TWI352404B - Providing local boosting control implant for non-v - Google Patents

Providing local boosting control implant for non-v Download PDF

Info

Publication number
TWI352404B
TWI352404B TW096135788A TW96135788A TWI352404B TW I352404 B TWI352404 B TW I352404B TW 096135788 A TW096135788 A TW 096135788A TW 96135788 A TW96135788 A TW 96135788A TW I352404 B TWI352404 B TW I352404B
Authority
TW
Taiwan
Prior art keywords
nand string
substrate
volatile storage
storage element
gate
Prior art date
Application number
TW096135788A
Other languages
Chinese (zh)
Other versions
TW200834825A (en
Inventor
Fumitoshi Ito
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/536,416 external-priority patent/US7705387B2/en
Priority claimed from US11/536,389 external-priority patent/US7977186B2/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200834825A publication Critical patent/TW200834825A/en
Application granted granted Critical
Publication of TWI352404B publication Critical patent/TWI352404B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/04Arrangements for selecting an address in a digital store using a sequential addressing device, e.g. shift register, counter

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於非揮發性記憶體。 【先前技術】 半導體記憶體對於在各種電子裝置中之使用已變得日益 風行。舉例而言,非揮發性半導體記憶體用於蜂巢式電 話、數位攝影機、個人數位助理、行動計算裝置、非行動 計算裝置及其他裝置中。電可擦可程式化唯讀記憶體 (EEPROM)及快閃記憶體係在最風行之非揮發性半導體纪 憶體之中。在快閃記憶體(亦為一種類型之EEpR〇M)的情 況下,與傳統之全特徵化EEPROM對比,可在一步驟中擦 除整個記憶體陣列或記憶體之一部分之内容。 傳統EEPROM及快閃記憶體皆利用定位於半導體基板中 之通道區域上方且與其絕緣之浮動閘極。浮動閘極定位於 源極區域與及極區域之間。控制閘極提供於浮動閘極上且 與其絕緣。如此形成之電晶體之臨限電壓(Vth)由保留於 浮動閘極上之電荷量控制。亦即,在接通電晶體之前必須 施加至控制閘極以允許電晶體之源極與汲極之間的傳導之 電壓之最小量由浮動閘極上之電荷位準控制。 某些EEPROM及快閃記憶體裝置具有用於儲存電荷之兩 個範圍的浮動閘極’且因此,記憶體元件可在兩個狀態 (例如,擦除狀態與程式化狀態)之間加以程式化/擦除。因 為每-己隐體元件可儲存一資料位元,所以此快閃記憶體 裝置有時被稱為二進位快閃記憶體裝置。 124970.doc 1352404 多狀態(亦被稱為多位準)快閃記憶體裝置係藉由識別多 個相異容許/有效程式化臨限電壓範圍而加以實施。每一 相異臨限電壓範圍對應於在記憶體裝置中所編碼之資料位 元集〇的預定值。舉例而言,當每一記憶體元件可置於對 應於四個相異臨限電壓範圍的四個離散電荷帶中之一者中 時’該元件可儲存兩個資料位元。 通常,在程式化操作期間施加至控制閘極之程式化電麼 VPGM係作為量值隨時間而增加之一系列脈衝而被施加。在 一可旎方法_,使脈衝之量值隨每一連續脈衝而增加一預 疋步長(例如,0.2-0.4 V)。VPGM可施加至快閃記憶體元件 之控制閘極。在程式化脈衝之間的時期中,進行驗證操 作。亦即,在連續程式化脈衝之間讀取被並行地程式化的 一元件群中之每一元件之程式化位準,以判定該程式化位 準疋等於還是大於元件被程式化至的驗證位準。對於多狀 態快閃記憶體元件陣列而言,可針對元件之每一狀態而執 行驗證步驟,以判定元件是否已達到其資料關聯驗證位 準。舉例而言,能夠在四個狀態中儲存資料之多狀態記憶 體元件可能需要針對三個比較點而執行驗證操作。 此外,當程式化EEPROM或快閃記憶體裝置(諸如, NAND串中之NAND快閃記憶體裝置)時,通常將VpGM施加 至控制閘極且將位it線接地,從而使來自單元或記憶體元 件(例如,儲存元件)之通道的電子注入至浮動閘極 备 ' 田 電子累積於浮動閘極中時,浮動閘極變得帶負電荷且使記 憶體7L件之臨限電壓升高,使得記憶體元件被認為處於程 124970.doc 1352404 式化狀態_。可在標題為"Source Side Self Boosting Technique For Non-Volatile Memory·•之美國專利 6,859,397 及2005年2月3日公開的標題為"Detecting Over Programmed Memory"之美國專利申請案公開案2〇〇5/〇〇24939中找到關 於此程式化的更多資訊;該兩者之全文係以引用之方式併 入本文中。 然而,歸因於非揮發性儲存元件彼此接近,已在程式化 期間經歷各種形式之程式化干擾。此外,預期此問題會隨 NAND技術之進一步縮放比例而惡化。當先前程式化非揮 發性儲存元件之臨限電壓歸因於其他非揮發性儲存元件之 後續程式化而移位時,發生程式化干擾。升壓技術試圖藉 由在將含有待程式化之儲存元件的NAND串之通道區域連 接至低電位(諸如,〇 V)的同時將被抑制程式化的NAND串 之通道區域升壓至高電位來解決此問題。舉例而言,擦除 區域自升壓(EASB)技術藉由在其他未選定字線上施加高通 過電壓(諸如,8 V)的同時在程式化區域與擦除區域之間的 NAND串之一未選定字線上施加足夠低之電壓(通常為〇 v) 來隔離升壓通道。修正EASB(REASB)類似於EASB,但將 小電壓(諸如,2·5 V)施加至鄰近隔離字線。然而,隨著尺 寸按比例縮小,即使在升壓的情況下,程式化干擾仍為嚴 重問題,因為由升壓而導致的高電場誘發帶對帶穿隧及/ 或閘極誘發汲極洩漏(GIDL)。 【發明内容】 本發明藉由提供-種減少程式化干擾之非揮發性儲存系 124970.doc 1352404 統及方法來解決以上及其他問題。 在一實施例中,一種非揮發性儲存系統包括一基板及至 少部分地形成於基板上的至少一 NAND串。基板具有沿至 少一 NAND _之長度而植入至基板中的淺離子植入,且沿 至少一 NAND串之長度的基板中之至少一第一間隔具有植 入至基板中比淺離子植入深的深離子植入。舉例而言,第 一間隔之至少一部分可鄰近於至少一 NAND串之選擇閘 極。另外,沿至少一 NAND串之長度的基板中之第二間隔 可具有深離子植入。在此狀況下,第一間隔及第二間隔可 分別鄰近於至少一 NAND _之第一選擇閘極及第二選擇閘 極。基板可具有離子被植入之p型區域。深離子植入提供 基板中之減少的通道升壓(例如,歸因於較高之通道電 容),且深離子植入可被提供成靠近特別需要升壓減少以 防止閘極誘發汲極洩漏(GIDL)及帶對帶穿隧(BTBT)處的選 擇閘極。 在另一態樣中,一種非揮發性儲存系統包括至少部分地 形成於一基板上的至少一NAND串。至少一NAND串與在 至少一 NAND串之第一選擇閘極與第二選擇閘極之間延伸 的許多字線通信。另外,基板之第一部分具有區域升高植 入離子位準,且至少一字線在第一部分上延伸’而至少一 其他字線不在第一部分上延伸。 在另一態樣中,一種非揮發性儲存系統包括一基板,且 基板之第一部分具有區域升高植入離子位準。另外,一儲 存元件集合至少部分地形成於基板上,使得儲存元件之第 124970.doc 丄 -子集至少部分地形成於第一部分上,而集合中之其他儲 存元件不形成於第一部分上。 在另一態樣中,一種用於減少非揮發性儲存系統中之程 式化干擾之方法包括:沿基板之區域之長度而植入淺離子 植入;及在沿基板之區域之長度的至少一第一間隔中將額 子植入至基板中,其令額外離子被植入至基板中比淺 離子植入深。該方法進一步包括至少部分地在基板之區域 上形成至少-NAND串,使得至少-NAND串之第一部分 2成於第-間隔上。以此方式,在第_間隔中提供區域升 離子位準。舉例而言,第一間隔之至少一部分可鄰近於 至少一 NAND串之選擇閘極。 在另L樣中,一種用於減少非揮發性儲存系統中之程 ,干擾之方法包括.在基板之第一部分中植入區域升高 離子位準;及至少部分地在基板上形成至少-NAND串。 至少一NAND串與在至少一ΝΑΝ〇宰之第一選擇閘極與第 一選擇閘極之間延伸的許多字線通信。另外,至少一字線 ^第一部分上延伸’而至少一其他字線不在第一部分上延 樣中,一種用於減少非揮發性儲存系統中之程 “匕干擾之方法包括:在基板之第一部分中植入區域升高 離子位準;及至少部分地在基板上形成—儲存元件集合。 儲存疋件之第一子集至少部分地形成於第一部分上。該方 =進:步包括至少部分地在不包括第_部分的基板之一部 分上形成集合中之其他儲存元件。 124970.doc -9- 1352404 【實施方式】 本發明提供一種減少程式化干擾之非揮發性儲存系統及 方法。在一方法中,在靠近NAND串之末端字線的基板中 提供深離子植入,以選擇性地控制末端字線附近的基板中 之升壓。 適用於實施本發明之記憶體系統之一實例使用NAND快 閃記憶體結構,其包括在兩個選擇閘極之間串聯地配置多 個電晶體。串聯之電晶體及選擇閘極被稱為NAND串。圖1 為展示一NAND串之俯視圖。圖2為其等效電路。圖1及圖2 中所描繪之NAND串包括四個電晶體1〇〇、1〇2、1〇4及 106 ’其串聯且夹於第一選擇閘極120與第二選擇閘極ι22 之間。選擇閘極120閘控至位元線126之NAND串連接。選 擇閘極122閘控至源極線128之NAND串連接。藉由將適當 電壓施加至控制閘極120CG來控制選擇閘極120。藉由將 適當電壓施加至控制閘極122CG來控制選擇閘極122。電 晶體100、102、104及106中之每一者具有一控制閘極及一 浮動閘極。電晶體100具有控制閘極100CG及浮動閘極 100FG。電晶體102包括控制閘極102CG及浮動閘極 102FG。電晶體1〇4包括控制閘極104CG及浮動閘極 104FG。電晶體106包括控制閘極106CG及浮動閘極 106FG。控制閘極100CG連接至(或為)字線WL3,控制閘極 102CG連接至字線WL2,控制閘極104CG連接至字線 WL1 ’且控制閘極106CG連接至字線WL0。在一實施例 中’電晶體100、102、104及106各為儲存元件(亦被稱為 124970.doc •10· 記憶體單元)。在其他實施例中,儲存元件可包括多個電 晶體或可能不同於圖1及圖2中所描繪之儲存元件。選擇閘 極120連接至選擇線SGD。選擇閘極122連接至選擇線 SGS。 圖3為描繪三個NAND串之電路圖。使用NAND結構之快 閃記憶體系統之一典型架構將包括若干NAND串。舉例而 言,在一具有更多NAND串之記憶體陣列中展示三個 NAND串320、340及360。該等NAND串中之每一者包括兩 個選擇閘極及四個儲存元件。雖然為了簡單起見而說明四 個儲存元件,但現代NAND串可具有多達(例如)32或64個 儲存元件。 舉例而言,NAND串320包括選擇閘極322及327以及儲存 元件323-326,NAND串340包括選擇閘極342及347以及儲 存元件343-346,NAND串360包括選擇閘極362及367以及 儲存元件363-366。每一 NAND串係藉由其選擇閘極(例 如,選擇閘極327、347或367)而連接至源極線。選擇線 SGS用於控制源極侧選擇閘極。各種NAND串320、340及 3 60係藉由選擇閘極322、342、362等等中之選擇電晶體而 連接至各別位元線321、341及361。此等選擇電晶體由汲 極選擇線SGD控制。在其他實施例中,選擇線未必需要共 同地在NAND串之中;亦即,可為不同NAND串提供不同 選擇線。字線WL3連接至儲存元件323、343及3 63之控制 閘極。字線WL2連接至儲存元件324、344及364之控制閘 極。字線WL1連接至儲存元件325、345及365之控制閘 124970.doc 1352404 . 極子線WL0連接至儲存元件320、346及366之控制閘 . 極。可看出,每一位元線及各別NAND串包含儲存元件陣 歹】J或·集人+ / 之仃。字線(WL3、WL2、WL1及WL0)包含陣列 . ° " 列每—予線連接列中的每一儲存元件之控制閘 • ⑯或’控制閘極可由字線本身提供。舉例而言,字線 • j提供儲存元件324、344及364之控制閘極。實務上, 在字線上可存在數千個儲存元件。 每:儲存元件可儲存資料。舉例而言,當儲存一數位資 料位:時,將儲存元件之可能臨限電壓^th)之範圍分成 兩個範圍,其被指派邏輯資料”及,,〇”。在NAND型快閃 記憶體之-實例十,Vth在擦除健存元件之後為負,且被 定義·為1輯"”。程式化操作之後的Vth為正且被定義為邏 〇 田VTH為負且試圖讀取時,儲存元件將接通以指示 邏輯"1”正被儲存。當VTH為正且試圖讀取操作時,儲存元 件將不接通,此指示邏輯"0"被儲存。儲存元件亦可儲存 • 多個資訊位準’例如,多個數位資料位元。在此狀況下, 將VTH值之範圍分成資料位準之數目。舉例而言若儲存 四個資訊位準,則將存在四個VTH範圍,其被指派給資料 值.^,、’,、賞及’^仙型記憶體之一實例 二:二除操:之後的VTH為負且被定義為,’u’,。正V-值用 : 01"及_’00"之狀態。被程式化至儲存元件中之資 料與元件之臨限電絲圍之間的特定關係視為儲存元件所 私用之資料編碼機制而定。舉例而言,4國專利第 6’222,762號及美國專射㈣公開案⑽彻5邮〇描述用 124970.doc 1352404 於多狀態快閃儲存元件之各種資料編碼機制,該兩者之全 文係以引用之方式併入本文中。 NAND型㈣記憶體及其操作之相關實例提供於美國專 利第 5’386,422 號、第 5,522,號、帛 5 57〇 315號第 5,774’397 號、帛 6 〇46 935 號、帛 6 456 528 號及第 該等專利中之每一者係以引用之方式併入 當程式化㈣儲存元件時,將程式化電壓施加至儲存元 件之控制閘極且將與儲存元件相關聯之位元線接地。來自 通道之電子被注人至浮動閘極中。當電子累積於浮動開極 中時’浮動閘極變得帶負電荷且使儲存元件之Vth升高。 為了將程式化電壓施加至正被程式化的儲存元件之控制閘 極,將彼程式化電壓施加於適當字線上。如以上所論述, NAND串中之每-者中的一儲存元件共用同一字線。舉例IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to non-volatile memory. [Prior Art] Semiconductor memory has become increasingly popular for use in various electronic devices. For example, non-volatile semiconductor memory is used in cellular telephones, digital cameras, personal digital assistants, mobile computing devices, inactive computing devices, and other devices. Electrically erasable and programmable read only memory (EEPROM) and flash memory systems are among the most popular non-volatile semiconductor memories. In the case of flash memory (also a type of EEpR 〇 M), the contents of the entire memory array or a portion of the memory can be erased in one step as compared to conventional full characterization EEPROMs. Both conventional EEPROM and flash memory utilize floating gates that are positioned above and insulated from the channel regions in the semiconductor substrate. The floating gate is positioned between the source region and the pole region. The control gate is provided on and insulated from the floating gate. The threshold voltage (Vth) of the thus formed transistor is controlled by the amount of charge remaining on the floating gate. That is, the minimum amount of voltage that must be applied to the control gate to allow conduction between the source and the drain of the transistor before the transistor is turned on is controlled by the charge level on the floating gate. Some EEPROM and flash memory devices have two ranges of floating gates for storing charge' and thus, the memory elements can be programmed between two states (eg, erased state and stylized state). / Erase. Since each of the hidden components can store a data bit, the flash memory device is sometimes referred to as a binary flash memory device. 124970.doc 1352404 Multi-state (also known as multi-level) flash memory devices are implemented by identifying multiple distinct allowable/effectively programmed threshold voltage ranges. Each distinct threshold voltage range corresponds to a predetermined value of the set of data bits encoded in the memory device. For example, when each memory element can be placed in one of four discrete charge bands corresponding to four distinct threshold voltage ranges, the element can store two data bits. Typically, the stylized power applied to the control gate during the stylization operation is applied as a series of pulses whose magnitude increases over time. In a method _, the magnitude of the pulse is increased by a pre-step length (e.g., 0.2-0.4 V) with each successive pulse. The VPGM can be applied to the control gate of the flash memory component. The verification operation is performed during the period between the stylized pulses. That is, the programmed level of each of the components in a group of components that are programmed in parallel is read between consecutive stylized pulses to determine whether the programmed level is equal to or greater than the verification that the component is programmed. Level. For multi-state flash memory device arrays, a verification step can be performed for each state of the component to determine if the component has reached its data association verification level. For example, a multi-state memory element capable of storing data in four states may need to perform a verify operation for three comparison points. In addition, when programming an EEPROM or flash memory device (such as a NAND flash memory device in a NAND string), VpGM is typically applied to the control gate and the bit it is grounded, thereby enabling the cell or memory. When the electrons of the channel of the component (for example, the storage component) are injected into the floating gate, the floating gate becomes negatively charged and the threshold voltage of the memory 7L rises, so that the threshold voltage of the memory 7L is increased. The memory component is considered to be in the process 124970.doc 1352404. U.S. Patent No. 6,859,397, entitled "Source Side Self Boosting Technique For Non-Volatile Memory," and U.S. Patent Application Publication No.; "Detecting Over Programmed Memory" More information about this stylization can be found in 5/〇〇24939; the full text of both is incorporated herein by reference. However, due to the proximity of the non-volatile storage elements to each other, various forms of stylized interference have been experienced during stylization. In addition, this problem is expected to worsen with further scaling of NAND technology. Stylized interference occurs when the threshold voltage of a previously stylized non-volatile storage element is shifted due to subsequent stylization of other non-volatile storage elements. The boost technique attempts to solve the problem of boosting the channel region of the inhibited stylized NAND string to a high potential by connecting the channel region of the NAND string containing the storage element to be programmed to a low potential (such as 〇V). This problem. For example, the erase region self-boost (EASB) technique does not apply one of the NAND strings between the stylized region and the erase region while applying a high pass voltage (such as 8 V) on other unselected word lines. Apply a low enough voltage (usually 〇v) to the selected word line to isolate the boost channel. The modified EASB (REASB) is similar to the EASB, but applies a small voltage (such as 2·5 V) to the adjacent isolated word line. However, as the size is scaled down, stylized interference is still a serious problem even in the case of boosting, because the high electric field induced by the boosting band induces a tunnel leakage and/or gate induced buckling leakage ( GIDL). SUMMARY OF THE INVENTION The present invention addresses the above and other problems by providing a non-volatile storage system 124970.doc 1352404 system and method for reducing stylized interference. In one embodiment, a non-volatile storage system includes a substrate and at least one NAND string formed at least partially on the substrate. The substrate has a shallow ion implant implanted into the substrate along at least one NAND length, and at least one of the first spacers along the length of the at least one NAND string has a depth implanted into the substrate that is deeper than the shallow ion implantation Deep ion implantation. For example, at least a portion of the first interval can be adjacent to a select gate of at least one NAND string. Additionally, the second spacing in the substrate along the length of the at least one NAND string can have deep ion implantation. In this case, the first interval and the second interval may be adjacent to the first selection gate and the second selection gate of the at least one NAND. The substrate can have a p-type region in which ions are implanted. Deep ion implantation provides reduced channel boosting in the substrate (eg, due to higher channel capacitance), and deep ion implantation can be provided close to the need for boost reduction to prevent gate induced buckling leakage ( GIDL) and selective gate with tunneling (BTBT). In another aspect, a non-volatile storage system includes at least one NAND string at least partially formed on a substrate. At least one NAND string is in communication with a plurality of word lines extending between a first select gate and a second select gate of at least one NAND string. Additionally, the first portion of the substrate has a region raised implant ion level and at least one word line extends over the first portion and at least one other word line does not extend over the first portion. In another aspect, a non-volatile storage system includes a substrate, and the first portion of the substrate has a region raised implant ion level. Additionally, a collection of storage elements is formed at least partially on the substrate such that a 124740.doc 丄 - subset of the storage elements is formed at least partially on the first portion and other storage elements in the collection are not formed on the first portion. In another aspect, a method for reducing stylized interference in a non-volatile storage system includes: implanting a shallow ion implant along a length of a region of the substrate; and at least one of a length along a region of the substrate The first spacer implants the forehead into the substrate, which allows additional ions to be implanted into the substrate deeper than shallow ion implantation. The method further includes forming at least a portion of the NAND string at least partially over the area of the substrate such that at least the first portion 2 of the -NAND string is formed on the first interval. In this way, the regional ion level is provided in the first interval. For example, at least a portion of the first interval can be adjacent to a select gate of at least one NAND string. In another example, a method for reducing interference in a non-volatile storage system includes: implanting a region in a first portion of the substrate to raise an ion level; and forming at least partially on the substrate at least - NAND string. At least one NAND string is in communication with a plurality of word lines extending between at least one of the first select gates and the first select gate. In addition, at least one word line ^ extends on the first portion and at least one other word line does not extend in the first portion, and a method for reducing the "interference" in the non-volatile storage system includes: in the first part of the substrate The implanted region raises the ion level; and at least partially forms a collection of storage elements on the substrate. The first subset of the storage element is formed at least partially on the first portion. The square = step comprises at least partially Other storage elements in the collection are formed on a portion of the substrate that does not include the first portion. 124970.doc -9- 1352404 [Embodiment] The present invention provides a non-volatile storage system and method for reducing stylized interference. Providing deep ion implantation in a substrate near the end word line of the NAND string to selectively control boosting in the substrate near the end word line. An example of a memory system suitable for implementing the present invention uses NAND fast A flash memory structure comprising a plurality of transistors arranged in series between two select gates. The series connected transistors and select gates are referred to as NAND strings. A top view of a NAND string is shown in Fig. 2. The equivalent circuit is shown in Fig. 2. The NAND string depicted in Fig. 1 and Fig. 2 includes four transistors 1〇〇, 1〇2, 1〇4, and 106' which are connected in series and sandwiched. Between the first selection gate 120 and the second selection gate ι 22. The gate 120 is gated to the NAND string connection of the bit line 126. The NAND string connection of the gate 122 gate to the source line 128 is selected. A suitable voltage is applied to the control gate 120CG to control the selection gate 120. The selection gate 122 is controlled by applying an appropriate voltage to the control gate 122CG. Each of the transistors 100, 102, 104, and 106 has a Control gate and a floating gate. The transistor 100 has a control gate 100CG and a floating gate 100FG. The transistor 102 includes a control gate 102CG and a floating gate 102FG. The transistor 1〇4 includes a control gate 104CG and a floating gate. The transistor 106 includes a control gate 106CG and a floating gate 106FG. The control gate 100CG is connected to (or is) the word line WL3, the control gate 102CG is connected to the word line WL2, and the control gate 104CG is connected to the word line WL1. 'And control gate 106CG is connected to word line WL0. In an embodiment 'electric The crystals 100, 102, 104, and 106 are each a storage element (also referred to as 124970.doc • 10·memory unit). In other embodiments, the storage element may include multiple transistors or may differ from FIG. 1 and The storage element depicted in 2. The selection gate 120 is connected to the selection line SGD. The selection gate 122 is connected to the selection line SGS. Figure 3 is a circuit diagram depicting three NAND strings. One of the flash memory systems using a NAND structure A typical architecture will include several NAND strings. For example, three NAND strings 320, 340, and 360 are shown in a memory array with more NAND strings. Each of the NAND strings includes two select gates and four storage elements. Although four storage elements are illustrated for simplicity, modern NAND strings can have up to, for example, 32 or 64 storage elements. For example, NAND string 320 includes select gates 322 and 327 and storage elements 323-326, NAND string 340 includes select gates 342 and 347 and storage elements 343-346, NAND string 360 includes select gates 362 and 367 and storage Elements 363-366. Each NAND string is connected to the source line by its select gate (e.g., select gate 327, 347, or 367). The selection line SGS is used to control the source side selection gate. The various NAND strings 320, 340, and 3 60 are connected to respective bit lines 321, 341, and 361 by selecting transistors in the gates 322, 342, 362, and the like. These selective transistors are controlled by the anode selection line SGD. In other embodiments, the select lines do not necessarily need to be co-located within the NAND string; that is, different select lines can be provided for different NAND strings. Word line WL3 is coupled to the control gates of storage elements 323, 343, and 63. Word line WL2 is coupled to the control gates of storage elements 324, 344 and 364. Word line WL1 is coupled to control gates 124970.doc 1352404 of storage elements 325, 345, and 365. The pole line WL0 is coupled to the control gates of storage elements 320, 346, and 366. It can be seen that each bit line and each NAND string contains a storage element array J J or a set person + / 仃. The word lines (WL3, WL2, WL1, and WL0) contain an array. ° " Columns Each control node of each storage element in the pre-wire connection column • 16 or 'Control gate can be provided by the word line itself. For example, word line • j provides control gates for storage elements 324, 344, and 364. In practice, there can be thousands of storage elements on a word line. Every: storage components can store data. For example, when storing a digital bit:, the range of possible threshold voltages of the storage element is divided into two ranges, which are assigned logical information "and,,". In NAND-type flash memory - Example 10, Vth is negative after erasing the memory element, and is defined as 1 series "". The Vth after the stylization operation is positive and is defined as the logic VTH When negative and attempting to read, the storage element will be turned on to indicate that the logic "1" is being stored. When the VTH is positive and an attempt is made to read the operation, the storage element will not be turned on and the indication logic "0" is stored. The storage element can also store • multiple information levels', for example, multiple digital data bits. In this case, the range of VTH values is divided into the number of data levels. For example, if four information levels are stored, there will be four VTH ranges, which are assigned to the data values. ^,, ',, and '^' type memory. Example 2: Second divide operation: After The VTH is negative and is defined as 'u'. Positive V-values are used: 01" and _’00" The particular relationship between the material that is programmed into the storage element and the threshold wire of the component is considered to be the data encoding mechanism used to store the component. For example, the four countries' patents No. 6'222,762 and the US special shot (4) public case (10) describe the various data encoding mechanisms used in the multi-state flash storage element by 124970.doc 1352404, the full text of which is The manner of reference is incorporated herein. Examples of NAND type (4) memory and its operation are provided in U.S. Patent Nos. 5'386,422, 5,522, 5,576,315, 5,774'397, 帛6,46,935, 帛6,456,528. And each of these patents is incorporated by reference into a stylized (four) storage element, applying a staging voltage to the control gate of the storage element and grounding the bit line associated with the storage element. The electrons from the channel are injected into the floating gate. When electrons accumulate in the floating open, the floating gate becomes negatively charged and raises the Vth of the storage element. To apply a programmed voltage to the control gate of the memory element being programmed, a stylized voltage is applied to the appropriate word line. As discussed above, one of the storage elements in each of the NAND strings shares the same word line. Example

6,522,580號申, 本文中。 而言,當程式化圖3之儲存元件324時,亦將程式化電壓施 加至儲存元件344及364之控制閘極。 然而’程式化干擾可在其他NAND串之程式化期間發生 在被抑制的NAND串處’且有時發生在被程式化的nand 串本身處。舉例而言,若NAND串320被抑制且NAND串 3 40正被程式化,則程式化干擾可發生在NAND串320處。 舉例而s ’ ^'通過電壓VPASS較低,則被抑制的NAND串之 通道未被適當地升壓,且未選定NAND串之選定字線可被 無意地程式化。在另一可能情形中,升壓電壓可藉由 GIDL或其他洩漏機制而得以降低,從而導致相同問題。 124970.doc -13- 諸如歸因於儲存元件之間的電容耦合的儲存於程式化儲存 元件中之電荷之移位的其他效應亦可能有問題。 圖4描繪展示程式化區域及擦除區域之NAND串之橫截面 圖。該視圖經簡化且不按比例。升壓技術試圖藉由在將含 有待程式化之儲存元件的NAND串之通道區域連接至低電 位(諸如,Ο V)的同時將被抑制程式化的NAND串之通道區 域升壓至高電位來減少程式化干擾之發生率。舉例而言, 擦除區域自升壓(EASB)技術藉由在其他未選定字線上施加 高通過電壓(諸如,8 V)的同時在程式化區域與擦除區域之 間的NAND串之一未選定字線上施加足夠低之電壓(通常為 Ο V)來隔離升壓通道。修正EASB(REASB)類似於EASB, 但將小電壓(諸如,2.5 V)施加至鄰近隔離字線。然而,隨 著尺寸按比例縮小,即使在升壓的情況下,程式化干擾仍 為嚴重問題,因為由升壓而導致的高電場誘發帶對帶穿隧 及/或閘極誘發汲極洩漏(GIDL)。 NAND串400包括一源極側選擇閘極406、一汲極側選擇 閘極424及八個儲存元件408、410、412、414、416、 418、420及422,所有儲存元件皆至少部分地形成於一基 板490上,該基板可包括一絕緣層。在NAND串400之左側 提供用於另一NAND串之另一源極側選擇閘極402,而在 NAND串400之右側提供用於另一 NAND串之另一汲極側選 擇閘極428。在一實施例中,在NAND串400之右側及左側 的NAND串包括與NAND串400上之儲存元件同時被程式化 之儲存元件。具有電位Vsource之源極供應線404提供於選 124970.doc -14- 擇閘極402與406之間,而具有電位Vdd(位元線)之位元線 426提供於選擇閘極424與428之間。在程式化期間,將程 式化電壓VPGM提供於選定字線(例如,與待程式化之一或 多個儲存元件(在此狀況下為儲存元件420)相關聯之字線) 上。另外,回憶:儲存元件之控制閘極可作為字線之一部 分而被提供。舉例而言,WL0、WL1、WL2、WL3、 WL4、WL5、WL6及WL7可分別經由儲存元件408、410、 412、414、416、418、420及422之控制閘極而延伸。在所 提供之實例中,使用EASB來程式化NAND串400,在此狀 況下,將0 V施加至選定字線之源極側字線,即,與儲存 元件418(被稱為隔離儲存元件)相關聯之WL5(被稱為被隔 離字線)。將通過電壓VPASS施加至與NAND串400相關聯之 剩餘字線。將電壓VSGS=0 V施加至選擇閘極402及406以使 其保持閉合,且將電壓VSGD(諸如,2.5 V)施加至選擇閘極 424及428以使其保持打開。 假設沿NAND串之儲存元件之程式化自儲存元件408進行 至儲存元件422,則當儲存元件420正被程式化時,儲存元 件408-418將已經被程式化,且儲存元件422將尚未被程式 化。因此,視程式化模式而定,儲存元件408-418中之全 部或一些將具有被程式化至且儲存於其各別浮動閘極中的 電子,且儲存元件422可被擦除或部分地程式化。舉例而 言,儲存元件可能先前已在兩步驟程式化技術之第一步驟 中被程式化。當NAND串400當前為被抑制的NAND串時, 歸因於VPGM施加於與儲存元件420相關聯之字線WL6上及 124970.doc 叫404 VPASS施加於其他字線上,基板49〇之通道之電位將被升 壓。詳言之,在一程式化情形中,因為擦除區域46〇中之 儲存元件仍經擦除,所以與仍經擦除之儲存元件相關聯之 通道之區域(例如,擦除區域460)與程式化區域45〇相比將 經歷相對較高之升壓。此外,此高升壓區域將以隔離儲存 兀件(例如,儲存元件418)及汲極側選擇閘極424為邊界。 在EASB的情況下,將足夠低之電壓施加至選定字線之 源極側相鄰者以隔離基板中之程式化通道區域與擦除通道 區域。此技術在有效地升壓擦除通道區域上是成功的。然 而’具有小電容之高升壓通道增加與隔離字線WL5相關聯 之儲存元件418之接合邊緣472處的電場。此外,此現象在 隔離字線離汲極側選擇閘極比離源極側選擇閘極近時更 強。因此’ GIDL及BTBT可發生在接合472處,如下文結 合圖5進一步所詳述。GIDL及BTBT亦可發生於其他位 置’諸如’位於高升壓擦除區域460之另一末端處的汲極 側選擇閘極424之邊緣474。另外,尤其是當利用WL1上之 LM資料來程式化靠近源極側選擇閘極之字線(諸如,wl〇) 時’ GIDL及BTBT可發生在源極側選擇閘極之邊緣470 處。具有LM資料之儲存元件已經歷兩步驟程式化過程之 第一步驟(參見(例如)圖21B之臨限電壓分布2150)。LM指 代中低臨限電壓。GIDL及BTBT亦可隨其他升壓模式而發 生。 圖5描繪靠近隔離字線之NAND串通道中的GIDL及帶對 帶穿隧(BTBT)之發生。更詳細地展示圖4之NAND串400及 124970.doc -16 - 1352404 基板490之一部分’其包括儲存元件414、416、418及 420、私式化區域450及擦除區域460。另外,倚存元件414 之細節包括控制閘極440、介電質442、浮動閘極444及絕 緣體446。WL3、WL4、WL5及WL6分別經由儲存元件 414、416、41 8及420之控制閘極而延伸。源極/汲極區域 提供於儲存元件與選擇閘極之間,包括源極/汲極區域 430、432及434。指示可在升壓模式(諸如,EASB)期間發 生且引起程式化干擾的GIDL及BTBT之一實例。當升壓通 道電位較高時,隔離儲存元件418(其具有施加至其控制閘 極之0 V)處的咼電場(E場)在接合472處導致GIDL及 BTBT。詳言之,產生電子電洞對’如實例電子(由帶有"" 符號之小圓圈表示)及電洞(由帶有"符號之小圓圈表示) 所指示。所產生之熱電子中之一些藉由VpGM所導致之高垂 直場而加速,接著被注入至儲存元件42〇之浮動閘極中。 此外,當經由接近於汲極側選擇閘極之較高字線及經由 與程式化位於兩個極端之間的儲存元件時相比更接近於源 極側選擇閘極之較低字線而程式化儲存元件時,高電場誘 發之程式化干擾可能更惡化。在較高字線處,由於升壓效 率歸因於小通道電容而極大地改良且升壓主要由程式化電 壓(VPGM)控制,故隔離儲存元件下方的高升壓電位將使 GIDL誘發之熱載流子注入至相鄰字線。在較低字線處, 在源極側選擇閘極下方發生相同情況,該源極侧選擇閉極 在程式化期間通常被偏壓至〇 Ve舉例而言,當在兩次通 過程式化過程之第-步驟之後部分地程式化與wu相關聯 124970.doc 17 1352404 之儲存元件410時(參見(例如)圖21丑),由於冒1^1接近於被 切斷,故WLO與上部通道區域隔離。因此,與WL〇相關聯 之通道區域藉由VPGM而被高升壓。 圖6至圖13係關於用於在基板中植入額外離子以控制升 壓之過程。本發明之一態樣包括:在隨後於基板上形成Application No. 6,522,580, in this article. In the meantime, when the storage element 324 of Figure 3 is programmed, the programmed voltage is also applied to the control gates of the storage elements 344 and 364. However, 'stylized interference can occur at the suppressed NAND string during the stylization of other NAND strings' and sometimes at the stylized nand string itself. For example, if NAND string 320 is suppressed and NAND string 3 40 is being programmed, stylized interference can occur at NAND string 320. By way of example, s '^' pass voltage VPASS is low, then the channel of the suppressed NAND string is not properly boosted, and the selected word line of the unselected NAND string can be unintentionally programmed. In another possible scenario, the boost voltage can be reduced by GIDL or other leakage mechanisms, resulting in the same problem. Other effects such as shifting of charge stored in a stylized storage element due to capacitive coupling between storage elements may also be problematic. Figure 4 depicts a cross-sectional view of a NAND string showing a stylized area and an erased area. This view is simplified and not to scale. The boost technique attempts to reduce the channel region of the inhibited stylized NAND string to a high potential by connecting the channel region of the NAND string containing the storage element to be programmed to a low potential (such as ΟV). The incidence of stylized interference. For example, the erase region self-boost (EASB) technique does not apply one of the NAND strings between the stylized region and the erase region while applying a high pass voltage (such as 8 V) on other unselected word lines. Apply a low enough voltage (usually Ο V) to the selected word line to isolate the boost channel. The modified EASB (REASB) is similar to the EASB, but applies a small voltage (such as 2.5 V) to the adjacent isolated word line. However, as the size is scaled down, stylized interference is still a serious problem even in the case of boosting, because the high electric field induced by the boosting band induces a tunnel leakage and/or gate induced buckling leakage ( GIDL). The NAND string 400 includes a source side select gate 406, a drain side select gate 424, and eight storage elements 408, 410, 412, 414, 416, 418, 420, and 422, all of which are at least partially formed. On a substrate 490, the substrate may include an insulating layer. Another source side select gate 402 for another NAND string is provided on the left side of the NAND string 400, and another drain side select gate 428 for another NAND string is provided on the right side of the NAND string 400. In one embodiment, the NAND strings on the right and left sides of NAND string 400 include storage elements that are programmed along with the storage elements on NAND string 400. A source supply line 404 having a potential Vsource is provided between 124740.doc -14 - select gates 402 and 406, and a bit line 426 having a potential Vdd (bit line) is provided to select gates 424 and 428 between. During programming, the programmed voltage VPGM is provided to the selected word line (e.g., the word line associated with one or more of the storage elements (in this case, storage element 420) to be programmed). In addition, it is recalled that the control gate of the storage element can be provided as part of the word line. For example, WL0, WL1, WL2, WL3, WL4, WL5, WL6, and WL7 may extend via control gates of storage elements 408, 410, 412, 414, 416, 418, 420, and 422, respectively. In the example provided, EASB is used to program NAND string 400, in which case 0 V is applied to the source side word line of the selected word line, ie, with storage element 418 (referred to as an isolated storage element). Associated with WL5 (known as the isolated word line). The pass voltage VPASS is applied to the remaining word lines associated with NAND string 400. Voltage VSGS = 0 V is applied to select gates 402 and 406 to keep it closed, and voltage VSGD (such as 2.5 V) is applied to select gates 424 and 428 to keep them open. Assuming that the staging of the storage elements along the NAND string proceeds from the storage element 408 to the storage element 422, when the storage element 420 is being programmed, the storage elements 408-418 will have been programmed and the storage element 422 will not be programmed. Chemical. Thus, depending on the stylized mode, all or some of the storage elements 408-418 will have electrons that are programmed into and stored in their respective floating gates, and the storage element 422 can be erased or partially programmed. Chemical. For example, a storage element may have been previously programmed in the first step of a two-step stylization technique. When the NAND string 400 is currently a suppressed NAND string, due to the VPGM applied to the word line WL6 associated with the storage element 420 and 124970.doc called 404 VPASS applied to other word lines, the potential of the channel of the substrate 49〇 Will be boosted. In particular, in a stylized situation, because the storage elements in the erased area 46 are still erased, the area of the channel associated with the still erased storage element (eg, erased area 460) is The stylized area 45〇 will experience a relatively high boost. In addition, the high boost region will be bordered by an isolated storage element (e.g., storage element 418) and a drain side select gate 424. In the case of EASB, a sufficiently low voltage is applied to the source side neighbors of the selected word line to isolate the stylized channel region and the erase channel region in the substrate. This technique is successful in effectively boosting the erase channel area. However, the high boosting channel with a small capacitance increases the electric field at the junction edge 472 of the storage element 418 associated with the isolated word line WL5. In addition, this phenomenon is stronger when the isolated word line is selected from the drain side of the gate closer than the source side select gate. Thus 'GIDL and BTBT can occur at junction 472, as further detailed below in connection with Figure 5. GIDL and BTBT may also occur at other locations 'such as the edge 474 of the drain side select gate 424 located at the other end of the high boost erase region 460. In addition, GDIL and BTBT can occur at the edge 470 of the source side select gate, especially when the LM data on WL1 is used to program the word line (e.g., wl〇) near the source side select gate. The storage element with LM data has undergone the first step of a two-step stylization process (see, for example, the threshold voltage distribution 2150 of Figure 21B). LM refers to the medium and low threshold voltage. GIDL and BTBT can also occur with other boost modes. Figure 5 depicts the occurrence of GIDL and Band-to-Band Tunneling (BTBT) in a NAND string channel near an isolated word line. The NAND string 400 and 124970.doc -16 - 1352404 portion 490 of FIG. 4 are shown in more detail, which includes storage elements 414, 416, 418, and 420, a private area 450, and an erase area 460. Additionally, details of the reliant component 414 include control gate 440, dielectric 442, floating gate 444, and insulator 446. WL3, WL4, WL5, and WL6 extend through the control gates of storage elements 414, 416, 41 8 and 420, respectively. A source/drain region is provided between the storage element and the select gate, including source/drain regions 430, 432, and 434. An example of GIDL and BTBT that may occur during a boost mode (such as EASB) and cause stylized interference. When the boost channel potential is high, the zeta field (E field) at the isolation storage element 418 (which has 0 V applied to its control gate) results in GIDL and BTBT at junction 472. In detail, an electronic hole pair is created as indicated by the example electron (represented by a small circle with a "" symbol) and a hole (represented by a small circle with a " symbol). Some of the generated hot electrons are accelerated by the high vertical field caused by VpGM and then injected into the floating gate of storage element 42. In addition, the program is closer to the lower word line of the source side selection gate than when the higher word line of the gate is selected near the drain side and via the memory element between the two terminals. Stylized interference induced by high electric fields may be worsened when storing components. At higher word lines, since the boosting efficiency is greatly improved due to the small channel capacitance and the boost is primarily controlled by the stylized voltage (VPGM), the high boost potential below the isolated storage element will cause GIDL induced heat. Carriers are injected into adjacent word lines. At the lower word line, the same happens under the source side select gate, which is typically biased to 〇Ve during stylization, as in the case of two passes through the stylization process. After the first step is partially stylized with wu associated with the storage element 410 of 124970.doc 17 1352404 (see, for example, Figure 21 ugly), the WLO is isolated from the upper channel region due to the closeness of the 1^1 being cut off. . Therefore, the channel region associated with WL〇 is boosted by VPGM. Figures 6 through 13 relate to a process for implanting additional ions in a substrate to control the boost. One aspect of the invention includes: subsequently forming on a substrate

NAND串時,將額外離子深植入至接近於nand串之選擇 閘極的基板之選定區域中β詳言之,此額外離子植入藉由 緩和額外離子被植入的某些區域處之高升壓來控制較高及/ 或較低字線之升壓。詳言之,在用於控制儲存元件之臨限 電壓的初始淺離子植入之後,藉由微影過程來僅曝露接近 於選擇閘極將被形成之處的基板之選定區域。接著,將額 外離子深植入至基板中(例如,比用於臨限電壓控制之淺 植入/木),以在升壓期間增加較高及較低字線下方的基板In the NAND string, additional ions are deeply implanted into selected regions of the substrate close to the selected gate of the nand string. In detail, this additional ion implantation is mitigated by mitigating certain regions where additional ions are implanted. Boost to control the boost of the higher and/or lower word lines. In particular, after initial shallow ion implantation for controlling the threshold voltage of the storage element, only a selected area of the substrate near where the selected gate is to be formed is exposed by the lithography process. Next, additional ions are implanted deep into the substrate (e.g., shallower implants/wood for threshold voltage control) to increase the substrate below the higher and lower wordlines during boosting.

之通道電容。另外,離子藉由後續熱過程(諸如,不為自 對準過程之退火)而橫向地擴散。當於基板上形串 時,接近於NAND串之末端(例如,鄰近於源極侧選擇閘極 及没極側選擇閘極)之若干末端字線位於具有區域升高離 子位準之區域上。因此,在一實施例中,該技術僅將減少 之升壓提供至較高及較低字線而不影響其他字線。 圖6描繪在基板中植入淺離子植入。淺離子植入61〇提供 於基板600中,該基板可為(例如斥型。離子植入可包括(例 如)侧離子或銦離子H受體型雜質對於抑制升壓係 有效的。纟-方法中’所提議之植人過程為p井形成之一 部分,在此狀況下’受體型雜質用於⑼。亦可比用於進 124970.doc •18· 1352404 行深η井(圖中未圖示…井植入深地共同植入碟或神。在 一方法中,彳穿過形成於基板_上之絕緣氧化物層 620(諸如’ Si〇2)而進行植人。或纟,可在提供絕緣氧化物 層620之前進行植人。淺離子植人用於控制儲存元件之臨 限電壓。 圖7描繪在基板上形成光阻結構。在一可能方法中光 微影可用於形成實例光阻結構71〇及712。舉例而言,可在 基板之-區域上提供-抗㈣塗層,接著使用—光微影工 具來將一將藉由深離子植入而被植入之選定區域經由一遮 罩而曝露於光。接著顯影抗蝕劑以移除曝露區域,且執行 冰離子植入過程以在基板69〇中提供深離子植入“ο、 820(圖8)。圖8描繪基板之選定區域中之深離子植入。可使 用近似80-150 keV而向額外離子植入提供硼植入及近似 150-300 001之儲存元件高度。注意,植入能量可隨儲存元 件高度而改變,且應表示足夠高以避免影響儲存元件之臨 限電壓、但足夠低以影響升壓的能量之間的折衷。亦即, 應將離子植入至足夠深以避免影響儲存元件之臨限電壓、 但足夠淺以影響升壓的深度。可藉由針對特定記憶體裝置 之實驗來判定最佳能量/深度。在一實施例中,將提供區 域升高植入離子位準之額外離子比用以控制儲存元件之臨 限電壓之淺離子植入深地植入至基板中。臨限電壓係在相 對較低之偏壓條件下(諸如,在讀取/驗證操作期間)被定 義’因此額外離子植入應不對此產生影響。另一方面因 為高電壓使耗盡層較深地延伸至基板中,所以高電壓操作 124970.doc -19· 1352404 (諸如’升壓)可受深離子植入影響β 隨後移除光阻結構710及712,且執行其他習知過程,包 括退火基板690及在基板上形成儲存元件。舉例而言儲 存元件可提供於許多NAND串中,該等nand串與跨越該 等NAND串而延伸之字線通信。在p井形成期間僅需要一 額外遮罩步驟及離子植入。 圖9描繪展示具有深離子植入之區域的圖8之基板之俯視 圖。在一可能方法中,光阻結構71〇及712可在字線方向中 跨越基板而延伸,在該狀況下,深離子植入81〇及82〇亦沿 基板之一區域之長度而在字線方向中的間隔中延伸。 圖10描繪展示具有深離子植入之區域及形成於基板上之 NAND串的圖8之基板之橫截面圖。提供一實例串 1000以及NAND串1〇1〇及1020之部分視圖。實務上,許多 NAND串可在位元線方向(圖示)及字線方向中延伸。又, 該實例提供八個儲存元件之NAND串。實務上,額外儲存 元件可提供於NAND串中。形成該等]^^^)串,使得許多 末端字線位於深離子植入上。在此實例中,儲存元件之控 制閘極可被提供作為字線之一部分(亦參見圖4)。藉由圖ι〇 中之儲存元件之交又陰影區域來指示控制閘極/字線。 除了沿NAND串之長度之具有深植入離子以提供區域升 高植入離子位準的一或多個間隔以外,基板具有歸因於淺 植入而沿NAND串之長度所植入之離子。另外,具有深植 入離子之該或該等間隔之至少一部分鄰近於串之選 擇閘極。此外,許多字線跨越NAND串而延伸,使得具有 124970.doc -20- 1352404 深植入離子之間隔在鄰近於nand串之選擇閘極的字線中 之至少一者下方延伸。 舉例而言’來自NAND串1010之末端字線1030及來自 NAND串1〇〇〇之末端字線1〇4〇形成於深離子植入810上。類 似地’來自NAND串1000之末端字線1〇5〇及來自NAND串 1020之末端字線1〇60形成於深離子植入820上。末端字線 1040可包括WL0、WL1及WL2(亦參見圖4),而末端字線 1050可包括WL5、WL6及WL7。相反,NAND串1000中之 儲存元件1042及1044以及關聯字線(例如)不形成於深離子 植入上。因此’基板中之單獨的第一間隔及第二間隔(分 別由深離子植入810及820提供)分別在末端字線1〇40及 1050下方延伸’該等末端字線分別鄰近於nand串1000之 源極側選擇閘極1 〇〇6及汲極側選擇閘極丨〇24。基板中之第 一間隔及第二間隔亦在NAND串1 〇〇〇之儲存元件之子集下 方延伸,該等子集分別與末端字線1〇4〇及1〇5〇相關聯。另 外,選擇閘極1002及1006以及源極供應端子1〇〇4在深離子 植入810上延伸,而選擇閘極1〇24及1〇28以及位元線端子 1026在深離子植入820上延伸。雖然選擇閘極沒有必要在 深離子植入上延伸,但此方法有助於記憶體裝置之製造。 若製造技術允許更具目標性之離子植入,則僅位於末端字 線下方之深離子植入為足夠的。 在此實例令,三個末端字線之集合及對應儲存元件形成 於基板之具有區域升高離子位準的區域上。因此,如所論 述,末端字線及對應儲存元件下方之基板之通道電容將增 124970.doc 1352404 加,且在不形成於深離子植入上的字線或健存元件下方之 基板之其他區域中’升壓將減少,藉此緩和歸因於gidl 及BTBT之程式化干擾。通道電容指代基板之通道與整個 基板之間的電容。形成於深離子植入上的末端字線之數目 可為一或多個,且其可針對特定記憶體裝置基於(例如)實 驗而得以最佳化。另外,形成於深離子植入上的源極側末 端字線之數目可不同於形成於深離子植入上的汲極側末端 字線之數目。另一變化僅針對待形成於深離子植入上的源 極側或汲極側末端字線。 圖11描繪展示具有深離子植入之區域的基板之俯視圖。 在此實例中’提供光阻結構11〇〇、11〇2及11〇4,且深離子 植入1110及1112在字線方向中在該等光阻結構之間延伸。 圖12描繪展示具有深離子植入之區域及形成於基板上之 NAND串的圖11之基板之橫截面圖。基板I〗%包括深離子 植入1110及1112»提供一實例n AND串1200以及NAND串 12 10及1220之部分視圖。該實例提供十六個儲存元件之 NAND串。形成該等NAND串,使得許多末端字線位於深 離子植入上。舉例而言,來自NAND串1210之末端字線 1230及來自NAND串1200之末端字線1240形成於深離子植 入1110上。類似地’來自NAND串1200之末端字線1250及 來自NAND串1220之末端字線1260形成於深離子植入1112 上。相反,在末端字線1240與1250之間的中間字線群1245 及儲存元件非形成於深離子植入上。舉例而言,在NAND 串1200中,末端字線1240可包括WL0、WL1及WL2,且末 124970.doc •22· 1352404 端字線1250可包括WL13、WL14AWL15。中間字線群 -1245可包括WL3.WL12。藉由儲存元件之交又陰影區域來 指示控制閘極/字線。 圖13描㈣於在基板中植人額外離子以控制升壓之過程 的流程圖。亦參看圖6至圖12,在步驟13〇〇處,在基板中 執行淺離子植入(圖6)。纟步驟131〇處,將光阻施加至基 板在步驟1320處,移除光阻之部分,從而留下⑼如)圖7 之結構。舉例而言,可在光阻材料將被移除的任何情況下 將光阻之部分曝露於UV光,使得曝露部分變得較可溶於 顯〜劑中。注意,此為一可用於將離子選擇性地植入至基 板中之微影過程之一實例。其他方法亦是可能的。在步驟 1330處’在由光阻結構之間的開口(圖8)所界定的基板之選 定間隔中執行深離子植入。在步驟⑽處,在基板上形成 NAND串及找’使得NAND串之末料線及儲存元件位 於深離子植入之區域上。或者有可能在形成nand串及字 線之後提供深離子植入。又,或者有可能在深離子植入之 後提供淺離子植入,或同時或在一連續過程中提供深離子 植入及淺離子植入。 圖14說明NAND儲存元件(諸如,圖i及圖2所示之元件) 陣列1400之一實例。沿每一行,位元線测耗接至NAND 串1450之沒極選擇閘極之没極端子1426。^nand串之每 -列’源極線剛可連接NAND串之源極選擇閘極之所有 源極端子刚。於美國專利第5,57〇,315號、第號 及第MMM35號中找到作為記憶體系統之一部分的ΝΑΝ〇 124970.doc -23- 1352404 架構陣列及其操作之一實例。 將儲存元件陣列分成大量的 —系統而言係共同的,區塊為捧牛2單如對於快閃 區塊含有被-起擦除之最小數目的儲存元將 母一區塊分成許多頁面。頁面& 通承將 例中,可將個別頁面分成區段在-實施 程式化操作而被-次寫入之最小數日等K可含有隨基本 人馬入之蚨少數目的儲存元件。一 個資料頁面通常儲存於一儲存元件列中。一頁面可儲=多 或多個扇區…扇區包括使用者資料及耗用資料。子次 料通常包括已自輕之制者資料計算㈣錯誤校正二 ⑽仏控制器之-部分(下文所述)在將資料程式化至陣 列中時計算ECC,且在自陣列讀取f料時亦檢查咖。或 者’將ECC及/或其他㈣資料儲存於不同於其所屬的使用 者資料之頁面或甚至不同區塊中。 使用者資料之一扇區通常為512個位元組,此對應於磁 碟驅動器中之一扇區之大小。耗用資料通常為額外16_2〇 個位元組。大Ϊ頁面形成一區塊,自(例如)8個頁面多達 32、64、128個或更多頁面之間的任何數目。在一些實施 例中,一 NAND串列包含一區塊。 在一實施例中,藉由在使源極線及位元線浮動的同時使 P井升高至擦除電壓(例如’ 20 V)達足夠之時間段且將選定 區塊之字線接地來擦除記憶體儲存元件。歸因於電容麵 合’未選定子線、位元線、選擇線及共同源極(c_s〇urce)亦 升高至擦除電壓之顯著部分。因此將強電場施加至選定儲 124970.doc • 24- 1352404 存元件之穿隧氧化物層,且選定儲存元件之資料隨著浮動 閘極之電子發射至基板側而被擦除(通常藉由佛勒-諾爾德 哈姆(Fowler-Nordheim)穿隧機制)。隨著電子自浮動開極 轉移至p井區域,選定儲存元件之臨限電壓降低。可對整 個記憶體陣列、單獨區塊或儲存元件之另一單元執行擦 除。 圖15為使用單列/行解碼器及讀取/寫入電路之非揮發性 記憶體系統之方塊圖。該圖說明根據本發明之一實施例之 記憶體裝置1596,其具有用於並行地讀取及程式化一儲存 元件頁面之讀取/寫入電路。記憶體裝置1596可包括一或 多個記憶體晶粒1 598。記憶體晶粒丨598包括二維儲存元件 陣列1400、控制電路151〇及讀取/寫入電路。“。在一些 實施例中,儲存元件陣列可為三維的。記憶體陣列14〇〇可 經由列解碼器1530而藉由字線及經由行解碼器156〇而藉由 位元線疋址。瀆取/寫入電路丨565包括多個感測區塊1 $⑼ 且允許並行地讀取或程式化一儲存元件頁面。通常,控制 器1550包括於與該或該等記憶體晶粒丨598相同的記憶體裝 置1596(例如,抽取式儲存卡)中《命令及資料經由線1520 而在主機與控制器1550之間轉移,且經由線1518而在控制 器與該或該等記憶體晶粒1598之間轉移。 控制電路15 10與讀取/寫入電路1565協作以對記憶體陣 列1400執行S己憶體操作。控制電路1510包括狀態機1512、 曰曰片上位址解碼器15 14及功率控制模組1516。狀態機1512 提供°己隐體操作之晶片級控制。晶片上位址解碼器1514提 124970.doc •25- 1352404 供由主機或記憶體控制器所使用之位址至由解碼器1530及 1 56G所使用之硬體位址之間的位址介面。功率控制模組 1516控制在記憶體操作期間供應至字線及位元線之功率及 電壓。 在一些實施例中,可組合圖15之某些組件。在各種設計 中,可將該等組件(儲存元件陣列1400除外)中之一或多個 (單獨地或組合地)看作管理電路。舉例而言,一或多個管 理電路可包括控制電路151〇、狀態機1512、解碼器 1514/1560、功率控制1516、感測區塊15〇〇、讀取/寫入電 路1565、控制器1550等等中之任一者或其組合。 圖16為使用雙列/行解碼器及讀取/寫入電路之非揮發性 δ己憶體系統之方塊圖。此處,提供圖丨5所示之記憶體裝置 1596之另一配置。以對稱方式而在陣列之相對側上實施由 各種周邊電路對記憶體陣列14〇〇之存取,使得每一側上之 存取線及電路之密度減小一半。因此,列解碼器被分為列 解碼器1530A及1530B,且行解碼器被分為行解碼器156〇a 及1560B。類似地’讀取/寫入電路被分為自陣列14〇〇之底 部連接至位元線之讀取/寫入電路1565八及自陣列14〇〇之頂 部連接至位元線之讀取/寫入電路1565B。以此方式,將讀 取/寫入模組之密度基本上減小一半。圖16之裝置亦可包 括如上文所述的用於圖15之裝置之控制器。 圖17為描繪感測區塊之一實施例之方塊圖。將個別感測 區塊1500分割成一核心部分(被稱為感測模組1580)及一共 同部分1590。在一實施例中,將存在一用於每一位元線之 124970,d〇« •26· 1352404 單獨感測模組1580及一用於多個感測模組1580之集合之共 同部分1590 »在一實例中,感測區塊將包括一共同部分 1590及八個感測模組1580。一群中之感測模組中之每一者 將經由一資料匯流排1572而與關聯共同部分通信。為了其 他細節,參考2006年6月29日公開的標題為”Non-VolatileChannel capacitance. Additionally, ions diffuse laterally by subsequent thermal processes, such as annealing that is not a self-aligned process. When a string is formed on the substrate, a number of end word lines near the end of the NAND string (e.g., adjacent to the source side select gate and the gate side select gate) are located on the region having the region raised ion level. Thus, in one embodiment, the technique only provides reduced boost to the higher and lower word lines without affecting other word lines. Figure 6 depicts the implantation of a shallow ion implant in a substrate. The shallow ion implantation 61〇 is provided in the substrate 600, which may be (for example, a repellency type. The ion implantation may include, for example, side ions or indium ion H receptor type impurities are effective for suppressing the pressure increasing system. 纟-method The proposed implanting process is part of the p-well formation. In this case, the 'receptor type impurity is used for (9). It can also be used to enter the deep η well of 124970.doc •18· 1352404 (not shown in the figure) Well implanted deep into the dish or god. In one method, the crucible is implanted through an insulating oxide layer 620 (such as 'Si〇2) formed on the substrate. The insulating oxide layer 620 is implanted before. The shallow ion implant is used to control the threshold voltage of the storage element. Figure 7 depicts the formation of a photoresist structure on a substrate. In a possible method, photolithography can be used to form an example photoresist structure. 71〇 and 712. For example, an anti-(four) coating can be provided on the substrate-area, followed by a photolithography tool to pass a selected area to be implanted by deep ion implantation. The cover is exposed to light. The resist is then developed to remove the exposed areas. An ice ion implantation process is performed to provide deep ion implantation "ο, 820 (Fig. 8) in the substrate 69. Figure 8 depicts deep ion implantation in selected regions of the substrate. An approximate 80-150 keV can be used for additional Ion implantation provides boron implantation and a storage element height of approximately 150-300 001. Note that the implant energy can vary with the height of the storage element and should be expressed high enough to avoid affecting the threshold voltage of the storage element, but low enough to A compromise between the energies that affect the boost, that is, the ions should be implanted deep enough to affect the threshold voltage of the storage element, but shallow enough to affect the depth of the boost. Experiments to determine the optimal energy/depth. In one embodiment, the additional ions that provide the region-increased implant ion level are deeply implanted into the substrate than the shallow ion implants used to control the threshold voltage of the storage element. The threshold voltage is defined under relatively low bias conditions (such as during read/verify operations) so additional ion implantation should not affect this. On the other hand, the high voltage makes the depletion layer Deeply extending into the substrate, so high voltage operation 124970.doc -19· 1352404 (such as 'boost) can be affected by deep ion implantation β then remove photoresist structures 710 and 712, and perform other conventional processes, including Annealing the substrate 690 and forming a storage element on the substrate. For example, the storage element can be provided in a plurality of NAND strings that communicate with word lines extending across the NAND strings. Only an extra is required during formation of the p-well Masking step and ion implantation. Figure 9 depicts a top view of the substrate of Figure 8 showing a region with deep ion implantation. In one possible approach, photoresist structures 71 and 712 may extend across the substrate in the wordline direction. Under this condition, deep ion implantation 81〇 and 82〇 also extend in the interval in the word line direction along the length of one of the regions of the substrate. Figure 10 depicts a cross-sectional view of the substrate of Figure 8 showing a region with deep ion implantation and a NAND string formed on a substrate. An example string 1000 and partial views of the NAND strings 1〇1〇 and 1020 are provided. In practice, many NAND strings can extend in the bit line direction (shown) and in the word line direction. Again, this example provides a NAND string of eight storage elements. In practice, additional storage components can be provided in the NAND string. These strings of ^^^) are formed such that a number of end word lines are located on the deep ion implant. In this example, the control gate of the storage element can be provided as part of the word line (see also Figure 4). The control gate/word line is indicated by the shaded area of the storage element in Figure ι〇. The substrate has ions implanted along the length of the NAND string due to shallow implantation, except for one or more intervals along the length of the NAND string that have deep implanted ions to provide a region to increase the implant ion level. Additionally, at least a portion of the orbits having deep implanted ions are adjacent to the selected gates of the strings. In addition, a plurality of word lines extend across the NAND string such that a spacing of 124970.doc -20 - 1352404 deep implant ions extends under at least one of the word lines adjacent to the select gates of the nand string. For example, the end word line 1030 from the NAND string 1010 and the end word line 1〇4 from the NAND string 1〇〇〇 are formed on the deep ion implant 810. The end word line 1〇5〇 from the NAND string 1000 and the end word line 1〇60 from the NAND string 1020 are formed on the deep ion implantation 820. End word line 1040 can include WL0, WL1, and WL2 (see also FIG. 4), while end word line 1050 can include WL5, WL6, and WL7. In contrast, storage elements 1042 and 1044 and associated word lines in NAND string 1000, for example, are not formed on deep ion implantation. Thus, the individual first and second intervals in the substrate (provided by deep ion implants 810 and 820, respectively) extend below the end word lines 1 〇 40 and 1050, respectively, and the end word lines are adjacent to the nand string 1000, respectively. The source side selects the gate 1 〇〇6 and the drain side selects the gate 丨〇24. The first and second intervals in the substrate also extend below a subset of the storage elements of the NAND string 1 , which are associated with the end word lines 1〇4〇 and 1〇5〇, respectively. In addition, the selection gates 1002 and 1006 and the source supply terminal 1〇〇4 extend over the deep ion implantation 810, while the selection gates 1〇24 and 1〇28 and the bit line terminal 1026 are on the deep ion implantation 820. extend. Although the selection of the gate does not necessarily extend over deep ion implantation, this method facilitates the fabrication of the memory device. If the fabrication technique allows for more targeted ion implantation, then deep ion implantation just below the end word line is sufficient. In this example, a collection of three end word lines and corresponding storage elements are formed on regions of the substrate having regions of elevated ion levels. Therefore, as discussed, the channel capacitance of the end word line and the substrate below the corresponding storage element will increase by 124970.doc 1352404, and in other areas of the substrate that are not formed on the deep ion implanted word line or the sitter element The 'boost' will be reduced to mitigate the stylized interference attributed to gidl and BTBT. The channel capacitance refers to the capacitance between the channel of the substrate and the entire substrate. The number of end word lines formed on the deep ion implant can be one or more, and it can be optimized for a particular memory device based on, for example, an experiment. In addition, the number of source side end word lines formed on the deep ion implantation may be different from the number of the drain side end word lines formed on the deep ion implantation. Another variation is only for the source side or the drain side end word line to be formed on the deep ion implant. Figure 11 depicts a top view showing a substrate with a region of deep ion implantation. In this example, photoresist structures 11A, 11〇2, and 11〇4 are provided, and deep ion implants 1110 and 1112 extend between the photoresist structures in the word line direction. Figure 12 depicts a cross-sectional view of the substrate of Figure 11 showing a region with deep ion implantation and a NAND string formed on a substrate. Substrate I 〗 % includes deep ion implants 1110 and 1112» providing an example n AND string 1200 and partial views of NAND strings 12 10 and 1220. This example provides a NAND string of sixteen storage elements. The NAND strings are formed such that a number of end word lines are located on the deep ion implant. For example, end word line 1230 from NAND string 1210 and end word line 1240 from NAND string 1200 are formed on deep ion implant 1110. The end word line 1250 from NAND string 1200 and the end word line 1260 from NAND string 1220 are similarly formed on deep ion implant 1112. In contrast, the intermediate word line group 1245 and the storage elements between the end word lines 1240 and 1250 are not formed on deep ion implantation. For example, in NAND string 1200, end word line 1240 can include WL0, WL1, and WL2, and end 124970.doc • 22· 1352404 end word line 1250 can include WL13, WL14AWL15. The intermediate word line group -1245 may include WL3.WL12. The control gate/word line is indicated by the shaded area of the storage element. Figure 13 depicts (iv) a flow chart for the process of implanting additional ions in the substrate to control boost. Referring also to Figures 6 through 12, at step 13A, shallow ion implantation (Fig. 6) is performed in the substrate. At step 131, a photoresist is applied to the substrate at step 1320, removing portions of the photoresist, leaving (9) the structure of FIG. For example, a portion of the photoresist can be exposed to UV light in any situation where the photoresist material is to be removed, such that the exposed portion becomes more soluble in the developer. Note that this is an example of a lithography process that can be used to selectively implant ions into a substrate. Other methods are also possible. Deep ion implantation is performed at a selected interval of the substrate defined by the opening between the photoresist structures (Fig. 8) at step 1330. At step (10), a NAND string is formed on the substrate and the resulting traces and storage elements of the NAND string are placed on the deep ion implanted regions. Or it is possible to provide deep ion implantation after forming the nand string and the word line. Also, it is possible to provide shallow ion implantation after deep ion implantation, or to provide deep ion implantation and shallow ion implantation simultaneously or in a continuous process. Figure 14 illustrates an example of an array 1400 of NAND storage elements, such as the elements shown in Figures i and 2. Along each row, the bit line is connected to the no-extreme 1426 of the gateless select gate of the NAND string 1450. Each source column of the ^nand string can be connected to all source terminals of the source select gate of the NAND string. An example of an array of ΝΑΝ〇 124970.doc -23- 1352404 architectures and their operation is found in U.S. Patent Nos. 5,57,315, and MMM35. Dividing the array of storage elements into a large number of systems is common, and the block is a single block. For a flash block containing a minimum number of storage elements that are erased, the parent block is divided into a number of pages. In the example of the page & general, the individual pages can be divided into sections, and the minimum number of days in which the stylized operation is performed - the number of writes can be included. A data page is usually stored in a storage element column. One page can store = multiple or multiple sectors... sectors include user data and consumption data. The sub-materials usually include the calculations of the self-contained data. (4) Error correction 2 (10) The controller-part (described below) calculates the ECC when the data is programmed into the array, and when reading the f-material from the array Also check the coffee. Or 'restore ECC and/or other (4) materials on pages different from the user's profile to which they belong or even in different blocks. One of the sectors of the user profile is typically 512 bytes, which corresponds to the size of one of the sectors in the disk drive. The consumption data is usually an additional 16_2〇 bytes. The big page forms a block from any number of up to 32, 64, 128 or more pages from, for example, 8 pages. In some embodiments, a NAND string contains a block. In one embodiment, the P well is raised to an erase voltage (eg, '20 V) for a sufficient period of time while the source line and the bit line are floated, and the word line of the selected block is grounded. Erase the memory storage element. The unselected sub-line, the bit line, the select line, and the common source (c_s〇urce) are also raised to a significant portion of the erase voltage due to the capacitive face. Therefore, a strong electric field is applied to the tunneling oxide layer of the selected memory, and the data of the selected storage element is erased as the electrons of the floating gate are emitted to the substrate side (usually by the Buddha) Fowler-Nordheim tunneling mechanism). As the electrons move from the floating open pole to the p-well region, the threshold voltage of the selected storage element decreases. Erasing can be performed on the entire memory array, in a separate block, or on another unit of the storage element. Figure 15 is a block diagram of a non-volatile memory system using a single column/row decoder and a read/write circuit. The figure illustrates a memory device 1596 having read/write circuits for reading and programming a page of storage elements in parallel, in accordance with an embodiment of the present invention. Memory device 1596 can include one or more memory dies 1 598. The memory die 598 includes a two-dimensional storage element array 1400, a control circuit 151, and a read/write circuit. In some embodiments, the array of storage elements can be three-dimensional. The memory array 14 can be addressed by the column decoder 1530 via the word lines and via the row decoder 156. The fetch/write circuit 丨 565 includes a plurality of sensing blocks 1 $(9) and allows a storage element page to be read or programmed in parallel. Typically, the controller 1550 is included in the same memory chip 598 as the memory chip 598 In the memory device 1596 (eg, a removable memory card), the commands and data are transferred between the host and the controller 1550 via line 1520, and the controller and the memory die 1598 are via line 1518. The control circuit 15 10 cooperates with the read/write circuit 1565 to perform an S memory operation on the memory array 1400. The control circuit 1510 includes a state machine 1512, an on-chip address decoder 15 14 and power control. The module 1516. The state machine 1512 provides wafer level control of the hidden operation. The on-chip address decoder 1514 provides 124970.doc • 25-1352404 for the address used by the host or the memory controller to be decoded by the decoder 1530. And hard used by 1 56G Address interface between addresses. Power control module 1516 controls the power and voltage supplied to the word lines and bit lines during memory operation. In some embodiments, certain components of Figure 15 may be combined. In the design, one or more of the components (except storage element array 1400) may be considered as a management circuit. For example, one or more management circuits may include control circuitry 151, Any one or combination of state machine 1512, decoder 1514/1560, power control 1516, sensing block 15A, read/write circuit 1565, controller 1550, etc. Figure 16 is a dual column Block diagram of a non-volatile delta-recall system of a row decoder and a read/write circuit. Here, another configuration of the memory device 1596 shown in FIG. 5 is provided. In a symmetric manner in the array Access to the memory array 14 by various peripheral circuits is performed on the opposite side such that the density of the access lines and circuits on each side is reduced by half. Therefore, the column decoder is divided into column decoders 1530A and 1530B. And the row decoder is divided into a row decoder 156 a and 1560B. Similarly, the read/write circuit is divided into a read/write circuit 1565 connected from the bottom of the array 14 to the bit line and connected to the bit line from the top of the array 14 The read/write circuit 1565B. In this manner, the density of the read/write module is substantially reduced by half. The device of Figure 16 may also include a controller for the device of Figure 15 as described above. Figure 17 is a block diagram depicting one embodiment of a sensing block. The individual sensing blocks 1500 are divided into a core portion (referred to as sensing module 1580) and a common portion 1590. In one embodiment, there will be a 124970, d〇« • 26· 1352404 individual sensing module 1580 for each bit line and a common part 1590 for a collection of multiple sensing modules 1580 » In one example, the sensing block will include a common portion 1590 and eight sensing modules 1580. Each of the sensing modules in the group will communicate with the associated common portion via a data bus 1572. For other details, refer to the title "Non-Volatile" published on June 29, 2006.

Memory & Method with Shared Processing for an Aggregate of Sense Amplifiers”之美國專利申請案公開案第2〇〇6/ 0140007號,且該案之全文係以引用之方式併入本文中。 感測模組1580包含感測電路1570,其判定所連接之位元 線中之傳導電流是高於還是低於一預定臨限位準。感測模 組1580亦包括位元線鎖存器1582,其用於設定所連接之位 元線上之電壓條件。舉例而言,鎖存於位元線鎖存器1582 中之預定狀態將導致所連接之位元線被拉至表示程式化抑 制之狀態(例如,Vdd) 〇 共同部分1590包含-處理器1592、一資料鎖存器洲集U.S. Patent Application Publication No. 2/6/014, 0007, the disclosure of which is incorporated herein by reference. A sensing circuit 1570 is included that determines whether the conduction current in the connected bit line is above or below a predetermined threshold level. The sensing module 1580 also includes a bit line latch 1582 for setting The voltage condition on the connected bit line. For example, the predetermined state latched in the bit line latch 1582 will cause the connected bit line to be pulled to indicate a stylized suppression state (eg, Vdd). 〇Common part 1590 contains - processor 1592, a data latch set

合,及一耦接於資料鎖存器1594集合與資料匿流排152〇之 間的I/O介面1596。處理器1592執行計算。舉例而言其 功能中之-者為判定儲存於所感測之儲存元件中之資料及 將所判定之資料儲存於資料鎖存器集合中。資料鎖存器 1594集合用於儲存在讀取操作期間由處理器⑽所判定之 資料位元。其亦用於儲存在程式化操作期間自資料匯流排 1520所輸入之資料位元。 ,^ 讯灸貧枓位兀表示意欲被程 式化至記憶體中之寫入資料。 H 1594& 1/0介面丨596提供資料鎖存 器1594與資枓匯流排152〇 124970.doc -27. 1352404And an I/O interface 1596 coupled between the data latch 1594 set and the data clearing block 152. Processor 1592 performs the calculations. For example, the function is to determine the data stored in the sensed storage element and store the determined data in the data latch set. The data latch 1594 set is used to store the data bits determined by the processor (10) during the read operation. It is also used to store the data bits entered from the data bus 1520 during the stylization operation. , ^ Moxibustion inferiority 兀 indicates the written data intended to be programmed into the memory. H 1594 & 1/0 interface 丨 596 provides data latch 1594 and asset bus 152 〇 124970.doc -27. 1352404

在讀取或感測期間’系統之操作受狀態機丨5丨2的控制, 狀態機1512控制不同控制閘極電壓至已定址儲存元件之供 應。隨著其步進通過對應於由記憶體所支援的各種記憶體 狀態之各種預定控制閘極電壓,感測模組158〇可在此等電 壓中之一者下解扣(trip),且輸出將經由匯流排1572而自感 測模組1580提供至處理器1592。此時,處理器1592藉由考 慮感測模組之解扣事件及關於經由輸入線丨593而自狀態機 所施加之控制閘極電壓之資訊來判定所得記憶體狀態。其 接著叶算用於記憶體狀態之二進位編碼且將所得資料位元 儲存至資料鎖存器1594中。在核心部分之另一實施例中, 位元線鎖存器1582充當雙重用途,既用作用於鎖存感測模 組1580之輸出之鎖存器,又用作上文所述之位元線鎖存 器。During operation during reading or sensing, the operation of the system is controlled by state machine 丨5丨2, which controls the supply of different control gate voltages to the addressed storage elements. As it steps through various predetermined control gate voltages corresponding to various memory states supported by the memory, the sensing module 158 can trip under one of the voltages and output The sensing module 1580 is provided to the processor 1592 via the busbar 1572. At this time, the processor 1592 determines the resulting memory state by considering the tripping event of the sensing module and the information about the control gate voltage applied from the state machine via the input line 丨593. The leaf is then used for the binary encoding of the memory state and the resulting data bits are stored in the data latch 1594. In another embodiment of the core portion, the bit line latch 1582 serves a dual purpose, both as a latch for latching the output of the sense module 1580 and as a bit line as described above. Latches.

預期一些實施例將包括多個處理器丨5 9 2。在一實施例 中,每一處理器1592將包括一輸出線(圖7中未描繪),使得 該等輸出線中之每—者被線或(wired-OR)在-起。在一些 =施例巾,輸线在連接至線或線之前被反向。此組態使 得施夠在程式化過程已完成時的程式化驗證過程期間進行 决速判定,因為接收線或的狀態機可敎正被程式化的所 有位元何時已達到所要位準。舉例而言,當每-位元已達 ^其所要位準時,該位元之邏輯零將被發送至線或線(或 一枓一被反向)。當所有位元輸出資料〇(或所反向之資料 )時’則狀態機知道終止程式化過程。因為每-處理器 與八個感測模組通信’所以狀態機需要將線或線讀取八 124970.doc •28·It is contemplated that some embodiments will include multiple processors. In one embodiment, each processor 1592 will include an output line (not depicted in Figure 7) such that each of the output lines is wired-OR. In some = example, the line is reversed before it is connected to the line or line. This configuration allows for a decisive determination during the stylized verification process when the stylization process has completed, since the receive line or state machine can determine when all of the stylized bits have reached the desired level. For example, when each bit has reached its desired level, the logical zero of that bit will be sent to the line or line (or one by one inverted). When all bits output data (or reversed data), then the state machine knows to terminate the stylization process. Because each processor communicates with eight sensing modules, the state machine needs to read lines or lines eight. 124970.doc •28·

1352404 次,或將邏輯加至處理器1592以累積關聯位元線之結果, 使得狀態機僅需要將線或線讀取一次。類似地藉由正破 地選擇邏輯位準,全域狀態機可偵測第一位元何時改變其 狀態且相應地改變演算法。 在程式化或驗證期間,待程式化之資料係自資料匯流排 1520儲存於資料鎖存器1594集合中。受狀態機控制的程式 化操作包含施加至已定址儲存元件之控制閘極的一系列程 式化電壓脈衝《每一程式化脈衝繼之以一回讀(驗證)以判 定儲存元件是否已被程式化至所要記憶體狀態。處理器 1592相對於所要記憶體狀態而監視回讀記憶體狀態。當兩 個狀態一致時,處理器1592設定位元線鎖存器1582,以便 使位元線被拉至表示程式化抑制之狀態。即使程式化脈衝 出現在儲存元件之㈣j閘極上,此亦抑難接至位元線之 儲存元件進一步程式化。在其他實施例中,處理器最初載 入位兀線鎖存器1 582,且感測電路在驗證過程期間將其設 定至抑制值。 資料鎖存器堆疊1594含有對應於感測模組之資料鎖存器 堆疊。在一實施例中,每個感測模組158〇存在三個資料鎖 存器。在一些實施例中(但並非所需的),將資料鎖存器實 施為移位暫存器’使得儲存於其中之並行資料轉換為用於 資料匯流排1520之串行資料’且反之亦然。在較佳實施例 中,對應於m個儲存元件之讀取/寫入區塊之所有資料鎖存 器可鏈接在一起以形成一區塊移位暫存器,使得可藉由串 行轉移來輸入或輸出一資料區塊。詳言之,採用r個讀取/ 124970.doc •29· 1352404 寫入模組之組,使得其資料鎖存器集合之每一者按順序將 資料移位至資料匯流排中或移出資料匯流排,好象該等資 料鎖存器為用於整個讀取/寫入區塊之移位暫存器之一部 分。1352404 times, or adding logic to processor 1592 to accumulate the result of the associated bit line, such that the state machine only needs to read the line or line once. Similarly, by logically selecting the logical level, the global state machine can detect when the first bit changes its state and change the algorithm accordingly. During stylization or verification, the data to be programmed is stored in the data latch 1594 set from the data bus 1520. The stylized operation controlled by the state machine includes a series of stylized voltage pulses applied to the control gates of the addressed storage elements. "Each stylized pulse is followed by a readback (verification) to determine if the storage element has been programmed. To the desired memory state. Processor 1592 monitors the readback memory state relative to the desired memory state. When the two states coincide, processor 1592 sets bit line latch 1582 to cause the bit line to be pulled to indicate a stylized suppression state. Even if the stylized pulse appears on the (4)j gate of the storage element, the storage element that is difficult to connect to the bit line is further stylized. In other embodiments, the processor is initially loaded into bit line latch 1 582 and the sense circuit sets it to a suppressed value during the verify process. The data latch stack 1594 contains a data latch stack corresponding to the sense module. In one embodiment, there are three data latches per sensing module 158. In some embodiments (but not required), the data latch is implemented as a shift register 'converts parallel data stored therein to serial data for data bus 1520' and vice versa . In a preferred embodiment, all of the data latches corresponding to the read/write blocks of the m storage elements can be linked together to form a block shift register so that it can be transferred by serial transfer. Enter or output a data block. In particular, r reads / 124970.doc • 29· 1352404 writes the group of modules so that each of its data latch sets shifts the data sequentially into the data bus or out of the data stream. Rows, as if the data latches are part of a shift register for the entire read/write block.

可在下列文獻中找到關於非揮發性儲存裝置之各種實施 例之結構及/或操作的額外資訊:(1) 2004年3月25日公開 的標題為"Non-Volatile Memory And Method With Reduced Source Line Bias Errors"之美國專利申請案公開案第 2004/0057287號;(2) 2004年6月10日公開的標題為"Non-Volatile Memory And Method with Improved Sensing" 之美 國專利申請案公開案第20〇4/0109357號;(3) 20〇4年12月 16 日申請的標題為"Improved Memory Sensing Circuit And Method For Low Voltage Operation"之美國專利申請案第 11/015,199號;(4) 2005年4月5曰申請的標題為 "Compensating for Coupling During Read Operations of Non-Volatile Memory"之美國專利申請案第11/099,133號; 及(5) 2005年12月28曰申請的標題為"Reference Sense Amplifier For Non-Volatile Memory"之美國專利申請案第 11/321,953號。所有五個上文直接列出之專利文獻之全文 係以引用之方式併入本文中》 圖18說明用於所有位元線記憶體架構或用於奇偶記憶體 架構的記憶體陣列至區塊之組織之實例。描述儲存元件陣 列1400之例示性結構。作為一實例,描述一被分割成 1,024個區塊之NAND快閃EEPROM。可同時擦除儲存於每 124970.doc •30· 1352404 一區塊中之資料。在一實施例中,區塊為同時被擦除之儲 . 存元件之最小單元。在此實例中,在每一區塊中存在對應 於位元線BL0、BL1、……、BL8511之8,512個行。在一被 • 稱為所有位元線(ABL)架構(架構1810)之實施例中,可在 讀取及程式化操作期間同時選擇一區塊之所有位元線。可 同時程式化沿共同字線且連接至任一位元線之儲存元件。 在所提供之實例中’四個儲存元件經串聯地連接以形成 _ — NAND串。雖然展示為在每一 NAND串中包括四個儲存 元件’但可使用多於或少於四個(例如,16、32、64或另 一數子)。NAND串的一端子經由一汲極選擇閘極(連接至 選擇閘極汲極線SGD)而連接至一對應位元線,且另一端 子經由一源極選擇閘極(連接至選擇閘極源極線SGS)而連 接至共同源極。 在被稱為奇偶架構(架構1800)之另一實施例中,將位元 線分成偶數位元線(BLe)及奇數位元線(BL〇卜在奇數/偶數 • ⑯元線架構令’ 一次程式化沿共同字線且連接至奇數位元 線之儲存元件,而另一次程式化沿共同字線且連接至偶數 位元線之儲存元件。可同時將資料程式化至不同區塊中及 . 自不同區塊讀取資料。在此實例中,在每一區塊中存在 * 8,512個行,其被分成偶數行及奇數行。在此實例中,展 示經串聯地連接以形成一NAND串的四個儲存元件。雖然 展示為在每一 NAND串中包括四個儲存元件,但可使用多 於或少於四個的儲存元件。 在讀取及程式化操作之-組態中,同時選擇4,256個儲 124970.doc -31 · 1352404 存元件。選定之儲存元件具有相同字線及相同類別之位元 如,偶數或奇數)。因此,可同時讀取或程式化形成 邏輯頁面的532個資料位元組,且記憶體之—區塊可儲 存至少八個邏輯頁面(四個字線,每一者具有奇數頁面及 偶數頁面)。對於多狀態儲存元件而言,當每—儲存元件 儲存兩個資料位元時(其中此等兩個位元中之每_者儲存 於不同頁面,)’—區塊儲存十六個邏輯頁面。亦可使用 其他大小之區塊及頁面。 對於ABL或奇偶架構而言,可藉由使p井升高至擦除電 壓(例如,20 V)及將選定區塊之字線接地來擦除儲存元 件。源極線及位元線料動的。可對㈣域體陣列、單 獨區塊或為記憶體裝置之—部分的儲存^件之另—單元執 行擦除。電子自儲存元件之浮動閘極轉移至p井區域,使 得儲存元件之VTH變為負。 在讀取及驗證操作中,將選擇閉極(SGD及⑽)連接至 在2·5 V至4.5 V範圍内之電壓,且使未選定字線(例如,當 WL2為選定字線時’未選定字線為WL()、乳丨及机3)升高 至讀取通過電壓vPASS(通常為在45 v範圍内之電麼) 以使電晶體作為通過閘極而操作。將選定字線WL2連接至 -電壓’㈣每-讀取及驗證操作而指定該電壓之位準, 以便判定所關心、之儲存元件之Vth是高於還是低於此位 準。舉例而言’在針對兩位準儲存元件之讀取操作中可 將選定字線WL2接地,使得偵測Vth是否高於〇 v。在針對 兩位準儲存元件之驗證操作中,將選定字線連接至 124970.doc -32· 1352404 (:如)ο·8 ν’使得驗證Vth是否已達到至少^ 8 v。源極及 P充電處至:;將選心 例如)。·”之位準。若〜高於字線上之讀取或驗 關且聯L於非導電儲存元件,與所關注之儲存元件相 」立70線(BLe)的電位位準維持高位準。另_方面, 於讀取或驗證位準,則因為導電儲存元件使位元 以所關心之位4(BLe)之電位位準降低至低 #,小於G·5 V)。儲存元件之狀態藉此可藉由連接 兀線之轉比較器感測放大器而加以伯測。 根據此項技術中已知之技術來執行上文 =驗證操作。因此’所解釋之許多細節可由熟f此項二 2者改變。亦可使用此項技術中已知之其他擦除、讀取及 驗證技術。 =騎臨限電壓分布之―實例集合。針對每—儲存元 件儲存兩個請位元之狀況而提㈣存元件陣列之實例臨 電壓刀布。針對擦除儲存元件而提供第一臨限電壓分布 E亦為繪程式化儲存元件的三個臨限電麼分布a、b及 C °在-實施例t,E分布中之臨限電壓為負,且A、b&c 分布中之臨限電壓為正。 、每-相異臨限電壓範圍對應於資料位元集合之預定值。 被程式化至館存元件中之資料與儲存元件之臨限電屋位準 =間的特疋關係、視為儲存元件所採用之資料編碼機制而 疋舉例而5,全文皆以引用之方式併入本文中之2004年 12月16日公開的美國專利第6,222,762號及美國專利申請案 124970.doc -33 - 1352404 公開案第2004/0255090號描述用於多狀態快閃儲存元件之 •各種資料編碼機制。在一實施例中,使用格雷碼指派 . (Gray code assignment)來將資料值指派給臨限電壓範圍, • 使得若浮動閘極之臨限電壓錯誤地移位至其相鄰實體狀 態,則僅一位元將受影響。一實例將"u "指派給臨限電壓 •範圍E(狀態E),將"10”指派給臨限電壓範圍a(狀態A),將 "〇〇”指派給臨限電壓範圍B(狀態B) ’且將,,〇丨”指派給臨限 ^ 電壓範圍C(狀態C)。然而,在其他實施例中,不使用格雷 碼。雖然展示四個狀態,但本發明亦可用於其他多狀態結 構’包括彼等包括多於或少於四個狀態之結構。 亦如供二個讀取參考電壓Vra、Vrb及Vrc以用於自儲存 元件讀取資料。藉由測試給定儲存元件之臨限電壓是高於 還是低於Vra、Vrb及Vrc,系統可判定儲存元件所處的狀 態。 另外 ^供二個驗證參考電壓Vva、Vvb及Vvc。當將儲 • 存7G件程式化至狀態A時,系統將測試彼等儲存元件是否 具有大於或等於Vva之臨限電壓。當將儲存元件程式化至 狀態B時,系統將測試儲存元件是否具有大於或等於Vvb 之臨限電壓。當將儲存元件程式化至狀態C時,系統將判 定儲存元件是否具有其大於或等於Vvc之臨限電壓。 在一被稱為全序列程式化之實施例中,儲存元件可自擦 除狀態E直接程式化至程式化狀態Λ、B或C中之任一者。 舉例而言’可首先擦除待程式化之儲存元件群體,使得該 群體中之所有儲存元件處於擦除狀態Ε。接著將諸如由圖 124970.doc • 34- 1352404 23之控制閘極電壓序列所描繪的一系列程式化脈衝用於將 儲存元件直接程式化至狀態A、B或C。當一些儲存元件正 自狀態E程式化至狀態A時,其他儲存元件正自狀態E程式Additional information regarding the structure and/or operation of various embodiments of non-volatile storage devices can be found in (1) published under the heading "Non-Volatile Memory And Method With Reduced Source" on March 25, 2004. U.S. Patent Application Publication No. 2004/0057287, filed on Jun. 10, 2004, entitled "Non-Volatile Memory And Method with Improved Sensing"20〇4/0109357; (3) US Patent Application No. 11/015,199, entitled "Improved Memory Sensing Circuit And Method For Low Voltage Operation", filed on December 16, 20, 2004; (4) 2005 The application titled "Compensating for Coupling During Read Operations of Non-Volatile Memory" is US Patent Application No. 11/099, 133; and (5) December 28, 2005, the title of the application is " Reference Sense Amplifier For Non-Volatile Memory " US Patent Application Serial No. 11/321,953. All of the five patent documents listed directly above are incorporated herein by reference. FIG. 18 illustrates a memory array to block for all bit line memory architectures or for parity memory architectures. An example of an organization. An illustrative structure of the array of storage elements 1400 is described. As an example, a NAND flash EEPROM that is divided into 1,024 blocks is described. The data stored in each block of 124970.doc •30· 1352404 can be erased at the same time. In one embodiment, the block is the smallest unit of the storage element that is simultaneously erased. In this example, there are 8,512 rows corresponding to the bit lines BL0, BL1, ..., BL8511 in each block. In an embodiment referred to as an All Bit Line (ABL) architecture (Architecture 1810), all of the bit lines of a block can be selected simultaneously during read and program operations. The storage elements along a common word line and connected to any of the bit lines can be programmed simultaneously. In the example provided, 'four storage elements are connected in series to form a _- NAND string. Although shown as including four storage elements in each NAND string, more or less than four (e.g., 16, 32, 64, or another number) may be used. One terminal of the NAND string is connected to a corresponding bit line via a drain select gate (connected to the select gate drain line SGD), and the other terminal is connected to the select gate source via a source select gate The pole line SGS) is connected to a common source. In another embodiment, referred to as an odd-even architecture (architecture 1800), the bit line is divided into even bit lines (BLe) and odd bit lines (BL〇 in odd/even numbers • 16-element line structure order) Stylized along the common word line and connected to the storage elements of the odd bit lines, and another programized along the common word line and connected to the storage elements of the even bit lines. The data can be programmed into different blocks at the same time. Data is read from different blocks. In this example, there are * 8,512 rows in each block, which are divided into even rows and odd rows. In this example, the displays are connected in series to form a NAND string. Four storage elements. Although shown to include four storage elements in each NAND string, more or less than four storage elements can be used. In the configuration of the read and program operation, select 4,256 at the same time. Stores 124970.doc -31 · 1352404 Save components. The selected storage elements have the same word line and the same class of bits such as even or odd. Therefore, 532 data bytes forming a logical page can be simultaneously read or programmed, and the memory-block can store at least eight logical pages (four word lines, each having an odd page and an even page) . For multi-state storage elements, when each storage element stores two data bits (where each of these two bits is stored on a different page), the block stores sixteen logical pages. Blocks and pages of other sizes can also be used. For an ABL or parity architecture, the storage element can be erased by raising the p-well to an erase voltage (e.g., 20 V) and grounding the word line of the selected block. The source line and the bit line are moving. Erasing can be performed on the (4) domain array, the individual block, or another unit that is part of the memory device. The floating gate of the electronic self-storage element is transferred to the p-well region, causing the VTH of the storage element to become negative. In the read and verify operations, the select closed (SGD and (10)) is connected to a voltage in the range of 2.5 V to 4.5 V, and the unselected word lines are made (eg, when WL2 is the selected word line) The selected word line is WL(), nipple, and machine 3) raised to a read pass voltage vPASS (typically in the 45 volt range) to operate the transistor as a pass gate. The selected word line WL2 is coupled to a voltage '(4) per-read and verify operation to specify the level of the voltage to determine if the Vth of the storage element of interest is above or below this level. For example, the selected word line WL2 can be grounded in a read operation for a two-bit quasi-storage element such that Vth is detected to be higher than 〇v. In the verify operation for the two quasi-storage elements, the selected word line is connected to 124970.doc -32· 1352404 (:) ο·8 ν' to verify that Vth has reached at least ^ 8 v. Source and P charge to:; will select the heart, for example). The position of "" is higher than the reading or verification of the word line and connected to the non-conductive storage element, and the potential level of the 70-line (BLe) is maintained at a high level with the storage element of interest. On the other hand, in reading or verifying the level, the conductive storage element causes the bit to decrease to a low #, less than G·5 V) at the potential level of the bit 4 (BLe) of interest. The state of the storage element can thus be tested by connecting a twisted comparator comparator sense amplifier. The above = verification operation is performed according to techniques known in the art. Therefore, many of the details explained can be changed by the familiar one. Other erasing, reading and verification techniques known in the art can also be used. = Instance set of riding threshold voltage distribution. For the case where each of the storage elements stores two bits, (4) an instance of the memory array is placed on the voltage knife. Providing the first threshold voltage distribution E for erasing the storage element is also the three thresholds of the stylized storage element, a, b, and C. In the embodiment t, the threshold voltage in the E distribution is negative. And the threshold voltage in the A, b & c distribution is positive. The per-differential threshold voltage range corresponds to a predetermined value of the set of data bits. The special relationship between the data stored in the library component and the storage component, and the data encoding mechanism used as the storage component is exemplified by the example 5, and the full text is cited by reference. U.S. Patent No. 6,222,762, issued December 16, 2004, and U.S. Patent Application Serial No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. mechanism. In one embodiment, Gray code assignment is used to assign data values to the threshold voltage range, • such that if the threshold voltage of the floating gate is erroneously shifted to its neighboring entity state, then only One yuan will be affected. An instance assigns "u " to the threshold voltage range E (state E), assigns "10" to the threshold voltage range a (state A), and assigns "〇〇 to the threshold voltage range B (state B) 'and will, 〇丨' is assigned to the threshold voltage range C (state C). However, in other embodiments, the Gray code is not used. Although four states are shown, the invention may also be used Other multi-state structures 'including those that include more or less than four states. For example, two read reference voltages Vra, Vrb, and Vrc are used for reading data from the storage element. Whether the threshold voltage of the storage component is higher or lower than Vra, Vrb and Vrc, the system can determine the state of the storage component. In addition, two verification reference voltages Vva, Vvb and Vvc are provided. When the storage and storage 7G program is stored When the state A is reached, the system will test whether their storage elements have a threshold voltage greater than or equal to Vva. When the storage element is programmed to state B, the system will test whether the storage element has a threshold voltage greater than or equal to Vvb. When staging storage elements to state C The system will determine if the storage element has its threshold voltage greater than or equal to Vvc. In an embodiment referred to as full sequence stylization, the storage element can be directly programmed from the erased state E to the stylized state Λ, B or Any of C. For example, the population of storage elements to be programmed may be erased first such that all storage elements in the population are in an erased state. Then, such as by Figure 124970.doc • 34- 1352404 23 A series of stylized pulses depicted by the control gate voltage sequence are used to program the storage elements directly into state A, B, or C. When some storage elements are being programmed from state E to state A, the other storage elements are State E program

化至狀態B及/或自狀態E程式化至狀態C。當在WLn上自狀 態E程式化至狀態C時,因為與自狀態E程式化至狀態A或 自狀態E程式化至狀態B時的電壓變化相比,WLn下方之浮 動閘極上的電荷量變化最大,所以至WLn· 1下方之鄰近浮 動閘極之寄主耦合量被最大化。當自狀態E程式化至狀態B 時’至鄰近孚動閘極之耦合量減小,但仍顯著。當自狀態 E程式化至狀態A時,耦合量甚至進一步減小。因此,為 隨後讀取WLn-1之每一狀態所需之校正量將視WLn上之鄰 近儲存元件之狀態而改變。Transition to state B and/or from state E to state C. When staging from state E to state C on WLn, the amount of charge on the floating gate below WLn is changed compared to the voltage change from state E to state A or from state E to state B. Maximum, so the amount of host coupling to the adjacent floating gate below WLn·1 is maximized. When staging from state E to state B, the amount of coupling to the adjacent swell gate decreases, but is still significant. When staging from state E to state A, the amount of coupling is even further reduced. Therefore, the amount of correction required to subsequently read each state of WLn-1 will vary depending on the state of the adjacent storage elements on WLn.

圖20說明程式化儲存兩個不同頁面(下部頁面及上部頁 面)之資料之多狀態儲存元件之兩次通過技術的實例。描 繪四個狀態:狀態E(ll)、狀態A(1〇)、狀態B(〇〇)及狀態 C(〇l)。對於狀態E,兩個頁面皆儲存"i"。對於狀態a,下 部頁面儲存"0"且上部頁面儲存”丨"。對於狀態B,兩個頁 面皆儲存"〇"。對於狀態C,下部頁面儲存"丨"且上部頁面 儲存"〇"。注意’雖然已將特定位元型樣指派給該等狀態 中之每一者,但亦可指派不同位元型樣。 在第-程式化通過中,根據待程式化至下部邏輯頁面中 之位元來設定儲存元件之臨限電壓位準1彼位元為邏輯 1 ’則不改變臨限電壓,因為其由於早先已被擦除而處 於適當狀態'然而,如由箭頭1100所示,若待程式化之位 124970.doc •35- 比2404 兀為邏輯〇",則將儲存元件之臨限位準增加至狀態A。其 使第一程式化通過結束。 在第一程式化通過中’根據待程式化至上部邏輯頁面中 之位兀來設定儲存元件之臨限電塵位準。若上部邏輯頁面 位元將儲存邏輯”",則不發生程式化,因為視下部頁面 位元之程式化而定,儲存元件處於狀態E或A中之一者, 兩個狀態皆载運上部頁面位元"”。若上部頁面位元將為 邏輯則使臨限電壓移位。若第一通過導致儲存元件 保持處於擦除狀態E ,則如箭頭2〇2〇所描繪,在第二階段 中程式化儲存元件,使得臨限電壓增加至在狀態C内。若 儲存元件由於第一程式化通過而已被程式化至狀態A,則 如箭頭2010所描繪,在第二通過中進一步程式化儲存元 件,使得臨限電壓增加至在狀態B内。第二通過之結果為 將儲存7C件程式化至所表示之狀態以儲存上部頁面之邏輯 "〇”,而不改變下部頁面之資料。在圖19及圖20兩者中, 鄰近字線上的至浮動閘極之耦合量取決於最終狀態。 在一實施例中,系統可經設置以在足夠資料經寫入以填 滿整個頁面時執行全序列寫入。若為全頁面寫入不足夠的 資料,則程式化過程可程式化以所接收之資料而程式化之 下部頁面。當接收到後續資料時,系統將接著程式化上部 頁面。在又一實施例中,系統可在程式化下部頁面之模式 中開始寫入,且若隨後接收到足夠資料以填滿整個(或大 #刀)予線之儲存元件,則系統可轉換至全序列程式化模 式。在2006年6月15日公開的標題為"Pipelined 124970.doc • 36 - 1352404Figure 20 illustrates an example of a two-pass technique for multi-state storage elements that programmatically store data for two different pages (lower page and upper page). Four states are depicted: state E (ll), state A (1 〇), state B (〇〇), and state C (〇l). For state E, both pages store "i". For state a, the lower page stores "0" and the upper page stores "丨". For state B, both pages store "〇". For state C, the lower page stores "丨" and the upper page Save "〇". Note that although a specific bit pattern has been assigned to each of these states, different bit patterns can also be assigned. In the first stylized pass, according to the program to be programmed To the bit in the lower logic page to set the threshold voltage level of the storage element. 1 bit is logic 1 'and the threshold voltage is not changed because it is in the proper state because it has been erased earlier. As indicated by arrow 1100, if the bit to be programmed 124970.doc • 35- is 2404 〇 logical 〇 ", the threshold of the storage element is increased to state A. This causes the first stylization to end. The first stylization passes the setting of the temporary dust level of the storage element according to the position to be programmed into the upper logic page. If the upper logical page bit will store the logic "", no stylization occurs. Because the lower page Depending on the stylization of the element, the storage element is in one of the states E or A, and both states carry the upper page bit "". If the upper page bit will be logical, the threshold voltage is shifted. The first pass causes the storage element to remain in the erased state E, as depicted by arrow 2〇2〇, staging the storage element in the second phase, causing the threshold voltage to increase to state C. If the storage element is due to the first Stylized through and programmed into state A, as depicted by arrow 2010, the storage element is further programmed in the second pass, causing the threshold voltage to increase to state B. The result of the second pass is that 7 C pieces will be stored. Stylize to the state indicated to store the logic "〇 of the upper page without changing the information on the lower page. In both Figures 19 and 20, the amount of coupling to the floating gate on the adjacent word line depends on the final state. In an embodiment, the system can be configured to perform a full sequence of writes when sufficient data is written to fill the entire page. If insufficient data is written for the full page, the stylization process can program the lower page that is stylized with the received data. When subsequent data is received, the system will then program the upper page. In yet another embodiment, the system can begin writing in the mode of the programmed lower page, and if sufficient data is subsequently received to fill the entire (or large) knife storage element, the system can switch to full Sequence stylized mode. The title published on June 15, 2006 is "Pipelined 124970.doc • 36 - 1352404

Programming 〇f Non-Volatile Memories Using Early Data" 之美國專利申請案公開案第2006/0126390號中揭示此實施 例之更多細節’該案之全文係以引用之方式併入本文中。 圖21A-21C揭示用於程式化非揮發性記憶體之另一過 程,其針對任何特定儲存元件而藉由在針對先前頁面而寫 入至鄰近儲存元件之後關於一特定頁面而寫入至該特定儲 存元件來減少浮動閘極至浮動問極之耗合效應。在一實例 實施例中,非揮發性儲存元件使用四個資料狀態來儲存每 個儲存兀件之兩個資料位兀。舉例而言假設狀態E為擦 除狀態且狀態A、C為程式化狀態。狀態E儲存資料 11。狀態Α儲存資料01。狀態Β健存資料1〇。狀態c儲存資 料〇〇。因為兩個位元在鄰近狀態之間改變,所以此 為非格雷編碼之一實例。亦可使用資料至實體資㈣態之 其他編碼。每一储存元件儲存兩個資料頁面。出於參考之 目的’將此等資料頁面稱作上部頁面及下部頁面;然而, 該等頁面可被給予其他標記。參考狀態A,上部頁面儲存 位元0且下部頁面儲存位元!。參考狀態b,i部頁面儲存 位元i且下部頁面儲存位元〇。參考狀社,兩個頁面皆儲 存位元資料〇。 程式化過程為兩步驟過程。在第—步驟中,程式化下邻 頁面。若下部頁面保持資料卜則儲存元件狀態保持為狀 態E。若資料被程式化至〇’則儲存元件之電遂臨限值升 南’使得储存元件被程式化至狀態B,。圖21八因此展示健 存疋件自狀態E至狀態B’之程式化。狀態B,為中間狀態 124970.doc •37- 1352404 因此’驗證點被描繪為Vvb,,其低於Vvb。 在一實施例中,在儲存元件自狀態E程式化至狀態Β·之 後’將接著關於儲存元件之下部頁面來程式化其在nand 串中的相鄰儲存元件(WLn+丨)。舉例而言,返回參看圖2, 在程式化儲存元件106之下部頁面之後,將程式化儲存元 件104之下部頁面。在程式化儲存元件1〇4之後,若儲存元 件104具有自狀態E升高至狀態B,之臨限電壓,則浮動閘極 至浮動閘極之耦合效應將使儲存元件1〇6之表觀臨限電壓 升尚。此將具有使狀態Βι之臨限電壓分布加寬至被描述為 圖21B之臨限電壓分布125〇之分布的效應。臨限電壓分布 之此表觀加寬將在程式化上部頁面時得以矯正。 圖2 1C描繪程式化上部頁面之過程。若儲存元件處於擦 除狀態E且上部頁面保持為丨,則儲存元件將保持處於狀態 E。若儲存元件處於狀態E且其上部頁面資料將被程式化至 〇,則儲存元件之臨限電壓將升高,使得儲存元件處於狀 態A。若儲存元件處於中間臨限電壓分布215〇且上部頁面 資料將保持為1,則儲存元件將被程式化至最終狀態B。若 儲存元件處於中間臨限電壓分布215〇且上部頁面資料將變 為資料〇,則儲存元件之臨限電壓將升高’使得儲存元件 處於狀態圖21A-21C所描繪之過程減少浮動閘極至浮 動閘極之耦合效應,因為僅相鄰儲存元件之上部頁面程式 化將對給定儲存元件之表觀臨限電壓有影響。替代狀態編 碼之一實例為:當上部頁面資料為丄時,自分布215〇移至 狀態C ’且當上部頁面資料為〇時,移至狀態b。 124970.doc -38 - 1352404 雖然圖21A-21C提供關於四個資料狀態及兩個資料頁面 之實例’但所教示之概念可應用於具有多於或少於四個狀 態及不同於兩個頁面之其他實施例。 圖22為描述用於程式化非揮發性記憶體之方法之一實施 例的流程圖。在一實施例中,在程式化之前,(以區塊或 其他單元)擦除儲存元件。在步驟22〇〇中,由控制器發布 "資料載入"命令且由控制電路15 1〇接收該命令。在步驟 2205中’將表示頁面位址之位址資料自控制器或主機輸入 至解碼器1514。在步驟2210中,將已定址頁面的一程式化 資料頁面輸入至一資料緩衝器以用於程式化。將該資料鎖 存於適當的鎖存器集合中。在步驟2215中,由控制器將 "程式化"命令發布至狀態機1512。 藉由"程式化”命令而觸發,將使用施加至適當字線之圖 23之步進式脈衝231〇、232〇、233〇、234〇、235〇等等來將 在步驟2210 t所鎖存之資料程式化至由狀態機1512所控制 的選定儲存元件中。在步驟222〇中,將程式化電壓VpGM初 始化至起始脈衝(例如,12 V或其他值)且將由狀態機1512 所維持的程式計數器PC初始化為0。在步驟2225中,將第 一 ^^(^脈衝施加至選定字線以開始程式化與選定字線相關 聯之儲存元件。若邏輯”〇”儲存於指示對應儲存元件應被 程式化之特定資料鎖存器中,則將對應位元線接地。另一 方面,右邏輯”1"儲存於指示對應儲存元件應保持於其當 月1J資料狀態之特定鎖存器中,則將對應位元線連接至vdd 以抑制程式化。 124970.doc •39- 1352404Further details of this embodiment are disclosed in the U.S. Patent Application Publication No. 2006/0126390, the entire disclosure of which is incorporated herein by reference. 21A-21C disclose another process for programming non-volatile memory that is written to a particular page for a particular page by writing to a neighboring storage element for a particular page. Store components to reduce the effects of floating gates to floating poles. In an exemplary embodiment, the non-volatile storage element uses four data states to store two data bits for each storage element. For example, assume that state E is the erase state and states A, C are stylized. State E stores data 11. Status Α Stores data 01. Status Β Health data 1 〇. State c stores the data. This is an instance of non-Gray coding because the two bits change between adjacent states. It is also possible to use the data to other codes of the entity (4) state. Each storage element stores two data pages. These data pages are referred to as upper and lower pages for reference purposes; however, such pages may be given other indicia. Referring to state A, the upper page stores bit 0 and the lower page stores bits! . Referring to state b, the i page stores bit i and the lower page stores bit 〇. According to the reference agency, both pages store bit data. The stylization process is a two-step process. In the first step, the next page is stylized. If the lower page holds the data, the storage element state remains in state E. If the data is programmed to 〇' then the power-on threshold of the storage component is incremented so that the storage component is programmed to state B. Figure 21 shows the stylization of the health condition from state E to state B'. State B, which is the intermediate state 124970.doc • 37- 1352404 Therefore the 'verification point is depicted as Vvb, which is lower than Vvb. In one embodiment, after the storage element is programmed from state E to state, the adjacent storage elements (WLn+丨) in the nand string are then programmed with respect to the lower page of the storage element. For example, referring back to Figure 2, after the page below the stylized storage element 106, the lower page of the storage element 104 will be stylized. After the stylized storage element 1〇4, if the storage element 104 has a threshold voltage from state E to state B, the coupling effect of the floating gate to the floating gate will make the storage element 1〇6 look The threshold voltage is rising. This will have the effect of widening the threshold voltage distribution of state 至 to the distribution described as the threshold voltage distribution 125 图 of Figure 21B. This apparent widening of the threshold voltage distribution will be corrected when the upper page is programmed. Figure 2 1C depicts the process of stylizing the upper page. If the storage element is in the erased state E and the upper page remains 丨, the storage element will remain in state E. If the storage element is in state E and its upper page data is to be programmed to 〇, then the threshold voltage of the storage element will rise, causing the storage element to be in state A. If the storage element is at the intermediate threshold voltage distribution 215 and the upper page data will remain at 1, the storage element will be programmed to final state B. If the storage element is at the intermediate threshold voltage distribution 215 and the upper page data will become data 〇, then the threshold voltage of the storage element will rise 'so that the storage element is in the state depicted in Figures 21A-21C to reduce the floating gate to The coupling effect of the floating gates, because only page programming on top of adjacent storage elements will have an effect on the apparent threshold voltage of a given storage element. An example of an alternate status code is: when the upper page data is 丄, the self-distribution 215 is moved to the state C ’ and when the upper page data is 〇, the state b is moved. 124970.doc -38 - 1352404 Although Figures 21A-21C provide examples of four data states and two profile pages', the concepts taught can be applied to have more or less than four states and are different from two pages. Other embodiments. Figure 22 is a flow chart depicting one embodiment of a method for staging non-volatile memory. In one embodiment, the storage elements are erased (in blocks or other units) prior to programming. In step 22, the "data load" command is issued by the controller and received by the control circuit 15 1〇. In step 2205, the address data representing the page address is input from the controller or host to the decoder 1514. In step 2210, a stylized data page of the addressed page is entered into a data buffer for stylization. The data is locked in the appropriate set of latches. In step 2215, the "stylized" command is issued by the controller to state machine 1512. Triggered by the "stylized" command, the stepping pulses 231, 232, 233, 234, 235, etc. applied to Figure 23 of the appropriate word line will be locked in step 2210 The stored data is programmed into selected storage elements controlled by state machine 1512. In step 222, the programmed voltage VpGM is initialized to a start pulse (e.g., 12 V or other value) and will be maintained by state machine 1512. The program counter PC is initialized to 0. In step 2225, a first ^^(^ pulse is applied to the selected word line to begin programming the storage element associated with the selected word line. If the logic "〇" is stored in the indication corresponding storage In the specific data latch where the component should be programmed, the corresponding bit line is grounded. On the other hand, the right logic "1" is stored in a specific latch indicating that the corresponding storage element should remain in its 1J data state for the current month. , then connect the corresponding bit line to vdd to suppress stylization. 124970.doc •39- 1352404

在步驟2230中,驗證選定儲存元件之狀態。若彳貞測到選 定儲存7C件之目標臨限電壓已達到適當位準,則將儲存於 對應資料鎖存器中之資料改變至邏輯"1”。若㈣到臨限 電壓尚未達到適當位準’則不改變儲存於對應資料鎖存器 中之資料。以此方式,不需要程式化具㈣存於位元線之 對應資料鎖存11中之邏輯τ的位元線。當所有資料鎖存 器均儲存邏輯’’1,,時,狀態機(經由上文所述之線或型機制) 知道所有選定儲存元件已被程式化。在步驟2235中,檢查 是否所有資料鎖存H儲存邏輯"卜若如&,則程式化過 程完成且成功,因為所有選定儲存元件經程式化及驗證。 在步驟2240中報告"通過"狀態。 若在步驟2235中判定不是所有資料鎖存器均儲存邏輯 1 ,則繼續程式化過程。在步驟2245中,對照程式極限In step 2230, the status of the selected storage element is verified. If it is determined that the target threshold voltage of the selected storage 7C has reached the appropriate level, the data stored in the corresponding data latch is changed to logic "1". If (4) the threshold voltage has not reached the appropriate level Quasi' does not change the data stored in the corresponding data latch. In this way, there is no need for the programming tool (4) to store the bit line of the logical τ in the corresponding data latch 11 of the bit line. The registers all store logic ''1', when the state machine (via the line or type mechanism described above) knows that all selected storage elements have been programmed. In step 2235, it is checked if all data is latched H storage logic "Bu Ruru &, the stylization process is completed and successful, because all selected storage elements are programmed and verified. In step 2240, report "pass" status. If it is determined in step 2235 that not all data latches are determined Store logic 1 to continue the stylization process. In step 2245, compare the program limits.

值PCmax來檢查程式計數器pc。程式極限值之一實例為 20 ;然而,亦可使用其他數字。若程式計數器pc不小於 PCmax,則程式化過程失敗且在步驟225〇中報告"失敗"狀 態若程式叶數器PC小於PCmax ’則在步驟2255中使VPGM 増加步長且使程式計數器pc遞增。在步驟2255之後,該過 程返回至步驟2225以施加下一 vPGM脈衝。 圖23展示電壓波形23〇〇,其包括施加至經選定以用於程 式化之字線的一系列程式化脈衝23 10、2320、2330、 2340、23 50,等等。在一實施例中,程式化脈衝具有電壓 Vpgm ’其自12 V開始且針對每一連續程式化脈衝而逐增量 地(例如’ 0.5 V)增加,直至達到21 V的最大值為止《在程 124970.doc -40- 1352404 式化脈衝之間存在驗證脈衝集合2312、2322、2332、 2342、2352,等等。在一些實施例中,可存在一用於資料 被程式化至的每一狀態之驗證脈衝。在其他實施例中,可 存在更多或更少之驗證脈衝。每一集合中之驗證脈衝可具 有(例如)Vva、Vvb及Vvc之振幅(圖20)。 在一實施例十,沿共同字線而將資料程式化至儲存元 件。因此,在施加程式化脈衝之前,選擇該等字線中之一 者以用於程式化。此字線被稱為選定字線。區塊之剩餘字 線被稱為未選定字線。選定字線可具有—個或兩個相鄰字 線。若選定字線具有兩個相鄰字線,則汲極側上之相鄰字 線被稱為汲極侧相鄰字線,且源極側上之相鄰字線被稱為 源極側相鄰字線,舉例而言,若圖3之WL2為選定字線, 則WL1為源極側相鄰字線且WL3為汲極侧相鄰字線。 儲存元件之每一區塊包括一形成行之位元線集合及一形 成列之字線集合。在一實施例中,將位元線分成奇數位元 線及偶數位元線。如結合圖18所論述,一次程式化沿共同 子線且連接至奇數位元線之儲存元件,而另一次程式化沿 共同字線且連接至偶數位元線之儲存元件奇數/偶數程式 化)。在另一實施例中,沿一用於區塊中之所有位元線之 字線而程式化儲存元件("所有位元線程式化")。在其他實 施例中,位元線或區塊可被分為其他群組(例如,左邊及 右邊、兩個以上之群組,等等)。 已為了說明及描述之目的而呈現本發明之前述詳細描 述。其並不意欲為詳盡的或將本發明限於所揭示之精確形 124970.doc •41- 1352404 式。鑒於以上教示,能夠進行許多修改及變化。選擇所描 述之實施例,以便最佳地解釋本發明之原理及其實踐應 用,以藉此使熟習此項技術者能夠在各種實施例中且以適 於所預期之特別用途的各種修改來最佳地利用本發明。意 欲由此處隨附之申請專利範圍來界定本發明之範嘴。 【圖式簡單說明】 圖1為NAND串之俯視圖。 圖2為NAND串之等效電路圖。The value PCmax is used to check the program counter pc. An example of a program limit is 20; however, other numbers can be used. If the program counter pc is not less than PCmax, the stylization process fails and a "fail" status is reported in step 225, if the program leaf PC is less than PCmax', then VPGM is incremented by step size and the program counter pc is made in step 2255. Increment. After step 2255, the process returns to step 2225 to apply the next vPGM pulse. Figure 23 shows a voltage waveform 23A comprising a series of stylized pulses 2310, 2320, 2330, 2340, 2350 applied to a word line selected for programming, and the like. In one embodiment, the stylized pulses have a voltage Vpgm 'which starts at 12 V and increases incrementally (eg, '0.5 V) for each successive stylized pulse until a maximum of 21 V is reached 124970.doc -40- 1352404 There are verification pulse sets 2312, 2322, 2332, 2342, 2352, and so on. In some embodiments, there may be a verify pulse for each state to which the data is programmed. In other embodiments, there may be more or fewer verification pulses. The verify pulses in each set may have amplitudes of, for example, Vva, Vvb, and Vvc (Fig. 20). In a tenth embodiment, the data is stylized along the common word line to the storage element. Therefore, one of the word lines is selected for stylization prior to applying the stylized pulses. This word line is called the selected word line. The remaining word lines of the block are referred to as unselected word lines. The selected word line can have one or two adjacent word lines. If the selected word line has two adjacent word lines, the adjacent word lines on the drain side are referred to as the drain side adjacent word lines, and the adjacent word lines on the source side are referred to as the source side phases. The adjacent word line, for example, if WL2 of FIG. 3 is the selected word line, WL1 is the source side adjacent word line and WL3 is the drain side adjacent word line. Each block of the storage element includes a set of bit lines forming a row and a set of word lines forming a column. In one embodiment, the bit lines are divided into odd bit lines and even bit lines. As discussed in connection with FIG. 18, one time stylizes the storage elements along the common sub-line and connected to the odd bit lines, and the other stylizes the odd/even stylized storage elements along the common word line and connected to the even bit lines) . In another embodiment, the storage element is programmed along a word line for all of the bit lines in the block ("All Bits Threaded"). In other embodiments, bit lines or blocks may be divided into other groups (e.g., left and right, more than two groups, etc.). The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. Many modifications and variations are possible in light of the above teachings. The embodiments described are chosen to best explain the principles of the invention and the practice of the application in the The present invention is preferably utilized. It is intended that the scope of the invention be defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a NAND string. Figure 2 is an equivalent circuit diagram of a NAND string.

圖3為NAND快閃儲存元件陣列之方塊圖。 圖4描繪展示程式化區域及擦除區域之NAND串之橫截面 圖。 圖5描續·靠近隔離字線之NAND串通道中之閘極誘發j:及極 洩漏(GIDL)及帶對帶穿隧(BTBT)之發生。 圖6至圖13係關於用於在基板中植入額外離子以控制升 壓之過程。3 is a block diagram of an array of NAND flash memory elements. Figure 4 depicts a cross-sectional view of a NAND string showing a stylized area and an erased area. Figure 5 depicts the occurrence of gate-induced j: and pole leakage (GIDL) and band-to-band tunneling (BTBT) in the NAND string channel near the isolated word line. Figures 6 through 13 relate to a process for implanting additional ions in a substrate to control the boost.

圖6描繪在基板中植入淺離子植入。 圖7描繪在基板上形成光阻結構。 圖8描繪基板之選定區域中之深離子植入。 圖9描繪展示具有深離子植入之區域的圖8之基板之俯視 圖。 圖10描繪展示具有深離子植入之區域及形成於基板上之 NAND串的圖8之基板之橫截面圖。 圖11描繪展示具有深離子植入之區域的基板之俯視圖。 圖12描繪展示具有深離子植入之區域及形成於基板上之 124970.doc -42· 1352404 NAND串的圖11之基板之橫截面圖。 圖13描繪用於在基板中植人額外離子哺料壓之過程 之流程圖。 圖14為NAND快閃儲存元件陣列之方塊圖。 圖15為使用單列/行解碼器及讀取/寫入電路之非揮發性 記憶體系統之方塊圖。 圖16為使用雙列/行解碼器及讀取/寫入電路之非揮發性 記憶體系統之方塊圖。Figure 6 depicts the implantation of a shallow ion implant in a substrate. Figure 7 depicts the formation of a photoresist structure on a substrate. Figure 8 depicts deep ion implantation in selected regions of the substrate. Figure 9 depicts a top plan view of the substrate of Figure 8 showing a region with deep ion implantation. Figure 10 depicts a cross-sectional view of the substrate of Figure 8 showing a region with deep ion implantation and a NAND string formed on a substrate. Figure 11 depicts a top view showing a substrate with a region of deep ion implantation. Figure 12 depicts a cross-sectional view of the substrate of Figure 11 showing a region with deep ion implantation and a 124970.doc - 42 · 1352404 NAND string formed on a substrate. Figure 13 depicts a flow diagram of a process for implanting additional ion feed pressure in a substrate. Figure 14 is a block diagram of an array of NAND flash memory elements. Figure 15 is a block diagram of a non-volatile memory system using a single column/row decoder and a read/write circuit. Figure 16 is a block diagram of a non-volatile memory system using a dual column/row decoder and a read/write circuit.

圖17為描繪感測區塊之一實施例之方塊圖。 圖18說明用於所有位元線記憶體架構或用於奇偶記憶體 架構之記憶體陣列至區塊之組織之一實例。 " 圖19描繪臨限電壓分布之一實例集合。 圖20描繪臨限電壓分布之一實例集合。 圖21A至圖21C展示各種臨限電壓分布 刀叩丘拖述用於程式 化非揮發性記憶體之過程。 鲁 圖22為描述用於程式化非揮發性記憶體之過程之實 例之流程圖。 元件之控制閘 圖23為在程式化期間施加至非揮發性儲存 極之實例波形》 【主要元件符號說明】 100 電晶體 100CG 控制閘極 100FG 浮動閘極 102 電晶體 124970.doc -43· 135240417 is a block diagram depicting one embodiment of a sensing block. Figure 18 illustrates an example of organization for all bit line memory architectures or memory array to blocks for a parity memory architecture. " Figure 19 depicts a collection of examples of threshold voltage distributions. Figure 20 depicts an example set of threshold voltage distributions. Figures 21A-21C show various threshold voltage distributions for the process of programming non-volatile memory. Figure 22 is a flow chart depicting an example of a process for programming non-volatile memory. Control switch for components Figure 23 shows an example waveform applied to a non-volatile storage during stylization. [Key Symbol Description] 100 Transistor 100CG Control Gate 100FG Floating Gate 102 Transistor 124970.doc -43· 1352404

102CG 控制閘極 102FG 浮動閘極 104 電晶體 104CG 控制閘極 104FG 浮動閘極 106 電晶體 106CG 控制閘極 106FG 浮動閘極 120 第一選擇閘極 120CG 控制閘極 122 第二選擇閘極 122CG 控制閘極 126 位元線 128 源極線 320 NAND 串 321 位元線 322 選擇閘極 323 儲存元件 324 儲存元件 325 儲存元件 326 儲存元件 327 選擇閘極 340 NAND 串 341 位元線 -44- 124970.doc 1352404102CG control gate 102FG floating gate 104 transistor 104CG control gate 104FG floating gate 106 transistor 106CG control gate 106FG floating gate 120 first selection gate 120CG control gate 122 second selection gate 122CG control gate 126 bit line 128 source line 320 NAND string 321 bit line 322 select gate 323 storage element 324 storage element 325 storage element 326 storage element 327 select gate 340 NAND string 341 bit line -44- 124970.doc 1352404

342 選擇閘極 343 儲存元件 344 儲存元件 345 儲存元件 346 儲存元件 347 選擇閘極 360 NAND 串 361 位元線 362 選擇閘極 363 儲存元件 364 儲存元件 365 儲存元件 366 儲存元件 367 選擇閘極 400 NAND 串 402 源極侧選擇閘極 404 源極供應線 406 源極侧選擇閘極 408 儲存元件 410 儲存元件 412 儲存元件 414 儲存元件 416 儲存元件 418 儲存元件 124970.doc -45 - 1352404342 Select Gate 343 Storage Element 344 Storage Element 345 Storage Element 346 Storage Element 347 Select Gate 360 NAND String 361 Bit Line 362 Select Gate 363 Storage Element 364 Storage Element 365 Storage Element 366 Storage Element 367 Select Gate 400 NAND String 402 source side select gate 404 source supply line 406 source side select gate 408 storage element 410 storage element 412 storage element 414 storage element 416 storage element 418 storage element 124970.doc -45 - 1352404

420 儲存元件 422 儲存元件 424 汲極側選擇閘極 426 位元線 428 汲極側選擇閘極 430 源極/汲極區域 432 源極/汲極區域 434 源極/汲極區域 440 控制閘極 442 介電質 444 浮動閘極 446 絕緣體 450 程式化區域 460 擦除區域 470 邊緣 472 接合邊緣/接合 474 邊緣 490 基板 600 基板 610 淺離子植入 620 絕緣氧化物層 690 基板 710 光阻結構 720 光阻結構 124970.doc -46- 1352404 * 810 深離子植入 . 820 深離子植入 1000 NAND 串 . 1002 選擇閘極 1004 源極供應端子 1006 選擇閘極 1010 NAND 串 1020 NAND 串 Ά 零 1024 汲極側選擇閘極 1026 位元線端子 1028 選擇閘極 1030 末端字線 1040 末端字線 1042 儲存元件 1044 儲存元件 鲁 1050 末端字線 1060 末端字線 1090 基板 * 1100 光阻結構 • 1102 光阻結構 1104 光阻結構 1110 深離子植入 1112 深離子植入 1200 NAND 串 124970.doc -47- 1352404 • 1210 NAND 串 , 1220 NAND 串 • 1230 末端字線 1240 末端字線 1245 中間字線之群 1250 末端字線 1260 末端字線 1290 基板 參 1400 儲存元件陣列 1404 源極線 1406 位元線 1426 沒極端子 1428 源極端子 1450 NAND 串 1500 感測區塊 1510 控制電路 胃 1512 狀態機 1514 晶片上位址解碼器 • 1516 功率控制模組 • 1518 線 1520 線/資料匯流排 1530 列解碼器 1530A 列解碼器 1530B 列解碼器 124970.doc -48- 1352404 - 1550 控制器 , 1560 行解碼器 • 1560A 行解碼器 1560B 行解碼器 1565 讀取/寫入電路 1565A 讀取/寫入電路 1565B 讀取/寫入電路 1570 感測電路 參 1572 資料匯流排 1580 感測模組 1582 位元線鎖存器 1590 共同部分 1592 處理器 1593 輸入線 1594 資料鎖存器 1596 記憶體裝置/1/0介面 胃 1598 記憶體晶粒 1800 奇偶架構 1810 所有位元線架構 2300 電壓波形 2310 程式化脈衝 2312 驗證脈衝集合 2320 程式化脈衝 2322 驗證脈衝集合 124970.doc -49- 1352404420 storage element 422 storage element 424 drain side select gate 426 bit line 428 drain side select gate 430 source/drain region 432 source/drain region 434 source/drain region 440 control gate 442 Dielectric 444 Floating Gate 446 Insulator 450 Stylized Area 460 Erase Area 470 Edge 472 Bonding Edge / Bonding 474 Edge 490 Substrate 600 Substrate 610 Shallow Ion Implant 620 Insulating Oxide Layer 690 Substrate 710 Resistive Structure 720 Photoresist Structure 124970.doc -46- 1352404 * 810 deep ion implantation. 820 deep ion implantation 1000 NAND string. 1002 select gate 1004 source supply terminal 1006 select gate 1010 NAND string 1020 NAND string 零 zero 1024 drain side select gate Pole 1026 bit line terminal 1028 select gate 1030 end word line 1040 end word line 1042 storage element 1044 storage element lu 1050 end word line 1060 end word line 1090 substrate * 1100 photoresist structure • 1102 photoresist structure 1104 photoresist structure 1110 Deep ion implantation 1112 deep ion implantation 1200 NAND string 124970.doc -47- 1352404 • 1210 NAND string 1220 NAND string • 1230 end word line 1240 end word line 1245 middle word line group 1250 end word line 1260 end word line 1290 substrate reference 1400 storage element array 1404 source line 1406 bit line 1426 no terminal 1428 source terminal 1450 NAND string 1500 sensing block 1510 control circuit stomach 1512 state machine 1514 on-chip address decoder • 1516 power control module • 1518 line 1520 line / data bus 1530 column decoder 1530A column decoder 1530B column decoder 124970. Doc -48- 1352404 - 1550 controller, 1560 line decoder • 1560A line decoder 1560B line decoder 1565 read/write circuit 1565A read/write circuit 1565B read/write circuit 1570 sense circuit reference 1572 Data Bus 1580 Sensing Module 1582 Bit Line Latch 1590 Common Part 1592 Processor 1593 Input Line 1594 Data Latch 1596 Memory Device / 1/0 Interface Stomach 1598 Memory Die 1800 Parity Structure 1810 All Bits Meta-line architecture 2300 voltage waveform 2310 stylized pulse 2312 verification pulse set 2320 program A set of verify pulses 2322 pulses 124970.doc -49- 1352404

2330 程式化脈衝 2332 驗證脈衝集合 2340 程式化脈衝 2342 驗證脈衝集合 2350 程式化脈衝 2352 驗證脈衝集合 BLO、BL1、BL2、 位元線 BL3、BL4、BL5、 BL8510、BL8511 BLeO、BLel、BLe2、 偶數位元線 BLe4255 BLoO、BLol、BLo2、 奇數位元線 BLo4255 SGD 汲極選擇線 SGS 源極選擇線 Vra、Vrb、Vrc 讀取參考電壓 Vva、Vvb、Vvc 驗證參考電壓 WLO 字線 WL1 字線 WL2 字線 WL3 字線 124970.doc -50-2330 Stylized Pulse 2332 Verification Pulse Set 2340 Stylized Pulse 2342 Verification Pulse Set 2350 Stylized Pulse 2352 Verify Pulse Set BLO, BL1, BL2, Bit Lines BL3, BL4, BL5, BL8510, BL8511 BLeO, BLel, BLe2, Even Number Yuan line BLe4255 BLoO, BLol, BLo2, odd bit line BLo4255 SGD drain select line SGS source select line Vra, Vrb, Vrc read reference voltage Vva, Vvb, Vvc verify reference voltage WLO word line WL1 word line WL2 word line WL3 word line 124970.doc -50-

Claims (1)

ί 096135788號專利申請案ί 096135788 Patent Application 法,其包含: 非揮發性儲存系統中之程式化干擾之方Method, which includes: The side of stylized interference in a non-volatile storage system 入一淺離子植入; 長度而於第一及第二間隔中植Into a shallow ion implantation; length and planting in the first and second intervals 中;及Medium; and 隔上’且該NAND串之一 •第一部分直接形成於該第一間 第二部分直接形成於該第二間 隔上。 2.如請求項1之方法,其中: β亥第間隔之至少一部分鄰近於該NAND串之一選擇 閘極。 3 _如請求項1之方法,其中: 複數個字線跨越該ΝΑΝΙ)φ而延伸,該第一間隔在鄰 近於該NAND _之一選擇閘極的該複數個字線中之至少 一字線之直接下方延伸。 4.如請求項1之方法,其中: 複數個非揮發性儲存元件跨越該NAND串而延伸,該 第一間隔在鄰近於該NAND串之一選擇閘極的該複數個 非揮發性儲存元件中之至少一非揮發性儲存元件之直接 下方延伸。 124970-1 〇〇〇7 i2.d〇, 1352404 月丨0修正替換頁 5·如請求項1之方法,其進一步包含: . 沿該基板之該區域之該長度而將一深離子植入植入至 一第二間隔中’該第三間隔中的該深離子植入係比該淺 - 離子植入更深地植入至該基板中,且該NAND串之一第 二部分直接形成於該第三間隔上。 6·如請求項5之方法,其中: 該第一間隔與該第三間隔沿該NAND串之長度而被該 第一間隔所分離;且 該第—間隔之至少一部分係相鄰於該NAND串之一第 一選擇閘極,且該第三間隔之至少一部分係相鄰於該 NAND串之—第二選擇閘極,其中該第一及第二選擇閘 極位於該NAND串之相對邊β 7-如請求項1之方法,其進一步包含: 於該基板上形成一額外NAND串,該額外NAND串與至 少部分沿該基板之該區域之該長度而形成之該Nand串 以邊對邊方式配置,其中該第一間隔在(a)該額外Nand 串之一相關選擇閘極;及(b)至少部分沿該基板之該區域 之該長度而形成該NAND串的一相關選擇閘級之直接下 方延伸。 8. —種非揮發性儲存系統,其包含: 至少部分地形成於一基板上之第一及第二部分之— NAND串,該NAND串與在該NAND串之第一選擇閘極與 第二選擇閘極之間的複數個字線通信,該基板之該第一 部分具有一區域升高植入離子位準,該基板之該第二部 124970-1000712.doc 9. 10. 11. 12. 13. 14. 15. ~ I畔1月細修正替換頁 分不具有一區域升高植入離子位準,該複數個字線中之 至少-字線在該卜部分上延伸,而該複數個字線中之 至少一其他字線在該第二部分上延伸。 如請求項8之非揮發性儲存系統,其中: 該至少一字線鄰近於該第一選擇閘極。 如請求項9之非揮發性儲存系統,其中: 該第一選擇閘極位於該1^八^^£>串之一源極側處。 如請求項9之非揮發性儲存系統,其中: 該第一選擇閘極位於該NAND串之一汲極側處。 如請求項8之非揮發性儲存系統,其中: «玄基板之該第一部分比該基板之該第二部分具有一較 高的通道電容。 如請求項8之非揮發性儲存系統’其中:. 该複數個字線中多個字線的一集合在該基板之該第一 部分上延伸。 如印求項8之非揮發性儲存系統,其進一步包含: 至> 部分地形成於該基板上之複數個額外Nand串, 送複數個NAND串中之每一者與該複數個字線通信,該 基板之6亥第—部分在該複數個額外NAND串下方延伸。 如叫求項8之非揮發性儲存系統,其進一步包含: 違基板之一第三部分,該Nand串部分形成於該第三 #刀上’該第三部分具有一區域升高植入離子位準,該 複數個字線中之至少一另一字線在該第三部分上延伸, 該第一部分與該第三部分被該第二部分分離。 124970-1000712.doc 丄力2404 其申: 丨:年7月畑修正替換頁丨 16.如請求項15之非揮發性儲存系統 該基板之該第一及該第三部分比該基板之該第二部分 具有較高之通道電容。 17.如請求項15之非揮發性儲存系統,其中: 該至少一另一字線鄰近於該第二選擇閘極。 1 8.如請求項1 7之非揮發性儲存系統,其中: 該第-選擇閘極位於該NAND串之一源極側處,且該 第二選擇閘極位於該NAND串之一汲極側處。 •e 19. 如請求項8之非揮發性儲存系統,其中: s玄等植入離子包含硼離子及銦離子中之至少一者。 20. 如請求項8之非揮發性儲存系統,其中: 該NAND串包含複數個多位準非揮發性儲存元件。 21.如s青求項8之非揮發性儲存系統,其中: 該基板之該第一及該第二部分具有一淺離子植入。 22.如請求項8之非揮發性儲存系統,其中·· 該區域升高植入離子位進怂AOne of the NAND strings and a first portion is formed directly on the first portion. The second portion is formed directly on the second spacer. 2. The method of claim 1, wherein: at least a portion of the [beta] interval is adjacent to one of the NAND strings. The method of claim 1, wherein: the plurality of word lines extend across the ΝΑΝΙ φ, the first interval being at least one of the plurality of word lines adjacent to one of the NAND _ select gates It extends directly below. 4. The method of claim 1, wherein: the plurality of non-volatile storage elements extend across the NAND string, the first interval being in the plurality of non-volatile storage elements adjacent to one of the NAND string selection gates The at least one non-volatile storage element extends directly below. 124970-1 〇〇〇7 i2.d〇, 1352404 丨0 修正Replacement page 5. The method of claim 1, further comprising: • implanting a deep ion implant along the length of the region of the substrate Into a second interval, the deep ion implantation system in the third interval is implanted deeper into the substrate than the shallow ion implantation, and a second portion of the NAND string is directly formed in the first Three intervals. 6. The method of claim 5, wherein: the first interval and the third interval are separated by the first interval along a length of the NAND string; and at least a portion of the first interval is adjacent to the NAND string One of the first selection gates, and at least a portion of the third interval is adjacent to the second selection gate of the NAND string, wherein the first and second selection gates are located at opposite sides of the NAND string β 7 The method of claim 1, further comprising: forming an additional NAND string on the substrate, the additional NAND string and the Nand string formed at least partially along the length of the region of the substrate being edge-to-edge configured And wherein the first interval is at (a) one of the additional Nand strings associated with the selected gate; and (b) at least partially along the length of the region of the substrate to form an associated select gate of the NAND string directly below extend. 8. A non-volatile storage system, comprising: a NAND string at least partially formed on a first and a second portion of a substrate, the NAND string and a first select gate and a second at the NAND string Selecting a plurality of word line communications between the gates, the first portion of the substrate having an area raised implant ion level, the second portion of the substrate 124970-1000712.doc 9. 10. 11. 12. 13 14. 15. ~ I-January fine-correction replacement page does not have a region raised implant ion level, at least - the word line of the plurality of word lines extends over the portion, and the plurality of words At least one other word line in the line extends over the second portion. The non-volatile storage system of claim 8, wherein: the at least one word line is adjacent to the first selection gate. The non-volatile storage system of claim 9, wherein: the first selection gate is located at one of the source sides of the string. A non-volatile storage system as claimed in claim 9, wherein: the first selection gate is located at one of the drain sides of the NAND string. The non-volatile storage system of claim 8, wherein: the first portion of the "hidden substrate" has a higher channel capacitance than the second portion of the substrate. A non-volatile storage system of claim 8 wherein: a plurality of word lines of the plurality of word lines extend over the first portion of the substrate. The non-volatile storage system of claim 8, further comprising: to > a plurality of additional Nand strings partially formed on the substrate, each of the plurality of NAND strings being communicated with the plurality of word lines The portion of the substrate extends below the plurality of additional NAND strings. The non-volatile storage system of claim 8, further comprising: a third portion of the substrate, the Nand string portion being formed on the third #刀[the third portion having a region raising the implanted ion position Preferably, at least one of the plurality of word lines extends over the third portion, the first portion being separated from the third portion by the second portion. 124970-1000712.doc 丄力2404 申:: 丨: July of the year 畑 Amendment replacement page 丨 16. The non-volatile storage system of claim 15 of the first and third portions of the substrate than the substrate The second part has a higher channel capacitance. 17. The non-volatile storage system of claim 15, wherein: the at least one other word line is adjacent to the second selection gate. 1 8. The non-volatile storage system of claim 17, wherein: the first select gate is located at one source side of the NAND string, and the second select gate is located at one of the drain sides of the NAND string At the office. • e 19. The non-volatile storage system of claim 8, wherein: the s-thoracic implant ion comprises at least one of a boron ion and an indium ion. 20. The non-volatile storage system of claim 8, wherein: the NAND string comprises a plurality of multi-level non-volatile storage elements. 21. The non-volatile storage system of claim 8, wherein: the first and second portions of the substrate have a shallow ion implantation. 22. The non-volatile storage system of claim 8, wherein the region increases the implanted ion level into the 怂A 卞伹早係基於增加該基板之該第一 为之一通道電容盘避多^ j-ft -kK a· ,、避充办響位於s玄基板之該第一部分 上的Θ NAND串之—或多個非揮發性健存元件之一臨限 電壓之間的-折衷而被植人至該之該第_部分基板中之 一深度。 23.如請求項8之非揮發性儲存系統,其另包含 -額外NAND串,其至少部分形成於該基板上該額 外NAND串與6亥NAND串以邊對邊方式配置,該μ仙串 包含一相關選擇問極,該額外N·串包含一相關選擇 124970-I0007l2.doc •4· 1352404 _ 時)月/¾修正替換頁 • 閘極,且該第一間隔完全在該NAND串之該相關選擇閘 - 及該額外NAND串的該相關選擇閘級之下方延伸。卞伹 卞伹 卞伹 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于One of the plurality of non-volatile storage elements is compromised between the threshold voltages and implanted to one of the depths of the first partial substrate. 23. The non-volatile storage system of claim 8, further comprising - an additional NAND string formed at least partially on the substrate, the additional NAND string and the 6 ho NAND string being configured in an edge-to-edge manner, the μ fairy string comprising A related selection pole, the additional N·string containing a related selection 124970-I0007l2.doc • 4· 1352404 _ hour) month / 3⁄4 correction replacement page • gate, and the first interval is completely related to the NAND string The select gate - and the associated select gate of the additional NAND string extend below. 124970-1000712.doc124970-1000712.doc
TW096135788A 2006-09-28 2007-09-26 Providing local boosting control implant for non-v TWI352404B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/536,416 US7705387B2 (en) 2006-09-28 2006-09-28 Non-volatile memory with local boosting control implant
US11/536,389 US7977186B2 (en) 2006-09-28 2006-09-28 Providing local boosting control implant for non-volatile memory

Publications (2)

Publication Number Publication Date
TW200834825A TW200834825A (en) 2008-08-16
TWI352404B true TWI352404B (en) 2011-11-11

Family

ID=39247810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096135788A TWI352404B (en) 2006-09-28 2007-09-26 Providing local boosting control implant for non-v

Country Status (2)

Country Link
TW (1) TWI352404B (en)
WO (1) WO2008042591A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094535B1 (en) 2014-03-21 2020-03-30 삼성전자주식회사 Transistor and method for fabricating the same
US11810982B2 (en) 2021-08-02 2023-11-07 Globalfoundries Singapore Pte. Ltd. Nonvolatile memory device with a doped region between a source and a drain and integration schemes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835987B2 (en) * 2001-01-31 2004-12-28 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device in which selection gate transistors and memory cells have different structures
KR100436673B1 (en) * 2001-05-28 2004-07-02 가부시끼가이샤 도시바 Semiconductor device and manufacturing method thereof
JP2004241558A (en) * 2003-02-05 2004-08-26 Toshiba Corp Nonvolatile semiconductor memory and its manufacturing method, and semiconductor integrated circuit and nonvolatile semiconductor memory system

Also Published As

Publication number Publication date
TW200834825A (en) 2008-08-16
WO2008042591A3 (en) 2008-06-12
WO2008042591A2 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR101519081B1 (en) Enhanced bit-line pre-charge scheme for increasing channel boosting in non-volatile storage
KR101875994B1 (en) Selected word line dependent select game voltage during program
EP2467854B1 (en) Selective memory cell program and erase
TWI326487B (en) Non-volatile storage system and method for programming non-volatile storage
US8804430B2 (en) Selected word line dependent select gate diffusion region voltage during programming
EP2458592A2 (en) Multiple pass write sequence for non-volatile storage
WO2012134842A1 (en) Reducing neighbor read disturb
WO2013147938A1 (en) Selected word line dependent programming voltage
TW201324513A (en) Substrate bias during program of non-volatile storage
US8189378B2 (en) Reducing program disturb in non-volatile storage
TWI312155B (en) Last-first mode, method and apparatus for programming of non-volatile memory with reduced program disturb
TW200818195A (en) Method and system for reducing the impact of program disturb during read
WO2014163995A1 (en) Non-volatile storage with shared bit lines and programmable select transistors
US8184478B2 (en) Apparatus with reduced program disturb in non-volatile storage
US7705387B2 (en) Non-volatile memory with local boosting control implant
TWI386944B (en) Non-volatile storage with boosting using channel isolation switching and method thereof
TWI357602B (en) Method performed as part of programming non-volati
US7977186B2 (en) Providing local boosting control implant for non-volatile memory
TWI352404B (en) Providing local boosting control implant for non-v
TWI334607B (en) Method and apparatus for reducing the impact of program disturb
TWI378456B (en) Method and system for reducing program disturb in non-volatile storage
TWI357603B (en) Reducing program disturb in non-volatile memory us
TWI355660B (en) Non-volatile memory with boost structures and meth
TWI380306B (en) Systems and methods for programming non-volatile memory with reduced program disturb by removing pre-charge dependency on word line data
TWI356416B (en) Non-volatile memory with dual voltage select gate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees