TW200828627A - Light-emitting diode and manufacturing method thereof - Google Patents

Light-emitting diode and manufacturing method thereof Download PDF

Info

Publication number
TW200828627A
TW200828627A TW95150029A TW95150029A TW200828627A TW 200828627 A TW200828627 A TW 200828627A TW 95150029 A TW95150029 A TW 95150029A TW 95150029 A TW95150029 A TW 95150029A TW 200828627 A TW200828627 A TW 200828627A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
layer
diode according
oxide
Prior art date
Application number
TW95150029A
Other languages
Chinese (zh)
Other versions
TWI336142B (en
Inventor
Shih-Chang Shei
Schang-Jing Hon
Shih-Chen Wei
Original Assignee
Epistar Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Technology Corp filed Critical Epistar Technology Corp
Priority to TW95150029A priority Critical patent/TWI336142B/en
Publication of TW200828627A publication Critical patent/TW200828627A/en
Application granted granted Critical
Publication of TWI336142B publication Critical patent/TWI336142B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode and the manufacturing method thereof are disclosed. The manufacturing method comprises the steps of: providing a growth substrate; forming an epitaxy structure on one side of the growth substrate; forming a transparent current spreading layer on one side of the epitaxy structure, wherein the thickness of the transparent current spreading layer is at least larger than 100 μm; removing the growth substrate; forming a first electrode on another side of the epitaxy structure; and forming a second electrode on one side of the transparent current spreading layer.

Description

200828627 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種發光二極體與其製造方法,特別是 有關於直接形成透明分散電流層來作為第二基板的發光二極 體與其製造方法。 【先前技術】 發光二極體係由一種具有同質結構(Homostructure)、單 異質結構(Single Heterostructure)、雙異質結構(Double Heterostructure ; DH)、或是多重量子井(Multiple Quantum Well; MQW)結構所堆疊而成的磊晶結構。能自然放射出不同 波長之光線的p-ri接面二極體。由於發光二極體具有低耗電 量、低發熱量、操作壽命長、财撞擊、體積小、反應速度快、 以及可發出穩定波長的色光等良好光電特性,因此常應用於 家電、儀表之指示燈、光電產品之應用光源、以及光電通訊 領域。 傳統的發光二極體’是在一個基板(Substrate),一個η型 下包覆層,一個主動層、以及一個ρ型上包覆層,藉由電流 通過主動層的磊晶結構而發光,並藉由磊晶結構的各種不同 組成,改變發光二極體發光波長。 隨著發光二極體製程技術的進步,為了功能上的需求, 例如增加發光二極體的亮度、熱導性以及電流分散效果,或 進行後續加工,例如切割製程,經常會使用基板轉移(Substrate Transferring)技術或晶片鍵合(Wafer Bonding)技術,以另外形 成至少一個材質為金屬或III-V族化合物半導體的第二基 200828627 板。其中,具有自士 〆^ 野的熱導性的銅,以及具有較高剛性的矽 係經常被選擇作為笛_ 9 、 馬第一基板的理想材質。 然而’雖然銅具有良好的熱導性 ’但是銅的剛性不足且 膨脹係數過高,在製 衣私之中若所使用的第二基板是厚度較镇 的銅質基板時,复如丁 α 土 /# ”力工性較差,良率不易提昇。又,雖麸矽 的膨脹性與發光二極 、 工 從體凡件可以匹配,且具有較佳的加 ’但石夕的熱性導較差會影響發光二極體元件的工作性能200828627 IX. Description of the Invention: The present invention relates to a light-emitting diode and a method of fabricating the same, and more particularly to a light-emitting diode which directly forms a transparent dispersed current layer as a second substrate and a method of manufacturing the same . [Prior Art] A light-emitting diode system is stacked by a structure having a homostructure, a single Heterostructure, a double heterostructure (DH), or a multiple quantum well (MQ) structure. The epitaxial structure is formed. A p-ri junction diode that naturally emits light of different wavelengths. Since the light-emitting diode has good photoelectric characteristics such as low power consumption, low heat generation, long operating life, financial impact, small volume, fast reaction speed, and color light which can emit stable wavelength, it is often used for indications of household appliances and meters. The application of light sources for lamps and optoelectronic products, as well as the field of optoelectronic communication. The conventional light-emitting diode 'is in a substrate (Substrate), an n-type lower cladding layer, an active layer, and a p-type upper cladding layer, which emit light by current flowing through the epitaxial structure of the active layer, and The light-emitting diode light-emitting wavelength is changed by various compositions of the epitaxial structure. With the advancement of the light-emitting diode process technology, for the functional requirements, such as increasing the brightness, thermal conductivity and current dispersion effect of the light-emitting diode, or performing subsequent processing, such as a cutting process, substrate transfer is often used (Substrate) Transferring) technology or wafer bonding (Wafer Bonding) technology to additionally form at least one second substrate 200828627 plate made of a metal or a III-V compound semiconductor. Among them, copper having thermal conductivity from the field of 士^^, and lanthanum with high rigidity are often selected as the ideal material for the flute -9 and the first substrate of the horse. However, 'although copper has good thermal conductivity', but the rigidity of copper is insufficient and the coefficient of expansion is too high. If the second substrate used in the garment industry is a copper substrate with a thinner thickness, /# ”The workability is poor, the yield is not easy to improve. Also, although the expansion of the bran is compatible with the light-emitting diodes and the workpieces, and the better addition, the poor thermal conductivity of the stone will affect the Operating performance of LED components

【發明内容】 因此,树明之_方面係在於提供—種發光二極體與其 3方法’藉由直接形成透明分散電流層來作為發光二極體 的第二基板,以提高發光效率。 、、本,明之又-方面係在於提供_種發光二極體與其製造 方法,糟由直接形成透明分散電流層來作為發光二極體的第 一基板,以簡化製程和提高製程良率。 、本^明之又-方面係在於提供_種發光二極體與其製造 方法,糟由在蟲晶結構的兩側形成歐姆接觸層和透 化層,以改善元件性能。 本㈣之又-方面係在於提供—種發光二極體與其製造 法、’错由在成長基材和蟲晶結構之間形成㈣終止層,以 避免過度敍刻(over etch)情形。 ,據本發明之實施例,此發光二極體至少包含透明分散 電,層、蟲晶結構、第一電極及第二電極。透明分散電流層 的厚度係至少大於1 〇〇 # m,蠢晶έ士槿孫# 士 、、°構係形成於透明分散電流 層的一側,第-電極係形成於蟲晶結構的—側,第二電極係 200828627 形成於該透明分散電流層之另一側。 又’根據本發明之實施例,此發光二極體的製造方法, 至少包含··提供成長基材;形成磊晶結構於成長基材的一側; 形成透明分散電流層於磊晶結構的一側,其中透明分散電流 層的尽度係至少大於1〇〇#ιη;移除成長基材;形成第一電極 於磊晶結構的另一侧;以及形成一第二電極於透明分散電流 層的一側。 因此本發明之發光二極體係藉由在成長基材(第一基板) 上依序形成磊晶結構和透明分散電流層,以轉移磊晶結構至 透明分散電流層上(以透明分散電流層作為第二基板),因而可 避免發光被基板吸收的情形,並使電流分佈均勻,而提高發 光一極體的發光效率。且由於無需晶片鍵合(Wafer Bonding;) 或金屬鍵合(Metal Bonding)技術來形成第二基板,因而可簡 化製程,提高製程良率。 【實施方式】 為讓本發明之上述和其他目的、特徵、和優點能更明顯 易懂,本說明書特舉較佳實施例,並配合所附圖式,作詳細 說明如下: π參照第1A圖至第1D圖’其繪示依照本發明第一實施 例之發光二極體的製程剖面圖。本實施例的發光二極體、1〇〇 至少包括有第一電極11〇、磊晶結構12〇、透明分散電流層 130、歐姆接觸層14〇及透明導電氧化層15〇、金屬反射層^曰❻ 及第二電極170。本實施例之發光二極體100的結構係依序來 形成第一電極Π0、磊晶結構120、透明分散電流層、歐 200828627 姆接觸層140及透明導電氧化層150、反射層160及第二電極 170。 請參照第1A圖,首先,提供成長基材180。此成長基材 180例如為:砷化鎵(GaAs)、矽、碳化矽(SiC)或氮化鋁(A1N) 基板。 接者’形成蠢晶結構120於成長基材180之上’蠢晶結 構120係藉由一磊晶製程所形成,例如係有機金屬氣相沉積 磊晶法(MOCVD)、液相磊晶法(LPE)或分子束磊晶法(MBE)等 磊晶製程。此磊晶結構120例如係使N型磷化鋁鎵銦 (AlxGa^ynuRxXM)包覆層、主動層(例如由磷化鋁鎵銦材質所形 成的多重量子井結構)及P型磷化鋁鎵銦(AlxGa^yn^RxXM)包 覆層,來依序沉積於成長基材180之上。另外,本實施例之 磊晶結構120可例如係由:同質結構、單異質結構、雙異質 結構、或是多重量子井結構所堆疊而成。 接著,形成透明分散電流層130於磊晶結構120之上, 其中透明分散電流層130的厚度係至少大於100// m。此透明 分散電流層130例如係:磷化砷鎵(GaAsP)、磷化鋁鎵銦 (AlGalnP)砷化鋁鎵(AlGaAs)或磷化鎵(GaP),其具有較高的移 動率和較低的電阻係數,用以使整體晶粒獲得較均勻的電 流。且透明分散電流層130具有透光性,以減少發光二極體 100的發光被透明分散電流層130吸收,因而可提升發光二極 體100的光取出效率。其中,本實施例的透明分散電流層130 例如係利用有機金屬化學氣相磊晶法(MOCVD)或氫化物氣相 蠢晶法(Hydride vapor phase epitaxy ; HVPE)來形成。又,例 如可組合使用MOCVD和HVPE來形成透明分散電流層 8 200828627 130(即兩段式製程方法)。 請參照第1B圖,接著,移除成長基材18〇,因而裸露出 蠢晶結構120的表面。成長基# 18〇例如係藉由雷射剝離技 術、蝕刻製程或化學機械研磨製程來被移除。接著,形成第 一電極110於蟲晶結構120的表面上。此第一電極11〇的材 料例如為金(Au)或|g (A1)。 請參照第2圖,其繪示依照本發明第一實施例之歐姆接 觸層的結構上視圖。接著,形成歐姆接觸層14〇於透明分散 電流層130的表面上。此歐姆接觸層14〇的材料可選自於金 屬材料,例如:金鈹合金(AuBe)、金鋅合金(AuZn)、鉻金合 金(CrAu)或其他合金材料。另外,在形成歐姆接觸層後, 更可進行一選擇性蝕刻步驟,使歐姆接觸層14〇圖案化,以 暴露出透明分散電流層130的部分表面。例如在第2b圖中, 歐姆接觸層140在經蝕刻步驟後係形成數個柱狀物,如此可 暴露出更多的透明分散電流| 13〇表面,其中此柱狀物例如 為圓柱體。因此,本實施例可進一步有效地減少歐姆接觸層 140的面積,使吸光的部份變小,進而提高發光二極體的亮 度。值得注意的是,上述歐姆接觸層14〇經蝕刻步驟後所形 成圖案僅為舉例,其他形狀的網狀、柱狀結構,或任何有利 電流分佈及透光面積增加的形狀皆可使用於本實施例中,本 實施例不限於此。 接著,形成透明導電氧化層15〇覆蓋於歐姆接觸層14〇 的表面上。此透明導電氧化層15〇之材質可例如選自於:氧 化銦錫(Indium Tin Oxide)、氧化銦(Indium 〇xide)、氧化錫(Tin Oxide)、氧化鎘錫(cadmium Tin 〇xide)或氧化辞⑺此 9 200828627 oxide)、氧化鎂(Magnesium oxide)等具有導電性及透光性的材 料,其較佳具有低電阻係數(約3x10·4Ω-cm),以進一步有效 地使電流分散至整個晶粒。 請參照第1C圖,接著,形成金屬反射層160於透明導電 氧化層150的表面上。此金屬反射層160的材質例如係選自 於鋁(A1)、銀(Ag)及金(Au),以反射發光向上’使光可集中朝 單一方向發出。接著,形成第二電極17〇於金屬反射層160 的表面上,即完成本實施例之發光二極體100的製作,第二 電極170的材料例如係選自於鈦(Ti)、鎢(W)及金(Au)所構成 材料群組中的至少一種材料。 因此,本實施之發光二極體1〇〇係藉由在成長基材180(第 一基板)依序形成磊晶結構120和透明分散電流層130後,移 除成長基材180,以使透明分散電流層130來作為發光二極體 100的第二基板,其中透明分散電流層130的厚度係至少大於 100//m,因而可避免發生基板吸收發光的情形’提高發光二 極體100的發光效率。且透明分散電流層130係直接形成於 磊晶結構120的表面上,而非使用晶片鍵合(Wafer BondinS) 或金屬鍵合(Metal Bonding)技術來形成’以簡化製程’長1南 製程良率。 請參照和第3圖,其繪示依照本發明第二實施例之發光 二極體的製程剖面圖。第二實施例的發光二極體200至少包 括有第一電極210、磊晶結構220、透明分散電流層230、第 一歐姆接觸層240、第一透明導電氧化層250、金屬反射層 260、第二電極270、第二歐姆接觸層280及第二透明導電氧 化層290。相較於第一實施例的第lc圖,第二實施例係先在 200828627 磊晶結構220的表面上依序形成第二歐姆接觸層280和第二 透明導電氧化層290,接著,再形成第一電極210於第二透明 導電氧化層290的表面上,因而第二實施例的發光二極體200 可進一步使電流分散至整個晶粒,改善元件性能。其中,第 二歐姆接觸層280的材料可選自於金屬材料,例如:鍺/金 (Ge/Au)合金。另外,在形成第一歐姆接觸層240和第二歐姆 接觸層280後,更可進行一選擇性蝕刻步驟,使第一歐姆接 觸層240和第二歐姆接觸層280圖案化,例如複數個柱狀物 的圖案。 請參照第4A圖和第4B圖,其繪示依照本發明第三實施 例之發光二極體的製程剖面圖。相較於第一實施例,第三實 施例係先形成一蝕刻終止層390於成長基材380之上,蝕刻 終止層390可採用蝕刻速率與成長基材380之蝕刻速率不同 的材料’例如· η型ί粦化铭嫁姻。接者^再依序形成蠢晶結構 320和透明分散電流層330於此蝕刻終止層390之上。然後, 進行一蝕刻步驟來依序移除成長基材380和蝕刻終止層 390,由於蝕刻終止層390係形成於成長基材380和磊晶結構 320之間,因而可避免過度蝕刻(over etch)而對磊晶結構320 造成影響。 請參照第5圖,其繪示依照本發明第四實施例之發光二 極體的結構剖面圖。相較於第二實施例的第3B圖,第四實施 例的發光二極體400至少包括有第一電極410、磊晶結構 420、透明分散電流層430、第一歐姆接觸層440、透明導電 氧化層450、金屬反射層460、第二電極470、第二歐姆接觸 層480及第二透明導電氧化層490。其中第二歐姆接觸層480 11 200828627 係一歐姆金屬接觸層481和一歐姆非金屬接觸層482來堆疊 形成。歐姆金屬接觸層481的材料可選自於金屬材料,例如: 鍺/金(Ge/Au)合金。而歐姆非金屬接觸層482的材料可選自瓜 -V族,例如:N型砷化鎵吻八8)、&gt;1型磷化鎵吻?)、;^型磷 化砷鎵(GaAsP)或N型磷化銦鎵(InGaP)等高摻雜的N型半導 體材料,其晶格常數相近^具有窄能隙,以改善電流擁擠的 現象,使發光二極體1〇〇的串連電阻減小,因而有效地改善 元件可靠度。 °SUMMARY OF THE INVENTION Therefore, the aspect of the invention is to provide a light-emitting diode and a method thereof by directly forming a transparent dispersion current layer as a second substrate of a light-emitting diode to improve luminous efficiency. The present invention is directed to providing a light-emitting diode and a method for fabricating the same, and directly forming a transparent dispersed current layer as the first substrate of the light-emitting diode to simplify the process and improve the process yield. The aspect of the present invention is to provide a light-emitting diode and a manufacturing method thereof, and to form an ohmic contact layer and a transparent layer on both sides of the crystal structure to improve the device performance. The fourth aspect of the present invention is to provide a light-emitting diode and a method of manufacturing the same, and to form a (four) termination layer between the growth substrate and the insect crystal structure to avoid over etch. According to an embodiment of the invention, the light emitting diode comprises at least a transparent dispersed electric layer, a layer, a serpentine structure, a first electrode and a second electrode. The thickness of the transparent dispersed current layer is at least greater than 1 〇〇# m, and the crystal structure is formed on one side of the transparent dispersed current layer, and the first electrode is formed on the side of the crystal structure. The second electrode system 200828627 is formed on the other side of the transparent dispersion current layer. Further, according to an embodiment of the present invention, the method for fabricating the light-emitting diode includes at least a growth substrate; an epitaxial structure formed on one side of the growth substrate; and a transparent dispersion current layer formed on the epitaxial structure a side, wherein the transparent dispersion current layer has a fullness of at least greater than 1 η; removing the grown substrate; forming the first electrode on the other side of the epitaxial structure; and forming a second electrode on the transparent dispersion current layer One side. Therefore, the light-emitting diode system of the present invention sequentially forms an epitaxial structure and a transparent dispersion current layer on the growth substrate (first substrate) to transfer the epitaxial structure to the transparent dispersion current layer (using the transparent dispersion current layer as a transparent dispersion current layer) The second substrate) can avoid the situation in which the light is absorbed by the substrate, and the current distribution is uniform, and the luminous efficiency of the light-emitting body is improved. Moreover, since wafer bonding (Wafer Bonding;) or metal bonding (Metal Bonding) technology is not required to form the second substrate, the process can be simplified and the process yield can be improved. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 1D is a cross-sectional view showing a process of a light emitting diode according to a first embodiment of the present invention. The light emitting diode of the present embodiment includes at least a first electrode 11 , an epitaxial structure 12 , a transparent dispersed current layer 130 , an ohmic contact layer 14 , a transparent conductive oxide layer 15 , and a metal reflective layer. And a second electrode 170. The structure of the light-emitting diode 100 of the present embodiment sequentially forms the first electrode Π0, the epitaxial structure 120, the transparent dispersed current layer, the European 200828627 contact layer 140, the transparent conductive oxide layer 150, the reflective layer 160, and the second Electrode 170. Referring to FIG. 1A, first, a growth substrate 180 is provided. The growth substrate 180 is, for example, a gallium arsenide (GaAs), germanium, tantalum carbide (SiC) or aluminum nitride (A1N) substrate. The picker 'forms the stupid crystal structure 120 on the growth substrate 180'. The silly crystal structure 120 is formed by an epitaxial process, such as organometallic vapor deposition epitaxy (MOCVD), liquid phase epitaxy ( LPE) or molecular beam epitaxy (MBE) and other epitaxial processes. The epitaxial structure 120 is, for example, an N-type aluminum gallium indium arsenide (AlxGa^ynuRxXM) cladding layer, an active layer (for example, a multiple quantum well structure formed of an aluminum gallium arsenide material), and a P-type aluminum gallium phosphide. An indium (AlxGa^yn^RxXM) cladding layer is sequentially deposited on the growth substrate 180. In addition, the epitaxial structure 120 of the present embodiment may be stacked, for example, by a homogenous structure, a single heterostructure, a double heterostructure, or a multiple quantum well structure. Next, a transparent dispersed current layer 130 is formed over the epitaxial structure 120, wherein the transparent dispersed current layer 130 has a thickness of at least greater than 100/m. The transparent dispersion current layer 130 is, for example, gallium arsenide phosphide (GaAsP), aluminum gallium indium phosphide (AlGalnP) aluminum gallium arsenide (AlGaAs) or gallium phosphide (GaP), which has a high mobility and a low mobility. The resistivity is used to achieve a more uniform current for the overall die. Further, the transparent dispersion current layer 130 has light transmissivity to reduce absorption of the light-emitting diode 100 by the transparent dispersion current layer 130, so that the light extraction efficiency of the light-emitting diode 100 can be improved. The transparent dispersion current layer 130 of the present embodiment is formed, for example, by an organic metal chemical vapor phase epitaxy (MOCVD) or a hydride vapor phase epitaxy (HVPE). Further, for example, MOCVD and HVPE may be used in combination to form a transparent dispersion current layer 8 200828627 130 (i.e., a two-stage process method). Referring to Figure 1B, the growth substrate 18 is then removed, thereby exposing the surface of the stray structure 120. The growth base # 18 is removed, for example, by a laser lift-off technique, an etching process, or a chemical mechanical polishing process. Next, a first electrode 110 is formed on the surface of the insect crystal structure 120. The material of this first electrode 11 is, for example, gold (Au) or |g (A1). Referring to Figure 2, there is shown a structural top view of an ohmic contact layer in accordance with a first embodiment of the present invention. Next, an ohmic contact layer 14 is formed on the surface of the transparent dispersion current layer 130. The material of the ohmic contact layer 14A may be selected from a metal material such as a gold beryllium alloy (AuBe), a gold zinc alloy (AuZn), a chrome gold alloy (CrAu) or other alloy material. Further, after the ohmic contact layer is formed, a selective etching step may be further performed to pattern the ohmic contact layer 14 to expose a part of the surface of the transparent dispersion current layer 130. For example, in Figure 2b, the ohmic contact layer 140 is formed into a plurality of pillars after the etching step, thereby exposing more of the transparent dispersion current | 13 〇 surface, wherein the pillars are, for example, cylinders. Therefore, the present embodiment can further effectively reduce the area of the ohmic contact layer 140, making the light-absorbing portion smaller, thereby improving the brightness of the light-emitting diode. It should be noted that the pattern formed by the ohmic contact layer 14 after the etching step is only an example, and other shapes of mesh, columnar structure, or any shape with favorable current distribution and increased light transmission area can be used in the implementation. In the example, the embodiment is not limited thereto. Next, a transparent conductive oxide layer 15 is formed to cover the surface of the ohmic contact layer 14A. The material of the transparent conductive oxide layer 15 can be selected, for example, from: Indium Tin Oxide, Indium 〇xide, Tin Oxide, Cadmium Tin 〇xide or Oxidation. (7) 9 200828627 oxide), magnesium oxide (Magnesium oxide) and other materials having conductivity and light transmittance, preferably having a low electrical resistivity (about 3 x 10 · 4 Ω-cm) to further effectively spread the current throughout Grain. Referring to Fig. 1C, next, a metal reflective layer 160 is formed on the surface of the transparent conductive oxide layer 150. The material of the metal reflective layer 160 is selected, for example, from aluminum (A1), silver (Ag), and gold (Au) to reflect light upwards so that light can be concentrated in a single direction. Then, the second electrode 17 is formed on the surface of the metal reflective layer 160, that is, the fabrication of the light-emitting diode 100 of the present embodiment is completed. The material of the second electrode 170 is selected, for example, from titanium (Ti) or tungsten (W). And at least one material selected from the group consisting of gold (Au). Therefore, in the light-emitting diode 1 of the present embodiment, the growth substrate 180 is removed by sequentially forming the epitaxial structure 120 and the transparent dispersion current layer 130 on the growth substrate 180 (first substrate) to make the transparent substrate 180 transparent. The current layer 130 is dispersed as the second substrate of the light-emitting diode 100, wherein the thickness of the transparent dispersion current layer 130 is at least greater than 100/m, thereby avoiding the situation in which the substrate absorbs light emission, and the light emission of the light-emitting diode 100 is improved. effectiveness. And the transparent dispersion current layer 130 is directly formed on the surface of the epitaxial structure 120, instead of using wafer bonding (Wafer BondinS) or metal bonding (Metal Bonding) technology to form 'to simplify the process' long 1 south process yield . Referring to and FIG. 3, a cross-sectional view showing a process of a light emitting diode according to a second embodiment of the present invention is shown. The light emitting diode 200 of the second embodiment includes at least a first electrode 210, an epitaxial structure 220, a transparent dispersed current layer 230, a first ohmic contact layer 240, a first transparent conductive oxide layer 250, a metal reflective layer 260, and a first The second electrode 270, the second ohmic contact layer 280, and the second transparent conductive oxide layer 290. Compared with the lc of the first embodiment, the second embodiment first forms the second ohmic contact layer 280 and the second transparent conductive oxide layer 290 on the surface of the 200828627 epitaxial structure 220, and then forms the first An electrode 210 is on the surface of the second transparent conductive oxide layer 290, and thus the light emitting diode 200 of the second embodiment can further disperse current to the entire crystal grain, improving element performance. The material of the second ohmic contact layer 280 may be selected from a metal material such as a germanium/gold (Ge/Au) alloy. In addition, after the first ohmic contact layer 240 and the second ohmic contact layer 280 are formed, a selective etching step may be further performed to pattern the first ohmic contact layer 240 and the second ohmic contact layer 280, for example, a plurality of columns. The pattern of objects. Referring to Figures 4A and 4B, there are shown process cross-sectional views of a light-emitting diode according to a third embodiment of the present invention. Compared with the first embodiment, the third embodiment first forms an etch stop layer 390 on the growth substrate 380, and the etch stop layer 390 can use a material having an etch rate different from that of the growth substrate 380'. η type 粦 粦 铭 嫁 嫁 嫁 。. The succeeder further forms a stray structure 320 and a transparent dispersed current layer 330 over the etch stop layer 390. Then, an etching step is performed to sequentially remove the growth substrate 380 and the etch stop layer 390. Since the etch stop layer 390 is formed between the growth substrate 380 and the epitaxial structure 320, over etch can be avoided. It has an effect on the epitaxial structure 320. Referring to Figure 5, there is shown a cross-sectional view showing the structure of a light emitting diode according to a fourth embodiment of the present invention. The light emitting diode 400 of the fourth embodiment includes at least a first electrode 410, an epitaxial structure 420, a transparent dispersed current layer 430, a first ohmic contact layer 440, and a transparent conductive, compared to FIG. 3B of the second embodiment. The oxide layer 450, the metal reflective layer 460, the second electrode 470, the second ohmic contact layer 480, and the second transparent conductive oxide layer 490. The second ohmic contact layer 480 11 200828627 is formed by stacking an ohmic metal contact layer 481 and an ohmic non-metal contact layer 482. The material of the ohmic metal contact layer 481 may be selected from a metal material such as a germanium/gold (Ge/Au) alloy. The material of the ohmic non-metal contact layer 482 may be selected from the group of melon-V, for example: N-type gallium arsenide kiss eight 8), &gt; type 1 gallium phosphate kiss? Highly doped N-type semiconductor materials such as GaAsP or InGaP, which have similar lattice constants and narrow energy gaps to improve current crowding. The series resistance of the light-emitting diode 1 减小 is reduced, thereby effectively improving the reliability of the element. °

由上述本發明之實施例可知,本發明之發光二極體係直 接形成透明分散電流層來作為發光二極體的第二基板,以提 尚發光二極體的發光效率,並簡化製程,提高製程良率。 雖然本發明已以較佳實施例揭露如上,然其並非用以限 ^本發明’任何熟習此技藝者,在不脫離本發明之精神和範 W可作各種之更動與潤飾,因此本發明之保護範圍當 視後附之申請專利範圍所界定者為準。 田 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例能 更明顯易懂,所附圖式之詳細說明如下: 第1A圖至第1C圖係繪 光二極體的製程剖面圖。 第2圖係繪示根據本發 歐姆接觸層的結構上視圖。 第3圖係繪示根據本發 製程剖面圖。 示根據本發明之第一實施例之發 明之第一實施例之發光二極體之 月之第二實施例之發光二極體的 12 200828627 第4A圖和第4B圖係繪示根據本發明之第三實施例之發 光二極體的製程剖面圖。 第5圖係繪示根據本發明之第四實施例之發光二極體的 結構剖面圖。 【主要元件符號說明】 100、200、400 :發光二極體 110、210、410 :第一電極 120、220、320、420 :蠢晶結構 130、230、330、430 :透明分散電流層 140 :歐姆接觸層 150 :透明導電氧化層 160、260、460 :金屬反射層 170、270、470 :第二電極 180、380、480 :成長基材 240、440 :第一歐姆接觸層 250、450 :第一透明導電氧化層 280、480 :第二歐姆接觸層 290、490:第二透明導電氧化層 390 餘刻終止層 481 歐姆金屬接觸層 482 歐姆非金屬接觸層 13According to the embodiment of the present invention, the light-emitting diode system of the present invention directly forms a transparent dispersed current layer to serve as a second substrate of the light-emitting diode, thereby improving the luminous efficiency of the light-emitting diode, simplifying the process, and improving the process. Yield. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. Process profile. Figure 2 is a top view showing the structure of the ohmic contact layer according to the present invention. Figure 3 is a cross-sectional view showing the process according to the present invention. 12 of the second embodiment of the light-emitting diode according to the first embodiment of the invention of the first embodiment of the invention, 200828627, 4A and 4B are diagrams according to the present invention A process sectional view of a light-emitting diode of the third embodiment. Figure 5 is a cross-sectional view showing the structure of a light-emitting diode according to a fourth embodiment of the present invention. [Description of Main Component Symbols] 100, 200, 400: Light Emitting Diodes 110, 210, 410: First Electrodes 120, 220, 320, 420: Staggered Structure 130, 230, 330, 430: Transparent Dispersive Current Layer 140: Ohmic contact layer 150: transparent conductive oxide layer 160, 260, 460: metal reflective layer 170, 270, 470: second electrode 180, 380, 480: growth substrate 240, 440: first ohmic contact layer 250, 450: A transparent conductive oxide layer 280, 480: a second ohmic contact layer 290, 490: a second transparent conductive oxide layer 390 a residual stop layer 481 ohmic metal contact layer 482 ohmic non-metal contact layer 13

Claims (1)

200828627 十、申請專利範圍: h 一種發光二極體,至少包含: 一透明分散電流層,其厚度係至少大於l〇〇 Mm ; 一磊晶結構,位於該透明分散電流層之一側; 一第一電極,位於該磊晶結構的一側;以及 一第二電極,位於該透明分散電流層之另一側。 2·如申請專利範圍第1項所述之發光二極體,直中更5 f 少包含: 第一歐姆接觸層,形成於該透明分散電流層的表面上。 3 ·如申靖專利範圍第2項所述之發光二極體,其中該 一歐姆接觸層的材料係選自由金鈹合金(AuBe)、金辞^金 (AuZn)以及鉻金合金(CrAu)所組成之一族群。 4·如申請專利範圍第2項所述之發光二極體,其 1 一歐姆接觸層具有一圖案化結構。 乂 少包^如申請專利範圍第2項所述之發光二極體,其中更至 上。透月導電氧化層,位於該第-歐姆接觸層的表面 6.如申請專利範圍第5項所述之發光二極體,其中該第 200828627 一透明導電氧化層的材料係選自由氧化銦錫(Indium Tin Oxide)、氧化銦(Indium Oxide)、氧化錫(Tin Oxide)、氧化鑛 錫(Cadmium Tin Oxide)、氧化鋅(Zinc oxide)及氧化鎮 (Magnesium oxide)所組成之族群。 7. 如申請專利範圍第1項所述之發光二極體,其中更至 少包含: 一第二歐姆接觸層,形成於該磊晶結構的表面上。 8. 如申請專利範圍第7項所述之發光二極體,其中該第 二歐姆接觸層具有一圖案化結構。 9. 如申請專利範圍第7項所述之發光二極體,其中該第 二歐姆接觸層具有一第二歐姆金屬接觸層和一第二歐姆非金 屬接觸層。 10. 如申請專利範圍第9項所述之發光二極體,其中該 第二歐姆金屬接觸層的材料係選自由鍺/金(Ge/Au)合金。 11. 如申請專利範圍第9項所述之發光二極體,其中該 第二歐姆非金屬接觸層的材料係選自由N型砷化鎵(GaAs)、 N型磷化鎵(GaP)、N型磷化砷鎵(GaAsP)或N型磷化銦鎵 (InGaP)所組成之一族群。 12·如申請專利範圍第7項所述之發光二極體,其中更 15 200828627 至少包含: 一第二透明導電氧化層,形成於該第二歐姆接觸層的表 面上。 13.如申請專利範圍第12項所述之發光二極體,其中該 第二透明導電氧化層的材料係選自由氧化銦錫(Indium Tin Oxide)、氧化銦(Indium Oxide)、氧化錫(Tin Oxide)、氧化編 錫(Cadmium Tin Oxide)、氧化鋅(Zinc oxide)及氧化鎮 (Magnesium oxide)所組成之族群。 14·如申請專利範圍第1項所述之發光二極體,其中該 透明分散電流層的材料係選自由磷化砷鎵(GaAsP)、磷化鋁 鎵銦(AlGalnP)砷化鋁鎵(AlGaAs)或磷化鎵(GaP)所組成之族 群0 15·如申請專利範圍第1項所述之發光二極體,其中該 第一電極的材料係選自金(Au)及鋁(A1)所組成之族群。 16.如申請專利範圍第1項所述之發光二極體,其中該 第二電極的材料係選自鈦(Ti)、鎢(W)及金(Au)所組成之族群。 17·如申請專利範圍第1項所述之發光二極體,其中該 蠢晶結構係利用有機金屬氣相沉積磊晶法(MOCVD)來形成。 18·如申請專利範圍第1項所述之發光二極體,其中該 16 200828627 蠢晶結構係利用液相磊晶法(LPE)來形成。 19·如申請專利範圍第1項所述之發光二極體,其中該 蠢晶結構係利用分子束磊晶法(MBE)來形成。 20·如申請專利範圍第1項所述之發光二極體,其中該 蟲晶結構係利用氫化物氣相磊晶法(HVPE)來形成。 21. 如申請專利範圍第1項所述之發光二極體,其中該 蠢晶結構係至少包含: 一 N型磷化鋁鎵銦磷化鋁鎵銦(AlxGaix)yIni_yP,x&gt;〇.4; 一主動層;以及 P型兔化銘叙姻(AlxGai_x)yIni_yP,χ&gt;0·4包覆層; 其中’該主動層係形成於該Ν型磷化鋁鎵銦包覆層和該 Ρ型填化鋁鎵銦包覆層之間。 22. 如申請專利範圍第1項所述之發光二極體,其中該 磊晶結構係選自於由同質結構、單異質結構、雙異質結構、 多重量子井以及上述任意組合所組成的一族群。 23. —種發光二極體的製造方法,至少包含: 提供一成長基材; 形成一磊晶結構於該成長基材之一側; 形成一透明分散電流層於該磊晶結構的一侧,其中該透 明分散電流層的厚度係至少大於100# m ; 17 200828627 移除該成長基材; 形成一第一電極於該磊晶結構之另一側;以及 形成一第二電極於該透明分散電流層的一側。 、 如申印專利範圍第23項所述之發光二極體的製造方 法’其中至少包含: 形成一第一歐姆接觸層於該透明分散電流層的表面上。 、、1 士申明專利範圍第24項所述之發光二極體的製造方 〃中&quot;亥第一歐姆接觸層的材料係選自由金鈹合金 (AUBe)、金鋅合金(AuZn)以及絡金合金(CrAu)所組成之/族 群0 如申1專利範圍第24項所述之發光二極體的製造方 法,其中至少包含: 圖案化該第一歐姆接觸層。 本id/ ^專利乾圍第24項所述之發光二極體的製造方 法’其中至少包含: &amp; =成-第-透明導電氧化層覆蓋於該第—歐姆接觸層的 】乾圍弟27項所述之發光二極體 法,其中該第一透明瀑雷〜k方 逐月^電虱化層的材料係選自 (Indium Tin 〇xide)、梟.如〜· 田乳化鋼錫 虱化銦(Inchum Oxide)、氧化錫 18 200828627 Oxide)、氧化鎘錫(CadiniUm Tin Oxide)及氧化辞(Zinc oxide)、氧化鎂(Magnesium oxide)所組成之族群。 29·如申請專利範圍第23項所述之發光二極體的製造方 法,其中至少包含: 形成一第二歐姆接觸層於該磊晶結構的表面上。 3〇·如申請專利範圍第29項所述之發光二極體的製造方 法’其中該第二歐姆接觸層具有一第二歐姆金屬接觸層和一 第二歐姆非金屬接觸層。 31·如申請專利範圍第29項所述之發光二極體的製造方 法’其中該第二歐姆金屬接觸層的材料係選自由鍺/金(Ge/Au) 合金。 32·如申請專利範圍第29項所述之發光二極體的製造方 法’其中該第二歐姆非金屬接觸層的材料係選自由N型珅化 鎵(GaAs)、N型磷化鎵(GaP)、N型磷化砷鎵(GaAsp)i n型 磷化銦鎵(InGaP)所組成之一族群。 33·如申請專利範圍第29項所述之發光二極體的製造方 法,其中至少包含: 圖案化該第二歐姆接觸層。 34·如申請專利範圍第29項所述之發光二極體的製造方 19 200828627 法,其中至少包含: 形成一第二透明導電氧化層覆蓋於該第二歐姆接觸層的 表面上0 35. 如申請專利範圍第34項所述之發光二極體的製造方 法,其中該第二透明導電氧化層的材料係選自由氧化銦錫 (Indium Tin Oxide)、氧化銦(Indium Oxide)、氧化錫(Tin Oxide)、氧化編錫(Cadmium Tin Oxide)及氧化辞(Zinc oxide)、氧化鎮(Magnesium oxide)戶斤組成之族君羊。 36. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中至少包含: 形成一蝕刻終止層於該成長基材的表面上;以及 在移除該成長基材後,移除該蝕刻終止層。 37. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該成長基板的材料係選自由砷化鎵(GaAs)、矽、碳 化矽(SiC)及氮化鋁(A1N)所組成之族群。 38. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該透明分散電流層的材料係選自由磷化砷鎵 (GaAsP)、磷化鋁鎵銦(AlGalnP)砷化鋁鎵(AlGaAs)或磷化鎵 (GaP)所組成之族群。 39. 如申請專利範圍第23項所述之發光二極體的製造方 20 200828627 法,其中該第一電極的材料係選自金(Au)及鋁(A1)所組成之族 群〇 40. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該第二電極的材料係選自鈦(Ti)、鎢(W)及金(Au)所 組成之族群。 41. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該形成該磊晶結構的步驟中該磊晶結構係利用有機 金屬氣相沉積磊晶法(MOCVD)來形成。 42. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該形成該磊晶結構的步驟中該磊晶結構係利用液相 蠢晶法(LPE)來形成。 43. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該形成該磊晶結構的步驟中該磊晶結構係利用分子 束磊晶法(MBE)來形成。 44. 如申請專利範圍第23項所述之發光二極體的製造方 法,其中該形成該透明分散電流層的步驟中該透明分散電流 層係利用有機金屬化學氣相磊晶法(MOCVD)與氫化物氣相磊 晶法(HVPE)的兩段式製程方法來形成。 45. 如申請專利範圍第23項所述之發光二極體的製造方 21 200828627 法’其中該移除該成長基材的步驟中該成長基材係利用蝕刻 製程來移除。 46·如申請專利範圍第23項所述之發光二極體的製造方 法’其中該移除該成長基材的步驟中該成長基材係利用化學 機械研磨製程來移除。 47·如申請專利範圍第23項所述之發光二極體的製造方 法’其中該磊晶結構係至少包含: 一 N型磷化鋁鎵銦(AlxGaix)yIi^p,x&gt;〇.4包覆層; 一主動層;以及 一 p型磷化鋁鎵銦(AlxGaUylmAxXM包覆層; 其中’該主動層係形成於該N型磷化鋁鎵銦(A^Ga^y^yP, x&gt;0·4包覆層和該P型磷化鋁鎵銦包覆層之 間。 法48·如申請專利範圍第23項所述之發光二極體的製造方 其中该蠢晶結構係選自於由同質結構、單異質結構、雙 ”、、、、。構夕重ϊ子井以及上述任意組合所組成的一族群。 22200828627 X. Patent application scope: h A light-emitting diode comprising at least: a transparent dispersion current layer having a thickness of at least l〇〇Mm; an epitaxial structure located on one side of the transparent dispersion current layer; An electrode on one side of the epitaxial structure; and a second electrode on the other side of the transparent dispersion current layer. 2. The light-emitting diode according to claim 1, wherein the direct-and-middle 5f comprises: a first ohmic contact layer formed on a surface of the transparent dispersed current layer. 3. The light-emitting diode according to claim 2, wherein the material of the one-ohm contact layer is selected from the group consisting of AuBe, AuZn, and CrAu. One of the groups that make up. 4. The light-emitting diode according to claim 2, wherein the one-ohm contact layer has a patterned structure.少 Less package ^ As in the application of the scope of the second paragraph of the light-emitting diode, which is even more. The light-emitting diode of the present invention, wherein the material of the transparent conductive oxide layer is selected from the group consisting of indium tin oxide (the inductive oxide layer according to claim 5). Indium Tin Oxide, Indium Oxide, Tin Oxide, Cadmium Tin Oxide, Zinc Oxide, and Magnesium Oxide. 7. The light-emitting diode of claim 1, wherein the light-emitting diode further comprises: a second ohmic contact layer formed on a surface of the epitaxial structure. 8. The light emitting diode of claim 7, wherein the second ohmic contact layer has a patterned structure. 9. The light-emitting diode of claim 7, wherein the second ohmic contact layer has a second ohmic metal contact layer and a second ohmic non-metal contact layer. 10. The light-emitting diode of claim 9, wherein the material of the second ohmic metal contact layer is selected from the group consisting of bismuth/gold (Ge/Au) alloys. 11. The light-emitting diode according to claim 9, wherein the material of the second ohmic non-metal contact layer is selected from the group consisting of N-type gallium arsenide (GaAs), N-type gallium phosphide (GaP), and N. A group of phosphine arsenide (GaAsP) or N-type indium gallium phosphide (InGaP). 12. The light-emitting diode of claim 7, wherein the further comprises: a second transparent conductive oxide layer formed on a surface of the second ohmic contact layer. The light-emitting diode according to claim 12, wherein the material of the second transparent conductive oxide layer is selected from the group consisting of indium tin oxide (Indium Tin Oxide), indium oxide (Indium Oxide), and tin oxide (Tin). Oxide), Cadmium Tin Oxide, Zinc oxide, and Magnesium oxide. The light-emitting diode according to claim 1, wherein the material of the transparent dispersion current layer is selected from gallium arsenide phosphide (GaAsP), aluminum gallium indium phosphide (AlGalnP) aluminum gallium arsenide (AlGaAs). Or a group of the gallium phosphide (GaP), wherein the material of the first electrode is selected from the group consisting of gold (Au) and aluminum (A1). The group of people. 16. The light-emitting diode of claim 1, wherein the material of the second electrode is selected from the group consisting of titanium (Ti), tungsten (W), and gold (Au). The light-emitting diode according to claim 1, wherein the stray structure is formed by an organometallic vapor phase epitaxy (MOCVD) method. 18. The light-emitting diode of claim 1, wherein the 16 200828627 amorphous structure is formed by liquid phase epitaxy (LPE). The light-emitting diode according to claim 1, wherein the stray structure is formed by molecular beam epitaxy (MBE). The light-emitting diode according to claim 1, wherein the crystallite structure is formed by hydride vapor phase epitaxy (HVPE). 21. The light-emitting diode according to claim 1, wherein the stray structure comprises at least: an N-type aluminum gallium indium phosphide indium gallium phosphide (AlxGaix) yIni_yP, x &gt; 〇. 4; An active layer; and a P-type rabbit-like imitation (AlxGai_x) yIni_yP, χ&gt;0·4 cladding layer; wherein 'the active layer is formed on the bismuth-type aluminum gallium arsenide cladding layer and the Ρ-type filling Between aluminum gallium and indium cladding layers. 22. The light-emitting diode according to claim 1, wherein the epitaxial structure is selected from the group consisting of a homostructure, a single heterostructure, a double heterostructure, a multiple quantum well, and any combination thereof. . 23. A method of fabricating a light-emitting diode, comprising: providing a growth substrate; forming an epitaxial structure on one side of the growth substrate; forming a transparent dispersion current layer on one side of the epitaxial structure, Wherein the thickness of the transparent dispersion current layer is at least greater than 100# m; 17 200828627 removing the growth substrate; forming a first electrode on the other side of the epitaxial structure; and forming a second electrode at the transparent dispersion current One side of the layer. The method for manufacturing a light-emitting diode according to claim 23, wherein the method comprises: forming a first ohmic contact layer on a surface of the transparent dispersion current layer. The material of the first ohmic contact layer of the light-emitting diode described in the second paragraph of the patent claim is selected from the group consisting of gold bismuth alloy (AUBe), gold zinc alloy (AuZn) and A method of manufacturing a light-emitting diode according to the invention of claim 2, wherein the method comprises: patterning the first ohmic contact layer. The method for manufacturing a light-emitting diode according to Item 24 of the above-mentioned id/^ patent circumstance includes at least: &amp; = a transparent conductive oxide layer covering the first ohmic contact layer The light-emitting diode method according to the item, wherein the first transparent waterfall is made of (Indium Tin 〇xide), and the material is selected from the group consisting of (Indium Tin 〇xide), 枭. Indium (Inchum Oxide), tin oxide 18 200828627 Oxide), cadmium tin oxide (Cadini Um Tin Oxide), and Zinc oxide, Magnesium oxide. The method of fabricating a light-emitting diode according to claim 23, wherein the method comprises at least: forming a second ohmic contact layer on a surface of the epitaxial structure. 3. The method of manufacturing a light-emitting diode according to claim 29, wherein the second ohmic contact layer has a second ohmic metal contact layer and a second ohmic metal contact layer. The method of producing a light-emitting diode according to claim 29, wherein the material of the second ohmic metal contact layer is selected from a bismuth/gold (Ge/Au) alloy. 32. The method of manufacturing a light-emitting diode according to claim 29, wherein the material of the second ohmic non-metal contact layer is selected from the group consisting of N-type gallium antimonide (GaAs) and N-type gallium phosphide (GaP). ), a group of N-type phosphide gallium arsenide (GaAsp) in-type phosphide indium gallium (InGaP). 33. The method of fabricating a light emitting diode according to claim 29, wherein the method comprises at least: patterning the second ohmic contact layer. The method of manufacturing a light-emitting diode according to claim 29, wherein the method further comprises: forming a second transparent conductive oxide layer overlying the surface of the second ohmic contact layer. The method for manufacturing a light-emitting diode according to claim 34, wherein the material of the second transparent conductive oxide layer is selected from the group consisting of indium tin oxide (Indium Tin Oxide), indium oxide (Indium Oxide), and tin oxide (Tin). Oxide), Cadmium Tin Oxide and Zinc oxide, Magnesium oxide. The method for manufacturing a light-emitting diode according to claim 23, wherein the method comprises: forming an etch stop layer on a surface of the growth substrate; and removing the growth substrate after removing the growth substrate The etch stop layer. The method for manufacturing a light-emitting diode according to claim 23, wherein the material of the growth substrate is selected from the group consisting of gallium arsenide (GaAs), germanium, tantalum carbide (SiC), and aluminum nitride (A1N). The group of people formed. 38. The method of manufacturing a light-emitting diode according to claim 23, wherein the material of the transparent dispersion current layer is selected from the group consisting of gallium arsenide phosphide (GaAsP) and aluminum gallium phosphide (AlGalnP) aluminum arsenide. A group of gallium (AlGaAs) or gallium phosphide (GaP). 39. The method of manufacturing a light-emitting diode according to claim 23, wherein the material of the first electrode is selected from the group consisting of gold (Au) and aluminum (A1). The method for producing a light-emitting diode according to claim 23, wherein the material of the second electrode is selected from the group consisting of titanium (Ti), tungsten (W) and gold (Au). The method of producing a light-emitting diode according to claim 23, wherein the epitaxial structure is formed by an organometallic vapor phase epitaxy (MOCVD) in the step of forming the epitaxial structure. The method of producing a light-emitting diode according to claim 23, wherein the epitaxial structure is formed by a liquid phase stray crystal method (LPE) in the step of forming the epitaxial structure. The method of producing a light-emitting diode according to claim 23, wherein the epitaxial structure is formed by a molecular beam epitaxy (MBE) in the step of forming the epitaxial structure. The method for manufacturing a light-emitting diode according to claim 23, wherein in the step of forming the transparent dispersion current layer, the transparent dispersion current layer is formed by an organometallic chemical vapor phase epitaxy (MOCVD) method. A two-stage process for hydride vapor phase epitaxy (HVPE) is formed. 45. The method of manufacturing a light-emitting diode according to claim 23, wherein the growth substrate is removed by an etching process in the step of removing the grown substrate. 46. The method for producing a light-emitting diode according to claim 23, wherein the step of removing the grown substrate is performed by a chemical mechanical polishing process. 47. The method of fabricating a light-emitting diode according to claim 23, wherein the epitaxial structure comprises at least: an N-type aluminum gallium indium phosphide (AlxGaix) yIi^p, x&gt; a cladding layer; an active layer; and a p-type aluminum gallium indium phosphide (AlxGaUylmAxXM cladding layer; wherein 'the active layer is formed in the N-type aluminum gallium indium arsenide (A^Ga^y^yP, x&gt; The method of manufacturing a light-emitting diode according to claim 23, wherein the amorphous structure is selected from the group consisting of the coating layer and the P-type aluminum gallium indium arsenide coating. A homogenous structure, a single heterostructure, a double ",", "," a scorpion, and a combination of any of the above.
TW95150029A 2006-12-29 2006-12-29 Light-emitting diode and manufacturing method thereof TWI336142B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95150029A TWI336142B (en) 2006-12-29 2006-12-29 Light-emitting diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95150029A TWI336142B (en) 2006-12-29 2006-12-29 Light-emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200828627A true TW200828627A (en) 2008-07-01
TWI336142B TWI336142B (en) 2011-01-11

Family

ID=44817705

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95150029A TWI336142B (en) 2006-12-29 2006-12-29 Light-emitting diode and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI336142B (en)

Also Published As

Publication number Publication date
TWI336142B (en) 2011-01-11

Similar Documents

Publication Publication Date Title
US8679869B2 (en) Contact for a semiconductor light emitting device
JP6077201B2 (en) Light emitting diode and manufacturing method thereof
JP2010219502A (en) Light emitting device
TWI437737B (en) Light emitting diode structure and method for manufacturing the same
TW201044632A (en) Light emitting diode and method for producing the same, and lamp
KR20100035846A (en) Light emitting device and method for fabricating the same
JP2013026451A (en) Semiconductor light-emitting device
TWI426626B (en) Light-emitting diode, light-emitting-lamp and lighting device
JP6164560B2 (en) Horizontal power LED element and manufacturing method thereof
JP4803302B2 (en) Nitride semiconductor light emitting device
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
EP3143648A1 (en) Method of forming a light-emitting device
KR101239852B1 (en) GaN compound semiconductor light emitting element
US20140138729A1 (en) High efficiency light emitting diode
KR20110043282A (en) Light emitting device and method for fabricating the same
JP6153351B2 (en) Semiconductor light emitting device
KR20090109598A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP6190591B2 (en) Semiconductor light emitting device
KR20160145413A (en) Red light emitting device and method for fabricating the same, and light emitting device package
TW200828627A (en) Light-emitting diode and manufacturing method thereof
KR101205831B1 (en) Semiconductor light emitting device and manufacturing method of the same
JP2007157778A (en) Semiconductor light emitting device
JP6948494B2 (en) UV light emitting element and light emitting element package
JP2014116412A (en) Semiconductor light-emitting element
JP2014107475A (en) Semiconductor light-emitting element