TW200822123A - Flash memory device and method for controlling erase operation of the same - Google Patents

Flash memory device and method for controlling erase operation of the same Download PDF

Info

Publication number
TW200822123A
TW200822123A TW95147631A TW95147631A TW200822123A TW 200822123 A TW200822123 A TW 200822123A TW 95147631 A TW95147631 A TW 95147631A TW 95147631 A TW95147631 A TW 95147631A TW 200822123 A TW200822123 A TW 200822123A
Authority
TW
Taiwan
Prior art keywords
voltage
erase
word line
local
word lines
Prior art date
Application number
TW95147631A
Other languages
Chinese (zh)
Other versions
TWI322430B (en
Inventor
Hee-Youl Lee
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200822123A publication Critical patent/TW200822123A/en
Application granted granted Critical
Publication of TWI322430B publication Critical patent/TWI322430B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series

Abstract

A non-volatile memory device includes first and second memory cell blocks, each including a plurality of memory cells and including a local drain select line, a local source select line, and local word lines. A block selection unit connects given local word lines to global word line, respectively, in response to a block selection signal. A first bias voltage generator is configured to apply at least first and second erase voltages to the global word lines during an erase operation, the first erase voltage being applied to the global word lines during a first erase attempt of the erase operation, the second erase voltage being applied to the global word lines during a second erase attempt, where the second erase attempt is performed if the first erase attempt did not successfully perform the erase operation. The first and second erase voltages being positive voltages. A bulk voltage generator applies a bulk voltage to a bulk of the memory cells during the erase operation.

Description

200822123 九、發明說明: 【發明所屬之技術領域】 本發明係有關於半導體記憶體元件,以及更特別地, 是有關於一種快閃記憶體元件,在該快閃記憶體元件中 可防止因在以一區塊爲基礎之抹除操作中的漏電流而降 低抹除操作之可靠性,以及有關於一種控制該快閃記憶 體元件之抹除操作的方法。 【先前技術】 通常,可將快閃記憶體元件分類成一 N 0 R型態及一 NAND型,其中該NOR型態一般係用以在高速下儲存小 量資訊,以及該NAND型態一般係用以儲存大量資訊。 該快閃記憶體元件實施一讀取操作、一程式化操作及一 抹除操作。該等術語「程式化操作(p r 〇 g r a m 〇 p e r a t i ο η)」 及「抹除操作(erase operation)」提及關於藉由將電子注 入浮動閘極及從浮動閘極移除電子以在一個或多個記憶 體單元中儲存資料之操作。例如:在該程式化操作中,只 程式化在一記憶體單元區塊中所包括之複數個記憶體單 元的所選擇之記憶體單元。當藉由FN穿隧朝該P-井區釋 放在該記憶體單元之浮動閘極中所存在之電子時,執行 該快閃記憶體元件之抹除操作。在該抹除操作中,同時 抹除在該記憶體單元區塊中所包括之全部記憶體單元中 所儲存的資料。亦即,以一記憶體單元區塊爲基礎來實 施該抹除操作。 第1圖係用以說明一傳統快閃記憶體元件之抹除操作 的記憶體單元及傳輸閘之電路圖。在一抹除操作中,施 200822123 加ον之偏壓Vb至一總體字元線GWL,以及施加20V之 本體電壓(bulk voltage)VBKl至記憶體單元CA1至CAn 及CB1至CBn的P-井區(其中η係整數)。使該等記憶體 單元CA1至CAn及CB1至CBn之源極及汲極浮接。此外, 施加一具有電壓(Vcc)位準之區塊選擇信號BKSEL1至一 NM0S電晶體NM1之閘極,其中該NMOS電晶體NM1係 連接於一被選擇(亦即,將被抹除)之記憶體單元區塊A 的一局部字元線WL1與該總體字元線GWL之間。將一具 有0V之本體電壓VBK2施加至該NM0S電晶體NM1之基 板(未顯示)。使該NMOS電晶體NM1導通以回應該區塊 選擇信號BKSELI,以及使該局部字元線WL1連接至該總 體字元線GWL。結果,該局部字元線WL1之電壓變成0V, 以及在該等記憶體單元CA1至CAn之連接至該局部字元 線WL1的控制閘極(未顯示)與該等記憶體單元CA1至 CAn之P-井區間產生20V之電壓差。於是,當朝該等P-井區釋放該等記憶體單元CA1至CAn之浮動閘極的電子 時,實施該等記憶體單元區塊A之抹除操作。 同時,一 NMOS電晶體NM2之閘極被施加有一 0V之 區塊選擇信號BKSEL2,其中該NMOS電晶體NM2係連接 於一未被選擇(亦即,將不被抹除)之記憶體單元區塊B 的一局部字元線WL2與該總體字元線GWL之間。此外, 施加一 0V之本體電壓VBK2至該NMOS電晶體NM2之基 板。使該NMOS電晶體NM2關閉以回應該區塊選擇信號 BKSEL2,以及使該局部字元線WL2與該總體字元線GWL· 分離。此浮接該局部字元線WL2。之後,藉由一電容耦 200822123 合現象將被施加至該等記憶體單元CB1至CBn之P-井區 的20V之本體電壓VBK1施加至該局部字元線WL2,以 及因而將該局部字元線WL2之電壓位準提升至約19V。 此導致在該局部字元線WL2與該等記憶體單元CB 1至 CBn之P-井區間之IV的電壓差,該IV之電壓差不足以 從該等記憶體單元CB1至CBn之浮動閘極釋放電子。結 果,當對該記憶體單元區塊A實施該抹除操作時,沒有 對該記憶體單元區塊B實施該抹除操作。 雖然關閉該NMOS電晶體NM2,但是會在該NMOS電 晶體NM2中產生漏電流。於是,該局部字元線WL2之電 壓位準被提升至接近該本體電壓VBK1的電壓位準會逐 漸地減少。此導致在該等記憶體單元CB 1至CBn之控制 閘極與該等 P-井區間之電壓差的增加。因此,可能導致 一淺抹除(shallow erase),亦即,可能非刻意地從該等記 憶體單元CB1至CBn之浮動閘極釋放小量電子。當在一 快閃記憶體元件中所包括之記憶體單元區塊的數目增加 時,像淺抹除之抹除干擾變得更顯著。例如:每當記憶體 單元區塊一個接一個地實施一抹除操作,在不應被抹除 之記憶體單元區塊的記憶體單元中重複地產生一淺抹除 現象。因此,當對應記憶體單元之臨界電壓逐漸減少時, 很可能增加該讀取操作失敗。 再者,發生一快速程式化現象,其中當一抹除操作之 次數增加時,該臨界電壓在一程式化操作時上升至一目 標電壓以上,或者發生一慢速抹除現象,其中在一抹除 操作時無法使該臨界電壓充分地降低至一目標電壓。下 200822123 面將參考第2圖做更詳細描述 第2圖係顯示在習知技藝中相依於一抹除操作之次數 的一慢速抹除特性及一快速程式化特性之特性曲線圖。 雖然在相同狀態下實施該程式化或抹除操作,但是當實 施該程式化或抹除操作時,一記憶體單元之臨界電壓增 加,以及最後變成高於一目標電壓。該臨界電壓之增加 導致該程式化操作之快速實施或該抹除操作之慢速實 施。當在該抹除操作時該等字元線與該本體間之電壓差 係較高時,會發生此現象。換句話說,在該抹除操作時 該等字元線與該本體間之電壓差越高,該快速程式化及 慢速抹除現象越嚴重。 第3圖係顯示在習知技藝中相依於一抹除電壓之位準 的一慢速抹除特性及一快速程式化特性之特性曲線圖。 可看出如果當該等字元線與該本體間之電壓差係較高(高 電位抹除)時,實施該抹除操作,則突然地產生該快速程 式化現象及該慢速抹除現象,然而如果當該等字元線與 該本體間之電壓差係較低(低電位抹除)時,實施該抹除操 作,則逐漸地產生該快速程式化現象及該慢速抹除現象。 要防止上面所述之快速程式化現象及慢速抹除現象之 發生,應該在該寺子兀線與該本體間具有低電壓差時實 施該抹除操作。在此情況中,可能延長一抹除操作時間 及可能不適當地實施該抹除操作。如果不適當地實施該 抹除操作,則會將對應區塊標記成爲不被使用之無效區 塊。此減少可用區塊之數目及減少資料儲存容量。 【發明內容】 200822123 於是,本發明之實施例係有關於一種操作,其中從該 等記憶體單元之浮動閘極釋放電子’例如:抹除操作。實 施本實施例之抹除操作以減少未被選擇用於抹除操作之 記憶體單元的漏電流。在一實施例中,在一抹除操作期 間施加一第一正電壓至總體字元線(第一嘗試)。如果尙未 適當地實施該抹除操作,則藉由施加一小於該第一電壓 之第二電壓至該等總體字元線以再次實施該抹除操作(第 二嘗試)。重複該抹除嘗試一預定次數或直到已成功地實 施該抹除操作爲止,而無論哪個先發生。在每一失敗嘗 試後減少被施加至該等總體字元線之電壓以增加該抹除 操作之電壓差。 在一實施例中,一種非揮發性記憶體元件包括第一及 第二記憶體單元區塊,每一記憶體單元區塊包括複數個 記憶體單元及包括一局部汲極選擇線、一局部源極選擇 線及複數條局部字元線。一區塊選擇單元分別連接給定 局部字元線至總體字元線以回應一區塊選擇信號。一第 一偏壓產生器配置成用以在一抹除操作期間施加至少第 一及第二抹除電壓至該等總體字元線,該第一抹除電壓 在該抹除操作之第一抹除嘗試期間被施加至該等總體字 元線’該第二抹除電壓在第二抹除嘗試期間被施加至該 等總體子兀線’其中如果該第一抹除嘗試未成功地實施 該抹除操作,則實施該第二抹除嘗試。該第一及第二抹 除電壓係正電壓。一本體電壓產生器在該抹除操作期間 施加一本體電壓至該等記憶體單元之一本體。在此實施 例中,每次實施一新抹除嘗試時,藉由一給定電壓減少 -10- 200822123 一被施加至該等總體字元線之抹除電壓,其中在一預定 次數之失敗抹除嘗試後,停止一給定抹除操作。 在一實施例中,一種快閃記憶體元件包括複數個記憶 體單元區塊,每一記憶體單元區塊分別包括一局部汲極 選擇線、一局部源極選擇線及複數條局部字元線,而複 數個記億體單元係連接至該局部汲極選擇線、該局部源 極選擇線及該複數條局部字元線。一區塊選擇單元分別 連接該等局部字元線至總體字元線以回應一區塊選擇信 號。一第一偏壓產生器在一抹除操作時施加一正抹除電 壓至該等總體字元線。一本體電壓產生器係配置成用以 在該抹除操作之第一抹除嘗試期間施加一第一本體電壓 至該等記憶體單元之一本體’以及如果尙未適當地實施 該第一抹除嘗試,則在第二抹除嘗試期間施加一第二本 體電壓至該本體。如果該第一抹除嘗試尙未抹除針對該 抹除操作所選擇之所有記憶體單元,則認爲尙未適當地 實施該第一抹除嘗試。 在一實施例中’一種抹除一非揮發性記憶體元件之方 法包括連接一選擇區塊之局部字元線及總體字元線以回 應一區塊選擇信號。藉由施加一第一抹除電壓至該等總 體字元線及一高於該第一抹除電壓之第一本體電壓至一 本體以使該等局部字元線與該本體間之電壓差係一第一 電位差來實施一抹除操作之第一抹除嘗試。該方法進一 步包括確定是否已適當地實施該第一抹除嘗試。如果確 定尙未適當地實施該第一抹除嘗試’則實施該抹除操作 之第二抹除嘗試。該第二抹除嘗試包括施加一第二抹除 -11- 200822123 電壓至該等總體字元線及一第二本體電壓至該本體以增 加在該等局部字元線與該本體間之電壓差至一第二電位 差。該第二抹除電壓可能小於該第一抹除電壓。該第二 本體電壓可能大於該第一本體電壓。該第一抹除電壓及 該第二抹除電壓可能是不同的,以及該第一本體電壓及 該第二本體電壓可能是不同的。 依據本發明之第一實施例的一種快閃記憶體元件包括 複數個記憶體單元區塊、一區塊選擇單元、一第一偏壓 產生器及一本體電壓產生器。每一記憶體單元區塊包括 一局部汲極選擇線、一局部源極選擇線及複數條局部字 元線,而複數個記憶體單元係連接至該局部汲極選擇 線、該局部源極選擇線及該複數條局部字元線。該區塊 選擇單元分別連接該等局部字元線至總體字元線以回應 一區塊選擇信號。該第一偏壓產生器在一抹除操作時施 加一正抹除電壓至該等總體字元線,以及如果存在一尙 未被抹除之記憶體單元,則減少該抹除電壓及施加一降 低抹除電壓至該等總體字元線,以便再次實施該抹除操 作。該本體電壓產生器在該抹除操作時施加一本體電壓 至該等記憶體單元之一本體。 該第一偏壓產生器可以產生該抹除電壓,以便該等局 部字元線與該本體間之電壓差在一初始抹除操作時變成 1 5 V,以及減少該抹除電壓,以便當再次實施該抹除操作 時,該等局部字元線與該本體間之電壓差變成高於1 5 V。 在此時,該第一偏壓產生器可以一線性函數、一二次函 數或一指數函數在0.1至0.5V基準下減少該抹除電壓。 -12- 200822123 該快閃記憶體元件可以進一步包括一頁緩衝器,用以 讀取在該等記憶體單元中所儲存之資料,以及一 Y -解碼 器,用以輸出在該頁緩衝器中所儲存之資料至一資料I/O 緩衝器及該第一偏壓產生器。 如果偵測到從該Y-解碼器所輸出之資料的尙未抹除資 料,則該第一偏壓產生器可以減少該抹除電壓,以便再 次實施該抹除操作。 依據本發明之第二實施例的一種快閃記憶體元件包括 複數個記憶體單元區塊、一區塊選擇單元、一第一偏壓 產生器及一本體電壓產生器。每一記憶體單元區塊包括 一局部汲極選擇線、一局部源極選擇線及複數條局部字 元線,而複數個記憶體單元係連接至該局部汲極選擇 線、該局部源極選擇線及該複數條局部字元線。該區塊 選擇單元分別連接該等局部字元線至總體字元線以回應 一區塊選擇信號。該第一偏壓產生器在一抹除操作時施 加一正抹除電壓至該等總體字元線。該本體電壓產生器 在該抹除操作時施加一本體電壓至該等記憶體單元之一 本體,以及如果存在一尙未被抹除之記憶體單元,則爲 了該抹除操作之再執行,增加該本體電壓及施加一增加 本體電壓至該本體。 該本體電壓產生器可以產生該本體電壓,以便該等局 部字元線與該本體間之電壓差在一初始抹除操作時變成 1 5 V,以及減少該本體電壓,以便當再次實施該抹除操作 時,該等局部字元線與該本體間之電壓差變成高於1 5 V。 在此時,該本體電壓產生器可以一線性函數、一二次函 -13- 200822123 數或一指數函數在0· 5至IV基準下增加該本體mjE。 該快閃記憶體元件可以進一步包括一頁,緩_器,& 讀取在該等記憶體單元中所儲存之資料,以s _ 器,用以輸出在該頁緩衝器中所儲存之資料至_ I _ Ι/〇 緩衝器及該本體電壓產生器。 如果偵測到從該Υ-解碼器所輸出之資料的# 卩余^ 料,則該本體電壓產生器可以增加該本體電;|g,& ^胃 次實施該抹除操作。 依據本發明之第三實施例的一種快閃記憶體元丨牛包^舌 複數個記憶體單元區塊、一區塊選擇單元、-第_ {扁g 產生器及一本體電壓產生器。每一記憶體單元區塊包括 一局部汲極選擇線、一局部源極選擇線及複數條局部字 元線,而複數個記憶體單元係連接至該局部汲極選擇 線、該局部源極選擇線及該複數條局部字元線。該區塊 選擇單元分別連接該等局部字元線至總體字元線以回應 一區塊選擇信號。該第一偏壓產生器在一抹除操作時施 加一正抹除電壓至該等總體字元線,以及如果存在一尙 未被抹除之記憶體單元,則減少該抹除電壓及施加一減 少抹除電壓至該等總體字兀線,以便再次實施該抹除操 作。該本體電壓產生器在該抹除操作時施加一本體電壓 至該等記憶體單元之一本體,以及如果存在一尙未被抹 除之記憶體單元,則爲了該抹除操作之再執行,增加該 本體電壓及施加一增加本體電壓至該本體。 在上述中,在一初始抹除操作時,該第一偏壓產生器 及該本體電壓產生器可以分別產生該抹除電壓及該本體 -14- 200822123 電壓,以便該等局部字元線與該本體間之電壓差變成 15V。當再次實施該抹除操作時,該本體電壓產生器可以 增加該本體電壓及該第一偏壓產生器可以減少該抹除電 壓,以便該等局部字元線與該本體間之電壓差變成高於 1 5 V。在此時,該第一偏壓產生器可以一線性函數、一二 次函數或一指數函數在0.1至0.5V基準下減少該抹除電 壓。該本體電壓產生器可以一線性函數、一二次函數或 一指數函數在0.5至IV基準下增加該抹除電壓。 該快閃記憶體元件可以進一步包括一頁緩衝器,用以 讀取在該等記憶體單元中所儲存之資料,以及一 Y-解碼 器,用以輸出在該頁緩衝器中所儲存之資料至一資料I/O 緩衝器、該本體電壓產生器及該第一偏壓產生器。 同時,如果偵測到從該Y-解碼器所輸出之資料的尙未 抹除資料,則該第一偏壓產生器減少該抹除電壓及該本 體電壓產生器增加該本體電壓,以便再次實施該抹除操 作。 該快閃記憶體元件可以進一步包括一 X-解碼器,該X-解碼器用以解碼一列位址信號及輸出該區塊選擇信號至 該高壓產生單元。再者,該快閃記憶體元件可以進一步 包括一第二偏壓電壓產生器,該第二偏壓電壓產生器用 以依據程式化、讀取及抹除操作中之任何一操作施加一 預定操作電壓至該局部汲極選擇線及該局部源極選擇 線。 該第一偏壓產生器可以包括一第一杲電路(pUmp ciiruit),用以產生讀取操作所需之讀取電壓以回應一讀取 -15- 200822123 指令;一第二泵電路,用以產生一程式化操作所需之程式 化電壓以回應一程式化指令;一第三泵電路,用以產生該 抹除電壓以回應一抹除指令,以及如果偵測到該Y-解碼 器所輸出之資料的尙未抹除資料,則減少該抹除電壓及 輸出一減少抹除電壓;以及一偏壓選擇單元,用以選擇該 等讀取電壓、該等程式化電壓或該抹除電壓以回應一操 作指令信號及分別輸出一選擇電壓至該等總體字元線。 在此時,該偏壓選擇單元可以包括一選擇信號產生器, 用以根據該操作指令信號產生選擇信號,以及複數個選 擇電路,分別連接至該等總體字元線,用以分別輸出該 等讀取電壓、該等程式化電壓及該抹除電壓中之一至該 寺總體子兀線以回應該等選擇信號。 依據本發明之第一實施例,提供一種控制一快閃記憶 體元件之抹除操作的方法,該方法包括下列步驟:(a)分別 電性連接一選擇區塊之局部字元線及總體字元線以回應 一區塊選擇信號;(b)藉由依據一抹除指令施加一正抹除 電壓至該等總體字元線及一高於該抹除電壓之本體電壓 至一記憶體單元之一本體以實施一抹除操作;(c)確定是 否已適當地實施該抹除操作;以及(d)如果確定尙未適當 地實施該抹除操作,則藉由減少該抹除電壓以使該等局 部字元線與該本體間之電壓差變大來再次實施該抹除操 作。 該等步驟(c)及(d)可以多次被重複實施,同時減少該抹 除電壓儘可能於一預定位準,以及包括如果直到該預定 次數爲止尙未適當地實施該抹除操作,則將一對應區塊 -16- 200822123 視爲一無效區塊。 依據本發明之第二實施例,提供一種控制一快閃記憶 體元件之抹除操作的方法,該方法包括(a)分別電性連接 一選擇區塊之局部字元線及總體字元線以回應一區塊選 擇信號;(b)藉由依據一抹除指令施加一正抹除電壓至該 等總體字元線及一高於該抹除電壓之本體電壓至一記憶 體單元之一本體以實施一抹除操作;(c)確定是否已適當 地實施該抹除操作;以及(d)如果確定尙未適當地實施該 抹除操作’則藉由增加該抹除電壓以使該等局部字元線 與該本體間之電壓差變大來再次實施該抹除操作。 該等步驟(c)及(d)可以多次被重複實施,同時增加該抹 除電壓儘可能於一預定位準,以及包括如果直到該預定 次數爲止尙未適當地實施該抹除操作,則將一對應區塊 視爲一無效區塊。 依據本發明之第三實施例,提供一種控制一快閃記憶 體元件之抹除操作的方法,該方法包括下列步驟:(a)分 別電性連接一選擇區塊之局部字元線及總體字元線以回 應一區塊選擇信號;(b)藉由依據一抹除指令施加一正抹 除電壓至該等總體字元線及一高於該抹除電壓之本體電 壓至一記憶體單元之一本體以實施一抹除操作;(C)確定 是否已適當地實施該抹除操作;以及(d)如果確定尙未適 當地實施該抹除操作,則藉由同時控制該抹除電壓及該 本體電壓以使該等局部字元線與該本體間之電壓差變大 來再次實施該抹除操作。 該等步驟(C)及(d)可以多次被重複實施,同時減少該抹 -17- 200822123 除電壓儘可能於一預定位準及增加該本體電壓儘可能於 一預定位準,以及包括如果直到該預定次數爲止尙未適 當地實施該抹除操作,則將一對應區塊視爲一無效區塊。 再者,可以設定該抹除電壓及該本體電壓,以便該等 局部字元線與該本體間之電壓差係15V或更高。 可以0.1至0.5V基準減少該抹除電壓,以便在一使該 電壓差變成至少1 5 V之範圍內增加該等局部字元線與該 本體間之電壓差,或者可以一指數函數減少該抹除電 壓,以便在一使該電壓差變成至少1 5 V之範圍內增加該 等局部字元線與該本體間之電壓差。 可以0.5至IV基準增加該抹除電壓,以便在一使該電 壓差變成至少1 5 V之範圍內增加該等局部字元線與該本 體間之電壓差,或者可以一指數函數增加該抹除電壓, 以便在一使該電壓差變成至少1 5 V之範圍內增加該等局 部字元線與該本體間之電壓差。 【實施方式】 現在,將參考所附圖式來描述依據本發明之各種實施 例。因爲爲了使熟習該項技藝者能了解本發明而提出各 種實施例,所以其可以各種方式來修改及稍後所述之各 種實施例沒有侷限本發明之範圍。 第4圖係依據本發明之一實施例的一快閃記憶體元件 之方塊圖。一快閃記憶體元件1 00包括一記憶體單元陣 列1 1 0、一輸入緩衝器1 2 0、一控制邏輯電路1 3 0、一高 壓產生器140、一 X-解碼器150、一區塊選擇單元160、 一頁緩衝器170、一 Y-解碼器180及一資料I/O緩衝器 -18- 200822123 1 90。該記憶體單元陣列1 1 0包括記憶體單元區塊MB 1至 ΜBK(其中K係整數),每一記憶體單元區塊具有複數個記 憶體單元(未顯示)。該輸入緩衝器1 20接收一指令信號 CMD或一位址信號ADD,以及將它們輸出至該控制邏輯 電路130。該控制邏輯電路130接收該指令信號CMD或 該位址信號ADD以回應外部控制信號/WE、/RE、ALE及 CLE。該控制邏輯電路130產生一讀取指令READ、一程 式化指令PGM及一抹除指令ERS中之一以回應該指令信 號CMD。該控制邏輯電路130產生一列位址信號RADD 及一行位址信號CADD以回應該位址信號ADD。 該高壓產生器140包括一本體電壓產生器40、一第一 偏壓產生器50及一第二偏壓產生器60。該本體電壓產生 器4 0產生一本體電壓VCB以回應該讀取指令READ,該程 式化指令PGM及該抹除指令ERS,以及供應該本體電壓 VCB至該等記憶體單元之P-井區。更特別地,該本體電壓 產生器40產生低電壓位準(例如:0V)之本體電壓VCB以回 應該讀取指令READ或該程式化指令PGM。該本體電壓 產生器40亦產生高電壓位準(例如:20V)之本體電壓VcB 以回應該抹除指令ERS。同時,如果在該抹除操作後具有 尙未適當地依據該Y-解碼器180所輸出之資料實施該抹 除操作的單元,則可以控制該本體電壓V C B之位準。例如: 如果尙未適當地實施該抹除操作,則可以〇 · 5或1 V基準 增加該本體電壓Vcb之位準,以及如果適當的話,可以改 變該本體電壓VeB之增加寬度。 該第一偏壓產生器50產生一汲極偏壓Vc3D及一源極偏 -19- 200822123 壓Vu以回應該讀取指令READ、該程式化指令PGM及該 抹除指令ERS中之一,以及供應該汲極偏壓Vcd至一總 體汲極選擇線GDSL及該源極偏壓Vm至一總體源極選擇 線GSSL。更特別地,該第一偏壓產生器50產生高電壓位 準(例如:4.5 V)之汲極偏壓V。d及源極偏壓V。s以回應該讀 取指令READ。該第一偏壓產生器50亦產生內部電壓位 準(VCC,未顯示)之汲極偏壓VCD及低電壓位準之源極偏 壓VCS以回應該程式化指令PGM。再者,該第一偏壓產生 器50產生低電壓位準之汲極偏壓V(3D及源極偏壓V(3S以 回應該抹除指令ERS。 該第二偏壓產生器60產生字元線偏壓VwFl至VWFJ(其 中:ί係整數)、字元線偏壓Vwsl至VwsJ(其中J係整數)或 字元線偏壓VWT1至VwtH其中J係整數)以回應該讀取指 令READ、該程式化指令PGM及該抹除指令ERS中之一 及一解碼信號DEC,以及供應該產生字元線偏壓至總體 字元線GWL1至GWLJ (其中J係整數)。更詳而言之,該 第二偏壓產生器60產生該等字元線偏壓VWF1至VWFJ以 回應該讀取指令READ。該第二偏壓產生器60產生該等 字元線偏壓Vwsl至VwSJ以回應該程式化指令PGM。該第 一'偏壓產生器60產生子兀線偏壓VwtI至VwtI以回應該 抹除指令ERS。 在此情況中,當輸入該抹除指令ERS時,該第二偏壓 產生器60產生一高於0V之正電壓。在該抹除操作後, 如果具有尙未依據該Y -解碼器1 8 0所輸出之資料適當地 實施該抹除操作之單元,則該第二偏壓產生器60控制該 -20- 200822123 等字兀線偏壓Vwt 1至VwtJ之位準。例如:如果尙未適當 地實施該抹除操作,則該第二偏壓產生器6 0可以0.1 v 至0.5V基準降低該等字元線偏壓VwTi至VwT;[之位準及 輸出該等降低字元線偏壓。如果需要的話,可以改變該 等字元線偏壓Vwt 1至VwtJ之減少寬度。 如果尙未適當地實施該抹除操作,則該本體電壓產生 器40及該第二字兀線電壓產生器60控制該輸出電壓。 此將再次實施該抹除操作(亦即,實施一再抹除操作)。藉 由增加該等字元線與該本體間之電壓差以實施該再抹除 操作。爲了增加該等字元線與該本體間之電壓差,該本 體電壓產生器40及該第二字元線電壓產生器60中只有 一電壓產生器或該本體電壓產生器40及該第二字元線電 壓產生器6 0兩者可以控制該輸出電壓之位準。此將詳細 描述於後。 該X -解碼器1 5 0解碼該列位址信號R A D D,以及輸出 一解碼信號DEC。該區塊選擇單元160選擇該等記憶體 單元區塊MB1至MBK中之一個或多個以回應該解碼信號 DEC,以及分別連接一選擇記憶體單元區塊(或一記憶體 單元區塊)之局部字元線WL11至WL1〗(見第5圖)至該等 總體字元線GWL1至GWL〗。該區塊選擇單元160連接該 選擇記憶體單元區塊之汲極選擇線DSL1至DSLK(見第5 圖)中之一至該總體汲極選擇線GDSL,以及連接該選擇 記憶體單元區塊之源極選擇線SSL1至SSLK(見第5圖) 中之一至該總體源極選擇線GSSL。該頁緩衝器170、該 Y-解碼器180及該資料I/O緩衝器190之構造及操作係熟 -21 - 200822123 習技藝者所已知,因而省略其描述。 第5圖係第4圖所示之記憶體單元陣列、區塊選擇單 元、第二偏壓產生器、本體電壓產生器及X -解碼器之詳 細電路圖。該記憶體單元陣列1 1 0之記憶體單元區塊MB 1 包括記憶體單元Ml 1 1至M1】T(其中J及T係整數)、一汲 極選擇電晶體DST1及一源極選擇電晶體SST1。該等記 憶體單元Ml 1 1至Ml JT共用位元線BL1至BLT(其中丁係 整數)、局部字元線WL11至WL1〗(其中J係整數)及一共 用源極線C S L 1。亦即,該等記憶體單元Μ 1 1 1至Μ 1 1 T經 由該(等)汲極選擇電晶體DST1分別連接至該等位元線 BL1至BLT,以及該等記憶體單元Μ1Π至Ml JT經由該(等) 源極選擇電晶體S S T 1連接至該共用源極線C S L 1。此外, 該等記憶體單元Μ 1 1 1至M 1JT之閘極連接至該等局部字 元線WL1 1至WL1】。該(等)汲極選擇電晶體DST1之閘極 連接至該局部汲極選擇線DSL1,以及該(等)源極選擇電 晶體SST1之閘極連接至一局部源極選擇線SSL 1。 該記憶體單元陣列1 1 0之記憶體單元區塊Μ B 2至Μ B K 的構造相同於該記憶體單元區塊MB 1之構造。該區塊選 擇單元160包括一區塊切換單元161及複數個切換單元 PG1至PGK(其中K係整數)。該區塊切換單元161輸出區 塊選擇信號BSEL1至BSELK(其中K係整數)以回應從該 X-解碼器150所接收之解碼信號DEC。該複數個切換單 元PG1至PGK係分別以對應於該等記憶體單元區塊MB1 至MBK方式來配置以及被致能或失能以回應該等區塊選 擇信號BSEL1至BSELK。 -22- 200822123 該等切換單元PG1至PGK之每一切換單元包括複數個 切換元件。例如:該切換單元PG 1具有切換元件GD 1、G 1 1 至G1〗及GS1。該等切換單元PG2至PGK之構造及操作 相似於該切換單元PG 1之構造及操作。因此,將根據該 切換單元PG1之操作來描述。最好,可使用NMOS電晶 體來實施該等切換元件GDI、Gl 1至G1J及GS1。之後, 爲了便於描述該等切換元件GDI、G11至GH及GS1將 稱爲「NMOS電晶體」。將該區塊選擇信號BSEL1輸入至 該等NMOS電晶體GDI、G11至G1J及GS1之閘極。該 NMOS電晶體GDI具有一連接至該總體汲極選擇線GDSL 之源極及一連接至該局部汲極選擇線DSL1之汲極。該等 NMOS電晶體G11至G1J具有分別連接至該等總體字元線 GWL1至 GWL】之源極及分別連接至該等局部字元線 WL11至WL1:[之汲極。該NMOS電晶體GS1具有一連接 至該總體源極選擇線GSSL之源極及一連接至該局部源 極選擇線SSL1之汲極。同時導通或關閉該等NMOS電晶 體GDI、G11至G1J及GS1以回應該區塊選擇信號BSEL1。 更特別地,當使該區塊選擇信號BSEL1致能時,導通 該等NMOS電晶體GDI、G11至G1:[及GS1,以及當該區 塊選擇信號BSEL1失能時,關閉該等NMOS電晶體GDI、 G11至G1〗及GS1。當導通該等NMOS電晶體GDI、G11 至G1;[及GS1時,該總體汲極選擇線GDSL連接至該局 部汲極選擇線DSL1,該總體源極選擇線GSSL連接至該 局部源極選擇線 SSL1,以及該等總體字元線 GWL1至 GWL】分別連接至該等局部字元線WL1 1至WL1 J。 -23- 200822123 該第二偏壓產生器60包括第一至第三泵電路61、62 及63以及一偏壓選擇單元64。該第一泵電路61產生讀 取電壓VRD1及VRD2以回應該讀取指令READ。最好,該 讀取電壓VrdI具有一高壓位準(例如:4.5V),以及該讀取 電壓VRD2具有一低壓位準(例如:0V)。在該記憶體單元陣 列1 1 0之一讀取操作中,將該讀取電壓V r d 1施加至局部 字元線,其中未選擇記憶體單元(亦即,將不被讀取之記 憶體單元)之閘極係連接至該等局部字元線,以及將該讀 取電壓VRD2施加至局部字元線,其中選擇記憶體單元(亦 即,將被讀取之記憶體單元)之閘極係連接至該等局部字 元線。 該第二泵電路62產生程式化電壓Vp。及VPS以回應該 程式化指令PGM。最好,該等程式化電壓Vp。及VPS分別 具有高壓位準(例如:VPC=18V,VPS=10V)。在該記憶體單 元陣列1 1 0之一程式化操作中,將該程式化電壓Vp。施加 至局部字元線,其中將被程式化之記憶體單元的閘極係 連接至該等局部字元線,以及將該程式化(或傳輸(Pass)) 電壓VPS施加至局部字元線,其中將不被程式化之記憶體 單元的閘極係連接至該等局部字元線。 再者,該第三泵電路63產生一正抹除電壓Vers,該正 抹除電壓VERS高於0V以回應該抹除指令ERS。換句話 說,該第三泵電路63產生該抹除電壓Vers,以便將一高 於0V之電壓施加至一抹除操作時所選擇之一區塊的字元 線。同時,依據該正抹除電壓Vers實施該抹除操作之一 區塊中,降低在字元線與一本體間之電壓差。最好在實 -24- 200822123 施該抹除操作之區塊中使該等字元線與該本體間之電壓 差約爲15至20V的位準範圍內產生該抹除電壓Vers。 同時,如果在確定是否已適當地實施該抹除操作之操 作中偵測到該Y-解碼器(參照第4圖中之元件符號180) 所輸出之資料中的非抹除狀態(例如:〇)的資料(亦即,該 抹除操作已失敗),則該第三泵電路6 3可以0.1至〇 . 5 V 基準減少該抹除電壓VERS2位準及輸出一減少抹除電壓 Vers。如果適當的話,則可以改變該抹除電壓Vers之減少 寬度。[減少寬度是表示什麼意思?]可以一線性函數、一 二次函數或一指數函數減少該抹除電壓 Vers。於是,增 加該等字元線與該本體間之電壓差及依據該增加電壓差 再次實施該抹除操作。 該偏壓選擇單元64選擇該等讀取電壓VRD1及Vrd2以 回應從該X-解碼器150所接收之解碼信號DEC及然後分 別輸出該等選擇讀取電壓VRD1及VRD2至該等總體字元線 GWL1至GWLJ以做爲該等字元線偏壓VWF1至VwF;[,選 擇該等程式化電壓Vp。及VPS及然後分別輸出該等選擇程 式化電壓Vp6及VPS至該等總體字元線GWL1至GWLJ以 做爲字元線偏壓Vwsl及Vws〗(其中J係整數),或者選擇 該抹除電壓乂^5及然後該選擇抹除電壓VERS輸出至該等 總體字元線GWL1至GWU以做爲字元線偏壓VwtI至 V w T J。 該本體電壓產生器40在一抹除操作時產生一將被施加 至一本體(例如:一 P井區)之高本體電壓VCB以回應該抹 除指令ERS,其中在該本體中形成有該等記憶體單元 -25- 200822123200822123 IX. Description of the Invention: [Technical Field] The present invention relates to semiconductor memory elements, and more particularly to a flash memory element in which a cause can be prevented The reliability of the erase operation is reduced by a leakage current in a block-based erase operation, and a method of controlling the erase operation of the flash memory device. [Prior Art] Generally, a flash memory component can be classified into an N 0 R type and a NAND type, wherein the NOR type is generally used to store a small amount of information at a high speed, and the NAND type is generally used. To store a lot of information. The flash memory component performs a read operation, a program operation, and an erase operation. The terms "pr gram 〇perati ο η" and "erase operation" refer to the use of electrons to be injected into the floating gate and to remove electrons from the floating gate in one or The operation of storing data in a plurality of memory cells. For example, in the stylized operation, only selected memory cells of a plurality of memory cells included in a memory cell block are programmed. The erase operation of the flash memory component is performed when the electrons present in the floating gate of the memory cell are released toward the P-well region by FN tunneling. In the erasing operation, the data stored in all the memory cells included in the memory cell block are simultaneously erased. That is, the erase operation is performed on the basis of a memory unit block. Fig. 1 is a circuit diagram for explaining a memory unit and a transfer gate of an erase operation of a conventional flash memory device. In an erasing operation, the application 200822123 adds a bias voltage Vb of ον to an overall word line GWL, and applies a bulk voltage VBK1 of 20V to the P-well region of the memory cells CA1 to CAn and CB1 to CBn ( Where η is an integer). The sources and drains of the memory cells CA1 to CAn and CB1 to CBn are floated. In addition, a gate having a voltage (Vcc) level, a gate select signal BKSEL1 to a NM0S transistor NM1, is applied, wherein the NMOS transistor NM1 is connected to a selected (ie, erased) memory. A local word line WL1 of the body unit block A is between the whole word line GWL. A body voltage VBK2 having a voltage of 0 V is applied to a substrate (not shown) of the NMOS transistor NM1. The NMOS transistor NM1 is turned on to return to the block select signal BKSELI, and the local word line WL1 is connected to the overall word line GWL. As a result, the voltage of the local word line WL1 becomes 0V, and the control gates (not shown) connected to the local word lines WL1 of the memory cells CA1 to CAn and the memory cells CA1 to CAn The P-well interval produces a voltage difference of 20V. Thus, when the electrons of the floating gates of the memory cells CA1 to CAn are released toward the P-well regions, the erase operation of the memory cell blocks A is performed. At the same time, the gate of an NMOS transistor NM2 is applied with a block select signal BKSEL2 of 0V, wherein the NMOS transistor NM2 is connected to a memory cell block that is not selected (ie, will not be erased). A local word line WL2 of B is between the overall word line GWL. Further, a body voltage VBK2 of 0 V is applied to the substrate of the NMOS transistor NM2. The NMOS transistor NM2 is turned off to return to the block select signal BKSEL2, and the local word line WL2 is separated from the overall word line GWL. This floats the local word line WL2. Thereafter, a body voltage VBK1 applied to the P-well region of the memory cells CB1 to CBn is applied to the local word line WL2 by a capacitive coupling 200822123 phenomenon, and thus the local word line is applied The voltage level of WL2 is raised to approximately 19V. This results in a voltage difference between the local word line WL2 and the P-well section of the memory cells CB 1 to CBn, the voltage difference of the IV being insufficient for floating gates from the memory cells CB1 to CBn. Release the electrons. As a result, when the erase operation is performed on the memory cell block A, the erase operation is not performed on the memory cell block B. Although the NMOS transistor NM2 is turned off, a leakage current is generated in the NMOS transistor NM2. Thus, the voltage level of the local word line WL2 is raised to a voltage level close to the body voltage VBK1, which is gradually reduced. This results in an increase in the voltage difference between the control gates of the memory cells CB 1 through CBn and the P-well regions. Therefore, a shallow erase may be caused, i.e., a small amount of electrons may be unintentionally released from the floating gates of the memory cells CB1 to CBn. When the number of memory cell blocks included in a flash memory element is increased, the erase interference like a light erase becomes more significant. For example, each time the memory cell blocks are subjected to an erase operation one by one, a shallow erase phenomenon is repeatedly generated in the memory cells of the memory cell block which should not be erased. Therefore, when the threshold voltage of the corresponding memory cell is gradually reduced, it is highly likely that the read operation fails. Furthermore, a rapid stylization phenomenon occurs in which, when the number of erasing operations increases, the threshold voltage rises above a target voltage during a stylized operation, or a slow erase phenomenon occurs, wherein an erase operation occurs. The threshold voltage cannot be sufficiently reduced to a target voltage. Next, 200822123 will be described in more detail with reference to Fig. 2. Fig. 2 is a graph showing a slow erase characteristic and a fast stylized characteristic depending on the number of times of an erase operation in the prior art. Although the stylization or erasing operation is performed in the same state, when the stylization or erasing operation is performed, the threshold voltage of a memory cell increases, and finally becomes higher than a target voltage. This increase in threshold voltage results in a fast implementation of the stylized operation or a slow implementation of the erase operation. This phenomenon occurs when the voltage difference between the word lines and the body is high during the erasing operation. In other words, the higher the voltage difference between the word lines and the body during the erasing operation, the more severe the fast stylization and slow erasing. Figure 3 is a graph showing the characteristics of a slow erase characteristic and a fast stylized characteristic depending on the level of a erase voltage in the prior art. It can be seen that if the voltage difference between the word lines and the body is high (high potential erasing), the erasing operation is performed, and the rapid stylization phenomenon and the slow erasing phenomenon are suddenly generated. However, if the voltage difference between the word lines and the body is low (low potential erase), the erase operation is performed, and the fast stylization phenomenon and the slow erase phenomenon are gradually generated. To prevent the rapid stylization and slow erasing described above, the erase operation should be performed when there is a low voltage difference between the temple line and the body. In this case, it is possible to extend an erasing operation time and possibly improperly implement the erasing operation. If the erase operation is not implemented properly, the corresponding block is marked as an invalid block that is not used. This reduces the number of available blocks and reduces data storage capacity. SUMMARY OF THE INVENTION Thus, embodiments of the present invention are directed to an operation in which electrons are released from the floating gates of the memory cells, e.g., an erase operation. The erase operation of this embodiment is implemented to reduce the leakage current of the memory cells that are not selected for the erase operation. In one embodiment, a first positive voltage is applied to the overall word line during a erase operation (first attempt). If the erase operation is not properly performed, the erase operation (second attempt) is performed again by applying a second voltage less than the first voltage to the overall word line. The erase attempt is repeated a predetermined number of times or until the erase operation has been successfully performed, whichever occurs first. The voltage applied to the overall word line is reduced after each failed attempt to increase the voltage difference of the erase operation. In one embodiment, a non-volatile memory component includes first and second memory cell blocks, each memory cell block includes a plurality of memory cells and includes a local drain selection line and a local source. The pole selection line and the plurality of local word lines. A block selection unit respectively connects a given local word line to the overall word line in response to a block selection signal. a first bias generator configured to apply at least first and second erase voltages to the overall word line during an erase operation, the first erase voltage being erased at the first erase operation The trial period is applied to the overall word line 'the second erase voltage is applied to the overall sub-wires during the second erase attempt' if the first erase attempt does not successfully perform the erase In operation, the second erase attempt is performed. The first and second erase voltages are positive voltages. A body voltage generator applies a body voltage to one of the body of the memory cells during the erase operation. In this embodiment, each time a new erase attempt is performed, the erase voltage applied to the overall word line is reduced by a given voltage -10- 200822123, wherein a predetermined number of failed wipes After a try, stop a given erase operation. In one embodiment, a flash memory component includes a plurality of memory cell blocks, each memory cell block including a local drain select line, a local source select line, and a plurality of local word lines. And a plurality of billion element units are connected to the local drain selection line, the local source selection line, and the plurality of local word lines. A block selection unit respectively connects the local word lines to the overall word line in response to a block selection signal. A first bias generator applies a positive erase voltage to the overall word line during an erase operation. A body voltage generator is configured to apply a first body voltage to one of the memory cells during a first erase attempt of the erase operation and to perform the first erase if not properly implemented Attempts to apply a second body voltage to the body during the second erase attempt. If the first erase attempt does not erase all of the memory cells selected for the erase operation, then the first erase attempt is considered not properly implemented. In one embodiment, a method of erasing a non-volatile memory element includes connecting a local word line of a selected block and an overall word line to respond to a block select signal. Applying a first erase voltage to the overall word line and a first body voltage higher than the first erase voltage to a body such that a voltage difference between the local word lines and the body is A first potential difference is used to perform a first erase attempt of an erase operation. The method further includes determining if the first erase attempt has been properly performed. A second erase attempt of the erase operation is performed if it is determined that the first erase attempt is not properly performed. The second erase attempt includes applying a second erase -11-200822123 voltage to the overall word line and a second body voltage to the body to increase a voltage difference between the local word lines and the body To a second potential difference. The second erase voltage may be less than the first erase voltage. The second body voltage may be greater than the first body voltage. The first erase voltage and the second erase voltage may be different, and the first body voltage and the second body voltage may be different. A flash memory device in accordance with a first embodiment of the present invention includes a plurality of memory cell blocks, a block selection unit, a first bias generator, and a body voltage generator. Each memory cell block includes a partial drain select line, a local source select line, and a plurality of local word lines, and a plurality of memory cells are connected to the local drain select line, the local source select Line and the plurality of local word lines. The block selection unit respectively connects the local word lines to the overall word lines in response to a block selection signal. The first bias generator applies a positive erase voltage to the overall word line during an erase operation, and if there is a memory cell that is not erased, reducing the erase voltage and applying a decrease The voltage is erased to the overall word line to perform the erase operation again. The body voltage generator applies a body voltage to one of the body of the memory unit during the erasing operation. The first bias generator can generate the erase voltage such that the voltage difference between the local word lines and the body becomes 1 5 V during an initial erase operation, and the erase voltage is reduced to When the erase operation is performed, the voltage difference between the local word lines and the body becomes higher than 15 V. At this time, the first bias generator can have a linear function, a quadratic function or an exponential function at 0. 1 to 0. This erase voltage is reduced under the 5V reference. -12- 200822123 The flash memory component can further include a page buffer for reading data stored in the memory cells, and a Y-decoder for outputting in the page buffer The stored data is to a data I/O buffer and the first bias generator. If the 尙 not erased material of the data output from the Y-decoder is detected, the first bias generator can reduce the erase voltage to perform the erase operation again. A flash memory device in accordance with a second embodiment of the present invention includes a plurality of memory cell blocks, a block selection unit, a first bias generator, and a body voltage generator. Each memory cell block includes a partial drain select line, a local source select line, and a plurality of local word lines, and a plurality of memory cells are connected to the local drain select line, the local source select Line and the plurality of local word lines. The block selection unit respectively connects the local word lines to the overall word lines in response to a block selection signal. The first bias generator applies a positive erase voltage to the overall word line during an erase operation. The body voltage generator applies a body voltage to one of the body of the memory unit during the erasing operation, and if there is a memory unit that is not erased, for the re-execution of the erasing operation, increasing The body voltage and an applied body voltage are applied to the body. The body voltage generator can generate the body voltage such that a voltage difference between the local word lines and the body becomes 1 5 V during an initial erasing operation, and the body voltage is reduced to perform the erasing again In operation, the voltage difference between the local word lines and the body becomes higher than 15 V. At this time, the body voltage generator can increase the body mjE by a linear function, a quadratic function -13-200822123 number or an exponential function under the scale of 0.5 to IV. The flash memory component can further include a page, a buffer, and a data stored in the memory cells, for outputting data stored in the page buffer. To _ I _ Ι / 〇 buffer and the body voltage generator. If the remaining data of the data output from the Υ-decoder is detected, the body voltage generator can increase the body power; |g, & ^ stomach performs the erase operation. According to a third embodiment of the present invention, a flash memory cell yak package has a plurality of memory cell blocks, a block selection unit, a _{flat g generator, and a body voltage generator. Each memory cell block includes a partial drain select line, a local source select line, and a plurality of local word lines, and a plurality of memory cells are connected to the local drain select line, the local source select Line and the plurality of local word lines. The block selection unit respectively connects the local word lines to the overall word lines in response to a block selection signal. The first bias generator applies a positive erase voltage to the overall word line during an erase operation, and if there is a memory cell that is not erased, reducing the erase voltage and applying a decrease The voltage is erased to the overall word line to perform the erase operation again. The body voltage generator applies a body voltage to one of the body of the memory unit during the erasing operation, and if there is a memory unit that is not erased, for the re-execution of the erasing operation, increasing The body voltage and an applied body voltage are applied to the body. In the above, during an initial erasing operation, the first bias generator and the body voltage generator can respectively generate the erase voltage and the voltage of the body-14-200822123, so that the local word lines and the The voltage difference between the bodies becomes 15V. When the erase operation is performed again, the body voltage generator can increase the body voltage and the first bias generator can reduce the erase voltage so that a voltage difference between the local word lines and the body becomes high. At 1 5 V. At this time, the first bias generator can be a linear function, a second order function or an exponential function at 0. 1 to 0. This erase voltage is reduced by the 5V reference. The body voltage generator can be a linear function, a quadratic function or an exponential function at 0. The erase voltage is increased under the 5 to IV reference. The flash memory component can further include a page buffer for reading data stored in the memory cells, and a Y-decoder for outputting data stored in the page buffer a data I/O buffer, the body voltage generator, and the first bias generator. Meanwhile, if the data of the data output from the Y-decoder is not erased, the first bias generator reduces the erase voltage and the body voltage generator increases the body voltage to implement again This erase operation. The flash memory component can further include an X-decoder for decoding a column of address signals and outputting the block select signal to the high voltage generating unit. Furthermore, the flash memory component can further include a second bias voltage generator for applying a predetermined operating voltage according to any one of the programming, reading and erasing operations. To the local drain selection line and the local source selection line. The first bias generator may include a first 杲 circuit (pUmp ciiruit) for generating a read voltage required for a read operation in response to a read -15-200822123 command; a second pump circuit for Generating a stylized voltage required for a stylized operation in response to a stylized command; a third pump circuit for generating the erase voltage in response to an erase command and if the output of the Y-decoder is detected The data is not erased, the erase voltage is reduced and the output is reduced by a subtraction voltage; and a bias selection unit is configured to select the read voltage, the programmed voltage or the erase voltage to respond An operation command signal and a selection voltage are respectively output to the overall word line. At this time, the bias selection unit may include a selection signal generator for generating a selection signal according to the operation instruction signal, and a plurality of selection circuits respectively connected to the overall word line for respectively outputting the signals Reading one of the voltage, the stylized voltage, and the erase voltage to the overall sub-line of the temple to return to the selection signal. According to a first embodiment of the present invention, there is provided a method of controlling an erase operation of a flash memory device, the method comprising the steps of: (a) electrically connecting a local word line and an overall word of a selected block, respectively The line responds to a block selection signal; (b) applying a positive erase voltage to the overall word line and a body voltage higher than the erase voltage to one of the memory cells according to an erase command The body is configured to perform an erase operation; (c) determining whether the erase operation has been properly performed; and (d) if it is determined that the erase operation is not properly performed, by reducing the erase voltage to make the portions The erase operation is performed again by the voltage difference between the word line and the body becoming larger. The steps (c) and (d) may be repeated a plurality of times while reducing the erase voltage as far as possible to a predetermined level, and including if the erase operation is not properly performed until the predetermined number of times, A corresponding block -16 - 200822123 is treated as an invalid block. According to a second embodiment of the present invention, there is provided a method of controlling an erase operation of a flash memory device, the method comprising: (a) electrically connecting a local word line and an overall word line of a selected block, respectively. Responding to a block selection signal; (b) applying a positive erase voltage to the overall word line and a body voltage higher than the erase voltage to a body of a memory cell according to an erase command a erase operation; (c) determining whether the erase operation has been properly performed; and (d) if it is determined that the erase operation is not properly performed, by adding the erase voltage to cause the local word lines The erase operation is performed again by the voltage difference between the body and the body becoming larger. The steps (c) and (d) may be repeated a plurality of times while increasing the erase voltage as far as possible to a predetermined level, and including if the erase operation is not properly performed until the predetermined number of times, A corresponding block is treated as an invalid block. According to a third embodiment of the present invention, there is provided a method of controlling an erase operation of a flash memory device, the method comprising the steps of: (a) electrically connecting a local word line and an overall word of a selected block, respectively The line responds to a block selection signal; (b) applying a positive erase voltage to the overall word line and a body voltage higher than the erase voltage to one of the memory cells according to an erase command The body performs an erase operation; (C) determines whether the erase operation has been properly performed; and (d) if it is determined that the erase operation is not properly performed, by simultaneously controlling the erase voltage and the body voltage The erasing operation is performed again to increase the voltage difference between the local word lines and the body. The steps (C) and (d) may be repeated multiple times while reducing the voltage of the wipe -17-200822123 as far as possible to a predetermined level and increasing the body voltage as far as possible to a predetermined level, and if Until the erase operation is not properly performed until the predetermined number of times, a corresponding block is regarded as an invalid block. Furthermore, the erase voltage and the body voltage can be set such that the voltage difference between the local word lines and the body is 15V or higher. Can be 0. 1 to 0. The 5V reference reduces the erase voltage to increase the voltage difference between the local word lines and the body in a range that causes the voltage difference to become at least 1 5 V, or can reduce the erase voltage by an exponential function so that The voltage difference between the local word lines and the body is increased within a range that causes the voltage difference to become at least 1 5 V. Can be 0. The erase voltage is increased by a 5 to IV reference to increase the voltage difference between the local word lines and the body in a range in which the voltage difference becomes at least 1 5 V, or the erase voltage can be increased by an exponential function And increasing the voltage difference between the local word lines and the body in a range that causes the voltage difference to become at least 1 5 V. [Embodiment] Various embodiments in accordance with the present invention will now be described with reference to the accompanying drawings. Since various embodiments have been proposed in order to enable those skilled in the art to understand the invention, the various embodiments of the invention are not limited to the scope of the invention. Figure 4 is a block diagram of a flash memory component in accordance with an embodiment of the present invention. A flash memory component 100 includes a memory cell array 110, an input buffer 120, a control logic circuit 130, a high voltage generator 140, an X-decoder 150, and a block. The selection unit 160, the page buffer 170, a Y-decoder 180, and a data I/O buffer -18-200822123 1 90. The memory cell array 110 includes memory cell blocks MB 1 to Μ BK (where K is an integer), and each memory cell block has a plurality of memory cells (not shown). The input buffer 120 receives an instruction signal CMD or an address signal ADD and outputs them to the control logic 130. The control logic circuit 130 receives the command signal CMD or the address signal ADD in response to the external control signals /WE, /RE, ALE, and CLE. The control logic circuit 130 generates one of a read command READ, a program command PGM and an erase command ERS to respond to the command signal CMD. The control logic circuit 130 generates a column address signal RADD and a row address signal CADD to echo the address signal ADD. The high voltage generator 140 includes a body voltage generator 40, a first bias generator 50 and a second bias generator 60. The body voltage generator 40 generates a body voltage VCB to return the read command READ, the program command PGM and the erase command ERS, and supply the body voltage VCB to the P-well region of the memory cells. More specifically, the body voltage generator 40 generates a low voltage level (e.g., 0V) body voltage VCB to return the read command READ or the stylized command PGM. The body voltage generator 40 also generates a body voltage VcB of a high voltage level (e.g., 20V) to echo the command ERS. Meanwhile, if the cell having the erase operation is not properly implemented according to the data output from the Y-decoder 180 after the erase operation, the level of the body voltage V C B can be controlled. For example, if the erase operation is not properly performed, the level of the body voltage Vcb can be increased by 〇 5 or 1 V reference, and if appropriate, the increased width of the body voltage VeB can be changed. The first bias generator 50 generates a drain bias voltage Vc3D and a source bias -19-200822123 voltage Vu to return one of the read command READ, the stylized command PGM, and the erase command ERS, and The drain bias voltage Vcd is supplied to an overall drain select line GDSL and the source bias voltage Vm to an overall source select line GSSL. More specifically, the first bias generator 50 produces a high voltage level (e.g., 4. 5 V) bucker bias V. d and source bias voltage V. s back should read the instruction READ. The first bias generator 50 also generates a drain bias VCD of internal voltage level (VCC, not shown) and a source bias VCS of low voltage level to respond to the programmed command PGM. Furthermore, the first bias generator 50 generates a low voltage level of the drain bias V (3D and the source bias V (3S in response to the erase command ERS. The second bias generator 60 generates the word) The line bias voltages VwF1 to VWFJ (where: ί is an integer), the word line bias voltages Vwsl to VwsJ (where J is an integer) or the word line bias voltages VWT1 to VwtH (where J is an integer) to return the read command READ And one of the stylized instruction PGM and the erase command ERS and a decode signal DEC, and supply the generated word line bias to the overall word line GWL1 to GWLJ (where J is an integer). More specifically The second bias generator 60 generates the word line bias voltages VWF1 to VWFJ to return the read command READ. The second bias generator 60 generates the word line bias voltages Vws1 to VwSJ to respond. Stylized instruction PGM. The first 'bias generator 60 generates a sub-wire bias voltage VwtI to VwtI to echo the instruction ERS. In this case, when the erase command ERS is input, the second bias The generator 60 generates a positive voltage higher than 0 V. After the erase operation, if there is a 尙 not output according to the Y-decoder 1 800 The data suitably implements the unit of the erasing operation, and the second bias generator 60 controls the level of the word line bias voltages Vwt 1 to VwtJ of -20-200822123. For example, if the 尙 is not properly implemented In addition to the operation, the second bias generator 60 can be 0. 1 v to 0. The 5V reference reduces the word line bias voltages VwTi to VwT; [the level and output of the reduced word line bias. The reduced width of the word line bias voltages Vwt 1 to VwtJ can be changed if necessary. If the erase operation is not properly performed, the body voltage generator 40 and the second word line voltage generator 60 control the output voltage. This will perform the erase operation again (i.e., perform a double erase operation). The re-wiping operation is performed by increasing the voltage difference between the word lines and the body. In order to increase the voltage difference between the word lines and the body, the body voltage generator 40 and the second word line voltage generator 60 have only one voltage generator or the body voltage generator 40 and the second word. Both of the line voltage generators 60 can control the level of the output voltage. This will be described in detail later. The X-decoder 150 decodes the column address signal R A D D and outputs a decoded signal DEC. The block selecting unit 160 selects one or more of the memory cell blocks MB1 to MBK to echo the decoded signal DEC, and respectively connects a selected memory cell block (or a memory cell block). Local word lines WL11 through WL1 (see Figure 5) to the general word lines GWL1 through GWL. The block selecting unit 160 is connected to one of the drain select lines DSL1 to DSLK (see FIG. 5) of the selected memory cell block to the overall drain select line GDSL, and a source connecting the selected memory cell block. One of the pole selection lines SSL1 to SSLK (see Figure 5) to the overall source selection line GSSL. The construction and operation of the page buffer 170, the Y-decoder 180, and the data I/O buffer 190 are known to those skilled in the art, and thus the description thereof will be omitted. Fig. 5 is a detailed circuit diagram of the memory cell array, the block selecting unit, the second bias generator, the body voltage generator, and the X-decoder shown in Fig. 4. The memory cell block MB 1 of the memory cell array 110 includes memory cells M1 1 1 to M1]T (in which J and T are integers), a drain selective transistor DST1, and a source selective transistor. SST1. The memory cells M1 1 1 to M1 JT share the bit lines BL1 to BLT (in which the integer is), the local word lines WL11 to WL1 (wherein J is an integer), and a common source line C S L 1 . That is, the memory cells Μ 1 1 1 to Μ 1 1 T are respectively connected to the bit lines BL1 to BLT via the (odd) drain selection transistor DST1, and the memory cells Μ1Π to M1 JT The source selection transistor SST 1 is connected to the common source line CSL 1 via the (etc.) source. Further, the gates of the memory cells Μ 1 1 1 to M 1JT are connected to the local word lines WL1 1 to WL1]. The gate of the (odd) drain select transistor DST1 is coupled to the local drain select line DSL1, and the gate of the (etc.) source select transistor SST1 is coupled to a local source select line SSL1. The memory cell block Μ B 2 to Μ B K of the memory cell array 110 is of the same construction as the memory cell block MB 1 . The block selecting unit 160 includes a block switching unit 161 and a plurality of switching units PG1 to PGK (where K is an integer). The block switching unit 161 outputs the block selection signals BSEL1 to BSELK (where K is an integer) in response to the decoded signal DEC received from the X-decoder 150. The plurality of switching units PG1 to PGK are respectively configured in a manner corresponding to the memory cell blocks MB1 to MBK and are enabled or disabled to return to the equal block selection signals BSEL1 to BSELK. -22- 200822123 Each of the switching units PG1 to PGK includes a plurality of switching elements. For example, the switching unit PG 1 has switching elements GD 1 , G 1 1 to G1 and GS1. The construction and operation of the switching units PG2 to PGK are similar to the configuration and operation of the switching unit PG1. Therefore, it will be described in accordance with the operation of the switching unit PG1. Preferably, the switching elements GDI, Gl 1 to G1J and GS1 can be implemented using NMOS transistors. Hereinafter, the switching elements GDI, G11 to GH, and GS1 will be referred to as "NMOS transistors" for convenience of description. The block selection signal BSEL1 is input to the gates of the NMOS transistors GDI, G11 to G1J, and GS1. The NMOS transistor GDI has a source connected to the overall drain select line GDSL and a drain connected to the local drain select line DSL1. The NMOS transistors G11 to G1J have sources respectively connected to the general word lines GWL1 to GWL, and are respectively connected to the local word lines WL11 to WL1: [the drain. The NMOS transistor GS1 has a source connected to the global source select line GSSL and a drain connected to the local source select line SSL1. The NMOS transistors GDI, G11 to G1J and GS1 are turned on or off at the same time to return to the block selection signal BSEL1. More specifically, when the block selection signal BSEL1 is enabled, the NMOS transistors GDI, G11 to G1 are turned on: [and GS1, and when the block selection signal BSEL1 is disabled, the NMOS transistors are turned off. GDI, G11 to G1 and GS1. When the NMOS transistors GDI, G11 to G1 are turned on; [and GS1, the overall drain select line GDSL is connected to the local drain select line DSL1, and the global source select line GSSL is connected to the local source select line SSL1, and the general word line lines GWL1 to GWL are respectively connected to the local word lines WL1 1 to WL1 J. -23- 200822123 The second bias generator 60 includes first to third pump circuits 61, 62 and 63 and a bias selection unit 64. The first pump circuit 61 generates the read voltages VRD1 and VRD2 to return the read command READ. Preferably, the read voltage VrdI has a high voltage level (for example: 4. 5V), and the read voltage VRD2 has a low voltage level (for example: 0V). In a read operation of the memory cell array 110, the read voltage V rd 1 is applied to the local word line, wherein the memory cell is not selected (ie, the memory cell that will not be read) a gate is connected to the local word lines, and the read voltage VRD2 is applied to the local word line, wherein the gate of the memory cell (ie, the memory cell to be read) is selected Connect to the local word lines. The second pump circuit 62 generates a programmed voltage Vp. And the VPS to respond to the stylized instruction PGM. Preferably, the stylized voltages Vp. And the VPS has a high voltage level (for example: VPC = 18V, VPS = 10V). The stylized voltage Vp is programmed in one of the memory cell arrays 110. Applied to a local word line, wherein a gate of the memory cell to be programmed is connected to the local word line, and the stylized (or pass) voltage VPS is applied to the local word line, The gates of the memory cells that are not programmed are connected to the local word lines. Furthermore, the third pump circuit 63 generates a positive erase voltage Vers which is higher than 0 V to echo the command ERS. In other words, the third pump circuit 63 generates the erase voltage Vers to apply a voltage higher than 0 V to the word line of one of the selected blocks during the erase operation. At the same time, in the block in which the erase operation is performed according to the positive erase voltage Vers, the voltage difference between the word line and a body is lowered. Preferably, the erase voltage Vers is generated in a level in which the voltage difference between the word lines and the body is about 15 to 20 V in the block in which the erase operation is performed. Meanwhile, if the Y-decoder (refer to the component symbol 180 in FIG. 4) detects the non-erased state in the operation of determining whether the erase operation has been properly performed (for example, 〇 The data (that is, the erase operation has failed), then the third pump circuit 63 can be 0. 1 to 〇.  The 5 V reference reduces the erase voltage VERS2 level and outputs a reduced erase voltage Vers. If appropriate, the reduced width of the erase voltage Vers can be changed. [What does it mean to reduce the width? The erase voltage Vers can be reduced by a linear function, a quadratic function or an exponential function. Thus, the voltage difference between the word lines and the body is increased and the erase operation is performed again in accordance with the increased voltage difference. The bias selection unit 64 selects the read voltages VRD1 and Vrd2 in response to the decoded signal DEC received from the X-decoder 150 and then outputs the selected read voltages VRD1 and VRD2 to the overall word lines, respectively. GWL1 to GWLJ are biased as the word line lines VWF1 to VwF; [, the program voltage Vp is selected. And VPS and then respectively outputting the selected programming voltages Vp6 and VPS to the overall word lines GWL1 to GWLJ as word line bias voltages Vwsl and Vws (where J is an integer), or selecting the erase voltage乂^5 and then the selection erase voltage VERS is output to the overall word line lines GWL1 to GWU as the word line bias voltages VwtI to VwTJ. The body voltage generator 40 generates a high body voltage VCB to be applied to a body (eg, a P well region) during an erase operation to echo the instruction ERS, wherein the memory is formed in the body Body unit-25- 200822123

Mill至MUTU及T係整數)。可以在一實施該抹除操作 之區塊中使該等字元線與該本體間之電壓差爲丨5至2〇ν 之電壓位準範圍中產生該本體電壓VcB。 同時’如果在確定是否已適當地實施該抹除操作之操 作中偵測到該Y -解碼器(參照第4圖中之元件符號1 8 〇) 所輸出之資料中的非抹除狀態(例如:〇)的資料(亦即,該 抹除操作已失敗),則該本體電壓產生器40可以〇.5至IV 基準增加該本體電壓VCB之位準及輸出一增加本體電壓 V C B。如果適當的話,可以改變該本體電壓V C B之增加寬 度。可以一線性函數、一二次函數或一指數函數增加該 本體電壓V C: B。於是,增加該等字元線與該本體間之電壓 差及依據該增加電壓差再次實施該抹除操作。 如以上所述,在該等總體字元線施加有一正電壓之狀 態中實施該抹除操作。如果未適當地實施該抹除操作, 則藉由控制該第三泵電路63及該本體電壓產生器40中 之一或兩者的輸出電壓以增加該等字元線與該本體間之 電壓差來再次實施該抹除操作。可以控制該第三泵電路 63或該本體電壓產生器40之輸出電壓,以便該等字元線 與該本體間之電壓差爲15V或更高。 第6圖係第5圖所示之記憶體單元、傳輸閘、本體電 壓產生器及偏壓選擇單元之詳細電路圖。 參考第6圖,該偏壓選擇單元64包括一選擇信號產生 器65及選擇電路S1至S〗(其中J係整數)。該選擇信號產 生器65根據該解碼信號DEC產生選擇信號SL1至SLJ。 該等選擇電路S1至SJ之每一選擇電路包括開關SW11至 -26- 200822123 SW15........ SWJ1至SWJ5,其分別連接至該等總體字元 線GWL1至GWL:[。該等選擇電路S1至SJ之每一選擇電 路接收該等讀取電壓VRD1及VRD2、該等程式化電壓Vpc 及Vps及該抹除電壓Vers,以及輸出字元線偏壓VwfI至 VwfJ、Vws1至VwsJ或VwtI至VwtJ至該等總體字元線GWL1 至GWL〗以回應該等選擇信號SL1至SLJ。此將更詳細描 述於後。例如:該選擇電路S1之開關SW11至SW15係分 別連接於該等讀取電壓VRD1及VRD2、該等程式化電壓Vp。 及V P s及該抹除電壓V E R s與該總體字元線G W L 1之間。依 據該選擇信號S L 1之位元B 1至B 5的邏輯値導通或關閉 該等開關SW11至SW15。在此情況中,在使用NMOS電 晶體實施該等開關SW1 1至SW15之情況中,當該等位元 B1至B5之邏輯値爲1時,導通該等開關SW11至SW15。 同時,當該等位元B 1至B 5之邏輯値爲0時,關閉該等 開關S W 1 1至S W 1 5。 例如:當該等開關SW1 1及SW12中之一導通時,將該 等讀取電壓VRD1及VRD2中之一輸入至該總體字元線 GWL1以做爲該字元線偏壓VWF1。再者,當該等開關SW13 及SW14中之一導通時,將該等程式化電壓Vp。及VPS中 之一輸入至該總體字元線GWL 1以做爲該字元線偏壓 Vwsl。此外,當該開關Swi5導通時,將該抹除電壓VERS 輸入至該總體字元線GWL1以做爲該字元線偏壓VwtI。 在此情況中,因爲該選擇信號產生器65使該等位元B 1 至B5中之一產生邏輯値1及使剩餘位元產生邏輯値〇, 所以導通該等開關SW1 1至SW15中之一,以及關閉該等 -27- 200822123 剩餘開關。結果,將該等讀取電壓Vrd1及Vrd2、該等程 式化電壓Vp(3及Vps及該抹除電壓Vers中之一施加至該總 體字元線GWL1。該等選擇電路S2至SJ之構造及操作相 似於上述選擇電路S 1之構造及操作。 在第6圖中顯示該等選擇電路si至ST之每一選擇電 路具有5個開關。然而,注意到可改變或修改該等選擇 電路S1至SJ之構造。如熟習該項技藝者所了解’具有 許多使該等選擇電路S1至S】輸出該等字元線偏壓Vwf1 至 VwfJ、Vwsl 至 VwsJ 或 VwtI 至 VwtJ 之方法。 再者,爲了該圖式之簡化,第6圖只顯示連接至該等 總體字元線GWL1及GWL〗、該等局部字元線WL1 1、 WL1]、WLK1及WLKJ以及該等記憶體單元Μ111、Μητ、 M1J1、M1JT、ΜΚ11、ΜΚ1Τ、MKJ1 及 MKJT 之 NMOS 電 晶體G1 1、GK1、G1J及GKJ。該等記憶體單元Ml 1 1至 Μ 1 1 T之閘極連接至該局部字元線WL 1 1,以及該等記憶 體單元Μ 1 Π至Μ 1】Τ之閘極連接至該局部字元線WL U。 此外,該等記憶體單元ΜΚ11至ΜΚ1Τ之閘極連接至該局 部字元線WLK1,以及該等記憶體單元ΜΚΠ至MKJT之 閘極連接至該局部字元線WLKJ。該NMOS電晶體Gl 1之 源極及汲極分別連接至該總體字元線GWL 1及該局部字 元線WL1 1。該NMOS電晶體GK1之源極及汲極分別連接 至該總體字元線GWL1及該局部字元線WLK1。另外,該 NMOS電晶體G1J之源極及汲極分別連接至該總體字元線 GWLJ及該局部字元線WL 1 J。該NMOS電晶體GKJ之源 極及汲極分別連接至該總體字元線GWL)及該局部字元 -28- 200822123 線 WLKJ。 第7圖係描述依據本發明之一實施例的一控制該快閃 記憶體元件之抹除操作的方法之流程圖。設定該抹除電 壓VwtJ及該本體電壓vCB之位準,以便抹除電壓VwtJ具 有一正電壓位準及該抹除電壓VWT]與該本體電壓Vc:B間 之差爲15V(S701)。一旦已設定該抹除電壓VWTJ及該本體 電壓VCB,立即依據一區塊選擇信號BLKWL使用該抹除 電壓VwT】與該本體電壓VCB對一選擇區塊之記憶體單元 實施一抹除操作(S702)。在實施該抹除操作後,確定是否 已適當地實施該抹除操作(S7 03)。如果已抹除該選擇區塊 中之所有記憶體單元,則確定已適當地實施該抹除操 作,在此情況中,結束該抹除操作。另一方面,如果具 有一個或多個尙未抹除之記憶體單元,則確定尙未適當 地實施該抹除操作及藉由重設該抹除電壓VWTJ及該本體 電壓VCB以再次實施該抹除操作。此將在下面做更詳細描 述。 使該所實施之抹除操作的次數增加1(S 704)。然後,確 定是否該所實施之抹除操作的次數小於一預定次數 (S 7 0 5)。如果該所實施之抹除操作的次數小於該預定次 數,則改變該抹除電壓VwtJ及該本體電壓VCB(S706)。在 此時,改變該抹除電壓VwT〗及該本體電壓VCB,以便該 抹除電壓VWTI與該本體電壓Vu間之差逐漸地變成大於 15V。稍後將描述一改變該抹除電壓VwT〗及該本體電壓 Vcb之詳細方法。 如果已改變該抹除電壓VwtJ及該本體電壓VCB,則使 -29- 200822123 用該等改變電壓以實施一抹除操作(或再抹除操 作HS702)。再次實施上述步驟(S703至S705)。如果在一 給定週期內未完成該抹除操作,將該選擇記憶體區塊標 記成爲一無效區塊(S 707)。在本實施例中,當該抹除操作 之次數等於該預定次數時,標記該選擇記憶體區塊。 現在將參考第4至6圖以更詳細描述在第7圖所已描 述之快閃記憶體元件1 00的抹除操作。該控制邏輯電路 130產生該抹除指令ERS以回應該等外部控制信號/WE、 /RE、ALE及CLE以及該指令信號CMD,以及根據該位址 信號ADD產生該列位址信號RADD。該高壓產生器140 之本體電壓產生器40產生高壓位準(例如:17V)之本體電 壓Vu以回應該抹除指令ERS,以及供應該所產生之本體 電壓VCB至該本體材料(P井區),而在該本體材料形成有 該等記憶體單元區塊MB1至MBK。 再者,該高壓產生器140之第一偏壓產生器50產生低 壓(例如:〇V)之汲極偏壓VC3D及源極偏壓VC3S以回應該抹除 指令ERS。於是,將該汲極偏壓V6D施加至該總體汲極選 擇線GDSL,以及將該源極偏壓V(3s施加至該總體源極選 擇線GSSL。同時,該X-解碼器150解碼該列位址信號 RADD,以及輸出該解碼信號DEC。該高壓產生器140之 第二偏壓產生器60產生該等字元線偏壓VwtI至VWTJ以 回應該抹除指令ERS及該解碼信號DEC,以及分別供應 該等所產生之電壓至該等總體字元線GWL1至GWLI °更 特別地,該第二偏壓產生器60之第三泵電路63產生具 有正値之抹除電壓VERS以回應該抹除指令ERS °例如:該 -30- 200822123 抹除電壓vERS低於在該抹除操作中被供應至該記憶體單 元之P-井區的本體電壓 VeB,以及具有一正値。較佳地 是,可將在該抹除操作中被供應至一記憶體單元之一 P-井區的本體電壓Vu與抹除電壓Vers間之差設定成高於 或等於5V。該第二偏壓產生器60之偏壓選擇單元64選 擇該抹除電壓VERS以回應該解碼信號DEC,以及輸出該 選擇電壓做爲該等字元線偏壓 VwtI至 Vwt;[。更詳而言 之,該偏壓選擇單元64之選擇信號產生器65輸出該等 選擇信號SL1至SL〗之位元B1至B5的數値「00001」以 回應該解碼信號DEC。導通該偏壓選擇單元64之選擇電 路S1至SJ的開關SW15至SWJ5,以及將該等開關SW11 至 SWJ1、SW12 至 SWJ2、SW13 至 SWJ3 及 SW14 至 SWJ4 關閉,以回應該等選擇信號SL1至SLJ。於是,經由該等 開關SW15至SWJ5將該抹除電壓VERS輸入至該等總體字 元線GWL1至GWL】以做爲該等字元線偏壓VWT1至VWTJ。 再者,該區塊選擇單元160選擇該等記憶體單元區塊 MB1至MBK中之一以回應該解碼信號DEC,以及分別連 接一選擇記憶體單元區塊之局部字元線至該等總體字元 線GWL1至GWLJ。例如:如果選擇該記憶體單元區塊 MB1,則該區塊選擇單元160之區塊切換單元161使該區 塊選擇信號BSEL1致能以回應該解碼信號DEC,以及使 所有區塊選擇信號BSEL2至BSELK失能。結果,只使該 區塊選擇單元160之切換單元PG1致能,以及使該等切 換單元PG2至PGK全部失能。更詳而言之,同時導通該 切換單元PG1之切換元件GD1、G11至G1〗及GS1,以及 -31- 200822123 將該等切換單元PG2至PGK之切換元件GD2至GDK、G21 至G2J........GK1至GKJ、GS2至GSK全部關閉。於是, 使該記憶體單元區塊MB1之汲極選擇線DSL1連接至該 總體汲極選擇線GD S L,以及使該源極選擇線S S L 1連接 至該總體源極選擇線GSSL。因此,當將低電壓位準之汲 極偏壓 VC3D及源極偏壓 Vos分別施加至該汲極選擇線 DSL1及該源極選擇線SSL1時,關閉該汲極選擇電晶體 DST1及該源極選擇電晶體SST1。於是,使該記憶體單元 區塊MB 1之記憶體單元Μ 1 1 1至Μ 1 JT的汲極及源極浮接。 此外,使該記憶體單元區塊ΜΒ1之局部字元線WL1 1 至WL1;[分別連接至該等總體字元線GWL1至GWLJ。結 果,將該等總體字元線GWL1至GWLJf之字元線偏壓VwtI 至Vwt〗分別傳送至該等局部字元線WL11至WL1】。因 此,在該記憶體單元區塊Μ B 1之記憶體單元Μ 1 1 1至Μ 1 J T 的閘極與本體間產生電壓差(例如:1 5 V或更高),以及藉 由該電壓差從該等記憶體單元Μ 1 1 1至Μ 1】Τ之浮動閘極 釋放電子,藉以實施該等記憶體單元Μ 1 1 1至Μ 1】Τ之抹 除操作。 同時,使該等記憶體單元區塊ΜΒ2至ΜΒΚ之汲極選擇 線DSL2至DSLJ與該總體汲極選擇線GDSL隔離,以及 亦使該等源極選擇線SSL2至SSLJ與該總體源極選擇線 GSSL隔離。再者,使該等記憶體單元區塊MB 2至MB Κ 之局部字元線WL21至WL2J........ WLK1至WLKJ與該 等總體字元線GWL1至GWU全部隔離。於是,藉由高壓 位準(例如:20V)之本體電壓 VcB提升該等局部字元線 -32- 200822123 WL21至WL2J........ WLK1至WLKJ,其中該本體電壓 VCB被施加至該等記憶體單元區塊MB 2至MBK之記憶體 單元。因此,在該等局部字元線WL21至WL2J........ WLK1至WLK:[中產生接近該本體電壓Vc:B之升壓電壓 V BST。在此情況中,將參考第8 A及8 B圖更詳細描述該等 NMOS電晶體G21至G2J........ GK1至GKJ之操作,其 中該NMOS電晶體G21至G2J........ GK1至GKJ係連接 於該等記憶體單元區塊MB2至MBK之局部字元線WL21 至WL2J........ WLK1至WLKJ與該等總體字元線GWL1 至GWLJ間。第8A及8B圖分別顯示該NMOS電晶體GK1 之剖面圖及該NMOS電晶體GK1之位能。該等NMOS電Mill to MUTU and T series integer). The body voltage VcB may be generated in a voltage level range of 丨5 to 2 〇ν between the word lines and the body in a block in which the erase operation is performed. At the same time 'if the non-erase state in the data output by the Y-decoder (refer to the component symbol 1 8 第 in FIG. 4) is detected in the operation of determining whether the erase operation has been properly performed (for example, The data of the device (ie, the erase operation has failed), the body voltage generator 40 can increase the level of the body voltage VCB and output an increase of the body voltage VCB from .5 to IV. The width of the bulk voltage V C B can be varied, if appropriate. The body voltage V C : B can be increased by a linear function, a quadratic function or an exponential function. Thus, the voltage difference between the word lines and the body is increased and the erase operation is performed again in accordance with the increased voltage difference. As described above, the erase operation is performed in a state where a positive voltage is applied to the overall word line. If the erase operation is not properly performed, the voltage difference between the word line and the body is increased by controlling the output voltage of one or both of the third pump circuit 63 and the body voltage generator 40. This erase operation is performed again. The output voltage of the third pump circuit 63 or the body voltage generator 40 can be controlled so that the voltage difference between the word lines and the body is 15V or higher. Fig. 6 is a detailed circuit diagram of the memory unit, the transfer gate, the body voltage generator, and the bias selection unit shown in Fig. 5. Referring to Fig. 6, the bias selection unit 64 includes a selection signal generator 65 and selection circuits S1 to S (where J is an integer). The selection signal generator 65 generates selection signals SL1 to SLJ based on the decoded signal DEC. Each of the selection circuits S1 to SJ includes switches SW11 to -26-200822123 SW15........ SWJ1 to SWJ5 which are respectively connected to the overall word lines GWL1 to GWL: [. Each of the selection circuits S1 to SJ receives the read voltages VRD1 and VRD2, the programmed voltages Vpc and Vps and the erase voltage Vers, and the output word line bias voltages VwfI to VwfJ, Vws1 to VwsJ or VwtI to VwtJ to the overall word line GWL1 to GWL to return the selection signals SL1 to SLJ. This will be described in more detail later. For example, the switches SW11 to SW15 of the selection circuit S1 are connected to the read voltages VRD1 and VRD2, respectively, and the stylized voltages Vp. And V P s and the erase voltage V E R s and the overall word line G W L 1 . The switches SW11 to SW15 are turned on or off in accordance with the logic 位 of the bits B1 to B5 of the selection signal S L 1 . In this case, in the case where the switches SW1 1 to SW15 are implemented using an NMOS transistor, when the logic turns of the bits B1 to B5 are 1, the switches SW11 to SW15 are turned on. Meanwhile, when the logical turns of the bits B1 to B5 are 0, the switches S W 1 1 to S W 1 5 are turned off. For example, when one of the switches SW1 1 and SW12 is turned on, one of the read voltages VRD1 and VRD2 is input to the overall word line GWL1 as the word line bias VWF1. Furthermore, when one of the switches SW13 and SW14 is turned on, the voltage Vp is programmed. And one of the VPSs is input to the overall word line GWL 1 as the word line bias voltage Vwsl. Further, when the switch Swi5 is turned on, the erase voltage VERS is input to the overall word line GWL1 as the word line bias voltage VwtI. In this case, since the selection signal generator 65 causes one of the bits B1 to B5 to generate a logical 値1 and causes the remaining bits to generate a logical 値〇, one of the switches SW1 1 to SW15 is turned on. , and turn off the remaining switches of -27-200822123. As a result, one of the read voltages Vrd1 and Vrd2, the programmed voltages Vp (3 and Vps, and the erase voltage Vers) is applied to the overall word line GWL1. The construction of the selection circuits S2 to SJ and The operation is similar to the configuration and operation of the above-described selection circuit S 1. It is shown in Fig. 6 that each of the selection circuits si to ST has five switches. However, it is noted that the selection circuits S1 can be changed or modified. The construction of SJ. As is known to those skilled in the art, 'there are a number of methods for causing the selection circuits S1 to S to output the word line bias voltages Vwf1 to VwfJ, Vwsl to VwsJ or VwtI to VwtJ. Simplification of the figure, FIG. 6 only shows connections to the global word lines GWL1 and GWL, the local word lines WL1 1 , WL1], WLK1 and WLKJ and the memory units Μ111, Μητ, M1J1 NMOS transistors G1 1, GK1, G1J, and GKJ of M1JT, ΜΚ11, ΜΚ1Τ, MKJ1, and MKJT. The gates of the memory cells M1 1 1 to Μ 1 1 T are connected to the local word line WL 1 1, And the gates of the memory cells Μ 1 Π to Μ 1] The word line WL U is further connected to the local word line WLK1, and the gates of the memory cells ΜΚΠ to MKJT are connected to the local word line WLKJ. The source and the drain of the NMOS transistor G11 are respectively connected to the overall word line GWL 1 and the local word line WL1 1. The source and the drain of the NMOS transistor GK1 are respectively connected to the overall word line. GWL1 and the local word line WLK1. In addition, the source and the drain of the NMOS transistor G1J are respectively connected to the overall word line GWLJ and the local word line WL 1 J. The source of the NMOS transistor GKJ and The drain is connected to the overall word line GWL) and the local character -28-200822123 line WLKJ, respectively. Figure 7 is a flow chart depicting a method of controlling the erase operation of the flash memory device in accordance with an embodiment of the present invention. The erase voltage VwtJ and the body voltage vCB are set so that the erase voltage VwtJ has a positive voltage level and the difference between the erase voltage VWT] and the body voltage Vc:B is 15V (S701). Once the erase voltage VWTJ and the body voltage VCB have been set, the erase voltage VwT is immediately used according to a block selection signal BLKWL to perform an erase operation on the memory cell of a selected block with the body voltage VCB (S702). . After the erase operation is performed, it is determined whether the erase operation has been properly performed (S73). If all of the memory cells in the selected block have been erased, it is determined that the erase operation has been properly performed, in which case the erase operation is ended. On the other hand, if there is one or more memory cells that are not erased, it is determined that the erase operation is not properly performed and the erase voltage VWTJ and the body voltage VCB are reset to implement the wipe again. In addition to the operation. This will be described in more detail below. The number of erasing operations performed is increased by one (S 704). Then, it is determined whether or not the number of erasing operations performed is less than a predetermined number of times (S 7 0 5). If the number of erase operations performed is less than the predetermined number of times, the erase voltage VwtJ and the body voltage VCB are changed (S706). At this time, the erase voltage VwT and the body voltage VCB are changed so that the difference between the erase voltage VWTI and the body voltage Vu gradually becomes greater than 15V. A detailed method of changing the erase voltage VwT and the body voltage Vcb will be described later. If the erase voltage VwtJ and the body voltage VCB have been changed, then -29-200822123 is used to perform an erase operation (or erase operation HS702). The above steps are performed again (S703 to S705). If the erase operation is not completed within a given period, the selected memory block is marked as an invalid block (S707). In this embodiment, when the number of times of the erase operation is equal to the predetermined number of times, the selected memory block is marked. The erase operation of the flash memory device 100 which has been described in Fig. 7 will now be described in more detail with reference to Figs. 4 through 6. The control logic circuit 130 generates the erase command ERS to echo the external control signals /WE, /RE, ALE, and CLE and the command signal CMD, and generates the column address signal RADD based on the address signal ADD. The body voltage generator 40 of the high voltage generator 140 generates a high voltage level (eg, 17V) body voltage Vu to echo the command ERS, and supplies the generated body voltage VCB to the body material (P well region) The memory cell blocks MB1 to MBK are formed in the body material. Furthermore, the first bias generator 50 of the high voltage generator 140 generates a low voltage (e.g., 〇V) drain bias VC3D and a source bias VC3S to echo the command ERS. Thus, the drain bias voltage V6D is applied to the overall drain select line GDSL, and the source bias voltage V (3s is applied to the overall source select line GSSL. At the same time, the X-decoder 150 decodes the column Address signal RADD, and outputting the decoded signal DEC. The second bias generator 60 of the high voltage generator 140 generates the word line bias voltages VwtI to VWTJ to echo the erase command ERS and the decoded signal DEC, and Supplying the generated voltages to the overall word lines GWL1 to GWLI °, respectively, more particularly, the third pump circuit 63 of the second bias generator 60 generates an erase voltage VERS having a positive turn to respond In addition to the command ERS °, for example: the -30-200822123 erase voltage vERS is lower than the body voltage VeB supplied to the P-well region of the memory cell in the erase operation, and has a positive 値. Preferably, The difference between the body voltage Vu supplied to one of the P-well regions of a memory cell and the erase voltage Vers in the erase operation may be set to be higher than or equal to 5 V. The second bias generator 60 The bias selection unit 64 selects the erase voltage VERS to return the decoded signal. DEC, and outputting the selection voltage as the word line bias voltages VwtI to Vwt; [more specifically, the selection signal generator 65 of the bias selection unit 64 outputs the selection signals SL1 to SL The number of bits B1 to B5 is "00001" to return the decoded signal DEC. The switches SW15 to SWJ5 of the selection circuits S1 to SJ of the bias selection unit 64 are turned on, and the switches SW11 to SWJ1, SW12 to SWJ2 are turned on. SW13 to SWJ3 and SW14 to SWJ4 are turned off to wait for the selection signals SL1 to SLJ, and then the erase voltage VERS is input to the overall word lines GWL1 to GWL via the switches SW15 to SWJ5 as the The word line line is biased from VWT1 to VWTJ. Further, the block selecting unit 160 selects one of the memory cell blocks MB1 to MBK to return the decoded signal DEC, and respectively connects a selected memory cell block. The local word line is connected to the whole word line GWL1 to GWLJ. For example, if the memory unit block MB1 is selected, the block switching unit 161 of the block selecting unit 160 enables the block selection signal BSEL1 to be enabled. In return, the signal DEC should be decoded. And disabling all of the block selection signals BSEL2 to BSELK. As a result, only the switching unit PG1 of the block selection unit 160 is enabled, and all of the switching units PG2 to PGK are disabled. More specifically, at the same time, Turning on the switching elements GD1, G11 to G1 and GS1 of the switching unit PG1, and -31-200822123, switching elements GD2 to GDK, G21 to G2J.....GK1 of the switching units PG2 to PGK to GKJ, GS2 to GSK are all closed. Thus, the drain select line DSL1 of the memory cell block MB1 is connected to the overall drain select line GD S L , and the source select line S S L 1 is connected to the overall source select line GSSL. Therefore, when the low voltage level gate bias VC3D and the source bias voltage Vos are respectively applied to the drain select line DSL1 and the source select line SSL1, the drain select transistor DST1 and the source are turned off. Select transistor SST1. Thus, the drain and source of the memory cells Μ 1 1 1 to Μ 1 JT of the memory cell block MB 1 are floated. Further, the local word lines WL1 1 to WL1 of the memory cell block ΜΒ 1 are made [connected to the overall word lines GWL1 to GWLJ, respectively. As a result, the word line bias voltages VwtI to Vwt of the entire word line lines GWL1 to GWLJf are transferred to the local word lines WL11 to WL1, respectively. Therefore, a voltage difference (for example, 15 V or higher) is generated between the gate of the memory cell Μ 1 1 1 to Μ 1 JT of the memory cell block Μ B 1 and the body, and the voltage difference is caused by the voltage difference Electrons are released from the floating gates of the memory cells Μ 1 1 1 to Μ 1 Τ 1 to perform the erase operation of the memory cells Μ 1 1 1 to Μ 1 Τ. At the same time, the drain select lines DSL2 to DSLJ of the memory cell blocks ΜΒ2 to 隔离 are isolated from the overall drain select line GDSL, and the source select lines SSL2 to SSLJ and the overall source select line are also made. GSSL isolation. Further, the local word lines WL21 to WL2J........ WLK1 to WLKJ of the memory cell blocks MB 2 to MB 全部 are all isolated from the overall word lines GWL1 to GWU. Thus, the local word lines -32-200822123 WL21 to WL2J..... WLK1 to WLKJ are boosted by the body voltage VcB of a high voltage level (eg, 20V), wherein the body voltage VCB is applied to Memory cells of the memory cell blocks MB 2 to MBK. Therefore, a boost voltage V BST close to the body voltage Vc: B is generated in the local word lines WL21 to WL2J..... WLK1 to WLK: [. In this case, the operation of the NMOS transistors G21 to G2J.....GK1 to GKJ will be described in more detail with reference to FIGS. 8A and 8B, wherein the NMOS transistors G21 to G2J... ..... GK1 to GKJ are connected to the local word lines WL21 to WL2J........ WLK1 to WLKJ of the memory cell blocks MB2 to MBK and the overall word lines GWL1 to GWLJ between. Figures 8A and 8B show a cross-sectional view of the NMOS transistor GK1 and the potential of the NMOS transistor GK1, respectively. The NMOS

晶體G21至G2J........GK2至GKJ之操作相似於該NMOS 電晶體GK1之操作。因此,爲了簡化起見省略其詳細描 述。 第8A圖係該NMOS電晶體GK1(—切換元件)之剖面 圖,該NMOS電晶體GK1係連接至該記憶體單元區塊MBK 之局部字元線WLK1。該NMOS電晶體GK1之源極72被 施加具有一正値之字元線偏壓VwtI,以及該NMOS電晶 體GK1之閘極74被施加具有一低電壓位準(例如:0V)之區 塊選擇信號BSELK。該NMOS電晶體GK1之汲極73被施 加有該升壓電壓VBST。當該區塊選擇信號BSELK處於一 低位準時,關閉該NMOS電晶體GK1。此外,因爲該字 元線偏壓VwtI具有該正値,所以該源極72區域之位能如 第8B圖所示減少至約Ev2。於是,減少從該源極72被引 入一基板71之電子量,以及減少被引入該局部字元線 -33- 200822123 WLK1之電子量,其中該該局部字元線WLK1連接至該汲 極73。結果,當減少在該NMOS電晶體GK中所產生之 漏電流時,使該局部字元線WLK1保持該升壓電壓VBST 位準。因此,沒有抹除連接至該局部字元線WLK 1之記憶 體單元的資料。 另一方面,在將0V之字元線偏壓VwtI施加至該源極 72之情況中,該源極72區域之位能如第8B圖所示增加 至約Evl。於是,從該源極72被引入該基板71之電子量 增加,該NMOS電晶體GK1之漏電流量增加。在此關係 中,要減少該NMOS電晶體GK1之漏電流,需要減少該 源極7 2區域之位能。 在上述狀態下實施該抹除操作後,確定是否已適當地 抹除一區塊之所有記憶體單元,其中對該區塊已實施該 抹除操作。此可使用經由該頁緩衝器170從該Y-解碼器 180所輸出之資料來確認。 例如:如果該Y-解碼器180所輸出之資料爲「1」,則 可以確定已適當地實施該抹除操作,其中在將0V施加至 所有字元線之狀態中以一串爲基礎實施一讀取操作。如 果該Y-解碼器180所輸出之資料爲「〇」,則可以確定尙 未適當地實施該抹除操作。 在該習知技藝中,在該抹除操作失敗之確定後,將該 等單元標記爲「無效單元」。之後不使用這些單元,此 導致資料儲存容量之減少。然而,在本實施例中’藉由 增加在該等字元線與該本體間之電壓差以再次實施一抹 除操作,以便沒有通過該第一抹除操作之單元可以適當 -34· 200822123 地實施一隨後抹除操作。此使過早將一記憶體區塊標記 成一無效區塊之情況減到最少。現在將更詳細描述一藉 由控制上述電壓差以再次實施該抹除操作之程序。 第9A至9C圖係相關聯於第5圖之電路圖的波形,其 中在依據一實施例之一抹除操作時將一電壓施加至總體 字元線及一 P井區。第1 0A至10C圖係相關聯於第5圖 之電路圖的波形,其中在依據另一實施例之一抹除操作 時將一電壓施加至總體字元線及一 P井區。 參考第9A圖,藉由施加具有一正値之抹除電壓VWTJ 至該總體字元線GWL及一本體電壓Vcb至該本體PWELL 以實施一抹除操作。該本體電壓VCB實質上大於該抹除電 壓VWT〗有例如15V或更多。在實施第一抹除嘗試後,實 施一抹除驗證程序以確定是否已適當地實施該抹除操 作。如果已抹除在該選擇記憶體區塊中之所有記憶體單 元,則確定已適當地實施該抹除操作。如果尙未抹除在 該選擇記憶體區塊中之一個或多個記憶體單元,則確定 尙未適當地實施該抹除操作。該抹除驗證程序包括檢查 該Y-解碼器180所輸出之資料。將該Y-解碼器180所輸 出之資料輸入至該第二偏壓產生器60及該本體電壓產生 器40,其中該第二偏壓產生器60產生該抹除電壓VwTJ。 如果確定尙未適當地實施該抹除操作’則實施第二抹 除嘗試。該第二抹除嘗試包括使該第二偏壓產生器60降 低該抹除電壓VwT了之位準有一給定量(例如0.1至〇·5V) 及施加一降低抹除電壓VwT了至該總體字元線GWL。於 是,增加在該總體字元線GWL與該本體PWELL·間之電壓 -35- 200822123 差。 實施另一抹除驗證程序以確定是否已抹除在 憶體區塊中之所有記憶體單元,亦即,是否已 施該第二抹除嘗試。如果確定尙未適當地實施 除嘗試,則藉由使該第二偏壓產生器60降低該 VWTJ之位準有一給定量(例如0.1至0.5V)以進一 電壓差及施加一降低抹除電壓至該總體字元線 施第三抹除嘗試。此抹除方法稱爲一「增量步 除(Incremental Stepping Pulse Erase,ISPE)方法 該IS PE方法增加該電壓差及再次實施該抹除操 重複該等抹除嘗試,直到適當地抹除所有選 單元或該等抹除嘗試之次數等於一預定次數爲 在預定嘗試次數之後尙未適當地抹除所有選擇 元,則將該記憶體區塊標記成爲一無效區塊。 應用設定該預定次數。 上述已描述當實施該抹除操作時,降低被施 體字元線GWL之抹除電壓VwT〗,以便增加在該 與該本體間之電壓差。然而,如第8B圖所示’ 壓產生器40可以提升該本體電壓VCB有0.5至 增加在該等字元線與該本體間之電壓差。在 中,如第8C圖所示,該本體電壓產生器40可 本體電壓VCB,同時該第二偏壓產生器60降低 壓VwtJ,以便增加在該等字元線與該本體間之The operation of the crystals G21 to G2J.....GK2 to GKJ is similar to the operation of the NMOS transistor GK1. Therefore, the detailed description thereof is omitted for the sake of simplicity. Fig. 8A is a cross-sectional view of the NMOS transistor GK1 (-switching element) connected to the local word line WLK1 of the memory cell block MBK. The source 72 of the NMOS transistor GK1 is applied with a positive word line bias voltage VwtI, and the gate 74 of the NMOS transistor GK1 is applied with a block selection having a low voltage level (for example, 0V). Signal BSELK. The boosting voltage VBST is applied to the drain 73 of the NMOS transistor GK1. When the block selection signal BSELK is at a low level, the NMOS transistor GK1 is turned off. Furthermore, since the word line bias VwtI has the positive sign, the bit position of the source 72 region can be reduced to about Ev2 as shown in Fig. 8B. Thus, the amount of electrons introduced from the source 72 into a substrate 71 is reduced, and the amount of electrons introduced into the local word line -33 - 200822123 WLK1 is reduced, wherein the local word line WLK1 is connected to the drain 73. As a result, when the leakage current generated in the NMOS transistor GK is reduced, the local word line WLK1 is maintained at the boost voltage VBST level. Therefore, the material of the memory cell connected to the local word line WLK 1 is not erased. On the other hand, in the case where a 0V word line bias voltage VwtI is applied to the source 72, the bit position of the source 72 region can be increased to about Evl as shown in Fig. 8B. Thus, the amount of electrons introduced from the source 72 to the substrate 71 increases, and the amount of leakage current of the NMOS transistor GK1 increases. In this relationship, in order to reduce the leakage current of the NMOS transistor GK1, it is necessary to reduce the potential energy of the source region. After the erase operation is performed in the above state, it is determined whether all the memory cells of a block have been properly erased, and the erase operation has been performed on the block. This can be confirmed using the data output from the Y-decoder 180 via the page buffer 170. For example, if the data output by the Y-decoder 180 is "1", it can be determined that the erasing operation has been properly performed, wherein one of the strings is implemented in a state where 0V is applied to all the word lines. Read operation. If the data output by the Y-decoder 180 is "〇", it can be determined that the erase operation is not properly performed. In this prior art, after the determination of the erase operation failure, the units are marked as "invalid units". These units are not used afterwards, which results in a reduction in data storage capacity. However, in the present embodiment, 'the erase operation is performed again by increasing the voltage difference between the word lines and the body, so that the unit that does not pass the first erase operation can be implemented appropriately-34·200822123 A subsequent erase operation. This minimizes the premature marking of a memory block as an invalid block. A procedure for controlling the above-described voltage difference to perform the erase operation again will now be described in more detail. Figures 9A through 9C are waveforms associated with the circuit diagram of Figure 5, wherein a voltage is applied to the overall word line and a P-well region during an erase operation in accordance with one embodiment. 10A through 10C are waveforms associated with the circuit diagram of Fig. 5, wherein a voltage is applied to the overall word line and a P well region in accordance with one of the erase operations of another embodiment. Referring to FIG. 9A, an erase operation is performed by applying a positive erase voltage VWTJ to the overall word line GWL and a body voltage Vcb to the body PWELL. The body voltage VCB is substantially greater than the erase voltage VWT, for example, 15V or more. After the first erase attempt is performed, a wipe verification procedure is performed to determine if the erase operation has been properly performed. If all of the memory cells in the selected memory block have been erased, it is determined that the erase operation has been properly performed. If one or more of the memory cells in the selected memory block are not erased, it is determined that the erase operation is not properly performed. The erase verification process includes checking the data output by the Y-decoder 180. The data output from the Y-decoder 180 is input to the second bias generator 60 and the body voltage generator 40, wherein the second bias generator 60 generates the erase voltage VwTJ. A second erase attempt is performed if it is determined that the erase operation is not properly performed. The second erase attempt includes causing the second bias generator 60 to lower the erase voltage VwT by a given amount (for example, 0.1 to 55V) and applying a lower erase voltage VwT to the overall word. Yuan line GWL. Therefore, the voltage between the overall word line GWL and the body PWELL is increased by -35-200822123. Another erase verification procedure is implemented to determine if all of the memory cells in the memory block have been erased, i.e., whether the second erase attempt has been applied. If it is determined that the attempt is not properly performed, the second bias generator 60 is lowered by a given amount (for example, 0.1 to 0.5 V) to increase the voltage difference and apply a reduced erase voltage to the VWTJ level. The overall character line is subjected to a third erase attempt. This erasing method is called an "Incremental Stepping Pulse Erase (ISPE) method. The IS PE method increases the voltage difference and performs the erasing operation again to repeat the erasing attempts until all the menus are properly erased. The number of times or the number of such erase attempts is equal to a predetermined number of times, after all the selection elements are not properly erased after the predetermined number of attempts, the memory block is marked as an invalid block. The application sets the predetermined number of times. It has been described that when the erase operation is performed, the erase voltage VwT of the donor word line GWL is lowered to increase the voltage difference between the body and the body. However, as shown in Fig. 8B, the pressure generator 40 The body voltage VCB can be increased by 0.5 to increase the voltage difference between the word lines and the body. In FIG. 8C, the body voltage generator 40 can have a body voltage VCB, and the second bias The pressure generator 60 lowers the pressure VwtJ to increase between the word lines and the body

上面已描述以一線性函數降低該抹除電壓V\ 線性函數提升該本體電壓Vu。然而,如第l〇A 該選擇記 適當地實 該第二抹 抹除電壓 步增加該 GWL來實 進脈衝抹 」。依據 作。 擇憶體 止。如果 記億體單 可以依據 加至該總 等字元線 該本體電 1 V,以便 另一情況 以增加該 該抹除電 電虜差。 VTJ或以一 至1 0 C圖 -36- 200822123 所示,可以一指數函數降低該抹除電壓VWT][或可以一指 數函數提升該本體電壓VCB。在另一情況中,可以一二次 函數降低該抹除電壓Vwt〗或可以一二次函數提升該本體 電壓V C B。 依據上述方法,本發明可使無效區塊之發生減至最小 及亦可在尙未實施一抹除操作之未選擇區塊中防止臨界 電壓因淺抹除現象而減少,或者當重複實施該抹除操作 時防止該快速程式化或該慢速抹除現象的發生。 第1 1圖係用以比較在一抹除操作時未選擇區塊之臨界 電壓的變化之特性曲線圖。在該習知技藝中,在一切換 元件中產生漏電流(例如:第5圖中之G1 J,其中]係整 數)。於是,產生該淺抹除現象,而該淺抹除現象是在逐 漸降低一被施加至字元線之電壓的狀態中實施一抹除操 作。基於此理由,產生下列問題:降低在該未選擇區塊中 之一記憶體單元的臨界電壓。 然而,在本發明中,在總體字元線被施加有一正抹除 電壓之狀態中實施一抹除操作,以便防止在一切換元件 (例如:第5圖中之G 1 J,其中J係整數)中之漏電流的發 生。於是,在未選擇區塊中很少產生該淺抹除現象。因 此,可使該臨界電壓之變化量減至最小。 第1 2圖係描述依據本發明之一實施例相依於一抹除操 作之次數的一慢速抹除特性及一快速程式化特性之特性 曲線圖。在第一抹除操作中,使該等字元線與該本體間 之電壓差維持在可適當地實施該抹除操作之範圍中。如 果適當地實施該抹除操作,則藉由增加該電壓差以再次 -37- 200822123 實施該抹除操作。因此,雖然重複地實施該抹除操作, 但是在約0 · 5 V範圍內產生該快速程式化現象及該低速抹 除現象。考量到在至少2V以上產生該習知技藝中之第2 圖所示的快速程式化現象及慢速抹除現象下,從第1 2圖 可看出在本發明中很少產生該快速程式化現象或該低速 抹除現象。 如以上所述,本發明包括下面優點中之一個或多個優 點。首先,在該抹除操作時,施加一高於0 V之電壓至該 等總體字元線。因此,可允許在該等切換元件中防止該 漏電流之發生,其中該等切換元件係連接於該等總體字 元線與該等局部字元線之間。因此,可防止尙未實施該 抹除操作之一未選擇區塊的字元線之電壓的減少,以及 可在一未選擇區塊中防止該淺抹除現象之發生。 第二,在該習知技藝中,在實施該抹除操作後驗證是 否已適當地實施該抹除操作之程序中,如果具有尙未適 當地實施該抹除操作之記憶體單元,則將對應區塊視爲 無效區塊及因而不使用該等對應區塊。此導致資料儲存 容量之減少。然而,在本發明中,如果存在尙未適當地 實施該抹除操作之記憶體單元,則藉由增加在該等字元 線與該本體間之電壓差以再次實施該抹除操作。因此, 可允許使無效區塊之發生減至最小及因而使該資料儲存 容量之減少至最小。 第三,如果在從第一次起該等字元線與該本體間就具 有高電壓差之狀態中實施該抹除操作’則因爲使電子陷 落在該穿隧氧化層上或提供應力至該穿隧氧化層’所以 -38 - 200822123 可能降低一記憶體單元之電氣特性。然而’在本發明中’ 對於該抹除操作只使用最小電壓差以實施該抹除操作° 如果該抹除操作失敗,則藉由增加該電壓差以再次實施 該抹除操作。於是,可使在該穿隧氧化層上所陷落之電 子量或在該穿隧氧化層上所提供之應力減至最小,此導 致該記憶體單元之壽命延長。 第四,在本發明中,在一初始抹除操作時,使用最小 電壓差來實施該抹除操作。如果發生失敗,則藉由增加 該電壓差以再次實施該抹除操作。因此,雖然重複地實 施該讀取/抹除操作,但是可防止該快速程式化或該慢速 抹除現象之發生至最大範圍。 依據上述操作,可改善該抹除操作之可靠性,可使失 敗之發生減至最小,以及可增加元件之壽命。 雖然先前已描述各種實施例,但是了解到熟習該項技 藝者可在不脫離本發明及所附請求項之精神及範圍內實 施本發明之變更及修改。 【圖式簡單說明】 第1圖係描述一傳統快閃記憶體元件之抹除操作的記 憶體單元及傳輸閘之電路圖; 弟2圖係顯75在習知技藝中相依於一抹除操作之次數 的一慢速抹除特性及一快速程式化特性的特性曲線圖; 第3圖係顯示在習知技藝中相依於一抹除電壓之位準 的一慢速抹除特性及一快速程式化特性的特性曲線圖; 第4圖係依據本發明之一實施例的一快問記憶體元件 之方塊圖; -39- 200822123 第5圖係第4圖所示之一記憶體單元陣列、一區塊選 擇單元、一第二偏壓產生器、一本體電壓產生器及一 X-解碼器之詳細電路圖; 第6圖係第5圖所示之記憶體單元、傳輸閘、一本體 電壓產生器及一偏壓選擇單元之詳細電路圖; 第7圖係描述依據本發明之一實施例的一控制該快閃 記憶體元件之抹除操作的方法之流程圖; 第8A圖係顯不第6圖所示之一切換元件的一範例之剖 面圖; 第8B圖係描述在第6圖所示之切換元件中相依於該字 元線之偏壓變化的位能變位之圖式; 第9A至9C圖係描述在第5圖中之一抹除操作時將一 電壓施加至總體字元線及一 P井區的第一實施例之波形; 第10A至10C圖係描述在第5圖中之一抹除操作時將 一電壓施加至總體字元線及一 P井區的第二實施例之波 形; 第1 1圖係用以比較在一抹除操作時未選擇區塊之臨界 電壓的變化之特性曲線圖;以及 第1 2圖係描述依據本發明之一實施例的相依於一抹除 操作之次數的一慢速抹除特性及一快速程式化特性之特 性曲線圖。 【主要元件符號說明】 40 本體電壓產生器 50 第一偏壓產生器 60 第二偏壓產生器 -40- 200822123 61-63 第 — 至 第 二 泵 電 64 偏 壓 々BB 迸 擇 單 元 65 进 擇 信 號 產 生 器 71 基 板 72 源 極 73 汲 極 74 閘 極 100 快 閃 記 憶 體 元 件 1 10 記 憶 體 單 元 陣 列 120 輸 入 緩 衝 器 130 控 制 邏 輯 電 路 140 局 壓 產 生 器 150 X- 解 碼 器 160 塊 CBB 进 擇 單 元 161 區 塊 切 換 單 元 170 頁 緩 衝 器 180 Y- 解 碼 器 -41 -It has been described above that reducing the erase voltage V\ linear function by a linear function boosts the body voltage Vu. However, as in the case of the first 该A, it is appropriate to implement the second erroneous voltage step to increase the GWL to implement the pulse glitch. According to the work. Selective memory. If the unit is billed, the body can be charged 1 V according to the total word line, so that another case can be added to increase the erased power difference. VTJ may reduce the erase voltage VWT] by an exponential function as shown in Fig. -36 - 200822123. Alternatively, the body voltage VCB may be boosted by an index function. In another case, the erase voltage Vwt may be lowered by a quadratic function or the body voltage V C B may be boosted by a quadratic function. According to the above method, the present invention can minimize the occurrence of invalid blocks and can also prevent the threshold voltage from being reduced by the shallow erase phenomenon in the unselected block in which an erase operation is not performed, or when the erase is repeatedly performed. This quick stylization or the slow erase phenomenon is prevented during operation. Figure 11 is a graph comparing the changes in the threshold voltage of unselected blocks during an erase operation. In this prior art, a leakage current is generated in a switching element (e.g., G1 J in Fig. 5, where is an integer). Thus, the shallow erase phenomenon is produced, and the shallow erase phenomenon is performed by gradually performing a erase operation in a state where the voltage applied to the word line is gradually lowered. For this reason, the following problem arises: lowering the threshold voltage of one of the memory cells in the unselected block. However, in the present invention, an erasing operation is performed in a state where the entire word line is applied with a positive erase voltage in order to prevent a switching element (for example, G 1 J in Fig. 5, where J is an integer) The occurrence of leakage current in the middle. Thus, the shallow erase phenomenon is rarely generated in the unselected block. Therefore, the amount of change in the threshold voltage can be minimized. Figure 12 is a graph depicting the characteristics of a slow erase characteristic and a fast stylized characteristic depending on the number of erase operations in accordance with one embodiment of the present invention. In the first erasing operation, the voltage difference between the word lines and the body is maintained in a range in which the erasing operation can be appropriately performed. If the erase operation is properly performed, the erase operation is performed again by increasing the voltage difference again -37-200822123. Therefore, although the erasing operation is repeatedly performed, the rapid stylization phenomenon and the low-speed erasing phenomenon are generated in the range of about 0. 5 V. Considering that at least 2V or more produces the fast stylization phenomenon and the slow erase phenomenon shown in Fig. 2 of the prior art, it can be seen from Fig. 2 that the rapid stylization is rarely produced in the present invention. Phenomenon or this low speed erase phenomenon. As described above, the present invention includes one or more of the following advantages. First, during the erase operation, a voltage higher than 0 V is applied to the overall word line. Accordingly, the occurrence of leakage current can be prevented in the switching elements that are coupled between the global word lines and the local word lines. Therefore, it is possible to prevent the voltage of the word line of the unselected block which is not subjected to the erase operation from being reduced, and the occurrence of the shallow erase phenomenon can be prevented in an unselected block. Secondly, in the prior art, in the procedure of verifying whether the erase operation has been properly performed after the erase operation is performed, if there is a memory unit that does not properly perform the erase operation, it will correspond Blocks are considered invalid blocks and thus do not use such corresponding blocks. This results in a reduction in data storage capacity. However, in the present invention, if there is a memory cell in which the erase operation is not properly performed, the erase operation is performed again by increasing the voltage difference between the word lines and the body. Therefore, it is allowed to minimize the occurrence of invalid blocks and thus minimize the reduction of the data storage capacity. Third, if the erase operation is performed in a state where the word line has a high voltage difference from the first time from the first time, the electrons are trapped on the tunnel oxide layer or stress is supplied thereto. Tunneling oxide layer 'so-38 - 200822123 may reduce the electrical characteristics of a memory cell. However, in the present invention, only the minimum voltage difference is used for the erasing operation to carry out the erasing operation. If the erasing operation fails, the erasing operation is performed again by increasing the voltage difference. Thus, the amount of electrons trapped on the tunnel oxide layer or the stress provided on the tunnel oxide layer can be minimized, which results in an extended life of the memory cell. Fourth, in the present invention, the erasing operation is performed using a minimum voltage difference at an initial erasing operation. If a failure occurs, the erase operation is performed again by increasing the voltage difference. Therefore, although the read/erase operation is repeatedly performed, the rapid stylization or the slow erase phenomenon can be prevented from occurring to the maximum extent. According to the above operation, the reliability of the erasing operation can be improved, the occurrence of failure can be minimized, and the life of the component can be increased. While the various embodiments have been described in the foregoing, it is understood that the modifications and modifications of the invention may be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing a memory unit and a transfer gate of a conventional flash memory device erase operation; FIG. 2 shows the number of times in a conventional technique that depends on an erase operation. A slow erase characteristic and a characteristic curve of a fast stylized characteristic; Fig. 3 shows a slow erase characteristic and a fast stylized characteristic depending on the level of a erase voltage in the prior art. 4 is a block diagram of a memory device in accordance with an embodiment of the present invention; -39- 200822123 Figure 5 is a memory cell array, a block selection shown in FIG. Detailed circuit diagram of the unit, a second bias generator, a body voltage generator and an X-decoder; FIG. 6 is a memory unit, a transmission gate, a body voltage generator and a bias shown in FIG. Detailed circuit diagram of the pressure selection unit; FIG. 7 is a flow chart showing a method of controlling the erase operation of the flash memory element according to an embodiment of the present invention; FIG. 8A is not shown in FIG. An example of a switching element Figure 8B is a diagram depicting the displacement of the bit energy dependent on the bias of the word line in the switching element shown in Figure 6; Figures 9A to 9C depicting one of the patterns in Figure 5 In addition to the operation, a voltage is applied to the waveform of the first embodiment of the overall word line and a P-well; the 10A to 10C diagrams describe applying a voltage to the overall character during one of the erase operations in FIG. The waveform of the second embodiment of the line and the P well region; the first graph is for comparing the characteristic curve of the change of the threshold voltage of the unselected block during an erasing operation; and the second graph is based on the description A characteristic of a slow erase characteristic and a fast stylized characteristic depending on the number of erase operations of an embodiment of the invention. [Main component symbol description] 40 body voltage generator 50 first bias generator 60 second bias generator-40-200822123 61-63 first - to second pump power 64 bias 々 BB selection unit 65 Signal Generator 71 Substrate 72 Source 73 Drain 74 Gate 100 Flash Memory Element 1 10 Memory Cell Array 120 Input Buffer 130 Control Logic Circuit 140 Local Pressure Generator 150 X- Decoder 160 Block CBB Select Unit 161 Block Switching Unit 170 Page Buffer 180 Y-Decoder-41 -

Claims (1)

200822123 十、申請專利範圍: ‘ 1 · 一種非揮發性記憶體元件,包括: - 第一及第二記憶體單元區塊,每一記憶體單元區塊 包括複數個記憶體單元及包括一局部汲極選擇線、一 局部源極選擇線及複數條局部字元線; 一區塊選擇單元,分別連接一給定局部字元線至總 體字元線以回應一區塊選擇信號; 一第一偏壓產生器,配置成用以在一抹除操作期間 . 施加至少第一及第二抹除電壓至該等總體字元線,該 第一抹除電壓在該抹除操作之第一抹除嘗試期間被施 加至該等總體字元線,該第二抹除電壓在第二抹除嘗 試期間被施加至該等總體字元線,其中如果該第一抹 除嘗試未成功地實施該抹除操作,則實施該第二抹除 嘗試,該第一及第二抹除電壓係正電壓;以及 一本體電壓產生器,在該抹除操作期間施加一本體 電壓至該等記憶體單元之一本體。 2.如申請專利範圍第1項之記憶體元件,其中每次實施 一新抹除嘗試時,藉由一給定電壓減少一被施加至該 等總體字元線之抹除電壓,其中在一預定次數之失敗 抹除嘗試後,停止一給定抹除操作。 3 .如申請專利範圍第1項之記憶體元件,其中該第一偏 壓產生器產生該抹除電壓,以便該等局部字元線與該 本體間之電壓差在該第一抹除嘗試時變成15V,該本 體係一井區,在該井區中形成有該第一記憶體單元區 塊。 -42- 200822123 4.如申請專利範圍第3項之記憶體元件,其中每次實施 一新抹除嘗試時,藉由一給定電壓減少一被施加至該 等總體字元線之抹除電壓,其中該給定電壓不大於 0.5V。 5 ·如申請專利範圍第1項之記憶體元件,進一步包括: 一頁緩衝器,用以讀取在該等記憶體單元中所儲存 之資料;以及 一 Y-解碼器,用以輸出在該頁緩衝器中所儲存之資 料至一資料I/O緩衝器及該第一偏壓產生器。 6.如申請專利範圍第5項之記憶體元件,其中該第一偏 壓產生器根據該Y-解碼器所輸出之資料減少該第一抹 除電壓至該第二抹除電壓, 其中該記憶體元件係一 NAND快閃記憶體元件。 7 . —種快閃記憶體元件,包括: 複數個記憶體單元區塊,每一記憶體單元區塊分別 包括一局部汲極選擇線、一局部源極選擇線及複數條 局部字元線,而複數個記憶體單元係連接至該局部汲 極選擇線、該局部源極選擇線及該複數條局部字元線; 一區塊選擇單元,分別連接該等局部字元線至總體 字元線以回應一區塊選擇信號; 一第一偏壓產生器,在一抹除操作時施加一正抹除 電壓至該等總體字元線;以及 一本體電壓產生器,配置成用以在該抹除操作之第 一抹除嘗試期間施加一第一本體電壓至該等記憶體單 元之一本體,以及如果尙未適當地實施該第一抹除嘗 -43- 200822123 試’則在第二抹除嘗試期間施加一第二本體電壓至該 本體。 8.如申請專利範圍第7項之快閃記憶體元件,其中如果 該第一抹除嘗試尙未抹除針對該抹除操作所選擇之所 有記憶體單元’則認爲尙未適當地實施該第一抹除嘗 試。 9 ·如申請專利範圍第7項之快閃記憶體元件,其中該本 體電壓產生器產生該第一本體電壓,以便該等局部字 元線與該本體間之電壓差在一初始抹除操作時爲至少 15V 〇 1 0 ·如申請專利範圍第9項之快閃記憶體元件,其中該本 體電壓產生器增加該第一本體電壓不超過IV以產生 該第二本體電壓。 1 1 ·如申請專利範圍第7項之快閃記憶體元件,進一步包 括: 一頁緩衝器,用以讀取在該等記憶體單元中所儲存 之資料;以及 一 Y-解碼器,用以輸出在該頁緩衝器中所儲存之 資料至一資料I/O緩衝器及該本體電壓產生器。 12.如申請專利範圍第1 1項之快閃記憶體元件,其中該 本體電壓產生器根據該Y-解碼器所輸出之資料產生 該第二本體電壓,以便實施該抹除操作之第二抹除嘗 試。 1 3 . —種快閃記憶體元件,包括: 複數個記憶體單兀區塊’每一記憶體單元區塊分別 -44- 200822123 包括一局部汲極選擇線、一局部源極選擇線及複數 條局部字元線,而複數個記憶體單元係連接至該局 部汲極選擇線、該局部源極選擇線及該複數條局部 字元線; 一區塊選擇單元,用以分別連接該等局部字元線至 總體字元線以回應一區塊選擇信號; 一第一偏壓產生器,用以在一抹除操作時施加一正 抹除電壓至該等總體字元線,以及如果存在一尙未 被抹除之記憶體單元,則減少該抹除電壓及施加一 降低抹除電壓至該等總體字元線,以便再次實施該 抹除操作;以及 一本體電壓產生器,用以在該抹除操作時施加一本 體電壓至該等記憶體單元之一本體,以及如果存在 一尙未被抹除之記憶體單元,則增加該本體電壓及 施加一增加本體電壓至該本體,以便再執行該抹除 操作。 1 4.如申請專利範圍第1 3項之快閃記憶體元件,其中: 在一初始抹除操作時,該第一偏壓產生器及該本體 電壓產生器分別產生該抹除電壓及該本體電壓,以便 該等局部字元線與該本體間之電壓差變成15V;以及 當再次實施該抹除操作時’該本體電壓產生器增加 該本體電壓及該第一偏壓產生器減少該抹除電壓,以 便該等局部字元線與該本體間之電壓差變成高於 15V。 丄5 .如申請專利範圍第1 3項之快閃記憶體元件,其中: -45- 200822123 該第一偏壓產生器以一線性函數、一二次函數或一 指數函數在0.1至0.5V基準下減少該抹除電壓;以及 該本體電壓產生器以一線性函數、一二次函數或一 指數函數在0.5至IV基準下增加該本體電壓。 16·如申請專利範圍第13項之快閃記憶體元件,進一步 包括: 一頁緩衝器,用以讀取在該等記憶體單元中所儲存 之資料;以及 一 Y-解碼器,用以輸出在該頁緩衝器中所儲存之 資料至一資料I/O緩衝器、該本體電壓產生器及該第 一偏壓產生器。 17.如申請專利範圍第16項之快閃記憶體元件,其中如 果偵測到該 Y-解碼器所輸出之資料的尙未抹除資 料,則該第一偏壓產生器減少該抹除電壓及該本體電 壓產生器增加該本體電壓,以便再次實施該抹除操 作。 1 8 .如申請專利範圍第1 3項之快閃記憶體元件,進一步 包括一 X-解碼器,該X-解碼器用以解碼一列位址信 號及輸出該區塊選擇信號至該高壓產生單元。 19. 如申請專利範圍第1 1項之快閃記憶體元件,進一步 包括一第二偏壓產生器,該第二偏壓產生器用以依據 程式化、讀取及抹除操作中之任何一操作施加一預定 操作電壓至該局部汲極選擇線及該局部源極選擇線。 20. 如申請專利範圍第17項之快閃記憶體元件,其中該 第一偏壓產生器包括: -46- 200822123 一第一泵電路,用以產生一讀取操作所需之讀取電 壓以回應一讀取指令; 一第二泵電路,用以產生一程式化操作所需之程式 化電壓以回應一程式化指令; 一第三泵電路,用以產生該抹除電壓以回應一抹除 指令,以及如果偵測到該γ-解碼器所輸出之資料的尙 未抹除資料,則減少該抹除電壓及輸出一減少抹除電 壓;以及 一偏壓選擇單元,用以選擇該等讀取電壓、該等程 式化電壓或該抹除電壓以回應一操作指令信號及分 別輸出一選擇電壓至該等總體字元線。 2 1.如申請專利範圍第20項之快閃記憶體元件,其中該 偏壓選擇單元包括: 一選擇信號產生器,用以根據該操作指令信號產生 選擇信號;以及 複數個選擇電路,分別連接至該等總體字元線,該 等選擇電路係配置成用以分別輸出該等讀取電壓、該 等程式化電壓、該抹除電壓或其組合至該等總體字元 線以回應該等選擇信號。 2 2. —種抹除一非揮發性記憶體元件之方法’該方法包 括: 分別連接一選擇區塊之局部字元線及總體字元線 以回應一區塊選擇信號; 藉由施加一第一抹除電壓至該總體字元線及一高 於該第一抹除電壓之第一本體電壓至一本體使得該 -47- 200822123 局部字元線與該本體間之電壓差係一第一電位差來 實施抹除操作之一第一抹除嘗試; 確定是否已適當地實施該第一抹除嘗試;以及 如果確定尙未適當地實施該第一抹除嘗試’則藉由 施加一第二抹除電壓至該總體字元線及一第二本體 電壓至該本體以增加該局部字元線與該本體間之電 壓差至一第二電位差來實施該抹除操作之第二抹除 嘗試。 2 3 .如申請專利範圍第2 2項之方法,其中該第二抹除電 壓小於該第一抹除電壓。 24. 如申請專利範圍第22項之方法,其中該第二本體電 壓大於該第一本體電壓。 25. 如申請專利範圍第22項之方法,其中該第一抹除電 壓與該第二抹除電壓係不同的,以及該第一本體電壓 與該第二本體電壓係不同的。 2 6 .如申請專利範圍第2 2項之方法,其中在尙未成功實 施一預定次數之抹除嘗試後,停止該抹除操作,其中 在尙未成功實施該預定次數之抹除嘗試後’將該選擇 區塊標記成爲一無效區塊。 27. —種控制一快閃記憶體元件之抹除操作的方法,該方 法包括: 分別連接一選擇區塊之局部字元線及總體字元線 以回應一區塊選擇信號; 藉由依據一抹除指令施加一正抹除電壓至該等總 體字元線及一高於該抹除電壓之本體電壓至一記億 -48- 200822123 體單元之一本體以實施一抹除操作; 確定是否已適當地實施該抹除操作;以及 如果確定尙未適當地實施該抹除操作,則藉由同時 控制該抹除電壓及該本體電壓使得該等局部字元線 與該本體間之電壓差變大來再次實施該抹除操作。 2 8 .如申請專利範圍第2 4項之方法,其中多次重複地實 施確定是否已適當地實施該抹除操作之步驟,同時減 少該抹除電壓於一預定位準及增加該本體電壓於一 預定位準,以及包括如果直到該預定次數爲止尙未適 當地實施該抹除操作,則將一對應區塊視爲一無效區 塊。 2 9 .如申請專利範圍第2 7項之方法,其中設定該抹除電 壓及該本體電壓,使得該等局部字元線與該本體間之 電壓差係15V或更高。 3 0 .如申請專利範圍第2 7項之方法,其中以〇 . 1至〇 . 5 V 基準減少該抹除電壓,使得該等局部字元線與該本體 間之電壓差於一範圍內增加,其中該電壓差變成至少 15V。 3 1 ·如申請專利範圍第2 7項之方法,其中以一指數函數 減少該抹除電壓,使得該等局部字元線與該本體間之 電壓差於一範圍內增加,其中該電壓差變成至少15V。 32.如申g靑專利fe圍弟27項之方法,其中以〇.5至IV基 準增加該抹除電壓,使得該等局部字元線與該本體間 之電壓差於一範圍內增加,其中該電壓差變成至少 15V。 -49- 200822123 3 3 .如申請專利範圍第27項之方法,其中以一指數函數 增加該抹除電壓,使得該等局部字元線與該本體間之 電壓差於一範圍內增加,其中該電壓差變成至少15V。 -50-200822123 X. Patent application scope: '1 · A non-volatile memory component, comprising: - first and second memory cell blocks, each memory cell block comprising a plurality of memory cells and including a partial defect a pole selection line, a partial source selection line and a plurality of local word lines; a block selection unit respectively connecting a given local word line to the overall word line in response to a block selection signal; a voltage generator configured to apply at least first and second erase voltages to the overall word line during an erase operation, the first erase voltage being during a first erase attempt of the erase operation Applied to the overall word line, the second erase voltage being applied to the overall word line during a second erase attempt, wherein if the first erase attempt does not successfully perform the erase operation, Performing the second erasing attempt, the first and second erasing voltages are positive voltages; and a body voltage generator applying a body voltage to one of the memory cells during the erasing operation. 2. The memory component of claim 1, wherein each time a new erase attempt is performed, a erase voltage applied to the overall word line is reduced by a given voltage, wherein After a predetermined number of failed erase attempts, a given erase operation is stopped. 3. The memory component of claim 1, wherein the first bias generator generates the erase voltage such that a voltage difference between the local word lines and the body is at the first erase attempt It becomes 15V, and a well area of the system is formed with the first memory unit block in the well area. -42- 200822123 4. The memory component of claim 3, wherein each time a new erase attempt is performed, a erase voltage applied to the overall word line is reduced by a given voltage Where the given voltage is no greater than 0.5V. 5) The memory component of claim 1, further comprising: a page buffer for reading data stored in the memory cells; and a Y-decoder for outputting The data stored in the page buffer is to a data I/O buffer and the first bias generator. 6. The memory component of claim 5, wherein the first bias generator reduces the first erase voltage to the second erase voltage according to data output by the Y-decoder, wherein the memory The body element is a NAND flash memory element. 7. A flash memory component, comprising: a plurality of memory cell blocks, each memory cell block comprising a partial drain select line, a local source select line, and a plurality of local word lines, respectively And a plurality of memory cells are connected to the local drain selection line, the local source selection line and the plurality of local word lines; a block selection unit connecting the local word lines to the overall word lines respectively Responding to a block selection signal; a first bias generator applying a positive erase voltage to the overall word line during an erase operation; and a body voltage generator configured to be erased Applying a first body voltage to one of the memory cells during the first erase attempt, and if the first erase test is not properly performed - 43-200822123 test, then the second erase attempt A second body voltage is applied to the body during the period. 8. The flash memory component of claim 7, wherein if the first erase attempt 尙 does not erase all of the memory cells selected for the erase operation, then the 尙 is not properly implemented The first erase attempt. 9. The flash memory component of claim 7, wherein the body voltage generator generates the first body voltage such that a voltage difference between the local word lines and the body is during an initial erase operation A flash memory component according to claim 9 wherein the body voltage generator increases the first body voltage by no more than IV to generate the second body voltage. 1 1 - The flash memory component of claim 7 further comprising: a page buffer for reading data stored in the memory cells; and a Y-decoder for The data stored in the page buffer is output to a data I/O buffer and the body voltage generator. 12. The flash memory component of claim 11, wherein the body voltage generator generates the second body voltage according to data output by the Y-decoder to implement a second wipe of the erase operation. Except try. 1 3 - A flash memory component, comprising: a plurality of memory cells, each memory cell block - 44 - 200822123 includes a partial drain selection line, a local source selection line, and a plurality a local word line, and a plurality of memory cells are connected to the local drain selection line, the local source selection line, and the plurality of local word lines; a block selection unit for respectively connecting the local lines a word line to the overall word line in response to a block select signal; a first bias generator for applying a positive erase voltage to the overall word line during an erase operation, and if present a memory cell that is not erased, reducing the erase voltage and applying a reduced erase voltage to the overall word line to perform the erase operation again; and a body voltage generator for the wipe In addition to applying a body voltage to one of the body of the memory unit, and if there is a memory unit that is not erased, increasing the body voltage and applying an increased body voltage to the body, It will then execute the erase operation. 1 . The flash memory component of claim 13 wherein: the first bias generator and the body voltage generator respectively generate the erase voltage and the body during an initial erase operation a voltage such that a voltage difference between the local word lines and the body becomes 15V; and when the erase operation is performed again, the body voltage generator increases the body voltage and the first bias generator reduces the erase The voltage is such that the voltage difference between the local word lines and the body becomes higher than 15V.丄5. A flash memory component as claimed in claim 13 wherein: -45- 200822123 the first bias generator has a linear function, a quadratic function or an exponential function at a reference of 0.1 to 0.5V The erase voltage is reduced; and the body voltage generator increases the body voltage by a linear function, a quadratic function, or an exponential function at a scale of 0.5 to IV. 16. The flash memory component of claim 13 further comprising: a page buffer for reading data stored in the memory cells; and a Y-decoder for outputting The data stored in the page buffer is to a data I/O buffer, the body voltage generator and the first bias generator. 17. The flash memory component of claim 16, wherein the first bias generator reduces the erase voltage if the data of the data output by the Y-decoder is detected to be unerased. And the body voltage generator increases the body voltage to perform the erase operation again. 18. The flash memory component of claim 13 further comprising an X-decoder for decoding a column of address signals and outputting the block selection signal to the high voltage generating unit. 19. The flash memory component of claim 11, further comprising a second bias generator for performing any one of programming, reading and erasing operations A predetermined operating voltage is applied to the local drain select line and the local source select line. 20. The flash memory component of claim 17, wherein the first bias generator comprises: -46- 200822123 a first pump circuit for generating a read voltage required for a read operation Responding to a read command; a second pump circuit for generating a stylized voltage required for a stylized operation in response to a stylized command; a third pump circuit for generating the erase voltage in response to an erase command And if the data of the data output by the γ-decoder is not erased, the erase voltage is reduced and the output is reduced by a subtraction voltage; and a bias selection unit is configured to select the read The voltage, the programmed voltages or the erase voltages are responsive to an operational command signal and respectively output a select voltage to the overall word line. 2. The flash memory component of claim 20, wherein the bias selection unit comprises: a selection signal generator for generating a selection signal according to the operation command signal; and a plurality of selection circuits respectively connected Up to the overall word line, the selection circuits are configured to respectively output the read voltages, the programmed voltages, the erase voltages, or a combination thereof to the overall word lines for selection signal. 2 2. A method of erasing a non-volatile memory component', the method comprising: respectively connecting a local word line and a global word line of a selected block in response to a block selection signal; And erasing a voltage to the overall word line and a first body voltage higher than the first erase voltage to a body such that a voltage difference between the -47-200822123 local word line and the body is a first potential difference Performing a first erase attempt of one of the erase operations; determining whether the first erase attempt has been properly performed; and applying a second erase if it is determined that the first erase attempt is not properly performed A second erase attempt of the erase operation is performed by applying a voltage to the overall word line and a second body voltage to the body to increase a voltage difference between the local word line and the body to a second potential difference. The method of claim 2, wherein the second erase voltage is less than the first erase voltage. 24. The method of claim 22, wherein the second body voltage is greater than the first body voltage. 25. The method of claim 22, wherein the first erase voltage is different from the second erase voltage and the first body voltage is different from the second body voltage. 2 6. The method of claim 22, wherein the erasing operation is stopped after the predetermined number of erasure attempts are not successfully performed, wherein after the predetermined number of erasure attempts are not successfully performed, The selected block is marked as an invalid block. 27. A method of controlling an erase operation of a flash memory component, the method comprising: respectively connecting a local word line and a global word line of a selected block in response to a block selection signal; Except that the command applies a positive erase voltage to the overall word line and a body voltage higher than the erase voltage to a body of one hundred-48-200822123 body unit to perform an erase operation; determining whether it has been properly Performing the erase operation; and if it is determined that the erase operation is not properly performed, the voltage difference between the local word lines and the body is increased by simultaneously controlling the erase voltage and the body voltage. This erase operation is performed. 2 8. The method of claim 24, wherein the step of determining whether the erase operation has been properly performed is performed repeatedly, while reducing the erase voltage at a predetermined level and increasing the body voltage A predetermined level, and including if the erase operation is not properly performed until the predetermined number of times, a corresponding block is regarded as an invalid block. The method of claim 27, wherein the erase voltage and the body voltage are set such that a voltage difference between the local word lines and the body is 15V or higher. 30. The method of claim 27, wherein the erase voltage is reduced by 〇. 1 to 〇. 5 V, such that the voltage difference between the local word lines and the body increases within a range Where the voltage difference becomes at least 15V. 3. The method of claim 27, wherein the erase voltage is reduced by an exponential function such that a voltage difference between the local word lines and the body increases within a range, wherein the voltage difference becomes At least 15V. 32. The method of claim 27, wherein the erase voltage is increased by a factor of 至5 to IV such that a voltage difference between the local word lines and the body increases within a range, wherein This voltage difference becomes at least 15V. -49-200822123 3 3. The method of claim 27, wherein the erase voltage is increased by an exponential function such that a voltage difference between the local word lines and the body increases within a range, wherein The voltage difference becomes at least 15V. -50-
TW95147631A 2006-11-06 2006-12-19 Flash memory device and method for controlling erase operation of the same TWI322430B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060108888A KR100781041B1 (en) 2006-11-06 2006-11-06 Flash memory device and method for controlling erase operation of the same

Publications (2)

Publication Number Publication Date
TW200822123A true TW200822123A (en) 2008-05-16
TWI322430B TWI322430B (en) 2010-03-21

Family

ID=39081431

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95147631A TWI322430B (en) 2006-11-06 2006-12-19 Flash memory device and method for controlling erase operation of the same

Country Status (5)

Country Link
JP (1) JP2008117504A (en)
KR (1) KR100781041B1 (en)
CN (1) CN101178937B (en)
DE (1) DE102006058380A1 (en)
TW (1) TWI322430B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419167B (en) * 2009-06-17 2013-12-11 Acer Inc Erase method for nonvolatile memory
US8743624B2 (en) 2008-07-02 2014-06-03 SanDisk Technologies, Inc. Programming and selectively erasing non-volatile storage
TWI559313B (en) * 2011-12-21 2016-11-21 桑迪士克科技有限責任公司 Erase inhibit for 3d non-volatile memory
TWI655636B (en) * 2017-09-14 2019-04-01 日商東芝記憶體股份有限公司 Semiconductor memory device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066696B1 (en) * 2009-06-29 2011-09-21 주식회사 하이닉스반도체 Non volatile memory device
KR101089967B1 (en) * 2010-07-09 2011-12-05 주식회사 하이닉스반도체 Non-volatile memory device and method of operating thereof
KR20120061574A (en) 2010-12-03 2012-06-13 에스케이하이닉스 주식회사 Pump circuit and semiconductor memory device having the same
CN102789807B (en) * 2011-05-20 2015-01-28 旺宏电子股份有限公司 Three-dimensional array memory architecture having diode in storage serial
KR20140020155A (en) 2012-08-08 2014-02-18 에스케이하이닉스 주식회사 Semiconductor memory device and method thereof
KR102075673B1 (en) * 2012-08-29 2020-02-10 에스케이하이닉스 주식회사 Semiconductor memory device
KR102083547B1 (en) 2013-04-12 2020-03-02 삼성전자주식회사 Data storage device including flash memory and memory controller and bad page management method thereof
US9088280B2 (en) * 2013-10-30 2015-07-21 Freescale Semiconductor, Inc. Body bias control circuit
TWI498905B (en) * 2013-12-03 2015-09-01 Winbond Electronics Corp Methods of non-volatile memory partial erasing
CN104795104B (en) * 2014-01-17 2018-07-06 华邦电子股份有限公司 Flash memory device and its method for deleting
CN106205706B (en) * 2015-04-30 2019-09-27 旺宏电子股份有限公司 The relative erasing method of memory device
KR102401060B1 (en) * 2015-11-03 2022-05-24 에스케이하이닉스 주식회사 Semiconductor memory device and operating method thereof
US9847133B2 (en) * 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation
CN105976867A (en) * 2016-07-06 2016-09-28 北京兆易创新科技股份有限公司 Erasing method for storage units
JP6492202B1 (en) * 2018-03-05 2019-03-27 ウィンボンド エレクトロニクス コーポレーション Semiconductor memory device and erasing method
CN109346120B (en) * 2018-10-09 2021-04-23 深圳市江波龙电子股份有限公司 Method, device and system for testing and adjusting reference current of memory
CN109785891B (en) * 2019-01-25 2020-09-22 山东华芯半导体有限公司 Method for obtaining shallow erasure characteristic rule of NAND Flash memory
US10665303B1 (en) * 2019-05-10 2020-05-26 Macronix International Co., Ltd. Erasing blocks with few programmed pages

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544743B2 (en) * 1995-04-17 2004-07-21 株式会社東芝 Semiconductor storage device
JP2780674B2 (en) * 1995-06-20 1998-07-30 日本電気株式会社 Nonvolatile semiconductor memory device
JP3198998B2 (en) * 1997-09-11 2001-08-13 日本電気株式会社 Semiconductor nonvolatile memory
KR100744103B1 (en) * 1997-12-30 2007-12-20 주식회사 하이닉스반도체 Low Decoder for Flash Memory Devices
US5991198A (en) 1998-04-02 1999-11-23 Nexflash Technologies, Inc. Local row decoder and associated control logic for fowler-nordheim tunneling based flash memory
US6188609B1 (en) * 1999-05-06 2001-02-13 Advanced Micro Devices, Inc. Ramped or stepped gate channel erase for flash memory application
KR100705221B1 (en) * 2004-09-03 2007-04-06 에스티마이크로일렉트로닉스 엔.브이. Flash memory device and method of erasing the flash memory cell using the same
KR100673170B1 (en) * 2005-03-10 2007-01-22 주식회사 하이닉스반도체 Flash memory device with improved erase function and method for controlling erase operation of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8743624B2 (en) 2008-07-02 2014-06-03 SanDisk Technologies, Inc. Programming and selectively erasing non-volatile storage
USRE45699E1 (en) 2008-07-02 2015-09-29 Sandisk Technologies Inc. Programming and selectively erasing non-volatile storage
TWI419167B (en) * 2009-06-17 2013-12-11 Acer Inc Erase method for nonvolatile memory
TWI559313B (en) * 2011-12-21 2016-11-21 桑迪士克科技有限責任公司 Erase inhibit for 3d non-volatile memory
TWI655636B (en) * 2017-09-14 2019-04-01 日商東芝記憶體股份有限公司 Semiconductor memory device
US10325667B2 (en) 2017-09-14 2019-06-18 Toshiba Memory Corporation Semiconductor storage device
US10679713B2 (en) 2017-09-14 2020-06-09 Toshiba Memory Corporation Semiconductor storage device

Also Published As

Publication number Publication date
TWI322430B (en) 2010-03-21
CN101178937A (en) 2008-05-14
JP2008117504A (en) 2008-05-22
DE102006058380A1 (en) 2008-05-15
KR100781041B1 (en) 2007-11-30
CN101178937B (en) 2010-04-21

Similar Documents

Publication Publication Date Title
TWI322430B (en) Flash memory device and method for controlling erase operation of the same
US7304892B2 (en) Flash memory device and method for controlling erase operation of the same
TWI453748B (en) Flash memory program inhibit scheme
US20210343336A1 (en) Semiconductor memory device
JP3886673B2 (en) Nonvolatile semiconductor memory device
JP3957985B2 (en) Nonvolatile semiconductor memory device
US7894268B2 (en) Semiconductor memory device and method of erasing data therein
JP3810985B2 (en) Nonvolatile semiconductor memory
JP3730508B2 (en) Semiconductor memory device and operation method thereof
CN107818809B (en) Semiconductor memory device and memory system
US6977846B2 (en) Non-volatile semiconductor memory device in which one page is set for a plurality of memory cell arrays
US7539059B2 (en) Selective bit line precharging in non volatile memory
US5978270A (en) Semiconductor non-volatile memory device and computer system using the same
US8576635B2 (en) Nonvolatile memory device and method of operating the same
TW200404298A (en) Nonvolatile semiconductor memory device and data writing method thereof
JP2008140488A (en) Semiconductor storage device
JP2008084471A (en) Semiconductor memory device
JP2008135100A (en) Semiconductor memory device and its data erasing method
JP2007305204A (en) Nonvolatile semiconductor memory device
KR102416047B1 (en) Method for controlling dummy cell and semiconduntor device
JP2010157288A (en) Nand type nonvolatile semiconductor memory
JPH0982097A (en) Semiconductor nonvolatile memory and computer system employing it
JP2009205728A (en) Nand type nonvolatile semiconductor memory
CN114974370A (en) Semiconductor memory device with a plurality of memory cells