is reduced but still significant. When staging from state E to state A, the amount of coupling is further reduced. Thus, the amount of correction required to subsequently read each state of WLndi will vary depending on the state of the adjacent storage elements on WLn. Figure 20 illustrates that the stylization is stored for two different pages (lower page and upper page). An example of a two-pass technique for polymorphic storage elements of data. Describe four states: the shape of the heart (the sorrow A (10), the state B (00) and the state C (〇l). For the state E' both pages are stored". For the state a, the lower: face Save "〇" and the upper page stores "1. For state B, both pages store "0". For state C, store, ,, and 疋 bit styles are assigned to the parent in those states. , but you can also assign different bit styles. In the first stylized pass, set the storage component to the lower logical page according to the bit. If the bit is logic 126206.doc - 38- 200836203 τ, does not change the threshold voltage, because this bit is in the field because of the earlier erasure. However, if the bit to be programmed is logic, then 70 pieces of the product limit are stored. The increase is in state A, as indicated by arrow i 1 (9). The first stylized pass ends. In the second stylized pass _, the storage element is set according to the bit that is being programmed into the upper logical page. Limit the voltage level. If the upper logic page bit will store logic, r, no program will occur. Because the storage element is in one of the states E or A depending on the stylization of the lower page bit, both states carry the upper page bit "Γ. If the upper page bit is logical ''〇,', The county threshold voltage shift. If the storage element is maintained in the erased state E' for the first time, the storage element is programmed in the second stage, so that the threshold dust is increased to be in the state c as indicated by the arrow 2 2. If the storage element has been programmed to state A due to the first stylization, then the storage element is further programmed in the second pass to increase the threshold voltage in state B, as The result of the second pass is to program the storage element to a state that is designated to store logic "〇" on the upper page without changing the data of the lower page. In Figures 19 and 2, The amount of coupling of the floating gates on adjacent word lines depends on the final state.

在一實施例中,可設置系統以執行全序列寫入(若寫入 足夠資料而填滿整個頁面)。若針對全頁未寫入足夠資 料,則程式化過程可程式化以所接收之資料來程式化之下 部頁面。當接收到後續資料時,系統將接著程式化立 面。在又-實施例中’系統可以程式化下部頁面之模式開 始寫入,且若隨後接收到足以填滿整個(或大部分)字H 126206.doc -39- 200836203 儲存元件的資料,則可轉換至全序列程式化模式。此實施 例之更多細節揭示於2006年6月I5曰公布的以引用之方式 全文併入本文中的標題為”pipelined Pr〇gramming 〇f N〇n_In one embodiment, the system can be set up to perform a full sequence of writes (filling the entire page if enough data is written). If sufficient information is not written for the full page, the stylization process can be programmed to program the lower page with the received data. When subsequent data is received, the system will then follow the stylized facade. In a further embodiment, the system can program the lower page mode to begin writing, and if it subsequently receives enough data to fill the entire (or most) word H 126206.doc -39- 200836203 storage element, then convertible To full sequence stylized mode. Further details of this embodiment are disclosed in the June 2006 issue of I5曰.

Volatile Memories Using Early Data”之美國專利申請公開 案第 2006/0126390號中。U.S. Patent Application Publication No. 2006/0126390 to Volatile Memories Using Early Data.

圖21a至21c揭示用於程式化非揮發記憶體之另一過程, 其藉由以下方式來減少浮動閘極至浮動閘極之耦合的效 應.對於任一特定儲存元件,在針對先前頁面將資料寫入 至相鄰儲存元件之後關於特定頁面將資料寫入至此特定儲 存元件。在-實例實施例中,非揮發儲存元件使用四個資 料狀態而對每一儲存元件儲存兩個位元之資料。舉例而 =,假定狀態E為擦除狀態而狀態A、為程式化狀 態。狀態E儲存資仙。狀態A儲存資料〇1。狀態b儲存資 ㈣。狀態C儲存資料〇〇。此為非格雷編碼之實例,因為 兩個位元在相鄰狀態之間改變。亦可使用使資料至 實體資料狀態之其他編碼。每—儲存元㈣存 ㈣。出於參考之目的,將此等資料頁面稱作上部頁面及 下部頁面,然而,盆可姑认; 〇 、了被給予其他標記。關於狀態A,上 ::面儲:位凡。且下部頁面儲存位元〗。關於狀態B,上 個百::子:凡1且下部頁面儲存位元〇。關於狀態C,兩 個頁面皆儲存位元資料〇。 該程式化過程為兩步過程。在+ 頁面。若下部頁面將保 二,程式化下部 狀態E。若資料將程式化至〇,則儲^儲存元件狀態保持於 、錯存兀件之電壓臨限值升 126206.doc -40- 200836203 高’使得儲存元件被程式化至狀態B,。圖21a因此展示將 儲存元件自狀態E程式化至狀態B,。狀態B,為臨時狀態B。 因此’將驗證點描繪為Vvb,,其低於Vvb。Figures 21a through 21c illustrate another process for staging non-volatile memory that reduces the effects of floating gate-to-floating gate coupling by, for any particular storage element, data for the previous page. Data is written to this particular storage element with respect to a particular page after being written to an adjacent storage element. In the example embodiment, the non-volatile storage element stores four bits of data for each storage element using four data states. For example, =, assume that state E is the erased state and state A is the stylized state. State E stores the immortality. State A stores data 〇1. State b stores funds (4). State C stores data. This is an example of non-Gray coding because the two bits change between adjacent states. Other codes that enable the data to be in the state of the entity data can also be used. Every—storage (4) is stored (4). For the purpose of reference, these data pages are referred to as the upper page and the lower page, however, the basin can be recognized; 〇, and other marks are given. Regarding state A, on: face storage: bit. And the lower page stores the bit. Regarding state B, the last hundred:: child: where 1 and the lower page stores the bit 〇. Regarding state C, both pages store bit data 〇. This stylization process is a two-step process. On the + page. If the lower page will be saved, the lower state E will be programmed. If the data is programmed to 〇, the state of the storage element is maintained at the voltage threshold of 126206.doc -40-200836203 high so that the storage element is programmed to state B. Figure 21a thus shows the staging of the storage element from state E to state B. State B is the temporary state B. Therefore, the verification point is depicted as Vvb, which is lower than Vvb.

在一實施例中,在儲存元件自狀態E程式化至狀態B, 後’其在「反及」串中的鄰近之儲存元件(WLn+1)將接著 關於其下部頁面來程式化。舉例而言,返回參看圖2,在 程式化儲存元件106之下部頁面後,將程式化儲存元件工⑽ 之下部頁面。在程式化儲存元件104後,若儲存元件1〇4具 有自狀態E升高至狀態B,之臨限電壓,則浮動閘極至浮動 閘極之耦合效應將使儲存元件1〇6之表觀臨限電壓升高。 此將具有使針對狀態B,之臨限電壓分布加寬為如圖2ib之 臨限電壓分布215〇所描繪之分布的效應。臨限電壓分布之 此明顯加寬將在程式化上部頁面時得以糾正。 圖2U描繪程式化上部頁面之過程。若儲存元件處於擦 除狀態E且上部頁面將保持於i,則儲存元件將保持於狀態 E。若儲存元件處於狀態E且其上部頁面資料將程式化至 =,則儲+存元件之臨限電壓將升高,使得儲存元件處於狀 怨^。若儲存元件處於中間臨限電壓分布2150中且上部頁 面貧料保持於!,則儲存元件將程式化至最終狀態b。若儲 存:件處於中間臨限電壓分布215〇中且上部頁面資料將變 ,貧料^則儲存元件之臨限電壓將升高,使得儲存元件 :;狀i、c。由圖21a至21c描緣之過程減少浮動閘極至浮 閘極之耦合的效應,因為僅鄰近儲存元件之上部頁面程 “匕將對給定儲存元件之表觀臨限電壓具有效應。替代狀 126206.doc -41 · 200836203 態編碼之實例為在上百 _欠 4頁面貝料為1時自分布21 50移至狀 態C,、且在上部頁面資料為〇時移至狀態B。 雖然圖21β 2le提供關於四個f料狀態及兩個資料頁面 的實例’但所教示之概念可適用於具有多於或少於四個之 狀態及不同於兩個頁面之其他實施例。In one embodiment, the storage element is programmed from state E to state B, and its adjacent storage element (WLn+1) in the "reverse" string will then be programmed with respect to its lower page. For example, referring back to Figure 2, after the page below the stylized storage element 106, the page below the component (10) will be stylized. After staging the storage element 104, if the storage element 1〇4 has a threshold voltage from state E to state B, the coupling effect of the floating gate to the floating gate will make the storage element 1〇6 look The threshold voltage rises. This will have the effect of widening the threshold voltage distribution for state B to the distribution depicted by the threshold voltage distribution 215 如图 of Figure 2ib. This apparent widening of the threshold voltage distribution will be corrected when the upper page is programmed. Figure 2U depicts the process of stylizing the upper page. If the storage element is in the erased state E and the upper page will remain at i, the storage element will remain in state E. If the storage element is in state E and its upper page data is programmed to =, then the threshold voltage of the storage + storage component will rise, causing the storage component to be in a state of complaint. If the storage element is in the intermediate threshold voltage distribution 2150 and the upper page is kept lean! , the storage component will be programmed to the final state b. If the storage: the component is in the middle threshold voltage distribution 215〇 and the upper page data will change, the lean voltage will increase the threshold voltage of the storage component, so that the storage component:; i, c. The process depicted by Figures 21a through 21c reduces the effect of the coupling of the floating gate to the floating gate because only the page top of the adjacent storage element "has an effect on the apparent threshold voltage of a given storage element. 126206.doc -41 · 200836203 An example of state code is to move from state 21 50 to state C when the top page _ ow 4 page material is 1, and move to state B when the upper page data is 。. Although Figure 21β 2le provides examples of four f-states and two profile pages' but the concepts taught can be applied to other embodiments having more or less than four states and different pages.

圖描述粗略/精細程式化過程。如先前結合叩所提 及’最初可以粗略模式來程式化儲存元件以將其快速地移 向目‘私式化條件且接著以精細模式來程式化以按照較大 之準確性較慢地將其移至目標程式化條件。精細程式化模 ^可^及(例如)在VpGM脈衝串中使用減少之步長及/或對選 疋之反及」串之位元線施加抑制電壓。另外,可在一遍 -人或多遍次程式化中發生粗略_精細程式化。在一遍次粗 略/精細程式化中,如圖23中所指示,在VPGM脈衝串期間 存在自粗略程式化至精細程式化之切換。相反,在多遍次 粗略/精細程式化中,例如,可在第一遍次期間使用粗略 私式化,而在第二遍次期間使用精細程式化。如圖Μ中所 才曰示自粗略程式化至精細程式化之切換可發生於(例如) 凡整VpGM脈衝串之間。另外或其他,Vp⑽脈衝串在第二遍 次或其他額外遍次之程式化中可使用值之較低範圍。可將 多遍次粗略/精細程式化視為特定類型之多遍次程式化, 其通常涉及(例如)使用一個以上之脈衝串在一個以上之遍 次中將儲存元件程式化至目標程式化條件。 舉例而言,可將儲存元件自擦除狀態(狀態E)程式化至 目私程式化狀態A、B或C。在一方法中,使用粗略程式化 126206.doc -42- 200836203 將儲存7L件程式化至臨時狀態A,、B,或c,,該等狀態分別 具有相關聯之驗證位準^^%、Vvbi^VvcL。下標,,l”表示 驗也位準與低於目標狀態之較低狀態相關聯。隨後,使用 精細程式化將儲存元件自臨時狀態程式化至狀態A、B或 C忒等狀恶分別具有相關聯之驗證位準VvaH、VvbH或 η下紅Η表示驗證位準與為最終目標狀態之較高狀 心相關聯。經程式化之儲存元件之臨限電壓因此在第一程 式化階段期間自第一位準(例如,狀態Α)增加至第二位準 (例如,VvaL、VvbL4VvCL)且在第二程式化階段期間自第 二位準增加至第三位準(例如,VvaH、VvbH或Vvch)。 圖22為描述用於程式化非揮發記憶體之方法之一實施例 的流程圖。在一實施例中,在程式化之前擦除儲存元件 (以區塊或其他單位)。在步驟22〇〇中,由控制器發出,,資料 載入π命令且由控制電路151〇接收輸入。在步驟22〇5中, 將指定頁面位址之位址資料自控制器或主機輸入至解碼器 1514。在步驟2210中,將用於所定址之頁面的一頁面之程 式化負料輸入至資料緩衝器以供程式化。將此資料鎖存於 適當之鎖存器集合中。在步驟2215中,由控制器將,,程式 化’’命令發出至狀態機1512。 由Μ程式化’’命令觸發,將使用施加至適當之選定之字線 的圖23之脈衝串2300的步進式程式化脈衝23〇5、23 1〇、 2315、2320、2325、2330、2335、2340、2345、2350......The figure depicts the rough/fine stylization process. As previously mentioned in conjunction with '' initially, the storage element can be programmed in a coarse mode to move it quickly to the target's private condition and then programmed in a fine mode to slow it down with greater accuracy. Move to the target stylization condition. The fine stylized mode can, for example, use a reduced step size in the VpGM burst and/or apply a suppression voltage to the bit line of the string. In addition, coarse_fine stylization can occur in one-time or multiple-pass stylization. In one pass coarse/fine stylization, as indicated in Figure 23, there is a switch from coarse stylization to fine stylization during the VPGM burst. In contrast, in multi-pass rough/fine stylization, for example, coarse privateization can be used during the first pass and fine stylization used during the second pass. As shown in the figure, switching from coarse stylization to fine stylization can occur, for example, between integer VpGM bursts. Additionally or alternatively, the Vp(10) burst may use a lower range of values in the second pass or other additional pass stylization. Multiple pass coarse/fine stylization can be considered as a multi-pass stylization of a particular type, which typically involves, for example, using more than one burst to program the storage element to the target stylized condition in more than one pass. . For example, the storage element can be programmed from the erased state (state E) to the privately stylized state A, B or C. In one method, the stylized 126206.doc -42-200836203 is used to program the stored 7L pieces into a temporary state A, B, or c, which have associated verification levels ^^%, Vvbi, respectively. ^VvcL. The subscript, l" indicates that the inspection level is also associated with a lower state than the target state. Subsequently, using the fine stylization to stylize the storage element from the temporary state to the state A, B or C, etc. The associated verification level VvaH, VvbH or η red Η indicates that the verification level is associated with a higher centroid for the final target state. The threshold voltage of the programmed storage element is therefore during the first stylization phase. The first quasi (eg, state Α) is increased to the second level (eg, VvaL, VvbL4VvCL) and increased from the second level to the third level during the second stylized phase (eg, VvaH, VvbH, or Vvch) Figure 22 is a flow diagram depicting one embodiment of a method for staging non-volatile memory. In one embodiment, the storage element (in blocks or other units) is erased prior to stylization. In the middle, issued by the controller, the data is loaded into the π command and received by the control circuit 151. In step 22〇5, the address data of the specified page address is input from the controller or the host to the decoder 1514. In step 2210, it will be used The stylized negative of a page of the addressed page is input to the data buffer for stylization. This data is latched into the appropriate set of latches. In step 2215, the controller will, stylize ' The 'command is sent to the state machine 1512. The stepped stylized pulses 23 〇 5, 23 1 〇, 2315 of the pulse train 2300 of Figure 23 applied to the appropriate selected word line will be triggered by the stylized '' command. , 2320, 2325, 2330, 2335, 2340, 2345, 2350...

來將在步驟22 10中鎖存之資料程式化至由狀態機1512控制 之選定的儲存元件中。在步驟2220中,將程式化電壓VPGM 126206.doc •43- 200836203 初始化至起始脈衝(例如,12V或另—值)且將由狀態機 1512維持之程式計㈣㈣初始化為零。在㈣助中, 應用初始升壓模式,且名+ 、 飞且在步驟2230中,將第一VPGM脈衝施 加至選疋之字線以開始藉4彳卜淑 一 ]始私式化與選疋之字線相關聯之儲存 元件。若邏輯”〇,’儲存於特定資料鎖存器中指示應程式化 相應儲存元件,則將相應位元線接地。另一方面,The data latched in step 2210 is programmed into the selected storage element controlled by state machine 1512. In step 2220, the programmed voltages VPGM 126206.doc • 43-200836203 are initialized to a start pulse (e.g., 12V or another value) and the programmer (4) (4) maintained by state machine 1512 is initialized to zero. In (4), the initial boost mode is applied, and the name +, fly, and in step 2230, the first VPGM pulse is applied to the word line of the selected one to start borrowing and selecting. The storage element associated with the zigzag line. If the logic "〇," is stored in a specific data latch indicating that the corresponding storage element should be programmed, the corresponding bit line is grounded. On the other hand,

"1"儲存於特定鎖存器中指干相廍 H 甲才曰不相應儲存兀件應保持於其告 前資料狀態,則將相應位元線連接至Vdd以抑制程式化、。田 在步驟2235中,驗證敎之儲存元件之狀態。若偵測到 選定之儲存元件之目標臨限電壓已達到適當位準,則儲存 於相應資料鎖存器中之資料變為邏輯"i "。若傾測到該臨 限電壓尚未達到適當位準,則儲存於相應資料鎖存器中之 資料不改變。以此方式,又v和斗 万式不必耘式化在相應資料鎖存器中 儲存有邏輯T,之位元線。當所有資料鎖存器儲存邏輯τ 時’狀態機(經由上述之線或型機制)知曉所有選定之儲存 元件已被程式化。在步驟224〇中,作出關於所有資料鎖存 器是否儲存邏輯’4"的檢查。若所有資料鎖存器儲存邏輯 T ’則程式化過程完叙成功’因為所有選定之儲存元 件被程式化並驗證。在步驟2245中報告”通過"狀能。 若在步驟测中判定並相有資㈣存器儲存邏輯 "1”,則程式化過程繼續。在步驟225〇中,對照程式化極 限值PCmax來檢查程式計數器PC。程式化極限值之一實例 為二十;然而’亦可使用其他數目。若程式計數器PC不小 於PCmax’則程式化過程發生故障且在步驟咖中報告 126206.doc -44- 200836203 故P早狀悲。右程式計數器PC小於pcmax,則在步驟2260 中使Vpgm增加了步長且程式計數器Pc遞增。在步驟2265 處,作出關於是否滿足升壓模式切換標準(例如,見圖4)之 判定。若滿足此標準,則在步驟227〇處切換升壓模式,且 過耘返回至步驟2230以施加下一 vPGM脈衝。若在步驟2265 處不滿足升壓模式切換標準,則過程返回至步驟2230以在 未改變升壓模式之情況下施加下一 VpGM脈衝。 圖23描緣在私式化期間施加至非揮發儲存元件之控制閘 極的實例脈衝串2300,及在脈衝串期間發生的升壓模式切 換。脈衝串2300包括施加至針對程式化而選擇之字線的一 連串程式化脈衝2305、2310、2315、2320、2325、2330、 2335、234G、2345、2350......。在—實施例中,程式化脈 衝具有電壓vPGM,該電壓開始於12 v且對每一連續程式化 脈衝增加增量(例如,〇·5 V)直至達到最大值2〇 V為止。在 程式化脈衝之間存在驗證脈衝。舉例而言,驗證脈衝集合 2306包括三個驗證脈衝。在一些實施例中,針對資料正被 程式化至之每一狀態(例如,狀態A、B及C),可存在一驗 證脈衝。在其他實施例中,可存在更多或更少之驗證脈 衝。舉例而言,每一集合中之驗證脈衝可具有振幅Vva、 VVb 及 VVC(圖 20)、Vvb,(圖 21a)、或 VvaL、Vvbi^VvcL 或"1" stored in a specific latch refers to the dry phase 廍 H A 曰 曰 曰 相应 相应 相应 相应 相应 相应 相应 相应 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In step 2235, the status of the storage element is verified. If it is detected that the target threshold voltage of the selected storage element has reached the appropriate level, the data stored in the corresponding data latch becomes logical "i ". If it is detected that the threshold voltage has not reached the appropriate level, the data stored in the corresponding data latch does not change. In this way, the v and the multi-type do not have to be programmed to store the logic T, the bit line in the corresponding data latch. When all data latches store logic τ, the state machine (via the line or type mechanism described above) knows that all selected storage elements have been programmed. In step 224, a check is made as to whether all data latches store logic '4". If all data latches store logic T ', the stylization process is completed successfully' because all selected storage elements are programmed and verified. In step 2245, the report "passes the pass". If it is determined in the step test that the (4) register stores the logic "1", the stylization process continues. In step 225, the program counter PC is checked against the programmed limit PCmax. An example of one of the stylized limits is twenty; however, other numbers may be used. If the program counter PC is not less than PCmax', the stylization process fails and is reported in the step coffee 126206.doc -44- 200836203. If the right program counter PC is less than pcmax, then in step 2260 Vpgm is incremented by the step size and the program counter Pc is incremented. At step 2265, a determination is made as to whether the boost mode switching criteria (e.g., see Figure 4) is met. If this criterion is met, the boost mode is switched at step 227, and the process returns to step 2230 to apply the next vPGM pulse. If the boost mode switching criteria are not met at step 2265, the process returns to step 2230 to apply the next VpGM pulse without changing the boost mode. Figure 23 depicts an example pulse train 2300 applied to the control gate of the non-volatile storage element during the privateization, and a boost mode switch that occurs during the burst. Burst 2300 includes a series of stylized pulses 2305, 2310, 2315, 2320, 2325, 2330, 2335, 234G, 2345, 2350, ... applied to the word line selected for stylization. In an embodiment, the stylized pulse has a voltage vPGM that begins at 12 v and increments (e.g., 〇·5 V) for each successive stylized pulse until a maximum of 2 〇 V is reached. There is a verify pulse between the stylized pulses. For example, the set of verification pulses 2306 includes three verify pulses. In some embodiments, an authentication pulse may exist for each state to which the material is being programmed (e.g., states A, B, and C). In other embodiments, there may be more or fewer verification pulses. For example, the verification pulses in each set can have amplitudes Vva, VVb, and VVC (Fig. 20), Vvb, (Fig. 21a), or VvaL, Vvbi^VvcL or

VvaH、VvbH及 VVCh(圖 2id)。 將升壓杈式之切換描繪為在施加程式化脈衝Μ”之前發 生在切換之别,應用第一升壓模式,而在切換之後,應 用第二升壓模式。如所提及,當程式化發生時(例如,當^ 126206.doc •45- 200836203 〆 施加程式化脈衝時),施加被施加至字線以實施升壓模式 的電c f務上’在每一程式化脈衝之前可稍微地起始升 壓模式之升壓電壓且在每一程式化脈衝之後將其移除。因 此,在驗證過程期間(例如,其發生於程式化脈衝之, 不施加升壓電壓。而是’將通常小於升壓㈣之讀取電壓 施=至未敎之字線。讀取電壓具有振幅,該振幅足夠在 當前程式化之儲存元件之臨限電壓正與驗證位準相比時將 反及」串中之先前程式化之儲存元件維持為開啟的。 因此’在一方法中’在第一程式化階段中,將脈衝串 2300中之程式化脈衝之第-子集(例如,脈衝2305、 2310、23b、232G、2325及233())施加至—或多個儲存元 件’且在第二程式化階段中,將該脈衝串中之脈衝之第二 子集(例如,脈衝2335、234〇、2345、235〇)施加至該或^ 等儲存元件。每—程式化遍次可因此包括多個程式化階 段。 t ® 24騎在程式㈣間施加㈣揮發料元件之控制閘 極的實例脈衝串,及在脈衝串之間發生的升壓模式之切 換特疋5之,將升壓模式之切換描緣為在脈衝串2伽與 245:之間發生。在切換之前,在第一脈衝串2彻期間,應 .用第-升壓模式’而在切換之後,在第二脈衝串245〇期 間,應用第二升麼模式。舉例而言,在多遍次程式化過程 中之第-遍次期間可施加脈衝串24〇〇,而在此種程式化過 私中之第二遍次期間施加脈衝串2450。因此,在一方法 中,在第一程式化階段中,將第一脈衝串(例如,脈衝串 126206.doc -46- 200836203 2400)施加至選定之字線上之一或多個儲存元件,且在第 二程式化階段中,將第二脈衝串(例如,脈衝串245〇)施加 至該或該等儲存元件。每一程式化遍次可因此與程式化階 段一致。 為達成說明及描述之目的已呈現本發明之前述詳細描 述。其並不意欲為詳盡的或將本發明限於所揭示之精確形 式。按照上述教示,許多修改及變化為可能的。選擇所描 述之實施例以便最佳地解釋本發明之原理及其實際應用, 以藉此使熟習此項技術者能夠在各種實施例中且在進行適 於所預期之特定用途之各種修改的情況下最佳地使用本= 明。意欲由所附申請專利範圍來界定本發明之範疇。X 【圖式簡單說明】 β 圖1為「反及」串之俯視圖。 圖2為圖1之「反及」串之等效電路圖。 圖3為「反及」快閃儲存元件陣列之方塊圖。 圖4描繪展示升壓模式決定過程之概念圖。 圖5描繪用於在程式化期間切換升壓模式之過程。 圖6描繪經由複數個字線而實施之自升壓模式。 圖7描繪經由複數個字線而實施之局部自升壓模式。 圖8描繪經由複數個字線而實施之擦除區域自升壓模 式。 、 ,描繪經由複數個字線而實施之第—修轉除 升壓模式。 圖1〇描賴由複數個字線而實施之第二修正擦除區域自 126206.doc •47· 200836203 升壓模式。VvaH, VvbH and VVCh (Fig. 2id). The switching of the boost mode is depicted as occurring before the application of the stylized pulse Μ, the first boost mode is applied, and after the switching, the second boost mode is applied. As mentioned, when stylized When it occurs (for example, when ^ 126206.doc •45-200836203 〆 applies a stylized pulse), the application of the applied voltage to the word line to implement the boost mode can be slightly increased before each stylized pulse. The boost voltage of the start boost mode is removed after each stylized pulse. Therefore, during the verify process (eg, it occurs during a programmed pulse, no boost voltage is applied. Instead 'will usually be less than The boost voltage (4) is applied to the unfinished word line. The read voltage has an amplitude sufficient to be inverted when the threshold voltage of the currently stylized storage element is being compared with the verify level. The previously stylized storage element remains open. Thus, in a first stylization phase, the first subset of the stylized pulses in the burst 2300 (eg, pulses 2305, 2310, 23b) , 232G, 2325 and 233()) Applied to - or a plurality of storage elements' and in a second stylization phase, applying a second subset of pulses (eg, pulses 2335, 234A, 2345, 235A) in the burst to the Storage elements. Each stylized pass can therefore include multiple stylization stages. t ® 24 rides between the program (4) (4) the instance pulse of the control gate of the volatile element, and the boost between the bursts Switching mode switching mode 5, the switching mode of the boost mode is generated between the burst 2 gamma and 245: Before the switching, during the first burst 2, the first boost mode should be used. 'And after the switch, during the second burst 245, the second boost mode is applied. For example, the burst 24 可 can be applied during the first pass in the multi-pass stylization process, while The burst 2450 is applied during the second pass of such stylized privacy. Thus, in one method, the first burst is in the first stylized phase (eg, burst 126206.doc -46-200836203 2400) applied to one or more storage elements on the selected word line, and In the second stylization phase, a second burst (eg, burst 245 〇) is applied to the or the storage element. Each stylized pass can thus be consistent with the stylization phase. For purposes of illustration and description The foregoing detailed description of the present invention is intended to be illustrative and not restrictive The principles of the invention and its practical application, in order to enable those skilled in the art to <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The scope of the patent application is intended to define the scope of the invention. X [Simple description of the figure] β Figure 1 is a top view of the "reverse" string. Figure 2 is an equivalent circuit diagram of the "reverse" string of Figure 1. Figure 3 is a block diagram of an "reverse" flash memory device array. Figure 4 depicts a conceptual diagram showing the boost mode decision process. Figure 5 depicts a process for switching the boost mode during stylization. Figure 6 depicts a self boosting mode implemented via a plurality of word lines. Figure 7 depicts a local self-boost mode implemented via a plurality of word lines. Figure 8 depicts an erase region self-boost mode implemented via a plurality of word lines. And depicting the first-to-reverse boost mode implemented via a plurality of word lines. Figure 1 depicts a second modified erase region implemented by a plurality of word lines from 126206.doc • 47· 200836203 Boost mode.

及 升壓模式。 圖12 ^田繪展不如何藉由設定位 精細程式化之時間線。 圖11 a描繪經由複數個字線 升壓模式。 圖1 lb描繪經由複數個字線 升壓模式。 圖11 c描繪經由複數個字線 而實施之第三修正擦除區域 而實施之第四修正擦除區域 而實施之第五修正擦除區域 元線抑制電壓而達成粗略 圖13描繪展示程式化及擦除區域之未選定之「反及」串 的橫截面圖。 圖14為「反及」快閃儲存元件陣列之方塊圖。 圖15為使用單列/行解碼器及讀取/寫入電路之非揮發記 憶體系統之方塊圖。And boost mode. Figure 12 ^ Tian Jian Exhibition does not have a timeline that is finely programmed by setting bits. Figure 11a depicts a boost mode via a plurality of word lines. Figure 1 lb depicts boost mode via a plurality of word lines. FIG. 11c depicts a fifth modified erase region meta-line suppression voltage implemented by a fourth modified erase region implemented by a third modified erase region implemented by a plurality of word lines to achieve a rough representation of FIG. A cross-sectional view of an unselected "reverse" string of the erased region. Figure 14 is a block diagram of an "reverse" flash memory device array. Figure 15 is a block diagram of a non-volatile memory system using a single column/row decoder and a read/write circuit.

圖16為使用雙列/行解碼器及讀取/寫入電路之非揮發記 憶體系統之方塊圖。 圖1 7為描繪感測區塊之一實施例之方塊圖。 S 1 8 σ兒月針對王位元線$己憶體架構或針對奇偶記憶體架 構而將記憶體陣列組織成區塊的實例。 圖19描繪臨限電壓分布之實例集合。 圖20描繪臨限電壓分布之實例集合。 圖21a至圖21c展示各種臨限電壓分布並描述用於程式化 非揮發記憶體的過程。 圖21d描述粗略/精細程式化過程。 126206.doc -48- 200836203 圖22為描述用於程式化非揮發記憶體之過程之一實施例 的流程圖。 圖23描繪在程式化期間施加至非揮發儲存元件之控制閘 極的實例脈衝串,及在脈衝串期間發生的升壓模式切換。Figure 16 is a block diagram of a non-volatile memory system using a dual column/row decoder and a read/write circuit. Figure 17 is a block diagram depicting one embodiment of a sensing block. S 1 8 σ 儿月 An example of organizing memory arrays into blocks for the kingdom line or the parity memory architecture. Figure 19 depicts an example set of threshold voltage distributions. Figure 20 depicts an example set of threshold voltage distributions. Figures 21a through 21c show various threshold voltage distributions and describe the process for staging non-volatile memory. Figure 21d depicts a rough/fine stylization process. 126206.doc -48- 200836203 Figure 22 is a flow chart depicting one embodiment of a process for staging non-volatile memory. Figure 23 depicts an example pulse train applied to the control gate of the non-volatile storage element during stylization, and boost mode switching that occurs during the burst.

圖24描緣在程式化期間施加至非揮發儲存元件之控制閘 極的實例脈衝串,及在脈衝串之間發生的升壓模式切換。 【主要元件符號說明】 100 電晶體 100CG 控制閘極 100FG 浮動閘極 102 電晶體 102CG 控制閘極 102FG 浮動閘極 104 電晶體 104CG 控制閘極 104FG 浮動閘極 106 電晶體 106CG 控制閘極 106FG 浮動閘極 120 第一選擇閘極 120CG 控制閘極 122 第二選擇閘極 122CG 控制閘極 126 位元線 126206.doc 200836203 128 源極線 320 「反及」 321 位元線 322 選擇閘極 323 儲存元件 324 儲存元件 325 儲存元件 326 儲存元件 327 選擇閘極 340 「反及」 341 位元線 342 選擇閘極 343 儲存元件 344 儲存元件 345 儲存元件 346 儲存元件 347 選擇閘極 360 「反及」 361 位元線 362 選擇閘極 363 儲存元件 364 儲存元件 365 儲存元件 366 儲存元件 126206.doc -50- 200836203 367 選擇閘極 400 區塊 405 區塊 410 區塊 415 區塊 420 區塊 425 區塊 430 區塊 435 區塊 440 區塊 445 區塊 460 區塊 1200 曲線 1250 曲線 1300 「反及」串 1304 源極供應線 1306 選擇閘極 1308 儲存元件 1310 儲存元件 1312 儲存元件 1314 儲存元件 1316 儲存元件 1320 儲存元件 1322 儲存元件 126206.doc -51 - 200836203 1324 汲極側選擇閘; 1326 位元線 1350 區域 1360 區域 1390 基板 1400 「反及」儲存, 1404 源極線 1406 位元線 1426 汲極端子 1428 源極端子 1450 「反及」串 1500 感測區塊 1510 控制電路 1512 狀態機 1514 晶載位址解碼; 1516 功率控制模組 1518 線 1520 貧料匯流排 1530A 列解碼器 1530B 列解碼器 1560 行解碼器 1560A 行解碼器 1560B 行解碼器 1565 讀取/寫入電路 126206.doc ,52- 200836203 1565A 讀取/寫入電路 1565B 讀取/寫入電路 1570 感測電路 1572 匯流排 1580 感測模組 1582 位元線鎖存器 1592 處理器 1593 輸入線 1594 資料鎖存器 1596 記憶體裝置 1598 記憶體晶粒 1800 奇偶架構 1810 全位元線架構 2010 箭頭 2020 箭頭 2150 臨限電壓分布 2300 實例脈衝串 2305 程式化脈衝 2310 程式化脈衝 2315 程式化脈衝 2320 程式化脈衝 2325 程式化脈衝 2340 程式化脈衝 2345 程式化脈衝 126206.doc -53- 200836203 2350 程式化脈衝 2400 脈衝串 2450 脈衝串 A 程式化狀態 A1 臨時狀態 B 程式化狀態 Bf 臨時狀態 BLe 偶數位元線 BLO 奇數位元線 C 程式化狀態 C, 臨時狀態 E 擦除狀態 SGD 汲極側選擇閘極控制線 SGS 源極側選擇閘極控制線 Vbl 位元線電壓 vdd 電位 Vh 較高驗證位準 V iso 隔離電壓 Vl 較低驗證位準 VPARTIAL INHIBIT 位元線抑制電壓 V PASS 導通電壓 V PASS-LOW 相對較低之導通電壓 V PGM 程式化電壓 VpgM-HIGH 較高範圍 126206.doc -54- 200836203Figure 24 depicts an example pulse train applied to the control gate of the non-volatile storage element during stylization, and a boost mode switch that occurs between the bursts. [Main component symbol description] 100 transistor 100CG control gate 100FG floating gate 102 transistor 102CG control gate 102FG floating gate 104 transistor 104CG control gate 104FG floating gate 106 transistor 106CG control gate 106FG floating gate 120 first selection gate 120CG control gate 122 second selection gate 122CG control gate 126 bit line 126206.doc 200836203 128 source line 320 "reverse" 321 bit line 322 select gate 323 storage element 324 storage Component 325 Storage Element 326 Storage Element 327 Select Gate 340 "Reverse" 341 Bit Line 342 Select Gate 343 Storage Element 344 Storage Element 345 Storage Element 346 Storage Element 347 Select Gate 360 "Reverse" 361 Bit Line 362 Select Gate 363 Storage Element 364 Storage Element 365 Storage Element 366 Storage Element 126206.doc -50- 200836203 367 Select Gate 400 Block 405 Block 410 Block 415 Block 420 Block 425 Block 430 Block 435 Block 440 Block 445 Block 460 Block 1200 Curve 1250 Curve 130 0 "reverse" string 1304 source supply line 1306 select gate 1308 storage element 1310 storage element 1312 storage element 1314 storage element 1316 storage element 1320 storage element 1322 storage element 126206.doc -51 - 200836203 1324 bungee side selection gate; 1326 bit line 1350 area 1360 area 1390 substrate 1400 "reverse" storage, 1404 source line 1406 bit line 1426 汲 terminal 1428 source terminal 1450 "reverse" string 1500 sensing block 1510 control circuit 1512 state machine 1514 Crystal Load Address Decoding; 1516 Power Control Module 1518 Line 1520 Lean Bus 1530A Column Decoder 1530B Column Decoder 1560 Line Decoder 1560A Line Decoder 1560B Line Decoder 1565 Read/Write Circuit 126206.doc, 52- 200836203 1565A Read/Write Circuit 1565B Read/Write Circuit 1570 Sensing Circuit 1572 Busbar 1580 Sensing Module 1582 Bit Line Latch 1592 Processor 1593 Input Line 1594 Data Latch 1596 Memory Device 1598 Memory Grain 1800 Parity Structure 1810 Full Bit Line Architecture 2010 Arrow 2020 Head 2150 Threshold Voltage Distribution 2300 Example Burst 2305 Stylized Pulse 2310 Stylized Pulse 2315 Stylized Pulse 2320 Stylized Pulse 2325 Stylized Pulse 2340 Stylized Pulse 2345 Stylized Pulse 126206.doc -53- 200836203 2350 Stylized Pulse 2400 Burst 2450 Burst A Stylized state A1 Temporary state B Stylized state Bf Temporary state BLe Even bit line BLO Odd bit line C Stylized state C, Temporary state E Erase state SGD Bungee side select gate control line SGS source side select gate control line Vbl bit line voltage vdd potential Vh higher verify level V iso isolation voltage Vl lower verify level VPARTIAL INHIBIT bit line inhibit voltage V PASS turn-on voltage V PASS-LOW relatively low Turn-on voltage V PGM Stylized voltage VpgM-HIGH Higher range 126206.doc -54- 200836203

VpgM-LOW 較低範圍 V SGD 電壓 V SGS 電壓 V SOURCE 電位 V th 臨限電壓 Vra、Vrb、Vrc 讀取參考電壓 Vva、Vvb、Vvc、Vvb’ 振幅 WL1 至 WL7 字線 f 126206.doc -55-VpgM-LOW Lower range V SGD Voltage V SGS Voltage V SOURCE Potential V th Threshold voltage Vra, Vrb, Vrc Read reference voltage Vva, Vvb, Vvc, Vvb' Amplitude WL1 to WL7 Word line f 126206.doc -55-

Claims (1)

200836203 、申請專利範圍: 1. 種用於操作非揮發儲存器之方法,其包含: 广化-非揮發儲存元件集合中之至少一儲存元件, 5亥非揮發儲存元件集合與複數個字線通信,該至少一儲 存7G件與4複數個字線令之—選定之字線通信;及 找程式化期間,將電壓之—第—集合施加至該複數 子線中之未選定之字線,且基於一升壓模式切換標準 而自將電壓之与rg 隹人“ 之忒弟一集合施加至該等未選定之字 至將電壓之一筮—隹人&gt; 狹 = 弟一集5 ^加至該等未選定之字線,電壓 之該第#合至少部分地不同於電壓之該第二集合。 2·如請求項1之方法,其中·· 遺程式化包含將一脈衝串施加至該選定之字線該切 =施力^脈衝串中之—第-脈衝之後且在施加該脈衝 串中之一最末脈衝之前發生。 3 ·如請求項1之方法,其中·· 該程式化包含將一脈衝串施加至該選定之字線,該升 ㈣式切換標準係基於將該脈衝串中之具有一指定振幅 之一程式化脈衝施加至該選定之字線的時刻。 4.如請求項1之方法,其中·· «式化包含將—脈㈣施加至該選定之字線,該升 =极式切換標準係基於已將該脈衝串中之—指定數目之 程式化脈衝施加至該選定之字線的時刻。 5 ·如請求項1之方法,其中·· “、拉^切換;^準係基於該選定之字線在該複數個 126206.doc 200836203 子線中之—位置。 6,如請求項1之方法,其中: 吞亥至少_ &gt;- 一辟脊元件之一臨限電壓在該切換之前自一第 • θ ^至一第二位準且在切換之後自該第二位準增 • 加至一第三位準。 7·如請求項1之方法,其中: ^ 式化涉及在該切換之前的粗略程式化及在該切換 ( 之後的精細程式化。 % 8_如請求項1之方法,其中: Λ升壓杈式切換標準係基於該非揮發儲存元件集合中 之至夕其他儲存元件達到一指定程式化條件的時刻。 9·如請求項1之方法,其中·· 。亥升壓杈式切換標準係基於由該非揮發儲存元件集合 經歷之程式化循環的一數目。 10 ·如睛求項1之方法,其中: ί 該非揮發儲存元件集合係提供於複數個「反及」串 中/亥複數個「反及」串包括—提供該至少—錯存元件 之k疋之反及」串,且a)在該切換之前,一特定未選 • ,之字線接收H ’該電Μ會使在該特定未選定之 ' 字線之一側上之一通道區與在該特定未選定之字線之另 一侧上之一通道區隔離,且b)在該切換之後,該特定未 選定之字線接收一電壓,該電壓會使在該特定未選定之 字線之該一側上之該通道區與該特定未選定之字線之該 另一側上之該通道區隔離。 126206.doc 200836203 ιι· 一種非揮發儲存系統,其包含: 一非揮發儲存元件集合; 契非揮發儲存元件集合通信之複數個字線,至少一儲 存70件與該複數個字線中之一選定之字線通信;及 契4非揮發儲存元件集合通信之一或多個控制電路, :或&quot;亥等控制電路程式化該至少一儲存元件,且在該程 式化期間,將電壓之一第一集合施加至該複數個字線中 之未k疋之予線且基於一升壓模式切換標準而自將電壓 之該第-集合施加至該等未選定之字線切換至將電壓之 第一集合施加至該等未選定之字線,電壓之該第一集 合至少部分地不同於電壓之該第二集合。 12·如請求項11之非揮發儲存系統,其中·· 省或忒等控制電路藉由將一脈衝串施加至該選定之字 線來私式化该至少_儲存元件,該切換在施加該脈衝串200836203, the scope of the patent application: 1. A method for operating a non-volatile storage device, comprising: at least one storage component in a broadened-nonvolatile storage component set, a set of 5 non-volatile storage components and a plurality of word line communications And storing at least one of the 7G pieces and the plurality of word lines to select the selected word line; and during the stylization, applying the voltage-first set to the unselected word lines of the plurality of sub-lines, and Based on a boost mode switching criterion, a set of voltages and rg 隹 “ 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加The unselected word line, the # of the voltage is at least partially different from the second set of voltages. 2. The method of claim 1, wherein the legacy program comprises applying a burst to the selected The word line is cut = the force in the pulse train - after the first pulse and before the last pulse of one of the pulse trains is applied. 3 · The method of claim 1, wherein the stylized inclusion A pulse train is applied to the selected one Line, the rising (four) switching criterion is based on the time at which a programmed pulse having one of the specified amplitudes is applied to the selected word line. 4. The method of claim 1, wherein «· A pulse-to-four (4) is applied to the selected word line based on the time at which a specified number of stylized pulses in the burst have been applied to the selected word line. The method of item 1, wherein "·, pull ^ switching; ^ is based on the position of the selected word line in the plurality of 126206.doc 200836203 strands. 6. The method of claim 1, wherein: thawing at least _ &gt;- one of the ridge elements has a threshold voltage from a θ ^ to a second level before the switching and after the switching Two-digit increase • Add to a third level. 7. The method of claim 1, wherein: ^ sizing involves a rough stylization before the switching and a fine stylization after the switching (% 8_, as in the method of claim 1, wherein: Λ boost 杈The switching standard is based on the moment when the other storage elements in the non-volatile storage element set reach a specified stylization condition. 9. The method of claim 1, wherein the swell type switching standard is based on the non- A number of stylized cycles experienced by the collection of volatile storage elements. 10 · The method of claim 1, wherein: ί The non-volatile storage element set is provided in a plurality of "reverse" strings / a plurality of "reverse" The string includes - providing the at least - error of the component, and a string, and a) prior to the switching, a particular unselected •, the word line receives H 'the power will cause the particular unselected 'One channel region on one side of the word line is isolated from one of the channel regions on the other side of the particular unselected word line, and b) after the switching, the particular unselected word line receives a voltage, This voltage will make this particular Isolating the channel region on the other side of the channel region on one side of the set of word lines of the particular unselected word line of. A non-volatile storage system comprising: Word line communication; and one or more control circuits of the non-volatile storage element set communication, or a control circuit such as &quot;Hai and other programs to program the at least one storage element, and during the stylization, one of the voltages Applying a set to the unexposed sum of the plurality of word lines and applying the first set of voltages to the unselected word lines to switch to the first of the voltages based on a boost mode switching criterion A set is applied to the unselected word lines, the first set of voltages being at least partially different from the second set of voltages. 12. The non-volatile storage system of claim 11, wherein the control circuit or the like controls the at least one storage element by applying a burst to the selected word line, the switching applying the pulse string 中之-第-脈衝之後且在施加該脈衝串中之一最末脈衝 之前發生。 13·如請求項11之非揮發儲存系統,其中·· 該或該等控制電路藉由將一脈衝串施加至該選定之字 線來程式化該至少-儲存元件,該升a模式切換標準係 基於將該脈衝串中之具有一指索^ ώ 虿扣疋振幅之一程式化脈衝施 加至該選定之字線的時刻。 14·如請求項11之非揮發儲存系統,其中·· 脈衝串施加至該選定之字 ,該升壓模式切換標準係 该或该專控制電路藉由將_ 線來程式化該至少一儲存元件 126206.doc 200836203 基於已將該脈衝串中之一指定數目之程式化脈衝施加至 該選定之字線的時刻。 15·如請求項11之非揮發儲存系統,其中: 该升壓权式切換標準係基於該選定之字線在該複數個 字線中之一位置。 16·如請求項11之非揮發儲存系統,其中·· 該至少一儲存元件之一臨限電壓在該切換之前自一第 位準:t曰加至一第二位準且在切換之後自該第二位準增 加至一第三位準。 17·如請求項11之非揮發儲存系統,其中: 該私式化涉及在該切換之前的粗略程式化及在該切換 之後的精細程式化。 18.如請求項11之非揮發儲存系統,其中: 該升壓模式切換標準係基於該非揮發儲存元件集合中 之至少—其他儲存元件❹卜指定程式化條件的時刻。The middle-first pulse occurs and occurs before one of the last pulses in the pulse train is applied. 13. The non-volatile storage system of claim 11, wherein the or the control circuitry programs the at least-storage element by applying a burst to the selected word line, the a-mode switching standard A time is applied to the selected word line based on a programmed pulse having one of the finger 疋 虿 将该 amplitudes in the burst. 14. The non-volatile storage system of claim 11, wherein the pulse train is applied to the selected word, the boost mode switching criterion is that the special control circuit programs the at least one storage element by _ line 126206.doc 200836203 is based on the time at which a specified number of stylized pulses have been applied to the selected word line. 15. The non-volatile storage system of claim 11, wherein: the boost weight switching criterion is based on a position of the selected word line at one of the plurality of word lines. 16. The non-volatile storage system of claim 11, wherein: the threshold voltage of the at least one storage component is from a first level before the switching: t曰 to a second level and after the switching The second level is increased to a third level. 17. The non-volatile storage system of claim 11, wherein: the privateization involves a coarse stylization prior to the switching and a fine stylization after the switching. 18. The non-volatile storage system of claim 11, wherein: the boost mode switching criterion is based on at least one of the set of non-volatile storage elements - the time at which the staging condition is specified. 1 9.如請求項11之非揮發儲存系統,其中: 該升壓模式切換標準係基於由該非揮發儲存元件集合 經歷之程式化循環的一數目。 口 2ϋ·如請求項 ^千,钱,仔乐〜 _ } · 該非揮發儲存元件集合提供於複數個「反及」串 «數個「反及」串包括—提供魅少—料㈣之選 疋之「反及」串,叫在該切換之前,—料未選 字線接收-電壓,該會使在該特定未選定 之一侧上之-通道區與在該料未選定之字線之另_側 126206.doc 200836203 上之一通道區隔離,且b)在該切換之後,該特定未選定 之字線接收一電壓,該電壓會使在該特定未選定之字線 之該一側上之該通道區與該特定未選定之字線之該另一 側上之該通道區隔離。 126206.doc1 9. The non-volatile storage system of claim 11, wherein: the boost mode switching criterion is based on a number of stylized cycles experienced by the set of non-volatile storage elements.口2ϋ·If the request item ^千,钱,仔乐~ _ } · The non-volatile storage component set is provided in a plurality of "reverse" strings «a number of "reverse" strings including - providing the charm less - material (four) selection The "reverse" string, called before the switch, the unselected word line receives the voltage, which will cause the channel region on the particular unselected side and the word line not selected in the material. _ side 126206.doc 200836203 one of the upper channel regions is isolated, and b) after the switching, the particular unselected word line receives a voltage that will be on the side of the particular unselected word line The channel region is isolated from the channel region on the other side of the particular unselected word line. 126206.doc
TW096141503A 2006-11-02 2007-11-02 Reducing program disturb in non-volatile memory us TWI357603B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/555,856 US7468911B2 (en) 2006-11-02 2006-11-02 Non-volatile memory using multiple boosting modes for reduced program disturb
US11/555,850 US7440323B2 (en) 2006-11-02 2006-11-02 Reducing program disturb in non-volatile memory using multiple boosting modes

Publications (2)

Publication Number Publication Date
TW200836203A true TW200836203A (en) 2008-09-01
TWI357603B TWI357603B (en) 2012-02-01

Family

ID=39365235

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096141503A TWI357603B (en) 2006-11-02 2007-11-02 Reducing program disturb in non-volatile memory us

Country Status (4)

Country Link
JP (1) JP4950299B2 (en)
KR (1) KR101012133B1 (en)
TW (1) TWI357603B (en)
WO (1) WO2008057927A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254537A (en) * 2012-06-06 2013-12-19 Toshiba Corp Semiconductor memory and controller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917757A (en) * 1996-08-01 1999-06-29 Aplus Flash Technology, Inc. Flash memory with high speed erasing structure using thin oxide semiconductor devices
JP3610691B2 (en) * 1996-09-09 2005-01-19 ソニー株式会社 Semiconductor nonvolatile memory device
KR100502412B1 (en) * 2002-10-23 2005-07-19 삼성전자주식회사 Non-volatile semiconductor memory device and program method thereof
JP3863485B2 (en) * 2002-11-29 2006-12-27 株式会社東芝 Nonvolatile semiconductor memory device
US7023739B2 (en) * 2003-12-05 2006-04-04 Matrix Semiconductor, Inc. NAND memory array incorporating multiple write pulse programming of individual memory cells and method for operation of same
US7212435B2 (en) * 2004-06-30 2007-05-01 Micron Technology, Inc. Minimizing adjacent wordline disturb in a memory device
JP5452851B2 (en) * 2006-08-10 2014-03-26 三星電子株式会社 Memory device selectively using self-boost program operation and program method thereof

Also Published As

Publication number Publication date
KR101012133B1 (en) 2011-02-07
KR20090089348A (en) 2009-08-21
TWI357603B (en) 2012-02-01
WO2008057927A3 (en) 2008-07-24
JP4950299B2 (en) 2012-06-13
JP2010509701A (en) 2010-03-25
WO2008057927A2 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
KR101519081B1 (en) Enhanced bit-line pre-charge scheme for increasing channel boosting in non-volatile storage
US7468911B2 (en) Non-volatile memory using multiple boosting modes for reduced program disturb
US7440323B2 (en) Reducing program disturb in non-volatile memory using multiple boosting modes
JP5250117B2 (en) Adaptive erase and soft programming for memory
KR101569862B1 (en) Erase-verification process for non-volatile storage
EP2348511B1 (en) Variable program for non-volatile storage
JP4994447B2 (en) Non-real-time reprogramming of non-volatile memory so that threshold voltage distribution is tight
TW201017672A (en) Multi-pass programming for memory with reduced data storage requirement
JP5174829B2 (en) Reading of non-volatile memory cell in consideration of storage state of adjacent memory cell
WO2009146235A1 (en) Compensating non-volatile storage using different pass voltages during program- verify and read
WO2012134842A1 (en) Reducing neighbor read disturb
WO2008083131A2 (en) Method for programming with initial programming voltage based on trial
TW201209832A (en) Programming non-volatile storage with synchronized coupling
WO2008134253A1 (en) Reducing power consumption during read operations in non-volatile storage
JP2013524400A (en) Saw-shaped multi-pulse programming for reducing program noise in memory
TWI357604B (en) Non-volatile storage system and method for operati
TWI386944B (en) Non-volatile storage with boosting using channel isolation switching and method thereof
TWI378456B (en) Method and system for reducing program disturb in non-volatile storage
TWI352404B (en) Providing local boosting control implant for non-v
TW200836203A (en) Reducing program disturb in non-volatile memory using multiple boosting modes and non-volatile storage system thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees